WO2018186702A1 - Multi-block copolypeptide, which is composed of elastin-based peptide and mussel foot protein and has stimulus responsivity and surface adhesiveness, preparation method therefor, and use thereof - Google Patents

Multi-block copolypeptide, which is composed of elastin-based peptide and mussel foot protein and has stimulus responsivity and surface adhesiveness, preparation method therefor, and use thereof Download PDF

Info

Publication number
WO2018186702A1
WO2018186702A1 PCT/KR2018/004029 KR2018004029W WO2018186702A1 WO 2018186702 A1 WO2018186702 A1 WO 2018186702A1 KR 2018004029 W KR2018004029 W KR 2018004029W WO 2018186702 A1 WO2018186702 A1 WO 2018186702A1
Authority
WO
WIPO (PCT)
Prior art keywords
mfp
block
copolypeptide
ebppi
ratio
Prior art date
Application number
PCT/KR2018/004029
Other languages
French (fr)
Korean (ko)
Inventor
임동우
이재희
이재상
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to US16/500,177 priority Critical patent/US20200199199A1/en
Priority claimed from KR1020180039787A external-priority patent/KR102070124B1/en
Publication of WO2018186702A1 publication Critical patent/WO2018186702A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]

Definitions

  • the present invention relates to a multi-block copolypeptide having a stimulus responsiveness and surface adhesion, and more particularly, to a multi-block copolypeptide consisting of an elastin-based peptide and a mussel foot protein, a method of preparing the multi-block copolypeptide, A core-shell self-assembled nanostructure comprising a block copolypeptide and a hydrogel comprising the multi-block copolypeptide.
  • Protein-based copolymer blocks self-assembled into core-shell micelles have received considerable attention as drug delivery systems, and in particular, triple block polypeptides have been studied for tissue engineering applications because sol-gel transitions due to physical or chemical crosslinking occur. come.
  • various protein-based materials have been developed for drug delivery and tissue engineering applications.
  • Bioadhesives refer to substances that have adhesion properties to various biological samples such as proteins, DNA, growth factors, cells, etc., such as cell membranes, cell walls, lipids, proteins, DNA, growth factors, cells, and tissues.
  • Various biomedical applications are possible, such as engineering supports, drug delivery carriers, tissue fillers, wound healing, or intestinal adhesion prevention.
  • Bioadhesives require strong adhesion and crosslinking capabilities and must maintain their function in vivo for a long time.
  • Bioadhesives currently commercially available or commercially available include cyanoacrylate instant adhesives, fibrin glues, gelatin glues and polyurethane-based adhesives.
  • bioadhesives using synthetic polymers show very weak strength in the presence of an aqueous solution in vivo, and cyanoacrylate-based bioadhesives have been pointed out as causing great side effects such as immune responses in the human body.
  • fibrin-based bioadhesives currently used in actual patients have little side effects, but their use is limited because of their very low adhesion.
  • formalin or glutaaldehyde which is used as a crosslinking agent, also causes cross-linking reaction with proteins in vivo, resulting in tissue toxicity, and polyurethane-based tissue adhesive has a problem in that aromatic diisocyanate, which is a synthetic raw material, is biotoxic. .
  • MFP mussel foot protein
  • DOPA makes important chemical contributions to adhesion through intermolecular and intramolecular crosslinking (Silverman HG et al., Marine biotechnology, 9 (6), 661-681, 2007; Lee Haeshin. Et al., Proceedings of the National Academy of Sciences, 103 (35), 12999-13003, 2006).
  • Waveguides with catechol side chains in which tyrosine residues are hydroxylated by tyrosinase can bind metal ions, oxides and semimetals through coordination bonds or hydrogen bonds (Sever, MJ et al., Angewandte). Chemie, 116 (4), 454-456, 2004).
  • the present inventors have made efforts to find a polypeptide having a stimulus responsiveness and surface adhesion that can be used in biomedical applications, elastin-based peptide (Elastin-based Polypeptide, EBP); And using a multiblock copolypeptide (MFP) consisting of mussel quartet protein (MFP), forms a self-assembled core-shell structure and hydrogel, reversible change with temperature stimulation, surface adhesion It confirmed that it was remarkably excellent, and completed this invention.
  • EBP elastin-based Polypeptide
  • Another object of the present invention is a gene encoding the multiblock copolypeptide, a recombinant vector comprising the gene, a recombinant microorganism into which the gene or the recombinant vector is introduced, and a method for producing a multiblock copolypeptide using the recombinant microorganism.
  • Still another object of the present invention is a self-assembling nanostructure and a self-assembling nanostructure of the core-shell structure in which the multiblock copolypeptide is a temperature structure, the EBP block forms a core structure, and the MFP block forms a shell structure.
  • the multiblock copolypeptide is a temperature structure
  • the EBP block forms a core structure
  • the MFP block forms a shell structure.
  • Still another object of the present invention is to prepare a multi-block copolypeptide cross-linking between block polypeptides by temperature stimulation, hydrogel, bioadhesive composition comprising the hydrogel and surgery comprising the hydrogel To provide a suture.
  • the present invention provides an elastin-based peptide (EBP); And multi-block copolypeptides consisting of mussel foot protein (MFP).
  • EBP elastin-based peptide
  • MFP mussel foot protein
  • the present invention also provides a gene encoding the multiblock copolypeptide, a recombinant vector comprising the gene, a recombinant microorganism into which the gene or the recombinant vector is introduced.
  • the present invention also comprises the steps of (a) culturing a recombinant microorganism to produce the multi-block copolypeptide; And (b) obtaining the generated multiblock copolypeptide.
  • the present invention also provides a self-assembled nanostructure and a self-assembled nanostructure of the core-shell structure wherein the multi-block copolypeptide is a temperature structure, the EBP block forms a core structure, the MFP block forms a shell structure It provides a drug delivery composition comprising.
  • the present invention also provides a hydrogel in which the multiblock copolypeptides are prepared by forming crosslinks between block polypeptides by temperature stimulation.
  • the present invention also provides a bioadhesive composition and a surgical suture containing the hydrogel.
  • the multiblock copolypeptides of the present invention form self-assembled core-shell structures and hydrogels that can be reversibly changed with temperature stimulation, and have excellent surface adhesion, which makes them useful in biomedical applications. Can be.
  • FIG. 1 is a molecular schematic of various block copolypeptides composed of EBP and MFP ((A): double and triple block copolypeptides forming a core-shell (micelle) structure, (B): MFP forming a hydrogel) -EBP-MFP triple block copolypeptide, (C): EBP-MFP-EBP triple block copolypeptide to form hydrogel, (D): Stimulation responsiveness and surface adhesion of EBP-MFP-EBP triple block copolypeptide Sex mechanism).
  • Figure 2 is a result of confirming the MFP DNA of the present invention by agarose gel electrophoresis ((A): Mcfp5, (B) Mgfp5, lane (M): size marker, lane (1): 1 MFP repeat unit, lane (2): 2 MFP repeat units, lane (3): 4 MFP repeat units).
  • Figure 3 illustrates the cloning of the EBP-MFP block copolypeptide gene of the present invention ((A): multiplex cloning of MFP, (B): EBP-MFP block copolypeptide cloning).
  • FIG. 4 is a schematic of the cloning of the tyrosinase and ORF438 genes of the present invention ((A): tyrosinase cloning, (B): ORF438 cloning).
  • Figure 5 shows the results of (A) tyrosinase and (B) ORF438DNA of the present invention by agarose gel electrophoresis (lane (1) and (2) DNA template: 25ng, lane (3) and (4) DNA Template: 50 ng, lane (N): negative control).
  • FIG. 6 shows (A) DNA agarose gel electrophoresis (1.2%) of tyrosinase gene (824bp) and orf438 gene (438bp); (B) SDS-PAGE results of tyrosinase ( ⁇ 35 kDa), EBP-MFP double block copolypeptide ( ⁇ 24 kDa) and orf438 ( ⁇ 15 kDa) co-expressed in E. coli (lane (1): EBP-MFP double block) Copolypeptide, lane (2): tyrosinase and orf438, lane (3): double block copolypeptide, tyrosinase and orf438 co-expressed in E.
