WO2018187954A1 - 基于蚁群优化的传感器网络路由方法 - Google Patents
基于蚁群优化的传感器网络路由方法 Download PDFInfo
- Publication number
- WO2018187954A1 WO2018187954A1 PCT/CN2017/080178 CN2017080178W WO2018187954A1 WO 2018187954 A1 WO2018187954 A1 WO 2018187954A1 CN 2017080178 W CN2017080178 W CN 2017080178W WO 2018187954 A1 WO2018187954 A1 WO 2018187954A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- ant
- source node
- network
- ant colony
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/04—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
- H04W40/10—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a sensor network routing method based on ant colony optimization, which belongs to the field of bio-simulation and network communication.
- the bionic optimization algorithm is a general term for a random search algorithm that simulates biological evolution or group behavior in nature. It can be used to solve many optimization problems in reality, and is an important branch in the field of artificial intelligence research.
- the current popular bionic optimization algorithms include genetic algorithm, ant colony algorithm, particle swarm optimization algorithm, neural network algorithm and artificial immune algorithm.
- the ant colony optimization algorithm has the characteristics of parallel distributed computing, positive feedback, robustness, etc., and is widely used in many fields, such as Traveling Salesman Problem (TSP) and Quadratic Assignment Problem (QAP). , workpiece sorting problems, vehicle scheduling problems, graph coloring problems, and routing problems in network communications.
- TSP Traveling Salesman Problem
- QAP Quadratic Assignment Problem
- the ant colony optimization algorithm is a group search method, which is usually used to solve a specific combinatorial optimization problem.
- the QoS optimal path problem of the sensor network can be expressed by a graph containing a limited number of nodes and finite edges.
- the goal of the ant colony optimization algorithm is to traverse the graph to establish an optimal path.
- the ant uses the local information of pheromone concentration and heuristic information to select the next node with a certain probability.
- the ant modifies the pheromone concentration on the path, so that the ant can indirectly exchange the path propensity information, thereby achieving the purpose of mutual coordination and cooperation, and finally each ant establishes an approximate optimal solution.
- an object of the present invention is to provide a sensor network routing method based on ant colony optimization, comprising the following steps: [0006] Step 1: Initializing parameters to generate a required network topology;
- Step 3 If the ant m does not complete the search, the current node V, selects the next hop node, and the peer determines whether the path from the source node s to the elapsed path meets all the constraints, and simultaneously updates the remaining energy of the node. Value; if the node ⁇ does not exist, the ant dies and stops searching; if the node ⁇ happens to be the destination node, the search is completed; otherwise, ⁇ is placed in the tab of the ant m, and the search is continued;
- Step 4 Repeat step 3 until all the M ants placed at the source node complete the search, and record all qualified paths from the source node s to the destination node;
- Step 5 Update pheromones of all links
- Step six if k L, then go to step 6, otherwise perform step 7;
- Step 7. Output the result and end.
- the foregoing step 1 specifically includes setting a total of N nodes in the network, setting a metric value of each link and a residual energy value of each node, and determining a value of the constraint condition.
- the foregoing step 1 further includes deleting a link that does not satisfy the condition, and generating a network topology.
- the number of ants be M, start searching from the source node, the maximum number of iterations is L, the source node is s, and the destination node is ⁇ .
- the pheromone concentration adjacency matrix is initialized to determine the weight value and determine the pheromone intensity coefficient ⁇ .
- the ant colony optimization based sensor network routing method applied the ant colony algorithm to ZigBee routing, and has the following advantages:
- the ZigBee sensor node has limited capabilities. ZigBee nodes are small in size, storage capacity, processing power and energy are limited, so routing algorithms should be as simple as possible to reduce node energy consumption. Each individual in the ant colony algorithm is simply performing a simple function, thus saving network resources and extending network life.
- the ant colony algorithm has high robustness. Its self-organizing, adaptive and dynamic optimization features make the algorithm adaptable to the dynamic changes of the network topology. It does not affect the pathfinding process of the entire network because a node in the network moves, fails, or joins a new node. [0018] 3. The ant colony algorithm converges fast. The positive feedback mechanism of the ant colony algorithm allows more pheromone to accumulate on the better path, which can quickly decompose the advantages and disadvantages, greatly accelerate the convergence speed, and ensure the stability of the ZigBee network.
- FIG. 1 is a schematic diagram of a network model
- FIG. 2 is a schematic flow chart of a method for routing a sensor network based on ant colony optimization according to the present invention.
- the present invention provides a sensor network routing method based on ant colony optimization.
- the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
- the ant colony optimization based sensor network routing method includes the following steps.
- the search is completed; otherwise, ⁇ is placed in the taboo table of the ant m, and the search is continued.
- the ant colony optimization based sensor network routing method greatly saves the overall energy consumption of the network, and achieves the maximization of the network lifetime by balancing the energy of the objective function. While maintaining low latency and low latency jitter, it can reduce the overall energy consumption of the network, improve the energy balance of the network nodes, and extend the life of the ZigBee network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
一种基于蚁群优化的传感器网络路由方法,包括初始化参数,生成所需网络拓扑结构;设置当前迭代次数l=l+1,设置每条链路信息素增量,将M只蚂蚁置于源节点s,生成禁忌表,并将源节点放入禁忌表中;如果蚂蚁m没有完成搜索,由当前节点v i选择下一跳节点v j,同时判断从源节点s到v j所经过的路径是否符合所有约束条件,同时更新节点的剩余能量值;如果节点v j不存在,则蚂蚁死亡,停止搜索;如果节点v j恰好为目的节点t,则完成搜索。该方法能够降低网络总体能耗,提高网络节点能量均衡性,延长ZigBee网络寿命。
Description
基于蚁群优化的传感器网络路由方法 技术领域
[0001] 本发明涉及一种基于蚁群优化的传感器网络路由方法, 属于生物仿真和网络通 信领域。
背景技术
[0002] 仿生优化算法是模拟自然界中生物进化或者群体行为的随机搜索算法的统称, 可以用来解决现实中的许多优化问题, 是人工智能研究领域中一个重要的分支 。 目前比较流行的仿生优化算法包括遗传算法、 蚁群算法、 微粒群算法、 神经 网络算法和人工免疫算法等。 蚁群优化算法具有并行分布式计算、 正反馈、 鲁 棒性等特点, 被广泛地应用在许多领域, 诸如旅行商问题 (Traveling Salesman Problem, TSP)、 二次分配问题 (Quadratic Assignment Problem, QAP)、 工件排序 问题、 车辆调度问题、 图着色问题和网络通信中的路由问题等。
[0003] 蚁群优化算法是一种群体搜索方法, 通常用来解决特定的组合优化问题, 传感 器网络的 QoS最优路径问题可以由包含有限个节点和有限边的图来表述。 蚁群优 化算法的目标就是遍历该图来建立一条最优路径, 在蚂蚁遍历图的过程中, 蚂 蚁利用信息素浓度和启发式信息这些局部信息以一定的概率去选择下一个节点 。 蚂蚁通过挥发信息素, 修改了路径上的信息素浓度, 使得蚂蚁可以间接地交 换路径倾向性信息, 从而实现相互协调合作的目的, 最终每只蚂蚁分别建立一 个近似最优解。
技术问题
[0004] 蚁群算法的主要优点有正反馈、 分布式并行处理、 鲁棒性好、 易与其他启发式 算法结合, 主要缺点是搜索吋间长、 容易陷入局部最优解。
问题的解决方案
技术解决方案
[0005] 鉴于上述现有技术的不足之处, 本发明的目的在于提供一种基于蚁群优化的传 感器网络路由方法, 包括以下步骤:
[0006] 步骤一、 初始化参数, 生成所需网络拓扑结构;
[0007] 步骤二、 设置当前迭代次数/ = /+1, 设置每条链路信息素增量, 将 M只蚂蚁置 于源节点 ^ 生成禁忌表, 并将源节点放入禁忌表中;
[0008] 步骤三、 如果蚂蚁 m没有完成搜索, 由当前节点 V ,·选择下一跳节点 , 同吋判 断从源节点 s到 所经过的路径是否符合所有约束条件, 同吋更新节点的剩余能 量值; 如果节点^不存在, 则蚂蚁死亡, 停止搜索; 如果节点^恰好为目的节 点 , 则完成搜索; 否则将 ν ·放入蚂蚁 m的禁忌表中, 继续搜索;
[0009] 步骤四、 重复执行步骤三, 直到所有放置在源节点的 M只蚂蚁全部完成搜索为 止, 记录从源节点 s到目的节点 的所有合格路径;
[0010] 步骤五、 更新所有链路的信息素;
[0011] 步骤六、 如果 k L, 则转到步骤六, 否则执行步骤七;
[0012] 步骤七、 输出结果, 结束。
[0013] 优选的, 上述步骤一具体为设网络中共有 N个节点, 设置每条链路的度量值和 每个节点的剩余能量值, 确定约束条件的值。
[0014] 优选的, 上述步骤一还包括刪除不满足条件的链路, 生成网络拓扑结构。 设蚂 蚁数量为 M, 从源节点处幵始搜索, 最大迭代次数为 L, 源节点为 s, 目的节点 为^。 信息素浓度邻接矩阵初始化为, 确定权重值, 确定信息素强度系数 β。 发明的有益效果
