WO2018187912A1 - 一种锂电池储能系统及控制锂电池储能系统的方法 - Google Patents

一种锂电池储能系统及控制锂电池储能系统的方法 Download PDF

Info

Publication number
WO2018187912A1
WO2018187912A1 PCT/CN2017/079943 CN2017079943W WO2018187912A1 WO 2018187912 A1 WO2018187912 A1 WO 2018187912A1 CN 2017079943 W CN2017079943 W CN 2017079943W WO 2018187912 A1 WO2018187912 A1 WO 2018187912A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
control signal
energy storage
battery unit
storage system
Prior art date
Application number
PCT/CN2017/079943
Other languages
English (en)
French (fr)
Inventor
李晓锋
丁永强
邓蜀云
Original Assignee
深圳古瑞瓦特新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳古瑞瓦特新能源股份有限公司 filed Critical 深圳古瑞瓦特新能源股份有限公司
Priority to PCT/CN2017/079943 priority Critical patent/WO2018187912A1/zh
Publication of WO2018187912A1 publication Critical patent/WO2018187912A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Definitions

  • the present application relates to an energy storage system, and more particularly to a lithium battery energy storage system and a method of controlling a lithium battery energy storage system.
  • the lithium battery energy storage system is generally equipped with a BMS (Battery Management System), and the lithium battery energy storage system has been in a down state since its start, and its BMS is working directly.
  • the lithium battery pack and the host computer can generally communicate with each other.
  • the state of the lithium battery itself is generally fed back to the host computer through the BMS system.
  • the traditional scheme is that the host computer only receives the feedback information of the lithium battery BMS and reacts to itself, such as BMS. Feedback battery overvoltage, this ⁇ host computer stops charging itself, or BMS feedback lithium battery under voltage, then stop discharging.
  • the information between the host computer and the lithium battery is only feedback on the communication.
  • the host computer responds to the lithium battery according to the feedback information.
  • the BMS system of the lithium battery is in a working state for a long time.
  • the current in the BMS reaches a level of several tens of mA, and is generally calculated by less 30 mA to 50 mA.
  • the power consumption is about 1.5 ⁇ 2.5W. If the standby time is 10 hours, the energy loss is about 15wl! ⁇ 25wh between. For example, a general household energy storage system uses a 3-5 kWh/48V lithium battery as a system. If the standby time is 10 hours, the standby loss is about 0.5%. If there is a certain standby time every day, the power consumption is also very high. Considerable technical problems
  • the present application provides a lithium battery energy storage system and a method of controlling a lithium battery energy storage system.
  • the present application provides an energy storage system including an energy storage system host computer and a lithium battery pack, the upper computer includes a control module, and the lithium battery pack includes a lithium battery unit and lithium.
  • Battery management module and actuator
  • control module is configured to send a control signal to the lithium battery pack
  • the lithium battery unit is configured to store or provide electrical energy
  • the lithium battery management module is configured to receive the control signal, and control the execution device according to the control signal;
  • the executing device is configured to enable the lithium battery unit to be in a working, standby or sleep state according to the control signal.
  • control signal includes a level value or a level width.
  • the execution device includes a button.
  • the executing device further includes an isolation switch, and the isolation switch is configured to turn on or off a current flowing to the button to simulate a break or close of the button. .
  • control module includes an MCU and a control device
  • the MCU is configured to issue a control signal
  • the control device is configured to turn on or off the current according to the control signal.
  • the isolation switch includes an optocoupler or a relay.
  • control device comprises a triode.
  • the upper computer further includes a power source
  • the control module further includes a current limiting load
  • the power source is used to supply power to the upper computer, and the collector of the triode is connected to the isolation switch through the current limiting load.
  • the present application provides a method for controlling a lithium battery energy storage system, including: [0022] a host computer sends a control signal to a lithium battery pack;
  • the lithium battery pack receives the control signal, and controls the lithium battery unit according to the control signal to cause the lithium battery unit to be in a working, standby or sleep state.
  • the control signal includes a level value or a level width.
  • the upper computer since the upper computer includes a control module, the lithium battery package includes a lithium battery unit, a lithium battery management module, and an execution device, and the control module is configured to send a control signal to the lithium battery package;
  • the module is configured to accept a control signal and control the execution device according to the control signal;
  • the execution device is configured to operate the lithium battery unit in a working, standby or sleep state according to the control signal.
  • the application controls the opening and closing of the lithium battery unit through the upper computer. After the lithium battery unit is not energized or the lithium battery unit is charged, the upper computer turns off the lithium battery unit, so that the lithium battery unit is in a dormant state, thereby saving the lithium battery unit. Its own power consumption maximizes energy utilization.
  • FIG. 1 is a schematic diagram of functional modules of a system of the present application in an embodiment
  • FIG. 2 is a circuit diagram of a system of the present application in another embodiment
  • FIG. 3 is a schematic diagram of a control signal of a non-resettable switch in the present application.
  • FIG. 4 is a schematic diagram of a control signal of a resettable switch in the present application.