  • EBP-MFP-EBP triple block copolypeptide ⁇ 41 kDa
  • tyrosinase ⁇ 35 kDa
  • orf438 ⁇ 15 kDa
  • E NBT staining hydroxylation via a simultaneous expression system of tyrosinase, ORF438 and double block copolypeptides in E. coli of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides The result is confirmed.
  • Figure 7 is a result of NBT / Glycinate staining after treatment with mushroom-derived tyrosinase in order to confirm the tyrosine residue modification of the double block copolypeptide of the present invention.
  • FIG. 8 shows SDS-PAGE results of copper staining of the block copolypeptide of the present invention ((A): EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block treated with mushroom-derived tyrosinase.
  • FIG. 11 shows (A) mushroom-derived tyrosinase-catalyzed EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block nose treated with 10 mM NaIO 4 Polypeptide (10% by weight) photo; (B) The photo on the left shows mushroom-derived tyrosinase-catalyzed EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block under (A) conditions Surface attachment picture of the copolypeptide, the right is a 20% by weight EBP triple block copolypeptide picture as a control treated with (A) conditions.
  • FIG. 12 is a photograph of 10 mM NaIO 4 treated with hydroxylated block copolypeptide (10 wt.%) In a coexpression system; (B) Photos of adhesion experiments in the presence of water of hydroxylated blockcopolypeptides in a coexpression system.
  • FIG. 13 was measured by the DLS instrument with the hydrodynamic radius of (A) mushroom-derived tyrosinase-catalyzed hydroxylation with or without modification.
  • the hydrodynamic radius of the block copolypeptides was measured at 12.5 uM in 10 mM phosphate buffer (pH 5).
  • the hydrodynamic radius of the block copolypeptides after phase transition is 50 nm to 70 nm, indicating that the block copolypeptides are in the form of specific structures.
  • FIG. 14 shows transmission electron micrographs of the temperature of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides with mushroom-derived tyrosinase-catalyzed hydroxylation ((A, B , C) nanostructures of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides observed at 10 ° C., with accumulations of 0.2 ⁇ m, 50 nm and 50 nm, respectively (D, E , F) constructs of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides observed at 37 ° C., with accumulations of 0.5 mm, 100 nm and 50 nm, respectively (G, H, I) The structure of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copoly
  • EBP elastin-based peptide
  • MFPs multiblock copolypeptides
  • the present invention provides an elastin-based peptide (EBP); And it relates to a multiblock copolypeptide (multiblock copolypeptide) consisting of mussels musa protein (MFP).
  • EBP elastin-based peptide
  • MFP mussels musa protein
  • copolypeptide means a polypeptide that is a copolymer.
  • polypeptide means any polymer chain of amino acids.
  • peptide and protein are interchangeable with the term “polypeptide”, which also refers to a polymer chain of amino acids.
  • polypeptide includes “polypeptide” analogs of natural or synthetic proteins, protein fragments and protein sequences.
  • the polypeptide may be a monomer or a polymer.
  • phase transition means that the state of a substance changes, such as when water turns into water vapor or ice turns into water.
  • Polypeptides having the phase change behavior according to the present invention are basically stimulin reactive elastin-based polypeptides (EBPs).
  • EBPs stimulin reactive elastin-based polypeptides
  • the "elastin-based polypeptides” are also called “elastin-like polypeptides (ELPs).” It is a term widely used in the technical field of the present invention.
  • the EBP undergoes a reversible phase transition at lower critical solution temperature (LCST), also referred to as transition temperature (T t ). These have large water solubility below T t , but become insoluble when the temperature exceeds T t .
  • LCST critical solution temperature
  • the physicochemical properties of EBP are mainly controlled by the combination of pentapeptide repeat units Val-Pro- (Gly or Ala) -X aa -Gly [VP (G or A) XG].
  • the third amino acid of that repeat unit determines the relative mechanical properties.
  • the third amino acid Gly determines elasticity
  • Ala determines plasticity. The elasticity or plasticity is a property that appears after the transition.
  • both the hydrophobicity and the multimerization of the pentapeptide repeating unit of the guest residue X aa as the fourth amino acid affect T t .
  • Mussel triglyceride protein of the present invention can be attached to various surfaces through waveguide.
  • DOPA having a catechol side chain imparts surface adhesion through hydrogen bonds and coordinate bonds with surface molecules
  • quinones an oxidized form of DOPA
  • Intramolecular and intermolecular crosslinking forms to provide strong underwater cohesion. Crosslinking through quinone formation produces a hardened sheath and exhibits moisture-resistance.
  • DOPA and quinone are essential for surface adhesion, which are determined by pH conditions.
  • pH conditions around mussel quiescents are lower than pH 3.0, limiting the oxidation of DOPA to adsorb to surface oxides through hydrogen bonding and metal ion coordination.
  • MFP is exposed to seawater (pH-8.3) to induce oxidation from DOPA to quinones, crosslinking and protein coagulation.
  • hydrophilic amino acids of MFPs such as Ser and Gly participate in cohesive interactions by hydrogen bonding, cation-pi interactions, electrostatic and hydrophobic interactions (Waite, JH, Journal of Experimental) Biology, 220 (4), 517-530, 2017).
  • a novel type of block copolypeptide consisting of a multifunctional EBP block and an MFP block is reasonably designed, synthesized, and characterized.
  • the present invention was intended to combine with MFP and EBP block, a stimulatory reactive protein, to observe self-assembly structure with biomimetic underwater adhesion, and to apply it to the biomedical field.
  • MFP and EBP block a stimulatory reactive protein
  • the mussel californianus foot protein 5 (Mcfp5) and the Mediterranean have a high percentage of tyrosine content ( ⁇ 30%) in all mussel foot protein types.
  • Mgfp5 The gene sequence of mussel galloprovincialis foot protein 5 (Mgfp5) was selected. Tyrosine content of MFP is related to surface adhesion efficiency and strength (Silverman H. G. et al., Marine biotechnology, 9 (6), 661-681, 2007).
  • the multiblock copolypeptide is in the group consisting of (EBP) n (MFP) n, (EBP) n (MFP) n (EBP) n and (MFP) n (EBP) n (MFP) n It is composed of any one arrangement, wherein n is an integer of 1 or more, it may be characterized in that the repetition number of EBP or MFP.
  • the elastin-based peptide is selected from any one of a group consisting of [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block, [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] block and [IPAXG IPAXG IPAXG IPAXG IPAXG] block. It is composed of the amino acid sequence represented by the formula, X may be characterized in that the amino acid except proline.
  • X (or X aa ) is referred to as a "guest residue".
  • Various kinds of X aa may be introduced to prepare various kinds of EBP according to the present invention.
  • the polypeptide may have multi-stimuli responsiveness.
  • multi-stimulatory responsiveness means to be responsive to one or more stimuli.
  • the stimulus may be one or more selected from the group consisting of temperature, pH, ionic strength and ligand.
  • Ligand in the present invention is a substance that specifically binds to a desired substance, for example, various antibodies, antigens, enzymes, substrates, receptors, peptides, DNA, RNA, aptamers, protein A, protein G, avidin, Biotin, chelate compounds, various metal ions (e.g., calcium ions) and the like.
  • a desired substance for example, various antibodies, antigens, enzymes, substrates, receptors, peptides, DNA, RNA, aptamers, protein A, protein G, avidin, Biotin, chelate compounds, various metal ions (e.g., calcium ions) and the like.
  • the [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block is characterized by the amino acid sequence of SEQ ID NO: 1, wherein the [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] block is represented by the amino acid sequence of SEQ ID NO: 2 And the [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] block is represented by the amino acid sequence of SEQ ID NO.
  • amino acid means a natural “amino acid” or “artificial” amino acid, and preferably means a natural "amino acid”.
