WO2018188147A1 - 基于人工智能的红外热成像体温检测方法、装置和终端设备 - Google Patents

基于人工智能的红外热成像体温检测方法、装置和终端设备 Download PDF

Info

Publication number
WO2018188147A1
WO2018188147A1 PCT/CN2017/084577 CN2017084577W WO2018188147A1 WO 2018188147 A1 WO2018188147 A1 WO 2018188147A1 CN 2017084577 W CN2017084577 W CN 2017084577W WO 2018188147 A1 WO2018188147 A1 WO 2018188147A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection target
temperature
human body
detection
environment
Prior art date
Application number
PCT/CN2017/084577
Other languages
English (en)
French (fr)
Inventor
金志虎
汪澜
唐佛南
胡祖敏
Original Assignee
深圳市共进电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市共进电子股份有限公司 filed Critical 深圳市共进电子股份有限公司
Publication of WO2018188147A1 publication Critical patent/WO2018188147A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0008Temperature signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the invention belongs to the field of thermal imaging, and in particular relates to an artificial intelligence based infrared thermal imaging body temperature detecting method, device and terminal device.
  • the working principle of the infrared camera is to use the infrared detector and the optical imaging objective to receive the infrared radiation energy distribution pattern of the measured object and reflect it on the photosensitive element of the infrared detector, thereby obtaining an infrared thermal image, the thermal image and the object.
  • the surface of the heat distribution field corresponds.
  • the different colors on the infrared thermography represent the different temperatures of the object being measured. By looking at the infrared thermal image, you can observe the overall temperature distribution of the target, and study the fever of the target, so as to judge the next step.
  • modern infrared cameras work by using optoelectronic devices to detect and measure radiation and establish a correlation between radiation and surface temperature. .
  • the accuracy is not high. Due to the existing infrared thermal imager, the detected temperature is the body surface temperature, and the result has a large difference with the core temperature of the human body, and the core temperature of the human body is an important medical parameter of human health;
  • the test is inconvenient and the efficiency is not high.
  • the existing infrared thermal imager requires the medical staff to bring the handheld device to the caregiver to measure it in advance. It takes more manpower and material resources to complete the work at night, and the detection efficiency is low.
  • the present invention provides an artificial intelligence based on infrared thermal imaging body temperature detection method, device and terminal device to improve the accuracy and efficiency of body temperature detection.
  • a first aspect of the present invention provides an infrared thermal imaging body temperature detecting method based on artificial intelligence, the method comprising:
  • Detecting a body surface temperature of the detection target and an ambient temperature of an environment in which the detection target is located in response to short-wave infrared rays of the exposed portion of the human body and short-wave infrared rays of an environment in which the detection target is located;
  • a second aspect of the present invention provides an infrared thermal imaging body temperature detecting device based on artificial intelligence, the device comprising:
  • An identification module configured to collect an image by a camera disposed on the pan/tilt, and identify a detection target and a naked part of the human body of the detection target;
  • a temperature detecting module configured to detect a body surface temperature of the detecting target and an ambient temperature of an environment in which the detecting target is located, in response to short-wave infrared rays of the exposed portion of the human body and short-wave infrared rays of an environment in which the detecting target is located;
  • a core temperature acquisition module configured to substitute a body surface temperature of the detection target and an ambient temperature of an environment in which the detection target is located into an algorithm formula to obtain a human core temperature of the detection target;
  • a sending module configured to send the human core temperature of the detection target to the medical care server.
  • a third aspect of the present invention provides a terminal device for infrared thermography body temperature detection based on artificial intelligence, comprising a memory, a processor, and a computer program stored in the memory and operable on the processor, the processor implementing the following steps when executing the computer program :
  • Detecting a body surface temperature of the detection target and an ambient temperature of an environment in which the detection target is located in response to short-wave infrared rays of the exposed portion of the human body and short-wave infrared rays of an environment in which the detection target is located;
  • a fourth aspect of the present invention provides a readable storage medium for infrared thermal imaging body temperature detection based on artificial intelligence.
  • the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, the following steps are implemented:
  • Detecting a body surface temperature of the detection target and an ambient temperature of an environment in which the detection target is located in response to short-wave infrared rays of the exposed portion of the human body and short-wave infrared rays of an environment in which the detection target is located;
  • the technical solution provided by the present invention can simultaneously detect the body temperature of the plurality of detection targets.
  • the efficiency of detecting the temperature is greatly improved; on the other hand, instead of directly taking the body surface temperature measured by the infrared thermal imager as the final body temperature, the surface temperature of the detection target and the ambient temperature of the environment in which the target is detected are substituted.
  • the algorithm formula obtains the core temperature of the human body for detecting the target. Therefore, the human body core temperature obtained by this method and the human body temperature obtained by the medically most instructive rectal body temperature detection method are very close in value, thereby greatly improving The accuracy of human body temperature detection.
  • FIG. 1 is a schematic flowchart showing an implementation process of an infrared thermal imaging body temperature detecting method based on artificial intelligence according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of an artificial intelligence-based infrared thermal imaging body temperature detecting device according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of an artificial intelligence-based infrared thermal imaging body temperature detecting apparatus according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of an artificial intelligence-based infrared thermal imaging body temperature detecting apparatus according to Embodiment 4 of the present invention.
  • FIG. 5-a is an artificial intelligence-based infrared thermal imaging body temperature detecting device according to Embodiment 5 of the present invention Schematic diagram of the structure
  • FIG. 5-b is a schematic structural diagram of an artificial intelligence-based infrared thermal imaging body temperature detecting apparatus according to Embodiment 6 of the present invention.
  • FIG. 5-c is a schematic structural diagram of an artificial intelligence-based infrared thermal imaging body temperature detecting apparatus according to Embodiment 7 of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal device for infrared thermal imaging body temperature detection based on artificial intelligence according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of an implementation process of an infrared thermal imaging body temperature detecting method based on artificial intelligence according to Embodiment 1 of the present invention, which mainly includes the following steps S101 to S104, which are described in detail as follows:
  • S101 Acquire an image by a camera disposed on the pan/tilt, and identify a detection target and a naked part of the human body of the detection target.
  • the camera disposed on the pan/tilt head is connected to the infrared thermal imaging sensor, and the core thereof is that the difference between the contour of the object and the background can be distinguished.
  • the physical resolution of the selected infrared thermal imaging sensor is greater than 80*60 and less than 4096*2160.
  • the image signal obtained by the infrared thermal imaging sensor is processed by the ISP chip for noise reduction and fixed focus to form a heat map with higher definition, and then processed by the ARM series chip, as long as the chip can have a processing capability greater than 9 frames/second.
  • the technical solution of the present invention can be achieved.
  • the pan/tilt can rotate 360 degrees in the horizontal direction and can rotate freely in the range of -120° to +120° in the vertical direction, the camera set on the pan/tilt can not only collect multiple images at the same time. The image of the target is detected, and the active detection target can be continuously monitored.
  • the detection target may be a person, and the exposed part of the human body is a body part that is not covered by clothes, bedding, etc., and is exposed to the outside, and may be a forehead, a chest, a back, an upper arm, and a forearm. , calves and thighs.
  • the image is captured by a camera disposed on the pan/tilt, and the exposed portion of the human body that identifies the detection target and the detection target can be implemented by the following steps S1011 to S1013:
  • S1011 The identifier of the detection target is collected by a camera disposed on the pan/tilt.
  • the identifier of the detection target is used to uniquely determine the object of the detection target identity in a specific occasion, for example, for a care recipient in a medical institution or a nursing institution, the identifier may be the care recipient. Number or bed number, etc.
  • S1012 Determine a human body part of the detection target.
  • the body part of the detection target can be determined by a visual recognition algorithm.
  • S1013 in response to the long-wave infrared rays of the human body part, determines where the human body part is covered and where it is exposed.
  • the wavelength of the long-wave infrared rays is 1200 nm to 2500 nm, and may be 1200 nm, 1800 nm, or 2500 nm.
  • S102 Detecting the surface temperature of the detection target and the ambient temperature of the environment in which the target is detected, in response to the short-wave infrared rays of the naked part of the human body and the short-wave infrared rays of the environment in which the target is detected.
  • the short-wavelength infrared rays have a wavelength of 643 nm to 954 nm and may be 643 nm, 790 nm or 954 nm. Since the short-wave infrared rays are superior to the long-wave infrared rays in measuring the ambient temperature and the exposed parts of the human body, in the embodiment of the present invention, the surface temperature of the detection target is detected in response to the short-wave infrared rays of the naked part of the human body and the short-wave infrared rays of the environment in which the target is detected. And the target of the test The ambient temperature of the environment.
  • the body surface temperature of the detection target and the ambient temperature of the environment in which the detection target is located are substituted into an algorithm formula, and the body core temperature of the detection target can be obtained by the following steps S1031 to S1033:
  • T c P s T s +T b +R 2 T e is a calculation formula obtained according to the experimental result, wherein P s is the first parameter related to the human body part S, and T s is the naked body in response to the human body part S
  • the short-wave infrared rays detect the body surface temperature of the human body part S
  • T b is the base temperature associated with the human body part S
  • R is the second parameter related to the human body part S
  • the T e is in response to the environment in which the detection target is located.
  • Table 1 exemplifies a set of algorithm formulas obtained by experimentally obtaining P s , T b and R for different human body parts of male and female youth.
  • Table 1 A set of algorithmic formulas obtained through experiments for different human parts of male and female youth
  • the P s , R and T b associated with the back of the hand are selected to be 0.154, 0.960 and 30.928, respectively;
  • the detection target is a young woman, and the exposed body part is the forehead.
  • the P s , R and T b associated with the forehead are selected to be 0.080, 0.988 and 32.510, respectively.
  • the technical solution provided by the embodiment of the present invention the obtained human core temperature, the result and the medicine
  • the most instructive rectal body temperature ie, the mercury thermometer inserted into the anus to detect body temperature
  • the most instructive rectal body temperature is between 0.05 and 0.1 degrees Celsius. Therefore, the result can be directly used as a medical basis.
  • the method provided by the embodiment of the present invention further includes: processing the human core temperature of the detection target into a data table, for example, an excel table, before transmitting the human core temperature of the detection target to the medical care server. Then, sending the human core temperature of the detection target to the medical care server may send the data form to the medical care server, so that the medical personnel can understand the trend of the detection target in a detailed and intuitive manner.
  • a data table for example, an excel table
  • the artificial intelligence-based infrared thermal imaging body temperature detecting method illustrated in FIG. 1 above can be seen that, on the one hand, since the images of the plurality of detection targets can be simultaneously acquired when the image is set by the camera disposed on the pan/tilt, the technology provided by the present invention
  • the solution can simultaneously detect the body temperature of a plurality of detection targets, and the efficiency of detecting the temperature is greatly improved; on the other hand, instead of directly measuring the body surface temperature measured by the infrared thermal imager as the final body temperature, the body surface of the detection target is adopted.
  • the temperature and the ambient temperature of the environment in which the target is located are substituted into the algorithm formula to obtain the body core temperature of the detection target. Therefore, the human body core temperature obtained in this way and the human body temperature obtained by the medically most instructive rectal body temperature detection method, The values are very close, which greatly improves the detection accuracy of the human body temperature.
  • FIG. 2 is a schematic structural diagram of an artificial intelligence-based infrared thermal imaging body temperature detecting apparatus according to Embodiment 2 of the present invention, which may be a functional unit of an infrared thermal imager or an infrared thermal imager.
  • FIG. 2 shows only parts related to the embodiment of the present invention.
  • the artificial intelligence-based infrared thermal imaging body temperature detecting device illustrated in FIG. 2 mainly includes an identification module 201, a temperature detecting module 202, a core temperature acquiring module 203, and a transmitting module 204, wherein:
  • the identification module 201 is configured to collect an image by using a camera disposed on the pan/tilt, and identify a naked part of the detection target and the detection target;
  • the temperature detecting module 202 is configured to detect short-wave infrared rays of the naked part of the human body and short-wave infrared rays of the environment in which the target is detected, and detect the body surface temperature of the detecting target and the ambient temperature of the environment in which the detecting target is located;
  • the core temperature acquiring module 203 is configured to detect the body surface temperature of the target and the environment where the target is detected The ambient temperature is substituted into the algorithm formula to obtain the body core temperature of the detection target;
  • the sending module 204 is configured to send the human core temperature of the detection target to the medical care server.
  • the identification module 201 illustrated in FIG. 2 may include an acquisition unit 301, a determination unit 302, and a determination unit 303.
  • the artificial intelligence-based infrared thermal imaging body temperature detection apparatus provided in Embodiment 3 of the present invention, as shown in FIG.
  • the collecting unit 301 is configured to collect an identifier of the detection target by using a camera disposed on the cloud platform;
  • a determining unit 302 configured to determine a human body part of the detection target
  • the determining unit 303 is configured to respond to the long-wave infrared rays of the human body part, and determine where the human body part is covered and where it is bare.
  • the long-wavelength infrared rays have a wavelength of 1200 nm to 2500 nm
  • the short-wavelength infrared rays have a wavelength of 643 nm to 954 nm.
  • the core temperature acquisition module 203 of the example of FIG. 2 may include a formula acquisition unit 401, a parameter selection unit 402, and a calculation unit 403.
  • the artificial intelligence-based infrared thermal imaging body temperature detection apparatus provided in Embodiment 4 of the present invention is as shown in FIG. among them:
  • P s is a first parameter related to the human body part S
