WO2018189931A1 - Centrifugal fan, moulding die, and fluid feeding device - Google Patents

Centrifugal fan, moulding die, and fluid feeding device Download PDF

Info

Publication number
WO2018189931A1
WO2018189931A1 PCT/JP2017/031312 JP2017031312W WO2018189931A1 WO 2018189931 A1 WO2018189931 A1 WO 2018189931A1 JP 2017031312 W JP2017031312 W JP 2017031312W WO 2018189931 A1 WO2018189931 A1 WO 2018189931A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
centrifugal fan
maximum thickness
inner diameter
blade body
Prior art date
Application number
PCT/JP2017/031312
Other languages
French (fr)
Japanese (ja)
Inventor
ゆい 公文
大塚 雅生
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780089424.1A priority Critical patent/CN110494654B/en
Priority to JP2019512180A priority patent/JP6951428B2/en
Publication of WO2018189931A1 publication Critical patent/WO2018189931A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • a plurality of blade bodies (wings) having the same size and the same shape may be arranged linearly or circularly at equal intervals and in the same posture.
  • An aspect in which the plurality of blades are configured in this manner is called a blade row.
  • the deceleration blade row is for decelerating the flow and increasing the pressure, and is adopted for a compressor, a fan, a pump, and the like.
  • a plurality of blades are arranged with a spacing D therebetween. Due to the expansion of the flow path, the speed is reduced from the speed WA to the speed WB, and the kinetic energy is effectively recovered as pressure (pressure increasing action).
  • the speed increasing cascade is for increasing the flow and lowering the pressure, and is adopted for a turbine, a windmill and the like.
  • the speed is increased from the speed WA to the speed WB.
  • the pressure change amount is expressed by the following equation (2).
  • a centrifugal fan generally becomes a speed reducing cascade due to its operating principle. Specifically, in the centrifugal fan, a plurality of blades are provided in a circle at regular intervals. Along with the rotation of the fan, a flow flows in from the vicinity of the rotation center, and a flow flows out from the outer periphery of the fan. The length in the circumferential direction increases proportionally as the distance from the center of rotation increases (the diameter increases). A flow path formed between adjacent blades (that is, between blades) gradually increases from the center of the fan toward the outside in the radial direction.
  • the plurality of blades in the centrifugal fan When the flow path is enlarged, the flow velocity of the flow flowing through the flow path is reduced in inverse proportion to the expansion of the flow path (the law of conservation of mass). Accordingly, the plurality of blades in the centrifugal fan generally form a speed reducing blade row.
  • Conventionally used blades for centrifugal fans include arc blades, flat blades, airfoils, and the like. Centrifugal fans using these general blades as blade rows are reduced blade rows for the above reasons.
  • the flow velocity of the flow that flows between the blades of the centrifugal fan decreases as the flow goes radially outward.
  • the kinetic energy of the flow decreases in proportion to the square of the decrease in flow velocity.
  • the flow is separated from the blade body, so that the performance as the blade body is lowered and noise is increased.
  • Many of the conventional blades used in centrifugal fans have a shape and size mainly intended to overcome high-pressure loss, and as a result, they tend to cause flow separation and increased noise. It was.
  • the present specification relates to a centrifugal fan capable of improving performance and reducing noise by suppressing separation of a flow from a blade body, a molding die used for manufacturing the centrifugal fan, and the centrifugal fan.
  • a fluid feeder Disclosed is a fluid feeder.
  • the centrifugal fan according to the first aspect of the present disclosure includes a plurality of blade bodies that have a front edge portion into which air flows and a rear edge portion from which air flows out, and are provided at intervals from each other in the circumferential direction.
  • Each of the plurality of blade bodies extends between the front edge portion and the rear edge portion, and has a positive pressure surface positioned on the rotation direction side of the blade body, and the rotation direction of the blade body.
  • a blade surface composed of a suction surface positioned on the opposite side is formed, and the plurality of blade bodies are opposed to the front blade body and the front blade body with the space therebetween and in a rotational direction with respect to the front blade body
  • the shortest distance from any location on the suction surface of the front blade body to the pressure surface of the rear blade body is defined as the inter-blade distance at the above location.
  • the front blade body is the maximum thickness of the front blade body.
  • a position on the suction surface in the maximum thickness portion is defined as a maximum thickness position, and the maximum thickness position of the suction surface of the front blade body and the front edge portion.
  • the range between the maximum thickness position and the rear edge of the suction surface of the front blade body is defined as the outer diameter side suction surface
  • Supposing that the length from the leading edge portion to the trailing edge portion on the suction surface of the front blade body is defined as the suction surface length
  • the distance between the blades on the inner diameter side suction surface is the blade at the maximum thickness position.
  • the centrifugal fan according to the second aspect of the present disclosure includes a plurality of blade bodies that have a front edge portion into which air flows and a rear edge portion from which air flows out, and are provided at intervals from each other in the circumferential direction.
  • Each of the plurality of blade bodies extends between the front edge portion and the rear edge portion, and has a positive pressure surface positioned on the rotation direction side of the blade body, and the rotation direction of the blade body.
  • a blade surface composed of a suction surface located on the opposite side is formed, and each of the plurality of blade bodies is located on the radially outer side of the inner diameter side blade portion including the front edge portion and the inner diameter side blade portion,
  • An outer diameter side blade portion including the rear edge portion, and the inner diameter side blade portion is a maximum thickness portion defining the maximum thickness of the inner diameter side blade portion, the front edge portion, and the The blade thickness gradually increases from the leading edge side toward the radially outer side.
  • the suction surface and the pressure surface of the inner diameter blade portion have a surface shape that curves convexly toward the opposite side of the rotation direction, and the curvature of the suction surface of the inner diameter blade portion is Larger than the curvature of the pressure surface of the inner diameter blade portion, the outer diameter blade portion includes a plate-like portion extending from the rear edge side to the radially inner side with substantially the same blade thickness, The curvature of the suction surface of the portion and the curvature of the pressure surface of the plate-like portion are both smaller than the curvature of the suction surface of the inner diameter blade portion.
  • the positive pressure surface of the inner diameter side blade portion and the positive pressure surface of the outer diameter side blade portion are tangent to each other, and the negative pressure surface of the inner diameter side blade portion and the negative pressure surface of the outer diameter side blade portion And may be tangent to each other.
  • the maximum thickness of the outer diameter side blade portion is smaller than the maximum thickness of the inner diameter side blade portion, and the warpage of the outer diameter side blade portion is smaller than the warpage of the inner diameter side blade portion. Also good.
  • the inner diameter blade portion is provided with a through hole extending in a direction parallel to the rotation axis, and the through hole is formed to include the maximum thickness portion, Or you may form one each in the radial direction inner side and radial direction outer side of the said maximum thickness part.
  • the inner peripheral surface forming the through hole in the inner diameter blade portion when the inner peripheral surface forming the through hole in the inner diameter blade portion is viewed from a direction parallel to the rotation axis, the inner peripheral surface has a crescent shape. May be.
  • a straight line connecting the leading edge portion and the trailing edge portion is defined as a chord line
  • a length of the chord line is C
  • the chord line extends from the suction surface of the blade body to the chord line.
  • t the length of the perpendicular at the position where the length of the perpendicular drawn down
  • t / C is defined as a warp ratio m
  • each of the plurality of blade bodies has a warp ratio m of It may be formed to be 0.25 or more.
  • the plurality of blade bodies may be configured to form a constant velocity blade row.
  • the centrifugal fan may be formed of a resin.
  • the molding die based on the present disclosure is used to mold the centrifugal fan based on the present disclosure.
  • a fluid feeder based on the present disclosure includes a blower configured by the centrifugal fan based on the present disclosure and a drive motor connected to the centrifugal fan and rotating the plurality of blade bodies.
  • the flow path between the blade bodies adjacent to each other in the rotation direction extends with a substantially constant flow path cross-sectional area from the center side of the centrifugal fan toward the radially outer side.
  • the flow velocity of the flow formed between the blade bodies adjacent to each other in the rotation direction can be kept substantially constant even if the flow proceeds from the center side of the centrifugal fan to the radially outer side. Even if the flow travels radially outward, it is possible to suppress a decrease in the flow velocity, and it is also possible to suppress a decrease in the kinetic energy of the flow.
  • FIG. 1 is a perspective view showing a centrifugal fan 10 according to Embodiment 1.
  • FIG. 1 is a front view showing a centrifugal fan 10 according to Embodiment 1.
  • FIG. It is a front view which expands and shows the area
  • FIG. It is a front view which expands and shows the area
  • FIG. It is a perspective view which shows the centrifugal fan 10B in Embodiment 3.
  • FIG. It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10B shown in FIG.
  • It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10C in the modification of Embodiment 3.
  • FIG. It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10D in Embodiment 4.
  • FIG. It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10E in the 1st modification of Embodiment 4.
  • FIG. 10 is a cross-sectional view showing a molding die 110 used at the time of manufacturing the centrifugal fan 10 with respect to the fifth embodiment.
  • FIG. 10 is a cross-sectional view showing a blower 120 using a centrifugal fan 10 with respect to the fifth embodiment.
  • FIG. 16 is a cross-sectional view showing a cross-sectional shape of the blower 120 along the line XVI-XVI in FIG. 15.
  • FIG. 10 is a cross-sectional view showing an air cleaner 140 using a centrifugal fan 10 with respect to the fifth embodiment.
  • FIG. 21 It is a front view which expands and shows a part (blade body 21) of the centrifugal fan regarding an experiment example. It is a table
  • FIG. It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S5 of Experimental example 5.
  • FIG. It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S9 of Experimental example 9.
  • FIG. It is a graph which shows the relationship between curvature ratio m and an air volume as an experimental result regarding an experiment example.
  • FIG. 1 It is a graph which shows the relationship between blade thickness ratio and power consumption as an experimental result regarding an experiment example. It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S7 based on Experimental example 7. FIG. It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S7a regarding Experimental example 7.
  • FIG. It is sectional drawing which shows the several blade body comprised so that the speed-reduction blade row
  • centrifugal fan 10 according to the first embodiment will be described with reference to FIGS. 1 and 2 are a perspective view and a front view showing the centrifugal fan 10, respectively.
  • centrifugal fan 10 has a plurality of blade bodies 21.
  • the centrifugal fan 10 has a substantially cylindrical appearance as a whole, and the plurality of blade bodies 21 are arranged on the side surfaces of the substantially cylindrical shape.
  • Centrifugal fan 10 is integrally formed of resin, and rotates in the direction indicated by arrow 103 about virtual rotation shaft 101.
  • Centrifugal fan 10 sends air taken from the inner periphery side to the outer periphery side by a plurality of rotating blade bodies 21. Centrifugal fan 10 sends out air radially outward from the center of rotation using centrifugal force. Centrifugal fan 10 functions as a sirocco fan, is mounted on household electrical equipment and the like, and can be used at a rotational speed in a low lay nozzle number region.
  • the centrifugal fan 10 further has outer peripheral frames 12 and 13.
  • the outer peripheral frames 12 and 13 are formed to extend in an annular shape centering on the rotation shaft 101.
  • the outer peripheral frames 12 and 13 are arranged at a distance in the axial direction of the rotating shaft 101.
  • the outer peripheral frame 13 is integrally formed with a boss portion 16 for connecting the centrifugal fan 10 to a drive motor.
  • the boss part 16 is composed of, for example, a rubber part and a metal part, and is integrated with the outer peripheral frame 13 by insert molding.
  • the plurality of blade bodies 21 are provided at intervals from each other in the circumferential direction around the rotation shaft 101.
  • the plurality of blade bodies 21 are arranged at equal intervals in the circumferential direction around the rotation shaft 101, and are supported by the outer peripheral frame 12 and the outer peripheral frame 13 at both ends in the axial direction of the rotation shaft 101.
  • the blade body 21 is erected on the outer peripheral frame 13 and is formed to extend along the axial direction of the rotary shaft 101 toward the outer peripheral frame 12.
  • FIG. 3 is an enlarged front view showing a region surrounded by line III in FIG. 2
  • FIG. 4 is an enlarged front view showing a part of the centrifugal fan 10 shown in FIG. 3 and 4 show the shape of the blade body 21 when viewed from a direction parallel to the rotating shaft 101 (FIGS. 1 and 2) of the centrifugal fan 10.
  • the plurality of blades 21 have the same shape.
  • Each of the plurality of blade bodies 21 is formed to have the same blade cross-sectional shape even when cut at any position in the axial direction of the rotating shaft 101.
  • the blade body 21 is located at the end portion on the inner peripheral side of the blade body 21 and is positioned at the front edge portion 26 into which air flows during rotation and the end portion on the outer periphery side of the blade body 21, and air flows out during rotation. And a trailing edge 27.
  • the blade body 21 is formed so as to be inclined in the circumferential direction around the rotation shaft 101 from the front edge portion 26 toward the rear edge portion 27.
  • the blade body 21 is formed to be inclined in the rotation direction of the centrifugal fan 10 from the front edge portion 26 toward the rear edge portion 27.
  • a blade surface 23 including a pressure surface 25 and a suction surface 24 is formed on the blade body 21.
  • the positive pressure surface 25 extends between the front edge portion 26 and the rear edge portion 27 and is located on the rotational direction side of the blade body 21.
  • the negative pressure surface 24 extends between the front edge portion 26 and the rear edge portion 27, and is located on the opposite side of the blade body 21 in the rotational direction (the back side of the positive pressure surface 25).
  • the plurality of blade bodies 21 include a front blade body 21A and a rear blade body 21B.
  • the front blade body 21A and the rear blade body 21B have the same shape and size.
  • the rear blade body 21B is opposed to the front blade body 21A with a space therebetween, and is positioned on the opposite side of the rotation direction (arrow 103) with respect to the front blade body 21A.
  • the shortest distance is defined as the distance between the blades at this arbitrary point.
  • interblade distances L1 to L6 are defined at locations P1 to P6 on the suction surface 24 of the front blade body 21A, respectively.
  • the front blade body 21A has a maximum thickness portion (a portion indicated by an arrow H) that defines the maximum thickness of the front blade body 21A.
  • the maximum thickness portion means that when a circle having the largest size among the circles inscribed in the suction surface 24 and the pressure surface 25 is drawn between the suction surface 24 and the pressure surface 25, the inscribed circle and the negative surface are negative. An intersection point with the pressure surface 24 and an intersection point between the inscribed circle and the positive pressure surface 25 are defined, and a maximum thickness portion is defined so as to include these two intersection points.
  • the location P2 corresponds to a position on the suction surface 24 in the maximum thickness portion (hereinafter referred to as the maximum thickness position P2).
  • the range between the maximum thickness position P2 and the front edge portion 26 in the suction surface 24 of the front blade body 21A is defined as the inner diameter side suction surface 24A.
  • a range between the maximum thickness position P2 and the rear edge 27 in the suction surface 24 of the front blade body 21A is defined as an outer diameter-side suction surface 24B.
  • the length from the front edge portion 26 to the rear edge portion 27 in the suction surface 24 of the front blade body 21A (the length of the portion surrounded by the dotted line 24R in FIG. 4) is defined as the suction surface length 24L.
  • the negative pressure surface length 24L is a total value of the length of the inner diameter side negative pressure surface 24A and the outer diameter side negative pressure surface 24B.
  • the interblade distance on the inner diameter side negative pressure surface 24A is configured to be longer than the interblade distance L2 at the maximum thickness position P2.
  • the inter-blade distance L1 at an arbitrary point P1 between the maximum thickness position P2 and the leading edge portion 26 is configured to be longer than the inter-blade distance L2 at the maximum thickness position P2.
  • it is comprised so that the distance between blades may become long gradually as it approaches the front-edge part 26 from the largest thickness position P2.
  • the inter-blade distance in a range between the maximum thickness position P2 and a position away from the maximum thickness position P2 by more than half of the negative pressure surface length 24L is substantially constant.
  • “Substantially constant” means that the distance between the blades is at least within a range of ⁇ 25% of the distance L2 between the blades at the maximum thickness position P2, and more preferably the distance between the blades is the maximum thickness position P2. Is included in a range within ⁇ 15% of the inter-blade distance L2, and more preferably, the inter-blade distance is included in a range within ⁇ 10% of the inter-blade distance L2 at the maximum thickness position P2.
  • the inter-blade distance L2 at the maximum thickness position P2 the inter-blade distance L3 at the location P3, and the inter-blade distance L4 at the location P4 are the same value.
  • the distance between the blades gradually decreases from the place P4 to the place P5.
  • the inter-blade distance L5 at the location P5 and the inter-blade distance L6 at the location P6 are the same value.
  • the suction surface length 24L is 28.3 mm
  • the inter-blade distance (L2 to L4) at the maximum thickness position P2 and the places P3 and P4 is 3.6 mm
  • the inter-blade distance at the places P5 and P6 is 3.4 mm.
  • the distance between the blades in the range between the maximum thickness position P2 and the position away from the maximum thickness position P2 by the length of 21.4 mm toward the rear edge 27 is substantially constant.
  • Centrifugal fan 10 of the present embodiment includes a plurality of blade bodies 21 that satisfy the inter-blade distance as described above.
  • the flow path between the blade bodies 21 adjacent to each other in the rotation direction is formed to extend with a substantially constant flow path cross-sectional area from the center side of the centrifugal fan 10 toward the radially outer side. Even if the flow proceeds from the central side of the centrifugal fan 10 to the outside in the radial direction, the flow velocity of the flow flowing between the blade bodies 21 adjacent to each other in the rotation direction can always be substantially constant.
  • the plurality of blade bodies 21 in the present embodiment constitute a constant velocity blade row different from the speed reduction blade row and the speed increasing blade row. Even if the flow travels radially outward, it is possible to suppress a decrease in the flow velocity, and it is also possible to suppress a decrease in the kinetic energy of the flow. This makes it possible to significantly increase the time and distance margins until the kinetic energy of the flow is lost with respect to the negative pressure acting on the blade body 21. It is also possible to suppress the flow from separating from the blade body 21, and as a result, it is possible to suppress the performance as the blade body 21 from being lowered, and it is possible to greatly reduce the occurrence of noise by suppressing the separation. It becomes.
  • FIG. 5 is a front view showing the centrifugal fan 10A.
  • 6 is an enlarged front view showing a region surrounded by the VI line in FIG. 5, and
  • FIG. 7 is an enlarged view of a part (blade body 21) of the centrifugal fan 10A shown in FIG. It is a front view.
  • the centrifugal fan 10A according to the second embodiment also has a substantially cylindrical appearance as a whole, similarly to the centrifugal fan 10 according to the first embodiment (FIG. 2). It is arrange
  • Centrifugal fan 10 ⁇ / b> A is integrally formed of resin and rotates in a direction indicated by arrow 103 about virtual rotation shaft 101.
  • Centrifugal fan 10 in the first embodiment and centrifugal fan 10A in the second embodiment are different in the following points.
  • each of the plurality of blade bodies 21 has an inner diameter side blade portion 21M including a front edge portion 26 and an outer diameter side blade portion 21N including a rear edge portion 27.
  • the outer diameter side blade portion 21N is located on the radially outer side of the inner diameter side blade portion 21M.
  • the inner diameter side blade portion 21M of the present embodiment is a portion of the blade body 21 surrounded by the front edge portion 26 and the points P10 to P12.
  • the inner diameter blade portion 21M includes a maximum thickness portion 21Ma, an enlarged portion 21Mb, and a reduced portion 21Mc.
  • the maximum thickness portion 21Ma is a portion that defines the maximum thickness h2 in the inner diameter side blade portion 21M.
  • the maximum thickness h2 is, for example, 3.6 mm.
  • a point P11 indicates a position on the suction surface 24 in the maximum thickness portion 21Ma.
