WO2018188321A1 - Method for enhancing battery state estimation robustness - Google Patents

Method for enhancing battery state estimation robustness Download PDF

Info

Publication number
WO2018188321A1
WO2018188321A1 PCT/CN2017/108286 CN2017108286W WO2018188321A1 WO 2018188321 A1 WO2018188321 A1 WO 2018188321A1 CN 2017108286 W CN2017108286 W CN 2017108286W WO 2018188321 A1 WO2018188321 A1 WO 2018188321A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
estimation
model
mathematical model
Prior art date
Application number
PCT/CN2017/108286
Other languages
French (fr)
Chinese (zh)
Inventor
冯代伟
黄平江
李永强
Original Assignee
绵阳世睿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绵阳世睿科技有限公司 filed Critical 绵阳世睿科技有限公司
Publication of WO2018188321A1 publication Critical patent/WO2018188321A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • the invention belongs to the technical field of batteries, and in particular relates to a method for enhancing the robustness of battery state estimation.
  • the battery management system collects the temperature, voltage, current and other parameters of the battery in real time, and based on the preset algorithm, avoids overcharging and overdischarging of the battery.
  • the state of the battery is estimated to be at the heart of the battery management system. Its accurate estimation on the one hand improves the ease of use of the system at the user level, the driver can drive and maintain the car body within a reasonable time range; on the other hand, on the internal level of the battery, it can avoid possible permanent damage to the battery. Extends the service life of lithium-ion battery.
  • the battery state estimation is originally expected to be performed by measuring the voltage of the battery, because the state of charge of the battery has a monotonous correspondence with its open circuit voltage.
  • the accuracy of estimating the state of the battery by voltage is very high. Low, it is difficult to meet the practical needs. For this reason, estimating the battery state by modeling the battery and combining the voltage and current signals of the battery is currently the main method for improving the accuracy of BMS estimation.
  • the method of battery state estimation can be divided into model-based and non-model-based methods from a model-based perspective.
  • a typical non-model-based approach is the chrono-integration method.
  • the types of models in the model-based approach include electrochemical models, neural network models, empirical formula models, and circuit models.
  • the circuit model has received a lot of attention because it can reflect the polarization dynamic characteristics of the battery to a certain extent, and the related battery state estimation methods are basically concentrated.
  • the Kalman filter method and its deformation method In the expansion of the Kalman filter method and its deformation method.
  • model-based battery state estimation methods have estimated bias due to model bias.
  • model deviation is large due to the influence of temperature and charge and discharge depth, the accuracy of the battery state is significantly reduced.
  • the noise of the actual working conditions is also difficult to accurately model, and the battery state estimation will also have obvious adverse effects.
  • the present invention proposes a method for enhancing the robustness of battery state estimation, aiming to overcome the shortcomings of existing methods for model deviation and system noise, even in the presence of model deviation and system noise.
  • the battery state can be estimated with high accuracy, and the robustness of the estimation can be improved.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a method for enhancing the robustness of battery state estimation, comprising the following steps:
  • Step 1 Establish a mathematical model of the battery according to the characteristics of the battery
  • Step 2 Adjust the battery mathematical model by adding redundant state variables
  • Step 3 Perform online estimation of all state variables in the adjusted battery mathematical model by using the system state estimation method.
  • the positive effect of the present invention is that the present invention adds one or several system state variables having physical meaning or no physical meaning to the battery model.
  • the mathematical model equation of the battery should be changed, and the accuracy of the battery state estimation, the convergence rate of the estimated deviation, and the parameter adaptability of the estimation algorithm can be effectively improved in the presence of model deviation and system noise.
  • the present invention achieves a good estimation effect, and the effectiveness of the method of the present invention is verified by tests.
  • Figure 1 shows the battery equivalent circuit model
  • Figure 2 shows the robustness of the robust enhancement to model bias.
  • Figure 3 shows the fault tolerance of robust enhancements to estimate state deviations.
  • Figure 4 shows the effect of robust enhancement on the parameter fit of the estimation method.
  • a method for enhancing battery state estimation robustness includes the following steps:
  • Step 1 Establish a mathematical model of the battery:
  • x k+1 f(x k ,u k , ⁇ )+w k
  • Step 2 Add redundant state variables to the battery mathematical model and adjust the battery mathematical model accordingly:
  • the s in the equation is the augmented state variable, and the battery model is adjusted accordingly as follows:
  • Step 3 Perform online estimation of all state variables in the adjusted battery mathematical model by using the system state estimation method:
  • m k is the measured value of the battery output at the sampling instant k
  • L k is the feedback gain of the estimation method used.
  • the battery model of the present invention is not limited to any form, and may be a battery equivalent circuit model, an electrochemical model, or the like.
  • the redundant state variable added to the battery model of the present invention does not limit the number of redundant state variables, and may be one or more, and does not limit the physical meaning of the redundant variable, and may be a variable having a specific physical meaning, It can be a variable without specific physical meaning.
  • the system state estimation method adopted by the present invention does not limit any type of estimation method, and may be Kalman estimation, H ⁇ estimation, sliding mode estimation, and the like.
  • the method of the invention is also not limited to what type of battery.
  • a method for enhancing battery state estimation robustness established by the present invention in conjunction with FIG. 1 includes the following steps:
  • Step 1 Model the battery using an equivalent circuit model and establish a mathematical model of the battery
  • Figure 1 shows a typical battery equivalent circuit model, including the Open Circuit Voltage (OCV) controlled by the State of Charge (SoC), which is OCV (SoC); describes the battery equivalent The internal resistance R 0 , which describes the second-order RC model of the electrochemical polarization and concentration polarization of the battery, namely R 1 C 1 and R 2 C 2 .
  • OCV Open Circuit Voltage
  • R 0 which describes the second-order RC model of the electrochemical polarization and concentration polarization of the battery, namely R 1 C 1 and R 2 C 2 .
  • w k is the process noise (ie current measurement noise)
  • v k is the voltage measurement noise
  • y k is the system output, which is the port voltage of the circuit shown in Figure 1 calculated using the system state.
  • Cap is the battery capacity
  • ⁇ 1 R 1 C 1
  • ⁇ 2 R 2 C 2
  • ⁇ t is the system sampling period.
  • Step 2 increase the redundant state variables of the mathematical model, and adjust the battery mathematical model accordingly, as follows:
  • the battery SoC is the integral of the current I, and the measured value of I contains the bias current I b which affects the accuracy of the SoC estimation, and is augmented as the state of the system, and is estimated online, the circuit model
  • the system state variable is taken as:
  • a a , B a and F a in equations (8) and (9) are:
  • Step 3 At each sampling instant, use the H ⁇ observer to estimate the battery status, as follows:

Abstract

A method for enhancing the battery state estimation robustness, comprising the following steps: step 1, establishing a battery mathematical model according to the battery characteristics; step 2, adjusting the battery mathematical model by adding a redundant state variable; and step 3, using a system state estimation method to perform online estimation on all of the state variables in the adjusted battery mathematical model. In the event that there are model deviation and system noise, by adding one or more system state variables with or without physical meaning to the battery model, and accordingly changing the battery mathematical model equation, the method can effectively improve the battery state estimation accuracy, accelerate the convergence rate of the estimation deviation, and enhance the parameter adaptability of the estimation algorithm. The method achieves a good estimation effect, and the effectiveness of the method is verified by testing.

Description

一种增强电池状态估计鲁棒性的方法Method for enhancing battery state estimation robustness 技术领域Technical field
本发明属于电池技术领域,具体涉及一种增强电池状态估计鲁棒性的方法。The invention belongs to the technical field of batteries, and in particular relates to a method for enhancing the robustness of battery state estimation.
背景技术Background technique
电池管理系统对电池的温度、电压、电流等参数进行实时的采集,并基于预设的算法,避免电池的过充、过放。电池的状态估计是电池管理系统的核心内容。其准确估计一方面在用户层面提高了系统的易用性,汽车驾驶员可以在合理的时间范围内驾驶、保养车体;另一方面在电池内部层面,它可避免电池可能的永久性伤害,延长了锂离子动力电池的使用寿命。The battery management system collects the temperature, voltage, current and other parameters of the battery in real time, and based on the preset algorithm, avoids overcharging and overdischarging of the battery. The state of the battery is estimated to be at the heart of the battery management system. Its accurate estimation on the one hand improves the ease of use of the system at the user level, the driver can drive and maintain the car body within a reasonable time range; on the other hand, on the internal level of the battery, it can avoid possible permanent damage to the battery. Extends the service life of lithium-ion battery.
电池状态估计最初是希望通过测量电池的电压来进行,因为电池的荷电状态与其开路电压有单调性的对应关系,然而由于电池极化动态等复杂特性的存在使得以电压估计电池状态的精度很低,难以满足实用性需求。为此,通过对电池进行建模并结合电池的电压和电流信号来估计电池状态是目前提高BMS估计精度的主要方法。The battery state estimation is originally expected to be performed by measuring the voltage of the battery, because the state of charge of the battery has a monotonous correspondence with its open circuit voltage. However, due to the complex characteristics of battery polarization dynamics, the accuracy of estimating the state of the battery by voltage is very high. Low, it is difficult to meet the practical needs. For this reason, estimating the battery state by modeling the battery and combining the voltage and current signals of the battery is currently the main method for improving the accuracy of BMS estimation.
电池状态估计的方法从是否基于模型的角度讲,可分基于模型和非基于模型的方法。典型的非基于模型的方法是安时积分法,基于模型的方法中模型的类型包括电化学模型、神经网络模型、经验公式模型和电路模型。其中电路模型因能够一定程度上体现了电池的极化动态特性受到的关注较多,与其相关的电池状态估计方法基本上都集中 在拓展卡尔曼滤波方法和其变形方法上。The method of battery state estimation can be divided into model-based and non-model-based methods from a model-based perspective. A typical non-model-based approach is the chrono-integration method. The types of models in the model-based approach include electrochemical models, neural network models, empirical formula models, and circuit models. Among them, the circuit model has received a lot of attention because it can reflect the polarization dynamic characteristics of the battery to a certain extent, and the related battery state estimation methods are basically concentrated. In the expansion of the Kalman filter method and its deformation method.
鉴于电池特性的高度复杂性,任何电池模型都难以精确描述电池的特性,因为基于模型的电池状态估计方法,会因模型偏差而存在估计偏差。当受温度、充放电深度影响导致模型偏差较大时,电池状态的精度会明显降低。再者实际工况的噪声也难以精确建模,对电池状态估计也会带来明显的不利影响。鉴于此,需要找到一种强鲁棒性的电池状态估计方法,使得在即使存在模型偏差和噪声的情况下,也具有较高的估计精度。Given the high complexity of battery characteristics, it is difficult for any battery model to accurately characterize the battery because model-based battery state estimation methods have estimated bias due to model bias. When the model deviation is large due to the influence of temperature and charge and discharge depth, the accuracy of the battery state is significantly reduced. Moreover, the noise of the actual working conditions is also difficult to accurately model, and the battery state estimation will also have obvious adverse effects. In view of this, it is necessary to find a strong robust battery state estimation method that has higher estimation accuracy even in the presence of model deviation and noise.
发明内容Summary of the invention
为了克服现有技术的上述缺点,本发明提出了一种增强电池状态估计鲁棒性的方法,旨在克服现有方法对模型偏差和系统噪声敏感的缺点,在即使存在模型偏差和系统噪声的情况下,也能对电池状态进行高精度的估计,提高估计的鲁棒性。In order to overcome the above disadvantages of the prior art, the present invention proposes a method for enhancing the robustness of battery state estimation, aiming to overcome the shortcomings of existing methods for model deviation and system noise, even in the presence of model deviation and system noise. In this case, the battery state can be estimated with high accuracy, and the robustness of the estimation can be improved.
本发明解决其技术问题所采用的技术方案是:一种增强电池状态估计鲁棒性的方法,包括如下步骤:The technical solution adopted by the present invention to solve the technical problem thereof is: a method for enhancing the robustness of battery state estimation, comprising the following steps:
步骤一、根据电池特性建立电池数学模型;Step 1: Establish a mathematical model of the battery according to the characteristics of the battery;
步骤二、通过增加冗余状态变量对电池数学模型进行调整;Step 2: Adjust the battery mathematical model by adding redundant state variables;
步骤三、采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计。Step 3: Perform online estimation of all state variables in the adjusted battery mathematical model by using the system state estimation method.
与现有技术相比,本发明的积极效果是:本发明通过对电池模型增加一个或几个、有物理意义或没有物理意义的系统状态变量,并相 应改变电池数学模型方程,可以在存在模型偏差和系统噪声的情况下,有效提高电池状态估计精度、加快估计偏差的收敛速率和增强估计算法的参数适配性。本发明获得了很好的估计效果,且通过测试验证了本发明方法的有效性。Compared with the prior art, the positive effect of the present invention is that the present invention adds one or several system state variables having physical meaning or no physical meaning to the battery model. The mathematical model equation of the battery should be changed, and the accuracy of the battery state estimation, the convergence rate of the estimated deviation, and the parameter adaptability of the estimation algorithm can be effectively improved in the presence of model deviation and system noise. The present invention achieves a good estimation effect, and the effectiveness of the method of the present invention is verified by tests.
附图说明DRAWINGS
本发明将通过例子并参照附图的方式说明,其中:The invention will be illustrated by way of example and with reference to the accompanying drawings in which:
图1为电池等效电路模型。Figure 1 shows the battery equivalent circuit model.
图2为鲁棒增强对模型偏差的容错能力。Figure 2 shows the robustness of the robust enhancement to model bias.
图3为鲁棒增强对估计状态偏差的容错能力。Figure 3 shows the fault tolerance of robust enhancements to estimate state deviations.
图4为鲁棒增强对估计方法参数适配性的影响。Figure 4 shows the effect of robust enhancement on the parameter fit of the estimation method.
具体实施方式detailed description
一种增强电池状态估计鲁棒性的方法,包括如下步骤:A method for enhancing battery state estimation robustness includes the following steps:
步骤一、建立电池数学模型: Step 1. Establish a mathematical model of the battery:
根据电池特性,建立合适的模型状态变量x,输入变量u,过程噪声w,量测噪声和模型参数θ,并建立电池系统方程:Based on the battery characteristics, establish the appropriate model state variable x, input variable u, process noise w, measure noise and model parameters θ, and establish the battery system equation:
Figure PCTCN2017108286-appb-000001
Figure PCTCN2017108286-appb-000001
y=g(t,x,u,θ,v)y=g(t,x,u,θ,v)
并进而转换成离散的形式:And then converted to discrete forms:
xk+1=f(xk,uk,θ)+wk x k+1 =f(x k ,u k ,θ)+w k
yk=g(xk,uk,θ)+vk y k =g(x k ,u k ,θ)+v k
步骤二、给电池数学模型增加冗余态变量,并相应地调整电池数学模型:Step 2: Add redundant state variables to the battery mathematical model and adjust the battery mathematical model accordingly:
对状态变量x进行增广:Augment the state variable x:
Figure PCTCN2017108286-appb-000002
Figure PCTCN2017108286-appb-000002
式中的s为增广的状态变量,并相应调整电池模型如下:The s in the equation is the augmented state variable, and the battery model is adjusted accordingly as follows:
Figure PCTCN2017108286-appb-000003
Figure PCTCN2017108286-appb-000003