  • amino acid refers to glycine, alanine, serine, valine, leucine, isoleucine, methionine, glutamine, asparagine, cysteine, histidine, phenylalanine, arginine, tyrosine or tryptophan.
  • amino acids The nature of these amino acids is well known in the art. Specifically, it shows hydrophilicity (negative charge or positive charge) or hydrophobicity, and also shows the properties of aliphatic or aromatic.
  • Abbreviations such as Gly (G) and Ala (A) used in the present invention are amino acid abbreviations.
  • Amino acid abbreviations are glycine (Gly, G), alanine (Ala, A), valine (Val, V), leucine (Leu, L), isoleucine (Ile, I), proline (Pro, P), phenylalanine (Phe, F ), Tyrosine (Tyr, Y), tryptophan (Trp, W), cysteine (Cys, C), methionine (Met, M), serine (Ser, S), threonine (Thr, T), lysine (Lys, K) It is represented by arginine (Arg, R), histidine (His, H), aspartic acid (Asp, D), glutamic acid (Glu, E), asparagine (Asn, N), glutamine (Gln, Q).
  • the abbreviation is a widely used expression in
  • hydrophilic amino acid is an amino acid exhibiting hydrophilic properties, such as lysine, arginine, and the like
  • hydrophobic amino acid is an amino acid showing hydrophobic properties, such as phenylalanine, leucine and the like.
  • X in the [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block is A (Ala), G (Gly), I (Ile) in a ratio of 1: 4: 1; K (Lys), G (Gly), I (Ile) are in a ratio of 1: 4: 1; Or D (Asp), G (Gly), I (Ile) in a ratio of 1: 4: 1; E (Glu), G (Gly), I (Ile) consists of a ratio of 1: 4: 1; G (Gly), A (Ala), F (Phe) consists of 1: 3: 2 ratio; K (Lys), A (Ala), F (Phe) consists of a ratio of 1: 3: 2; D (Asp), A (Ala), F (Phe) consists of a ratio of 1: 3: 2; K (Lys), F (Phe) consist of 3: 3 ratio; D (Asp), A (Ala), F
  • X in the [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG VPAX] block is A (Ala), G (Gly), I (Ile) in a ratio of 1: 4: 1; K (Lys), G (Gly), I (Ile) are in a ratio of 1: 4: 1; Or D (Asp), G (Gly), I (Ile) in a ratio of 1: 4: 1; E (Glu), G (Gly), I (Ile) consists of a ratio of 1: 4: 1; Or G (Gly), A (Ala), F (Phe) in a ratio of 1: 3: 2.
  • X in the [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] block is characterized by G (Gly), A (Ala), and F (Phe) in a ratio of 1: 4: 1 or 1: 3: 2. You can do
  • EBPs having a pentapeptide repeating unit Val-Pro- (Gly or Ala) -X aa -Gly [VP (G or A) XG] are named as follows.
  • X aa may be any amino acid except Pro.
  • the pentapeptide repeat of the plastic Val-Pro-Ala-X aa- Gly (VPAXG) is defined as the plastic elastin-based polypeptide with plasticity (EBPP).
  • EBPP plastic elastin-based polypeptide with plasticity
  • VPGXG the pentapeptide repeat of Val-Pro-Gly-X aa -Gly
  • EBPE elastin-based polypeptide with elasticity
  • the pentapeptide repeat of Ile-Pro-Ala-X aa- Gly is also defined as a plastic elastin-based polypeptide (EBPPI) with the first position replaced by Ile.
  • EBPPI plastic elastin-based polypeptide
  • [XiYjZk] n the capital letters in parentheses are the short-term amino acid code of the guest residue, ie, the amino acid at position 4 (X aa or X) of the EBP pentapeptide, and their corresponding subscripts are EBP monomers as repeat units. Shows the ratio of guest residues in the gene.
  • n of [XiYjZk] n is SEQ ID NO: 1 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG], SEQ ID NO: 2 [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG], or SEQ ID NO: 3 [IPAXG IPAXG IPAXG IPAXG IPAXG] The total number of repetitions of the EBP is shown.
  • EBPP [G1A3F2] 12 is an EBPP block consisting of 12 repeating units of SEQ ID NO: 2 [VPAXG VPAXG VPAXG VPAXG VPAXG], wherein Gly, Ala, and at the fourth guest residue position (X aa ) The ratio of Phe is 1: 3: 2.
  • the gene and amino acid sequences of the EBP block of the present invention are shown in Tables 1 and 2, respectively.
  • the mussel triglyceride protein may be characterized in that the mussel californianus foot protein 5 (Msselp5) or the mussel galloprovincialis foot protein 5 (Mgfp5). have.
  • MFP [Mgfp5] n and MFP [Mcfp5] n represents the type of mussel species and ligature proteins in the letters and numbers in parentheses, subscript 'n' indicates the number of repetitions of the MFP block.
  • MFP [Mgfp5] 1 means Mediterranean mussel (mussel galloprovincialis), MFP type 5, and one MFP block repeat unit.
  • double and triple block copolys consisting of EBP and MFP Peptides are represented by the construction of an MFP block and an EBP block with a hyphen between the two blocks, for example, a double block copeptide is an EBPPI [G1A4F1] n -MFP [Mgfp5] n, and a triple block copolypeptide is an EBPPI [ G1A4F1] n -MFP [Mgfp5] n -EBPPI [G1A4F1] n .
  • the multi-block copolypeptide is characterized by the amino acid sequence of SEQ ID NO: 50 to 70, it may be characterized by the nucleotide sequence of SEQ ID NO: 71 to 91.
  • the present invention relates to a gene encoding the multiblock copolypeptide.
  • the present invention relates to a recombinant vector comprising the gene.
  • the present invention relates to a recombinant microorganism into which the gene or the recombinant vector is introduced.
  • the recombinant microorganism may be characterized in that the expression vector containing a gene encoding a tyrosinase (tyrosinase) or a gene encoding a tyrosinase is further introduced and co-expressed.
  • tyrosinase tyrosinase
  • the mussel quartet protein forms a waveguide having a catechol side chain in which tyrosine residues are hydroxylated by tyrosinase, and the waveguide is a metal ion or oxide through coordination bond or hydrogen bond. And semimetals.
  • the waveguide is specifically dyed in the NBT and glycinate solution due to the redox reaction.
  • orf438 gene may be further included in the expression vector.
  • the present invention provides a method for producing a multi-block copolypeptide by culturing the recombinant microorganism; And (b) obtaining the generated multiblock copolypeptide.
  • the recombinant microorganism of step (a), the expression vector containing a gene encoding a tyrosinase (tyrosinase) or a gene encoding tyrosinase is further introduced to the multi-block copolypeptide and tyro It may be characterized by the co-expression of cinases.
  • the tyrosine residue of the multi-block copolypeptide may be characterized in that the tyrosinase is modified into a dopa (3,4-dihydroxyphenylalanine) residue.
  • tyrosinase (tyrosinase) is expensive, according to the method for producing a multi-block copolypeptide of the present invention, it is economical because it can express a large amount of tyrosinase in bacteria.
  • the vector refers to a DNA preparation containing a nucleotide sequence of the polynucleotide encoding the target protein operably linked to a suitable control sequence to express the target protein in a suitable host cell.
  • the regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating the termination of transcription and translation, as desired It can be manufactured in various ways.
  • the promoter of the vector may be constitutive or inducible. After being transformed into a suitable host, the vector can replicate or function independently of the host genome and integrate into the genome itself.
  • the vector used in the present invention is not particularly limited as long as it can be replicated in a host cell, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, phagemids, cosmids, viruses and bacteriophages.
  • pWE15, M13, ⁇ MBL3, ⁇ MBL4, ⁇ IXII, ⁇ ASHII, ⁇ APII, ⁇ t10, ⁇ t11, Charon4A, and Charon21A can be used as a phage vector or cosmid vector
  • pBR, pUC, pBluescriptII, pGEM system, pTZ system, pCL system and pET system can be used.
  • the vector usable in the present invention is not particularly limited and known expression vectors can be used.
  • expression control sequence refers to a DNA sequence that is essential for the expression of a coding sequence operably linked in a particular host organism.
  • Such regulatory sequence is a promoter for transcription, for controlling such transcription.
  • Any operator sequence, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence that controls termination of transcription and translation, for example, a regulatory sequence suitable for prokaryotes includes a promoter, optionally an operator sequence, and a ribosomal binding site
  • Eukaryotic cells include promoters, polyadenylation signals, and enhancers, the most influential factors affecting the expression levels of genes in the plasmids, the promoters for high expression, the SR ⁇ promoter and cytomegalovirus. Derived promoters and the like are preferably used.
  • any of a wide variety of expression control sequences can be used in the vector.
  • useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter region of phage lambda, fd Regulatory regions of the code protein, promoters for 3-phosphoglycerate kinase or other glycolysis enzymes, promoters of the phosphatase such as Pho5, promoters of the yeast alpha-crossing system and prokaryotic or eukaryotic cells or viruses thereof And other sequences of constitution and induction known to modulate the expression of the genes, and various combinations thereof.
  • the T7 RNA polymerase promoter ⁇ 10 may be usefully used to express protein NSP in E. coli.
  • Nucleic acids are "operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to allow gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s).
  • DNA for a pre-sequence or secretion leader is operably linked to DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame.
  • enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
  • expression vector generally refers to a fragment of DNA that is generally double stranded as a recombinant carrier into which fragments of heterologous DNA have been inserted.
  • heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells.
  • the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host.
  • the expression control sequence and the gene of interest are included in one expression vector including the bacterial selection marker and the replication origin. If the expression host is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.
  • expression host / vector combinations can be used to express the genes encoding the polypeptides of the invention.
  • Suitable expression vectors for eukaryotic hosts include, for example, expression control sequences derived from SV40, bovine papilloma virus, adenovirus, adeno-associated virus, cytomegalovirus and retrovirus.
  • Expression vectors that can be used in bacterial hosts include a broader host range, such as bacterial plasmids, RP4, which can be exemplified in E. coli such as pBluescript, pGEX2T, pUC vectors, colE1, pCR1, pBR322, pMB9 and derivatives thereof.
  • Phage plasmids phage DNA that can be exemplified by a wide variety of phage lambda derivatives such as ⁇ gt10 and ⁇ gt11, NM989, and other DNA phages such as M13 and filamentary single-stranded DNA phages.
  • Useful expression vectors for yeast cells are 2 ⁇ plasmids and derivatives thereof.
  • a useful vector for insect cells is pVL 941.
  • Host cells transformed or transfected with the expression vectors described above constitute another aspect of the present invention.
  • transformation means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • transfection means that the expression vector is accepted by the host cell whether or not any coding sequence is actually expressed.
  • the host cell of the invention is a recombinant microorganism into which a vector having a polynucleotide encoding at least one target protein is introduced, or a polynucleotide encoding at least one target protein is introduced into the microorganism so that the polynucleotide is integrated into a chromosome to express the target protein.
  • a recombinant microorganism infected with a trait It may be a prokaryotic or eukaryotic cell.
  • a host having a high DNA introduction efficiency and a high expression efficiency of the introduced DNA is usually used.
  • Known eukaryotic and prokaryotic hosts such as Escherichia coli, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoptera pruperferda (SF9), animal cells such as CHO and mouse cells, COS 1, COS African green monkey cells such as 7, BSC 1, BSC 40 and BMT 10, and tissue cultured human cells are examples of host cells that can be used.
  • COS cells since SV40 large T antigen is expressed in COS cells, the plasmid having the origin of replication of SV40 is present as a large number of copies of the episome in the cells. And expression can be expected.
  • the introduced DNA sequence may be obtained from the same species as the host cell, may be of a different species than the host cell, or it may be a hybrid DNA sequence comprising any heterologous or homologous DNA.
  • the relative strength of the sequence, the controllability, and the compatibility with the DNA sequences of the present invention should be considered, particularly with regard to possible secondary structures.
  • Single cell hosts may be selected from a host for the selected vector, the toxicity of the product encoded by the DNA sequence of the invention, the secretory properties, the ability to accurately fold the protein, the culture and fermentation requirements, the product encoded by the DNA sequence of the invention from the host. It should be selected in consideration of factors such as the ease of purification. Within the scope of these variables, one skilled in the art can select a variety of vector / expression control sequence / host combinations capable of expressing the DNA sequences of the invention in fermentation or large scale animal culture.
  • binding method binding method
  • panning method panning method
  • film emulsion method film emulsion method
  • a conventionally known genetic manipulation method may be used, and the non-viral delivery method may be cell perforation, lipofection, microinjection, ballistic method, virosome, liposome.
  • Immunoliposomes, polyvalent cations or lipid nucleic acid conjugates, naked DNA, artificial virons, and chemical promoted DNA influx.
  • Sonorization for example methods using the Sonitron 2000 system (Rich-Mar), can also be used for the delivery of nucleic acids.
  • Other representative nucleic acid delivery systems are Amaxa Biosystems (Cologne, Germany), Maxcyte, Inc. (Rockville, Maryland).
  • Suitable cations or neutral lipids for effective receptor-recognition lipofection of polynucleotides include lipids from Felgner (WO91 / 17424 and WO91 / 16024) and can be delivered to cells via in vitro introduction and to target tissues via in vivo introduction. have.
  • nucleic acid complexes including target liposomes, such as immunolipid complexes
  • Methods of preparing lipid: nucleic acid complexes, including target liposomes, such as immunolipid complexes, are well known in the art (Crystal, Science., 270: 404-410, 1995; Blaese et al., Cancer Gene Ther., 2: 291).
  • Lentiviral vectors are retroviral vectors that generate high viral titers by transducing or infecting non-dividing cells.
  • the target tissue determines the retroviral gene persistence system.
  • Retroviral vectors contain cis acting long terminal repeats that can pack 6-10 kb outer sequences. Minimal cis acting LTRs sufficient for replication and packaging of the vector can be used to integrate the therapeutic gene into target cells for permanent transgene expression.
  • Widely used retroviral vectors include murine leukemia virus (MuLV), gibbon leukemia virus (GaLV), monkey immunodeficiency virus (SIV), human immunodeficiency virus (HIV), and combination viruses thereof (Buchscher et al. , J. Virol., 66: 2731-2739, 1992; Johann et al., J. Virol., 66: 1635-1640 1992; Sommerfelt et al., Virol., 176: 58-59, 1990; Wilson et al. , J. Virol., 63: 2374-2378, 1989; Miller et al., J. Virol., 65: 2220-2224, 1991; PCT / US94 / 05700.
  • MiLV murine leukemia virus
  • GaLV gibbon leukemia virus
  • SIV monkey immunodeficiency virus
  • HAV human immunodeficiency virus
  • sucrose phosphorylase proteins are more common with adenovirus-based systems, and adenovirus-based vectors cause high efficiency transduction in many cells but do not require cell division.
  • the vector allows for high titers and high levels of expression and can be produced in large quantities in a simple system.
  • Adeno accessory virus (AAV) vectors are also used to transduce into cells with target nucleic acids, for example for the production of nucleic acids and peptides in vitro and for gene therapy in vivo and in vitro (West et al., Virology., 160: 38-47, 1987; US Pat. No.
  • pLASN and MFG-S are examples of retroviruses used in clinical trials (Dunbar et al., Blood., 85: 3048-305, 1995; Kohn et al., Nat.
  • PA317 / pLASN was the first therapeutic vector used in gene therapy (Blaese et al., Science., 270: 475-480, 1995) Transduction efficiency of MFG-S packaging vector was 50% or higher (Ellem et al., Immunol Immunother., 44 (1): 10-20, 1997; Dranoff et al., Hum. Gene Ther. , 1: 111-2, 1997).