  • the enlarged portion 21Mb is a portion that is located closer to the front edge portion 26 than the maximum thickness portion 21Ma of the inner diameter side blade portion 21M.
  • the enlarged portion 21Mb is located between the front edge portion 26 and the maximum thickness portion 21Ma, and the blade thickness h1 (FIG. 6) of the enlarged portion 21Mb gradually increases from the front edge portion 26 side toward the radially outer side. It is comprised so that it may become.
  • the reduced portion 21Mc is a portion located on the radially outer side than the maximum thickness portion 21Ma of the inner diameter side blade portion 21M.
  • the reduced portion 21Mc is located between the maximum thickness portion 21Ma and the outer diameter side blade portion 21N, and the blade thicknesses h3 and h4 of the reduced portion 21Mc gradually become thinner from the maximum thickness portion 21Ma side toward the radial outer side. It is comprised so that it may become.
  • Each of the negative pressure surface 24M of the inner diameter side blade portion 21M and the positive pressure surface 25M of the inner diameter side blade portion 21M has a surface shape that curves in a convex shape toward the opposite side of the rotation direction (arrow 103 shown in FIG. 6). Yes.
  • the curvature of the suction surface 24M of the inner diameter blade portion 21M is larger than the curvature of the positive pressure surface 25M of the inner diameter blade portion 21M.
  • the outer diameter side blade portion 21N includes a plate-shaped portion 21Np extending from the rear edge portion 27 side to the radially inner side with substantially the same blade thickness h6, h5 (FIG. 6).
  • the blade thicknesses h6 and h5 are, for example, 1.0 mm.
  • the curvature of the negative pressure surface 24Np of the plate-like portion 21Np and the curvature of the positive pressure surface 25Np of the plate-like portion 21Np are both smaller than the curvature of the negative pressure surface 24M of the inner diameter blade portion 21M.
  • Centrifugal fan 10A of the present embodiment includes a plurality of blade bodies 21 that satisfy the blade thickness and curvature as described above.
  • the flow path between the blade bodies 21 adjacent to each other in the rotation direction is formed so as to extend with a substantially constant flow path cross-sectional area from the central side of the centrifugal fan 10A toward the radially outer side. Even when the flow proceeds from the center side of the centrifugal fan 10A to the radially outer side, the flow velocity between the blade bodies 21 adjacent to each other in the rotation direction can be kept substantially constant.
  • the plurality of blade bodies 21 in the present embodiment also constitute a constant velocity blade row different from the speed reduction blade row and the speed increasing blade row. Even if the flow travels radially outward, it is possible to suppress a decrease in the flow velocity, and it is also possible to suppress a decrease in the kinetic energy of the flow. This makes it possible to significantly increase the time and distance margins until the kinetic energy of the flow is lost with respect to the negative pressure acting on the blade body 21. It is also possible to suppress the flow from separating from the blade body 21, and as a result, it is possible to suppress the performance as the blade body 21 from being lowered, and it is possible to greatly reduce the occurrence of noise by suppressing the separation. It becomes.
  • the pressure surface of inner diameter side blade portion 21M and the pressure surface of outer diameter side blade portion 21N are tangent to each other at point P10 and are smoothly connected.
  • the suction surface of the side blade portion 21M and the suction surface of the outer diameter side blade portion 21N are preferably tangent to each other and smoothly connected at the point P12. According to this configuration, when air flows between adjacent blade bodies 21 in the rotation direction, lift is effectively generated in the flow of air, thereby further improving the performance as the blade body 21. .
  • the maximum thickness of outer diameter side blade portion 21N is preferably smaller than the maximum thickness of inner diameter side blade portion 21M.
  • the warp t2 of the outer diameter side blade portion 21N is preferably smaller than the warp t1 of the inner diameter side blade portion 21M.
  • the warp t2 of the outer diameter side blade portion 21N and the warp t1 of the inner diameter side blade portion 21M are values defined as follows.
  • the point P10 is located between the positive pressure surface of the inner diameter side blade portion 21M and the positive pressure surface of the outer diameter side blade portion 21N in the positive pressure surface 25 of the blade body 21.
  • a position where the straight line LN1 connecting the leading edge portion 26 and the point P10 in the inner diameter blade portion 21M is drawn, and the length of the perpendicular drawn from the suction surface in the inner diameter blade portion 21M to the straight line LN1 is maximized (point P11). Is defined as the warp t1 of the inner diameter blade portion 21M. A straight line LN2 connecting the point P10 and the trailing edge 27 in the outer diameter side blade portion 21N is drawn, and the perpendicular at the position P13 where the length of the perpendicular line drawn from the suction surface in the outer diameter side blade portion 21N to the straight line LN2 is the maximum is drawn. The length of W2 is defined as the warp t2 of the outer diameter side blade portion 21N.
  • FIG. 8 is a perspective view showing the centrifugal fan 10B.
  • FIG. 9 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10B shown in FIG.
  • the centrifugal fan 10B in the third embodiment also has a substantially cylindrical appearance as a whole, similar to the centrifugal fans 10 (FIG. 2) and 10A (FIG. 5) in the first and second embodiments.
  • a plurality of blades 21 are arranged on the substantially cylindrical side surface.
  • Centrifugal fan 10B is integrally formed of resin, and rotates in the direction indicated by arrow 103 about virtual rotation shaft 101 (FIG. 8).
  • Centrifugal fan 10A (FIG. 5) in the second embodiment is different from centrifugal fan 10B (FIGS. 8 and 9) in the third embodiment in the following points.
  • a through hole 29 is provided in the inner diameter blade portion 21M (FIG. 9).
  • the through hole 29 is formed so as to include the maximum thickness portion 21Ma of the inner diameter blade portion 21M, and extends in a direction parallel to the rotation shaft 101 of the centrifugal fan 10B.
  • the weight of the blade body 21 can be reduced, and sink marks during molding that can occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) can be reduced or reduced.
  • imbalance that occurs when the centrifugal fan 10B rotates can be significantly suppressed, and vibration noise of the centrifugal fan 10B can be reduced.
  • FIG. 10 is an enlarged front view showing a part (blade body 21) of centrifugal fan 10C according to a modification of the third embodiment.
  • a total of two through holes 29A and 29B are formed in the inner diameter blade portion 21M.
  • the through holes 29A and 29B extend in a direction parallel to the rotation axis of the centrifugal fan 10C.
  • the through holes 29A and 29B are formed one by one on the radially inner side and on the radially outer side of the maximum thickness portion 21Ma of the inner diameter blade portion 21M.
  • the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that can occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. It becomes possible. Moreover, the imbalance that occurs when the centrifugal fan 10C rotates can be significantly suppressed, and the vibration noise of the centrifugal fan 10C can be further reduced.
  • the inner peripheral surface forming the through hole 29 in the inner diameter blade portion 21M is parallel to the rotation shaft 101.
  • the inner peripheral surface may have a crescent shape.
  • the crescent-shaped through-hole 29 can provide the effects and effects described in the description of the third embodiment and the modifications thereof, and can also be expected to improve the aesthetics as a centrifugal fan.
  • FIG. 11 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10D.
  • the centrifugal fan 10D according to the fourth embodiment and the centrifugal fans according to the first to third embodiments are such that, in the centrifugal fan 10D, a concave notch 29C is formed instead of the through hole 29 (through holes 29A, 29B). Is different.
  • the notch 29 ⁇ / b> C extends from the portion near the outer diameter blade 21 ⁇ / b> N in the longitudinal direction of the pressure surface 25 of the inner diameter blade 21 ⁇ / b> M so as to approach the front edge 26. It is different from the configuration.
  • the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that may occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. Is possible.
  • imbalance that occurs when the centrifugal fan 10D rotates can be significantly suppressed, and vibration noise of the centrifugal fan 10D can be further reduced.
  • FIG. 12 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10E.
  • the centrifugal fan 10E (FIG. 12) in the present embodiment and the centrifugal fan 10D (FIG. 11) in the fourth embodiment are such that the notch 29C in the centrifugal fan 10E is in the longitudinal direction of the positive pressure surface 25 of the inner diameter blade portion 21M. It is different in that it includes a portion 29C1 extending so as to approach the front edge portion 26 from a portion near the outer diameter blade portion 21N and a portion 29C2 extending so as to move away from the front edge portion 26. ing.
  • the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that may occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. Is possible. Moreover, the imbalance that occurs when the centrifugal fan 10E rotates can be significantly suppressed, and the vibration noise of the centrifugal fan 10E can be further reduced.
  • FIG. 13 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10F.
  • the centrifugal fan 10F in the present embodiment (FIG. 13) and the centrifugal fan in each of the above-described embodiments are formed by separating the inner diameter side blade portion 21M and the outer diameter side blade portion 21N in the centrifugal fan 10F from each other. It is different in that it is.
  • the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that may occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. Is possible. Further, the imbalance that occurs when the centrifugal fan 10F rotates can be significantly suppressed, and the vibration noise of the centrifugal fan 10F can be further reduced.
  • FIG. 14 is a cross-sectional view showing a molding die 110 used when the centrifugal fan 10 is manufactured.
  • the molding die 110 has a fixed side die 114 and a movable side die 112.
  • the fixed side mold 114 and the movable side mold 112 define a cavity 116 having substantially the same shape as the centrifugal fan 10 and into which a fluid resin is injected.
  • the molding die 110 may be provided with a heater (not shown) for enhancing the fluidity of the resin injected into the cavity 116.
  • a heater for enhancing the fluidity of the resin injected into the cavity 116.
  • the installation of such a heater is particularly effective when, for example, a synthetic resin with increased strength such as an AS resin containing glass fiber is used.
  • FIG. 15 is a cross-sectional view showing a blower 120 using the centrifugal fan 10.
  • 16 is a cross-sectional view showing a cross-sectional shape of the blower 120 along the line XVI-XVI in FIG.
  • the blower 120 includes a drive motor 128 (FIG. 16), the centrifugal fan 10, and a casing 129 in the outer casing 126.
  • the output shaft of the drive motor 128 is connected to the boss portion 16 (FIG. 16) of the centrifugal fan 10.
  • the casing 129 has a guide wall 129a.
  • the guide wall 129 a is formed by a substantially 3/4 arc arranged on the outer periphery of the centrifugal fan 10.
  • the guide wall 129a is formed to increase the speed of the airflow while guiding the airflow generated by the rotation of the blade body 21 in the rotation direction of the blade body 21.
  • the suction part 130 (FIG. 16) and the blowing part 127 are formed in the casing 129.
  • the suction part 130 is formed on the extension of the rotation shaft 101.
  • the blowing portion 127 is formed to be opened from a part of the guide wall 129a to one side in the tangential direction of the guide wall 129a.
  • the blowing portion 127 has a rectangular tube shape protruding from a part of the guide wall 129a to one side in the tangential direction of the guide wall 129a.
  • the centrifugal fan 10 rotates in the direction shown by the arrow 103 (FIG. 15) by driving the drive motor 128 (FIG. 16). At this time, air is taken into the casing 129 from the suction portion 130 and sent out from the inner peripheral space 131 of the centrifugal fan 10 to the outer peripheral space 132. The air sent out to the outer peripheral side space 132 flows in the circumferential direction along the direction indicated by the arrow 104 and is blown to the outside through the blowing unit 127.
  • FIG. 17 is a cross-sectional view showing an air cleaner 140 using the centrifugal fan 10.
  • the air cleaner 140 includes a housing 144, a blower 150, a duct 145, and a (HEPA: High Efficiency Particulate Air Filter) filter 141.
  • HEPA High Efficiency Particulate Air Filter
  • the housing 144 has a rear wall 144a and a top wall 144b.
  • the housing 144 is formed with a suction port 142 for sucking air in a room where the air purifier 140 is installed.
  • the suction port 142 is formed in the rear wall 144a.
  • the housing 144 further has a blowout port 143 that discharges clean air toward the room.
  • the outlet 143 is formed in the top wall 144b.
  • the air cleaner 140 is installed near the wall so that the rear wall 144a faces the indoor wall.
  • the filter 141 is disposed inside the housing 144 so as to face the suction port 142.
  • the air introduced into the housing 144 through the suction port 142 passes through the filter 141, thereby removing foreign substances and obtaining clean air.
  • the blower 150 sucks indoor air into the housing 144 and sends the air purified by the filter 141 into the room through the outlet 143.
  • the blower 150 includes the centrifugal fan 10, a casing 152, and a drive motor 151.
  • the casing 152 has a guide wall 152a.
  • the casing 152 is formed with a suction part 153 and a blowing part 154.
  • the duct 145 is provided above the blower 150 and is provided as an air guide path that guides clean air from the casing 152 to the outlet 143.
  • the duct 145 has a shape that forms a rectangular tube whose lower end is connected to the blowing portion 154 and whose upper end is open.
  • the duct 145 is configured to guide the clean air blown out from the blowout portion 154 to a laminar flow toward the blowout port 143.
  • the blade body 21 is rotated by driving the blower 150, and the indoor air is sucked into the housing 144 from the suction port 142. At this time, an air flow is generated between the suction port 142 and the blowout port 143, and foreign matters such as dust contained in the sucked air are removed by the filter 141.
  • Clean air obtained through the filter 141 is sucked into the casing 152.
  • the clean air sucked into the casing 152 becomes a laminar flow by the guide wall 152 a around the blade body 21.
  • the laminar air is guided to the blowing part 154 along the guiding wall 152a and is blown into the duct 145 from the blowing part 154. Air is discharged from the outlet 143 toward the external space.
  • the power consumption of the drive motor 151 can be reduced by using the centrifugal fan 10 having excellent blowing ability.
  • the air cleaner 140 that can contribute to energy saving can be realized.
  • the air cleaner has been described as an example.
  • the above-described device for sending out a fluid such as an air conditioner (humidifier), a humidifier, a cooling device, and a ventilation device is used.
  • the centrifugal fan in each embodiment can also be applied.
  • the centrifugal fan in each of the above-described embodiments is used as a sirocco fan used for an air conditioner that is suspended from the ceiling, the capacity can be increased and the noise can be reduced. In addition, it is possible to reduce the size of the fan and the size of the main body while keeping the noise constant. As a result of downsizing, it can also be installed as a wall-mounted air conditioner.
  • the air conditioner that can be hung from a dotted shape requires large-scale construction, but the wall-mounted room air conditioner only requires general construction, and there is a great demand from the world.
  • the centrifugal fan in each of the above-described embodiments can be applied to a cross flow fan built in a wall-mounted room air conditioner.
  • a straight line connecting the front edge portion 26 and the rear edge portion 27 of the blade body 21 is defined as a chord line LN3.
  • the length of the chord line LN3 is a chord length C.
  • the length of the perpendicular LN4 at the position P15 where the length of the perpendicular drawn from the suction surface 24 of the blade body 21 with respect to the chord line LN3 is the maximum is warp t.
  • the value of warp t / chord length C is defined as a warp ratio m.
  • Example 1 As shown in FIGS. 19 and 20, in the centrifugal fan 10S1 of Experimental Example 1, the warp t was set to 4.0 mm, and the maximum blade thickness was set to 1.0 mm.
  • the warpage ratio m (warpage t / chord length C) is 0.2, and the blade thickness ratio representing the ratio between the minimum blade thickness and the maximum blade thickness is 1.0.
  • Example 2 As shown in FIG. 19, in the centrifugal fans of Experimental Examples 2 to 4, the warp t is set to 4.22 mm, 4.5 mm, and 5.0 mm, respectively, and the maximum blade thickness is 1.55 mm, 2.8 mm, 3 mm Set to 15 mm.
  • the warpage ratio m (warpage t / chord length C) is 0.211, 0.225, and 0.25, respectively, and the blade thickness ratio is 1.55, 2.8, and 3.15.
  • Example 5 As shown in FIGS. 19 and 21, in the centrifugal fan 10S5 of Experimental Example 5, the warp t was set to 5.6 mm and the maximum blade thickness was set to 3.3 mm.
  • the warpage ratio m (warpage t / chord length C) is 0.28, and the blade thickness ratio is 3.3.
  • Example 6 As shown in FIG. 19, in the centrifugal fans of Experimental Examples 6 to 8, the warp t is set to 6.6 mm, 7.2 mm, and 8.0 mm, respectively, and the maximum blade thickness is 3.46 mm, 3.6 mm, .67 mm.
  • the warpage ratio m (warpage t / chord length C) is 0.33, 0.36, and 0.4, respectively, and the blade thickness ratio is 3.46, 3.6, and 3.67.
  • Example 9 As shown in FIGS. 19 and 22, in the centrifugal fan 10S9 of Experimental Example 9, the warp t was set to 8.2 mm and the maximum blade thickness was set to 3.84 mm.
  • the warp ratio m (warp t / chord length C) is 0.41, and the blade thickness ratio is 3.84.
  • FIGS. 19 and 23 (Relationship between warpage ratio m and air volume) Referring to FIGS. 19 and 23, the centrifugal fans of Experimental Examples 1 to 9 having the above-mentioned conditions were rotated at 1250 rpm, and the air volume was measured. The results shown in the table of FIG. 19 were obtained.
  • FIG. 23 is a graph of the table shown in FIG. It can be seen that the air volume increases as the warp ratio m increases. In view of the increase rate of the air volume, it is understood that the warp ratio m is preferably 0.25 or more.
  • FIG. 24 is a graph of the table shown in FIG. In view of the noise reduction rate, it can be seen that the warp ratio m is preferably 0.25 or more.
  • FIG. 25 is a graph of the table shown in FIG. It can be seen that the warp ratio m is preferably 0.25 or more in view of the power consumption reduction rate.
  • FIG. 26 is a graph showing the relationship between the maximum blade thickness of Experimental Examples 1 to 9 having the above conditions and the air volume obtained when the centrifugal fans of Experimental Examples 1 to 9 are rotated at 1250 rpm. It can be seen that the airflow increases in a generally linear relationship as the maximum blade thickness increases.
  • FIG. 27 shows the maximum blade thickness of Experimental Examples 1 to 9 having the above-mentioned conditions and the noise generated when the centrifugal fan of Experimental Examples 1 to 9 is rotated so that the air volume becomes 7.5 m 3 / min. It is a graph which shows the relationship. It can be seen that when the maximum blade thickness exceeds 2.8 mm (Experimental Example 3 shown in FIG. 19), the noise sharply decreases. It can be seen that noise is minimized when the maximum blade thickness is 3.6 mm (Experimental Example 7 shown in FIG. 19).
  • FIG. 28 shows the maximum blade thickness of Experimental Examples 1 to 9 having the above-described conditions and the power consumed when the centrifugal fans of Experimental Examples 1 to 9 are rotated so that the air volume is 7.5 m 3 / min. It is a graph which shows the relationship. It can be seen that when the maximum blade thickness exceeds 3.15 mm (Experimental Example 4 shown in FIG. 19), the power consumption sharply decreases. It can be seen that the power consumption is minimized when the maximum blade thickness is 3.6 mm (Experimental Example 7 shown in FIG. 19).
  • FIG. 29 is a graph showing the relationship between the blade thickness ratio of Experimental Examples 1 to 9 having the above conditions and the air volume (relative value) obtained when the centrifugal fans of Experimental Examples 1 to 9 are rotated at 1250 rpm. is there. It can be seen that as the blade thickness ratio increases, the air volume increases in a generally linear relationship.
  • FIG. 30 shows the blade thickness ratio of Experimental Examples 1 to 9 having the above-mentioned conditions and the noise generated when the centrifugal fans of Experimental Examples 1 to 9 are rotated so that the air volume becomes 7.5 m 3 / min ( It is a graph which shows the relationship with relative value. It can be seen that when the blade thickness ratio exceeds 2.8 mm (Experimental Example 3 shown in FIG. 19), the noise sharply decreases. It can be seen that noise is minimized when the blade thickness ratio is 3.6 mm (Experimental Example 7 shown in FIG. 19).
  • FIG. 31 shows the blade thickness ratio of Experimental Examples 1 to 9 having the above conditions and the electric power consumed when the centrifugal fans of Experimental Examples 1 to 9 are rotated so that the air volume becomes 7.5 m 3 / min ( It is a graph which shows the relationship with relative value. It can be seen that when the blade thickness ratio exceeds 3.15 mm (Experimental Example 4 shown in FIG. 19), the power consumption sharply decreases. It can be seen that the power consumption is minimized when the blade thickness ratio is 3.6 mm (Experimental Example 7 shown in FIG. 19).
  • FIG. 32 is an enlarged front view showing a part of the centrifugal fan 10S7 based on the experimental example 7.
  • the warp t was set to 7.2 mm
  • the maximum blade thickness was set to 3.6 mm.
  • the warp ratio m (warp t / chord length C) is 0.36
  • the blade thickness ratio is 3.6. According to such a centrifugal fan 10S7, as shown in FIG. 19, the air volume increased by 8%, the noise decreased by 1.87 dB, and the power consumption decreased by 6%.
  • the centrifugal fan 10S7a shown in FIG. 33 is common to the centrifugal fan 10S7 shown in FIG. 32 in that the warp t is set to 7.2 mm. However, in the centrifugal fan 10S7a, the maximum blade thickness is set to 1.0 mm. Set.
  • the warp ratio m (warp t / chord length C) of the centrifugal fan 10S7a is 0.36, which is the same as that of the centrifugal fan 10S7, but the blade thickness ratio of the centrifugal fan 10S7a is 1.0. According to the centrifugal fan 10S7a, the air volume is increased by 4%, the noise is increased by 1 dB, and the power consumption is reduced by 1%.
  • the contents disclosed in this specification can be industrially used mainly for household electric appliances having an air blowing function such as an air purifier and an air conditioner.