Figure PCTCN2017108286-appb-000004
Figure PCTCN2017108286-appb-000004
步骤三、采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计:Step 3: Perform online estimation of all state variables in the adjusted battery mathematical model by using the system state estimation method:
Figure PCTCN2017108286-appb-000005
Figure PCTCN2017108286-appb-000005
式中mk为采样时刻k时的电池输出量的测量值,Lk为所用估计方法的反馈增益。Where m k is the measured value of the battery output at the sampling instant k, and L k is the feedback gain of the estimation method used.
需要说明的是:It should be noted:
本发明的电池模型,不限于任何形式,可以为电池等效电路模型、电化学模型等。The battery model of the present invention is not limited to any form, and may be a battery equivalent circuit model, an electrochemical model, or the like.
本发明给电池模型增加的冗余状态变量,不限定冗余状态变量的个数,可以为1个或多个,且不限定冗余变量的物理意义,可以是有具体物理意义的变量,也可以是无具体物理意义的变量。The redundant state variable added to the battery model of the present invention does not limit the number of redundant state variables, and may be one or more, and does not limit the physical meaning of the redundant variable, and may be a variable having a specific physical meaning, It can be a variable without specific physical meaning.
本发明采用的系统状态估计方法,不限定任何类型的估计方法,可以是Kalman估计、H估计、滑模估计等。The system state estimation method adopted by the present invention does not limit any type of estimation method, and may be Kalman estimation, H estimation, sliding mode estimation, and the like.
本发明方法亦不限于哪种类型的电池。 The method of the invention is also not limited to what type of battery.
为了详细说明本发明的技术内容,算法特点,实现目的与效果,下面将结合具体实施方式对系统运行流程进行详细说明。In order to explain in detail the technical content, algorithm features, and the objects and effects of the present invention, the system operation flow will be described in detail below in conjunction with the specific embodiments.
结合图1本发明建立的增强电池状态估计鲁棒性的方法,包括以下步骤:A method for enhancing battery state estimation robustness established by the present invention in conjunction with FIG. 1 includes the following steps:
步骤1,采用等效电路模型对电池进行建模,并建立电池数学模型; Step 1. Model the battery using an equivalent circuit model and establish a mathematical model of the battery;
如图1所示为典型的电池等效电路模型,包括受电池荷电状态(State of Charge,SoC)控制的电池开路电压(Open Circuit Voltage,OCV),即OCV(SoC);描述电池等效内阻的R0,描述电池电化学极化和浓差极化的二阶RC模型,即R1C1和R2C2。建立该电路模型对应的电池离散系统数学模型,其状态为:Figure 1 shows a typical battery equivalent circuit model, including the Open Circuit Voltage (OCV) controlled by the State of Charge (SoC), which is OCV (SoC); describes the battery equivalent The internal resistance R 0 , which describes the second-order RC model of the electrochemical polarization and concentration polarization of the battery, namely R 1 C 1 and R 2 C 2 . Establish a mathematical model of the battery discrete system corresponding to the circuit model, the state of which is:
Figure PCTCN2017108286-appb-000006
Figure PCTCN2017108286-appb-000006
数学模型的状态空间方程和输出方程分别为:The state space equations and output equations of the mathematical model are:
xk+1=Axk+BIk+Fwk   (2)x k+1 =Ax k +BI k +Fw k (2)
Figure PCTCN2017108286-appb-000007
Figure PCTCN2017108286-appb-000007
其中wk为过程噪声(即电流测量噪声),vk为电压测量噪声,yk为系统输出,是用系统状态计算的图1所示电路的端口电压。结合图1中的电路模型,将SoC的变化范围取为0~100(以百分数表示),式(2)中的各个矩阵如下所示:Where w k is the process noise (ie current measurement noise), v k is the voltage measurement noise, and y k is the system output, which is the port voltage of the circuit shown in Figure 1 calculated using the system state. Combining the circuit model in Figure 1, the variation range of the SoC is taken as 0-100 (in percent), and the matrix in equation (2) is as follows:
Figure PCTCN2017108286-appb-000008
Figure PCTCN2017108286-appb-000008
Figure PCTCN2017108286-appb-000009
Figure PCTCN2017108286-appb-000009
Figure PCTCN2017108286-appb-000010
Figure PCTCN2017108286-appb-000010
其中Cap为电池容量,τ1=R1C1,τ2=R2C2,Δt为系统采样周期。Where Cap is the battery capacity, τ 1 = R 1 C 1 , τ 2 = R 2 C 2 , Δt is the system sampling period.
对某种电池,该模型所需的参数及数值如表1所示:For a certain battery, the parameters and values required for the model are shown in Table 1:
表1模型阻容参数Table 1 model resistance capacity parameters
Figure PCTCN2017108286-appb-000011
Figure PCTCN2017108286-appb-000011
步骤2,增加数学模型的冗余状态变量,并相应地调整电池数学模型,具体如下:Step 2, increase the redundant state variables of the mathematical model, and adjust the battery mathematical model accordingly, as follows:
电池SoC是电流I的积分,而I的测量值中包含会影响SoC估计精度的偏置电流Ib,将其作为系统的状态对原状态进行增广,并对其进行在线估计,该电路模型的系统状态变量取为:The battery SoC is the integral of the current I, and the measured value of I contains the bias current I b which affects the accuracy of the SoC estimation, and is augmented as the state of the system, and is estimated online, the circuit model The system state variable is taken as:
Figure PCTCN2017108286-appb-000012
Figure PCTCN2017108286-appb-000012
其中
Figure PCTCN2017108286-appb-000013
Figure PCTCN2017108286-appb-000014
分别为对应阻容网络电容(或电阻)上的电压。 将I-Ib作为输入电池的实际电流,其数值为正表示充电,离散的系统的状态空间方程和输出方程可分别写为:
among them
Figure PCTCN2017108286-appb-000013
with
Figure PCTCN2017108286-appb-000014
Corresponding to the voltage on the capacitor (or resistor) of the resistor-capacitor network. Taking II b as the actual current of the input battery, the value of which is positive indicates charging, and the state space equation and output equation of the discrete system can be written as:
Figure PCTCN2017108286-appb-000015
Figure PCTCN2017108286-appb-000015
Figure PCTCN2017108286-appb-000016
Figure PCTCN2017108286-appb-000016
相应地调整电池模型,式(8)和式(9)中的Aa,Ba和Fa分别为:Adjust the battery model accordingly. A a , B a and F a in equations (8) and (9) are:
Figure PCTCN2017108286-appb-000017
Figure PCTCN2017108286-appb-000017
Figure PCTCN2017108286-appb-000018
Figure PCTCN2017108286-appb-000018
Figure PCTCN2017108286-appb-000019
Figure PCTCN2017108286-appb-000019
步骤3,在每个采样时刻,采用H观测器对电池状态进行估计,具体如下:Step 3. At each sampling instant, use the H observer to estimate the battery status, as follows:
首先设定H观测器参数P0,Q、W和V,
Figure PCTCN2017108286-appb-000020
为单位阵,并结合电池当前电压的采样值mk,在每个采样时刻k进行如下计算:
First set the H observer parameters P 0 , Q, W and V,
Figure PCTCN2017108286-appb-000020
For the unit matrix, combined with the sampled value m k of the current voltage of the battery, the following calculation is performed at each sampling instant k:
Figure PCTCN2017108286-appb-000021
Figure PCTCN2017108286-appb-000021
Figure PCTCN2017108286-appb-000022
Figure PCTCN2017108286-appb-000022
Figure PCTCN2017108286-appb-000023
Figure PCTCN2017108286-appb-000023
Figure PCTCN2017108286-appb-000024
Figure PCTCN2017108286-appb-000024
Figure PCTCN2017108286-appb-000025
Figure PCTCN2017108286-appb-000025
Figure PCTCN2017108286-appb-000026
Figure PCTCN2017108286-appb-000026
通过对该方法进行测试验证,测试结果如图2-4所示。从图2可以看出,当存在明显的模型偏差时,增强后对模型偏差的容错能力明显优于增强前,说明该增强鲁棒性的方法对模型偏差有很强的容错能力。从图3可以看出,当存在初始电池状态偏差时,增强后使估计值向实际值收敛的速度更快。如果估计器的估计效果对其参数值很敏感,则意味着该估计器在实际应用时容易出现调试困难或工作不稳定现象,因此可工程化的估计器其参数可用范围越宽越好,这就是参数适配性的问题。从图4可以看出,没有鲁棒增强时,某个参数W的取值合适与否严重影响电池状态的估计精度;而在鲁棒增强后,在W很宽的取值范围内,电池状态的估计精度几乎不受影响,说明该鲁棒增强方法会明显加大估计器参数取值范围,进而有效增加估计的参数适配性。 The test results are verified by the method, and the test results are shown in Figure 2-4. It can be seen from Fig. 2 that when there is obvious model deviation, the fault tolerance of the model deviation after enhancement is obviously better than that before the enhancement, indicating that the method of enhancing robustness has strong fault tolerance for model deviation. As can be seen from Fig. 3, when there is an initial battery state deviation, the speed at which the estimated value converges to the actual value is made faster after the enhancement. If the estimated effect of the estimator is sensitive to its parameter value, it means that the estimator is prone to debugging difficulties or work instability in practical applications, so the estimator of the engineerable estimator has a wider range of parameters, the better. It is the problem of parameter adaptability. It can be seen from Fig. 4 that, when there is no robust enhancement, whether the value of a certain parameter W is appropriate or not seriously affects the estimation accuracy of the battery state; and after robust enhancement, the battery state is in a wide range of values of W. The estimation accuracy is almost unaffected, indicating that the robust enhancement method will significantly increase the range of estimator parameters, and thus effectively increase the estimated parameter adaptability.

Claims (7)

  1. 一种增强电池状态估计鲁棒性的方法,其特征在于:包括如下步骤:A method for enhancing robustness of battery state estimation, comprising the steps of:
    步骤一、根据电池特性建立电池数学模型;Step 1: Establish a mathematical model of the battery according to the characteristics of the battery;
    步骤二、通过增加冗余状态变量对电池数学模型进行调整;Step 2: Adjust the battery mathematical model by adding redundant state variables;
    步骤三、采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计。Step 3: Perform online estimation of all state variables in the adjusted battery mathematical model by using the system state estimation method.
  2. 根据权利要求1所述的一种增强电池状态估计鲁棒性的方法,其特征在于:所述电池模型包括电池等效电路模型、电化学模型。A method for enhancing battery state estimation robustness according to claim 1, wherein said battery model comprises a battery equivalent circuit model and an electrochemical model.
  3. 根据权利要求2所述的一种增强电池状态估计鲁棒性的方法,其特征在于:步骤一所述根据电池特性建立电池数学模型的方法为:A method for enhancing battery state estimation robustness according to claim 2, wherein the method for establishing a battery mathematical model according to battery characteristics in step 1 is:
    (1)建立等效电路模型对应的电池离散系统数学模型,其状态变量为:(1) Establish a mathematical model of the battery discrete system corresponding to the equivalent circuit model. The state variables are:
    Figure PCTCN2017108286-appb-100001
    Figure PCTCN2017108286-appb-100001
    其中:SoC表示电池荷电状态,R1C1和R2C2表示电池电化学极化和浓差极化的二阶RC模型;Where: SoC represents the state of charge of the battery, and R 1 C 1 and R 2 C 2 represent a second-order RC model of electrochemical polarization and concentration polarization of the battery;
    (2)建立数学模型的状态空间方程和输出方程:(2) Establish the state space equation and output equation of the mathematical model:
    Xk+1=Axk+BIk+Fwk X k+1 =Ax k +BI k +Fw k
    Figure PCTCN2017108286-appb-100002
    Figure PCTCN2017108286-appb-100002
    其中:wk为过程噪声,vk为电压测量噪声,yk为系统输出,R0表示电池等效内阻,OCV(SoC)表示受电池荷电状态SoC控制的电池开路电压OCV,且:Where: w k is the process noise, v k is the voltage measurement noise, y k is the system output, R 0 is the battery equivalent internal resistance, and OCV (SoC) is the battery open circuit voltage OCV controlled by the battery state of charge SoC, and:
    Figure PCTCN2017108286-appb-100003
    Figure PCTCN2017108286-appb-100003
    Figure PCTCN2017108286-appb-100004
    Figure PCTCN2017108286-appb-100004
    Figure PCTCN2017108286-appb-100005
    Figure PCTCN2017108286-appb-100005
    其中:Cap为电池容量,τ1=R1C12=R2C2,Δt为系统采样周期。Where: Cap is the battery capacity, τ 1 = R 1 C 1 , τ 2 = R 2 C 2 , Δt is the system sampling period.
  4. 根据权利要求3所述的一种增强电池状态估计鲁棒性的方法,其特征在于:步骤二所述通过增加冗余状态变量对电池数学模型进行调整的方法为:The method for enhancing battery state estimation robustness according to claim 3, wherein the method for adjusting the battery mathematical model by adding redundant state variables according to step 2 is:
    将电流I的测量值中包含的会影响SoC估计精度的偏置电流Ib作为冗余状态变量,则电路模型的系统状态变量取为:Taking the bias current I b included in the measured value of current I that affects the accuracy of SoC estimation as a redundant state variable, the system state variable of the circuit model is taken as:
    Figure PCTCN2017108286-appb-100006
    Figure PCTCN2017108286-appb-100006
    其中:
    Figure PCTCN2017108286-appb-100007
    Figure PCTCN2017108286-appb-100008
    分别为对应阻容网络电容或电阻上的电压,将I-Ib作为输入电池的实际电流,其数值为正表示充电,离散的系统的状态空间方程和输出方程分别为:
    among them:
    Figure PCTCN2017108286-appb-100007
    with
    Figure PCTCN2017108286-appb-100008
    For the voltage corresponding to the capacitor or resistor of the resistor-capacitor network, II b is taken as the actual current of the input battery, and the value is positive for charging. The state space equation and output equation of the discrete system are:
    Figure PCTCN2017108286-appb-100009
    Figure PCTCN2017108286-appb-100009
    Figure PCTCN2017108286-appb-100010
    Figure PCTCN2017108286-appb-100010
    其中,Aa,Ba和Fa分别为:Among them, A a , B a and F a are:
    Figure PCTCN2017108286-appb-100011
    Figure PCTCN2017108286-appb-100011
    Figure PCTCN2017108286-appb-100012
    Figure PCTCN2017108286-appb-100012
    Figure PCTCN2017108286-appb-100013
    Figure PCTCN2017108286-appb-100013
  5. 根据权利要求4所述的一种增强电池状态估计鲁棒性的方法,其特征在于:所述系统状态估计方法包括Kalman估计方法、H估计方法、滑模估计 方法。A method for enhancing robustness of battery state estimation according to claim 4, wherein said system state estimation method comprises a Kalman estimation method, an H estimation method, and a sliding mode estimation method.
  6. 根据权利要求5所述的一种增强电池状态估计鲁棒性的方法,其特征在于:步骤三所述采用系统状态估计方法对调整后的电池数学模型中的所有状态变量进行在线估计的方法为:在每个采样时刻,采用H观测器对电池状态进行估计:The method for enhancing the robustness of battery state estimation according to claim 5, wherein the method for estimating the state variables of the adjusted battery mathematical model by using the system state estimation method in step 3 is : At each sampling instant, the H observer is used to estimate the battery status:
    首先设定H观测器参数P0、Q、W和V,II为单位阵,并结合电池当前电压的采样值mk,在每个采样时刻k进行如下计算:First, set the H observer parameters P 0 , Q, W and V, II is the unit matrix, and combined with the sample value m k of the current voltage of the battery, the following calculation is performed at each sampling time k:
    Figure PCTCN2017108286-appb-100014
    Figure PCTCN2017108286-appb-100014
    Figure PCTCN2017108286-appb-100015
    Figure PCTCN2017108286-appb-100015
    Figure PCTCN2017108286-appb-100016
    Figure PCTCN2017108286-appb-100016
    Figure PCTCN2017108286-appb-100017
    Figure PCTCN2017108286-appb-100017
    Figure PCTCN2017108286-appb-100018
    Figure PCTCN2017108286-appb-100018
    Figure PCTCN2017108286-appb-100019
    Figure PCTCN2017108286-appb-100019
  7. 根据权利要求1所述的一种增强电池状态估计鲁棒性的方法,其特征在于:所述冗余状态变量为1个或多个,为有具体物理意义的变量或无具体物理意义的变量。 The method for enhancing battery state estimation robustness according to claim 1, wherein the redundant state variable is one or more, and is a variable having a specific physical meaning or a variable having no specific physical meaning. .
PCT/CN2017/108286 2017-04-13 2017-10-30 Method for enhancing battery state estimation robustness WO2018188321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710239112.6A CN107064816A (en) 2017-04-13 2017-04-13 It is a kind of to strengthen the method that battery status estimates robustness
CN201710239112.6 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018188321A1 true WO2018188321A1 (en) 2018-10-18

Family

ID=59600219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108286 WO2018188321A1 (en) 2017-04-13 2017-10-30 Method for enhancing battery state estimation robustness

Country Status (2)

Country Link
CN (1) CN107064816A (en)
WO (1) WO2018188321A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220920A (en) * 2019-11-22 2020-06-02 国网浙江省电力有限公司台州供电公司 Decommissioned lithium ion battery charge state calculation method based on H infinity unscented Kalman filtering algorithm

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064816A (en) * 2017-04-13 2017-08-18 绵阳世睿科技有限公司 It is a kind of to strengthen the method that battery status estimates robustness
CN107255786B (en) * 2017-05-18 2020-06-30 中山职业技术学院 LOC model of lithium iron phosphate battery
CN109001640B (en) * 2018-06-29 2021-08-20 深圳市科列技术股份有限公司 Data processing method and device for power battery
CN109633473B (en) * 2019-01-23 2021-03-09 刘平 Distributed battery pack state of charge estimation algorithm

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245627A (en) * 2003-02-12 2004-09-02 Nissan Motor Co Ltd Charging rate prediction device for secondary battery
CN103558556A (en) * 2013-10-31 2014-02-05 重庆长安汽车股份有限公司 Power battery SOH estimation method
CN104007390A (en) * 2013-02-24 2014-08-27 快捷半导体(苏州)有限公司 Battery state of charge tracking, equivalent circuit selection and benchmarking
CN104181470A (en) * 2014-09-10 2014-12-03 山东大学 Battery state-of-charge (SOC) estimation method based on nonlinear prediction extended Kalman filtering
CN105203826A (en) * 2015-09-11 2015-12-30 同济大学 Current detection method for redundant current sensor power battery system
GB2532726A (en) * 2014-11-24 2016-06-01 Thunot Andre Cell internal impedance diagnostic system
CN107064816A (en) * 2017-04-13 2017-08-18 绵阳世睿科技有限公司 It is a kind of to strengthen the method that battery status estimates robustness

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170818B2 (en) * 2010-03-10 2012-05-01 GM Global Technology Operations LLC Battery state estimator using multiple sampling rates
US8890484B2 (en) * 2012-05-08 2014-11-18 GM Global Technology Operations LLC Battery state-of-charge estimator using robust H∞ observer
CN103116136B (en) * 2013-01-21 2015-07-15 天津大学 Lithium battery charge state assessment method based on finite difference expansion Kalman algorithm
CN104977545B (en) * 2015-08-03 2017-12-19 电子科技大学 The state-of-charge method of estimation and system of a kind of electrokinetic cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245627A (en) * 2003-02-12 2004-09-02 Nissan Motor Co Ltd Charging rate prediction device for secondary battery
CN104007390A (en) * 2013-02-24 2014-08-27 快捷半导体(苏州)有限公司 Battery state of charge tracking, equivalent circuit selection and benchmarking
CN103558556A (en) * 2013-10-31 2014-02-05 重庆长安汽车股份有限公司 Power battery SOH estimation method
CN104181470A (en) * 2014-09-10 2014-12-03 山东大学 Battery state-of-charge (SOC) estimation method based on nonlinear prediction extended Kalman filtering
GB2532726A (en) * 2014-11-24 2016-06-01 Thunot Andre Cell internal impedance diagnostic system
CN105203826A (en) * 2015-09-11 2015-12-30 同济大学 Current detection method for redundant current sensor power battery system
CN107064816A (en) * 2017-04-13 2017-08-18 绵阳世睿科技有限公司 It is a kind of to strengthen the method that battery status estimates robustness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG DAIWEI ET AL.: "Battery state of charge online estimation based on H observer with current debasing and noise distributions", JOURNAL OF UNIVERSITY ELECTRONIC SCIENCE AND TECHNOOLOGY OF CHINA, vol. 46, no. 4, 31 July 2017 (2017-07-31), pages 547 - 553, ISSN: 1001-0548 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220920A (en) * 2019-11-22 2020-06-02 国网浙江省电力有限公司台州供电公司 Decommissioned lithium ion battery charge state calculation method based on H infinity unscented Kalman filtering algorithm
CN111220920B (en) * 2019-11-22 2023-04-25 国网浙江省电力有限公司台州供电公司 Retired lithium ion battery state of charge calculation method based on H-infinity unscented Kalman filtering algorithm

Also Published As

Publication number Publication date
CN107064816A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018188321A1 (en) Method for enhancing battery state estimation robustness
CN110441694B (en) Lithium battery state-of-charge estimation method based on multiple fading factors Kalman filtering
Duong et al. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares
CN107402353B (en) Method and system for carrying out filtering estimation on state of charge of lithium ion battery
WO2018161486A1 (en) Method and system for estimating soc of power battery on the basis of dynamic parameters
CN108693472B (en) Battery equivalent model parameter online identification method
Huria et al. Simplified extended kalman filter observer for soc estimation of commercial power-oriented lfp lithium battery cells
CN110196393B (en) Combined on-line estimation method for lithium battery charge state, energy state and power state
CN113156321B (en) Estimation method of lithium ion battery state of charge (SOC)
CN106716158A (en) Method and device for estimating state of charge of battery
CN109633479B (en) Lithium battery SOC online estimation method based on embedded type volume Kalman filtering
CN112595979B (en) Lithium battery parameter online identification method and system considering insufficient excitation
CN114184962B (en) Multi-algorithm fusion lithium ion battery SOC and SOH joint estimation method
CN111707953A (en) Lithium battery SOC online estimation method based on backward smoothing filtering framework
CN111142025A (en) Battery SOC estimation method and device, storage medium and electric vehicle
CN112147514B (en) Lithium battery full-working-condition self-adaptive equivalent circuit model based on RLS
Chen et al. A novel sliding mode observer for state of charge estimation of EV lithium batteries
WO2021035500A1 (en) Online state of charge (soc) estimation system for 48v mild hybrid vehicle lithium ion battery
CN109298340B (en) Battery capacity online estimation method based on variable time scale
CN112415412A (en) Method and device for estimating SOC value of battery, vehicle and storage medium
CN112433155A (en) Lithium ion battery SOC estimation algorithm based on parameter online estimation
Baba et al. State of charge estimation of HEV/EV battery with series Kalman filter
CN115656848A (en) Lithium battery SOC estimation method based on capacity correction
CN112946480B (en) Lithium battery circuit model simplification method for improving SOC estimation real-time performance
CN111505504B (en) Battery state of charge estimation method and estimator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905766

Country of ref document: EP

Kind code of ref document: A1