  • T s is a response body
  • T b is the base temperature associated with the human body part S
  • R is the second parameter related to the human body part S
  • the T e is the response detection
  • the parameter selection unit 402 is configured to select P s , R and T b related to the naked part of the detection target according to the exposed part of the human body of the detection target;
  • the artificial intelligence-based infrared thermography body temperature detecting device of any of FIGS. 2 to 4 further includes According to the processing module 501, the artificial intelligence-based infrared thermography body temperature detecting device provided in the fifth embodiment to the seventh embodiment shown in FIG. 5-a to FIG. 5-c.
  • the data processing module 501 processes the body core temperature of the detection target into a data table before transmitting the body core temperature of the detection target to the medical care server.
  • the sending module 204 is configured to send the data table to the medical care server.
  • FIG. 6 is a schematic diagram of a terminal device for infrared thermal imaging body temperature detection based on artificial intelligence according to an embodiment of the present invention.
  • the artificial intelligence-based infrared thermography body temperature detection terminal device 6 of this embodiment includes a processor 60, a memory 61, and a computer program 62 stored in the memory 61 and operable on the processor 60.
  • an artificial intelligence based infrared thermography body temperature detection program for example, an artificial intelligence based infrared thermography body temperature detection program.
  • the steps in the method embodiment of the above-described various artificial intelligence-based infrared thermography body temperature detection are implemented when the processor 60 executes the computer program 62, such as steps S101 to S103 shown in FIG.
  • the processor 60 executes the computer program 62, the functions of the modules/units in the foregoing device embodiments are implemented, such as the functions of the quality screening module 201, the key frame screening module 202, and the image splicing module 203 shown in FIG.
  • the artificial intelligence-based infrared thermal imaging body temperature detection computer program 62 mainly comprises: performing quality screening on the acquired image sequence to preserve the image sequence in the image sequence that meets the quality requirement; according to the feature matching algorithm, the quality requirement is met.
  • the key frames are selected in the image sequence to obtain an optimal image set; the images in the optimal image set are spliced to obtain a panoramic image.
  • Computer program 62 may be partitioned into one or more modules/units, one or more modules/units being stored in memory 61 and executed by processor 60 to complete the present invention.
  • the one or more modules/units may be a series of computer program instructions that are capable of performing a particular function for describing the execution of the computer program 62 in the terminal device 6 based on artificial intelligence-based infrared thermography body temperature detection.
  • the computer program 62 can be divided into a synchronization module, a summary module, an acquisition module, and a return module (modules in a virtual device), and the specific functions of each module are as follows:
  • the terminal device 6 for infrared thermal imaging body temperature detection based on artificial intelligence may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server. Infrared thermography body temperature based on artificial intelligence
  • the detected terminal device may include, but is not limited to, the processor 60 and the memory 61. It can be understood by those skilled in the art that FIG. 6 is only an example of the terminal device 6 for infrared thermal imaging body temperature detection based on artificial intelligence, and does not constitute a limitation of the terminal device 6 for infrared thermal imaging body temperature detection based on artificial intelligence, and may include ratios. More or fewer components are illustrated, or some components are combined, or different components, such as content push terminal devices, may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 60 may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 61 may be an internal storage unit of the terminal device 6 based on artificial intelligence-based infrared thermography body temperature detection, such as a hard disk or memory of the terminal device 6 based on artificial intelligence-based infrared thermography body temperature detection.
  • the memory 61 may also be an external storage device of the terminal device 6 based on artificial intelligence-based infrared thermography body temperature detection, for example, a plug-in hard disk equipped on the terminal device 6 based on artificial intelligence-based infrared thermal imaging body temperature detection, and a smart memory card (Smart) Media Card, SMC), Secure Digital (SD) card, Flash Card, etc.
  • the memory 61 may also include an internal storage unit of the terminal device 6 based on artificial intelligence-based infrared thermography body temperature detection and an external storage device.
  • the memory 61 is used to store computer programs and other programs and data required by the artificial intelligence based infrared thermal imaging body temperature detection terminal device.
  • the memory 61 can also be used to temporarily store data that has been output or is about to be output.
  • each functional unit and module described above is exemplified. In practical applications, the above functions may be assigned to different functional units as needed.
  • the module is completed, dividing the internal structure of the device into different functional units or modules to perform all or part of the functions described above.
  • Each functional unit and module in the embodiment may be integrated into one processing unit, or each unit may exist physically separately or Two or more units are integrated in one unit, and the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the specific names of the respective functional units and modules are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present application.
  • For the specific working process of the unit and the module in the foregoing system reference may be made to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed apparatus/terminal device and method may be implemented in other manners.
  • the device/terminal device embodiments described above are merely illustrative, for example, the division of modules or units is only one logical function division, and may be further divided in actual implementation, such as multiple units or components. It can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or a software functional unit. Formal realization.
  • An integrated module/unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, can be stored in a computer readable storage medium.
  • the present invention implements all or part of the processes in the foregoing embodiments, for example, acquiring images by a camera disposed on a pan/tilt, identifying a detection target and a bare body of the detection target; and responding to the naked body a short-wave infrared ray of the portion and a short-wave infrared ray of the environment in which the detection target is located, detecting a body surface temperature of the detection target and an ambient temperature of an environment in which the detection target is located; and determining a body surface temperature of the detection target and the detecting
  • the ambient temperature of the environment in which the target is located is substituted into an algorithm formula to obtain the human core temperature of the detection target; the human core temperature of the detection target is sent to the medical care server, and the computer may be instructed by a computer program to complete the computer.
  • the program can be stored in a computer readable storage medium that, when executed by the processor, implements the steps of the various method embodiments described above.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable medium may include any entity or device capable of carrying computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a Read-Only Memory (ROM), a random access device. Memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media.
  • computer readable media does not include Electrical carrier signal and telecommunication signal.
  • computer readable media does not include Electrical carrier signal and telecommunication signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种基于人工智能的红外热成像体温检测方法和装置,以提高体温检测的精度和效率。检测方法包括:通过设置于云台上的摄像头采集图像,识别检测目标和检测目标的人体裸露部位(S101);响应人体裸露部位的短波红外线和检测目标所处环境的短波红外线,检测检测目标的体表温度和检测目标所处环境的环境温度(S102);将检测目标的体表温度和检测目标所处环境的环境温度代入算法公式,获取检测目标的人体核心温度(S103);发送检测目标的人体核心温度至医疗看护服务器(S104)。本方法一方面能够同时检测多个检测目标的体温,检测温度的效率大大提高;另一方面,提高了人体温度的检测精准度。