  • rAAV Recombinant adeno-associated virus vectors
  • All vectors are derived from plasmids with AAV 145 bp inverted terminal repeats flanking the transgene expression cassette. Efficient gene delivery and stable transgene delivery due to integration into the genome of transduced cells is a great advantage of the vector system (Wagner et al., Lancet., 351: 9117-17023, 1998; Kearns et al., Gene Ther., 9: 748-55, 1996).
  • co-expression means that two or more genes are expressed at the same time, in the present invention is expressed as co-expression.
  • tyrosine residues of the MFP block were hydroxylated in two ways ((1) bacterial coexpression system (orf438 and tyrosinase and block copolypeptides co-expressed in E. coli) and (2 ) Mushroom-derived tyrosinase catalysis).
  • Double and triple block copeptides composed of EBP (A block) and MFP (B block) are designed in AB-, ABA- and BAB-types to form self-assembled micellar structures and injectable hydrogels, It can be used as a bio coating and a bioadhesive material having.
  • Dopa (DOPA) in MFP plays an important role in surface adhesion, and quinone, an oxidized form of DOPA, imparts cohesion through intermolecular crosslinking.
  • EBP blocks with phase transitions above LCST exhibit improved cohesion for physically crosslinked hydrogelation and surface adhesion.
  • the EBP-MFP block copolypeptide and orf438 and tyrosinase were co-expressed in E. coli to hydroxylate the tyrosine residues of the block copolypeptides without further treatment.
  • the EBP-MFP block copolypeptide has superior adhesion compared to the EBP-MFP block copolypeptide modified by mushroom-derived tyrosinase, it can be seen that it is useful for industrial scale up (Fig. 12).
  • the surface adhesion strength of the block copolypeptides co-expressed in the form of micelles and hydrogels was investigated.
  • the EBP-MFP block copolypeptide of the present invention has great potential as micelles and hydrogels having surface adhesion (Figs. 10, 11, 13 and 14).
  • the present invention relates to a self-assembled nanostructure of a core-shell structure in which the multiblock copolypeptide is a temperature stimulus so that the EBP block forms a core structure and the MFP block forms a shell structure.
  • the core-shell structure refers to a micelle structure
  • micelles generally refer to a thermodynamically stable and uniform spherical structure formed by low molecular weight materials having both amphiphilic, for example, hydrophilic and hydrophobic groups.
  • a non-aqueous drug is dissolved and added to the compound having the micelle structure, the drug is present in the micelle, and the micelle can release the target-oriented drug in response to a change in temperature or pH in the body, thereby serving as a carrier for drug delivery.
  • the possibility of application is very high.
  • MFPs with different block lengths were fused with EBPPI to form self-assembled nanostructures by thermal stimulation.
  • Molecules of the EBPPI-MFP biblock copolypeptide can self assemble into core-shell nanostructures in response to temperature (FIG. 1 (A)).
  • MFP is fused to the N-terminus or C-terminus of EBPPI [G1A4F1] 6 to exhibit surface adhesion under moisture conditions.
  • Surface adherent micelles can be applied to the surface-coated nanostructures on the stent, which can be inserted into the lumen of anatomical vessels to maintain passage and drug delivery carriers.
  • the present invention relates to a drug delivery composition comprising the self-assembled nanostructure.
  • the self-assembled nanostructures according to the present invention can be used as an extracellular matrix as an effective scaffold for drug delivery.
  • the drug is not particularly limited and includes chemicals, small molecules, peptide or protein medicines, nucleic acids, viruses, antibacterial agents, anticancer agents, anti-inflammatory agents and the like.
  • the small molecules may be, for example, but not limited to, contrast agents (eg, T1 contrast agents, T2 contrast agents such as superparamagnetics, radioisotopes, etc.), fluorescent markers, dyeing materials, and the like.
  • contrast agents eg, T1 contrast agents, T2 contrast agents such as superparamagnetics, radioisotopes, etc.
  • fluorescent markers e.g., fluorescent markers, dyeing materials, and the like.
  • the peptide or protein drug product may be a hormone, a hormone analog, an enzyme, an enzyme inhibitor, a signaling protein or a part thereof, an antibody or a part thereof, a single chain antibody, a binding protein or a binding domain, an antigen, an adhesion protein, a structural protein, a regulatory protein, a toxin Proteins, cytokines, transcriptional regulators, blood clotting factors, vaccines, and the like.
  • FGF fibroblast growth factor
  • VEGF vascular endothelial growth factor
  • TGF transforming growth factor
  • bone morphogenetic protein BMP human growth hormone
  • pGH pig growth hormone
  • G-CSF leukocyte growth factor
  • EPO red blood cell growth factor
  • M-CSF macrophage growth factor
  • TNF tumor necrosis factor
  • EGF Epidermal growth factor
  • PDGF platelet-induced growth factor
  • NGF nerve growth factor
  • growth hormone releasing factor growth hormone releasing factor
  • engiotensin luteinizing hormone releasing hormone (LHRH)
  • corpus luteum LHRH agonist insulin
  • TRH thyroid-stimulating hormone releasing hormone
  • TRH endostatin, endostatin, somatostatin, glucagon, endorphins, vacitracin, mergain, colistin, single antibodies, vaccines or these Containing a mixture of , but it is not limited there
  • the nucleic acid can be, for example, RNA, DNA or cDNA, and the sequence of nucleic acids can be a coding site sequence or a non-coding site sequence (eg antisense oligonucleotide or siRNA).
  • the virus may be a virus core (ie, a nucleic acid of a virus packaged without a virus envelope) comprising the virus or the nucleic acid of the virus.
  • viruses and viral cores that can be transported include, but are not limited to, papilloma virus, adenovirus, baculovirus, retroviral core and semilky virus core.
  • the antimicrobial agent may be minocycline, tetracycline, oploxacin, phosphomycin, mergaine, profloxacin, ampicillin, penicillin, doxycycline, thienamycin, cephalosporin, norcardycin, gentamicin, neomycin, kanamycin , Paromomycin, micronomycin, amikacin, tobramycin, dibecasin, cytotaxin, cefacller, erythromycin, ciprofloxacin, levofloxacin, endoxacin, vancomycin, imipenem, fusidic acid and mixtures thereof It may be, but is not limited thereto.
  • the anticancer agents include paclitaxel, taxotier, adriamycin, endostatin, angiostatin, mitomycin, bleomycin, cisplatin, carboplatin, doxorubicin, daunorubicin, idarubicin, 5-fluorouracil, methotrexate, exec Tinomycin-D and mixtures thereof, but is not limited thereto.
  • the anti-inflammatory agents are acetaminophen, aspirin, ibuprofen, diclofenac, indomethacin, pyricampam, phenopropene, flubiprofen, ketoprofen, naproxen, suprofen, roxofene, synoxycamp , Tenoxycam, and mixtures thereof, but is not limited thereto.
  • the present invention relates to a hydrogel in which the multiblock copolypeptide is prepared by forming crosslinks between block polypeptides by temperature stimulation.
  • Hydrogel of the present invention has a mechanical flexibility similar to the actual tissue, and contains a lot of water, but since the bond of the gel is not broken by water, it requires adhesion with a wet biological surface containing water and external moisture Applications to medical adhesives and the like that must have resistance to Edo have been actively made. Accordingly, the hydrogel having excellent tissue adhesion according to the present invention is capable of various biomedical applications such as tissue adhesives or hemostatic agents, tissue engineering supports, drug delivery carriers, tissue fillers, wound healing, and intestinal adhesion prevention.
  • Triple block copolypeptides were prepared as injectable hydrogels with surface adhesion (FIGS. 1B and 1C).
  • the EBP block is used as a physical crosslinker with stimulatory reactivity
  • the MFP block is used for the introduction of chemical crosslinking and surface adhesion by quinone formation.
  • Triple block copolypeptides including MFP-EBP-MFP and EBP-MFP-EBP, can be self-assembled into hydrogels by oxidation by temperature change and NaIO 4 treatment.
  • 1 (D) shows the mechanism of surface adhesion, intermolecular crosslinking and stimulus reactivity of the triple block copolypeptides.