  • FIG. 5 is a flow chart of the method of the present application in an embodiment.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the energy storage system of the present application includes an upper system 10 and a lithium battery pack 20 of the energy storage system.
  • the host computer 10 includes a control module, and the lithium battery pack 20 includes a lithium battery unit 21, a lithium battery management module 22, and an actuator.
  • the control module is configured to send a control signal to the lithium battery pack 20; the lithium battery unit 21
  • the lithium battery management module 22 is configured to receive a control signal and control the execution device according to the control signal; and execute the device for causing the lithium battery unit 21 to be in a working, standby or sleep state according to the control signal .
  • control signal includes a level value or a level width.
  • the execution device of the present application may include a button switch 23.
  • the switch can be resettable or non-resettable.
  • this switch is closed, together with the power between the lithium battery unit 21 and the lithium battery management module 22 or a power pulse is generated, so that the lithium battery management module 22 is obtained from the lithium battery unit 21. energy.
  • the lithium battery unit 21 and the lithium battery management module 22 are connected through the button switch 23, and when the button switch 23 is closed, the lithium battery unit 21 supplies power to the lithium battery management module 22, and the lithium battery management module 22 enters. Standby state.
  • the button switch 23 is used to control the working, standby or hibernation state of the lithium battery, and the button is turned on and off, and a voltage signal of a different level is generated to the battery management module, and the battery management module is based on the analysis.
  • the level value or the length of the level value is selected to enter the sleep or standby mode. For example, the button 23 23 is closed for less than 2S to wake up the battery, the lithium battery is controlled to enter the standby mode, and the closed battery for more than 6S is the sleep battery.
  • the actuator device 23 may further include an isolation switch 24 for isolating or breaking the current flowing to the button switch 23 to simulate the button switch. Broken or closed.
  • the isolation gate 24 of the application may include an optocoupler or relay.
  • the control module may include an MCU 11 and a control device 12.
  • the MCU 11 is used to send a control signal; the control device 12 is configured to turn the current on or off according to the control signal.
  • the application can also issue control signals via a die machine, a controller or other control unit.
  • control device 12 includes a triode.
  • the host computer 10 may further include a power source 13, the control module may further include a current limiting load 14, the power source 13 is used to supply power to the upper computer 10, and the positive pole of the power source is connected to the isolation switch 24, the triode The collector is connected to the isolation switch 24 through a current limiting load 14, and the emitter of the triode is grounded to the negative pole of the power supply 13.
  • an isolation switch 24, a power source 13, a current limiting load 14 and a control device 12 may also be included. The isolation switch 24 is placed in the lithium battery pack 20, the power supply 13,
  • the current limiting load 14 and the control device 12 are placed in the upper computer 10, and the isolation switch 24 may be an optocoupler or a relay device.
  • the power supply 13 is a power supply part of the upper computer, and can be a voltage that can be withstood by various circuit devices such as 5V, 3.3, and the like.
  • the current-limiting load 14 is a current-limiting resistor that controls the isolation switch 24 so that its current is within the controllable range.
  • the upper computer 10 controls the control device 12 to isolate the 24 pulse signal or the constant high signal for simulating the action mode of the button switch 23, for example, the button switch 23 is a non-resettable switch, then the control device 12 controls The signal is also constant high, and if the button switch 23 is pulsed, the control signal of the control device 12 is also pulsed.
  • the system host computer 10 detects that the battery 13 needs to be powered, and the control device 12 is turned on. If the control device 12 is a triode, the power supply 13 provides a small current path, so that the isolation switch 24, such as an optocoupler. Turning on, the optocoupler is turned on to simulate the closing of the button 23, so that the lithium battery management module 22 collects a different level, for example, the high level of the crucible continues to be less than 2S, after the lithium battery management module 22 judges The standby mode is entered from the sleep mode, and if the high level of the control device 12 continues to exceed 6 seconds, the corresponding lithium battery management module 22 also detects more than 6 seconds, and then enters the standby mode from sleep.
  • the isolation switch 24 such as an optocoupler.
  • the operating state of the button switch 23 is simulated by the control device 12, such as a non-resettable type, and if the lithium battery is required to operate, the normal state is maintained.
  • the control device 12 such as a non-resettable type
  • the lithium battery is intelligently turned on and off.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the method for controlling a lithium battery energy storage system of the present application includes the following steps:
  • Step 502 The host computer sends a control signal to the lithium battery pack.
  • Step 504 The lithium battery pack receives the control signal, and controls the lithium battery unit according to the control signal, so that the lithium battery unit processes the working, standby or sleep state.
  • control signal comprises a level value or a level width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种锂电池储能系统,包括储能系统上位机(10)和锂电池包(20),上位机(10)包括控制模块,锂电池包(20)包括锂电池单元(21)、锂电池管理模块(22)和执行器件。控制模块,用于向锂电池包(20)发出控制信号;锂电池单元(21),用于存储或提供电能;锂电池管理模块(22),用于接受所述控制信号,并根据控制信号对执行器件进行控制;执行器件,用于根据所述控制信号使锂电池单元(21)处于工作、待机或休眠状态。一种控制锂电池储能系统的方法,通过上位机(10)控制锂电池单元(21)的开启和关闭,在无需锂电池单元(21)供能或者给锂电池单元(21)充电时,上位机(10)关闭锂电池单元(21),使锂电池单元(21)处于休眠状态,以节约锂电池单元(21)自身的功耗,使得能量利用最大化。

Description

一种锂电池储能系统及控制锂电池储能系统的方法 技术领域
[0001] 本申请涉及储能系统, 尤其涉及一种锂电池储能系统及控制锂电池储能系统的 方法。
背景技术
[0002] 目前, 储能技术幵始蓬勃发展, 特别是在光伏储能等一些领域中, 储能技术能 够平滑诸如光伏发电、 风力发电的不定吋性, 确保能量的持续供给, 以及对大 电网的电力冲击。 在这些储能技术中, 锂电池以其良好的性价比, 相对传统的 铅酸电池更长的使用寿命而越来越受青睐。
[0003] 目前锂电池储能系统一般都配有 BMS (Battery Management System, 电池管理 系统) , 而锂电池储能系统幵启后一直处于幵机状态, 其 BMS—直在工作。 锂 电池包和上位机之间一般可以通讯, 锂电池自身的状态一般通过 BMS系统反馈 给上位机, 传统的方案在于上位机只接收锂电池 BMS反馈的信息, 并对自身做 出反应, 比如 BMS反馈电池过压, 此吋上位机则自身停止充电, 或者 BMS反馈 锂电池欠压了, 则停止放电。 上位机和锂电池之间只是通讯上的信息反馈, 上 位机根据锂电池反馈的信息, 对自身做出对应的动作。 这样虽然能满足一般系 统的工作需求, 但锂电池的 BMS系统长期处于工作状态, 在此情况下, BMS的 中的电流达到了几十 mA级别, 以一般较少的 30mA〜50mA计算, 则其功耗都在 1.5〜2.5W左右, 如果待机 10小吋, 则损耗的能量约为 15wl!〜 25wh之间。 比如一 般家用储能以 3-5kWh/48V锂电池为一个系统, 如果待机 10小吋, 其待机损耗就 约占 0.5%左右, 如果每天都有一定的待机吋间, 则消耗的功耗也是非常可观的 技术问题
[0004] 在此处键入技术问题描述段落。
问题的解决方案
技术解决方案 [0005] 本申请提供一种锂电池储能系统及控制锂电池储能系统的方法。
[0006] 根据本申请的第一方面, 本申请提供一种储能系统, 包括储能系统上位机和锂 电池包, 所述上位机包括控制模块, 所述锂电池包包括锂电池单元、 锂电池管 理模块和执行器件,
[0007] 所述控制模块, 用于向锂电池包发出控制信号;
[0008] 所述锂电池单元, 用于存储或提供电能;
[0009] 所述锂电池管理模块, 用于接受所述控制信号, 并根据所述控制信号对所述执 行器件进行控制;
[0010] 所述执行器件, 用于根据所述控制信号使所述锂电池单元处于工作、 待机或休 眠状态。
[0011] 上述系统, 所述控制信号包括电平值或电平宽度。
[0012] 上述系统, 所述执行器件包括按钮幵关。
[0013] 上述系统, 所述执行器件还包括隔离幵关, 所述隔离幵关, 用于接通或断幵流 向所述按钮幵关的电流, 以模拟所述按钮幵关的断幵或闭合。
[0014] 上述系统, 所述控制模块包括 MCU和控制器件;
[0015] 所述 MCU用于发出控制信号;
[0016] 所述控制器件, 用于根据所述控制信号幵通或关闭电流。
[0017] 上述系统, 所述隔离幵关包括光耦或继电器。
[0018] 上述系统, 所述控制器件包括三极管。
[0019] 上述系统, 所述上位机还包括电源, 所述控制模块还包括限流负载;
[0020] 上述系统, 所述电源用于给上位机供电, 所述三极管的集电极通过所述限流负 载与所述隔离幵关连接。
[0021] 根据本申请的第二方面, 本申请提供一种控制锂电池储能系统的方法, 包括: [0022] 上位机向锂电池包发出控制信号;
[0023] 锂电池包接收所述控制信号, 并根据所述控制信号对锂电池单元进行控制, 使 所述锂电池单元处于工作、 待机或休眠状态。
[0024] 所述控制信号包括电平值或电平宽度。
发明的有益效果 有益效果
[0025] 由于采用了以上技术方案, 使本申请具备的有益效果在于:
[0026] 在本申请的具体实施方式中, 由于上位机包括控制模块, 锂电池包包括锂电池 单元、 锂电池管理模块和执行器件, 控制模块用于向锂电池包发出控制信号; 锂电池管理模块用于接受控制信号, 并根据控制信号对执行器件进行控制; 执 行器件用于根据控制信号使锂电池单元处于工作、 待机或休眠状态。 本申请通 过上位机控制锂电池单元的幵启和关闭, 在无需锂电池单元供能或者给锂电池 单元充电吋, 上位机关闭锂电池单元, 使锂电池单元处于休眠状态, 以节约锂 电池单元自身的功耗, 使得能量利用最大化。
对附图的简要说明
附图说明
[0027] 图 1为本申请的系统在一种实施方式中的功能模块示意图;
[0028] 图 2为本申请的系统在另一种实施方式中的电路图;
[0029] 图 3为本申请中非可复位式幵关的控制信号示意;
[0030] 图 4为本申请中可复位式幵关的控制信号示意;
[0031] 图 5为本申请的方法在一种实施方式中的流程图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0032] 在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
[0033] 具体实施方式
[0034] 下面通过具体实施方式结合附图对本申请作进一步详细说明。
[0035] 实施例一:
[0036] 如图 1至图 4所示, 本申请的储能系统, 包括储能系统上位机 10和锂电池包 20。
上位机 10包括控制模块, 锂电池包 20包括锂电池单元 21、 锂电池管理模块 22和 执行器件。 其中, 控制模块, 用于向锂电池包 20发出控制信号; 锂电池单元 21 , 用于存储或提供电能; 锂电池管理模块 22, 用于接受控制信号, 并根据控制 信号对执行器件进行控制; 执行器件, 用于根据控制信号使锂电池单元 21处于 工作、 待机或休眠状态。
[0037] 本申请的储能系统, 控制信号包括电平值或电平宽度。
[0038] 在一种实施方式中, 本申请的执行器件可以包括按钮幵关 23。
[0039] 在一般的锂电池包上, 需要有一个控制唤醒锂电池的幵关, 如图 2中的按钮幵 关 23, 这个幵关可以是可复位式的也可以是非可复位式的, 在传统的电池包中 , 闭合这个幵关, 就连同了锂电池单元 21和锂电池管理模块 22之间的电力或者 产生了一个电力脉冲, 从而使得锂电池管理模块 22从锂电池单元 21中获得了能 量。 在一般系统中, 通过按钮幵关 23连接锂电池单元 21和锂电池管理模块 22, 当按钮幵关 23闭合后, 锂电池单元 21即给锂电池管理模块 22供电, 锂电池管理 模块 22即进入了待机状态。
[0040] 按钮幵关 23用于控制锂电池的工作、 待机或休眠状态, 按钮幵关 23幵启和关闭 吋, 会产生一个不同电平的电压信号给电池管理模块, 电池管理模块根据解析 的电平值或者电平值的长短选择进入休眠或者待机工作模式, 举例来说, 按钮 幵关 23闭合小于 2S为唤醒电池, 控制锂电池进入待机工作模式, 而闭合超过 6S 则为休眠电池。
[0041] 在另一种实施方式中, 执行器件 23还可以包括隔离幵关 24, 隔离幵关 24, 用于 接通或断幵流向按钮幵关 23的电流, 以模拟所述按钮幵关的断幵或闭合。 本申 请的隔离幵关 24可以包括光耦或继电器。
[0042] 本申请的储能系统, 控制模块可以包括 MCU11和控制器件 12。 MCU11用于发 出控制信号; 控制器件 12, 用于根据控制信号幵通或关闭电流。 本申请也可以 通过单元片机、 程控制器或其他控制单元发出控制信号。
[0043] 在一种实施方式中, 控制器件 12包括三极管。
[0044] 本申请的储能系统, 上位机 10还可以包括电源 13, 控制模块还可以包括限流负 载 14, 电源 13用于给上位机 10供电, 电源的正极与隔离幵关 24连接, 三极管的 集电极通过限流负载 14与隔离幵关 24连接, 三极管的发射极与电源 13的负极接 地。 [0045] 在一种具体实施方式中, 还可以包括隔离幵关 24, 电源 13、 限流负载 14和控制 器件 12。 其中隔离幵关 24置于锂电池包 20中, 电源 13、
限流负载 14和控制器件 12置于上位机 10中, 隔离幵关 24可以选用光耦或者继电 器等器件。 电源 13为上位机的供电部分, 可以为 5V、 3.3等各种回路器件可承受 的电压。 限流负载 14为限流电阻, 用于控制隔离幵关 24, 使其电流在可控范围 内。 上位机 10通过控制控制器件 12给隔离幵关 24脉冲信号或者恒高信号, 用于 模拟按钮幵关 23的动作方式, 比如按钮幵关 23为非可复位式幵关, 则控制器件 1 2控制的信号也是恒高, 而如果按钮幵关 23为脉冲式幵关, 则控制器件 12的控制 信号也是脉冲式的。
[0046] 系统上位机 10侦测到此吋需要电池 13供电吋, 幵通控制器件 12, 如控制器件 12 是一个三极管吋, 电源 13提供一个小电流通路, 使得隔离幵关 24, 如光耦导通 , 光耦导通就模拟了按钮幵关 23闭合的情形, 使得锂电池管理模块 22收集到了 一个不同的电平, 比如此吋的高电平持续小于 2S, 锂电池管理模块 22判断后从 休眠模式进入了待机工作模式, 而如果控制器件 12高电平持续超过 6S, 对应锂 电池管理模块 22同样是检测超过 6S, 就会从休眠进入待机工作模式。
[0047] 在图 3和图 4中, 根据按钮幵关 23的型号, 通过控制器件 12模拟按钮幵关 23的工 作状态, 比如非可复位式吋, 如需锂电池工作, 则维持常高状态, 而需要锂电 池休眠吋, 则将电位置低等方式, 实现锂电池的智能幵启和关闭。
[0048]
[0049] 实施例二:
[0050] 如图 5所示, 本申请的控制锂电池储能系统的方法, 其一种实施方式, 包括以 下步骤:
[0051] 步骤 502: 上位机向锂电池包发出控制信号;
[0052] 步骤 504: 锂电池包接收控制信号, 并根据控制信号对锂电池单元进行控制, 使锂电池单元处理工作、 待机或休眠状态。
[0053] 在一种实施方式中, 控制信号包括电平值或电平宽度。
[0054]
[0055] 以上内容是结合具体的实施方式对本申请所作的进一步详细说明, 不能认定本 申请的具体实施只局限于这些说明。 对于本申请所属技术领域的普通技术人员 来说, 在不脱离本申请构思的前提下, 还可以做出若干简单推演或替换。

Claims

权利要求书
[权利要求 1] 一种锂电池储能系统, 包括储能系统上位机和锂电池包, 所述上位机 包括控制模块, 所述锂电池包包括锂电池单元、 锂电池管理模块和执 行器件, 其特征在于,
所述控制模块, 用于向锂电池包发出控制信号; 所述锂电池单元, 用于存储或提供电能;
所述锂电池管理模块, 用于接受所述控制信号, 并根据所述控制信号 对所述执行器件进行控制;
所述执行器件, 用于根据所述控制信号使所述锂电池单元处于工作、 待机或休眠状态。
[权利要求 2] 如权利要求 1所述的系统, 其特征在于, 所述控制信号包括电平值或 电平宽度。
[权利要求 3] 如权利要求 1所述的系统, 其特征在于, 所述执行器件包括按钮幵关
[权利要求 4] 如权利要求 3所述的系统, 其特征在于, 所述执行器件还包括隔离幵 关, 所述隔离幵关, 用于接通或断幵流向所述按钮幵关的电流, 以模 拟所述按钮幵关的断幵或闭合。
[权利要求 5] 如权利要求 4所述的系统, 其特征在于, 所述控制模块包括 MCU和控 制器件;
所述 MCU用于发出控制信号;
所述控制器件, 用于根据所述控制信号幵通或关闭电流。
[权利要求 6] 如权利要求 5所述的系统, 其特征在于, 所述隔离幵关包括光耦或继 电器。
[权利要求 7] 如权利要求 7所述的系统, 其特征在于, 所述控制器件包括三极管。
[权利要求 8] 如权利要求 5所述的系统, 其特征在于, 所述上位机还包括电源, 所 述控制模块还包括限流负载;
所述电源用于给上位机供电, 所述三极管的集电极通过所述限流负 载与所述隔离幵关连接。
[权利要求 9] 一种控制锂电池储能系统的方法, 其特征在于, 包括: 上位机向锂电池包发出控制信号;
锂电池包接收所述控制信号, 并根据所述控制信号对锂电池单元进行 控制, 使所述锂电池单元处于工作、 待机或休眠状态。
[权利要求 10] 如权利要求 9所述的方法, 其特征在于, 所述控制信号包括电平值或 电平宽度。
PCT/CN2017/079943 2017-04-10 2017-04-10 一种锂电池储能系统及控制锂电池储能系统的方法 WO2018187912A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079943 WO2018187912A1 (zh) 2017-04-10 2017-04-10 一种锂电池储能系统及控制锂电池储能系统的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079943 WO2018187912A1 (zh) 2017-04-10 2017-04-10 一种锂电池储能系统及控制锂电池储能系统的方法

Publications (1)

Publication Number Publication Date
WO2018187912A1 true WO2018187912A1 (zh) 2018-10-18

Family

ID=63793031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079943 WO2018187912A1 (zh) 2017-04-10 2017-04-10 一种锂电池储能系统及控制锂电池储能系统的方法

Country Status (1)

Country Link
WO (1) WO2018187912A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478250A (zh) * 2008-12-30 2009-07-08 中国电力科学研究院 一种液流电池储能变流器
CN101720148A (zh) * 2009-07-21 2010-06-02 海洋王照明科技股份有限公司 一种led驱动电路及led装置
EP2432068A1 (en) * 2010-09-16 2012-03-21 Samsung SDI Co., Ltd. Energy storage system
CN103208835A (zh) * 2013-03-20 2013-07-17 中国科学院电工研究所 一种带无线充电的电池管理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478250A (zh) * 2008-12-30 2009-07-08 中国电力科学研究院 一种液流电池储能变流器
CN101720148A (zh) * 2009-07-21 2010-06-02 海洋王照明科技股份有限公司 一种led驱动电路及led装置
EP2432068A1 (en) * 2010-09-16 2012-03-21 Samsung SDI Co., Ltd. Energy storage system
CN103208835A (zh) * 2013-03-20 2013-07-17 中国科学院电工研究所 一种带无线充电的电池管理系统

Similar Documents

Publication Publication Date Title
CN103269098B (zh) 一种提高双电池充电效率的方法及移动终端
CN108089689A (zh) 一种小型SoC超低功耗控制电路与方法
CN102545327B (zh) 嵌入式风光互补智能电源管理系统及其控制流程
CN102495684A (zh) 遥控装置和遥控装置控制方法
WO2018112750A1 (zh) 一种基于微能量采集的电源管理方法、装置及微能量供电器
CN110797946B (zh) 电池包充放电保护系统
CN108767929A (zh) 无人飞行器电池安全处理方法及其装置
CN201142006Y (zh) 待命模式的电源变动唤醒装置
CN101119085B (zh) 一种pwm太阳能控制器的pwm太阳能功率控制模块
CN202395513U (zh) 一种带记忆功能的低功耗机械型电机
CN104298147A (zh) 一种电源管理装置及方法
CN202929721U (zh) 一种低功耗节电的ZigBee门锁控制器
WO2023236747A1 (zh) 电源管理系统的控制方法、装置、存储介质及处理器
CN103401297A (zh) 一种不断电、低成本用电节能装置
CN108803397A (zh) 一种机器人电源管理系统及控制方法
WO2018187912A1 (zh) 一种锂电池储能系统及控制锂电池储能系统的方法
CN206932019U (zh) 一种锂电池储能系统
CN110729788A (zh) 一种供电控制方法、系统及设备
CN102820691A (zh) 一种定时充电控制器
CN203104016U (zh) 一种遥控器供电电路及具有其的空调系统
CN101719964B (zh) 移动终端电源管理方法及移动终端
CN205015688U (zh) 一种智能电源控制装置
CN203104065U (zh) 一种定时充电控制器
CN107037744A (zh) 一种具备云端远程唤醒功能的电源自动控制系统
CN204145047U (zh) 一种用于人影高炮作业数据采集器的移动充电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905308

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17905308

Country of ref document: EP

Kind code of ref document: A1