有益效果
[0015] 相比现有技术, 本发明提供的基于蚁群优化的传感器网络路由方法, 将蚁群算 法应用于 ZigBee路由, 具有以下优点:
[0016] 1、 ZigBee传感器节点能力有限。 ZigBee节点体积小, 存储能力、 处理能力和 能量都很有限, 所以就要求路由算法要尽量简单, 来减少节点的能耗。 蚁群算 法中每个个体只是进行简单的功能实现, 因此可以节省网络资源, 延长网络寿 命。
[0017] 2、 蚁群算法具有较高的鲁棒性。 其自组织、 自适应和动态寻优的特征使得该 算法能对网络拓扑的动态变化有很好的适应性。 不会因为网络中的某个节点移 动、 失效或者有新节点的加入, 影响到整个网络的寻路过程。
[0018] 3、 蚁群算法收敛快。 蚁群算法的正反馈机制, 使较优路径上积累更多的信息 素, 这样就可以迅速区分解的优劣, 极大地加快了收敛速度, 同吋保障了 ZigBee 网络的实吋性。
对附图的简要说明
附图说明
[0019] 图 1为网络模型示意图;
[0020] 图 2为本发明基于蚁群优化的传感器网络路由方法流程示意图。
本发明的实施方式
[0021] 本发明提供一种基于蚁群优化的传感器网络路由方法, 为使本发明的目的、 技 术方案及效果更加清楚、 明确, 以下参照附图并举实施例对本发明进一步详细 说明。 应当理解, 此处所描述的具体实施例仅用以解释本发明, 并不用于限定 本发明。
[0022] 将 ZigBee无线多媒体传感器网络抽象为一个图, G= G ( V, E) , 其中, V 是节点集合, ^£ ¥( =1,2, ... , «)表示图 的一个顶点(节点); E是图 G的边集。 传感器网络模型中的每个顶点 V ,e V( i=l,2, ... , 的剩余能量用表示, 每条边上的 度量用四元组 <,,,>表示, 其中的元素分别表示该边上的通信吋延、 吋延抖动、 可 用带宽和能量消耗。 图 1为网络模型示意图。
[0023] 如图 2所示, 本发明提供的基于蚁群优化的传感器网络路由方法包括以下步骤
[0024] 1)、 初始化参数, 生成所需网络拓扑结构。 设网络中共有 N个节点, 设置每条 链路的度量值和每个节点的剩余能量值, 确定约束条件的值。 刪除不满足条件 的链路, 生成网络拓扑结构。 设蚂蚁数量为 M, 从源节点处幵始搜索, 最大迭 代次数为 L, 源节点为 s, 目的节点为 。 信息素浓度邻接矩阵初始化为, 确定 权重值, 确定信息素强度系数 β。
[0025] 2)、 设置当前迭代次数/ = Ζ+1, 设置每条链路信息素增量, 将 Μ只蚂蚁置于源 节点 ^ 生成禁忌表, 并将源节点放入禁忌表中。
[0026] 3)、 如果蚂蚁 m没有完成搜索, 由当前节点 ^选择下一跳节点 , 同吋判断从
源节点 S到 ^所经过的路径是否符合所有约束条件, 同吋更新节点的剩余能量值 ; 如果节点 ^不存在, 则蚂蚁死亡, 停止搜索; 如果节点 V .恰好
[0027] 为目的节点 , 则完成搜索; 否则将 ^放入蚂蚁 m的禁忌表中, 继续搜索。
[0028] 4)、 重复执行 3), 直到所有放置在源节点的 M只蚂蚁全部完成搜索为止, 记录 从源节点 s到目的节点 的所有合格路径。
[0029] 5)、 更新所有链路的信息素。
[0030] 6)、 如果 Z< L, 则转到 2), 否则执行 7)。
[0031] 7)、 输出结果, 结束。
[0032] 相比现有技术, 本发明提供的基于蚁群优化的传感器网络路由方法, 大幅度节 省了网络的整体能耗, 通过目标函数对能量的均衡, 实现了网络寿命的最大化 。 在保持低吋延、 低吋延抖动的同吋, 能够降低网络总体能耗, 提高网络节点 能量均衡性, 延长 ZigBee网络寿命。
[0033]
[0034] 可以理解的是, 对本领域普通技术人员来说, 可以根据本发明的技术方案及其 发明构思加以等同替换或改变, 而所有这些改变或替换都应属于本发明所附的 权利要求的保护范围。
Claims
[权利要求 1] 一种基于蚁群优化的传感器网络路由方法, 其特征在于: 所述方法包 括以下步骤:
步骤一、 初始化参数, 生成所需网络拓扑结构; 步骤二、 设置当前迭代次数/ = /+1, 设置每条链路信息素增量, 将 M 只蚂蚁置于源节点 ^ 生成禁忌表, 并将源节点放入禁忌表中; 步骤三、 如果蚂蚁 m没有完成搜索, 由当前节点 V ,·选择下一跳节点 V j , 同吋判断从源节点 s到^所经过的路径是否符合所有约束条件, 同 吋更新节点的剩余能量值; 如果节点^不存在, 则蚂蚁死亡, 停止 搜索; 如果节点^恰好为目的节点 , 则完成搜索; 否则将^放入蚂 蚁 m的禁忌表中, 继续搜索;
步骤四、 重复执行步骤三, 直到所有放置在源节点的 M只蚂蚁全部完 成搜索为止, 记录从源节点 s到目的节点 的所有合格路径; 步骤五、 更新所有链路的信息素;
步骤六、 如果 k L, 则转到步骤六, 否则执行步骤七;
步骤七、 输出结果, 结束。
[权利要求 2] 如权利要求 1所述的基于蚁群优化的传感器网络路由方法, 其特征在 于: 所述步骤一具体为设网络中共有 N个节点, 设置每条链路的度量 值和每个节点的剩余能量值, 确定约束条件的值。
[权利要求 3] 如权利要求 2所述的基于蚁群优化的传感器网络路由方法, 其特征在 于: 所述步骤一还包括刪除不满足条件的链路, 生成网络拓扑结构; 设蚂蚁数量为 M, 从源节点处幵始搜索, 最大迭代次数为 L, 源节点 为 s', 目的节点为 ; 信息素浓度邻接矩阵初始化为, 确定权重值, 确定信息素强度系数 Q。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/080178 WO2018187954A1 (zh) | 2017-04-12 | 2017-04-12 | 基于蚁群优化的传感器网络路由方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/080178 WO2018187954A1 (zh) | 2017-04-12 | 2017-04-12 | 基于蚁群优化的传感器网络路由方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018187954A1 true WO2018187954A1 (zh) | 2018-10-18 |
Family
ID=63793104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/080178 WO2018187954A1 (zh) | 2017-04-12 | 2017-04-12 | 基于蚁群优化的传感器网络路由方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018187954A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110058613A (zh) * | 2019-05-13 | 2019-07-26 | 大连海事大学 | 一种多无人机多蚁群协同搜索目标方法 |
CN110225493A (zh) * | 2019-06-05 | 2019-09-10 | 山东师范大学 | 基于改进蚁群的d2d路由选择方法、系统、设备及介质 |
CN113068242A (zh) * | 2021-03-29 | 2021-07-02 | 重庆师范大学 | 基于优化量子蚁群算法的路由规划方法及系统 |
CN114430581A (zh) * | 2022-01-25 | 2022-05-03 | 电子科技大学 | 基于蚁群策略的ac-olsr路由方法、设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043444A (zh) * | 2007-04-26 | 2007-09-26 | 浙江大学 | 基于蚁群优化的分布式服务质量多播路由方法 |
CN102523162A (zh) * | 2011-12-15 | 2012-06-27 | 西安理工大学 | 紫外无线Mesh网络中基于蚁群的QoS优化路由方法 |
CN103781146A (zh) * | 2014-01-22 | 2014-05-07 | 南昌大学 | 基于蚁群算法的无线传感器网络最优路由路径构建方法 |
CN104683235A (zh) * | 2015-02-07 | 2015-06-03 | 江西科技学院 | 一种基于蚁群算法的qos路由优化方法 |
CN106413021A (zh) * | 2016-09-18 | 2017-02-15 | 扬州大学 | 基于蚁群算法的无线传感网络路由方法 |
-
2017
- 2017-04-12 WO PCT/CN2017/080178 patent/WO2018187954A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043444A (zh) * | 2007-04-26 | 2007-09-26 | 浙江大学 | 基于蚁群优化的分布式服务质量多播路由方法 |
CN102523162A (zh) * | 2011-12-15 | 2012-06-27 | 西安理工大学 | 紫外无线Mesh网络中基于蚁群的QoS优化路由方法 |
CN103781146A (zh) * | 2014-01-22 | 2014-05-07 | 南昌大学 | 基于蚁群算法的无线传感器网络最优路由路径构建方法 |
CN104683235A (zh) * | 2015-02-07 | 2015-06-03 | 江西科技学院 | 一种基于蚁群算法的qos路由优化方法 |
CN106413021A (zh) * | 2016-09-18 | 2017-02-15 | 扬州大学 | 基于蚁群算法的无线传感网络路由方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110058613A (zh) * | 2019-05-13 | 2019-07-26 | 大连海事大学 | 一种多无人机多蚁群协同搜索目标方法 |
CN110058613B (zh) * | 2019-05-13 | 2022-05-13 | 大连海事大学 | 一种多无人机多蚁群协同搜索目标方法 |
CN110225493A (zh) * | 2019-06-05 | 2019-09-10 | 山东师范大学 | 基于改进蚁群的d2d路由选择方法、系统、设备及介质 |
CN110225493B (zh) * | 2019-06-05 | 2022-04-15 | 山东师范大学 | 基于改进蚁群的d2d路由选择方法、系统、设备及介质 |
CN113068242A (zh) * | 2021-03-29 | 2021-07-02 | 重庆师范大学 | 基于优化量子蚁群算法的路由规划方法及系统 |
CN114430581A (zh) * | 2022-01-25 | 2022-05-03 | 电子科技大学 | 基于蚁群策略的ac-olsr路由方法、设备及介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018187954A1 (zh) | 基于蚁群优化的传感器网络路由方法 | |
CN111130904B (zh) | 一种基于深度确定性策略梯度的虚拟网络功能迁移优化算法 | |
CN104168620B (zh) | 无线多跳回传网络中的路由建立方法 | |
Duan et al. | Research on an improved ant colony optimization algorithm and its application | |
CN105515987B (zh) | 一种基于sdn架构面向虚拟光网络的映射方法 | |
Zhang et al. | The research of genetic ant colony algorithm and its application | |
Ari et al. | Clustering algorithm for wireless sensor networks: The honeybee swarms nest-sites selection process based approach | |
Wei et al. | A genetic-algorithm-based optimization routing for FANETs | |
Ni et al. | [Retracted] Neural Network Optimal Routing Algorithm Based on Genetic Ant Colony in IPv6 Environment | |
Huang et al. | Intelligent routing method based on Dueling DQN reinforcement learning and network traffic state prediction in SDN | |
Fang | Clustering and Path Planning for Wireless Sensor Networks based on Improved Ant Colony Algorithm. | |
Ramalingam et al. | Performance enhancement of efficient clustering and routing protocol for wireless sensor networks using improved elephant herd optimization algorithm | |
Memarian et al. | TSFIS-GWO: Metaheuristic-driven takagi-sugeno fuzzy system for adaptive real-time routing in WBANs | |
Saleem et al. | Ant based self-organized routing protocol for wireless sensor networks | |
CN116132354B (zh) | 一种无人机集群网络化传输路径优化方法及系统 | |
Yingzhuo et al. | Research on network load balancing method based on simulated annealing algorithm and genetic algorithm | |
CN107707471B (zh) | 基于大规模sdn的最小化转发链路数的节能方法 | |
CN107124747A (zh) | 基于蚁群优化的传感器网络路由方法 | |
Saleem et al. | Biological inspired self-optimized routing algorithm for wireless sensor networks | |
Saad et al. | Efficient Bio-Inspired Routing Algorithm for IoT | |
Long et al. | Research on innovating and applying evolutionary algorithms based hierarchical clustering and multiple paths routing for guaranteed quality of service on service based routing | |
Kponhinto et al. | Bio-inspired solution for cluster-tree based data collection protocol in wireless sensors networks | |
Hu et al. | Efficient cluster-based routing protocol for wireless sensor networks by using collaborative-inspired Harris Hawk optimization and fuzzy logic | |
Abdullah et al. | Intelligent routing algorithm using genetic algorithm (IRAGA) | |
Liao et al. | DRED: A DRL-Based Energy-Efficient Data Collection Scheme for UAV-Assisted WSNs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/02/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905606 Country of ref document: EP Kind code of ref document: A1 |