Abstract

This centrifugal fan (10) includes a front-side blade (21A) and a rear-side blade (21B). The shortest distance from any position on the top of a negative pressure surface of the front-side blade (2lA) to a positive pressure surface of the rear-side blade (21B) is referred to as the inter-blade distance. The position of the top of the negative pressure surface of the front-side blade (21A) in a maximum thickness portion is referred to as the maximum thickness position (P2). A range between the maximum thickness position (P2) and a front edge part (26) is referred to as an inner diameter-side negative pressure surface (24A). A range between the maximum thickness position (P2) and a rear edge part (27) is referred to as an outer diameter-side negative pressure surface (24B). The length from the front edge part to the rear edge part of the negative pressure surface of the front-side blade (21A) is referred to as the negative pressure surface length. The inter-blade distance at the inner diameter-side negative pressure surface is longer than that at the maximum thickness position. The inter-blade distance in a range in the outer diameter-side negative pressure surface between the maximum thickness position, and a position away from the maximum thickness position by a length equal to or greater than half of the negative pressure surface length, is substantially constant. Accordingly, separation of the flow from the blades is inhibited, and an improvement in performance and a reduction in noise can be achieved.

Description

遠心ファン、成型用金型および流体送り装置Centrifugal fan, molding die and fluid feeder
 本明細書は、遠心ファン、成型用金型および流体送り装置に関する。本出願は、2017年4月10日に出願した日本特許出願である特願2017-077580号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 This specification relates to a centrifugal fan, a molding die, and a fluid feeder. This application claims priority based on Japanese Patent Application No. 2017-0777580, which is a Japanese patent application filed on April 10, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 同一の大きさおよび同一の形状を有する複数の羽根体(翼)が、等間隔で、かつ同一の姿勢で直線状または円状に配列される場合がある。複数の羽根体がこのように構成されている態様は、翼列と呼ばれている。翼列には、大きく分けて減速翼列と増速翼列との2種類がある。 A plurality of blade bodies (wings) having the same size and the same shape may be arranged linearly or circularly at equal intervals and in the same posture. An aspect in which the plurality of blades are configured in this manner is called a blade row. There are two types of blade rows: a reduction blade row and a speed-up blade row.
 図34を参照して、減速翼列とは、流れを減速させて圧力を上昇させるものであり、圧縮機、ファン、ポンプなどに採用される。図34に示す減速翼列においては、複数の翼が間隔Dを空けて配列されている。流路の拡がりにより、速度WAから速度WBに減速され、運動エネルギーが圧力として有効に回復される(増圧作用)。転向角をθとし、流れの法線に対して翼列がなす角度をλとすると、減速翼列の増圧作用においては、たとえば、WA>WBであり、λ>θ/2である。 Referring to FIG. 34, the deceleration blade row is for decelerating the flow and increasing the pressure, and is adopted for a compressor, a fan, a pump, and the like. In the reduction blade row shown in FIG. 34, a plurality of blades are arranged with a spacing D therebetween. Due to the expansion of the flow path, the speed is reduced from the speed WA to the speed WB, and the kinetic energy is effectively recovered as pressure (pressure increasing action). When the turning angle is θ and the angle formed by the blade row with respect to the normal of the flow is λ, in the pressure increasing action of the speed reducing blade row, for example, WA> WB and λ> θ / 2.
 図35を参照して、一方で増速翼列とは、流れを増速させて圧力を低下させるものであり、タービン、風車などに採用される。図35に示す増速翼列においては、速度WAから速度WBに増速される。増速翼列の増速作用においては、たとえば、WA<WBであり、λ<θ/2である。これらの翼列においては、次の式(1)の関係が成立し、圧力損失が実質的に生じないとした場合には、圧力変化量が次の式(2)によって表される。
WB/WA=cosλ/cos(θ-λ) ・・・式(1)
P2-P1=ρ(WA-WB)/2 ・・・式(2)
 下記特許文献1,2に開示されているように、遠心ファンが知られている。遠心ファンは一般的に、その作動原理から減速翼列となる。具体的には、遠心ファンにおいては複数の羽根体が等間隔で円状に並んで設けられる。ファンの回転に伴い、回転中心の近傍から流れが流入し、ファンの外周から流れが流出する。周方向の長さは、回転中心の位置から遠ざかるにつれて(直径が大きくなるにつれて)比例して長くなる。互いに隣り合う羽根体と羽根体との間(すなわち翼間)に形成される流路は、ファンの中心から径方向外側に向かうにつれて徐々に大きくなる。
Referring to FIG. 35, on the other hand, the speed increasing cascade is for increasing the flow and lowering the pressure, and is adopted for a turbine, a windmill and the like. In the speed increasing cascade shown in FIG. 35, the speed is increased from the speed WA to the speed WB. In the speed increasing operation of the speed increasing cascade, for example, WA <WB and λ <θ / 2. In these blade rows, when the relationship of the following equation (1) is established and the pressure loss does not substantially occur, the pressure change amount is expressed by the following equation (2).
WB / WA = cosλ / cos (θ−λ) (1)
P2−P1 = ρ (WA 2 −WB 2 ) / 2 Formula (2)
As disclosed in the following Patent Documents 1 and 2, a centrifugal fan is known. A centrifugal fan generally becomes a speed reducing cascade due to its operating principle. Specifically, in the centrifugal fan, a plurality of blades are provided in a circle at regular intervals. Along with the rotation of the fan, a flow flows in from the vicinity of the rotation center, and a flow flows out from the outer periphery of the fan. The length in the circumferential direction increases proportionally as the distance from the center of rotation increases (the diameter increases). A flow path formed between adjacent blades (that is, between blades) gradually increases from the center of the fan toward the outside in the radial direction.
 流路が拡大すると、流路内を流通する流れの流速は、流路の拡大に反比例して減速する(質量保存の法則)。したがって、遠心ファンにおける複数の羽根体は、一般的には減速翼列となる。遠心ファンの羽根体として従来から一般的に用いられるものには、円弧翼、平板翼、翼型などが挙げられる。これら一般的な羽根体を翼列として用いた遠心ファンは上記の理由からいずれも減速翼列となる。 When the flow path is enlarged, the flow velocity of the flow flowing through the flow path is reduced in inverse proportion to the expansion of the flow path (the law of conservation of mass). Accordingly, the plurality of blades in the centrifugal fan generally form a speed reducing blade row. Conventionally used blades for centrifugal fans include arc blades, flat blades, airfoils, and the like. Centrifugal fans using these general blades as blade rows are reduced blade rows for the above reasons.
特許第5469635号公報Japanese Patent No. 5469635 特開2005-016315号公報JP 2005-016315 A
 遠心ファンの翼間を流れる流れの流速は、流れが径方向外側に向かうにつれて低下する。流れのもつ運動エネルギーは、流速低下の2乗に比例して低下する。羽根体に作用している負圧に対して、流れのもつ運動エネルギーが負けると、流れが羽根体から剥離して、羽根体としての性能が低下するとともに、騒音が増大する。遠心ファンに採用されている従来の羽根体は、主に高圧損に打ち勝つことを目的とした形状や大きさを有するものが多く、そのため、流れの剥離や騒音の増大を招きやすいという実情があった。 The flow velocity of the flow that flows between the blades of the centrifugal fan decreases as the flow goes radially outward. The kinetic energy of the flow decreases in proportion to the square of the decrease in flow velocity. When the kinetic energy of the flow is lost with respect to the negative pressure acting on the blade body, the flow is separated from the blade body, so that the performance as the blade body is lowered and noise is increased. Many of the conventional blades used in centrifugal fans have a shape and size mainly intended to overcome high-pressure loss, and as a result, they tend to cause flow separation and increased noise. It was.
 本明細書は、流れの羽根体からの剥離を抑制することで、性能の向上および騒音の低減を図ることが可能な遠心ファン、その遠心ファンの製造に用いられる成型用金型およびその遠心ファンを備える流体送り装置を開示する。 The present specification relates to a centrifugal fan capable of improving performance and reducing noise by suppressing separation of a flow from a blade body, a molding die used for manufacturing the centrifugal fan, and the centrifugal fan. Disclosed is a fluid feeder.
 本開示の第1局面に基づく遠心ファンは、空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、複数の上記羽根体の各々には、上記前縁部と上記後縁部との間で延在し、上記羽根体における回転方向の側に位置する正圧面と、上記羽根体における上記回転方向の反対側に位置する負圧面とからなる翼面が形成され、複数の上記羽根体は、前側羽根体と、上記前側羽根体に上記間隔を空けて対向するとともに上記前側羽根体に対して回転方向の反対側に位置する後側羽根体と、を含み、上記前側羽根体の負圧面上における任意の箇所から上記後側羽根体の正圧面までの最短距離を、上記箇所における翼間距離と定義し、上記前側羽根体は、上記前側羽根体のうちの最大厚みを規定している最大厚み部分を有し、当該最大厚み部分における負圧面上の位置を、最大厚み位置と定義し、上記前側羽根体の負圧面のうちの上記最大厚み位置と上記前縁部との間の範囲を、内径側負圧面と定義し、上記前側羽根体の負圧面のうちの上記最大厚み位置と上記後縁部との間の範囲を、外径側負圧面と定義し、上記前側羽根体の負圧面における上記前縁部から上記後縁部までの長さを、負圧面長さと定義したとすると、上記内径側負圧面における上記翼間距離は、上記最大厚み位置における上記翼間距離よりも長く、上記外径側負圧面のうち、上記最大厚み位置と、上記最大厚み位置から上記負圧面長さの半分以上の長さだけ離れた位置との間の範囲における上記翼間距離は、略一定である。 The centrifugal fan according to the first aspect of the present disclosure includes a plurality of blade bodies that have a front edge portion into which air flows and a rear edge portion from which air flows out, and are provided at intervals from each other in the circumferential direction. Each of the plurality of blade bodies extends between the front edge portion and the rear edge portion, and has a positive pressure surface positioned on the rotation direction side of the blade body, and the rotation direction of the blade body. A blade surface composed of a suction surface positioned on the opposite side is formed, and the plurality of blade bodies are opposed to the front blade body and the front blade body with the space therebetween and in a rotational direction with respect to the front blade body The shortest distance from any location on the suction surface of the front blade body to the pressure surface of the rear blade body is defined as the inter-blade distance at the above location. The front blade body is the maximum thickness of the front blade body. A position on the suction surface in the maximum thickness portion is defined as a maximum thickness position, and the maximum thickness position of the suction surface of the front blade body and the front edge portion. Is defined as the inner diameter side suction surface, the range between the maximum thickness position and the rear edge of the suction surface of the front blade body is defined as the outer diameter side suction surface, Supposing that the length from the leading edge portion to the trailing edge portion on the suction surface of the front blade body is defined as the suction surface length, the distance between the blades on the inner diameter side suction surface is the blade at the maximum thickness position. The distance between the blades in the range between the maximum thickness position of the outer diameter-side suction surface and a position separated from the maximum thickness position by at least half of the suction surface length. The distance is substantially constant.
 本開示の第2局面に基づく遠心ファンは、空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、複数の上記羽根体の各々には、上記前縁部と上記後縁部との間で延在し、上記羽根体における回転方向の側に位置する正圧面と、上記羽根体における上記回転方向の反対側に位置する負圧面とからなる翼面が形成され、複数の上記羽根体の各々は、上記前縁部を含む内径側羽根部と、上記内径側羽根部の径方向外側に位置し、上記後縁部を含む外径側羽根部と、を有し、上記内径側羽根部は、上記内径側羽根部のうちの最大厚みを規定している最大厚み部分と、上記前縁部と上記最大厚み部分との間に位置し、上記前縁部の側から径方向外側に向かうにつれて翼厚が徐々に厚くなる拡大部分と、上記最大厚み部分よりも径方向外側に位置し、上記最大厚み部分の側から径方向外側に向かうにつれて翼厚が徐々に薄くなる縮小部分と、を含み、上記内径側羽根部の負圧面および上記内径側羽根部の正圧面は、いずれも回転方向の反対側に向けて凸状に湾曲する表面形状を有しており、上記内径側羽根部の負圧面の曲率は、上記内径側羽根部の正圧面の曲率よりも大きく、上記外径側羽根部は、上記後縁部の側から径方向内側に略同一の翼厚で延在する板状部を含み、上記板状部の負圧面の曲率および上記板状部の正圧面の曲率は、いずれも上記内径側羽根部の負圧面の曲率よりも小さい。 The centrifugal fan according to the second aspect of the present disclosure includes a plurality of blade bodies that have a front edge portion into which air flows and a rear edge portion from which air flows out, and are provided at intervals from each other in the circumferential direction. Each of the plurality of blade bodies extends between the front edge portion and the rear edge portion, and has a positive pressure surface positioned on the rotation direction side of the blade body, and the rotation direction of the blade body. A blade surface composed of a suction surface located on the opposite side is formed, and each of the plurality of blade bodies is located on the radially outer side of the inner diameter side blade portion including the front edge portion and the inner diameter side blade portion, An outer diameter side blade portion including the rear edge portion, and the inner diameter side blade portion is a maximum thickness portion defining the maximum thickness of the inner diameter side blade portion, the front edge portion, and the The blade thickness gradually increases from the leading edge side toward the radially outer side. An enlarged portion and a reduced portion that is located radially outward from the maximum thickness portion and gradually decreases in blade thickness from the maximum thickness portion side toward the radial outer side, and the inner diameter blade portion Both the suction surface and the pressure surface of the inner diameter blade portion have a surface shape that curves convexly toward the opposite side of the rotation direction, and the curvature of the suction surface of the inner diameter blade portion is Larger than the curvature of the pressure surface of the inner diameter blade portion, the outer diameter blade portion includes a plate-like portion extending from the rear edge side to the radially inner side with substantially the same blade thickness, The curvature of the suction surface of the portion and the curvature of the pressure surface of the plate-like portion are both smaller than the curvature of the suction surface of the inner diameter blade portion.
 上記遠心ファンにおいては、上記内径側羽根部の正圧面と上記外径側羽根部の正圧面とは互いに正接しており、上記内径側羽根部の負圧面と上記外径側羽根部の負圧面とは互いに正接していてもよい。 In the centrifugal fan, the positive pressure surface of the inner diameter side blade portion and the positive pressure surface of the outer diameter side blade portion are tangent to each other, and the negative pressure surface of the inner diameter side blade portion and the negative pressure surface of the outer diameter side blade portion And may be tangent to each other.
 上記遠心ファンにおいては、上記外径側羽根部の最大厚みは、上記内径側羽根部の最大厚みよりも小さく、上記外径側羽根部の反りは、上記内径側羽根部の反りよりも小さくてもよい。 In the centrifugal fan, the maximum thickness of the outer diameter side blade portion is smaller than the maximum thickness of the inner diameter side blade portion, and the warpage of the outer diameter side blade portion is smaller than the warpage of the inner diameter side blade portion. Also good.
 上記遠心ファンにおいては、上記内径側羽根部には、回転軸に対して平行な方向に延びる貫通穴が設けられており、上記貫通穴は、上記最大厚み部分を含むように形成されているか、または、上記最大厚み部分の径方向内側と径方向外側とにそれぞれ1つずつ形成されていてもよい。 In the centrifugal fan, the inner diameter blade portion is provided with a through hole extending in a direction parallel to the rotation axis, and the through hole is formed to include the maximum thickness portion, Or you may form one each in the radial direction inner side and radial direction outer side of the said maximum thickness part.
 上記遠心ファンにおいては、上記内径側羽根部のうちの上記貫通穴を形成している内周面を上記回転軸に対して平行な方向から見た場合、当該内周面は三日月形状を呈していてもよい。 In the centrifugal fan, when the inner peripheral surface forming the through hole in the inner diameter blade portion is viewed from a direction parallel to the rotation axis, the inner peripheral surface has a crescent shape. May be.
 上記遠心ファンにおいては、上記前縁部と上記後縁部とを結ぶ直線を翼弦線と定義し、上記翼弦線の長さをCとし、上記羽根体の負圧面から上記翼弦線に対して下ろした垂線の長さが最大になる位置における上記垂線の長さをtとし、t/Cの値を反り比mと定義すると、複数の上記羽根体の各々は、上記反り比mが0.25以上となるように形成されていてもよい。 In the centrifugal fan, a straight line connecting the leading edge portion and the trailing edge portion is defined as a chord line, a length of the chord line is C, and the chord line extends from the suction surface of the blade body to the chord line. On the other hand, when the length of the perpendicular at the position where the length of the perpendicular drawn down is the maximum is t, and the value of t / C is defined as a warp ratio m, each of the plurality of blade bodies has a warp ratio m of It may be formed to be 0.25 or more.
 上記遠心ファンにおいては、複数の上記羽根体は、等速翼列をなすように構成されていてもよい。 In the centrifugal fan, the plurality of blade bodies may be configured to form a constant velocity blade row.
 上記遠心ファンは、樹脂により形成されてもよい。
 本開示に基づく成型用金型は、本開示に基づく上記の遠心ファンを成型するために用いられる。
The centrifugal fan may be formed of a resin.
The molding die based on the present disclosure is used to mold the centrifugal fan based on the present disclosure.
 本開示に基づく流体送り装置は、本開示に基づく上記の遠心ファンと、上記遠心ファンに連結され、複数の上記羽根体を回転させる駆動モータとから構成される送風機を備える。 A fluid feeder based on the present disclosure includes a blower configured by the centrifugal fan based on the present disclosure and a drive motor connected to the centrifugal fan and rotating the plurality of blade bodies.
 上記の構成を備えた遠心ファンによれば、回転方向に隣り合う羽根体の間の流路は、遠心ファンの中心側から径方向外側に向かうにつれて略一定の流路断面積で延在するように形成され、回転方向に隣り合う羽根体の間を流れる流れの流速は、流れが遠心ファンの中心側から径方向外側に進行したとしても、常に略一定とすることが可能となる。流れが径方向外側に進行したとしても流速が低下することを抑制でき、流れのもつ運動エネルギーが低下することも抑制可能となる。これにより、羽根体に作用している負圧に対して、流れのもつ運動エネルギーが負けるまでの時間的および距離的なマージンを大幅に長くすることが可能となる。流れが羽根体から剥離することも抑制され、結果として、羽根体としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。 According to the centrifugal fan having the above-described configuration, the flow path between the blade bodies adjacent to each other in the rotation direction extends with a substantially constant flow path cross-sectional area from the center side of the centrifugal fan toward the radially outer side. The flow velocity of the flow formed between the blade bodies adjacent to each other in the rotation direction can be kept substantially constant even if the flow proceeds from the center side of the centrifugal fan to the radially outer side. Even if the flow travels radially outward, it is possible to suppress a decrease in the flow velocity, and it is also possible to suppress a decrease in the kinetic energy of the flow. This makes it possible to significantly increase the time and distance margins until the kinetic energy of the flow is lost with respect to the negative pressure acting on the blades. It is also possible to suppress the separation of the flow from the blade body. As a result, it is possible to suppress the performance as the blade body from being lowered, and it is possible to greatly reduce the occurrence of noise by suppressing the separation. .
実施の形態1における遠心ファン10を示す斜視図である。1 is a perspective view showing a centrifugal fan 10 according to Embodiment 1. FIG. 実施の形態1における遠心ファン10を示す正面図である。1 is a front view showing a centrifugal fan 10 according to Embodiment 1. FIG. 図2中のIII線に囲まれた領域を拡大して示す正面図である。It is a front view which expands and shows the area | region enclosed by the III line | wire in FIG. 図3中に示す遠心ファン10の一部を拡大して示す正面図である。It is a front view which expands and shows a part of centrifugal fan 10 shown in FIG. 実施の形態2における遠心ファン10Aを示す正面図である。It is a front view which shows the centrifugal fan 10A in Embodiment 2. FIG. 図5中のVI線に囲まれた領域を拡大して示す正面図である。It is a front view which expands and shows the area | region enclosed by VI line | wire in FIG. 図6中に示す遠心ファン10Aの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10A shown in FIG. 実施の形態3における遠心ファン10Bを示す斜視図である。It is a perspective view which shows the centrifugal fan 10B in Embodiment 3. FIG. 図8中に示す遠心ファン10Bの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10B shown in FIG. 実施の形態3の変形例における遠心ファン10Cの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10C in the modification of Embodiment 3. FIG. 実施の形態4における遠心ファン10Dの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10D in Embodiment 4. FIG. 実施の形態4の第1変形例における遠心ファン10Eの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10E in the 1st modification of Embodiment 4. FIG. 実施の形態4の第2変形例における遠心ファン10Fの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of the centrifugal fan 10F in the 2nd modification of Embodiment 4. FIG. 実施の形態5に関して、遠心ファン10の製造時に用いられる成型用金型110を示す断面図である。FIG. 10 is a cross-sectional view showing a molding die 110 used at the time of manufacturing the centrifugal fan 10 with respect to the fifth embodiment. 実施の形態5に関して、遠心ファン10を用いた送風機120を示す断面図である。FIG. 10 is a cross-sectional view showing a blower 120 using a centrifugal fan 10 with respect to the fifth embodiment. 図15中のXVI-XVI線上に沿った送風機120の断面形状を示す断面図である。FIG. 16 is a cross-sectional view showing a cross-sectional shape of the blower 120 along the line XVI-XVI in FIG. 15. 実施の形態5に関して、遠心ファン10を用いた空気清浄機140を示す断面図である。FIG. 10 is a cross-sectional view showing an air cleaner 140 using a centrifugal fan 10 with respect to the fifth embodiment. 実験例に関する遠心ファンの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of the centrifugal fan regarding an experiment example. 実験例に関する実験条件および実験結果を示す表である。It is a table | surface which shows the experimental condition and experimental result regarding an experiment example. 実験例1の遠心ファン10S1の一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S1 of Experimental example 1. FIG. 実験例5の遠心ファン10S5の一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S5 of Experimental example 5. FIG. 実験例9の遠心ファン10S9の一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S9 of Experimental example 9. FIG. 実験例に関する実験結果として、反り比mと風量との関係を示すグラフである。It is a graph which shows the relationship between curvature ratio m and an air volume as an experimental result regarding an experiment example. 実験例に関する実験結果として、反り比mと騒音との関係を示すグラフである。It is a graph which shows the relationship between curvature ratio m and noise as an experimental result regarding an experimental example. 実験例に関する実験結果として、反り比mと消費電力との関係を示すグラフである。It is a graph which shows the relationship between curvature ratio m and power consumption as an experimental result regarding an experiment example. 実験例に関する実験結果として、最大翼厚と風量との関係を示すグラフである。It is a graph which shows the relationship between the maximum blade thickness and an air volume as an experimental result regarding an experimental example. 実験例に関する実験結果として、最大翼厚と騒音との関係を示すグラフである。It is a graph which shows the relationship between the maximum blade thickness and noise as an experimental result regarding an experimental example. 実験例に関する実験結果として、最大翼厚と消費電力との関係を示すグラフである。It is a graph which shows the relationship between the maximum blade thickness and power consumption as an experimental result regarding an experimental example. 実験例に関する実験結果として、翼厚比と風量との関係を示すグラフである。It is a graph which shows the relationship between blade thickness ratio and an air volume as an experimental result regarding an experiment example. 実験例に関する実験結果として、翼厚比と騒音との関係を示すグラフである。It is a graph which shows the relationship between blade thickness ratio and a noise as an experimental result regarding an experimental example. 実験例に関する実験結果として、翼厚比と消費電力との関係を示すグラフである。It is a graph which shows the relationship between blade thickness ratio and power consumption as an experimental result regarding an experiment example. 実験例7に基づく遠心ファン10S7の一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S7 based on Experimental example 7. FIG. 実験例7に関する遠心ファン10S7aの一部(羽根体21)を拡大して示す正面図である。It is a front view which expands and shows a part (blade body 21) of centrifugal fan 10S7a regarding Experimental example 7. FIG. 減速翼列をなすように構成された複数の羽根体を示す断面図である。It is sectional drawing which shows the several blade body comprised so that the speed-reduction blade row | line | column may be made. 増速翼列をなすように構成された複数の羽根体を示す断面図である。It is sectional drawing which shows the several blade body comprised so that the speed-increasing blade row | line | column may be made.
