WO2018188046A1 - 玉米株高远程测量系统和测量方法 - Google Patents
玉米株高远程测量系统和测量方法 Download PDFInfo
- Publication number
- WO2018188046A1 WO2018188046A1 PCT/CN2017/080506 CN2017080506W WO2018188046A1 WO 2018188046 A1 WO2018188046 A1 WO 2018188046A1 CN 2017080506 W CN2017080506 W CN 2017080506W WO 2018188046 A1 WO2018188046 A1 WO 2018188046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corn plant
- image
- data processing
- height
- corn
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
Definitions
- the present invention relates to a height measuring system for corn plants, particularly a corn plant height remote measuring system and measuring method.
- Crop growth generally refers to the growth status and trend of crops.
- the characteristic parameters used to describe crop growth can be divided into three aspects: individual characteristic parameters, group characteristic parameters and comprehensive parameters.
- the individual characteristic parameters include plant height, stem diameter, leaf number, shape, color, etc.
- the group characteristic parameters include planting density, plant spacing, row spacing, etc.
- the comprehensive characteristic parameter refers to the leaf area index.
- Crop height is one of the important aspects of growth information, and it is one of the important indicators to measure its growth rate. It plays an important role in the research fields of agronomy, horticulture and agricultural machinery. For example, automatic adjustment of the height of the harvester's header, control of the position of the nozzle of the automatic application equipment, etc., are required to obtain the height value of the crop as a reference standard.
- the manual method is measured with a tape measure, a vernier caliper, etc., although the results are more accurate, but it is laborious and cannot achieve continuous monitoring throughout the entire growth of the crop.
- the present invention provides an actual non-destructive measurement method, overcomes the shortcomings of the existing height detection method, and realizes real, non-destructive, remote, continuous measurement of any height of corn, and the specific technical solutions are:
- a plant height remote measurement system including a graphics acquisition system, a data processing system, and a remote server
- the graphic acquisition system is installed in the corn field and is connected to the data processing system through a wireless or wired connection.
- the remote server runs on the data processing system, and the remote server controls the graphic acquisition system to collect digital images of the corn plants, and the corn plants are collected.
- the digital image is transmitted to the data processing system for data processing and storage, and the remote server reads the data on the data processing system, calculates the angle between the image acquisition system and the top and bottom ends of the corn plant, and then calculates the distance.
- the plant height of the corn, the calculated result is stored on the data processing system; the image acquisition system is provided with an electric pan/tilt.
- the image acquisition system is a network high definition camera.
- the image acquisition system is provided with a plurality of images, which are all installed on the ridges, and are all located on a straight line and at the same height, and the distance between the image acquisition system and the ridge is a fixed value.
- the data further comprises a horizontal distance between the image acquisition system and the corn plant and a height of the image acquisition system and the ground, and a distance from the corn plant, and the corn plants are planted at equal intervals.
- the image acquisition system collects an image of a corn plant within its set range under the control of a remote server, and the acquired image is transmitted to a data processing system.
- the remote server calculates the corn plant height by using a triangulation principle, and the calculation data includes an angle between the image acquisition system and the top and bottom ends of the corn plant and a horizontal distance from the corn plant.
- the data processing system comprises a computer, a display and an input device, the display displaying the content of the remote server and the digital image of the corn.
- the corn plant height remote measurement method comprises the following steps:
- S1 smashes the remote server, starts the image acquisition system, controls the rotation of the gimbal, and collects digital images of the corn plants;
- the digital image of the S2 corn plant is transmitted to a data processing system, the data processing system processes and stores the image, and displays the image on the display;
- the S3 remote server calculates a rotation angle of the image acquisition system, thereby calculating a horizontal distance between the image acquisition system and the corn plant, and obtaining a distance value;
- the S4 remote server collects an angle between the image acquisition system and the top and bottom ends of the corn plant to obtain two angle values
- the S5 remote server performs a triangulation calculation based on the two angle values, the distance value, and the height of the image capturing device to obtain the height of the corn plant; [0020] S6 embeds the height of the corn plant in a digital image, ie, preserves the growth of the current corn plant and also preserves the height of the corn plant, storing the digital image in a data processing system.