Description

基于人工智能的红外热成像体温检测方法、装置和终端设备 技术领域
本发明属于热成像领域,尤其涉及一种人工智能的基于红外热成像体温检测方法、装置和终端设备。
背景技术
金融自助终端当前,随着婴儿潮红利的衰退,老龄化社会的到来,对婴幼儿和老龄老年人或者其他行动不便的护理需求愈加扩大,同时由于社会生活水准的上升,社会对于会里品质的需求也有更多更细分更高品质的需求。由于体温能够反映很多健康问题,因而,在护理过程中,如何高效地对被护理人员的体温检测一直是备受关注的问题。现有的一种体温检测方法是采用红外热成像仪进行体温检测。
红外热像仪的工作原理是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。红外热像图上的不同颜色代表被测物体的不同温度。通过查看红外热像图,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。基于所有高于绝对零度(即零下273℃)的物体都会发出红外辐射的事实,现代红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。
虽然现有的体温检测方法能够采用红外热成像仪进行体温检测,但是,尚 有如下不足:
1)精确度不高。由于现有的红外热成像仪,其检测出来的温度是体表温度,其结果与人体核心温度存在一个较大的差值,而人体核心温度才是人体健康的一个重要医学参数;
2)测试不方便,效率不高。现有的红外热成像仪,需要医护人员手持设备亲临被护理人员跟前测量,在夜间完成这一工作需要投入更多的人力物力,而且检测效率低下。
发明内容
有鉴于此,本发明提供了一种人工智能的基于红外热成像体温检测方法、装置和终端设备,以提高体温检测的精度和效率。
本发明第一方面提供一种基于人工智能的红外热成像体温检测方法,所述方法包括:
通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位;
响应所述人体裸露部位的短波红外线和所述检测目标所处环境的短波红外线,检测所述检测目标的体表温度和所述检测目标所处环境的环境温度;
将所述检测目标的体表温度和所述检测目标所处环境的环境温度代入算法公式,获取所述检测目标的人体核心温度;
发送所述检测目标的人体核心温度至医疗看护服务器。
本发明第二方面提供一种基于人工智能的红外热成像体温检测装置,所述装置包括:
识别模块,用于通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位;
温度检测模块,用于响应所述人体裸露部位的短波红外线和所述检测目标所处环境的短波红外线,检测所述检测目标的体表温度和所述检测目标所处环境的环境温度;
核心温度获取模块,用于将所述检测目标的体表温度和所述检测目标所处环境的环境温度代入算法公式,获取所述检测目标的人体核心温度;
发送模块,用于发送所述检测目标的人体核心温度至所述医疗看护服务器。
本发明第三方面提供了基于人工智能的红外热成像体温检测的终端设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:
通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位;
响应所述人体裸露部位的短波红外线和所述检测目标所处环境的短波红外线,检测所述检测目标的体表温度和所述检测目标所处环境的环境温度;
将所述检测目标的体表温度和所述检测目标所处环境的环境温度代入算法公式,获取所述检测目标的人体核心温度;
发送所述检测目标的人体核心温度至医疗看护服务器。
本发明第四方面提供了一种基于人工智能的红外热成像体温检测的可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位;
响应所述人体裸露部位的短波红外线和所述检测目标所处环境的短波红外线,检测所述检测目标的体表温度和所述检测目标所处环境的环境温度;
将所述检测目标的体表温度和所述检测目标所处环境的环境温度代入算法 公式,获取所述检测目标的人体核心温度;
发送所述检测目标的人体核心温度至医疗看护服务器。
从上述本发明技术方案可知,一方面,由于设置于云台上的摄像头采集图像时可以同时采集多个检测目标的图像,因此,本发明提供的技术方案能够同时检测多个检测目标的体温,检测温度的效率大大提高;另一方面,不是直接将红外热成像仪测得的体表温度作为最终的人体温度,而是通过将检测目标的体表温度和检测目标所处环境的环境温度代入算法公式,获取检测目标的人体核心温度,因此,这种方式获取的人体核心温度与医学上最具备指导意义的直肠体温检测方式获取的人体温度,两者在数值上非常接近,从而大大提高了人体温度的检测精准度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的基于人工智能的红外热成像体温检测方法的实现流程示意图;
图2是本发明实施例二提供的基于人工智能的红外热成像体温检测装置的结构示意图;
图3是本发明实施例三提供的基于人工智能的红外热成像体温检测装置的结构示意图;
图4是本发明实施例四提供的基于人工智能的红外热成像体温检测装置的结构示意图;
图5-a是本发明实施例五提供的基于人工智能的红外热成像体温检测装置 的结构示意图;
图5-b是本发明实施例六提供的基于人工智能的红外热成像体温检测装置的结构示意图;
图5-c是本发明实施例七提供的基于人工智能的红外热成像体温检测装置的结构示意图;
图6是本发明实施例提供的基于人工智能的红外热成像体温检测的终端设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
请参阅附图1,是本发明实施例一提供的基于人工智能的红外热成像体温检测方法的实现流程示意图,主要包括以下步骤S101至步骤S104,详细说明如下:
S101,通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位。
在本发明实施例中,设置于云台上的摄像头,与红外热成像传感器相连,其核心在于可以实现物体轮廓和背景的差值区分。出于实用化的成本考虑,所选用红外热成像传感器的物理分辨率大于80*60而小于4096*2160。红外热成像传感器获得的图像信号经过ISP芯片进行降噪和定焦等处理,形成清晰度较高的热力图,再经由ARM系列芯片处理,这些芯片只要能够具有大于9帧/秒的处理能力即可实现本发明的技术方案。
需要说明的是,由于云台可以在水平方向上360度旋转,垂直方向上可以在-120°~+120°范围内自由旋转,因此,设置于云台上的摄像头不仅可以同时采集到多个检测目标的图像,而且可以对活动的检测目标进行连续监测。
另需说明的是,在本发明实施例中,检测目标可以是人,而人体裸露部位是没有被衣物、被褥等覆盖,裸露在外面的人体部位,可以是额头、胸部、背部、上臂、前臂、小腿和大腿等。
作为本发明一个实施例,通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位可以通过如下步骤S1011至S1013实现:
S1011,通过设置于云台上的摄像头采集检测目标的标识。
在本发明实施例中,检测目标的标识用于在特定的场合能够唯一地确定该检测目标身份的物件,例如,对于在医疗机构或养老机构的被护理人员,该标识可以是被护理人员的编号或床位号等。
S1012,确定检测目标的人体部位。
可以通过视觉识别算法,对检测目标的人体部位进行确定。
S1013,响应人体部位的长波红外线,判断人体部位何处被覆盖和何处为裸露。
研究表明,长波红外线对衣服、被褥等织物具有良好的穿透性,因此,在本发明实施例中,可以通过响应人体部位的长波红外线,判断人体部位何处被覆盖和何处为裸露,裸露的部位就是人体裸露部位。作为本发明一个实施例,长波红外线的波长为1200nm至2500nm,可以是1200nm、1800nm或2500nm。
S102,响应人体裸露部位的短波红外线和检测目标所处环境的短波红外线,检测检测目标的体表温度和检测目标所处环境的环境温度。
作为本发明一个实施例,短波红外线的波长为643nm至954nm,可以是643nm、790nm或954nm。由于短波红外线在测量环境温度和人体裸露部位要优于长波红外线,因此,在本发明实施例中,响应人体裸露部位的短波红外线和检测目标所处环境的短波红外线,检测检测目标的体表温度和检测目标所处 环境的环境温度。