 実施の形態について、以下、図面を参照しながら説明する。同一の部品および相当部品には同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Embodiments will be described below with reference to the drawings. The same parts and corresponding parts are denoted by the same reference numerals, and redundant description may not be repeated.
 [実施の形態1]
 図1~図4を参照して、実施の形態1における遠心ファン10について説明する。図1および図2は、それぞれ、遠心ファン10を示す斜視図および正面図である。図1および図2を参照して、遠心ファン10は、複数の羽根体21を有する。遠心ファン10は全体として略円筒形の外観を有し、複数の羽根体21はその略円筒形の側面に配置されている。遠心ファン10は、樹脂によって一体に形成され、仮想上の回転軸101を中心として矢印103に示す方向に回転する。
[Embodiment 1]
The centrifugal fan 10 according to the first embodiment will be described with reference to FIGS. 1 and 2 are a perspective view and a front view showing the centrifugal fan 10, respectively. Referring to FIGS. 1 and 2, centrifugal fan 10 has a plurality of blade bodies 21. The centrifugal fan 10 has a substantially cylindrical appearance as a whole, and the plurality of blade bodies 21 are arranged on the side surfaces of the substantially cylindrical shape. Centrifugal fan 10 is integrally formed of resin, and rotates in the direction indicated by arrow 103 about virtual rotation shaft 101.
 遠心ファン10は、回転する複数の羽根体21によって、内周側から取り込んだ空気を外周側に送り出す。遠心ファン10は、遠心力を利用して、回転中心側から径方向外側に空気を送り出す。遠心ファン10は、シロッコファンとして機能し、家庭用の電気機器等に搭載され、低レイノズル数領域の回転数で使用されることができる。 Centrifugal fan 10 sends air taken from the inner periphery side to the outer periphery side by a plurality of rotating blade bodies 21. Centrifugal fan 10 sends out air radially outward from the center of rotation using centrifugal force. Centrifugal fan 10 functions as a sirocco fan, is mounted on household electrical equipment and the like, and can be used at a rotational speed in a low lay nozzle number region.
 遠心ファン10は、外周枠12,13をさらに有している。外周枠12,13は、回転軸101を中心とする環状に延在して形成されている。外周枠12,13は、回転軸101の軸方向において距離を隔てて配置されている。外周枠13には、遠心ファン10を駆動モータに連結するためのボス部16が一体に形成されている。ボス部16はたとえば、ゴム製部品と金属製部品とから構成され、インサート成形によって外周枠13と一体化されている。 The centrifugal fan 10 further has outer peripheral frames 12 and 13. The outer peripheral frames 12 and 13 are formed to extend in an annular shape centering on the rotation shaft 101. The outer peripheral frames 12 and 13 are arranged at a distance in the axial direction of the rotating shaft 101. The outer peripheral frame 13 is integrally formed with a boss portion 16 for connecting the centrifugal fan 10 to a drive motor. The boss part 16 is composed of, for example, a rubber part and a metal part, and is integrated with the outer peripheral frame 13 by insert molding.
 複数の羽根体21は、回転軸101を中心とする周方向に互いに間隔を隔てて設けられている。複数の羽根体21は、回転軸101を中心とする周方向において等間隔に配置され、回転軸101の軸方向における両端において外周枠12および外周枠13によって支持されている。羽根体21は、外周枠13上に立設され、外周枠12に向けて回転軸101の軸方向に沿って延びるように形成されている。 The plurality of blade bodies 21 are provided at intervals from each other in the circumferential direction around the rotation shaft 101. The plurality of blade bodies 21 are arranged at equal intervals in the circumferential direction around the rotation shaft 101, and are supported by the outer peripheral frame 12 and the outer peripheral frame 13 at both ends in the axial direction of the rotation shaft 101. The blade body 21 is erected on the outer peripheral frame 13 and is formed to extend along the axial direction of the rotary shaft 101 toward the outer peripheral frame 12.
 図3は、図2中のIII線に囲まれた領域を拡大して示す正面図であり、図4は、図3中に示す遠心ファン10の一部を拡大して示す正面図である。図3および図4中には、遠心ファン10の回転軸101(図1,図2)に対して平行な方向から見た場合の羽根体21の形状が示されている。 FIG. 3 is an enlarged front view showing a region surrounded by line III in FIG. 2, and FIG. 4 is an enlarged front view showing a part of the centrifugal fan 10 shown in FIG. 3 and 4 show the shape of the blade body 21 when viewed from a direction parallel to the rotating shaft 101 (FIGS. 1 and 2) of the centrifugal fan 10.
 図3および図4に示すように、複数の羽根体21は、互いに同一形状を有する。複数の羽根体21の各々は、回転軸101の軸方向におけるいずれの位置で切断されても同一の翼断面形状を有するように形成されている。 As shown in FIGS. 3 and 4, the plurality of blades 21 have the same shape. Each of the plurality of blade bodies 21 is formed to have the same blade cross-sectional shape even when cut at any position in the axial direction of the rotating shaft 101.
 羽根体21は、羽根体21の内周側の端部に位置し、回転時に空気が流入する前縁部26と、羽根体21の外周側の端部に位置し、回転時に空気が流出する後縁部27とを有する。羽根体21は、前縁部26から後縁部27に向けて回転軸101を中心とする周方向に傾斜して形成されている。羽根体21は、前縁部26から後縁部27に向けて遠心ファン10の回転方向に傾斜して形成されている。 The blade body 21 is located at the end portion on the inner peripheral side of the blade body 21 and is positioned at the front edge portion 26 into which air flows during rotation and the end portion on the outer periphery side of the blade body 21, and air flows out during rotation. And a trailing edge 27. The blade body 21 is formed so as to be inclined in the circumferential direction around the rotation shaft 101 from the front edge portion 26 toward the rear edge portion 27. The blade body 21 is formed to be inclined in the rotation direction of the centrifugal fan 10 from the front edge portion 26 toward the rear edge portion 27.
 羽根体21には、正圧面25および負圧面24からなる翼面23が形成されている。正圧面25は、前縁部26と後縁部27との間で延在し、羽根体21における回転方向の側に位置している。負圧面24は、前縁部26と後縁部27との間で延在し、羽根体21における回転方向の反対側(正圧面25の裏側)に位置している。遠心ファン10の回転時、翼面23上で空気流れが発生するのに伴って、正圧面25で相対的に大きく、負圧面24で相対的に小さくなる圧力分布が生じる。 A blade surface 23 including a pressure surface 25 and a suction surface 24 is formed on the blade body 21. The positive pressure surface 25 extends between the front edge portion 26 and the rear edge portion 27 and is located on the rotational direction side of the blade body 21. The negative pressure surface 24 extends between the front edge portion 26 and the rear edge portion 27, and is located on the opposite side of the blade body 21 in the rotational direction (the back side of the positive pressure surface 25). When the centrifugal fan 10 rotates, a pressure distribution that is relatively large on the positive pressure surface 25 and relatively small on the negative pressure surface 24 is generated as an air flow is generated on the blade surface 23.
 複数の羽根体21は、前側羽根体21Aおよび後側羽根体21Bを含む。前側羽根体21Aおよび後側羽根体21Bは、互いに同一の形状および大きさを有している。後側羽根体21Bは、前側羽根体21Aに間隔を空けて対向するとともに、前側羽根体21Aに対して回転方向(矢印103)の反対側に位置する。 The plurality of blade bodies 21 include a front blade body 21A and a rear blade body 21B. The front blade body 21A and the rear blade body 21B have the same shape and size. The rear blade body 21B is opposed to the front blade body 21A with a space therebetween, and is positioned on the opposite side of the rotation direction (arrow 103) with respect to the front blade body 21A.
 前側羽根体21Aの負圧面24(図4中の点線24Rで囲まれる部分)上における任意の箇所から、後側羽根体21Bの正圧面25(図4中の点線25Rで囲まれる部分)までの最短距離を、この任意の箇所における翼間距離と定義する。たとえば、前側羽根体21Aの負圧面24上の箇所P1~P6においては、それぞれ、翼間距離L1~L6が規定される。 From an arbitrary location on the negative pressure surface 24 (a portion surrounded by a dotted line 24R in FIG. 4) of the front blade body 21A to a positive pressure surface 25 (a portion surrounded by a dotted line 25R in FIG. 4) of the rear blade body 21B. The shortest distance is defined as the distance between the blades at this arbitrary point. For example, interblade distances L1 to L6 are defined at locations P1 to P6 on the suction surface 24 of the front blade body 21A, respectively.
 前側羽根体21Aは、前側羽根体21Aのうちの最大厚みを規定している最大厚み部分(矢印Hにて示される部分)を有している。最大厚み部分とは、負圧面24および正圧面25に内接する円のうちの最大の大きさを有する円を負圧面24と正圧面25との間に描いた場合に、その内接円と負圧面24との交点、および、その内接円と正圧面25との交点が規定され、これら2つの交点を含むように最大厚み部分が規定される。箇所P2は、当該最大厚み部分における負圧面24上の位置(以下、最大厚み位置P2という)に相当している。 The front blade body 21A has a maximum thickness portion (a portion indicated by an arrow H) that defines the maximum thickness of the front blade body 21A. The maximum thickness portion means that when a circle having the largest size among the circles inscribed in the suction surface 24 and the pressure surface 25 is drawn between the suction surface 24 and the pressure surface 25, the inscribed circle and the negative surface are negative. An intersection point with the pressure surface 24 and an intersection point between the inscribed circle and the positive pressure surface 25 are defined, and a maximum thickness portion is defined so as to include these two intersection points. The location P2 corresponds to a position on the suction surface 24 in the maximum thickness portion (hereinafter referred to as the maximum thickness position P2).
 前側羽根体21Aの負圧面24のうちの最大厚み位置P2と前縁部26との間の範囲を、内径側負圧面24Aと定義する。前側羽根体21Aの負圧面24のうちの最大厚み位置P2と後縁部27との間の範囲を、外径側負圧面24Bと定義する。さらに、前側羽根体21Aの負圧面24における前縁部26から後縁部27までの長さ(図4中の点線24Rで囲まれる部分の長さ)を、負圧面長さ24Lと定義する。負圧面長さ24Lとは、内径側負圧面24Aの長さと外径側負圧面24Bの長さとの合計値である。 The range between the maximum thickness position P2 and the front edge portion 26 in the suction surface 24 of the front blade body 21A is defined as the inner diameter side suction surface 24A. A range between the maximum thickness position P2 and the rear edge 27 in the suction surface 24 of the front blade body 21A is defined as an outer diameter-side suction surface 24B. Furthermore, the length from the front edge portion 26 to the rear edge portion 27 in the suction surface 24 of the front blade body 21A (the length of the portion surrounded by the dotted line 24R in FIG. 4) is defined as the suction surface length 24L. The negative pressure surface length 24L is a total value of the length of the inner diameter side negative pressure surface 24A and the outer diameter side negative pressure surface 24B.
 本実施の形態の遠心ファン10においては、内径側負圧面24Aにおける翼間距離は、最大厚み位置P2における翼間距離L2よりも長くなるように構成される。最大厚み位置P2と前縁部26との間の任意の箇所P1における翼間距離L1は、最大厚み位置P2における翼間距離L2よりも長くなるように構成される。本実施の形態では、最大厚み位置P2から前縁部26に近づくにつれて、翼間距離が徐々に長くなるように構成される。 In the centrifugal fan 10 of the present embodiment, the interblade distance on the inner diameter side negative pressure surface 24A is configured to be longer than the interblade distance L2 at the maximum thickness position P2. The inter-blade distance L1 at an arbitrary point P1 between the maximum thickness position P2 and the leading edge portion 26 is configured to be longer than the inter-blade distance L2 at the maximum thickness position P2. In this Embodiment, it is comprised so that the distance between blades may become long gradually as it approaches the front-edge part 26 from the largest thickness position P2.
 外径側負圧面24Bのうち、最大厚み位置P2と、最大厚み位置P2から負圧面長さ24Lの半分以上の長さだけ離れた位置との間の範囲における翼間距離は、略一定となるように構成される。略一定とは、翼間距離が、少なくとも最大厚み位置P2における翼間距離L2の±25%以内の範囲に含まれていることを意味し、より好適には翼間距離が、最大厚み位置P2における翼間距離L2の±15%以内の範囲に含まれていることを意味し、さらに好適には翼間距離が、最大厚み位置P2における翼間距離L2の±10%以内の範囲に含まれていることを意味する。 In the outer diameter side negative pressure surface 24B, the inter-blade distance in a range between the maximum thickness position P2 and a position away from the maximum thickness position P2 by more than half of the negative pressure surface length 24L is substantially constant. Configured as follows. “Substantially constant” means that the distance between the blades is at least within a range of ± 25% of the distance L2 between the blades at the maximum thickness position P2, and more preferably the distance between the blades is the maximum thickness position P2. Is included in a range within ± 15% of the inter-blade distance L2, and more preferably, the inter-blade distance is included in a range within ± 10% of the inter-blade distance L2 at the maximum thickness position P2. Means that
 本実施の形態の遠心ファン10においては、最大厚み位置P2における翼間距離L2、箇所P3における翼間距離L3、および、箇所P4における翼間距離L4は、同一の値である。外径側負圧面24Bのうちの箇所P4と箇所P5との間の範囲では、箇所P4から箇所P5に近づくにつれて翼間距離が徐々に短くなる。箇所P5における翼間距離L5、および、箇所P6における翼間距離L6は、同一の値である。 In the centrifugal fan 10 of the present embodiment, the inter-blade distance L2 at the maximum thickness position P2, the inter-blade distance L3 at the location P3, and the inter-blade distance L4 at the location P4 are the same value. In the range between the place P4 and the place P5 in the outer diameter side negative pressure surface 24B, the distance between the blades gradually decreases from the place P4 to the place P5. The inter-blade distance L5 at the location P5 and the inter-blade distance L6 at the location P6 are the same value.
 具体例を挙げると、負圧面長さ24Lは28.3mmであり、最大厚み位置P2および箇所P3,P4における翼間距離(L2~L4)は3.6mmであり、箇所P5,P6における翼間距離(L5,L6)は3.4mmである。最大厚み位置P2と、最大厚み位置P2から後縁部27の方に向かって21.4mmの長さ分だけ離れた位置との間の範囲における翼間距離は、略一定である。 For example, the suction surface length 24L is 28.3 mm, the inter-blade distance (L2 to L4) at the maximum thickness position P2 and the places P3 and P4 is 3.6 mm, and the inter-blade distance at the places P5 and P6. The distance (L5, L6) is 3.4 mm. The distance between the blades in the range between the maximum thickness position P2 and the position away from the maximum thickness position P2 by the length of 21.4 mm toward the rear edge 27 is substantially constant.
 (作用および効果)
 遠心ファン10を回転させると、図1中の矢印102に示すように、前縁部26から流入し、翼面23上を通過して、後縁部27から流出する空気流れが発生する。本実施の形態の遠心ファン10は、上述のような翼間距離を満足する複数の羽根体21を備えている。回転方向に隣り合う羽根体21の間の流路は、遠心ファン10の中心側から径方向外側に向かうにつれて略一定の流路断面積で延在するように形成される。回転方向に隣り合う羽根体21の間を流れる流れの流速は、流れが遠心ファン10の中心側から径方向外側に進行したとしても、常に略一定とすることが可能となる。
(Function and effect)
When the centrifugal fan 10 is rotated, an air flow that flows in from the front edge portion 26, passes through the blade surface 23, and flows out from the rear edge portion 27 is generated as indicated by an arrow 102 in FIG. 1. Centrifugal fan 10 of the present embodiment includes a plurality of blade bodies 21 that satisfy the inter-blade distance as described above. The flow path between the blade bodies 21 adjacent to each other in the rotation direction is formed to extend with a substantially constant flow path cross-sectional area from the center side of the centrifugal fan 10 toward the radially outer side. Even if the flow proceeds from the central side of the centrifugal fan 10 to the outside in the radial direction, the flow velocity of the flow flowing between the blade bodies 21 adjacent to each other in the rotation direction can always be substantially constant.
 本実施の形態における複数の羽根体21は、減速翼列や増速翼列とは異なる、等速翼列を構成することとなる。流れが径方向外側に進行したとしても流速が低下することを抑制でき、流れのもつ運動エネルギーが低下することも抑制可能となる。これにより、羽根体21に作用している負圧に対して、流れのもつ運動エネルギーが負けるまでの時間的および距離的なマージンを大幅に長くすることが可能となる。流れが羽根体21から剥離することも抑制され、結果として、羽根体21としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。 The plurality of blade bodies 21 in the present embodiment constitute a constant velocity blade row different from the speed reduction blade row and the speed increasing blade row. Even if the flow travels radially outward, it is possible to suppress a decrease in the flow velocity, and it is also possible to suppress a decrease in the kinetic energy of the flow. This makes it possible to significantly increase the time and distance margins until the kinetic energy of the flow is lost with respect to the negative pressure acting on the blade body 21. It is also possible to suppress the flow from separating from the blade body 21, and as a result, it is possible to suppress the performance as the blade body 21 from being lowered, and it is possible to greatly reduce the occurrence of noise by suppressing the separation. It becomes.
 [実施の形態2]
 図5~図7を参照して、実施の形態2における遠心ファン10Aについて説明する。図5は、遠心ファン10Aを示す正面図である。図6は、図5中のVI線に囲まれた領域を拡大して示す正面図であり、図7は、図6中に示す遠心ファン10Aの一部(羽根体21)を拡大して示す正面図である。
[Embodiment 2]
A centrifugal fan 10A according to the second embodiment will be described with reference to FIGS. FIG. 5 is a front view showing the centrifugal fan 10A. 6 is an enlarged front view showing a region surrounded by the VI line in FIG. 5, and FIG. 7 is an enlarged view of a part (blade body 21) of the centrifugal fan 10A shown in FIG. It is a front view.
 図5に示すように、実施の形態2における遠心ファン10Aも、実施の形態1における遠心ファン10(図2)と同様に、全体として略円筒形の外観を有し、複数の羽根体21がその略円筒形の側面に配置されている。遠心ファン10Aは、樹脂によって一体に形成され、仮想上の回転軸101を中心として矢印103に示す方向に回転する。実施の形態1における遠心ファン10と実施の形態2における遠心ファン10Aとは、以下の点において相違している。 As shown in FIG. 5, the centrifugal fan 10A according to the second embodiment also has a substantially cylindrical appearance as a whole, similarly to the centrifugal fan 10 according to the first embodiment (FIG. 2). It is arrange | positioned at the substantially cylindrical side surface. Centrifugal fan 10 </ b> A is integrally formed of resin and rotates in a direction indicated by arrow 103 about virtual rotation shaft 101. Centrifugal fan 10 in the first embodiment and centrifugal fan 10A in the second embodiment are different in the following points.
 図6および図7に示すように、複数の羽根体21の各々は、前縁部26を含む内径側羽根部21Mと、後縁部27を含む外径側羽根部21Nとを有する。外径側羽根部21Nは、内径側羽根部21Mの径方向外側に位置する。本実施の形態の内径側羽根部21Mとは、羽根体21のうち、前縁部26および点P10~P12によって囲まれる部分である。 6 and 7, each of the plurality of blade bodies 21 has an inner diameter side blade portion 21M including a front edge portion 26 and an outer diameter side blade portion 21N including a rear edge portion 27. The outer diameter side blade portion 21N is located on the radially outer side of the inner diameter side blade portion 21M. The inner diameter side blade portion 21M of the present embodiment is a portion of the blade body 21 surrounded by the front edge portion 26 and the points P10 to P12.
 内径側羽根部21Mは、最大厚み部分21Ma、拡大部分21Mb、および、縮小部分21Mcを含む。最大厚み部分21Maとは、内径側羽根部21Mのうちの最大厚みh2を規定している部分である。最大厚みh2は、たとえば3.6mmである。点P11は、最大厚み部分21Maにおける負圧面24上の位置を示している。 The inner diameter blade portion 21M includes a maximum thickness portion 21Ma, an enlarged portion 21Mb, and a reduced portion 21Mc. The maximum thickness portion 21Ma is a portion that defines the maximum thickness h2 in the inner diameter side blade portion 21M. The maximum thickness h2 is, for example, 3.6 mm. A point P11 indicates a position on the suction surface 24 in the maximum thickness portion 21Ma.
 拡大部分21Mbは、内径側羽根部21Mのうちの最大厚み部分21Maよりも前縁部26の側に位置する部分である。拡大部分21Mbは、前縁部26と最大厚み部分21Maとの間に位置し、拡大部分21Mbの翼厚h1(図6)は、前縁部26の側から径方向外側に向かうにつれて徐々に厚くなるように構成されている。 The enlarged portion 21Mb is a portion that is located closer to the front edge portion 26 than the maximum thickness portion 21Ma of the inner diameter side blade portion 21M. The enlarged portion 21Mb is located between the front edge portion 26 and the maximum thickness portion 21Ma, and the blade thickness h1 (FIG. 6) of the enlarged portion 21Mb gradually increases from the front edge portion 26 side toward the radially outer side. It is comprised so that it may become.
 縮小部分21Mcは、内径側羽根部21Mのうちの最大厚み部分21Maよりも径方向外側に位置する部分である。縮小部分21Mcは、最大厚み部分21Maと外径側羽根部21Nとの間に位置し、縮小部分21Mcの翼厚h3,h4は、最大厚み部分21Maの側から径方向外側に向かうにつれて徐々に薄くなるように構成されている。 The reduced portion 21Mc is a portion located on the radially outer side than the maximum thickness portion 21Ma of the inner diameter side blade portion 21M. The reduced portion 21Mc is located between the maximum thickness portion 21Ma and the outer diameter side blade portion 21N, and the blade thicknesses h3 and h4 of the reduced portion 21Mc gradually become thinner from the maximum thickness portion 21Ma side toward the radial outer side. It is comprised so that it may become.