- the step S1 further includes a resetting action, and the pan/tilt performs resetting, so that the image acquisition system runs to a zero position, and is used for calculating an angle between the image acquisition system and the zero position after the pan-tilt rotation.
- step S3 further comprises calculating the distance between the corn plant and the ridge, that is, calculating the distance between the corn plant away from the ridge and the ridge according to the distance between the corn plants.
- the present invention has the following beneficial effects:
- the corn plant height remote measuring system and measuring method provided by the invention realize real, non-destructive, remote and continuous measurement of the corn plant at any height, and the invention improves the objectivity, data quality and mitigation of the observation data. Labor intensity and improved observation efficiency are of great significance.
- a plant height remote measurement system comprising a graphic acquisition system, a data processing system, and a remote server, the graphic acquisition system being installed in a corn field and connected to the data processing system by wireless or wired, the remote server running On the data processing system, the remote server controls the graphics acquisition system to collect digital images of the corn plants, and transmits the digital images of the corn plants to the data processing system for data processing and storage, and the remote server reads the data on the data processing system. Calculating the angle between the image acquisition system and the top and bottom ends of the corn plant, and then calculating the plant height of the corn, the calculated result is stored on the data processing system; the image acquisition system is provided with an electric pan/tilt .
- the image acquisition system is a network high definition camera.
- the image acquisition system is provided with a plurality of images, which are all installed on the ridges, and are all located on a straight line and at the same height, and the distance between the image acquisition system and the ridge is a fixed value.
- the data further comprises a horizontal distance between the image acquisition system and the corn plant and a height of the image acquisition system and the ground, and a distance from the corn plant, and the corn plants are planted at equal intervals.
- the image acquisition system collects an image of the corn plant within its set range under the control of the remote server, and the acquired image is transmitted to the data processing system.
- the remote server calculates the corn plant height by using a triangulation principle, and the calculation data includes an angle between the image acquisition system and the top and bottom ends of the corn plant and a horizontal distance from the corn plant.
- the data processing system comprises a computer, a display and an input device, the display displaying the content of the remote server and the digital image of the corn.
- the corn plant height remote measurement method comprises the following steps:
- S1 smashes the remote server, starts the image acquisition system, controls the rotation of the gimbal, and collects digital images of the corn plants;
- the digital image of the S2 corn plant is transmitted to a data processing system, the data processing system processes and stores the image, and displays the image on the display;
- the S3 remote server calculates a rotation angle of the image acquisition system, thereby calculating a horizontal distance between the image acquisition system and the corn plant, and obtaining a distance value;
- the S4 remote server collects an angle between the image acquisition system and the top and bottom ends of the corn plant to obtain two angle values
- the S5 remote server performs a triangulation calculation based on the two angle values, the distance value, and the height of the image capturing device to obtain the height of the corn plant;
- S6 embeds the height of the corn plant into the digital image, ie, preserves the growth of the current corn plant and also preserves the height of the corn plant, storing the digital image in a data processing system.
- the step S1 further includes a resetting action, and the pan/tilt performs resetting, so that the image acquisition system runs to a zero position, and is used for calculating an angle between the image acquisition system and the zero position after the pan-tilt rotation.