S103,将检测目标的体表温度和检测目标所处环境的环境温度代入算法公式,获取检测目标的人体核心温度。
作为本发明一个实施例,将检测目标的体表温度和检测目标所处环境的环境温度代入算法公式,获取检测目标的人体核心温度可以通过如下步骤S1031至S1033实现:
S1031,根据实验结果,获取算法公式Tc=PsTs+Tb+R2Te
算法公式Tc=PsTs+Tb+R2Te是根据实验结果得到的一个计算公式,其中,Ps为与人体部位S相关的第一参数,Ts为响应人体部位S裸露时的短波红外线而检测到的人体部位S的体表温度,Tb为与人体部位S相关的基础温度,R为与人体部位S相关的第二参数,Te为响应检测目标所处环境的短波红外线而检测到的环境温度。表1示例的是针对男、女青年的不同人体部位,通过实验获得Ps、Tb和R后,得到的一组算法公式。例如,对于男青年的额头这一人体部位,通过实验获得Ps、Tb和R分别为0.080、32.510和0.988,则得到人体核心温度的算法公式为Tc=0.080Ts+32.510+0.9882Te,若再测得Ts和Te,则可以计算出人体核心温度。
表1针对男、女青年的不同人体部位,通过实验获得的一组算法公式
Figure PCTCN2017084577-appb-000001
Figure PCTCN2017084577-appb-000002
S1032,根据检测目标的人体裸露部位,选取与检测目标的人体裸露部位相关的Ps、R和Tb
例如,若检测目标是男青年,且其裸露的人体部位是手背,则按照上述表1的示例,选取与其手背相关的Ps、R和Tb分别为0.154、0.960和30.928;又如,若检测目标是女青年,且其裸露的人体部位是额头,则按照上述表1的示例,选取与其额头相关的Ps、R和Tb分别为0.080、0.988和32.510。
S1033,将检测目标的体表温度代入算法公式中的Ts、将检测目标所处环境的环境温度代入算法公式中的Te以及将经步骤S1032选取的Ps、R和Tb代入算法公式,计算检测目标的人体核心温度。
以检测目标是一男青年,且其裸露的人体部位是手背为例,按照上述表1的示例,选取与其手背相关的Ps、R和Tb分别为0.154、0.960和30.928。若经步骤S102,检测到该男青年的体表温度Ts和该男青年所处环境的环境温度Te分别是22.132℃和9.362℃,则将其代入算法公式Tc=0.154Ts+30.928+0.9602Te,计算得到的其人体核心温度Tc=0.154×22.132+30.928+0.9602×9.362=42.964。
上述本发明实施例提供的技术方案,得到的人体核心温度,其结果与医学 上最具备指导意义的直肠体温(即将水银温度计插入肛门检测体温)差值在0.05~0.1摄氏度之间,因此,该结果可以直接作为医学依据使用。
S104,发送检测目标的人体核心温度至医疗看护服务器。
在发送检测目标的人体核心温度至医疗看护服务器之前,本发明实施例提供的方法还包括:将检测目标的人体核心温度处理成数据表格,例如,excel表格。则发送检测目标的人体核心温度至医疗看护服务器可以是将数据表格发送至所述医疗看护服务器,如此,便于医护人员对检测目标的体征发展趋势可详细、直观地了解。
从上述附图1示例的基于人工智能的红外热成像体温检测方法可知,一方面,由于设置于云台上的摄像头采集图像时可以同时采集多个检测目标的图像,因此,本发明提供的技术方案能够同时检测多个检测目标的体温,检测温度的效率大大提高;另一方面,不是直接将红外热成像仪测得的体表温度作为最终的人体温度,而是通过将检测目标的体表温度和检测目标所处环境的环境温度代入算法公式,获取检测目标的人体核心温度,因此,这种方式获取的人体核心温度与医学上最具备指导意义的直肠体温检测方式获取的人体温度,两者在数值上非常接近,从而大大提高了人体温度的检测精准度。
请参阅附图2,是本发明实施例二提供的基于人工智能的红外热成像体温检测装置的结构示意图,其可以是一种红外热成像仪或红外热成像仪的功能单元。为了便于说明,附图2仅示出了与本发明实施例相关的部分。附图2示例的基于人工智能的红外热成像体温检测装置主要包括识别模块201、温度检测模块202、核心温度获取模块203和发送模块204,其中:
识别模块201,用于通过设置于云台上的摄像头采集图像,识别检测目标和检测目标的人体裸露部位;
温度检测模块202,用于响应人体裸露部位的短波红外线和检测目标所处环境的短波红外线,检测检测目标的体表温度和检测目标所处环境的环境温度;
核心温度获取模块203,用于将检测目标的体表温度和检测目标所处环境 的环境温度代入算法公式,获取检测目标的人体核心温度;
发送模块204,用于发送检测目标的人体核心温度至医疗看护服务器。
附图2示例的识别模块201可以包括采集单元301、确定单元302和判断单元303,如附图3所示本发明实施例三提供的基于人工智能的红外热成像体温检测装置,其中:
采集单元301,用于通过设置于云台上的摄像头采集检测目标的标识;
确定单元302,用于确定检测目标的人体部位;
判断单元303,用于响应人体部位的长波红外线,判断人体部位何处被覆盖和何处为裸露。
附图2和附图3示例的基于红外热成像的体温检测装置中,长波红外线的波长为1200nm至2500nm,短波红外线的波长为643nm至954nm。
附图2示例的核心温度获取模块203可以包括公式获取单元401、参数选取单元402和计算单元403,如附图4所示本发明实施例四提供的基于人工智能的红外热成像体温检测装置,其中:
公式获取单元401,用于根据实验结果,获取算法公式Tc=PsTs+Tb+R2Te,其中,Ps为与人体部位S相关的第一参数,Ts为响应人体部位S裸露时的短波红外线而检测到的人体部位S的体表温度,Tb为与人体部位S相关的基础温度,所述R为与人体部位S相关的第二参数,Te为响应检测目标所处环境的短波红外线而检测到的环境温度;
参数选取单元402,用于根据检测目标的人体裸露部位,选取与检测目标的人体裸露部位相关的Ps、R和Tb
计算单元403,用于将检测目标的体表温度代入算法公式Tc=PsTs+Tb+R2Te中的Ts、将检测目标所处环境的环境温度代入算法公式Tc=PsTs+Tb+R2Te中的Te以及将选取的Ps、R和Tb代入算法公式Tc=PsTs+Tb+R2Te,计算检测目标的人体核心温度。
附图2至4任一示例的基于人工智能的红外热成像体温检测装置还包括数 据处理模块501,如附图5-a至附图5-c所示实施例五至实施例七提供的基于人工智能的红外热成像体温检测装置。数据处理模块501用于核心温度获取模块203获取检测目标的人体核心温度之后,发送模块204发送检测目标的人体核心温度至医疗看护服务器之前,将检测目标的人体核心温度处理成数据表格。此时,发送模块204用于将数据表格发送至医疗看护服务器。
图6是本发明一实施例提供的基于人工智能的红外热成像体温检测的终端设备的示意图。如图6所示,该实施例的基于人工智能的红外热成像体温检测的终端设备6包括:处理器60、存储器61以及存储在存储器61中并可在处理器60上运行的计算机程序62,例如基于人工智能的红外热成像体温检测的程序。处理器60执行计算机程序62时实现上述各个基于人工智能的红外热成像体温检测的方法实施例中的步骤,例如图1所示的步骤S101至S103。或者,处理器60执行计算机程序62时实现上述各装置实施例中各模块/单元的功能,例如图2所示质量筛选模块201、关键帧筛选模块202和图像拼接模块203的功能。
示例性的,基于人工智能的红外热成像体温检测的计算机程序62主要包括:对获取的图像序列进行质量筛选,以保留图像序列中符合质量要求的图像序列;按照特征匹配算法,从符合质量要求的图像序列中筛选出关键帧,得到最优图像集;对最优图像集中的图像进行拼接,获得全景图像。计算机程序62可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器61中,并由处理器60执行,以完成本发明。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序62在基于人工智能的红外热成像体温检测的终端设备6中的执行过程。例如,计算机程序62可以被分割成同步模块、汇总模块、获取模块、返回模块(虚拟装置中的模块),各模块具体功能如下:
基于人工智能的红外热成像体温检测的终端设备6可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。基于人工智能的红外热成像体温 检测的终端设备可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是基于人工智能的红外热成像体温检测的终端设备6的示例,并不构成对基于人工智能的红外热成像体温检测的终端设备6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如内容推送的终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器61可以是基于人工智能的红外热成像体温检测的终端设备6的内部存储单元,例如基于人工智能的红外热成像体温检测的终端设备6的硬盘或内存。存储器61也可以是基于人工智能的红外热成像体温检测的终端设备6的外部存储设备,例如基于人工智能的红外热成像体温检测的终端设备6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器61还可以既包括基于人工智能的红外热成像体温检测的终端设备6的内部存储单元也包括外部存储设备。存储器61用于存储计算机程序以及基于人工智能的红外热成像体温检测的终端设备所需的其他程序和数据。存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可 以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的 形式实现。
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,例如,通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位;响应所述人体裸露部位的短波红外线和所述检测目标所处环境的短波红外线,检测所述检测目标的体表温度和所述检测目标所处环境的环境温度;将所述检测目标的体表温度和所述检测目标所处环境的环境温度代入算法公式,获取所述检测目标的人体核心温度;发送所述检测目标的人体核心温度至医疗看护服务器,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种基于人工智能的红外热成像体温检测方法,其特征在于,所述方法包括:
    通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位;
    响应所述人体裸露部位的短波红外线和所述检测目标所处环境的短波红外线,检测所述检测目标的体表温度和所述检测目标所处环境的环境温度;
    将所述检测目标的体表温度和所述检测目标所处环境的环境温度代入算法公式,获取所述检测目标的人体核心温度;
    发送所述检测目标的人体核心温度至医疗看护服务器。
  2. 如权利要求1所述的方法,其特征在于,所述通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位,包括:
    通过设置于云台上的摄像头采集所述检测目标的标识;
    确定所述检测目标的人体部位;
    响应所述人体部位的长波红外线,判断所述人体部位何处被覆盖和何处为裸露。
  3. 如权利要求2所述的方法,其特征在于,所述长波红外线的波长为1200nm至2500nm,所述短波红外线的波长为643nm至954nm。
  4. 如权利要求1所述的方法,其特征在于,所述将所述检测目标的体表温度和所述检测目标所处环境的环境温度代入算法公式,获取所述检测目标的人体核心温度,包括:
    根据实验结果,获取算法公式Tc=PsTs+Tb+R2Te,所述Ps为与人体部位S相关的第一参数,所述Ts为响应所述人体部位S裸露时的短波红外线而检测到的所 述人体部位S的体表温度,所述Tb为与所述人体部位S相关的基础温度,所述R为与所述人体部位S相关的第二参数,所述Te为响应所述检测目标所处环境的短波红外线而检测到的环境温度;
    根据所述检测目标的人体裸露部位,选取与所述检测目标的人体裸露部位相关的Ps、R和Tb
    将所述检测目标的体表温度代入所述算法公式Tc=PsTs+Tb+R2Te中的Ts、将所述检测目标所处环境的环境温度代入所述算法公式Tc=PsTs+Tb+R2Te中的Te以及将所述选取的Ps、R和Tb代入所述算法公式Tc=PsTs+Tb+R2Te,计算所述检测目标的人体核心温度。
  5. 如权利要求1至4任意一项所述的方法,其特征在于,所述获取所述检测目标的人体核心温度之后、发送所述检测目标的人体核心温度至医疗看护服务器之前,所述方法还包括:
    将所述检测目标的人体核心温度处理成数据表格;
    所述发送所述检测目标的人体核心温度至医疗看护服务器,包括:将所述数据表格发送至所述医疗看护服务器。
  6. 一种基于人工智能的红外热成像体温检测装置,其特征在于,所述装置包括:
    识别模块,用于通过设置于云台上的摄像头采集图像,识别检测目标和所述检测目标的人体裸露部位;
    温度检测模块,用于响应所述人体裸露部位的短波红外线和所述检测目标所处环境的短波红外线,检测所述检测目标的体表温度和所述检测目标所处环境的环境温度;
    核心温度获取模块,用于将所述检测目标的体表温度和所述检测目标所处 环境的环境温度代入算法公式,获取所述检测目标的人体核心温度;
    发送模块,用于发送所述检测目标的人体核心温度至医疗看护服务器。
  7. 如权利要求6所述的装置,其特征在于,所述识别模块包括:
    采集单元,用于通过设置于云台上的摄像头采集所述检测目标的标识;
    确定单元,用于确定所述检测目标的人体部位;
    判断单元,用于响应所述人体部位的长波红外线,判断所述人体部位何处被覆盖和何处为裸露。
  8. 如权利要求7所述的装置,其特征在于,所述长波红外线的波长为1200nm至2500nm,所述短波红外线的波长为643nm至954nm。
  9. 如权利要求6所述的装置,其特征在于,所述核心温度获取模块包括:
    公式获取单元,用于根据实验结果,获取算法公式Tc=PsTs+Tb+R2Te,所述Ps为与人体部位S相关的第一参数,所述Ts为响应所述人体部位S裸露时的短波红外线而检测到的所述人体部位S的体表温度,所述Tb为与所述人体部位S相关的基础温度,所述R为与所述人体部位S相关的第二参数,所述Te为响应所述检测目标所处环境的短波红外线而检测到的环境温度;
    参数选取单元,用于根据所述检测目标的人体裸露部位,选取与所述检测目标的人体裸露部位相关的Ps、R和Tb
    计算单元,用于将所述检测目标的体表温度代入所述算法公式Tc=PsTs+Tb+R2Te中的Ts、将所述检测目标所处环境的环境温度代入所述算法公式Tc=PsTs+Tb+R2Te中的Te以及将所述选取的Ps、R和Tb代入所述算法公式Tc=PsTs+Tb+R2Te,计算所述检测目标的人体核心温度。
  10. 如权利要求6至9任意一项所述的装置,其特征在于,所述装置还包括:
    数据处理模块,用于所述核心温度获取模块获取所述检测目标的人体核心 温度之后,所述发送模块发送所述检测目标的人体核心温度至医疗看护服务器之前,将所述检测目标的人体核心温度处理成数据表格;
    所述发送模块用于将所述数据表格发送至所述医疗看护服务器。
  11. 一种基于人工智能的红外热成像体温检测的终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至5任意一项所述方法的步骤。
  12. 一种基于人工智能的红外热成像体温检测的计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任意一项所述方法的步骤。
PCT/CN2017/084577 2017-04-10 2017-05-16 基于人工智能的红外热成像体温检测方法、装置和终端设备 WO2018188147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710233011.8A CN107049253B (zh) 2017-04-10 2017-04-10 一种基于人工智能的红外热成像体温检测方法和装置
CN201710233011.8 2017-04-10

Publications (1)

Publication Number Publication Date
WO2018188147A1 true WO2018188147A1 (zh) 2018-10-18

Family

ID=59603135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084577 WO2018188147A1 (zh) 2017-04-10 2017-05-16 基于人工智能的红外热成像体温检测方法、装置和终端设备

Country Status (2)

Country Link
CN (1) CN107049253B (zh)
WO (1) WO2018188147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021257158A1 (en) * 2020-06-17 2021-12-23 Microsoft Technology Licensing, Llc Body temperature estimation via thermal intensity distribution

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108451509A (zh) * 2018-03-26 2018-08-28 杨松 连续测量核心体温方法及装置
CN110974186B (zh) * 2018-10-02 2022-08-30 希尔-罗姆服务公司 用于确定目标区域温度变化的温度监测系统和方法
CN110749061A (zh) * 2019-10-31 2020-02-04 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN113125014A (zh) * 2020-01-15 2021-07-16 广东小天才科技有限公司 一种红外测体温的方法、电子设备、可读存储介质
CN111223225A (zh) * 2020-02-11 2020-06-02 厦门瑞为信息技术有限公司 一套集成测温和人脸识别闸机伴侣的检测通行系统
CN111458031A (zh) * 2020-04-08 2020-07-28 深圳市大树人工智能科技有限公司 一种非接触式远距离测量人体体温的测算方法
CN113679360B (zh) * 2020-05-15 2024-05-24 广东小天才科技有限公司 核心体温测量方法、装置、设备及可读介质
EP3922968A3 (en) 2020-05-22 2022-05-18 Eaton Intelligent Power Limited Temperature measurement system
CN111920391B (zh) * 2020-06-23 2022-05-31 联想(北京)有限公司 一种测温方法及设备
EP4196006B1 (en) * 2020-08-13 2024-10-02 Fitbit LLC Detection of user temperature and assessment of physiological symptoms with respiratory diseases
CN113191725A (zh) * 2021-04-20 2021-07-30 吕世福 一种医院人员出入管控方法、系统、存储介质、设备、终端
CN113432720A (zh) * 2021-06-25 2021-09-24 深圳市迈斯泰克电子有限公司 基于人体识别的温度检测方法、装置以及温度检测仪器
CN113812805A (zh) * 2021-10-26 2021-12-21 皖江工学院 智能控温婴儿床

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112306A (zh) * 2007-06-27 2008-01-30 杨福生 无创体核温度测量的方法、装置和标定设备及其标定方法
CN101972140A (zh) * 2010-09-07 2011-02-16 航天海鹰安全技术工程有限公司 热成像体温监控装置、系统及方法
KR20110082282A (ko) * 2010-01-11 2011-07-19 (주)휴비딕 적외선 체온 측정기에서의 중심 온도 검출 장치 및 방법
CN103932683A (zh) * 2014-03-31 2014-07-23 京东方科技集团股份有限公司 一种测温装置和测温方法
CN104376582A (zh) * 2013-08-13 2015-02-25 联想(北京)有限公司 一种监控方法及电子终端
CN104434031A (zh) * 2013-09-17 2015-03-25 汉唐集成股份有限公司 红外热影像系统及分析自由皮瓣表面温度影响因素的方法
CN105208922A (zh) * 2013-05-02 2015-12-30 德尔格制造股份两合公司 用于确定主体的核心温度的方法和装置
CN105748046A (zh) * 2016-02-05 2016-07-13 福建农林大学 基于红外热像图的温度信息监测方法及其系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221888A1 (en) * 2008-03-03 2009-09-03 Ravindra Wijesiriwardana Wearable sensor system for environmental and physiological information monitoring and information feedback system
DE102011114620B4 (de) * 2011-09-30 2014-05-08 Dräger Medical GmbH Vorrichtung und Verfahren zur Bestimmungder Körperkerntemperatur
KR101831486B1 (ko) * 2011-10-07 2018-02-22 플리어 시스템즈, 인크. 스마트 감시 카메라 시스템 및 방법
CN104095655A (zh) * 2014-07-22 2014-10-15 唐洪玉 一种智能体征监测腕式可穿戴设备及血压测量方法
CN205940771U (zh) * 2016-07-27 2017-02-08 广东电网有限责任公司中山供电局 红外测温装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112306A (zh) * 2007-06-27 2008-01-30 杨福生 无创体核温度测量的方法、装置和标定设备及其标定方法
KR20110082282A (ko) * 2010-01-11 2011-07-19 (주)휴비딕 적외선 체온 측정기에서의 중심 온도 검출 장치 및 방법
CN101972140A (zh) * 2010-09-07 2011-02-16 航天海鹰安全技术工程有限公司 热成像体温监控装置、系统及方法
CN105208922A (zh) * 2013-05-02 2015-12-30 德尔格制造股份两合公司 用于确定主体的核心温度的方法和装置
CN104376582A (zh) * 2013-08-13 2015-02-25 联想(北京)有限公司 一种监控方法及电子终端
CN104434031A (zh) * 2013-09-17 2015-03-25 汉唐集成股份有限公司 红外热影像系统及分析自由皮瓣表面温度影响因素的方法
CN103932683A (zh) * 2014-03-31 2014-07-23 京东方科技集团股份有限公司 一种测温装置和测温方法
CN105748046A (zh) * 2016-02-05 2016-07-13 福建农林大学 基于红外热像图的温度信息监测方法及其系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021257158A1 (en) * 2020-06-17 2021-12-23 Microsoft Technology Licensing, Llc Body temperature estimation via thermal intensity distribution
US11598671B2 (en) 2020-06-17 2023-03-07 Microsoft Technology Licensing, Llc Body temperature estimation via thermal intensity distribution

Also Published As

Publication number Publication date
CN107049253A (zh) 2017-08-18
CN107049253B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2018188147A1 (zh) 基于人工智能的红外热成像体温检测方法、装置和终端设备
White et al. Algorithms for smartphone and tablet image analysis for healthcare applications
Khaksari et al. Review of the efficacy of infrared thermography for screening infectious diseases with applications to COVID-19
Somboonkaew et al. Mobile-platform for automatic fever screening system based on infrared forehead temperature
Francis et al. Automatic detection of abnormal breast thermograms using asymmetry analysis of texture features
CN111426388A (zh) 人员体温测量方法、系统、计算机存储介质及电子设备
US20160150976A1 (en) High-resolution thermal imaging system, apparatus, method and computer accessible medium
JP2014135993A (ja) 体温測定装置、体温測定方法及び体温管理システム
US20170249738A1 (en) Software tool for breast cancer screening
RU2452925C1 (ru) Способ отображения температурного поля биологического объекта
Vardasca et al. Bilateral assessment of body core temperature through axillar, tympanic and inner canthi thermometers in a young population
CN112434598A (zh) 一种非接触式体温测量方法和系统
Haripriya et al. Development of low-cost thermal imaging system as a preliminary screening instrument
Lyra et al. Camera fusion for real-time temperature monitoring of neonates using deep learning
Sharma et al. Image processing based body temperature estimation using thermal video sequence
Niri et al. Smartphone-based thermal imaging system for diabetic foot ulcer assessment
Shcherbakova et al. Optical thermography infrastructure to assess thermal distribution in critically ill children
US10993625B1 (en) System, method, and apparatus for temperature asymmetry measurement of body parts
Nur Identification of thermal abnormalities by analysis of abdominal infrared thermal images of neonatal patients
KR20080071022A (ko) 염증 진단 장치 및 그에 의한 염증 진단 방법
Gutierrez et al. Combined thermal and color 3D model for wound evaluation from handheld devices
US20220296158A1 (en) System, method, and apparatus for temperature asymmetry measurement of body parts
JP2022065425A (ja) 非接触体温測定装置、方法及びプログラム
Shi Infrared Imaging Decision Aid Tools for Diagnosis of Necrotizing Enterocolitis
CN116982942B (zh) 一种基于红外热成像的口腔测温方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905023

Country of ref document: EP

Kind code of ref document: A1