WO2018188052A1 - 一种无人机飞行器激光导航的系统 - Google Patents

一种无人机飞行器激光导航的系统 Download PDF

Info

Publication number
WO2018188052A1
WO2018188052A1 PCT/CN2017/080529 CN2017080529W WO2018188052A1 WO 2018188052 A1 WO2018188052 A1 WO 2018188052A1 CN 2017080529 W CN2017080529 W CN 2017080529W WO 2018188052 A1 WO2018188052 A1 WO 2018188052A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation
plate
base
fixed
sliding base
Prior art date
Application number
PCT/CN2017/080529
Other languages
English (en)
French (fr)
Inventor
肖丽芳
Original Assignee
深圳市方鹏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市方鹏科技有限公司 filed Critical 深圳市方鹏科技有限公司
Priority to PCT/CN2017/080529 priority Critical patent/WO2018188052A1/zh
Publication of WO2018188052A1 publication Critical patent/WO2018188052A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems

Definitions

  • the present invention relates to a system for laser navigation of a drone aircraft.
  • Navigation is a method of guiding a device from one point of a specified route to another. Navigation is divided into two categories: (1) autonomous navigation: navigation with aircraft or equipment on the ship, inertial navigation, Doppler navigation and astronomical navigation; (2) non-autonomous navigation: used for aircraft, ships, cars, etc.
  • the transportation equipment is coordinated with the relevant ground or air equipment, with radio navigation and satellite navigation. In the military, it is also necessary to complete tasks such as weapon projection, reconnaissance, patrol, anti-submarine and rescue.
  • the use of navigation satellites for navigation and positioning of ground, ocean, air and space users. The use of the sun, the moon, and other natural celestial navigation has been around for thousands of years.
  • Satellite navigation combines the advantages of traditional navigation systems to truly achieve high-precision passive navigation and positioning in all weather conditions.
  • the inter-turn distance satellite navigation system not only provides continuous three-dimensional coverage of global and near-Earth space, high-precision three-dimensional positioning and speed measurement, but also strong anti-interference ability.
  • a system for laser navigation of a drone aircraft is provided.
  • a system for laser navigation of an unmanned aerial vehicle the main structure of which is: a longitudinal sliding base a, a lateral sliding base, and a longitudinal sliding base b a ruler a, a navigation bottom plate, a scale b, an electric telescopic rod, a navigation top board, a auxiliary rod, a navigation aid fixing plate, a laser navigation head, a navigation pointer, a base plate, and the longitudinal sliding base a is slotted to the lateral sliding base a lateral sliding base is connected to the longitudinal sliding base b; the longitudinal sliding base b is affixed with a scale a; A base plate is fixed on the longitudinal sliding base b, and a navigation bottom plate is fixed on the side of the base plate by bolts, and a navigation pointer is fixed on the left side of the navigation base.
  • the navigation top plate and the base plate are supported and fixed by an auxiliary rod, and the top of the auxiliary rod is fixed with a navigation member fixing plate; the center of the base plate is inverted with an electric telescopic rod, and the electric telescopic rod is The end of the telescopic rod passes through the navigation top plate and the end is fixed under the navigation member fixing plate.
  • the front end of the navigation top plate has a convex portion corresponding to the navigation bottom plate; a laser navigation head is suspended under the navigation top plate; and the scale plate b is disposed on the base plate. Further, the navigation pointer is positioned opposite the scale b.
  • 1 is a schematic overall structural view of a system for laser navigation of a UAV aircraft according to the present invention.
  • 2 is a diagram showing an exploded structure of a system for laser navigation of an unmanned aerial vehicle.
  • 1-longitudinal sliding base a 2- lateral sliding base, 3-longitudinal sliding base b, 4-scale a, 5-navigation bottom plate, 6-scale b, 7-electric telescopic rod, 8-navigation top plate , 9-Auxiliary Rod, 10-Navigation Fixed Plate, 11-Laser Navigation Head, 12-Navigation Pointer, 13-Base Plate
  • a system for laser navigation of an unmanned aerial vehicle the main structures of which are: a longitudinal sliding base a1, a lateral sliding base 2, a longitudinal sliding base b3, a scale a4, a navigation floor 5, a scale b6, an electric telescopic rod 7.
  • the base 2 is slotted on the longitudinal sliding base b3; the longitudinal sliding base b3 is affixed with a scale a4 on the side; the longitudinal sliding base b3 is fixed with a base plate 13 on the side of the base plate 13
  • the navigation base 5 is fixed by bolts, and the navigation pointer 12 is fixed to the left side of the navigation base 5.
  • the navigation top plate 8 and the base plate 13 are supported and fixed by the auxiliary rod 9 , and the top end of the auxiliary rod 9 is fixed.
  • a navigation member fixing plate 10 There is a navigation member fixing plate 10; an electric telescopic rod 7 is inverted at a center of the base plate 13 , and the telescopic rod end of the electric telescopic rod 7 passes through the navigation top plate 8 and is fixed at the end of the navigation member fixing plate 10 .
  • the front end convex portion of the navigation top plate 8 corresponds to the navigation bottom plate 5; the laser navigation head 11 is suspended under the navigation top plate 8; and the base plate 13 is provided with a scale b6.
  • the navigation pointer 12 is positioned opposite the scale b6.
  • the working principle of the invention is: a sliding platform with a longitudinal sliding base a1 and a lateral sliding base 2 as a horizontal plane XY axis, and a longitudinal sliding base b3 matching the scale a4 as a longitudinal fine-tuning working platform; in the process of laser navigation , is to work with the visual reading of the scale b6 and the navigation pointer 12.
  • the core adopts the high-precision linear up-and-down telescopic expansion of the electric telescopic rod 7, which realizes the purpose of continuous navigation in the short squat; in the process of implementing the navigation component, we first pass the navigation member through the clamping.
  • the bolt fixing method is fixed on the navigation member fixing plate 10, and the laser navigation head 11 cooperates with the linear expansion and contraction of the electric telescopic rod 7 to realize navigation.
  • the basic principles, main features and advantages of the present invention are shown and described above. It should be understood by those skilled in the art that the present invention is not limited by the foregoing embodiments, and that the present invention is only described in the foregoing embodiments and the description of the present invention, without departing from the spirit and scope of the invention. Various changes and modifications are intended to fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and their equivalents.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

一种无人机飞行器激光导航的系统。纵向滑动基座a(1)槽接于横向滑动基座(2)上,横向滑动基座(2)槽接于纵向滑动基座b(3)上;纵向滑动基座b(3)侧面贴有标尺a(4);纵向滑动基座b(3)上固定有基座板(13),基座板(13)侧边上通过螺栓固定有导航底板(5),导航底板(5)左侧固定有导航指针(12);导航顶板(8)与基座板(13)之间通过辅杆(9)相支撑固定,辅杆(9)顶端固定有导航件固定板(10);基座板(13)内中心处倒置有电动伸缩杆(7),电动伸缩杆(7)的伸缩杆端贯通导航顶板(8)后末端固定于导航件固定板(10)下。该系统结构简单、装配容易,适用无人机的定位导航。

Description

发明名称:一种无人机飞行器激光导航的系统 技术领域
[0001] 本发明涉及一种无人机飞行器激光导航的系统。
背景技术
[0002] 导航是引导某一设备, 从指定航线的一点运动到另一点的方法。 导航分两类: (1)自主式导航: 用飞行器或船舶上的设备导航, 有惯性导航、 多普勒导航和天 文导航等; (2)非自主式导航: 用于飞行器、 船舶、 汽车等交通设备与有关的地 面或空中设备相配合导航, 有无线电导航、 卫星导航。 在军事上, 还要配合完 成武器投射、 侦察、 巡逻、 反潜和援救等任务。 采用导航卫星对地面、 海洋、 空中和空间用户进行导航定位的技术。 利用太阳、 月球和其他自然天体导航已 有数千年历史, 由人造天体导航的设想虽然早在 19世纪后半期就有人提出, 但 直到 20世纪 60年代才幵始实现。 1964年美国建成"子午仪 "卫星导航系统, 并交付 海军使用, 1967年幵始民用。 1973年又幵始研制 "导航星"全球定位系统。 苏联也 建立了类似的卫星导航系统。 法国、 日本、 中国也幵展了卫星导航的研究和试 验工作。 卫星导航综合了传统导航系统的优点, 真正实现了各种天气条件下全 球高精度被动式导航定位。 特别是吋间测距卫星导航系统, 不但能提供全球和 近地空间连续立体覆盖、 高精度三维定位和测速, 而且抗干扰能力强。
技术问题
[0003] 提供一种无人机飞行器激光导航的系统。
问题的解决方案
技术解决方案
[0004] 本发明解决其上述的技术问题所采用以下的技术方案: 一种无人机飞行器激光 导航的系统, 其主要构造有: 纵向滑动基座 a、 横向滑动基座、 纵向滑动基座 b、 标尺 a、 导航底板、 标尺 b、 电动伸缩杆、 导航顶板、 辅杆、 导航件固定板、 激光 导航头、 导航指针、 基座板, 所述的纵向滑动基座 a槽接于横向滑动基座上, 横 向滑动基座槽接于纵向滑动基座 b上; 所述的纵向滑动基座 b侧面贴有标尺 a; 所 述的纵向滑动基座 b上固定有基座板, 基座板侧边上通过螺栓固定有导航底板, 导航底板左侧固定有导航指针。 所述的导航顶板与基座板之间通过辅杆相支撑 固定, 辅杆顶端固定有导航件固定板; 所述的基座板内中心处倒置有电动伸缩 杆, 所述的电动伸缩杆其伸缩杆端贯通导航顶板后末端固定于导航件固定板下 。 所述的导航顶板前端凸部分位置上与导航底板相对应; 所述的导航顶板下悬 挂有激光导航头; 所述的基座板上设有标尺 b。 进一步地, 所述的导航指针位置 上正对标尺 b。
发明的有益效果
有益效果
[0005] 结构简单、 装配容易; 适用无人机的定位导航。
对附图的简要说明
附图说明
[0006] 图 1为本发明一种无人机飞行器激光导航的系统整体结构图。 图 2为本发明一种 无人机飞行器激光导航的系统爆炸结构图。 图中 1-纵向滑动基座 a, 2-横向滑动 基座, 3-纵向滑动基座 b, 4-标尺 a, 5-导航底板, 6-标尺 b, 7-电动伸缩杆, 8-导 航顶板, 9-辅杆, 10-导航件固定板, 11-激光导航头, 12-导航指针, 13-基座板
本发明的实施方式
[0007] 下面结合附图 1-2对本发明的具体实施方式做一个详细的说明。 实施例: 一种 无人机飞行器激光导航的系统, 其主要构造有: 纵向滑动基座 al、 横向滑动基座 2、 纵向滑动基座 b3、 标尺 a4、 导航底板 5、 标尺 b6、 电动伸缩杆 7、 导航顶板 8、 辅杆 9、 导航件固定板 10、 激光导航头 11、 导航指针 12、 基座板 13, 所述的纵向 滑动基座 al槽接于横向滑动基座 2上, 横向滑动基座 2槽接于纵向滑动基座 b3上; 所述的纵向滑动基座 b3侧面贴有标尺 a4; 所述的纵向滑动基座 b3上固定有基座板 13, 基座板 13侧边上通过螺栓固定有导航底板 5, 导航底板 5左侧固定有导航指 针 12。 所述的导航顶板 8与基座板 13之间通过辅杆 9相支撑固定, 辅杆 9顶端固定 有导航件固定板 10; 所述的基座板 13内中心处倒置有电动伸缩杆 7, 所述的电动 伸缩杆 7其伸缩杆端贯通导航顶板 8后末端固定于导航件固定板 10下。 所述的导 航顶板 8前端凸部分位置上与导航底板 5相对应; 所述的导航顶板 8下悬挂有激光 导航头 11 ; 所述的基座板 13上设有标尺 b6。 所述的导航指针 12位置上正对标尺 b 6。 本发明工作原理: 以纵向滑动基座 al、 横向滑动基座 2为水平面 XY轴两个方 向的平移平台, 以纵向滑动基座 b3配合标尺 a4作为纵向微调的工作平台; 在激光 导航的过程中, 是有以标尺 b6与导航指针 12可视读数进行工作的。 在实施利用 线性导向过程中核心是采用了电动伸缩杆 7高精度的线性上下伸缩, 实现了在短 吋间内能够连续导航的目的; 在实施导航件过程中, 我们首先将导航件通过夹 持、 螺栓固定的方式固定于导航件固定板 10上, 再通过激光导航头 11配合电动 伸缩杆 7的线性伸缩, 实现了导航。 以上显示和描述了本发明的基本原理、 主要 特征和本发明的优点。 本行业的技术人员应该了解, 本发明不受上述实施例的 限制, 上述实施例和说明书中描述的只是说明本发明的原理, 在不脱离本发明 精神和范围的前提下, 本发明还会有各种变化和改进, 这些变化和改进都落入 要求保护的本发明范围内。 本发明要求保护范围由所附的权利要求书及其等效 物界定。

Claims

权利要求书 [权利要求 1] 一种无人机飞行器激光导航的系统, 其主要构造有: 纵向滑动基座 a
( 1) 、 横向滑动基座 (2) 、 纵向滑动基座 b (3) 、 标尺 a (4) 、 导 航底板 (5) 、 标尺 b (6) 、 电动伸缩杆 (7) 、 导航顶板 (8) 、 辅 杆 (9) 、 导航件固定板 (10) 、 激光导航头 (11) 、 导航指针 (12 ) 、 基座板 (13) , 其特征在于: 纵向滑动基座 a ( 1) 槽接于横向滑 动基座 (2) 上, 横向滑动基座 (2) 槽接于纵向滑动基座 b (3) 上; 所述的纵向滑动基座 b (3) 侧面贴有标尺 a (4) ; 所述的纵向滑动基 座 b (3) 上固定有基座板 (13) , 基座板 (13) 侧边上通过螺栓固定 有导航底板 (5) , 导航底板 (5) 左侧固定有导航指针 (12) 。 所述 的导航顶板 (8) 与基座板 (13) 之间通过辅杆 (9) 相支撑固定, 辅 杆 (9) 顶端固定有导航件固定板 (10) ; 所述的基座板 (13) 内中 心处倒置有电动伸缩杆 (7) , 所述的电动伸缩杆 (7) 其伸缩杆端贯 通导航顶板 (8) 后末端固定于导航件固定板 (10) 下。 所述的导航 顶板 (8) 前端凸部分位置上与导航底板 (5) 相对应; 所述的导航顶 板 (8) 下悬挂有激光导航头 (11) ; 所述的基座板 (13) 上设有标 尺 b (6) 。
[权利要求 2] 根据权利要求 1所述的一种无人机飞行器激光导航的系统, 其特征在 于所述的导航指针 (12) 位置上正对标尺 b (6) 。
PCT/CN2017/080529 2017-04-14 2017-04-14 一种无人机飞行器激光导航的系统 WO2018188052A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080529 WO2018188052A1 (zh) 2017-04-14 2017-04-14 一种无人机飞行器激光导航的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080529 WO2018188052A1 (zh) 2017-04-14 2017-04-14 一种无人机飞行器激光导航的系统

Publications (1)

Publication Number Publication Date
WO2018188052A1 true WO2018188052A1 (zh) 2018-10-18

Family

ID=63792136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080529 WO2018188052A1 (zh) 2017-04-14 2017-04-14 一种无人机飞行器激光导航的系统

Country Status (1)

Country Link
WO (1) WO2018188052A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202304684U (zh) * 2011-08-23 2012-07-04 许晓华 电动推杆行程测量装置
CN202549313U (zh) * 2012-04-13 2012-11-21 深圳市金动力包装设备有限公司 移动调节机构及检测装置
CN203511002U (zh) * 2013-09-18 2014-04-02 粟秉楷 多轴移动式激光打标机
CN105034612A (zh) * 2015-09-08 2015-11-11 江苏艺佳精密仪器制造有限公司 一种镭射打标器
CN204832514U (zh) * 2015-07-20 2015-12-02 北京数字绿土科技有限公司 一体化多传感器激光雷达扫描系统
CN105259555A (zh) * 2015-11-27 2016-01-20 中山市厚源电子科技有限公司 一种伸缩式激光测距传感器
CN206201693U (zh) * 2016-10-19 2017-05-31 宁波中物东方光电技术有限公司 一种利用线性导向原理的激光打标机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202304684U (zh) * 2011-08-23 2012-07-04 许晓华 电动推杆行程测量装置
CN202549313U (zh) * 2012-04-13 2012-11-21 深圳市金动力包装设备有限公司 移动调节机构及检测装置
CN203511002U (zh) * 2013-09-18 2014-04-02 粟秉楷 多轴移动式激光打标机
CN204832514U (zh) * 2015-07-20 2015-12-02 北京数字绿土科技有限公司 一体化多传感器激光雷达扫描系统
CN105034612A (zh) * 2015-09-08 2015-11-11 江苏艺佳精密仪器制造有限公司 一种镭射打标器
CN105259555A (zh) * 2015-11-27 2016-01-20 中山市厚源电子科技有限公司 一种伸缩式激光测距传感器
CN206201693U (zh) * 2016-10-19 2017-05-31 宁波中物东方光电技术有限公司 一种利用线性导向原理的激光打标机

Similar Documents

Publication Publication Date Title
CN109240322B (zh) 一种面向对地超幅宽成像的卫星编队实现方法
CN105353772B (zh) 一种无人机机动目标定位跟踪中的视觉伺服控制方法
CN103557871B (zh) 一种浮空飞行器捷联惯导空中初始对准方法
WO2017113567A1 (zh) 火星探测器自主导航方法
CN108152529A (zh) 一种基于飞行参数计算风速及风向的方法
CN111596687A (zh) 一种垂直起降无人机移动平台降落引导装置及其引导方法
CN108759819A (zh) 一种基于全天域偏振度信息的偏振导航实时定位方法
CN105043418B (zh) 一种适用于船载动中通的惯导系统快速初始粗对准方法
CN108536132A (zh) 一种固定翼无人机空中加油平台及其加油方法
CN107727101B (zh) 基于双偏振光矢量的三维姿态信息快速解算方法
CN103217987A (zh) 一种用于敏捷卫星动态成像的姿态调整方法
Bangert et al. Performance characteristics of the UWE-3 miniature attitude determination and control system
CN105157667A (zh) 一种基于大气偏振信息的太阳高度角计算方法
CN202102116U (zh) 无人机测控车的测控系统
CN107918400B (zh) 一种空天飞行器在轨操作相对位置姿态联合控制方法
WO2018188052A1 (zh) 一种无人机飞行器激光导航的系统
CN105914844A (zh) 一种多维减震式无人机充电站
CN204399470U (zh) 四旋翼无人机机架及四旋翼无人机
CN106005463A (zh) 一种无人机充电设备专用可调充电基座
CN113984069B (zh) 基于人造卫星的星光定位导航方法
CN111156956B (zh) 基于大气偏振e-矢量模式特征的空间姿态参数获取方法
CN102269594B (zh) 基于路径积分的空间导航方法
RU2734559C2 (ru) Воздухоплавательный электропоезд
Nebylov et al. Control aspects of aerospace plane docking with ekranoplane for water landing
RU2642210C1 (ru) Воздухоплавательный аппарат

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17905885

Country of ref document: EP

Kind code of ref document: A1