  • the hydrogel may be formed by the oxidative or non-covalent interaction of the dopa (3,4-dihydroxyphenylalanine) residue contained in the mussel musa protein (MFP).
  • MFP mussel musa protein
  • the present invention relates to a bioadhesive composition comprising the hydrogel.
  • the bioadhesive composition of the present invention can be used in various areas such as skin, blood vessels, digestive organs, cranial nerves, plastic surgery, orthopedics, and the like, by replacing cyanoacrylic adhesives or fibrin adhesives that are mainly used in the market.
  • the biocompatible biotissue adhesive of the present invention can replace surgical sutures, can be used to block unnecessary blood vessels, and can be used for hemostasis and suturing of soft tissues such as facial tissues and cartilage, and hard tissues such as bones and teeth. It is possible to apply as a home medicine.
  • Various application fields of the biocompatible bioadhesive composition of the present invention are summarized as follows.
  • the bioadhesive of the present invention may be applied to the internal and external surfaces of the human body, that is, the bioadhesive of the present invention may be applied to the external surface of the human body such as skin or the surface of an internal organ exposed during a surgical procedure. Can be applied as In addition, the bioadhesives of the present invention can be used to bond damaged parts of a tissue, to seal leakage of air / fluid from the tissue, to adhere a medical device to the tissue, or to fill a defective portion of the tissue.
  • biological tissue herein is not particularly limited and includes, for example, skin, bones, nerves, axons, cartilage, blood vessels, corneas, muscles, fascia, brain, prostate, breast, endometrium, lung, spleen, small intestine. , Liver, testes, ovaries, cervix, rectum, stomach, lymph nodes, bone marrow and kidneys.
  • the bioadhesive of the present invention may be used for wound healing.
  • the biocompatible bioadhesive of the present invention can be used as a dressing applied to a wound.
  • the bioadhesive of the present invention can be used for skin closure. That is, the bioadhesive of the present invention may be applied topically and used to seal the wound, replacing the suture.
  • the bioadhesive of the present invention can be applied to restoring hernia, for example, can be used for the surface coating of the mesh used for restoring hernia.
  • the bioadhesive of the present invention can also be used to prevent closure and leakage of tubular structures such as blood vessels.
  • the bioadhesive of the present invention can also be used for hemostasis.
  • the bioadhesive of the present invention may be used as an anti-adhesion agent after surgery.
  • Adhesion occurs at all surgical sites, where other tissues stick around the wound around the surgical site. Adhesion occurs 97% after surgery, especially 5-7% of which causes serious problems.
  • the wound may be minimized during surgery or anti-inflammatory agents may be used. It also activates tissue plasminogen activators (TPAs) or physical barriers such as crystalline solutions, polymer solutions, and solid membranes to prevent fibrin formation, but these methods can be toxic in vivo and have other side effects. have.
  • TPAs tissue plasminogen activators
  • the bioadhesive of the present invention can be applied to exposed tissue after surgery to be used to prevent adhesions occurring between the tissue and surrounding tissue.
  • the present invention relates to a surgical suture comprising the hydrogel.
  • a support for tissue engineering comprising a hydrogel of the present invention.
  • Tissue engineering technology refers to a method of culturing cells isolated from a patient's tissue in a support to prepare a cell-support complex, and then transplanting the prepared cell-support complex back into the human body. It is applied to the regeneration of almost all organs of the human body such as cartilage, artificial cornea, artificial blood vessel, artificial muscle.
  • Bioadhesive hydrogels of the present invention can provide scaffolds similar to living tissue to optimize the regeneration of living tissue and organs in tissue engineering techniques.
  • the support of the present invention can easily implement an artificial extracellular matrix, it can be used as a medical material such as cosmetics, wound dressings, dental matrix.
  • Hydrogels of the present invention can be easily attached to various bioactive substances involved in the action of promoting the growth and differentiation of cells through the interaction with the cells or tissues of the human body and help the regeneration and recovery of tissues.
  • the physiologically active substance may collectively refer to various biomolecules that may be included to implement an artificial extracellular matrix having a structure similar to a natural extracellular matrix.
  • Bioactive substances include cells, proteins, nucleic acids, sugars, enzymes, and the like, and examples thereof include cells, proteins, polypeptides, polysaccharides, monosaccharides, oligosaccharides, fatty acids, nucleic acids, and the like. have.
  • the cell may be any cell including prokaryotic and eukaryotic cells.
  • the physiologically active substance includes, but is not limited to, plasmid nucleic acid as a nucleic acid material, hyaluronic acid as a sugar substance, heparin sulfate, chondroitin sulfate, alginate, and hormonal protein as a protein substance.
  • PET-21a vector and BL21 (DE3) E. coli cells were purchased from Novagen Inc. (Madison, WI, U.S.). Top 10 competent cells were purchased from Invitrogen (Carlsbad, CA, U.S.). Oligonucleotides were chemically synthesized by Cosmo Gene Tech (Seoul, South Korea). Fermentas (Ontario, Canada) was purchased from Fast AP, a thermosensitive alkaline phosphatase, and restriction endonucleases including BamHI and XbaI. Other restriction endonucleases were obtained from New England Biolabs (Ipswich, MA, U.S.), including BseRI, AcuI, and other restriction enzymes.
  • T4 DNA ligase was obtained from Elpis Bio-tech (Taejeon, South Korea). All kits for DNA mini-preparation, gel extraction, and PCR purification were obtained from Geneall Biotechnology (Seoul, South Korea). Dyne Agarose High was obtained from DYNE BIO (Seongnam, South Korea). All Top10 cells were grown in TB DRY medium (MO BIO Laboratories, Carlsbad, CA, U.S.) and super optimal broth with catabolite repression (SOC) medium supplemented with 20 mM glucose (Formedium, UK). All BL21 (DE3) cells were grown in circular growth medium obtained from MP Biomedicals (Solon, OH, U.S.).
  • Tris-HCI 2-20%
  • a precast gel was obtained from Bio-Rad (Hercules, CA, U.S.).
  • Phosphate buffered saline (PBS, pH 7.4), ampicillin and polyethyleneimine (PEI) were purchased from Sigma-Aldrich (St Louis, MO).
  • MFP gene was obtained from M. galloprovincialis- and M. californianus-foot protein 5.
  • the pUC plasmid containing the MFP gene sequence was treated with a buffer containing 10 U of XbaI and 15 U of Acu1 at 37 ° C. for 30 to 60 minutes, and the mpET-21a plasmid vector was also subjected to restriction enzymes of 10 U of XbaI and 15 U of BseRI. Treated. Thereafter, 90 pmol of MFP dsDNA and 30 pmol of linearized mpET-21a cloning vector were incubated in T4 DNA ligase buffer containing 1 U of T4 DNA ligase for 30 minutes at 16 ° C. for ligation. The ligated plasmids were transformed into Top 10 chemical receptor cells and then applied onto SOC plates supplemented with 50 ⁇ g / ml ampicillin. The inserted sequence was then confirmed by DNA sequencing (Table 3).
  • the gene sequence of MFP was multiplied up to four repeat units. Gene sequences and sizes encoding multimerized MFP were confirmed using DNA sequencing and DNA agarose gel electrophoresis.
  • Block copolypeptide libraries consisting of EBP and MFP were synthesized using plasmids with EBP or MFP single block genes.
  • the plasmid containing EBP represented by the gene and amino acid sequence shown in Table 1 and Table 2 was treated with a buffer containing 10 U of XbaI and 15 U of BseRI for 30-60 minutes at 37 ° C., followed by PCR purification kit.
  • Purification with Plasmids with MFP block gene were treated with a buffer containing 10 U of XbaI and 15 U of AcuI for 30-60 minutes at 37 ° C.
  • the MFP gene represented by the amino acid sequence of Table 3 was isolated using agarose gel electrophoresis and purified by gel purification kit.