 内径側羽根部21Mの負圧面24Mおよび内径側羽根部21Mの正圧面25Mは、いずれも回転方向(図6に示す矢印103)の反対側に向けて凸状に湾曲する表面形状を有している。内径側羽根部21Mの負圧面24Mの曲率は、内径側羽根部21Mの正圧面25Mの曲率よりも大きい。 Each of the negative pressure surface 24M of the inner diameter side blade portion 21M and the positive pressure surface 25M of the inner diameter side blade portion 21M has a surface shape that curves in a convex shape toward the opposite side of the rotation direction (arrow 103 shown in FIG. 6). Yes. The curvature of the suction surface 24M of the inner diameter blade portion 21M is larger than the curvature of the positive pressure surface 25M of the inner diameter blade portion 21M.
 外径側羽根部21Nは、後縁部27の側から径方向内側に略同一の翼厚h6,h5(図6)で延在する板状部21Npを含んでいる。翼厚h6,h5は、たとえば1.0mmである。板状部21Npの負圧面24Npの曲率および板状部21Npの正圧面25Npの曲率は、いずれも、内径側羽根部21Mの負圧面24Mの曲率よりも小さい。 The outer diameter side blade portion 21N includes a plate-shaped portion 21Np extending from the rear edge portion 27 side to the radially inner side with substantially the same blade thickness h6, h5 (FIG. 6). The blade thicknesses h6 and h5 are, for example, 1.0 mm. The curvature of the negative pressure surface 24Np of the plate-like portion 21Np and the curvature of the positive pressure surface 25Np of the plate-like portion 21Np are both smaller than the curvature of the negative pressure surface 24M of the inner diameter blade portion 21M.
 (作用および効果)
 遠心ファン10Aを回転させると、前縁部26から流入し、翼面23上を通過して、後縁部27から流出する空気流れが発生する。本実施の形態の遠心ファン10Aは、上述のような翼厚および曲率を満足する複数の羽根体21を備えている。回転方向に隣り合う羽根体21の間の流路は、遠心ファン10Aの中心側から径方向外側に向かうにつれて略一定の流路断面積で延在するように形成される。回転方向に隣り合う羽根体21の間を流れる流れの流速は、流れが遠心ファン10Aの中心側から径方向外側に進行したとしても、常に略一定とすることが可能となる。
(Function and effect)
When the centrifugal fan 10A is rotated, an air flow that flows in from the front edge portion 26, passes through the blade surface 23, and flows out from the rear edge portion 27 is generated. Centrifugal fan 10A of the present embodiment includes a plurality of blade bodies 21 that satisfy the blade thickness and curvature as described above. The flow path between the blade bodies 21 adjacent to each other in the rotation direction is formed so as to extend with a substantially constant flow path cross-sectional area from the central side of the centrifugal fan 10A toward the radially outer side. Even when the flow proceeds from the center side of the centrifugal fan 10A to the radially outer side, the flow velocity between the blade bodies 21 adjacent to each other in the rotation direction can be kept substantially constant.
 本実施の形態における複数の羽根体21も、減速翼列や増速翼列とは異なる、等速翼列を構成することとなる。流れが径方向外側に進行したとしても流速が低下することを抑制でき、流れのもつ運動エネルギーが低下することも抑制可能となる。これにより、羽根体21に作用している負圧に対して、流れのもつ運動エネルギーが負けるまでの時間的および距離的なマージンを大幅に長くすることが可能となる。流れが羽根体21から剥離することも抑制され、結果として、羽根体21としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。 The plurality of blade bodies 21 in the present embodiment also constitute a constant velocity blade row different from the speed reduction blade row and the speed increasing blade row. Even if the flow travels radially outward, it is possible to suppress a decrease in the flow velocity, and it is also possible to suppress a decrease in the kinetic energy of the flow. This makes it possible to significantly increase the time and distance margins until the kinetic energy of the flow is lost with respect to the negative pressure acting on the blade body 21. It is also possible to suppress the flow from separating from the blade body 21, and as a result, it is possible to suppress the performance as the blade body 21 from being lowered, and it is possible to greatly reduce the occurrence of noise by suppressing the separation. It becomes.
 [実施の形態2の第1変形例]
 図7を参照して、好適な実施の形態として、内径側羽根部21Mの正圧面と外径側羽根部21Nの正圧面とは、点P10の位置において互いに正接し滑らかに繋がっており、内径側羽根部21Mの負圧面と外径側羽根部21Nの負圧面とは、点P12の位置において互いに正接し滑らかに繋がっているとよい。当該構成によると、回転方向において隣り合う羽根体21の間を空気が流れる際に、空気の流れに揚力が効果的に発生し、これにより羽根体21としての性能をさらに高めることが可能となる。
[First Modification of Second Embodiment]
Referring to FIG. 7, as a preferred embodiment, the pressure surface of inner diameter side blade portion 21M and the pressure surface of outer diameter side blade portion 21N are tangent to each other at point P10 and are smoothly connected. The suction surface of the side blade portion 21M and the suction surface of the outer diameter side blade portion 21N are preferably tangent to each other and smoothly connected at the point P12. According to this configuration, when air flows between adjacent blade bodies 21 in the rotation direction, lift is effectively generated in the flow of air, thereby further improving the performance as the blade body 21. .
 [実施の形態2の第2変形例]
 図7を参照して、好適な実施の形態として、外径側羽根部21Nの最大厚みは、内径側羽根部21Mの最大厚みよりも小さいとよい。さらに、外径側羽根部21Nの反りt2は、内径側羽根部21Mの反りt1よりも小さいとよい。外径側羽根部21Nの反りt2、および内径側羽根部21Mの反りt1とは、次のように定義される値である。点P10は、羽根体21の正圧面25のうち、内径側羽根部21Mの正圧面と外径側羽根部21Nの正圧面との間に位置する。
[Second Modification of Embodiment 2]
Referring to FIG. 7, as a preferred embodiment, the maximum thickness of outer diameter side blade portion 21N is preferably smaller than the maximum thickness of inner diameter side blade portion 21M. Furthermore, the warp t2 of the outer diameter side blade portion 21N is preferably smaller than the warp t1 of the inner diameter side blade portion 21M. The warp t2 of the outer diameter side blade portion 21N and the warp t1 of the inner diameter side blade portion 21M are values defined as follows. The point P10 is located between the positive pressure surface of the inner diameter side blade portion 21M and the positive pressure surface of the outer diameter side blade portion 21N in the positive pressure surface 25 of the blade body 21.
 内径側羽根部21Mにおける前縁部26と点P10とを結ぶ直線LN1を描き、内径側羽根部21Mにおける負圧面から直線LN1に対して下ろした垂線の長さが最大になる位置(点P11)における垂線W1の長さが、内径側羽根部21Mの反りt1として定義される。外径側羽根部21Nにおける点P10と後縁部27を結ぶ直線LN2を描き、外径側羽根部21Nにおける負圧面から直線LN2に対して下ろした垂線の長さが最大になる位置P13における垂線W2の長さが、外径側羽根部21Nの反りt2として定義される。 A position where the straight line LN1 connecting the leading edge portion 26 and the point P10 in the inner diameter blade portion 21M is drawn, and the length of the perpendicular drawn from the suction surface in the inner diameter blade portion 21M to the straight line LN1 is maximized (point P11). Is defined as the warp t1 of the inner diameter blade portion 21M. A straight line LN2 connecting the point P10 and the trailing edge 27 in the outer diameter side blade portion 21N is drawn, and the perpendicular at the position P13 where the length of the perpendicular line drawn from the suction surface in the outer diameter side blade portion 21N to the straight line LN2 is the maximum is drawn. The length of W2 is defined as the warp t2 of the outer diameter side blade portion 21N.
 上記構成によると、回転方向において隣り合う羽根体21の間を空気が流れる際に、空気の流れに揚力が効果的に発生し、これにより羽根体21としての性能をさらに高めることが可能となる。流れが羽根体21から剥離することも抑制され、結果として、羽根体21としての性能が低下することも抑制でき、剥離が抑制されることで騒音が発生することも大幅に軽減することが可能となる。 According to the above configuration, when air flows between adjacent blade bodies 21 in the rotation direction, lift is effectively generated in the air flow, thereby further improving the performance of the blade body 21. . It is also possible to suppress the flow from separating from the blade body 21, and as a result, it is possible to suppress the performance as the blade body 21 from being lowered, and it is possible to greatly reduce the occurrence of noise by suppressing the separation. It becomes.
 [実施の形態3]
 図8および図9を参照して、実施の形態3における遠心ファン10Bについて説明する。図8は、遠心ファン10Bを示す斜視図である。図9は、図8中に示す遠心ファン10Bの一部(羽根体21)を拡大して示す正面図である。
[Embodiment 3]
With reference to FIG. 8 and FIG. 9, the centrifugal fan 10B in Embodiment 3 is demonstrated. FIG. 8 is a perspective view showing the centrifugal fan 10B. FIG. 9 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10B shown in FIG.
 図8に示すように、実施の形態3における遠心ファン10Bも、実施の形態1,2における遠心ファン10(図2),10A(図5)と同様に、全体として略円筒形の外観を有し、複数の羽根体21がその略円筒形の側面に配置されている。遠心ファン10Bは、樹脂によって一体に形成され、仮想上の回転軸101(図8)を中心として矢印103に示す方向に回転する。実施の形態2における遠心ファン10A(図5)と実施の形態3における遠心ファン10B(図8,図9)とは、以下の点において相違している。 As shown in FIG. 8, the centrifugal fan 10B in the third embodiment also has a substantially cylindrical appearance as a whole, similar to the centrifugal fans 10 (FIG. 2) and 10A (FIG. 5) in the first and second embodiments. A plurality of blades 21 are arranged on the substantially cylindrical side surface. Centrifugal fan 10B is integrally formed of resin, and rotates in the direction indicated by arrow 103 about virtual rotation shaft 101 (FIG. 8). Centrifugal fan 10A (FIG. 5) in the second embodiment is different from centrifugal fan 10B (FIGS. 8 and 9) in the third embodiment in the following points.
 遠心ファン10Bにおいては、内径側羽根部21M(図9)に貫通穴29が設けられている。貫通穴29は、内径側羽根部21Mの最大厚み部分21Maを含むように形成されており、遠心ファン10Bの回転軸101に対して平行な方向に延びている。 In the centrifugal fan 10B, a through hole 29 is provided in the inner diameter blade portion 21M (FIG. 9). The through hole 29 is formed so as to include the maximum thickness portion 21Ma of the inner diameter blade portion 21M, and extends in a direction parallel to the rotation shaft 101 of the centrifugal fan 10B.
 上記構成によると、羽根体21の重量を低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけを緩和ないし減少させることが可能となる。また、遠心ファン10Bの回転時に生ずるアンバランスを大幅に抑制することができ、さらには遠心ファン10Bの振動騒音を低減することも可能となる。 According to the above-described configuration, the weight of the blade body 21 can be reduced, and sink marks during molding that can occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) can be reduced or reduced. . In addition, imbalance that occurs when the centrifugal fan 10B rotates can be significantly suppressed, and vibration noise of the centrifugal fan 10B can be reduced.
 [実施の形態3の変形例]
 図10は、実施の形態3の変形例における遠心ファン10Cの一部(羽根体21)を拡大して示す正面図である。遠心ファン10Cにおいては、計2つの貫通穴29A,29Bが内径側羽根部21Mに形成されている。貫通穴29A,29Bは、遠心ファン10Cの回転軸に対して平行な方向に延びている。貫通穴29A,29Bは、内径側羽根部21Mの最大厚み部分21Maの径方向内側と径方向外側とにそれぞれ1つずつ形成されている。
[Modification of Embodiment 3]
FIG. 10 is an enlarged front view showing a part (blade body 21) of centrifugal fan 10C according to a modification of the third embodiment. In the centrifugal fan 10C, a total of two through holes 29A and 29B are formed in the inner diameter blade portion 21M. The through holes 29A and 29B extend in a direction parallel to the rotation axis of the centrifugal fan 10C. The through holes 29A and 29B are formed one by one on the radially inner side and on the radially outer side of the maximum thickness portion 21Ma of the inner diameter blade portion 21M.
 上記構成によれば、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Cの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Cの振動騒音をさらに低減することも可能となる。 According to the above configuration, the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that can occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. It becomes possible. Moreover, the imbalance that occurs when the centrifugal fan 10C rotates can be significantly suppressed, and the vibration noise of the centrifugal fan 10C can be further reduced.
 [実施の形態1,3の他の構成]
 上述の実施の形態3(図9)およびその変形例(図10)においては、内径側羽根部21Mのうちの貫通穴29,29A,29Bを形成している内周面を回転軸101に対して平行な方向から見た場合、当該内周面は円形状を呈している。
[Other configurations of the first and third embodiments]
In the above-described third embodiment (FIG. 9) and its modification (FIG. 10), the inner peripheral surface forming the through holes 29, 29 </ b> A, 29 </ b> B of the inner diameter blade portion 21 </ b> M When viewed from a parallel direction, the inner peripheral surface has a circular shape.
 このような構成に限られず実施の形態1における図3,図4に示すように、内径側羽根部21Mのうちの貫通穴29を形成している内周面を回転軸101に対して平行な方向から見た場合、当該内周面は三日月形状を呈していてもよい。三日月形状の貫通穴29によっても、上記の実施の形態3およびその変形例の説明において述べたような作用および効果が得られるとともに、遠心ファンとしての美観向上を期待することも可能である。 As shown in FIGS. 3 and 4 in the first embodiment without being limited to such a configuration, the inner peripheral surface forming the through hole 29 in the inner diameter blade portion 21M is parallel to the rotation shaft 101. When viewed from the direction, the inner peripheral surface may have a crescent shape. The crescent-shaped through-hole 29 can provide the effects and effects described in the description of the third embodiment and the modifications thereof, and can also be expected to improve the aesthetics as a centrifugal fan.
 [実施の形態4]
 図11を参照して、実施の形態4における遠心ファン10Dについて説明する。図11は、遠心ファン10Dの一部(羽根体21)を拡大して示す正面図である。
[Embodiment 4]
With reference to FIG. 11, centrifugal fan 10D in the fourth embodiment will be described. FIG. 11 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10D.
 実施の形態4における遠心ファン10Dと実施の形態1~3における遠心ファンとは、遠心ファン10Dにおいては貫通穴29(貫通穴29A,29B)の代わりに凹状の切り欠き29Cが形成されている点で相違している。切り欠き29Cは、内径側羽根部21Mの正圧面25の長手方向における外径側羽根部21N寄りの部分から前縁部26に接近するように延在しているという点で、貫通穴29の構成と相違している。 The centrifugal fan 10D according to the fourth embodiment and the centrifugal fans according to the first to third embodiments are such that, in the centrifugal fan 10D, a concave notch 29C is formed instead of the through hole 29 (through holes 29A, 29B). Is different. The notch 29 </ b> C extends from the portion near the outer diameter blade 21 </ b> N in the longitudinal direction of the pressure surface 25 of the inner diameter blade 21 </ b> M so as to approach the front edge 26. It is different from the configuration.
 上記構成によっても、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Dの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Dの振動騒音をさらに低減することも可能となる。 Even with the above-described configuration, the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that may occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. Is possible. In addition, imbalance that occurs when the centrifugal fan 10D rotates can be significantly suppressed, and vibration noise of the centrifugal fan 10D can be further reduced.
 [実施の形態4の第1変形例]
 図12を参照して、実施の形態4の第1変形例における遠心ファン10Eについて説明する。図12は、遠心ファン10Eの一部(羽根体21)を拡大して示す正面図である。
[First Modification of Embodiment 4]
With reference to FIG. 12, a centrifugal fan 10E according to a first modification of the fourth embodiment will be described. FIG. 12 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10E.
 本実施の形態における遠心ファン10E(図12)と実施の形態4における遠心ファン10D(図11)とは、遠心ファン10Eにおける切り欠き29Cが、内径側羽根部21Mの正圧面25の長手方向における外径側羽根部21N寄りの部分から、前縁部26に接近するように延在する部分29C1と、前縁部26から遠ざかるように延在する部分29C2とを含んでいるという点で相違している。 The centrifugal fan 10E (FIG. 12) in the present embodiment and the centrifugal fan 10D (FIG. 11) in the fourth embodiment are such that the notch 29C in the centrifugal fan 10E is in the longitudinal direction of the positive pressure surface 25 of the inner diameter blade portion 21M. It is different in that it includes a portion 29C1 extending so as to approach the front edge portion 26 from a portion near the outer diameter blade portion 21N and a portion 29C2 extending so as to move away from the front edge portion 26. ing.
 上記構成によっても、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Eの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Eの振動騒音をさらに低減することも可能となる。 Even with the above-described configuration, the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that may occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. Is possible. Moreover, the imbalance that occurs when the centrifugal fan 10E rotates can be significantly suppressed, and the vibration noise of the centrifugal fan 10E can be further reduced.
 [実施の形態4の第2変形例]
 図13を参照して、実施の形態4の第2変形例における遠心ファン10Fについて説明する。図13は、遠心ファン10Fの一部(羽根体21)を拡大して示す正面図である。
[Second Modification of Embodiment 4]
With reference to FIG. 13, a centrifugal fan 10F according to a second modification of the fourth embodiment will be described. FIG. 13 is an enlarged front view showing a part (blade body 21) of the centrifugal fan 10F.
 本実施の形態における遠心ファン10F(図13)と上述の各実施の形態における遠心ファンとは、遠心ファン10Fにおける内径側羽根部21Mと外径側羽根部21Nとが互いに離間して形成されているという点で相違している。 The centrifugal fan 10F in the present embodiment (FIG. 13) and the centrifugal fan in each of the above-described embodiments are formed by separating the inner diameter side blade portion 21M and the outer diameter side blade portion 21N in the centrifugal fan 10F from each other. It is different in that it is.
 上記構成によっても、羽根体21の重量をさらに低減することができるとともに、羽根体21の厚肉部(最大厚み部分21Maの近傍)に生じ得る成形時のひけをより一層、緩和ないし減少させることが可能となる。また、遠心ファン10Fの回転時に生ずるアンバランスを大幅に抑制することができ、遠心ファン10Fの振動騒音をさらに低減することも可能となる。 Even with the above-described configuration, the weight of the blade body 21 can be further reduced, and the sink marks at the time of molding that may occur in the thick portion of the blade body 21 (near the maximum thickness portion 21Ma) are further reduced or reduced. Is possible. Further, the imbalance that occurs when the centrifugal fan 10F rotates can be significantly suppressed, and the vibration noise of the centrifugal fan 10F can be further reduced.
 [実施の形態5]
 本実施の形態では、実施の形態1における遠心ファン10(図1)の製造時に用いられる成型用金型、遠心ファン10を用いた送風機および空気清浄機について説明を行なう。本実施の形態において以下に開示する内容は、上述の実施の形態2~4およびこれらの変形例における遠心ファンにも適用可能である。
[Embodiment 5]
In the present embodiment, a molding die used at the time of manufacturing the centrifugal fan 10 (FIG. 1) in the first embodiment, a blower using the centrifugal fan 10 and an air cleaner will be described. The contents disclosed below in the present embodiment are also applicable to the centrifugal fans in the above-described Embodiments 2 to 4 and these modifications.
 (成型用金型110)
 図14は、遠心ファン10の製造時に用いられる成型用金型110を示す断面図である。成型用金型110は、固定側金型114および可動側金型112を有する。固定側金型114および可動側金型112により、遠心ファン10と略同一形状であって、流動性の樹脂が注入されるキャビティ116が規定される。
(Mold 110 for molding)
FIG. 14 is a cross-sectional view showing a molding die 110 used when the centrifugal fan 10 is manufactured. The molding die 110 has a fixed side die 114 and a movable side die 112. The fixed side mold 114 and the movable side mold 112 define a cavity 116 having substantially the same shape as the centrifugal fan 10 and into which a fluid resin is injected.
 成型用金型110には、キャビティ116に注入された樹脂の流動性を高めるための図示しないヒータが設けられてもよい。このようなヒータの設置は、たとえば、ガラス繊維入りAS樹脂のような強度を増加させた合成樹脂を用いる場合に特に有効である。 The molding die 110 may be provided with a heater (not shown) for enhancing the fluidity of the resin injected into the cavity 116. The installation of such a heater is particularly effective when, for example, a synthetic resin with increased strength such as an AS resin containing glass fiber is used.
 (送風機120)
 図15は、遠心ファン10を用いた送風機120を示す断面図である。図16は、図15中のXVI-XVI線上に沿った送風機120の断面形状を示す断面図である。送風機120は、外装ケーシング126内に、駆動モータ128(図16)と、遠心ファン10と、ケーシング129とを有する。
(Blower 120)
FIG. 15 is a cross-sectional view showing a blower 120 using the centrifugal fan 10. 16 is a cross-sectional view showing a cross-sectional shape of the blower 120 along the line XVI-XVI in FIG. The blower 120 includes a drive motor 128 (FIG. 16), the centrifugal fan 10, and a casing 129 in the outer casing 126.
 駆動モータ128の出力軸は、遠心ファン10のボス部16(図16)に連結されている。ケーシング129は、誘導壁129aを有する。誘導壁129aは、遠心ファン10の外周上に配置される略3/4円弧によって形成されている。誘導壁129aは、羽根体21の回転により発生する気流を羽根体21の回転方向に誘導しつつ、気流の速度を増大させるように形成されている。 The output shaft of the drive motor 128 is connected to the boss portion 16 (FIG. 16) of the centrifugal fan 10. The casing 129 has a guide wall 129a. The guide wall 129 a is formed by a substantially 3/4 arc arranged on the outer periphery of the centrifugal fan 10. The guide wall 129a is formed to increase the speed of the airflow while guiding the airflow generated by the rotation of the blade body 21 in the rotation direction of the blade body 21.
 ケーシング129には、吸い込み部130(図16)および吹き出し部127が形成されている。吸い込み部130は、回転軸101の延長上に位置して形成されている。吹き出し部127は、誘導壁129aの一部から誘導壁129aの接線方向の一方に開放されて形成されている。吹き出し部127は、誘導壁129aの一部から誘導壁129aの接線方向の一方に突出する角筒形状をなしている。 The suction part 130 (FIG. 16) and the blowing part 127 are formed in the casing 129. The suction part 130 is formed on the extension of the rotation shaft 101. The blowing portion 127 is formed to be opened from a part of the guide wall 129a to one side in the tangential direction of the guide wall 129a. The blowing portion 127 has a rectangular tube shape protruding from a part of the guide wall 129a to one side in the tangential direction of the guide wall 129a.
 駆動モータ128(図16)の駆動により、遠心ファン10が矢印103(図15)に示す方向に回転する。このとき、空気が吸い込み部130からケーシング129内に取り込まれ、遠心ファン10の内周側空間131から外周側空間132へと送り出される。外周側空間132に送り出された空気は、矢印104に示す方向に沿って周方向に流れ、吹き出し部127を通じて外部に送風される。 The centrifugal fan 10 rotates in the direction shown by the arrow 103 (FIG. 15) by driving the drive motor 128 (FIG. 16). At this time, air is taken into the casing 129 from the suction portion 130 and sent out from the inner peripheral space 131 of the centrifugal fan 10 to the outer peripheral space 132. The air sent out to the outer peripheral side space 132 flows in the circumferential direction along the direction indicated by the arrow 104 and is blown to the outside through the blowing unit 127.
 (空気清浄機140)
 図17は、遠心ファン10を用いた空気清浄機140を示す断面図である。空気清浄機140は、ハウジング144と、送風機150と、ダクト145と、(HEPA:High Efficiency Particulate Air Filter)フィルタ141とを有する。
(Air cleaner 140)
FIG. 17 is a cross-sectional view showing an air cleaner 140 using the centrifugal fan 10. The air cleaner 140 includes a housing 144, a blower 150, a duct 145, and a (HEPA: High Efficiency Particulate Air Filter) filter 141.
 ハウジング144は、後壁144aおよび天壁144bを有する。ハウジング144には、空気清浄機140が設置された室内の空気を吸い込むための吸い込み口142が形成されている。吸い込み口142は、後壁144aに形成されている。ハウジング144には、さらに、清浄空気を室内に向けて放出する吹き出し口143が形成されている。吹き出し口143は、天壁144bに形成されている。一般的に、空気清浄機140は、後壁144aを室内の壁に対向させるようにして壁際に設置される。 The housing 144 has a rear wall 144a and a top wall 144b. The housing 144 is formed with a suction port 142 for sucking air in a room where the air purifier 140 is installed. The suction port 142 is formed in the rear wall 144a. The housing 144 further has a blowout port 143 that discharges clean air toward the room. The outlet 143 is formed in the top wall 144b. In general, the air cleaner 140 is installed near the wall so that the rear wall 144a faces the indoor wall.
 フィルタ141は、ハウジング144の内部において、吸い込み口142と向い合って配置されている。吸い込み口142を通じてハウジング144内部に導入された空気は、フィルタ141を通過することによって、異物が除去され、清浄空気とされる。 The filter 141 is disposed inside the housing 144 so as to face the suction port 142. The air introduced into the housing 144 through the suction port 142 passes through the filter 141, thereby removing foreign substances and obtaining clean air.
 送風機150は、室内の空気をハウジング144内部に吸引し、フィルタ141により清浄された空気を、吹き出し口143を通じて室内に送り出す。送風機150は、遠心ファン10と、ケーシング152と、駆動モータ151とを有する。ケーシング152は、誘導壁152aを有する。ケーシング152には、吸い込み部153および吹き出し部154が形成されている。 The blower 150 sucks indoor air into the housing 144 and sends the air purified by the filter 141 into the room through the outlet 143. The blower 150 includes the centrifugal fan 10, a casing 152, and a drive motor 151. The casing 152 has a guide wall 152a. The casing 152 is formed with a suction part 153 and a blowing part 154.
 ダクト145は、送風機150の上方に設けられ、清浄空気をケーシング152から吹き出し口143に導く導風路として設けられている。ダクト145は、その下端が吹き出し部154に連なり、その上端が開放された角筒形をなす形状を有する。ダクト145は、吹き出し部154から吹き出された清浄空気を、吹き出し口143に向けて層流に誘導するように構成されている。 The duct 145 is provided above the blower 150 and is provided as an air guide path that guides clean air from the casing 152 to the outlet 143. The duct 145 has a shape that forms a rectangular tube whose lower end is connected to the blowing portion 154 and whose upper end is open. The duct 145 is configured to guide the clean air blown out from the blowout portion 154 to a laminar flow toward the blowout port 143.
 このような構成を備える空気清浄機140においては、送風機150の駆動により、羽根体21が回転し、室内の空気が吸い込み口142からハウジング144内に吸い込まれる。このとき、吸い込み口142および吹き出し口143間に空気流れが発生し、吸い込まれた空気に含まれる塵埃等の異物は、フィルタ141により除去される。 In the air cleaner 140 having such a configuration, the blade body 21 is rotated by driving the blower 150, and the indoor air is sucked into the housing 144 from the suction port 142. At this time, an air flow is generated between the suction port 142 and the blowout port 143, and foreign matters such as dust contained in the sucked air are removed by the filter 141.
 フィルタ141を通過して得られた清浄空気は、ケーシング152内部に吸い込まれる。この際、ケーシング152内に吸い込まれた清浄空気は、羽根体21周りの誘導壁152aによって層流となる。層流とされた空気は、誘導壁152aに沿って吹き出し部154に誘導され、吹き出し部154からダクト145内に送風される。空気は、吹き出し口143から外部空間に向けて放出される。 Clean air obtained through the filter 141 is sucked into the casing 152. At this time, the clean air sucked into the casing 152 becomes a laminar flow by the guide wall 152 a around the blade body 21. The laminar air is guided to the blowing part 154 along the guiding wall 152a and is blown into the duct 145 from the blowing part 154. Air is discharged from the outlet 143 toward the external space.
 このように構成された空気清浄機140によれば、送風能力に優れた遠心ファン10を用いることによって、駆動モータ151の消費電力を低減させることができる。これにより、省エネルギー化に貢献可能な空気清浄機140を実現することができる。本実施の形態では空気清浄機を例に挙げて説明したが、この他に、たとえば、空気調和機(エアーコンディショナ)や加湿機、冷却装置、換気装置などの流体を送り出す装置に、上述の各実施の形態における遠心ファンを適用することも可能である。 According to the air cleaner 140 configured as described above, the power consumption of the drive motor 151 can be reduced by using the centrifugal fan 10 having excellent blowing ability. Thereby, the air cleaner 140 that can contribute to energy saving can be realized. In the present embodiment, the air cleaner has been described as an example. In addition to the above, for example, the above-described device for sending out a fluid such as an air conditioner (humidifier), a humidifier, a cooling device, and a ventilation device is used. The centrifugal fan in each embodiment can also be applied.
 たとえば、天井から吊り下げられるタイプのエアコンなどに用いられるシロッコファンに上述の各実施の形態における遠心ファンを用いれば、能力アップや低騒音化が可能である。他にも、騒音を一定に、ファンのサイズダウン、ひいては本体のサイズダウンなどが可能となる。小型化の結果、壁掛けのエアコンとして設置することも可能となる。点状から吊り下げられるタイプのエアコンは大掛かりな工事が必要だが、壁掛けのルームエアコンは一般的な工事で済み、世の中の要請も大きい。また、上述の各実施の形態における遠心ファンは、壁掛けのルームエアコンに内蔵されるクロスフローファンにも応用可能である。 For example, if the centrifugal fan in each of the above-described embodiments is used as a sirocco fan used for an air conditioner that is suspended from the ceiling, the capacity can be increased and the noise can be reduced. In addition, it is possible to reduce the size of the fan and the size of the main body while keeping the noise constant. As a result of downsizing, it can also be installed as a wall-mounted air conditioner. The air conditioner that can be hung from a dotted shape requires large-scale construction, but the wall-mounted room air conditioner only requires general construction, and there is a great demand from the world. Moreover, the centrifugal fan in each of the above-described embodiments can be applied to a cross flow fan built in a wall-mounted room air conditioner.
 [実験例]
 図18~図33を参照して、上述の各実施の形態に関連して行った実験例について説明する。説明に当たって、図18に示すように、羽根体21の前縁部26と後縁部27とを結ぶ直線を、翼弦線LN3と定義する。翼弦線LN3の長さを、翼弦長Cとする。羽根体21の負圧面24から翼弦線LN3に対して下ろした垂線の長さが最大になる位置P15における垂線LN4の長さを、反りtとする。反りt/翼弦長Cの値を、反り比mと定義する。
[Experimental example]
With reference to FIGS. 18 to 33, experimental examples performed in relation to the above-described embodiments will be described. In the description, as shown in FIG. 18, a straight line connecting the front edge portion 26 and the rear edge portion 27 of the blade body 21 is defined as a chord line LN3. The length of the chord line LN3 is a chord length C. The length of the perpendicular LN4 at the position P15 where the length of the perpendicular drawn from the suction surface 24 of the blade body 21 with respect to the chord line LN3 is the maximum is warp t. The value of warp t / chord length C is defined as a warp ratio m.
 図19に示すように、実験例1~9として、計9種類の遠心ファンを準備した。実験例1~9における遠心ファンに共通する条件として、いずれも、ファンの外形を236mmに設定し、高さを80mmに設定し、羽根体21の翼弦長Cを20mmに設定し、羽根体21の最小翼厚を1mmに設定した。 As shown in FIG. 19, nine types of centrifugal fans were prepared as Experimental Examples 1 to 9. As conditions common to the centrifugal fans in Experimental Examples 1 to 9, all of the fan's outer shape is set to 236 mm, the height is set to 80 mm, the chord length C of the blade body 21 is set to 20 mm, and the blade body The minimum blade thickness of 21 was set to 1 mm.
 (実験例1)
 図19および図20に示すように、実験例1の遠心ファン10S1においては、反りtを4.0mmに設定し、最大翼厚を1.0mmに設定した。反り比m(反りt/翼弦長C)は、0.2であり、最小翼厚と最大翼厚との比を表わす翼厚比は、1.0である。
(Experimental example 1)
As shown in FIGS. 19 and 20, in the centrifugal fan 10S1 of Experimental Example 1, the warp t was set to 4.0 mm, and the maximum blade thickness was set to 1.0 mm. The warpage ratio m (warpage t / chord length C) is 0.2, and the blade thickness ratio representing the ratio between the minimum blade thickness and the maximum blade thickness is 1.0.
 (実験例2~4)
 図19に示すように、実験例2~4の遠心ファンにおいてはそれぞれ、反りtを4.22mm、4.5mm、5.0mmに設定し、最大翼厚を1.55mm、2.8mm、3.15mmに設定した。反り比m(反りt/翼弦長C)はそれぞれ、0.211、0.225、0.25であり、翼厚比は、1.55、2.8、3.15である。
(Experimental examples 2 to 4)
As shown in FIG. 19, in the centrifugal fans of Experimental Examples 2 to 4, the warp t is set to 4.22 mm, 4.5 mm, and 5.0 mm, respectively, and the maximum blade thickness is 1.55 mm, 2.8 mm, 3 mm Set to 15 mm. The warpage ratio m (warpage t / chord length C) is 0.211, 0.225, and 0.25, respectively, and the blade thickness ratio is 1.55, 2.8, and 3.15.
 (実験例5)
 図19および図21に示すように、実験例5の遠心ファン10S5においては、反りtを5.6mmに設定し、最大翼厚を3.3mmに設定した。反り比m(反りt/翼弦長C)は、0.28であり、翼厚比は、3.3である。
(Experimental example 5)
As shown in FIGS. 19 and 21, in the centrifugal fan 10S5 of Experimental Example 5, the warp t was set to 5.6 mm and the maximum blade thickness was set to 3.3 mm. The warpage ratio m (warpage t / chord length C) is 0.28, and the blade thickness ratio is 3.3.
 (実験例6~8)
 図19に示すように、実験例6~8の遠心ファンにおいてはそれぞれ、反りtを6.6mm、7.2mm、8.0mmに設定し、最大翼厚を3.46mm、3.6mm、3.67mmに設定した。反り比m(反りt/翼弦長C)はそれぞれ、0.33、0.36、0.4であり、翼厚比は、3.46、3.6、3.67である。
(Experimental examples 6 to 8)
As shown in FIG. 19, in the centrifugal fans of Experimental Examples 6 to 8, the warp t is set to 6.6 mm, 7.2 mm, and 8.0 mm, respectively, and the maximum blade thickness is 3.46 mm, 3.6 mm, .67 mm. The warpage ratio m (warpage t / chord length C) is 0.33, 0.36, and 0.4, respectively, and the blade thickness ratio is 3.46, 3.6, and 3.67.
 (実験例9)
 図19および図22に示すように、実験例9の遠心ファン10S9においては、反りtを8.2mmに設定し、最大翼厚を3.84mmに設定した。反り比m(反りt/翼弦長C)は、0.41であり、翼厚比は、3.84である。
(Experimental example 9)
As shown in FIGS. 19 and 22, in the centrifugal fan 10S9 of Experimental Example 9, the warp t was set to 8.2 mm and the maximum blade thickness was set to 3.84 mm. The warp ratio m (warp t / chord length C) is 0.41, and the blade thickness ratio is 3.84.
 (反り比mと風量との関係)
 図19および図23を参照して、上記の各条件を有する実験例1~9の遠心ファンを1250rpmで回転させ、風量を測定したところ、図19の表に示すような結果が得られた。図23は、図19に示す表をグラフ化したものである。反り比mが増加するにつれて、風量も増加していることがわかる。風量の増加率に鑑みると、反り比mは0.25以上であることが好ましいことがわかる。
(Relationship between warpage ratio m and air volume)
Referring to FIGS. 19 and 23, the centrifugal fans of Experimental Examples 1 to 9 having the above-mentioned conditions were rotated at 1250 rpm, and the air volume was measured. The results shown in the table of FIG. 19 were obtained. FIG. 23 is a graph of the table shown in FIG. It can be seen that the air volume increases as the warp ratio m increases. In view of the increase rate of the air volume, it is understood that the warp ratio m is preferably 0.25 or more.
 (反り比mと騒音との関係)
 図19および図24を参照して、上記の各条件を有する実験例1~9の遠心ファンを風量が7.5m/minとなるように回転させ、騒音を測定したところ、図19の表に示すような結果が得られた。図24は、図19に示す表をグラフ化したものである。騒音の減少率に鑑みても、反り比mは0.25以上であることが好ましいことがわかる。
(Relationship between warpage ratio m and noise)
Referring to FIG. 19 and FIG. 24, the centrifugal fans of Experimental Examples 1 to 9 having the above-mentioned conditions were rotated so that the air flow was 7.5 m 3 / min, and the noise was measured. The results as shown in Fig. 1 were obtained. FIG. 24 is a graph of the table shown in FIG. In view of the noise reduction rate, it can be seen that the warp ratio m is preferably 0.25 or more.
 (反り比mと消費電力との関係)
 図19および図25を参照して、上記の各条件を有する実験例1~9の遠心ファンを風量が7.5m/minとなるように回転させ、消費電力を測定したところ、図19の表に示すような結果が得られた。図25は、図19に示す表をグラフ化したものである。消費電力の減少率に鑑みても、反り比mは0.25以上であることが好ましいことがわかる。
(Relationship between warpage ratio m and power consumption)
Referring to FIG. 19 and FIG. 25, the centrifugal fans of Experimental Examples 1 to 9 having the above-mentioned conditions were rotated so that the air volume was 7.5 m 3 / min, and the power consumption was measured. The results shown in the table were obtained. FIG. 25 is a graph of the table shown in FIG. It can be seen that the warp ratio m is preferably 0.25 or more in view of the power consumption reduction rate.
 (最大翼厚と風量との関係)
 図26は、上記の各条件を有する実験例1~9の最大翼厚と、実験例1~9の遠心ファンを1250rpmで回転させた時に得られる風量との関係を示すグラフである。最大翼厚が増加するにつれて、風量が概ね線形の関係で増加することがわかる。
(Relationship between maximum blade thickness and air flow)
FIG. 26 is a graph showing the relationship between the maximum blade thickness of Experimental Examples 1 to 9 having the above conditions and the air volume obtained when the centrifugal fans of Experimental Examples 1 to 9 are rotated at 1250 rpm. It can be seen that the airflow increases in a generally linear relationship as the maximum blade thickness increases.
 (最大翼厚と騒音との関係)
 図27は、上記の各条件を有する実験例1~9の最大翼厚と、実験例1~9の遠心ファンを風量が7.5m/minとなるように回転させた時に発生する騒音との関係を示すグラフである。最大翼厚が2.8mm(図19に示す実験例3)を超えると、騒音が急峻に減少することがわかる。最大翼厚が3.6mm(図19に示す実験例7)の場合に、騒音が最小となることがわかる。
(Relationship between maximum blade thickness and noise)
FIG. 27 shows the maximum blade thickness of Experimental Examples 1 to 9 having the above-mentioned conditions and the noise generated when the centrifugal fan of Experimental Examples 1 to 9 is rotated so that the air volume becomes 7.5 m 3 / min. It is a graph which shows the relationship. It can be seen that when the maximum blade thickness exceeds 2.8 mm (Experimental Example 3 shown in FIG. 19), the noise sharply decreases. It can be seen that noise is minimized when the maximum blade thickness is 3.6 mm (Experimental Example 7 shown in FIG. 19).
 (最大翼厚と消費電力との関係)
 図28は、上記の各条件を有する実験例1~9の最大翼厚と、実験例1~9の遠心ファンを風量が7.5m/minとなるように回転させた時に消費する電力との関係を示すグラフである。最大翼厚が3.15mm(図19に示す実験例4)を超えると、消費電力が急峻に減少することがわかる。最大翼厚が3.6mm(図19に示す実験例7)の場合に、消費電力が最小となることがわかる。
(Relationship between maximum blade thickness and power consumption)
FIG. 28 shows the maximum blade thickness of Experimental Examples 1 to 9 having the above-described conditions and the power consumed when the centrifugal fans of Experimental Examples 1 to 9 are rotated so that the air volume is 7.5 m 3 / min. It is a graph which shows the relationship. It can be seen that when the maximum blade thickness exceeds 3.15 mm (Experimental Example 4 shown in FIG. 19), the power consumption sharply decreases. It can be seen that the power consumption is minimized when the maximum blade thickness is 3.6 mm (Experimental Example 7 shown in FIG. 19).
 (翼厚比と風量との関係)
 図29は、上記の各条件を有する実験例1~9の翼厚比と、実験例1~9の遠心ファンを1250rpmで回転させた時に得られる風量(相対値)との関係を示すグラフである。翼厚比が増加するにつれて、風量が概ね線形の関係で増加することがわかる。
(Relationship between blade thickness ratio and air volume)
FIG. 29 is a graph showing the relationship between the blade thickness ratio of Experimental Examples 1 to 9 having the above conditions and the air volume (relative value) obtained when the centrifugal fans of Experimental Examples 1 to 9 are rotated at 1250 rpm. is there. It can be seen that as the blade thickness ratio increases, the air volume increases in a generally linear relationship.
 (翼厚比と騒音との関係)
 図30は、上記の各条件を有する実験例1~9の翼厚比と、実験例1~9の遠心ファンを風量が7.5m/minとなるように回転させた時に発生する騒音(相対値)との関係を示すグラフである。翼厚比が2.8mm(図19に示す実験例3)を超えると、騒音が急峻に減少することがわかる。翼厚比が3.6mm(図19に示す実験例7)の場合に、騒音が最小となることがわかる。
(Relationship between blade thickness ratio and noise)
FIG. 30 shows the blade thickness ratio of Experimental Examples 1 to 9 having the above-mentioned conditions and the noise generated when the centrifugal fans of Experimental Examples 1 to 9 are rotated so that the air volume becomes 7.5 m 3 / min ( It is a graph which shows the relationship with relative value. It can be seen that when the blade thickness ratio exceeds 2.8 mm (Experimental Example 3 shown in FIG. 19), the noise sharply decreases. It can be seen that noise is minimized when the blade thickness ratio is 3.6 mm (Experimental Example 7 shown in FIG. 19).
 (翼厚比と消費電力との関係)
 図31は、上記の各条件を有する実験例1~9の翼厚比と、実験例1~9の遠心ファンを風量が7.5m/minとなるように回転させた時に消費する電力(相対値)との関係を示すグラフである。翼厚比が3.15mm(図19に示す実験例4)を超えると、消費電力が急峻に減少することがわかる。翼厚比が3.6mm(図19に示す実験例7)の場合に、消費電力が最小となることがわかる。
(Relationship between blade thickness ratio and power consumption)
FIG. 31 shows the blade thickness ratio of Experimental Examples 1 to 9 having the above conditions and the electric power consumed when the centrifugal fans of Experimental Examples 1 to 9 are rotated so that the air volume becomes 7.5 m 3 / min ( It is a graph which shows the relationship with relative value. It can be seen that when the blade thickness ratio exceeds 3.15 mm (Experimental Example 4 shown in FIG. 19), the power consumption sharply decreases. It can be seen that the power consumption is minimized when the blade thickness ratio is 3.6 mm (Experimental Example 7 shown in FIG. 19).
 (まとめ)
 以上の実験例1~9の結果に基づけば、風量増大、騒音低減、および消費電力低減の観点からは、反り比mが0.25以上であると、より好ましい改善効果が得られることがわかる。
(Summary)
Based on the results of the above experimental examples 1 to 9, it can be seen that a more preferable improvement effect can be obtained when the warp ratio m is 0.25 or more from the viewpoint of increasing air volume, reducing noise, and reducing power consumption. .
 (他の実験例)
 図32は、上記の実験例7に基づく遠心ファン10S7の一部を拡大して示す正面図である。実験例7の遠心ファン10S7においては(図19)、反りtを7.2mmに設定し、最大翼厚を3.6mmに設定した。反り比m(反りt/翼弦長C)は、0.36であり、翼厚比は、3.6である。このような遠心ファン10S7によれば、図19に示すように、風量が8%増加し、騒音が1.87dB低減し、消費電力が6%低減した。
(Other experimental examples)
FIG. 32 is an enlarged front view showing a part of the centrifugal fan 10S7 based on the experimental example 7. In the centrifugal fan 10S7 of Experimental Example 7 (FIG. 19), the warp t was set to 7.2 mm, and the maximum blade thickness was set to 3.6 mm. The warp ratio m (warp t / chord length C) is 0.36, and the blade thickness ratio is 3.6. According to such a centrifugal fan 10S7, as shown in FIG. 19, the air volume increased by 8%, the noise decreased by 1.87 dB, and the power consumption decreased by 6%.
 図33に示す遠心ファン10S7aは、反りtを7.2mmに設定したという点では、図32に示す遠心ファン10S7と共通しているが、遠心ファン10S7aにおいては、最大翼厚を1.0mmに設定した。遠心ファン10S7aの反り比m(反りt/翼弦長C)は、遠心ファン10S7と同じで0.36であるが、遠心ファン10S7aの翼厚比は、1.0である。このような遠心ファン10S7aによれば、風量が4%増加し、騒音が1dB増加し、消費電力が1%低減した。 The centrifugal fan 10S7a shown in FIG. 33 is common to the centrifugal fan 10S7 shown in FIG. 32 in that the warp t is set to 7.2 mm. However, in the centrifugal fan 10S7a, the maximum blade thickness is set to 1.0 mm. Set. The warp ratio m (warp t / chord length C) of the centrifugal fan 10S7a is 0.36, which is the same as that of the centrifugal fan 10S7, but the blade thickness ratio of the centrifugal fan 10S7a is 1.0. According to the centrifugal fan 10S7a, the air volume is increased by 4%, the noise is increased by 1 dB, and the power consumption is reduced by 1%.
 以上の遠心ファン10S7,10S7aの対比によれば、反り比mだけでなく、最大翼厚や、翼厚比も最適化することで、風量増大、騒音低減、および消費電力低減が図れることがわかる。 According to the comparison of the centrifugal fans 10S7 and 10S7a described above, it is understood that not only the warp ratio m but also the maximum blade thickness and blade thickness ratio can be optimized to increase the air volume, reduce noise, and reduce power consumption. .
 以上、実施の形態およびその変形例、ならびに実験例について説明したが、上記の開示内容はすべての点で例示であって制限的なものではない。本発明の技術的範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment, its modification, and experiment example were demonstrated, said disclosure content is an illustration and restrictive at no points. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この明細書で開示した内容は、主に、空気清浄機や空気調和機などの送風機能を有する家庭用の電気機器に産業上利用可能である。 The contents disclosed in this specification can be industrially used mainly for household electric appliances having an air blowing function such as an air purifier and an air conditioner.
 10,10A,10B,10C,10D,10E,10F,10S7a,10S1,10S5,10S9,10S7 遠心ファン、12,13 外周枠、16 ボス部、21 羽根体、21A 前側羽根体、21B 後側羽根体、21M 内径側羽根部、21Ma 最大厚み部分、21Mb 拡大部分、21Mc 縮小部分、21N 外径側羽根部、21Np 板状部、23 翼面、24,24A,24B,24M,24Np 負圧面、24L 長さ、24R,25R 線、25,25M,25Np 正圧面、26 前縁部、27 後縁部、29,29A,29B 貫通穴、29C 切り欠き、29C1,29C2 部分、101 回転軸、102,103,104,H 矢印、110 成型用金型、112 可動側金型、114 固定側金型、116 キャビティ、120,150 送風機、127,154 吹き出し部、128,151 駆動モータ、129,152 ケーシング、129a,152a 誘導壁、130,153 吸い込み部、131,132 空間、140 空気清浄機、141 フィルタ、142 吸い込み口、143 吹き出し口、144 ハウジング、144a 後壁、144b 天壁、145 ダクト、AS ガラス繊維入り、C 翼弦長、D 間隔、L1,L2,L3,L4,L5,L6 翼間距離、LN1,LN2 直線、LN3 翼弦線、LN4,W1,W2 垂線、P1,P3,P4,P5,P6 箇所、P2 箇所(最大厚み位置)、P10,P11,P12 点、P13,P15 位置、WA,WB 速度、h1,h3,h4,h5,h6 翼厚、h2 最大厚み、m 反り比、t,t1,t2 反り。 10, 10A, 10B, 10C, 10D, 10E, 10F, 10S7a, 10S1, 10S5, 10S9, 10S7 Centrifugal fan, 12, 13 outer peripheral frame, 16 boss part, 21 blade body, 21A front blade body, 21B rear blade body 21M inner diameter blade part, 21Ma maximum thickness part, 21Mb enlarged part, 21Mc reduced part, 21N outer diameter blade part, 21Np plate part, 23 blade surface, 24, 24A, 24B, 24M, 24Np negative pressure surface, 24L length 24R, 25R wire, 25, 25M, 25Np pressure surface, 26 front edge, 27 rear edge, 29, 29A, 29B through hole, 29C notch, 29C1, 29C2 portion, 101 rotating shaft, 102, 103, 104, H arrow, 110 mold for molding, 112 movable mold, 114 fixed side Mold, 116 cavity, 120, 150 blower, 127, 154 blowing part, 128, 151 drive motor, 129, 152 casing, 129a, 152a guide wall, 130, 153 suction part, 131, 132 space, 140 air cleaner, 141 Filter, 142 inlet, 143 outlet, 144 housing, 144a rear wall, 144b top wall, 145 duct, AS glass fiber, C chord length, D interval, L1, L2, L3, L4, L5, L6 Distance, LN1, LN2 straight line, LN3 chord line, LN4, W1, W2 perpendicular line, P1, P3, P4, P5, P6 locations, P2 locations (maximum thickness position), P10, P11, P12 points, P13, P15 locations, WA, WB speed, h1, h3, h4, h5 h6 blade thickness, h2 maximum thickness, m warp ratio, t, t1, t2 warpage.

Claims (11)

  1.  空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、
     複数の前記羽根体の各々には、前記前縁部と前記後縁部との間で延在し、前記羽根体における回転方向の側に位置する正圧面と、前記羽根体における前記回転方向の反対側に位置する負圧面とからなる翼面が形成され、
     複数の前記羽根体は、前側羽根体と、前記前側羽根体に前記間隔を空けて対向するとともに前記前側羽根体に対して回転方向の反対側に位置する後側羽根体と、を含み、
     前記前側羽根体の負圧面上における任意の箇所から前記後側羽根体の正圧面までの最短距離を、前記箇所における翼間距離と定義し、
     前記前側羽根体は、前記前側羽根体のうちの最大厚みを規定している最大厚み部分を有し、当該最大厚み部分における負圧面上の位置を、最大厚み位置と定義し、
     前記前側羽根体の負圧面のうちの前記最大厚み位置と前記前縁部との間の範囲を、内径側負圧面と定義し、
     前記前側羽根体の負圧面のうちの前記最大厚み位置と前記後縁部との間の範囲を、外径側負圧面と定義し、
     前記前側羽根体の負圧面における前記前縁部から前記後縁部までの長さを、負圧面長さと定義したとすると、
     前記内径側負圧面における前記翼間距離は、前記最大厚み位置における前記翼間距離よりも長く、
     前記外径側負圧面のうち、前記最大厚み位置と、前記最大厚み位置から前記負圧面長さの半分以上の長さだけ離れた位置との間の範囲における前記翼間距離は、略一定である、遠心ファン。
    It has a front edge part into which air flows in and a rear edge part from which air flows out, and includes a plurality of blade bodies provided at intervals in the circumferential direction,
    Each of the plurality of blade bodies extends between the front edge portion and the rear edge portion, and has a positive pressure surface positioned on the rotation direction side of the blade body, and the rotation direction of the blade body. A wing surface consisting of a suction surface located on the opposite side is formed,
    The plurality of blade bodies include a front blade body, and a rear blade body that faces the front blade body with the space therebetween and is positioned on the opposite side of the rotation direction with respect to the front blade body,
    The shortest distance from any location on the suction surface of the front blade body to the pressure surface of the rear blade body is defined as the interblade distance at the location,
    The front blade body has a maximum thickness portion that defines the maximum thickness of the front blade body, and a position on the suction surface in the maximum thickness portion is defined as a maximum thickness position,
    A range between the maximum thickness position of the suction surface of the front blade body and the front edge portion is defined as an inner diameter side suction surface,
    A range between the maximum thickness position of the suction surface of the front blade body and the rear edge portion is defined as an outer diameter side suction surface,
    When the length from the front edge to the rear edge of the suction surface of the front blade is defined as the suction surface length,
    The distance between the blades on the inner diameter side suction surface is longer than the distance between the blades at the maximum thickness position,
    The inter-blade distance in a range between the maximum thickness position of the outer diameter side negative pressure surface and a position separated from the maximum thickness position by a length equal to or more than half the negative pressure surface length is substantially constant. There is a centrifugal fan.
  2.  空気が流入する前縁部と、空気が流出する後縁部とを有し、周方向に互いに間隔を隔てて設けられる複数の羽根体を備え、
     複数の前記羽根体の各々には、前記前縁部と前記後縁部との間で延在し、前記羽根体における回転方向の側に位置する正圧面と、前記羽根体における前記回転方向の反対側に位置する負圧面とからなる翼面が形成され、
     複数の前記羽根体の各々は、前記前縁部を含む内径側羽根部と、前記内径側羽根部の径方向外側に位置し、前記後縁部を含む外径側羽根部と、を有し、
     前記内径側羽根部は、
     前記内径側羽根部のうちの最大厚みを規定している最大厚み部分と、
     前記前縁部と前記最大厚み部分との間に位置し、前記前縁部の側から径方向外側に向かうにつれて翼厚が徐々に厚くなる拡大部分と、
     前記最大厚み部分よりも径方向外側に位置し、前記最大厚み部分の側から径方向外側に向かうにつれて翼厚が徐々に薄くなる縮小部分と、を含み、
     前記内径側羽根部の負圧面および前記内径側羽根部の正圧面は、いずれも回転方向の反対側に向けて凸状に湾曲する表面形状を有しており、
     前記内径側羽根部の負圧面の曲率は、前記内径側羽根部の正圧面の曲率よりも大きく、
     前記外径側羽根部は、前記後縁部の側から径方向内側に略同一の翼厚で延在する板状部を含み、
     前記板状部の負圧面の曲率および前記板状部の正圧面の曲率は、いずれも前記内径側羽根部の負圧面の曲率よりも小さい、
    遠心ファン。
    It has a front edge part into which air flows in and a rear edge part from which air flows out, and includes a plurality of blade bodies provided at intervals in the circumferential direction,
    Each of the plurality of blade bodies extends between the front edge portion and the rear edge portion, and has a positive pressure surface positioned on the rotation direction side of the blade body, and the rotation direction of the blade body. A wing surface consisting of a suction surface located on the opposite side is formed,
    Each of the plurality of blade bodies has an inner diameter side blade portion including the front edge portion, and an outer diameter side blade portion including the rear edge portion, which is located on the radially outer side of the inner diameter side blade portion. ,
    The inner diameter blade portion is
    A maximum thickness portion defining the maximum thickness of the inner diameter side blade portion; and
    Located between the leading edge and the maximum thickness portion, an enlarged portion where the blade thickness gradually increases from the side of the leading edge toward the radially outer side,
    A reduced portion where the blade thickness is gradually reduced from the maximum thickness portion side toward the radial outer side, located on the radially outer side than the maximum thickness portion;
    Both the negative pressure surface of the inner diameter side blade portion and the positive pressure surface of the inner diameter side blade portion have a surface shape that curves in a convex shape toward the opposite side in the rotation direction,
    The curvature of the suction surface of the inner diameter blade portion is larger than the curvature of the pressure surface of the inner blade portion,
    The outer diameter blade portion includes a plate-like portion extending from the rear edge side to the radially inner side with substantially the same blade thickness,
    The curvature of the suction surface of the plate-like portion and the curvature of the pressure surface of the plate-like portion are both smaller than the curvature of the suction surface of the inner diameter blade portion,
    Centrifugal fan.
  3.  前記内径側羽根部の正圧面と前記外径側羽根部の正圧面とは互いに正接しており、
     前記内径側羽根部の負圧面と前記外径側羽根部の負圧面とは互いに正接している、
    請求項2に記載の遠心ファン。
    The pressure surface of the inner diameter blade portion and the pressure surface of the outer diameter blade portion are tangent to each other,
    The suction surface of the inner diameter blade portion and the suction surface of the outer diameter blade portion are tangent to each other.
    The centrifugal fan according to claim 2.
  4.  前記外径側羽根部の最大厚みは、前記内径側羽根部の最大厚みよりも小さく、
     前記外径側羽根部の反りは、前記内径側羽根部の反りよりも小さい、
    請求項2または3に記載の遠心ファン。
    The maximum thickness of the outer diameter side blade portion is smaller than the maximum thickness of the inner diameter side blade portion,
    The warp of the outer diameter side blade portion is smaller than the warp of the inner diameter side blade portion,
    The centrifugal fan according to claim 2 or 3.
  5.  前記内径側羽根部には、回転軸に対して平行な方向に延びる貫通穴が設けられており、
     前記貫通穴は、前記最大厚み部分を含むように形成されているか、または、前記最大厚み部分の径方向内側と径方向外側とにそれぞれ1つずつ形成されている、
    請求項2から4のいずれか1項に記載の遠心ファン。
    The inner diameter blade portion is provided with a through hole extending in a direction parallel to the rotation axis,
    The through hole is formed so as to include the maximum thickness portion, or is formed one by one on the radially inner side and the radially outer side of the maximum thickness portion,
    The centrifugal fan according to any one of claims 2 to 4.
  6.  前記内径側羽根部のうちの前記貫通穴を形成している内周面を前記回転軸に対して平行な方向から見た場合、当該内周面は三日月形状を呈している、
    請求項5に記載の遠心ファン。
    When the inner peripheral surface forming the through hole in the inner diameter side blade portion is viewed from a direction parallel to the rotation axis, the inner peripheral surface has a crescent shape,
    The centrifugal fan according to claim 5.
  7.  前記前縁部と前記後縁部とを結ぶ直線を翼弦線と定義し、
     前記翼弦線の長さをCとし、前記羽根体の負圧面から前記翼弦線に対して下ろした垂線の長さが最大になる位置における前記垂線の長さをtとし、t/Cの値を反り比mと定義すると、
     複数の前記羽根体の各々は、前記反り比mが0.25以上となるように形成されている、
    請求項1から6のいずれか1項に記載の遠心ファン。
    A straight line connecting the leading edge and the trailing edge is defined as a chord line,
    The length of the chord line is C, the length of the perpendicular line at the position where the length of the perpendicular line drawn from the suction surface of the blade body to the chord line is maximum is t, and t / C If the value is defined as the warp ratio m,
    Each of the plurality of blades is formed such that the warp ratio m is 0.25 or more.
    The centrifugal fan according to any one of claims 1 to 6.
  8.  複数の前記羽根体は、等速翼列をなすように構成されている、
    請求項1から7のいずれか1項に記載の遠心ファン。
    The plurality of blade bodies are configured to form a constant velocity cascade.
    The centrifugal fan according to any one of claims 1 to 7.
  9.  樹脂により形成される、
    請求項1から8のいずれか1項に記載の遠心ファン。
    Formed by resin,
    The centrifugal fan according to any one of claims 1 to 8.
  10.  請求項9に記載の遠心ファンを成型するために用いられる、
    成型用金型。
    Used for molding the centrifugal fan according to claim 9,
    Mold for molding.
  11.  請求項1から9のいずれか1項に記載の遠心ファンと、前記遠心ファンに連結され、複数の前記羽根体を回転させる駆動モータとから構成される送風機を備える、
    流体送り装置。
    A blower comprising: the centrifugal fan according to any one of claims 1 to 9; and a drive motor connected to the centrifugal fan and configured to rotate the plurality of blade bodies.
    Fluid feeder.
PCT/JP2017/031312 2017-04-10 2017-08-31 Centrifugal fan, moulding die, and fluid feeding device WO2018189931A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780089424.1A CN110494654B (en) 2017-04-10 2017-08-31 Telecentric fan, molding die and fluid delivery device
JP2019512180A JP6951428B2 (en) 2017-04-10 2017-08-31 Centrifugal fan, molding mold and fluid feeder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017077580 2017-04-10
JP2017-077580 2017-04-10

Publications (1)

Publication Number Publication Date
WO2018189931A1 true WO2018189931A1 (en) 2018-10-18

Family

ID=63793210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031312 WO2018189931A1 (en) 2017-04-10 2017-08-31 Centrifugal fan, moulding die, and fluid feeding device

Country Status (4)

Country Link
JP (1) JP6951428B2 (en)
CN (1) CN110494654B (en)
TW (1) TWI661131B (en)
WO (1) WO2018189931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220214052A1 (en) * 2019-09-30 2022-07-07 Daikin Industries, Ltd. Cross flow fan blade, cross flow fan, and air conditioner indoor unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973427B (en) * 2019-05-10 2021-11-26 泛仕达机电股份有限公司 Multi-wing centrifugal fan blade, impeller and multi-wing centrifugal fan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331206A (en) * 1976-09-06 1978-03-24 Hitachi Ltd Fan with forward blades
JP2002285996A (en) * 2001-01-22 2002-10-03 Sanden Corp Multi-blade blower fan
JP2008545086A (en) * 2005-07-04 2008-12-11 ベール ゲーエムベーハー ウント コー カーゲー Impeller
JP5469635B2 (en) * 2011-05-30 2014-04-16 シャープ株式会社 Centrifugal fan, molding die and fluid feeder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007521B1 (en) * 1992-08-14 1995-07-11 엘지전자주식회사 Siroco fan
CN1237283C (en) * 2001-01-22 2006-01-18 三电有限公司 Multi-vane fan for air conditioning equipment of car
EP1741934B1 (en) * 2005-07-04 2015-06-10 MAHLE Behr GmbH & Co. KG Rotor
JP4993792B2 (en) * 2010-06-28 2012-08-08 シャープ株式会社 Fan, molding die and fluid feeder
ITCO20130037A1 (en) * 2013-09-12 2015-03-13 Internat Consortium For Advanc Ed Design LIQUID RESISTANT IMPELLER FOR CENTRIFUGAL COMPRESSORS / LIQUID TOLERANT IMPELLER FOR CENTRIFUGAL COMPRESSORS
CN203627302U (en) * 2013-11-20 2014-06-04 浙江双阳风机有限公司 Centrifugal fan impeller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331206A (en) * 1976-09-06 1978-03-24 Hitachi Ltd Fan with forward blades
JP2002285996A (en) * 2001-01-22 2002-10-03 Sanden Corp Multi-blade blower fan
JP2008545086A (en) * 2005-07-04 2008-12-11 ベール ゲーエムベーハー ウント コー カーゲー Impeller
JP5469635B2 (en) * 2011-05-30 2014-04-16 シャープ株式会社 Centrifugal fan, molding die and fluid feeder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220214052A1 (en) * 2019-09-30 2022-07-07 Daikin Industries, Ltd. Cross flow fan blade, cross flow fan, and air conditioner indoor unit
US11466871B2 (en) * 2019-09-30 2022-10-11 Daikin Industries, Ltd. Cross flow fan blade, cross flow fan, and air conditioner indoor unit

Also Published As

Publication number Publication date
TWI661131B (en) 2019-06-01
CN110494654A (en) 2019-11-22
TW201837322A (en) 2018-10-16
JP6951428B2 (en) 2021-10-20
JPWO2018189931A1 (en) 2020-02-20
CN110494654B (en) 2021-09-14

Similar Documents

Publication Publication Date Title
JP4993791B2 (en) Fan, molding die and fluid feeder
JP4798640B2 (en) Propeller fan, molding die and fluid feeder
JP6071394B2 (en) Centrifugal fan
WO2014061642A1 (en) Turbo fan and air conditioner
WO2012002081A1 (en) Fan, mold for molding, and fluid feeding device
JP2018132012A (en) Electric blower, electric cleaner, and impeller manufacturing method
JP2008223741A (en) Centrifugal blower
WO2018189931A1 (en) Centrifugal fan, moulding die, and fluid feeding device
JP4140236B2 (en) Blower and outdoor unit for air conditioner
JP6019391B2 (en) Centrifugal blower and clothes dryer having the same
US9388823B2 (en) Centrifugal fan, molding die, and fluid feeder
JP5469635B2 (en) Centrifugal fan, molding die and fluid feeder
JP5345607B2 (en) Centrifugal fan, molding die and fluid feeder
JP6330738B2 (en) Centrifugal blower and air conditioner using the same
JP4906011B2 (en) Fan, molding die and fluid feeder
JPH02173395A (en) Axial flow fan
KR100311998B1 (en) Crossflow Fans for Air Conditioners
WO2020031800A1 (en) Propeller fan and air blowing device
WO2020161850A1 (en) Centrifugal air blower and air conditioner using same
CN115199569A (en) Centrifugal fan impeller with throttling wing structure
JP2022082157A (en) Centrifugal fan, mold and blower device
CN115726982A (en) High-efficient centrifugal blower
CN113137381A (en) Centrifugal fan for bladeless air supply device
KR100469259B1 (en) Blade of turbo fan
JPH08165998A (en) Centrifugal blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905579

Country of ref document: EP

Kind code of ref document: A1