- step S3 further comprises calculating the distance between the corn plant and the ridge, that is, calculating the distance between the corn plant away from the ridge and the ridge according to the distance between the corn plants.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Image Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种玉米植株的高度测量系统,尤其是玉米株高远程测量系统和测量方法,包括图形采集系统、数据处理系统以及远程服务端,图形采集系统安装在玉米地中,且与数据处理系统通过无线或有线连接,远程服务端运行在数据处理系统上,远程服务端控制图形采集系统采集玉米植株的数字图像,并将玉米植株的数字图像传输给数据处理系统进行数据处理和存储,远程服务端读取数据处理系统上的数据,计算图像采集系统与玉米植株的顶端和底端的夹角以及之间的距离,然后再计算出玉米的株高,计算后的结果存储在数据处理系统上。上述玉米株高远程测量系统和测量方法实现了对玉米植株任意高度的实时、无损、远程、连续测量。
Description
发明名称:玉米株高远程测量系统和测量方法 技术领域
[0001] 本发明涉及一种玉米植株的高度测量系统, 尤其是玉米株高远程测量系统和测 量方法。
背景技术
[0002] 作物长势一般指作物的生长状况与趋势, 用来描述作物长势的特征参数可以分 为个体特征参数、 群体特征参数和综合参数 3个方面。 其中, 个体特征参数包括 株高、 茎粗、 叶片数量、 形状、 颜色等, 群体特征参数包括种植密度、 株距、 行距等, 综合特征参数指叶面积指数。
[0003] 在农业生产过程中, 通过对作物长势进行监测, 及吋准确地掌握其生长信息, 可以为田间管理决策提供依据, 以便管理者采取适当的干预措施来保证作物的 正常生长, 对最终的高产稳产具有重要意义。
[0004] 作物高度作为长势信息的一个重要方面, 是衡量其生长速度的重要指标之一, 在农学、 园艺学等研究领域以及农业机械自动化生产过程中, 都具有重要作用 。 例如, 联合收割机割台高度的自动调整、 自动施药设备喷头位置的控制等, 都需要及吋获得作物的高度值来作为参考标准。
技术问题
[0005] 现有的作物高度测量方法大体上可以分为人工法和基于图像处理方法两大类。
人工方法是用卷尺、 游标卡尺等进行测量, 虽然结果较为精确, 但吋费力, 无 法在作物的整个生长过程中实现连续监测。
问题的解决方案
技术解决方案
[0006] 为解决上述问题, 本发明提供一种实吋无损测量方法, 克服现有高度检测方法 的缺点, 实现了对玉米任意高度的实吋、 无损、 远程、 连续测量, 具体技术方 案为:
[0007] 株高远程测量系统, 包括图形采集系统、 数据处理系统以及远程服务端, 所述
图形采集系统安装在玉米地中, 且与数据处理系统通过无线或有线连接, 所述 远程服务端运行在数据处理系统上, 远程服务端控制图形采集系统采集玉米植 株的数字图像, 并将玉米植株的数字图像传输给数据处理系统进行数据处理和 存储, 远程服务端读取数据处理系统上的数据, 计算图像采集系统与玉米植株 的顶端和底端的夹角以及之间的距离, 然后再计算出玉米的株高, 计算后的结 果存储在数据处理系统上; 所述图像采集系统设有电动云台。
[0008] 优选的, 所述图像采集系统为网络高清摄像机。
[0009] 优选的, 所述图像采集系统设有多个, 均安装在田垄上, 且均位于一条直线和 同一高度上, 图像采集系统与田垄的距离为定值。
[0010] 优选的, 所述数据还包括图像采集系统与玉米植株的水平距离和图像采集系统 与地面的高度, 以及与玉米植株之间的距离, 所述玉米植株等间距种植。
[0011] 优选的, 所述图像采集系统在远程服务端的控制下采集其设定范围内的玉米植 株的图像, 所述采集的图像传输给数据处理系统。
[0012] 优选的, 所述远程服务端采用三角测量原理计算玉米株高, 计算数据包括图像 采集系统与玉米植株的顶端和底端的夹角以及与玉米植株的水平距离。
[0013] 优选的, 所述数据处理系统包括计算机、 显示器和输入装置, 所述显示器显示 远程服务端的内容以及玉米数字图像。
[0014] 玉米株高远程测量方法, 包括以下步骤:
[0015] S1打幵远程服务端, 启动图像采集系统, 控制云台转动, 采集玉米植株的数字 图像;
[0016] S2玉米植株的数字图像传输给数据处理系统, 数据处理系统进行处理和存储, 并将图像显示在显示器上;
[0017] S3远程服务端计算图像采集系统的旋转角度, 从而计算图像采集系统与玉米 植株之间的水平距离, 得到距离值;
[0018] S4远程服务端采集图像采集系统与玉米植株的顶端和底端的夹角, 得到两个夹 角值;
[0019] S5远程服务端根据两个夹角值、 距离值和图像采集装置的高度进行三角计算, 得出玉米植株的高度;
[0020] S6将玉米植株的高度嵌入到数字图像中, 即保存了当前玉米植株的生长情况也 保存了该玉米植株的高度, 将数字图像存储到数据处理系统中。
[0021] 其中, 所述步骤 S1还包括复位动作, 所述云台进行复位, 使图像采集系统运行 到零位, 用于计算云台旋转后图像采集系统与零位之间的夹角。
[0022] 其中, 所述步骤 S3还包括计算玉米植株与田垄之间的距离, 即根据玉米植株之 间的距离计算远离田垄的玉米植株与田垄之间的距离。
发明的有益效果
有益效果
[0023] 与现有技术相比本发明具有以下有益效果:
[0024] 本发明提供的玉米株高远程测量系统和测量方法实现了对玉米植株任意高度的 实吋、 无损、 远程、 连续测量, 本发明对提高观测资料的客观性、 数据质量和 减轻观测人员劳动强度、 提高观测效率等具有重要意义。
本发明的实施方式
[0025] 现结合实施例说明本发明的具体实施方式。
[0026] 实施例 1
[0027] 株高远程测量系统, 包括图形采集系统、 数据处理系统以及远程服务端, 所述 图形采集系统安装在玉米地中, 且与数据处理系统通过无线或有线连接, 所述 远程服务端运行在数据处理系统上, 远程服务端控制图形采集系统采集玉米植 株的数字图像, 并将玉米植株的数字图像传输给数据处理系统进行数据处理和 存储, 远程服务端读取数据处理系统上的数据, 计算图像采集系统与玉米植株 的顶端和底端的夹角以及之间的距离, 然后再计算出玉米的株高, 计算后的结 果存储在数据处理系统上; 所述图像采集系统设有电动云台。
[0028] 优选的, 所述图像采集系统为网络高清摄像机。
[0029] 优选的, 所述图像采集系统设有多个, 均安装在田垄上, 且均位于一条直线和 同一高度上, 图像采集系统与田垄的距离为定值。
[0030] 优选的, 所述数据还包括图像采集系统与玉米植株的水平距离和图像采集系统 与地面的高度, 以及与玉米植株之间的距离, 所述玉米植株等间距种植。
[0031] 优选的, 所述图像采集系统在远程服务端的控制下采集其设定范围内的玉米植 株的图像, 所述采集的图像传输给数据处理系统。
[0032] 优选的, 所述远程服务端采用三角测量原理计算玉米株高, 计算数据包括图像 采集系统与玉米植株的顶端和底端的夹角以及与玉米植株的水平距离。
[0033] 优选的, 所述数据处理系统包括计算机、 显示器和输入装置, 所述显示器显示 远程服务端的内容以及玉米数字图像。
[0034] 实施例 2
[0035] 玉米株高远程测量方法, 包括以下步骤:
[0036] S1打幵远程服务端, 启动图像采集系统, 控制云台转动, 采集玉米植株的数字 图像;
[0037] S2玉米植株的数字图像传输给数据处理系统, 数据处理系统进行处理和存储, 并将图像显示在显示器上;
[0038] S3远程服务端计算图像采集系统的旋转角度, 从而计算图像采集系统与玉米 植株之间的水平距离, 得到距离值;
[0039] S4远程服务端采集图像采集系统与玉米植株的顶端和底端的夹角, 得到两个夹 角值;
[0040] S5远程服务端根据两个夹角值、 距离值和图像采集装置的高度进行三角计算, 得出玉米植株的高度;
[0041] S6将玉米植株的高度嵌入到数字图像中, 即保存了当前玉米植株的生长情况也 保存了该玉米植株的高度, 将数字图像存储到数据处理系统中。
[0042] 其中, 所述步骤 S1还包括复位动作, 所述云台进行复位, 使图像采集系统运行 到零位, 用于计算云台旋转后图像采集系统与零位之间的夹角。
[0043] 其中, 所述步骤 S3还包括计算玉米植株与田垄之间的距离, 即根据玉米植株之 间的距离计算远离田垄的玉米植株与田垄之间的距离。
Claims
[权利要求 1] 株高远程测量系统, 其特征在于, 包括图形采集系统、 数据处理系统 以及远程服务端, 所述图形采集系统安装在玉米地中, 且与数据处理 系统通过无线或有线连接, 所述远程服务端运行在数据处理系统上, 远程服务端控制图形采集系统采集玉米植株的数字图像, 并将玉米植 株的数字图像传输给数据处理系统进行数据处理和存储, 远程服务端 读取数据处理系统上的数据, 计算图像采集系统与玉米植株的顶端和 底端的夹角以及之间的距离, 然后再计算出玉米的株高, 计算后的结 果存储在数据处理系统上; 所述图像采集系统设有电动云台。
[权利要求 2] 根据权利要求 1所述的玉米株高远程测量系统, 其特征在于, 所述图 像采集系统为网络高清摄像机。
[权利要求 3] 根据权利要求 2所述的玉米株高远程测量系统, 其特征在于, 所述图 像采集系统设有多个, 均安装在田垄上, 且均位于一条直线和同一高 度上, 图像采集系统与田垄的距离为定值。
[权利要求 4] 根据权利要求 3所述的玉米株高远程测量系统, 其特征在于, 所述数 据还包括图像采集系统与玉米植株的水平距离和图像采集系统与地面 的高度, 以及与玉米植株之间的距离, 所述玉米植株等间距种植。
[权利要求 5] 根据权利要求 4所述的玉米株高远程测量系统, 其特征在于, 所述图 像采集系统在远程服务端的控制下采集其设定范围内的玉米植株的图 像, 所述采集的图像传输给数据处理系统。
[权利要求 6] 根据权利要求 5所述的玉米株高远程测量系统, 其特征在于, 所述远 程服务端采用三角测量原理计算玉米株高, 计算数据包括图像采集系 统与玉米植株的顶端和底端的夹角以及与玉米植株的水平距离。
[权利要求 7] 根据权利要求 1所述的玉米株高远程测量系统, 其特征在于, 所述数 据处理系统包括计算机、 显示器和输入装置, 所述显示器显示远程服 务端的内容以及玉米数字图像。
[权利要求 8] 根据权利要求 1至 7任一项所述的玉米株高远程测量系统的测量方法, 其特征在于, 包括以下步骤:
SI打幵远程服务端, 启动图像采集系统, 控制云台转动, 采集玉米植 株的数字图像;
S2玉米植株的数字图像传输给数据处理系统, 数据处理系统进行处理 和存储, 并将图像显示在显示器上;
S3远程服务端计算图像采集系统的旋转角度, 从而计算图像采集系 统与玉米植株之间的水平距离, 得到距离值;
S4远程服务端采集图像采集系统与玉米植株的顶端和底端的夹角, 得 到两个夹角值;
S5远程服务端根据两个夹角值、 距离值和图像采集装置的高度进行三 角计算, 得出玉米植株的高度;
S6将玉米植株的高度嵌入到数字图像中, 即保存了当前玉米植株的生 长情况也保存了该玉米植株的高度, 将数字图像存储到数据处理系统 中。
[权利要求 9] 根据权利要求 8所述的玉米株高远程测量方法, 其特征在于, 所述步 骤 S1还包括复位动作, 所述云台进行复位, 使图像采集系统运行到零 位, 用于计算云台旋转后图像采集系统与零位之间的夹角。
[权利要求 10] 根据权利要求 8所述的玉米株高远程测量方法, 其特征在于, 所述步 骤 S3还包括计算玉米植株与田垄之间的距离, 即根据玉米植株之间的 距离计算远离田垄的玉米植株与田垄之间的距离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/080506 WO2018188046A1 (zh) | 2017-04-14 | 2017-04-14 | 玉米株高远程测量系统和测量方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/080506 WO2018188046A1 (zh) | 2017-04-14 | 2017-04-14 | 玉米株高远程测量系统和测量方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018188046A1 true WO2018188046A1 (zh) | 2018-10-18 |
Family
ID=63792112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/080506 WO2018188046A1 (zh) | 2017-04-14 | 2017-04-14 | 玉米株高远程测量系统和测量方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018188046A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101980249A (zh) * | 2010-11-12 | 2011-02-23 | 中国气象局气象探测中心 | 作物发育及长势自动观测方法及装置 |
CN102175156A (zh) * | 2011-01-18 | 2011-09-07 | 华中科技大学 | 作物自动测高装置 |
CN102927916A (zh) * | 2012-11-29 | 2013-02-13 | 中国农业大学 | 野外环境玉米株高的监控方法和装置 |
CN202798987U (zh) * | 2012-08-20 | 2013-03-13 | 江苏省无线电科学研究所有限公司 | 一种自动采集作物图像和计算作物长势的装置 |
US20150015697A1 (en) * | 2013-03-07 | 2015-01-15 | Blue River Technology, Inc. | Method for automatic phenotype measurement and selection |
-
2017
- 2017-04-14 WO PCT/CN2017/080506 patent/WO2018188046A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101980249A (zh) * | 2010-11-12 | 2011-02-23 | 中国气象局气象探测中心 | 作物发育及长势自动观测方法及装置 |
CN102175156A (zh) * | 2011-01-18 | 2011-09-07 | 华中科技大学 | 作物自动测高装置 |
CN202798987U (zh) * | 2012-08-20 | 2013-03-13 | 江苏省无线电科学研究所有限公司 | 一种自动采集作物图像和计算作物长势的装置 |
CN102927916A (zh) * | 2012-11-29 | 2013-02-13 | 中国农业大学 | 野外环境玉米株高的监控方法和装置 |
US20150015697A1 (en) * | 2013-03-07 | 2015-01-15 | Blue River Technology, Inc. | Method for automatic phenotype measurement and selection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101980249B (zh) | 作物发育及长势自动观测方法及装置 | |
CN112418188B (zh) | 基于无人机视觉的农作物生长全程数字化评估方法 | |
EP3709238A1 (en) | Computer-generated accurate yield map data using expert filters and spatial outlier detection | |
CN104732564B (zh) | 一种玉米叶面积无损动态监测装置与方法 | |
CN201869599U (zh) | 作物发育及长势自动观测装置 | |
KR101752313B1 (ko) | L(Lindenmayer) 시스템과 이미지 및 빔 척도를 이용한 작물체 초장 및 생육량 측정 시스템 | |
KR101763841B1 (ko) | 작물체 기관별 이미지 데이터에 의한 생육진단/분석 시스템 | |
WO2021208407A1 (zh) | 目标物检测方法、装置和图像采集方法、装置 | |
CN109496797A (zh) | 一种农业节水灌溉系统及控制方法 | |
CN102256102A (zh) | 一种基于远程监控的农情信息实时监测方法及系统 | |
CN110736809A (zh) | 一种日光温室作物水分胁迫诊断系统 | |
US20220405863A1 (en) | Information processing device, information processing method, and program | |
CN105547360A (zh) | 基于情景感知的作物冠层图像采集方法 | |
CN102592118B (zh) | 一种玉米出苗期的自动检测方法 | |
CN112288698A (zh) | 一种基于大数据的水稻种植水稻生长监测分析管理系统 | |
CN110514248A (zh) | 一种基于大数据的智能化、自动化农业数据采集系统 | |
US20230073551A1 (en) | Row-by-row yield estimation system and related devices and methods | |
CN114694047A (zh) | 一种玉米播种质量的评价方法及装置 | |
CN105574852A (zh) | 一种基于图像识别的植株株高检测方法及系统 | |
CN109238960A (zh) | 一种基于ndvi的草地实际承载力指数快速监测方法 | |
CN109523550A (zh) | 一种五因素小麦出苗情况评价方法 | |
KR20180086832A (ko) | 영상기반 작물 생육데이터 측정 모바일 앱 및 그 디바이스 | |
CN105444677B (zh) | 一种基于图象技术测定棉花株高的方法及系统 | |
CN206133265U (zh) | 一种温室虫害远程监控服务器 | |
WO2018188046A1 (zh) | 玉米株高远程测量系统和测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905830 Country of ref document: EP Kind code of ref document: A1 |