  • Plasmids with EBP blocks were used as vectors and fused with the MFP gene as insert. Ligation was performed by incubating 90 pmol of purified insert and 30 pmol of linearized vector in ligase buffer containing 1 U of T4 DNA ligase for 30-60 minutes at 16 ° C. The product was then transformed into Top10 recipient cells and then streaked onto SOC plates supplemented with 50 ⁇ g / ml ampicillin. In order to synthesize double and triple block copolypeptides of EBP and MFP, the double block gene of EBPPI-MFP was synthesized by inserting the MFP gene at the 5 'or 3' end of the EBPPI gene.
  • the MFP-EBPPI-MFP or EBPPI-MFP-EBPPI triple block gene was synthesized by inserting the MFP or EBPPI gene into the 5 'or 3' end of the previously synthesized EBPPI-MFP double block gene.
  • Other double and triple block copolypeptide genes were synthesized by varying the block order and length of EBP and MFP.
  • Triple block copolypeptides were synthesized by a recursive directional ligation (RDL) method using double block copolypeptides as building blocks (FIG. 3 (B)).
  • the EBPPI [G1A4F1] 6 gene was seamlessly fused to the N-terminus of the MFP [Mgfp5] 1-EBPPI [G1A4F1] 6 double block copolypeptide gene by RDL, resulting in EBPPI [G1A4F1] 6-MFP [Mgfp5] 1-EBPPI [G1A4F1] 6 triple block copolypeptide genes were synthesized.
  • the length and molecular weight of the double block copolypeptides are shown in Table 5 below.
  • Di-block copolypeptides Nucleotide chain length (bp) M.W (kDa) MFP [Mgfp5] 1 -EBPP [G 1 A 3 F 2 ] 24 (SEQ ID NO: 50) 2400 69.55 MFP [Mgfp5] 2 -EBPP [G 1 A 3 F 2 ] 24 (SEQ ID NO: 51) 2631 78.47 MFP [Mgfp5] 4 -EBPP [G 1 A 3 F 2 ] 24 (SEQ ID NO: 52) 3093 96.31 MFP [Mgfp5] 1 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 53) 780 25.23 MFP [Mgfp5] 2 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 54) 1011 34.15 MFP [Mgfp5] 4 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 55) 1470 51
  • the length and molecular weight of the triple block copolypeptides are shown in Table 6 below.
  • Example 4 PCR and vector construction of tyrosinase and orf438 for bacterial co-expression
  • E. coli cells were grown in TB dry medium containing 50 ⁇ g / mL ampicillin.
  • pIJ702 a plasmid containing tyrosinase and S. lividans comprising orf438 were obtained from the American Type Culture Collection (ATCC, 35387). Single colonies of S. lividans were grown at 30 ° C. in R2 YE medium. Plasmids containing both tyrosinase and orf438 were purified from S.lividans.
  • the tyrosinase gene was amplified by polymerase chain reaction (PCR) using primers of pSA-tyr-5p and pSA-tyr-3 '(pSA-tyr-5p (SEQ ID NO: 46): 5′-g gaG GAT CCg acc gtc cgc aag aac cag-3 ′ and pSA-tyr-3 ′ (SEQ ID NO: 47): 5 ′ gga AAG CTT gac gtc gaa ggt gta gtg ccg ⁇ 3 ′. Amplified PCR products were treated with BamI and HindIII.
  • the orf438 gene was amplified by PCR using primers of pSA-438-5 'and pSA-438-3' and the amplified product was treated with EcoRV and KpnI (pSA-438-5 '(SEQ ID NO: 48). ): 5'- c acG ATA TCg ccg gaa ctc acc cgt cgt-3 ', pSA-438-3' (SEQ ID NO: 49): 5'- caa GTT ACC gtt gga ggg gaa ggg gag gag-3 '.
  • the expression vector pACYCDuet-1 plasmid (Merck, Darmstadt, Germany) was also subjected to the same restriction enzyme as the PCR product, and then the cleaved product was introduced. Finally, the DNA sequence was confirmed by DNA sequencing.
  • E. coli BL21 (DE3) cells containing pET21a with block copolypeptides and plasmids with orf438 and pACYC duet of tyrosinase were grown in Circlegrow medium. Colonies were inoculated in 50 mL TB medium supplemented with 50 ⁇ g / ml Ampicillin (Duchefa) and 50 ⁇ g / ml Chloramphenicol (Duchefa) per ml. The preculture was shaken overnight at 37 ° C. and 200 rpm.
  • the precultured medium was inoculated with 500 mL of high nutrition medium (circlegrow) containing 50 ⁇ g / mL of ampicillin and chloramphenicol, and cultured at 37 ° C. and 200 rpm until the OD600 reached 0.6 to 0.8.
  • high nutrition medium (circlegrow) containing 50 ⁇ g / mL of ampicillin and chloramphenicol
  • IPTG Isopropyl- at a final concentration of 1 mM -D-thiogalactopyranoside
  • IPTG 1 mM -D-thiogalactopyranoside
  • cells were obtained by centrifugation at 4 ° C and 4,500 rpm for 10 minutes.
  • the expressed EBPPI-MFP block copolypeptides were purified using inverse transition cycling (ITC).
  • Cell pellets were resuspended in 5% acetic acid containing 8M urea. After sonication (VC-505, Sonic and materials Inc, Danbury, CT) for 10 seconds in an ice bath, cells were destroyed by 30 seconds of cooling (fooling). Cell lysates were centrifuged at 50 ° C. and 13000 rpm for 15 minutes in a 50 mL centrifuge tube to precipitate insoluble debris of the cell lysates. Subsequently, the supernatant containing the water-soluble EBPPI-MFP block copolypeptide was transferred to a new 50 mL centrifuge tube and centrifuged at 4 ° C. and 13000 rpm for 15 minutes to precipitate nucleic acid contaminants.
  • EBPPI-MFP block copolypeptides were aggregated by the salt effect and separated from lysates by centrifugation for 15 minutes at 37 ° C., 13,000 rpm. Aggregated block copolypeptides were resuspended in wells containing 30 mL of sodium acetate buffer (pH 5.0) and 4M urea at 4 ° C. To remove any aggregated protein contaminants, the resuspended protein solution was centrifuged at 4 ° C. and 13,000 rpm for 15 minutes.
  • ITC Inverse transition cycling
  • the aggregation and resuspension treatment was repeated 5 to 10 times until the purity of the block copolypeptide reached about 95%.
  • the purity was measured using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
  • block copolypeptides For the hydroxylation of tyrosine residues of block copolypeptides, block copolypeptides, tyrosinase ( ⁇ 32 kDa) and orf438 ( ⁇ 15 kDa) were co-expressed in soluble form.
  • the recombinant EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide was prepared from a pET21a vector comprising a double block copolypeptide and a pACYC duet vector comprising tyrosinase and orf438. Co-expressed with tyrosinase and orf438 in E. coli via a dual vector system.
  • tyrosinase and orf438 genes were identified in the amplified tyrosinase and orf438 encoded pACYC duet vectors.
  • Figure 6 (B) shows a double block copolypeptide of (1) bacterial expression of pET21 alone, (2) tyrosinase and orf438 of bacterial expression of pACYC duet alone, and (3) a coexpressed pET21a vector.
  • Tyrosinase and orf438 of copolypeptide and pACYC duet vectors According to the plasmid copy number of each vector, the block copolypeptide in the pET vector has a copy number (-40) that is higher than the copy number (-12) of the tyrosinase and the pACYC duet vector encoding orf438. That is, the block copolypeptide of the pET vector alone was expressed more than the coexpression system.
  • FIG. 6 (C) also shows (1) a triple block copolypeptide of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 alone with pET21, and (2) Tyrosinase and orf438 of the triple-block copolypeptide of pET21a vector and pACYC duet vector were identified.
  • Tyrosine residues of the EBP-MFP block copolypeptide were converted to DOPA via modification by mushroom derived tyrosinase (Sigma Aldrich, T3824) (FIG. 6 (D)).
  • EBP-MFP block copolypeptide was resuspended in 10 mM phosphate buffer supplemented with 10 mM sodium borate and the pH was adjusted to pH 7.0 using ascorbic acid. Then, mushroom-derived tyrosinase at a final concentration of 0.01 mg / ml was added. The solution was gently incubated for 3 hours at room temperature (RT). The tyrosinase-treated EBP-MFP block copolypeptides were phase transitioned at 40 ° C as the temperature increased, and purified by centrifugation at 16,000 rpm for 10 minutes at 40 ° C to remove tyrosinase. It was. Aggregated modified block copolypeptides were resuspended in 10 mM phosphate (pH 5) in an ice bath and the sample was centrifuged at 16,000 rpm for 15 minutes to remove remaining insoluble material.
  • EBP-MFP block copolypeptide was added as a 5% acetic acid (pH 3) solution and lyophilized. This is because quinone, the oxidized form of DOPA, induces intermolecular covalent bonds and reduces interaction with surface molecules in oxidizing conditions.
  • EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides expressed alone in E. coli were purified by ITC, and tyrosine residues of the double block copolypeptides were mushroom-derived tyrosinase-. It was transformed into DOPA by catalytic reaction.
  • the purity and molecular weight of all block copolypeptides were characterized by SDS-PAGE including copper staining.
  • the phase transition behavior of the block copolypeptides was characterized by UV-visible spectrophotometer.
  • MFPs with different block lengths were fused with EBPPI to form self-assembled nanostructures by thermal stimulation.
  • EBPPI-MFP double block copolypeptides, MFP-EBPPI-MFP triple block copolypeptides, and EBPPI-MFP-EBPPI triple block copolypeptides with concentrations above 12.5 uM have a hydrodynamic radius (R h ) of 20 nm to 40 nm. Eggplants self-assemble into core-shell nanostructures, but the triple block copolypeptides under concentrated conditions formed hydrogels in response to temperature.
  • EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 Triple block copolypeptides show copper stained SDS-PAGE photographic images.
  • the MW of the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides is similar to the expected MW ( ⁇ 24.6 kDa) and the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6
  • the triple block copolypeptides are also similar to the expected MW ( ⁇ 40.1 kDa).
  • Multimerization forms of hydroxylated EBPPI [G1A4F1] 6-MFP [Mgfp5] 1 double block copolypeptides of 48.0 kDa and 92.0 kDa were identified.
  • FIG. 8 (C) shows EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides treated with various concentrations of oxidizer of NaIO 4 and copper stained SDS in their hydroxylated form. -PAGE image. Treatment with NaIO 4 results in intermolecular crosslinking of unmodified EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides due to the formation of di tyrosine residues, resulting in SDS The chemically crosslinked double block copolypeptides remain in the wells during PAGE (lanes (2-3) in FIG. 8 (C)).
  • hydroxylated double block copolypeptides were multiplexed due to the formation of di tyrosine residues at neutral pH as well as the formation of quinones induced by DOPA self oxidation. That is, NaIO 4 induced intermolecular crosslinking through the formation of quinone and di tyrosine residues, and no migration of chemically crosslinked hydroxylated double block copolypeptides occurred during SDS-PAGE.
  • the thermal properties of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides range from 10 ° C. to 1 ° C./min heating rate in 10 mM phosphate buffer (pH 5, to prevent oxidation). It observed by measuring 350 nm absorbance in the temperature range of 70 degreeC.
  • FIG. 9 (A) shows EBPPI [G 1 A 4 F 1 ] 6 , 25 ⁇ M of mushroom-derived tyrosinase-catalyzed hydroxylation with or without the control EBPPI [G 1 A 4 F 1 ] Thermal profile of 6- MFP [Mgfp5] 1 double block copolypeptide.
  • Monoblock, EBPPI [G 1 A 4 F 1 ] 6 exhibited complete solubility under T t (approx. 45 ° C.), aqua conditions, and abruptly above LCST due to total aggregation of EBPPI [G 1 A 4 F 1 ] 6 Metastasis was shown.
  • EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides exhibit different thermal reactivity from the monoblock of EBPPI. Since the MFP block makes EBPPI [G 1 A 4 F 1 ] 6 more hydrophobic, the LCST of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides was induced by mushroom tyrosinase. It decreased to 35 ° C. regardless of hydroxylation.
  • LCST behavior was analyzed according to the concentration of block copolypeptide and NaIO 4 oxidant.
  • 250 ⁇ M of the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide and 10 mM NaIO 4 treated 25 ⁇ M double block copolypeptide exhibited rapid transition of EBP block.
  • 9 (B) and 9 (C) This is due to the formation of quinones induced by DOPA self oxidation and non-covalent interactions of the MFP blocks as well as di tyrosine residues at neutral pH.
  • the aggregation of high concentrations of MFP block is hydrogen bond, Induced by non-covalent interactions such as stacking, electrostatic and hydrophobic interactions.
  • EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides lower than EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides. This is because hydrophobic EBPPI blocks were introduced at both ends of the MFP [Mgfp5] 1 intermediate block.
  • the thermal reactivity of the triple block copolypeptides is similar to the EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides hydroxylated with 10 mM NaIO 4 as shown in FIG. 9 (C).
  • Triple block copolypeptides aggregated at temperatures higher than the LCST of the EBPPI block. This is because EBPPI blocks in double and triple block copolypeptides can form both chemical crosslinking of MFP through physical crosslinking and quinone formation.
  • Example 8 Bulk scale surface adhesion analysis of (1) a block copolypeptide treated with mushroom derived tyrosinase and (2) a hydroxylated block copolypeptide in a co-expression system
  • Hydroxylated double block and triple block copolypeptides were prepared in mushroom derived tyrosinase treated or bacterial co-expression systems.
  • 10 mM phosphate buffer (pH 5) containing 10 mM and 100 mM NaIO 4 was dissolved in 10, 20 and 30% by weight of EBPPI [G1A4F1] 6-MFP [Mgfp5] 1 double block copolypeptides.
  • the adherent surface was rinsed with acetone, ethanol and water.
  • Each block copolypeptide solution was placed directly on the attachment and mixed with 10 mM NaIO 4 oxidant.
  • the deposits were covered with other deposits to form overlapping regions and cured at 4 ° C. for 1 hour.
  • EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block copolypeptide (10% by weight) was treated with 10 mM NaIO 4 , the control EBPPI [G 1 A 3 F 2 ] 12 -EBPP [G 1 A 4 F 1 ] 6 -EBPPI [G 1 A 3 F 2 ] 12 It was confirmed that the surface adhesion is stronger than the triple block copolypeptide. This is because the MFP intermediate block has surface adhesion (FIG. 11).
  • Hydroxylated block copolypeptides were prepared in various weight percents in a bacterial co-expression system. First, 10% by weight of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide was dissolved in 10 mM phosphate buffer (pH 5). Each block copolypeptide solution was mixed with 10 mM-100 mM NaIO 4 oxidant prior to placing the attachment. Each block copolypeptide was placed on an attachment and then covered with another attachment to form an overlapped region and cured for 1 hour at 4 ° C.
  • the hydroxylation rate of tyrosine residues was increased in the case of hydroxylated double or triple block copolypeptides in a co-expression system, so that the same block copolypeptides would be hydroxylated in a bacterial co-expression system. Not only does it show strong surface adhesion, but it is also useful for industrial scale-up.
  • the properties of the core-shell structure of EBP-MFP block copolypeptides with or without hydroxyl groups were analyzed by dynamic light scattering (DLS) instruments (Malvern instruments, Worcestershire, UK).
  • the hydrodynamic radius (R h ) of the 12.5 ⁇ M block copolypeptide in 10 mM phosphate buffer (pH5) was measured for 11 min after equilibration at 10 o C and 45 o C for 1 min.
  • a rhodamine 6G fluorescent dye with a final concentration of 0.5 w / v% was used.
  • the fluorescent dyes were each (1) nothing in the PCR tube (# PCR-02-C, