WO2018189831A1 - Waveguide laminate structure - Google Patents

Waveguide laminate structure Download PDF

Info

Publication number
WO2018189831A1
WO2018189831A1 PCT/JP2017/014993 JP2017014993W WO2018189831A1 WO 2018189831 A1 WO2018189831 A1 WO 2018189831A1 JP 2017014993 W JP2017014993 W JP 2017014993W WO 2018189831 A1 WO2018189831 A1 WO 2018189831A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric substrate
waveguide
conductor
layer conductor
multilayer dielectric
Prior art date
Application number
PCT/JP2017/014993
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 田端
剛 羽立
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/014993 priority Critical patent/WO2018189831A1/en
Publication of WO2018189831A1 publication Critical patent/WO2018189831A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints

Definitions

  • the present invention relates to a substrate configuration of an array antenna, and more particularly to a substrate bonding structure when a pair of waveguide structures is realized by facing two dielectric substrates.
  • APAA active phased array antenna
  • APAA active phased array antenna
  • a large number of antenna elements that transmit and receive radio waves are arranged on a panel in a grid pattern.
  • APAA a complicated power supply circuit that electrically or electromagnetically connects an antenna element and a high-frequency integrated circuit is required.
  • a metal waveguide or a resin waveguide has been used for feeding power from an integrated circuit to an antenna element in order to selectively transmit only a specific frequency.
  • a metal waveguide or a resin waveguide for a feeding circuit is provided separately from the control board and antenna panel of the high-frequency circuit, there is a problem that the device is too large and too thick.
  • the apparatus can be thinned by forming the control board of the high-frequency circuit, the antenna panel, and the waveguide of the power feeding circuit with an integral dielectric substrate and providing the waveguide structure in the in-plane direction.
  • the area becomes too large.
  • the problem is that the dielectric substrate is thick and the layer structure is complicated and cannot be manufactured by PWB, the problem that the dielectric substrate is thick and component mounting is not possible, and the problem that the layer structure is complicated and PWB becomes very expensive. there were.
  • the waveguide of the power feeding circuit is divided into two, and the control board, the antenna panel, and the power feeding circuit of the high frequency circuit are constituted by two dielectric substrates, and the two sheets A structure in which a substrate is bonded with a dielectric adhesive has been proposed (see, for example, Patent Document 1).
  • the present invention has been made in order to solve the above-described problems, and to obtain a waveguide bonding structure capable of repeating the bonding / separation of waveguides for the purpose of inspection and replacement. Objective.
  • the waveguide bonding structure includes a first multilayer dielectric substrate having a first waveguide in which a first opening is formed, and a second multilayer in which a second opening is formed.
  • a second multilayer dielectric substrate having a waveguide and disposed opposite to the first multilayer dielectric substrate such that the first opening and the second opening face each other; and the first multilayer A waveguide laminated structure comprising a dielectric insulating film that regulates a gap in a space formed by disposing a dielectric substrate and a second multilayer dielectric substrate oppositely,
  • the first multilayer dielectric substrate is provided on a surface facing the second multilayer dielectric substrate, and a first opening is formed, and a predetermined distance from the end of the first opening is formed.
  • a first surface layer conductor having a notch portion formed in the direction of the tube axis of the first waveguide. In direction orthogonal, in which is disposed further outside of the notch.
  • the present invention there is provided a configuration in which an insulating film formed on a substrate is used instead of an adhesive for adjusting a gap when bonding two waveguides. As a result, it is possible to obtain a waveguide bonding structure in which the waveguide bonding / separation can be repeated for inspection and replacement purposes.
  • FIG. 2 is a top view of the multilayer dielectric substrate in FIG. 1 according to Embodiment 1 of the present invention. It is a disassembled perspective view of each conductor layer shown in FIG. 1 in Embodiment 1 of this invention. It is a figure which shows the application
  • Embodiment 1 of this invention it is board
  • FIG. 1 is a longitudinal sectional view showing a waveguide connection structure according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view of multilayer dielectric substrate 100 in FIG. 1 according to Embodiment 1 of the present invention.
  • the waveguide bonding structure in the first embodiment in which the dielectric waveguides formed by the surface layer conductor, the inner layer conductor, and the conductor via are connected mainly in the stacking direction of the multilayer dielectric substrate is shown in FIGS. 2 will be described in detail.
  • the multilayer dielectric substrate 100 and the multilayer dielectric substrate 200 face each other and are arranged close to each other.
  • the surface layer conductor 1101 is disposed on the surface of the multilayer dielectric substrate 100 on the side where the multilayer dielectric substrate 200 is disposed.
  • the surface layer conductor 1102 is disposed on the surface of the multilayer dielectric substrate 100 opposite to the side on which the multilayer dielectric substrate 200 is disposed.
  • the surface layer conductor 1101 and the surface layer conductor 1201 are not electrically connected.
  • Each of the inner layer conductor 1111, the inner layer conductor 1112, the conductor via 2101, the conductor via 2102a, and the conductor via 2102b is disposed between the surface layer conductor 1101 and the surface layer conductor 1102.
  • a part of the surface layer conductor 1101 is deleted, so that an opening 3101 is provided.
  • the inner layer conductor 1111 is provided with a conductor extraction portion 3111 by removing a part thereof. Furthermore, a part of the inner layer conductor 1112 is deleted, so that a conductor extraction part 3112 is provided.
  • a plurality of conductor vias 2101 are disposed so as to surround the opening 3101 and to penetrate the multilayer dielectric substrate 100, the inner layer conductor 1111, and the inner layer conductor 1112 between the surface layer conductor 1101 and the surface layer conductor 1102. ing.
  • the surface layer conductor 1201 is disposed on the surface of the multilayer dielectric substrate 200 on the side where the multilayer dielectric substrate 100 is disposed.
  • the surface layer conductor 1202 is disposed on the surface of the multilayer dielectric substrate 200 opposite to the side on which the multilayer dielectric substrate 100 is disposed.
  • Each of the inner layer conductor 1211, the inner layer conductor 1212, and the conductor via 2201 is disposed between the surface layer conductor 1201 and the surface layer conductor 1202.
  • the surface conductor 1201 is provided with an opening 3201 by removing a part thereof.
  • the inner layer conductor 1211 is partially removed, so that a conductor extraction portion 3211 is provided.
  • a part of the inner layer conductor 1212 is deleted, so that a conductor extraction part 3212 is provided.
  • a plurality of conductor vias 2201 surround the opening 3201 and are disposed so as to penetrate the multilayer dielectric substrate 200, the inner layer conductor 1211, and the inner layer conductor 1212 between the surface layer conductor 1201 and the surface layer conductor 1202. ing.
  • the dielectric waveguide 9201 in the stacking direction of the multilayer dielectric substrate 200 Is formed.
  • the opening 3101 of the dielectric waveguide 9101 and the opening 3201 of the dielectric waveguide 9201 are arranged to face each other. As a result, the dielectric waveguide 9101 and the dielectric waveguide 9201 are electromagnetically connected.
  • the surface layer conductor 1101 has a notch 4101a and a notch 4101b that are partly removed from the end of the long side of the opening 3101 by ⁇ / 4 ( ⁇ : free space wavelength). Is provided.
  • the notch 4101a and the notch 4101b are opposed to each other with the opening 3101 interposed therebetween.
  • a plurality of conductor vias 2102a are arranged so as to connect the surface layer conductor 1101 and the inner layer conductor 1111.
  • the plurality of conductor vias 2102 a are adjacent to the conductor via 2101 along the edge of the notch 4101 a opposite to the side where the dielectric waveguide 9101 is located. Until it is arranged.
  • a plurality of conductor vias 2102b are arranged so as to connect the surface layer conductor 1101 and the inner layer conductor 1111 as shown in FIG.
  • the plurality of conductor vias 2102 b are adjacent to the conductor via 2101 along the edge opposite to the side where the dielectric waveguide 9101 is located among the edges of the notch 4101 b. Until it is arranged.
  • the gap adjusting insulating film 6101a and the gap adjusting insulating film 6101b are formed on the upper side of the surface layer conductor 1101, that is, on the multilayer dielectric substrate 200 side so as to surround the conductor via 2102a and the conductor via 2102b.
  • the gap adjusting insulating film 6101a and the gap adjusting insulating film 6101b shown in FIG. 1 are illustrated as a single gap adjusting insulating film 6101 in FIG.
  • the insulating film 6101 is formed along the conductor via 2102a and the conductor via 2102b and on the opposite side of the notch 4101a and the notch 4101b with respect to the conductor via 2102a and the conductor via 2102b. Formed in position.
  • the choke path 5101a corresponds to the space from the end of the opening 3101 to the notch 4101a in the space between the surface layer conductor 1101 and the surface layer conductor 1201.
  • the choke path 5101b corresponds to a space from the other end of the opening 3101 to the notch 4101b in a space sandwiched between the surface layer conductor 1101 and the surface layer conductor 1201.
  • the choke path 5102a corresponds to a space surrounded by the conductor via 2102a and the conductor via 2101 in a space sandwiched between the surface layer conductor 1101 and the inner layer conductor 1111.
  • the choke path 5102 b corresponds to a space surrounded by the conductor via 2102 b and the conductor via 2101 in a space sandwiched between the surface layer conductor 1101 and the inner layer conductor 1111.
  • the space between the surface layer conductor 1101 and the surface layer conductor 1201 in the choke path 5101a and the choke path 5101b is regulated by the thicknesses of the insulating film 6101a for adjusting the gap and the insulating film 6101b for adjusting the gap.
  • the dimensions of the choke paths 5101a, 5101b, 5102a, and 5102b affect the function of suppressing leakage of high-frequency signals from the gap between the dielectric waveguide 9101 and the dielectric waveguide 9201.
  • FIG. 3 is an exploded perspective view of each conductor layer shown in FIG. 1 in Embodiment 1 of the present invention.
  • the surface layer conductor 1101 and the inner layer conductor 1111 are electrically connected to each other through a plurality of conductor vias 2102a and a plurality of conductor vias 2102b.
  • the surface layer conductor 1101, the inner layer conductor 1111, the inner layer conductor 1112, and the surface layer conductor 1102 are electrically connected to each other through a plurality of conductor vias 2101, thereby constituting the multilayer dielectric substrate 100.
  • the surface layer conductor 1201, the inner layer conductor 1211, the inner layer conductor 1212, and the surface layer conductor 1202 are electrically connected to each other through a plurality of conductor vias 2201 to constitute the multilayer dielectric substrate 200.
  • the dielectric waveguide 9101 formed in the multilayer dielectric substrate 100 and the dielectric waveguide 9201 formed in the multilayer dielectric substrate 200 are used for gap adjustment. Through the insulating film 6101, electromagnetic connection is made with a desired gap.
  • An example of the gap adjusting insulating film 6101 applied to the first embodiment is a liquid photo solder resist. Therefore, a method for forming a liquid photo solder resist will be specifically described.
  • Liquid photo solder resist is a very common technique that is used as a surface protective film of a substrate and can be manufactured in a normal substrate manufacturing process.
  • 4A to 4E are schematic views showing the formation of the liquid photo solder resist in the substrate manufacturing process according to the first embodiment of the present invention in the order of steps. In FIGS. 4A to 4E, elements such as the conductor pattern and the through hole of the substrate are not shown.
  • FIG. 4A is a diagram showing a coating process of a liquid photo solder resist.
  • a liquid solder resist 6301 is applied to the entire surface of the dielectric substrate 300 that has been stacked up to the previous process and completed to the formation of the conductor pattern using a coating apparatus 7001.
  • coating apparatuses 7001 There are several types of coating apparatuses 7001, and the coating apparatus 7001 shown in FIG. 4A is a spray method. Other types of the coating apparatus 7001 include a curtain method and a screen printing method.
  • FIG. 4B is a diagram showing a drying (semi-cure) process.
  • the liquid solder resist 6302 applied in a planar shape on the surface of the dielectric substrate 300 is dried by hot air 7002 to be semi-cured.
  • it may be performed simultaneously on both surfaces, and may be performed separately for each side.
  • FIG. 4C is a diagram showing an exposure process.
  • the exposure mask 7003 is previously provided with a portion that transmits light and a portion that blocks light. Then, after aligning and overlapping the exposure mask 7003 on the dielectric substrate 300, light such as ultraviolet rays 7004 is irradiated. As a result, the portion of the solder resist 6303 through which light has passed is cured by a chemical change.
  • FIG. 4D is a diagram showing a development process.
  • An alkali developer 7005 is sprayed on the substrate 300 after the exposure process.
  • the portion 6304 cured in the solder resist exposure process is not affected by the alkaline developer 7005.
  • the uncured portion of the solder resist is washed away with an alkali developer 7005. Thereby, it becomes a board
  • FIG. 4E is a diagram showing a post-cure process.
  • hot air 7006 is applied to the substrate 300 after development, the solder resist 6305 is completely cured and becomes chemically stable.
  • the number of conductor layers of each multilayer dielectric substrate exemplified in the first embodiment is four.
  • the number of conductor layers is not limited to four, and the number of inner layer conductors may be three or more.
  • the dielectric waveguide 9101 and the dielectric waveguide 9201 illustrated in the first embodiment are respectively provided between one surface conductor of the multilayer dielectric substrate 100 and the multilayer dielectric substrate 200 and the opposite surface conductor. Is formed.
  • the waveguide structure of the present invention is not limited to this example, and may exist only between the inner layer conductor of the multilayer dielectric substrate 100 and the inner layer conductor of the multilayer dielectric substrate 200.
  • FIG. 5 is a cross-sectional view of the substrate when the waveguide bonding structure according to the present invention is applied to an array antenna in the first embodiment of the present invention.
  • the multilayer dielectric substrate 101 and the multilayer dielectric substrate 201 face each other and are arranged close to each other.
  • a number of dielectric waveguides 9102 according to the present invention are formed on the multilayer dielectric substrate 101, and a number of dielectric waveguides 9202 according to the present invention are formed on the multilayer dielectric substrate 201.
  • the surface layer conductor 1121 is disposed on the surface of the multilayer dielectric substrate 101 on the side where the multilayer dielectric substrate 201 is disposed. Further, the surface layer conductor 1121 is provided with an opening of the dielectric waveguide 9102.
  • the surface layer conductor 1122 is disposed on the surface of the multilayer dielectric substrate 101 opposite to the side on which the multilayer dielectric substrate 201 is disposed. Further, the surface layer conductor 1122 is provided with an antenna element.
  • the inner layer conductor 1131 is composed of a plurality of layers and is relatively on the surface layer conductor 1121 side of the multilayer dielectric substrate 101.
  • the inner layer conductor 1131 is connected to the surface layer conductor 1121 by a conductor via 2111 to form a dielectric waveguide 9102. Further, a part of the inner layer conductor 1131 is connected to the surface layer conductor 1121 by the conductor via 2112a and the conductor via 2112a to form a choke path 5112a and a choke path 5112b.
  • the inner layer conductor 1132 is composed of a plurality of layers and is relatively on the surface layer conductor 1122 side of the multilayer dielectric substrate 101.
  • the inner layer conductor 1132 serves to electrically or electromagnetically connect the dielectric waveguide 9102 and the antenna element provided on the surface layer conductor 1122.
  • the gap adjusting insulating film 6104 which is a feature of the present invention, is formed on the surface conductor 1121 of the multilayer dielectric substrate 101. Further, the insulating film 6104 for adjusting the gap is in contact with the surface conductor 1221 of the multilayer dielectric substrate 201.
  • the surface layer conductor 1221 is disposed on the surface of the multilayer dielectric substrate 201 on the side where the multilayer dielectric substrate 101 is disposed. Further, the surface layer conductor 1221 is provided with an opening of the dielectric waveguide 9202. In addition, an electronic component 8203 of a control circuit or a power supply circuit is soldered to a portion of the surface layer conductor 1221 that does not face the multilayer dielectric substrate 101.
  • the surface layer conductor 1222 is disposed on the surface of the multilayer dielectric substrate 201 opposite to the side on which the multilayer dielectric substrate 101 is disposed. Furthermore, the surface layer conductor 1222 is soldered with an electronic component 8201 of a control circuit or a power supply circuit and an electronic component 8202 of a high-frequency circuit.
  • the inner layer conductor 1231 is composed of a plurality of layers and is relatively on the surface conductor 1221 side of the multilayer dielectric substrate 201.
  • the inner layer conductor 1231 is connected to the surface layer conductor 1221 by the conductor via 2211 to form the dielectric waveguide 9202.
  • the inner layer conductor 1232 is composed of a plurality of layers, is relatively on the surface layer conductor 1222 side of the multilayer dielectric substrate 201, and is electrically soldered to the dielectric waveguide 9102 and the surface layer conductor 1122. 8201 and the electronic component 8202 of the high frequency circuit serve to electrically connect.
  • the solder resist 6211 is formed for the purpose of suppressing a solder bridge when the electronic component 8203 of the control circuit or the power supply circuit is soldered. Specifically, the solder resist 6211 is formed on the surface conductor 1221 of the dielectric substrate 201 in a range that does not face the dielectric substrate 101.
  • the solder resist 6212 is formed for the purpose of suppressing a solder bridge when soldering the electronic component 8201 of the control circuit and the power supply circuit and the electronic component 8202 of the high-frequency circuit. Specifically, the solder resist 6212 is formed on the surface layer conductor 1222 of the dielectric substrate 201.
  • the fixing screw 8204 is provided through the dielectric substrate 101 and the dielectric substrate 201.
  • the fixing screw 8204 has a function of maintaining the alignment of the two substrates in the planar direction and the close contact in the vertical direction.
  • both substrates are fixed with screws, the substrates can be bonded and separated without any special equipment. Therefore, the performance does not change greatly even if the pasting and separation are repeated. For this reason, it is possible to redo the alignment and bonding of the substrates, for example, when a deficiency is found during the inspection. As a result, convenience in handling such as replacement of one of the substrates can be obtained.
  • Embodiment 2 As an example of the structure for adjusting the gap when the waveguides are bonded together, an insulating film provided in a continuous solid surface shape outside the choke structure of the dielectric substrate is used. explained. On the other hand, in the second embodiment, a case will be described in which the same effect is obtained by using a gap adjusting insulating film having a different shape.
  • FIG. 6 is a top view showing an example of the multilayer dielectric substrate 100 according to the second embodiment of the present invention. Specifically, FIG. 6 shows an example in which the gap adjusting insulating film 6102 is divided into a plurality along the outer side of the choke path 5101.
  • FIG. 7 is a top view showing another example of the multilayer dielectric substrate 100 according to Embodiment 2 of the present invention. Specifically, FIG. 7 shows a plurality of surface layer conductors 1101 by providing a plurality of openings while providing the gap adjusting insulating film 6103 along the outside of the choke path 5101 in a continuous solid surface shape. It is an example exposed at a location.
  • the configuration other than the gap adjusting insulating films 6102 and 6103 is the same as the configuration shown in FIG.
  • the gap adjusting insulating films 6102 and 6103 illustrated in the second embodiment are used, the degree of freedom in providing the electrical pattern wiring of the dielectric substrate 100 or providing the structural fixing structure or the like. Will improve. As a result, a waveguide connection structure with better performance can be realized.
  • Embodiment 3 In the first embodiment and the second embodiment, the example in which the gap adjusting insulating film is provided on the surface conductor 1101 of the dielectric substrate 100 having the choke path 5102a and the choke path 5102b has been described. On the other hand, in the third embodiment, a case where a similar effect is obtained by providing an insulating film for gap adjustment at different locations will be described.
  • FIG. 8 is a longitudinal sectional view showing a waveguide connection structure according to Embodiment 3 of the present invention. Compared with the previous FIG. 1, FIG. 8 differs in the formation position of the insulating film 6201 for gap adjustment. Specifically, in FIG. 1, the gap adjusting insulating film 6101 is provided on the surface conductor 1101 of the dielectric substrate 100 having the choke path 5102a and the choke path 5102b.
  • the gap adjusting insulating film 6201 is provided on the surface conductor 1201 of the dielectric substrate 200 having no choke path.
  • Other configurations are the same as those in FIG.
  • the dielectric substrate 100 having the choke path is formed on the surface of the surface layer conductor 1102 in order to obtain good characteristics as an antenna panel. May adopt a structure without a photo solder resist.
  • the dielectric substrate 100 does not require any solder resist process. For this reason, the waveguide bonding structure which concerns on this invention can be manufactured more cheaply and easily.
  • the dielectric substrate 100 does not have any solder resist, there is no configuration in which heat is applied such as a semi-cure process and a post-cure process. As a result, it is difficult for the dielectric substrate 100 to warp, and the gap space between the dielectric substrate 100 and the dielectric substrate 200 can be stably narrowed.
  • the dielectric substrate 200 having no choke path a solder resist is indispensable for soldering electronic components. For this reason, even if the insulating film 6201 for adjusting the gap is provided, the number of steps for manufacturing the substrate does not increase. As a result, the waveguide bonding structure according to the present invention can be manufactured at a lower cost.
  • Embodiment 4 FIG.
  • the first embodiment as a solder resist forming method, the case where a liquid photo solder resist is applied as shown in FIG. 4 has been described.
  • the fourth embodiment a case where the same effect is realized by using another solder resist forming method will be described.
  • a method for forming a dry film type photo solder resist will be described as an example of an insulating film for adjusting a gap.
  • FIGS. 9A to 9D are schematic views showing the formation of the dry film type photo solder resist in the substrate manufacturing according to the fourth embodiment of the present invention in the order of steps.
  • elements such as a conductor pattern and a through hole of the substrate are not shown.
  • FIG. 9A is a diagram showing a process of attaching a dry film type photo solder resist.
  • a dry film type photo solder resist 6311 is attached to the substrate 310 by using a vacuum laminator 7007 as shown in FIG. 9A.
  • the drying (semi-cure) process corresponding to FIG. 4B is not necessary.
  • the exposure process in FIG. 9B, the development process in FIG. 9C, and the post-cure process in FIG. 9D are the same as the exposure process in FIG. 4C, the development process in FIG. 4D, and the post-cure process in FIG.
  • the gap adjusting insulating film manufactured in such a process Even with the gap adjusting insulating film manufactured in such a process, the same effect as that obtained when the liquid photo solder resist described in the first embodiment is used can be obtained. Furthermore, as in the fourth embodiment, the following two additional effects can be obtained by using the step of attaching the rye film type photo solder resist.
  • the dry film type photoresist uses a film formed in advance with a certain film thickness. For this reason, the dry film type photoresist has a smaller variation in the resist film thickness on the substrate and can be kept more constant than the liquid photo solder resist. As a result, the gap variation between the dielectric substrate 100 and the dielectric substrate 200 can be reduced and kept constant, and leakage of high-frequency signals can be further suppressed.
  • the specific dielectric loss tangent of the gap adjusting insulating film is not mentioned, but as an example, by setting the dielectric loss tangent to 0.02 to 0.04, An array antenna having suitable performance can be realized.
  • the specific dielectric constant of the multilayer dielectric substrate is not mentioned, but as an example, the dielectric constant of the multilayer dielectric substrate having the choke structure is changed to the choke structure. By making it smaller than the relative dielectric constant of the multilayer dielectric substrate having no, an array antenna having suitable performance can be realized.
  • Multilayer dielectric substrate 1101, 1102, 1201, 1202 Surface conductor, 1111, 1112, 1211, 1212 Inner layer conductor, 2101, 102a, 2102b, 2201, 2202a, 2202b, 2111, 2112, Conductor vias, 3101, 3201, Openings, 3111, 3112, 3211, 3212 Conductor extraction parts, 4101a, 4101b Notches, 5101a, 5101b, 5102a, 5102b Choke paths, 6101a, 6101b Insulation films for gap adjustment, 9101, 9201 Dielectric Body waveguide.

Abstract

This waveguide laminate structure is configured by being provided with a first multilayer dielectric substrate, a second multilayer dielectric substrate, and a dielectric insulating film that regulates a space that is formed when the substrates are disposed facing each other. The first multilayer dielectric substrate has: a surface layer conductor having a cutout that is formed at a distance from an end section of an opening; an inner layer conductor; a conductor via; and a choke structure formed outside of the opening. The dielectric insulating film is disposed further toward the outside than the choke structure.

Description

導波管貼り合わせ構造Waveguide bonded structure
 本発明は、アレイアンテナの基板構成に関するものであり、特に、2つの誘電体基板を対向させて1組の導波管構造を実現する際の基板貼り合せ構造に関するものである。 The present invention relates to a substrate configuration of an array antenna, and more particularly to a substrate bonding structure when a pair of waveguide structures is realized by facing two dielectric substrates.
 5G基地局(第5世代移動体通信基地局)では、無線通信に使用するアンテナとしてAPAA(アクティブ・フェーズド・アレイ・アンテナ)を用いる方式が有力である。APAAでは、電波を送受信する多数のアンテナ素子がパネルの上に格子状に配置されている。そして、APAAでは、アンテナ素子と高周波の集積回路を電気的あるいは電磁気的につなぐ複雑な給電回路が必要となっている。 In 5G base stations (5th generation mobile communication base stations), a method using an APAA (active phased array antenna) as an antenna used for wireless communication is dominant. In APAA, a large number of antenna elements that transmit and receive radio waves are arranged on a panel in a grid pattern. In APAA, a complicated power supply circuit that electrically or electromagnetically connects an antenna element and a high-frequency integrated circuit is required.
 集積回路からアンテナ素子への給電には、特定の周波数だけを選択的に伝送するために、従来から金属導波管や樹脂導波管が用いられてきた。しかしながら、高周波回路の制御基板およびアンテナパネルと別に、給電回路用の金属導波管や樹脂導波管を設けると、装置が大きく、厚くなりすぎるという課題があった。 Conventionally, a metal waveguide or a resin waveguide has been used for feeding power from an integrated circuit to an antenna element in order to selectively transmit only a specific frequency. However, when a metal waveguide or a resin waveguide for a feeding circuit is provided separately from the control board and antenna panel of the high-frequency circuit, there is a problem that the device is too large and too thick.
 高周波回路の制御基板、アンテナパネル、および給電回路の導波管を、一体の誘電体基板で構成し、導波管構造を面内方向に設けることで、装置を薄型化することができる。しかしながら、この場合には、面積が大きくなりすぎるという課題があった。 The apparatus can be thinned by forming the control board of the high-frequency circuit, the antenna panel, and the waveguide of the power feeding circuit with an integral dielectric substrate and providing the waveguide structure in the in-plane direction. However, in this case, there is a problem that the area becomes too large.
 また、誘電体基板が厚く、層構成が複雑でPWB製造できないという課題、誘電体基板が厚くて部品実装ができないという課題、および層構成が複雑でPWBが非常に高価なものになるという課題があった。 In addition, the problem is that the dielectric substrate is thick and the layer structure is complicated and cannot be manufactured by PWB, the problem that the dielectric substrate is thick and component mounting is not possible, and the problem that the layer structure is complicated and PWB becomes very expensive. there were.
 以上の課題を解決する方法として、給電回路の導波管を2つに分けて、高周波回路の制御基板、アンテナパネル、給電回路を、2枚の誘電体基板で構成して、その2枚の基板を誘電体接着剤で貼り合せる構造が提案されている(例えば、特許文献1参照)。 As a method for solving the above problems, the waveguide of the power feeding circuit is divided into two, and the control board, the antenna panel, and the power feeding circuit of the high frequency circuit are constituted by two dielectric substrates, and the two sheets A structure in which a substrate is bonded with a dielectric adhesive has been proposed (see, for example, Patent Document 1).
特開2011-40804号公報JP 2011-40804 A
 しかしながら、従来技術には、以下のような課題がある。
 2枚の基板を誘電体接着剤で貼り合せる構造は、貼り合せのやり直しが不可能である。このため、この構造は、アレイアンテナのように多数の導波管同士の接続には、適さないという課題があった。
However, the prior art has the following problems.
The structure in which two substrates are bonded together with a dielectric adhesive cannot be re-bonded. For this reason, there is a problem that this structure is not suitable for connecting a large number of waveguides like an array antenna.
 本発明は、前記のような課題を解決するためになされたものであり、検査や交換の目的で導波管の貼り合せ/分離を繰り返すことが可能な導波管貼り合わせ構造を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and to obtain a waveguide bonding structure capable of repeating the bonding / separation of waveguides for the purpose of inspection and replacement. Objective.
 本発明に係る導波管貼り合わせ構造は、第1の開口部が形成された第1の導波管を有する第1の多層誘電体基板と、第2の開口部が形成された第2の導波管を有し、第1の開口部と第2の開口部とが互いに対向するように第1の多層誘電体基板に対向配置された第2の多層誘電体基板と、第1の多層誘電体基板と第2の多層誘電体基板とが対向配置されることで形成される空間の隙間を規制する誘電体絶縁膜とを備えて構成された導波管貼り合わせ構造であって、第1の多層誘電体基板は、第2の多層誘電体基板と対向する面に設けられ、第1の開口部が形成されるとともに、第1の開口部の端部からあらかじめ決められた距離を隔てて形成された切り欠き部を有する第1の表層導体とを有し、誘電体絶縁膜は、第1の導波管の管軸方向に直交する方向において、切り欠き部のさらに外側に配置されるものである。 The waveguide bonding structure according to the present invention includes a first multilayer dielectric substrate having a first waveguide in which a first opening is formed, and a second multilayer in which a second opening is formed. A second multilayer dielectric substrate having a waveguide and disposed opposite to the first multilayer dielectric substrate such that the first opening and the second opening face each other; and the first multilayer A waveguide laminated structure comprising a dielectric insulating film that regulates a gap in a space formed by disposing a dielectric substrate and a second multilayer dielectric substrate oppositely, The first multilayer dielectric substrate is provided on a surface facing the second multilayer dielectric substrate, and a first opening is formed, and a predetermined distance from the end of the first opening is formed. A first surface layer conductor having a notch portion formed in the direction of the tube axis of the first waveguide. In direction orthogonal, in which is disposed further outside of the notch.
 本発明によれば、2つの導波管を貼り合せる際の隙間調整に、接着剤ではなく、基板上に形成された絶縁膜を用いる構成を備えている。この結果、検査や交換の目的で導波管の貼り合せ/分離を繰り返すことが可能な導波管貼り合わせ構造を得ることができる。 According to the present invention, there is provided a configuration in which an insulating film formed on a substrate is used instead of an adhesive for adjusting a gap when bonding two waveguides. As a result, it is possible to obtain a waveguide bonding structure in which the waveguide bonding / separation can be repeated for inspection and replacement purposes.
本発明の実施の形態1に係る導波管の接続構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection structure of the waveguide which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における図1中の多層誘電体基板の上面図である。FIG. 2 is a top view of the multilayer dielectric substrate in FIG. 1 according to Embodiment 1 of the present invention. 本発明の実施の形態1における図1に示した各導体層の分解斜視図である。It is a disassembled perspective view of each conductor layer shown in FIG. 1 in Embodiment 1 of this invention. 本発明の実施の形態1の基板製造における液状フォトソルダレジスト形成を、工程順に示した模式図のうち、液状フォトソルダレジストの塗布工程を示す図である。It is a figure which shows the application | coating process of a liquid photo solder resist among the schematic diagrams which showed the liquid photo solder resist formation in the board | substrate manufacture of Embodiment 1 of this invention in process order. 本発明の実施の形態1の基板製造における液状フォトソルダレジスト形成を、工程順に示した模式図のうち、乾燥(セミキュア)工程を示す図である。It is a figure which shows a drying (semi-cure) process among the schematic diagrams which showed liquid photo solder resist formation in the board | substrate manufacture of Embodiment 1 of this invention in process order. 本発明の実施の形態1の基板製造における液状フォトソルダレジスト形成を、工程順に示した模式図のうち、露光工程を示す図である。It is a figure which shows an exposure process among the schematic diagrams which showed the liquid photo solder resist formation in the board | substrate manufacture of Embodiment 1 of this invention in order of the process. 本発明の実施の形態1の基板製造における液状フォトソルダレジスト形成を、工程順に示した模式図のうち、現像工程を示す図である。It is a figure which shows a image development process among the schematic diagrams which showed liquid photo solder resist formation in the board | substrate manufacture of Embodiment 1 of this invention in process order. 本発明の実施の形態1の基板製造における液状フォトソルダレジスト形成を、工程順に示した模式図のうち、ポストキュア工程を示す図である。It is a figure which shows a post-cure process among the schematic diagrams which showed liquid photo solder resist formation in the board | substrate manufacture of Embodiment 1 of this invention in process order. 本発明の実施の形態1において、本発明に係る導波管貼り合わせ構造をアレイアンテナに適用した際の基板断面図である。In Embodiment 1 of this invention, it is board | substrate sectional drawing at the time of applying the waveguide bonding structure concerning this invention to an array antenna. 本発明の実施の形態2における多層誘電体基板の一例を示した上面図である。It is the top view which showed an example of the multilayer dielectric substrate in Embodiment 2 of this invention. 本発明の実施の形態2における多層誘電体基板の別の一例を示した上面図である。It is the top view which showed another example of the multilayer dielectric substrate in Embodiment 2 of this invention. 本発明の実施の形態3に係る導波管の接続構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection structure of the waveguide which concerns on Embodiment 3 of this invention. 本発明の実施の形態4の基板製造におけるドライフィルム型フォトソルダレジスト形成を、工程順に示した模式図のうち、ドライフィルム型フォトソルダレジストの貼り付け工程を示す図である。It is a figure which shows the sticking process of a dry film type photo solder resist among the schematic diagrams which showed the dry film type photo solder resist formation in the board | substrate manufacture of Embodiment 4 of this invention in order of a process. 本発明の実施の形態4の基板製造におけるドライフィルム型フォトソルダレジスト形成を、工程順に示した模式図のうち、露光工程を示す図である。It is a figure which shows an exposure process among the schematic diagrams which showed the dry film type photo solder resist formation in the board | substrate manufacture of Embodiment 4 of this invention in order of a process. 本発明の実施の形態4の基板製造におけるドライフィルム型フォトソルダレジスト形成を、工程順に示した模式図のうち、現像工程を示す図である。It is a figure which shows a image development process among the schematic diagrams which showed dry film type photo solder resist formation in the board | substrate manufacture of Embodiment 4 of this invention in order of a process. 本発明の実施の形態4の基板製造におけるドライフィルム型フォトソルダレジスト形成を、工程順に示した模式図のうち、ポストキュア工程を示す図である。It is a figure which shows a post-cure process among the schematic diagrams which showed the dry film type photo solder resist formation in the board | substrate manufacture of Embodiment 4 of this invention in order of the process.
 以下、本発明の導波管貼り合わせ構造の好適な実施の形態につき、図面を用いて説明する。 Hereinafter, preferred embodiments of the waveguide bonding structure of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1は、本発明の実施の形態1に係る導波管の接続構造を示す縦断面図である。また、図2は、本発明の実施の形態1における図1中の多層誘電体基板100の上面図である。主に多層誘電体基板の積層方向に表層導体と内層導体と導体ビアとから形成した誘電体導波管同士を接続する本実施の形態1における導波管貼り合わせ構造について、これら図1、図2を用いて詳細に説明する。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing a waveguide connection structure according to Embodiment 1 of the present invention. FIG. 2 is a top view of multilayer dielectric substrate 100 in FIG. 1 according to Embodiment 1 of the present invention. The waveguide bonding structure in the first embodiment in which the dielectric waveguides formed by the surface layer conductor, the inner layer conductor, and the conductor via are connected mainly in the stacking direction of the multilayer dielectric substrate is shown in FIGS. 2 will be described in detail.
[全体構成について]
 まず始めに、全体構成について説明する。図1において、多層誘電体基板100と多層誘電体基板200とは、相対向し、近接して配置されている。表層導体1101は、多層誘電体基板100における、多層誘電体基板200が配置された側の面に配置されている。
[Overall configuration]
First, the overall configuration will be described. In FIG. 1, the multilayer dielectric substrate 100 and the multilayer dielectric substrate 200 face each other and are arranged close to each other. The surface layer conductor 1101 is disposed on the surface of the multilayer dielectric substrate 100 on the side where the multilayer dielectric substrate 200 is disposed.
 一方、表層導体1102は、多層誘電体基板100における、多層誘電体基板200が配置された側と反対の面に配置されている。表層導体1101と表層導体1201は、電気的に接続していない。 On the other hand, the surface layer conductor 1102 is disposed on the surface of the multilayer dielectric substrate 100 opposite to the side on which the multilayer dielectric substrate 200 is disposed. The surface layer conductor 1101 and the surface layer conductor 1201 are not electrically connected.
 内層導体1111、内層導体1112、導体ビア2101、導体ビア2102a、導体ビア2102bのそれぞれは、表層導体1101と表層導体1102との間に配置されている。 Each of the inner layer conductor 1111, the inner layer conductor 1112, the conductor via 2101, the conductor via 2102a, and the conductor via 2102b is disposed between the surface layer conductor 1101 and the surface layer conductor 1102.
 表層導体1101は、その一部が削除されることで、開口3101が設けられている。また、内層導体1111は、その一部が削除されることで、導体抜き部3111が設けられている。さらに、内層導体1112は、その一部が削除されることで、導体抜き部3112が設けられている。 A part of the surface layer conductor 1101 is deleted, so that an opening 3101 is provided. Moreover, the inner layer conductor 1111 is provided with a conductor extraction portion 3111 by removing a part thereof. Furthermore, a part of the inner layer conductor 1112 is deleted, so that a conductor extraction part 3112 is provided.
 導体ビア2101は、開口3101を取り囲むとともに、表層導体1101から表層導体1102までの間にある多層誘電体基板100と、内層導体1111と、内層導体1112と、を貫くようにして、複数個配置されている。 A plurality of conductor vias 2101 are disposed so as to surround the opening 3101 and to penetrate the multilayer dielectric substrate 100, the inner layer conductor 1111, and the inner layer conductor 1112 between the surface layer conductor 1101 and the surface layer conductor 1102. ing.
 表層導体1101、表層導体1102、内層導体1111、内層導体1112、導体ビア2101、開口3101、導体抜き部3111、および導体抜き部3112から、多層誘電体基板100の積層方向に誘電体導波管9101が形成されている。 Dielectric waveguide 9101 in the stacking direction of multilayer dielectric substrate 100 from surface layer conductor 1101, surface layer conductor 1102, inner layer conductor 1111, inner layer conductor 1112, conductor via 2101, opening 3101, conductor extraction portion 3111, and conductor extraction portion 3112 Is formed.
 次に、表層導体1201は、多層誘電体基板200における、多層誘電体基板100が配置された側の面に配置されている。一方、表層導体1202は、多層誘電体基板200における、多層誘電体基板100が配置された側と反対の面に配置されている。 Next, the surface layer conductor 1201 is disposed on the surface of the multilayer dielectric substrate 200 on the side where the multilayer dielectric substrate 100 is disposed. On the other hand, the surface layer conductor 1202 is disposed on the surface of the multilayer dielectric substrate 200 opposite to the side on which the multilayer dielectric substrate 100 is disposed.
 内層導体1211、内層導体1212、導体ビア2201のそれぞれは、表層導体1201と表層導体1202との間に配置されている。 Each of the inner layer conductor 1211, the inner layer conductor 1212, and the conductor via 2201 is disposed between the surface layer conductor 1201 and the surface layer conductor 1202.
 表層導体1201は、その一部が削除されることで、開口3201が設けられている。また、内層導体1211は、その一部が削除されることで、導体抜き部3211が設けられている。さらに、内層導体1212は、その一部が削除されることで、導体抜き部3212が設けられている。  The surface conductor 1201 is provided with an opening 3201 by removing a part thereof. In addition, the inner layer conductor 1211 is partially removed, so that a conductor extraction portion 3211 is provided. Furthermore, a part of the inner layer conductor 1212 is deleted, so that a conductor extraction part 3212 is provided. *
 導体ビア2201は、開口3201を取り囲むとともに、表層導体1201から表層導体1202までの間にある多層誘電体基板200と、内層導体1211と、内層導体1212と、を貫くようにして、複数個配置されている。 A plurality of conductor vias 2201 surround the opening 3201 and are disposed so as to penetrate the multilayer dielectric substrate 200, the inner layer conductor 1211, and the inner layer conductor 1212 between the surface layer conductor 1201 and the surface layer conductor 1202. ing.
 表層導体1201、表層導体1202、内層導体1211、内層導体1212、導体ビア2201、開口3201、導体抜き部3211、および導体抜き部3212から、多層誘電体基板200の積層方向に誘電体導波管9201が形成されている。 From the surface layer conductor 1201, the surface layer conductor 1202, the inner layer conductor 1211, the inner layer conductor 1212, the conductor via 2201, the opening 3201, the conductor extraction portion 3211, and the conductor extraction portion 3212, the dielectric waveguide 9201 in the stacking direction of the multilayer dielectric substrate 200. Is formed.
 誘電体導波管9101の開口3101と、誘電体導波管9201の開口3201とは、相対向して配置されている。この結果、誘電体導波管9101と誘電体導波管9201とは、電磁気的に接続される。 The opening 3101 of the dielectric waveguide 9101 and the opening 3201 of the dielectric waveguide 9201 are arranged to face each other. As a result, the dielectric waveguide 9101 and the dielectric waveguide 9201 are electromagnetically connected.
 図2に示すように、表層導体1101は、開口3101における長辺の端部からλ/4(λ:自由空間波長)離れた位置の一部が削除されて、切り欠き4101a、切り欠き4101bが設けられている。ここで、切り欠き4101aと切り欠き4101bとは、開口3101を挟んで対向している。 As shown in FIG. 2, the surface layer conductor 1101 has a notch 4101a and a notch 4101b that are partly removed from the end of the long side of the opening 3101 by λ / 4 (λ: free space wavelength). Is provided. Here, the notch 4101a and the notch 4101b are opposed to each other with the opening 3101 interposed therebetween.
 導体ビア2102aは、図1に示すように、表層導体1101と内層導体1111とを接続するようにして、複数個配置されている。ここで、複数個の導体ビア2102aは、図2に示すように、切り欠き4101aの縁のうち、誘電体導波管9101が位置する側とは反対側の縁に沿って、導体ビア2101近傍まで、配置されている。 As shown in FIG. 1, a plurality of conductor vias 2102a are arranged so as to connect the surface layer conductor 1101 and the inner layer conductor 1111. Here, as shown in FIG. 2, the plurality of conductor vias 2102 a are adjacent to the conductor via 2101 along the edge of the notch 4101 a opposite to the side where the dielectric waveguide 9101 is located. Until it is arranged.
 同様に、導体ビア2102bは、図1に示すように、表層導体1101と内層導体1111とを接続するようにして、複数個配置されている。ここで、複数個の導体ビア2102bは、図2に示すように、切り欠き4101bの縁のうち、誘電体導波管9101が位置する側とは反対側の縁に沿って、導体ビア2101近傍まで、配置されている。 Similarly, a plurality of conductor vias 2102b are arranged so as to connect the surface layer conductor 1101 and the inner layer conductor 1111 as shown in FIG. Here, as shown in FIG. 2, the plurality of conductor vias 2102 b are adjacent to the conductor via 2101 along the edge opposite to the side where the dielectric waveguide 9101 is located among the edges of the notch 4101 b. Until it is arranged.
 隙間調整用の絶縁膜6101aおよび隙間調整用の絶縁膜6101bは、表層導体1101の上側、すなわち、多層誘電体基板200側に、導体ビア2102aおよび導体ビア2102bを取り囲むように形成されている。図1中に示した隙間調整用の絶縁膜6101aおよび隙間調整用の絶縁膜6101bは、図2では、1つにつながった隙間調整用の絶縁膜6101として図示されている。 The gap adjusting insulating film 6101a and the gap adjusting insulating film 6101b are formed on the upper side of the surface layer conductor 1101, that is, on the multilayer dielectric substrate 200 side so as to surround the conductor via 2102a and the conductor via 2102b. The gap adjusting insulating film 6101a and the gap adjusting insulating film 6101b shown in FIG. 1 are illustrated as a single gap adjusting insulating film 6101 in FIG.
 なお、絶縁膜6101は、図2に示すように、導体ビア2102aおよび導体ビア2102bに沿って、かつ、導体ビア2102aおよび導体ビア2102bに対して、切り欠き4101aおよび切り欠き4101bとは反対側の位置に形成されている。 As shown in FIG. 2, the insulating film 6101 is formed along the conductor via 2102a and the conductor via 2102b and on the opposite side of the notch 4101a and the notch 4101b with respect to the conductor via 2102a and the conductor via 2102b. Formed in position.
[チョーク路の働き、および隙間調整用の絶縁膜の働きについて]
 チョーク路5101aは、表層導体1101と表層導体1201で挟まれた空間における、開口3101の端部から切り欠き4101aまでの空間に相当する。同様に、チョーク路5101bは、表層導体1101と表層導体1201で挟まれた空間における、開口3101のもう一方の端部から切り欠き4101bまでの空間に相当する。
[About choke path function and insulating film for gap adjustment]
The choke path 5101a corresponds to the space from the end of the opening 3101 to the notch 4101a in the space between the surface layer conductor 1101 and the surface layer conductor 1201. Similarly, the choke path 5101b corresponds to a space from the other end of the opening 3101 to the notch 4101b in a space sandwiched between the surface layer conductor 1101 and the surface layer conductor 1201.
 また、チョーク路5102aは、表層導体1101と内層導体1111とで挟まれた空間における、導体ビア2102aと導体ビア2101とで囲まれた空間に相当する。同様に、チョーク路5102bは、表層導体1101と内層導体1111とで挟まれた空間における、導体ビア2102bと導体ビア2101とで囲まれた空間に相当する。 Further, the choke path 5102a corresponds to a space surrounded by the conductor via 2102a and the conductor via 2101 in a space sandwiched between the surface layer conductor 1101 and the inner layer conductor 1111. Similarly, the choke path 5102 b corresponds to a space surrounded by the conductor via 2102 b and the conductor via 2101 in a space sandwiched between the surface layer conductor 1101 and the inner layer conductor 1111.
 チョーク路5101aおよびチョーク路5101bにおける、表層導体1101と表層導体1201とで挟まれた空間の隙間は、隙間調整用の絶縁膜6101aおよび隙間調整用の絶縁膜6101bの厚さで規制される。 The space between the surface layer conductor 1101 and the surface layer conductor 1201 in the choke path 5101a and the choke path 5101b is regulated by the thicknesses of the insulating film 6101a for adjusting the gap and the insulating film 6101b for adjusting the gap.
 チョーク路5101a、5101b、5102a、5102bの各寸法は、誘電体導波管9101と誘電体導波管9201との隙間から、高周波信号の漏れ出しを抑制する働きに影響を与える。 The dimensions of the choke paths 5101a, 5101b, 5102a, and 5102b affect the function of suppressing leakage of high-frequency signals from the gap between the dielectric waveguide 9101 and the dielectric waveguide 9201.
 図3は、本発明の実施の形態1における図1に示した各導体層の分解斜視図である。図3の分解斜視図に示すように、表層導体1101と内層導体1111とは、複数の導体ビア2102aおよび複数の導体ビア2102bで互いに電気的に接続されている。また、表層導体1101、内層導体1111、内層導体1112、表層導体1102は、複数の導体ビア2101で互いに電気的に接続され、多層誘電体基板100を構成している。 FIG. 3 is an exploded perspective view of each conductor layer shown in FIG. 1 in Embodiment 1 of the present invention. As shown in the exploded perspective view of FIG. 3, the surface layer conductor 1101 and the inner layer conductor 1111 are electrically connected to each other through a plurality of conductor vias 2102a and a plurality of conductor vias 2102b. Further, the surface layer conductor 1101, the inner layer conductor 1111, the inner layer conductor 1112, and the surface layer conductor 1102 are electrically connected to each other through a plurality of conductor vias 2101, thereby constituting the multilayer dielectric substrate 100.
 さらに、表層導体1201、内層導体1211、内層導体1212、表層導体1202は、複数の導体ビア2201で互いに電気的に接続され、多層誘電体基板200を構成している。そして、図1に示したように、多層誘電体基板100内に形成された誘電体導波管9101と、多層誘電体基板200内に形成された誘電体導波管9201とは、隙間調整用の絶縁膜6101を介して、所望のギャップで電磁気的に接続されることとなる。 Further, the surface layer conductor 1201, the inner layer conductor 1211, the inner layer conductor 1212, and the surface layer conductor 1202 are electrically connected to each other through a plurality of conductor vias 2201 to constitute the multilayer dielectric substrate 200. As shown in FIG. 1, the dielectric waveguide 9101 formed in the multilayer dielectric substrate 100 and the dielectric waveguide 9201 formed in the multilayer dielectric substrate 200 are used for gap adjustment. Through the insulating film 6101, electromagnetic connection is made with a desired gap.
[隙間調整用の絶縁膜の形成方法について]
 本実施の形態1に適用される隙間調整用の絶縁膜6101の一例として、液状フォトソルダレジストが挙げられる。そこで、液状フォトソルダレジストの形成方法について、具体的に説明する。
[Method for forming insulating film for gap adjustment]
An example of the gap adjusting insulating film 6101 applied to the first embodiment is a liquid photo solder resist. Therefore, a method for forming a liquid photo solder resist will be specifically described.
 液状フォトソルダレジストは、基板の表面保護膜として使用され、通常の基板製造工程で製造可能な、ごく一般的な手法である。図4A~図4Eは、本発明の実施の形態1の基板製造における液状フォトソルダレジスト形成を、工程順に示した模式図である。なお、これら図4A~図4Eにおいては、基板の導体パターンやスルーホールといった要素は、図示を省略している。 Liquid photo solder resist is a very common technique that is used as a surface protective film of a substrate and can be manufactured in a normal substrate manufacturing process. 4A to 4E are schematic views showing the formation of the liquid photo solder resist in the substrate manufacturing process according to the first embodiment of the present invention in the order of steps. In FIGS. 4A to 4E, elements such as the conductor pattern and the through hole of the substrate are not shown.
 図4Aは、液状フォトソルダレジストの塗布工程を示す図である。前工程までで積層、導体パターン形成まで完了した誘電体基板300の全面に、塗布装置7001を用いて液状ソルダレジスト6301が塗布される。 FIG. 4A is a diagram showing a coating process of a liquid photo solder resist. A liquid solder resist 6301 is applied to the entire surface of the dielectric substrate 300 that has been stacked up to the previous process and completed to the formation of the conductor pattern using a coating apparatus 7001.
 塗布装置7001は、いくつかの種類があり、図4Aに示した塗布装置7001は、スプレー方式である。塗布装置7001のその他の種類としては、カーテン方式、スクリーン印刷方式などが挙げられる。 There are several types of coating apparatuses 7001, and the coating apparatus 7001 shown in FIG. 4A is a spray method. Other types of the coating apparatus 7001 include a curtain method and a screen printing method.
 図4Bは、乾燥(セミキュア)工程を示す図である。誘電体基板300の表面に面状に塗布された液状ソルダレジスト6302を、熱風7002により乾燥させることで、半硬化させる。なお、図4A、図4Bの各工程では、両面同時に行われる場合もあれば、片面ずつ個別に行われる場合もある。 FIG. 4B is a diagram showing a drying (semi-cure) process. The liquid solder resist 6302 applied in a planar shape on the surface of the dielectric substrate 300 is dried by hot air 7002 to be semi-cured. In addition, in each process of FIG. 4A and FIG. 4B, it may be performed simultaneously on both surfaces, and may be performed separately for each side.
 図4Cは、露光工程を示す図である。露光マスク7003には、光を透過する箇所と遮断する箇所があらかじめ設けている。そして、誘電体基板300に対して露光マスク7003を位置合わせして重ねた後に、紫外線7004などの光を照射する。この結果、光が透過した部分のソルダレジスト6303は、化学変化が生じて硬化する。 FIG. 4C is a diagram showing an exposure process. The exposure mask 7003 is previously provided with a portion that transmits light and a portion that blocks light. Then, after aligning and overlapping the exposure mask 7003 on the dielectric substrate 300, light such as ultraviolet rays 7004 is irradiated. As a result, the portion of the solder resist 6303 through which light has passed is cured by a chemical change.
 図4Dは、現像工程を示す図である。露光工程を終えた基板300に対してアルカリ現像液7005を吹きかける。この場合、ソルダレジストの露光工程で硬化した箇所6304は、アルカリ現像液7005の影響を受けない。その一方で、ソルダレジストの未硬化の箇所は、アルカリ現像液7005で洗い流される。これにより、露光工程で光の当たった箇所のみ、ソルダレジストが残った基板となる。 FIG. 4D is a diagram showing a development process. An alkali developer 7005 is sprayed on the substrate 300 after the exposure process. In this case, the portion 6304 cured in the solder resist exposure process is not affected by the alkaline developer 7005. On the other hand, the uncured portion of the solder resist is washed away with an alkali developer 7005. Thereby, it becomes a board | substrate with which the soldering resist remained only in the location which light hits in the exposure process.
 図4Eは、ポストキュア工程を示す図である。現像を終えた基板300に熱風7006を当てると、ソルダレジスト6305が完全硬化し、化学的に安定となる。 FIG. 4E is a diagram showing a post-cure process. When hot air 7006 is applied to the substrate 300 after development, the solder resist 6305 is completely cured and becomes chemically stable.
 図1および図3に示したように、本実施の形態1で例示した、各々の多層誘電体基板の導体層数は、4層であった。しかしながら、導体層数は、4層に限られたものではなく、内層導体の数は、3以上存在しても良い。 As shown in FIGS. 1 and 3, the number of conductor layers of each multilayer dielectric substrate exemplified in the first embodiment is four. However, the number of conductor layers is not limited to four, and the number of inner layer conductors may be three or more.
 また、本実施の形態1で例示した誘電体導波管9101と誘電体導波管9201は、それぞれ多層誘電体基板100、多層誘電体基板200の一方の表層導体から反対の表層導体までを間を貫通して形成されている。しかしながら、本発明の導波管構造は、この例に限られたものではなく、多層誘電体基板100の内層導体から、多層誘電体基板200の内層導体までの間だけに存在しても良い。 In addition, the dielectric waveguide 9101 and the dielectric waveguide 9201 illustrated in the first embodiment are respectively provided between one surface conductor of the multilayer dielectric substrate 100 and the multilayer dielectric substrate 200 and the opposite surface conductor. Is formed. However, the waveguide structure of the present invention is not limited to this example, and may exist only between the inner layer conductor of the multilayer dielectric substrate 100 and the inner layer conductor of the multilayer dielectric substrate 200.
[アレイアンテナに用いる場合の全体像の概要について]
 次に、本発明をアレイアンテナに適用する場合の例を示す。図5は、本発明の実施の形態1において、本発明に係る導波管貼り合わせ構造をアレイアンテナに適用した際の基板断面図である。
[Overview of overall picture when used for array antenna]
Next, an example in which the present invention is applied to an array antenna will be described. FIG. 5 is a cross-sectional view of the substrate when the waveguide bonding structure according to the present invention is applied to an array antenna in the first embodiment of the present invention.
 図5において、多層誘電体基板101と多層誘電体基板201とは、相対向し、近接して配置されている。多層誘電体基板101には、本発明に係る誘電体導波管9102が多数形成され、多層誘電体基板201には、本発明に係る誘電体導波管9202が多数形成されている。 In FIG. 5, the multilayer dielectric substrate 101 and the multilayer dielectric substrate 201 face each other and are arranged close to each other. A number of dielectric waveguides 9102 according to the present invention are formed on the multilayer dielectric substrate 101, and a number of dielectric waveguides 9202 according to the present invention are formed on the multilayer dielectric substrate 201.
 表層導体1121は、多層誘電体基板101における、多層誘電体基板201が配置された側の面に配置されている。さらに、表層導体1121は、誘電体導波管9102の開口部が設けられている。 The surface layer conductor 1121 is disposed on the surface of the multilayer dielectric substrate 101 on the side where the multilayer dielectric substrate 201 is disposed. Further, the surface layer conductor 1121 is provided with an opening of the dielectric waveguide 9102.
 一方、表層導体1122は、多層誘電体基板101における、多層誘電体基板201が配置された側と反対の面に配置されている。さらに、表層導体1122は、アンテナ素子が設けられている。 On the other hand, the surface layer conductor 1122 is disposed on the surface of the multilayer dielectric substrate 101 opposite to the side on which the multilayer dielectric substrate 201 is disposed. Further, the surface layer conductor 1122 is provided with an antenna element.
 内層導体1131は、複数層からなり、多層誘電体基板101の比較的、表層導体1121側にある。そして、内層導体1131は、導体ビア2111によって表層導体1121と繋がり、誘電体導波管9102を形成する。さらに、内層導体1131は、その一部が、導体ビア2112a、導体ビア2112aによって表層導体1121と繋がり、チョーク路5112a、チョーク路5112bを形成する。 The inner layer conductor 1131 is composed of a plurality of layers and is relatively on the surface layer conductor 1121 side of the multilayer dielectric substrate 101. The inner layer conductor 1131 is connected to the surface layer conductor 1121 by a conductor via 2111 to form a dielectric waveguide 9102. Further, a part of the inner layer conductor 1131 is connected to the surface layer conductor 1121 by the conductor via 2112a and the conductor via 2112a to form a choke path 5112a and a choke path 5112b.
 内層導体1132は、複数層からなり、多層誘電体基板101の比較的、表層導体1122側にある。そして、内層導体1132は、誘電体導波管9102と表層導体1122に設けられたアンテナ素子との間を、電気的または電磁気的に繋ぐ役割を果たす。 The inner layer conductor 1132 is composed of a plurality of layers and is relatively on the surface layer conductor 1122 side of the multilayer dielectric substrate 101. The inner layer conductor 1132 serves to electrically or electromagnetically connect the dielectric waveguide 9102 and the antenna element provided on the surface layer conductor 1122.
 本発明の特徴である隙間調整用の絶縁膜6104は、多層誘電体基板101の表層導体1121の上に形成されている。さらに、隙間調整用の絶縁膜6104は、多層誘電体基板201の表層導体1221と接している。 The gap adjusting insulating film 6104, which is a feature of the present invention, is formed on the surface conductor 1121 of the multilayer dielectric substrate 101. Further, the insulating film 6104 for adjusting the gap is in contact with the surface conductor 1221 of the multilayer dielectric substrate 201.
 表層導体1221は、多層誘電体基板201における、多層誘電体基板101が配置された側の面に配置されている。さらに、表層導体1221は、誘電体導波管9202の開口部が設けられている。また、表層導体1221のうち、多層誘電体基板101と対抗していない部分には、制御回路や電源回路の電子部品8203が、はんだ付けされている。 The surface layer conductor 1221 is disposed on the surface of the multilayer dielectric substrate 201 on the side where the multilayer dielectric substrate 101 is disposed. Further, the surface layer conductor 1221 is provided with an opening of the dielectric waveguide 9202. In addition, an electronic component 8203 of a control circuit or a power supply circuit is soldered to a portion of the surface layer conductor 1221 that does not face the multilayer dielectric substrate 101.
 一方、表層導体1222は、多層誘電体基板201における、多層誘電体基板101が配置された側と反対の面に配置されている。さらに、表層導体1222は、制御回路や電源回路の電子部品8201や、高周波回路の電子部品8202が、はんだ付けされている。 On the other hand, the surface layer conductor 1222 is disposed on the surface of the multilayer dielectric substrate 201 opposite to the side on which the multilayer dielectric substrate 101 is disposed. Furthermore, the surface layer conductor 1222 is soldered with an electronic component 8201 of a control circuit or a power supply circuit and an electronic component 8202 of a high-frequency circuit.
 内層導体1231は、複数層からなり、多層誘電体基板201の比較的、表層導体1221側にある。そして、内層導体1231は、導体ビア2211によって表層導体1221と繋がり、誘電体導波管9202を形成する。 The inner layer conductor 1231 is composed of a plurality of layers and is relatively on the surface conductor 1221 side of the multilayer dielectric substrate 201. The inner layer conductor 1231 is connected to the surface layer conductor 1221 by the conductor via 2211 to form the dielectric waveguide 9202.
 内層導体1232は、複数層からなり、多層誘電体基板201の比較的、表層導体1222側にあり、誘電体導波管9102と、表層導体1122にはんだ付けされた制御回路や電源回路の電子部品8201や高周波回路の電子部品8202との間を、電気的に繋ぐ役割を果たす。 The inner layer conductor 1232 is composed of a plurality of layers, is relatively on the surface layer conductor 1222 side of the multilayer dielectric substrate 201, and is electrically soldered to the dielectric waveguide 9102 and the surface layer conductor 1122. 8201 and the electronic component 8202 of the high frequency circuit serve to electrically connect.
 ソルダレジスト6211は、制御回路や電源回路の電子部品8203をはんだ付けする際の、はんだブリッジ抑制などの目的で形成される。具体的には、このソルダレジスト6211は、誘電体基板201の表層導体1221上の、誘電体基板101と対抗しない範囲に形成されている。 The solder resist 6211 is formed for the purpose of suppressing a solder bridge when the electronic component 8203 of the control circuit or the power supply circuit is soldered. Specifically, the solder resist 6211 is formed on the surface conductor 1221 of the dielectric substrate 201 in a range that does not face the dielectric substrate 101.
 一方、ソルダレジスト6212は、制御回路や電源回路の電子部品8201や高周波回路の電子部品8202をはんだ付けする際のはんだブリッジ抑制などの目的で形成される。具体的には、このソルダレジスト6212は、誘電体基板201の表層導体1222上に形成されている。 On the other hand, the solder resist 6212 is formed for the purpose of suppressing a solder bridge when soldering the electronic component 8201 of the control circuit and the power supply circuit and the electronic component 8202 of the high-frequency circuit. Specifically, the solder resist 6212 is formed on the surface layer conductor 1222 of the dielectric substrate 201.
 固定ネジ8204は、誘電体基板101と誘電体基板201とを貫通して設けられている。そして、固定ネジ8204は、両基板の平面方向の位置合わせと、垂直方向の密着とを維持する働きがある。 The fixing screw 8204 is provided through the dielectric substrate 101 and the dielectric substrate 201. The fixing screw 8204 has a function of maintaining the alignment of the two substrates in the planar direction and the close contact in the vertical direction.
 また、両基板の固定は、ネジで行われているため、特殊な設備が無くても、基板の貼り合せや分離が可能である。従って、貼り合せや分離を繰り返しても、性能が大きく変化しない。このため、途中の検査で不備が発見された場合など、基板の位置合わせや貼り合せをやり直すことが可能である。この結果、どちらか一方の基板の交換などといった取扱い上の利便性を得ることができる。 Also, since both substrates are fixed with screws, the substrates can be bonded and separated without any special equipment. Therefore, the performance does not change greatly even if the pasting and separation are repeated. For this reason, it is possible to redo the alignment and bonding of the substrates, for example, when a deficiency is found during the inspection. As a result, convenience in handling such as replacement of one of the substrates can be obtained.
 実施の形態2.
 先の実施の形態1では、導波管を貼り合せする際の隙間調整用の構造として、誘電体基板のチョーク構造の外側に一つながりのベタ面状に設けられた絶縁膜を用いた例について説明した。これに対して、本実施の形態2では、異なる形状の隙間調整用の絶縁膜を用いて、同様の効果を得る場合について説明する。
Embodiment 2. FIG.
In the first embodiment, as an example of the structure for adjusting the gap when the waveguides are bonded together, an insulating film provided in a continuous solid surface shape outside the choke structure of the dielectric substrate is used. explained. On the other hand, in the second embodiment, a case will be described in which the same effect is obtained by using a gap adjusting insulating film having a different shape.
 図6は、本発明の実施の形態2における多層誘電体基板100の一例を示した上面図である。具体的には、この図6は、隙間調整用の絶縁膜6102を、チョーク路5101の外側に沿って、複数に分けて形成した一例を示している。 FIG. 6 is a top view showing an example of the multilayer dielectric substrate 100 according to the second embodiment of the present invention. Specifically, FIG. 6 shows an example in which the gap adjusting insulating film 6102 is divided into a plurality along the outer side of the choke path 5101.
 また、図7は、本発明の実施の形態2における多層誘電体基板100の別の一例を示した上面図である。具体的には、この図7は、隙間調整用の絶縁膜6103を、チョーク路5101の外側に沿って、一つながりのベタ面状に設けつつ、複数の開口を設けて、表層導体1101を複数個所で露出させた一例である。隙間調整用の絶縁膜6102、6103以外の構成は、先の図2に示した構成と共通であり、説明を省略する。 FIG. 7 is a top view showing another example of the multilayer dielectric substrate 100 according to Embodiment 2 of the present invention. Specifically, FIG. 7 shows a plurality of surface layer conductors 1101 by providing a plurality of openings while providing the gap adjusting insulating film 6103 along the outside of the choke path 5101 in a continuous solid surface shape. It is an example exposed at a location. The configuration other than the gap adjusting insulating films 6102 and 6103 is the same as the configuration shown in FIG.
 このように、図6や図7の形状を有する隙間調整用の絶縁膜6102、6103を用いた場合にも、先の図2における隙間調整用の絶縁膜6101を」用いた場合と同様の効果を得ことができる。 As described above, even when the gap adjusting insulating films 6102 and 6103 having the shapes shown in FIGS. 6 and 7 are used, the same effect as the case of using the gap adjusting insulating film 6101 in FIG. Can be obtained.
 さらに、本実施の形態2で例示した隙間調整用の絶縁膜6102、6103を用いると、誘電体基板100の電気的なパターン配線を設ける際、あるいは構造的な固定構造などを設ける際の自由度が向上する。この結果、より性能の良い導波管接続構造を実現することができる。 Furthermore, when the gap adjusting insulating films 6102 and 6103 illustrated in the second embodiment are used, the degree of freedom in providing the electrical pattern wiring of the dielectric substrate 100 or providing the structural fixing structure or the like. Will improve. As a result, a waveguide connection structure with better performance can be realized.
 実施の形態3.
 先の実施の形態1および実施の形態2では、隙間調整用の絶縁膜をチョーク路5102aおよびチョーク路5102bを有する誘電体基板100の表層導体1101上に設けた例を示した。これに対して、本実施の形態3では、異なる場所に隙間調整用の絶縁膜を設けて、同様の効果を得る場合について説明する。
Embodiment 3 FIG.
In the first embodiment and the second embodiment, the example in which the gap adjusting insulating film is provided on the surface conductor 1101 of the dielectric substrate 100 having the choke path 5102a and the choke path 5102b has been described. On the other hand, in the third embodiment, a case where a similar effect is obtained by providing an insulating film for gap adjustment at different locations will be described.
 図8は、本発明の実施の形態3に係る導波管の接続構造を示す縦断面図である。先の図1と比較すると、図8は、隙間調整用の絶縁膜6201の形成位置が異なっている。具体的には、図1では、隙間調整用の絶縁膜6101を、チョーク路5102aおよびチョーク路5102bを有する誘電体基板100の表層導体1101上に設けていた。 FIG. 8 is a longitudinal sectional view showing a waveguide connection structure according to Embodiment 3 of the present invention. Compared with the previous FIG. 1, FIG. 8 differs in the formation position of the insulating film 6201 for gap adjustment. Specifically, in FIG. 1, the gap adjusting insulating film 6101 is provided on the surface conductor 1101 of the dielectric substrate 100 having the choke path 5102a and the choke path 5102b.
 これに対して、図8では、隙間調整用の絶縁膜6201が、チョーク路を有さない誘電体基板200の表層導体1201上に設けられている。その他の構成については、図1と共通のため、説明を省略する。 On the other hand, in FIG. 8, the gap adjusting insulating film 6201 is provided on the surface conductor 1201 of the dielectric substrate 200 having no choke path. Other configurations are the same as those in FIG.
 隙間調整用の絶縁膜6201をチョーク路を有さない誘電体基板200側に設けた本実施の形態3の構造の利点について、説明する。フォトソルダレジストの形成工程においては、先の図4A~図4Eで説明したように、各面を一括で露光、現像する。 The advantages of the structure of the third embodiment in which the insulating film 6201 for adjusting the gap is provided on the dielectric substrate 200 side having no choke path will be described. In the photo solder resist forming process, as described in FIGS. 4A to 4E, each surface is exposed and developed at once.
 ここで、先の図5のようなアレイアンテナに本発明の構造を用いる場合には、チョーク路を有する誘電体基板100は、アンテナパネルとして良好な特性を得るために、表層導体1102の表面にはフォトソルダレジストを設けない構造を採用する場合がある。 Here, when the structure of the present invention is used for the array antenna as shown in FIG. 5, the dielectric substrate 100 having the choke path is formed on the surface of the surface layer conductor 1102 in order to obtain good characteristics as an antenna panel. May adopt a structure without a photo solder resist.
 その場合、表層導体1101上に絶縁膜を設けなければ、誘電体基板100は、ソルダレジスト工程が全て不要となる。このため、より安価に容易に、本発明に係る導波管貼り合わせ構造を製造できる。 In that case, if an insulating film is not provided on the surface layer conductor 1101, the dielectric substrate 100 does not require any solder resist process. For this reason, the waveguide bonding structure which concerns on this invention can be manufactured more cheaply and easily.
 また、誘電体基板100は、ソルダレジストが一切ないことから、セミキュア工程、ポストキュア工程といった熱が加わる構成が無い。この結果、誘電体基板100がそりにくくなり、誘電体基板100と誘電体基板200との間の隙間空間を、安定して狭くすることができる。 Further, since the dielectric substrate 100 does not have any solder resist, there is no configuration in which heat is applied such as a semi-cure process and a post-cure process. As a result, it is difficult for the dielectric substrate 100 to warp, and the gap space between the dielectric substrate 100 and the dielectric substrate 200 can be stably narrowed.
 一方で、チョーク路を有さない誘電体基板200は、電子部品をはんだ付けするには、もとよりソルダレジストが不可欠である。このため、隙間調整用の絶縁膜6201を設けても、基板製造の工程は増えない。この結果、本発明に係る導波管貼り合わせ構造を、より安価に製造することができる。 On the other hand, for the dielectric substrate 200 having no choke path, a solder resist is indispensable for soldering electronic components. For this reason, even if the insulating film 6201 for adjusting the gap is provided, the number of steps for manufacturing the substrate does not increase. As a result, the waveguide bonding structure according to the present invention can be manufactured at a lower cost.
 実施の形態4.
 先の実施の形態1では、ソルダレジストの形成方法として、図4に示したように、液状フォトソルダレジストを塗布する場合について説明した。これに対して、本実施の形態4では、他のソルダレジストの形成方法を用いて、同様の効果を実現する場合について説明する。
Embodiment 4 FIG.
In the first embodiment, as a solder resist forming method, the case where a liquid photo solder resist is applied as shown in FIG. 4 has been described. On the other hand, in the fourth embodiment, a case where the same effect is realized by using another solder resist forming method will be described.
 本実施の形態4では、隙間調整用の絶縁膜の一例として、ドライフィルム型フォトソルダレジストの形成方法について説明する。 In the fourth embodiment, a method for forming a dry film type photo solder resist will be described as an example of an insulating film for adjusting a gap.
 図9A~図9Dは、本発明の実施の形態4の基板製造におけるドライフィルム型フォトソルダレジスト形成を、工程順に示した模式図である。なお、これら図9A~図9Dにおいては、先の図4A~図4Eと同様に、基板の導体パターンやスルーホールといった要素は、図示を省略している。 FIGS. 9A to 9D are schematic views showing the formation of the dry film type photo solder resist in the substrate manufacturing according to the fourth embodiment of the present invention in the order of steps. In FIGS. 9A to 9D, as in FIGS. 4A to 4E, elements such as a conductor pattern and a through hole of the substrate are not shown.
 図9Aは、ドライフィルム型フォトソルダレジストの貼り付け工程を示す図である。図9Aに示すような真空ラミネーター7007を用いて、基板310にドライフィルム型フォトソルダレジスト6311を貼り付ける。 FIG. 9A is a diagram showing a process of attaching a dry film type photo solder resist. A dry film type photo solder resist 6311 is attached to the substrate 310 by using a vacuum laminator 7007 as shown in FIG. 9A.
 液状フォトソルダレジストの場合と異なり、図4Bに該当するような乾燥(セミキュア)の工程は不要となる。図9Bの露光工程、図9Cの現像工程、図9Dのポストキュア工程に関しては、それぞれ図4Cの露光工程、図4Dの現像工程、図4Eのポストキュア工程と共通のため、説明を省略する。 Unlike the case of the liquid photo solder resist, the drying (semi-cure) process corresponding to FIG. 4B is not necessary. The exposure process in FIG. 9B, the development process in FIG. 9C, and the post-cure process in FIG. 9D are the same as the exposure process in FIG. 4C, the development process in FIG. 4D, and the post-cure process in FIG.
 このような工程で製造された隙間調整用の絶縁膜でも、先の実施の形態1で説明した液状フォトソルダレジストを用いる場合と同様の効果を得ることができる。さらに、本実施の形態4のように、ライフィルム型フォトソルダレジストの貼り付け工程を用いることで、次の2つの追加効果が得られる。 Even with the gap adjusting insulating film manufactured in such a process, the same effect as that obtained when the liquid photo solder resist described in the first embodiment is used can be obtained. Furthermore, as in the fourth embodiment, the following two additional effects can be obtained by using the step of attaching the rye film type photo solder resist.
 ドライフィルム型フォトレジストは、あらかじめ一定の膜厚に形成されたフィルムを用いる。このため、ドライフィルム型フォトレジストは、液状フォトソルダレジストと比べて、基板上のレジスト膜厚のばらつきを小さく、より一定に保つことができる。この結果、誘電体基板100と誘電体基板200との間の隙間ばらつきを小さく、より一定に保つことが可能となり、高周波信号の漏れ出しをさらに抑制することができる。 The dry film type photoresist uses a film formed in advance with a certain film thickness. For this reason, the dry film type photoresist has a smaller variation in the resist film thickness on the substrate and can be kept more constant than the liquid photo solder resist. As a result, the gap variation between the dielectric substrate 100 and the dielectric substrate 200 can be reduced and kept constant, and leakage of high-frequency signals can be further suppressed.
 また、ドライフィルム型フォトレジストを採用する場合には、液状フォトソルダレジストを採用する場合と比べて、セミキュア工程を無くすことができる。この結果、基板に熱が加わる工程が少なく、基板の反りが発生しづらくなるため、隙間抑制効果がさらに向上し、より性能のよい導波管接続構造を実現することができる。 Also, when a dry film type photoresist is employed, a semi-cure process can be eliminated as compared with the case where a liquid photo solder resist is employed. As a result, the number of steps in which heat is applied to the substrate is small, and it is difficult for the substrate to be warped. Therefore, the gap suppressing effect is further improved, and a waveguide connection structure with better performance can be realized.
 また、上述した実施の形態1~4では、隙間調整用の絶縁膜の具体的な誘電正接までは言及していないが、一例として、誘電正接を0.02~0.04とすることで、適した性能を有するアレイアンテナ等を実現できる。 In the first to fourth embodiments described above, the specific dielectric loss tangent of the gap adjusting insulating film is not mentioned, but as an example, by setting the dielectric loss tangent to 0.02 to 0.04, An array antenna having suitable performance can be realized.
 また、上述した実施の形態1~4では、多層誘電体基板の具体的な比誘電率までは言及していないが、一例として、チョーク構造を有する多層誘電体基板の比誘電率を、チョーク構造を有さない多層誘電体基板の比誘電率より小さくすることで、適した性能を有するアレイアンテナ等を実現できる。 In the first to fourth embodiments described above, the specific dielectric constant of the multilayer dielectric substrate is not mentioned, but as an example, the dielectric constant of the multilayer dielectric substrate having the choke structure is changed to the choke structure. By making it smaller than the relative dielectric constant of the multilayer dielectric substrate having no, an array antenna having suitable performance can be realized.
 100、101、200、201、300、310 多層誘電体基板、1101、1102、1201、1202 表層導体、1111、1112、1211、1212 内層導体、2101,2102a,2102b,2201,2202a,2202b、2111、2112 導体ビア、3101、3201 開口、3111,3112,3211,3212 導体抜き部、4101a,4101b 切り欠き、5101a,5101b,5102a,5102b チョーク路、6101a、6101b 隙間調整用の絶縁膜、9101,9201 誘電体導波管。 100, 101, 200, 201, 300, 310 Multilayer dielectric substrate, 1101, 1102, 1201, 1202 Surface conductor, 1111, 1112, 1211, 1212 Inner layer conductor, 2101, 102a, 2102b, 2201, 2202a, 2202b, 2111, 2112, Conductor vias, 3101, 3201, Openings, 3111, 3112, 3211, 3212 Conductor extraction parts, 4101a, 4101b Notches, 5101a, 5101b, 5102a, 5102b Choke paths, 6101a, 6101b Insulation films for gap adjustment, 9101, 9201 Dielectric Body waveguide.

Claims (11)

  1.  第1の開口部が形成された第1の導波管を有する第1の多層誘電体基板と、
     第2の開口部が形成された第2の導波管を有し、前記第1の開口部と前記第2の開口部とが互いに対向するように前記第1の多層誘電体基板に対向配置された第2の多層誘電体基板と、
     前記第1の多層誘電体基板と前記第2の多層誘電体基板とが対向配置されることで形成される空間の隙間を規制する誘電体絶縁膜と
     を備えて構成された導波管貼り合わせ構造であって、
     前記第1の多層誘電体基板は、
      前記第2の多層誘電体基板と対向する面に設けられ、前記第1の開口部が形成されるとともに、前記第1の開口部の端部からあらかじめ決められた距離を隔てて形成された切り欠き部を有する第1の表層導体と
     を有し、
     前記誘電体絶縁膜は、前記第1の導波管の管軸方向に直交する方向において、前記切り欠き部のさらに外側に配置される
     導波管貼り合わせ構造。
    A first multilayer dielectric substrate having a first waveguide formed with a first opening;
    A second waveguide having a second opening formed therein, and disposed opposite to the first multilayer dielectric substrate such that the first opening and the second opening are opposed to each other; A second multilayer dielectric substrate,
    Waveguide bonding comprising: a dielectric insulating film that regulates a gap in a space formed by arranging the first multilayer dielectric substrate and the second multilayer dielectric substrate to face each other Structure,
    The first multilayer dielectric substrate comprises:
    A cut formed on a surface facing the second multilayer dielectric substrate, the first opening is formed, and a predetermined distance is formed from an end of the first opening. A first surface layer conductor having a notch, and
    The dielectric insulating film is disposed further outside the notch in a direction orthogonal to the tube axis direction of the first waveguide.
  2.  前記第1の多層誘電体基板は、
      前記第1の表層導体の下層に配置された第1の内層導体と、
      前記第1の開口部を取り囲むように配置され、前記第1の表層導体と前記第1の内層導体を電気的に接続する導体ビアと、
     前記管軸方向に直交する方向の前記第1の開口部の外側において、前記切り欠き部を有する第1の表層導体と、前記第1の内層導体と、前記導体ビアとで構成されるチョーク構造と
     をさらに有する請求項1に記載の導波管貼り合わせ構造。
    The first multilayer dielectric substrate comprises:
    A first inner layer conductor disposed below the first surface layer conductor;
    A conductor via that is disposed to surround the first opening and electrically connects the first surface layer conductor and the first inner layer conductor;
    A choke structure composed of a first surface layer conductor having the cutout portion, the first inner layer conductor, and the conductor via outside the first opening in a direction perpendicular to the tube axis direction. The waveguide bonding structure according to claim 1, further comprising:
  3.  前記誘電体絶縁膜は、前記チョーク構造を有する前記第1の多層誘電体基板と一体で形成される
     請求項2に記載の導波管貼り合わせ構造。
    The waveguide bonded structure according to claim 2, wherein the dielectric insulating film is formed integrally with the first multilayer dielectric substrate having the choke structure.
  4.  前記誘電体絶縁膜は、前記チョーク構造を有さない前記第2の多層誘電体基板と一体で形成される
     請求項2に記載の導波管貼り合わせ構造。
    The waveguide bonded structure according to claim 2, wherein the dielectric insulating film is formed integrally with the second multilayer dielectric substrate not having the choke structure.
  5.  前記誘電体絶縁膜は、前記チョーク構造を取り囲むように一つながりで形成される
     請求項2から4のいずれか1項に記載の導波管貼り合わせ構造。
    5. The waveguide bonding structure according to claim 2, wherein the dielectric insulating film is formed so as to surround the choke structure. 6.
  6.  前記誘電体絶縁膜は、前記チョーク構造を取り囲むように複数に分けて形成される
     請求項2から4のいずれか1項に記載の導波管貼り合わせ構造。
    5. The waveguide bonding structure according to claim 2, wherein the dielectric insulating film is divided into a plurality of parts so as to surround the choke structure. 6.
  7.  前記チョーク構造を有さない前記第2の多層誘電体基板には、電子部品が実装されている
     請求項2から6のいずれか1項に記載の導波管貼り合わせ構造。
    The waveguide bonding structure according to any one of claims 2 to 6, wherein an electronic component is mounted on the second multilayer dielectric substrate that does not have the choke structure.
  8.  前記チョーク構造を有する前記第1の多層誘電体基板は、前記第1の表層導体と反対側の面にアンテナ素子が形成されている
     請求項2から7のいずれか1項に記載の導波管貼り合わせ構造。
    The waveguide according to any one of claims 2 to 7, wherein the first multilayer dielectric substrate having the choke structure has an antenna element formed on a surface opposite to the first surface conductor. Bonding structure.
  9.  前記チョーク構造を有する基板の比誘電率が、チョーク構造を有さない基板の比誘電率より小さい
     請求項2から8のいずれか1項に記載の導波管貼り合わせ構造。
    The waveguide bonding structure according to any one of claims 2 to 8, wherein a relative dielectric constant of the substrate having the choke structure is smaller than that of a substrate not having the choke structure.
  10.  前記第1の多層誘電体基板と前記第2の多層誘電体基板とは、前記誘電体絶縁膜を介した隙間が維持され、ネジで固定されている
     請求項1から9のいずれか1項に記載の導波管貼り合わせ構造。
    The gap between the first multilayer dielectric substrate and the second multilayer dielectric substrate is maintained via a dielectric insulating film and fixed with screws. The waveguide bonded structure as described.
  11.  前記誘電体絶縁膜は、誘電正接が0.02~0.04である
     請求項1から10のいずれか1項に記載の導波管貼り合わせ構造。
    The waveguide bonded structure according to any one of claims 1 to 10, wherein the dielectric insulating film has a dielectric loss tangent of 0.02 to 0.04.
PCT/JP2017/014993 2017-04-12 2017-04-12 Waveguide laminate structure WO2018189831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014993 WO2018189831A1 (en) 2017-04-12 2017-04-12 Waveguide laminate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014993 WO2018189831A1 (en) 2017-04-12 2017-04-12 Waveguide laminate structure

Publications (1)

Publication Number Publication Date
WO2018189831A1 true WO2018189831A1 (en) 2018-10-18

Family

ID=63793641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014993 WO2018189831A1 (en) 2017-04-12 2017-04-12 Waveguide laminate structure

Country Status (1)

Country Link
WO (1) WO2018189831A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845659A (en) * 1994-08-04 1996-02-16 Toshiba Corp Waveguide tube switcher for high frequency heating device
JP2012238948A (en) * 2011-05-10 2012-12-06 Nec Corp Waveguide connection structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845659A (en) * 1994-08-04 1996-02-16 Toshiba Corp Waveguide tube switcher for high frequency heating device
JP2012238948A (en) * 2011-05-10 2012-12-06 Nec Corp Waveguide connection structure

Similar Documents

Publication Publication Date Title
US6841738B2 (en) Printed wiring board having rigid portion and flexible portion, and method of fabricating the board
WO2019210825A1 (en) Liquid crystal antenna and preparation method therefor, and electronic device
US8256106B2 (en) Method for fabricating circuit board structure with capacitors embedded therein
US9525200B2 (en) Multi-layer substrate and method of manufacturing multi-layer substrate
US10051740B2 (en) Wiring substrate and method for manufacturing same
TWI599288B (en) Flexible circuit board and method for making the same
JPH08125342A (en) Flexible multilayered wiring board and its manufacture
US9101084B2 (en) Method of fabricating PCB board and PCB board
CA2574211A1 (en) Improved multi-layer integrated rf/if circuit board
JP2002111226A (en) Composite multilayer board and module using it
JP4363947B2 (en) Multilayer wiring circuit board and method for manufacturing the same
WO2018189831A1 (en) Waveguide laminate structure
US6515236B2 (en) Printed wiring board and manufacturing method of the printed wiring board
US8664738B2 (en) Solid-state imaging apparatus having a translucent member
US11246214B2 (en) Resin multilayer board
TW201946513A (en) Interposer and printed circuit board having the same
JP6278850B2 (en) Waveguide connection structure and manufacturing method thereof
TWI811648B (en) Antenna structure and method of forming the same
CN217405406U (en) Multilayer substrate
JP2020088197A (en) Resin multilayer substrate and electronic apparatus
JP2003234231A (en) Method of manufacturing laminated electronic component
TWI777540B (en) Antenna modle, method for manufacturing the same, and terminal
CN110401005B (en) Packaged antenna, preparation method thereof and mobile communication terminal
KR100567094B1 (en) PCB having the embedded capacitor and manufacturing method thereof
JP2023521154A (en) ANTENNA MODULE, ANTENNA MODULE MANUFACTURING METHOD, AND ELECTRONIC DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP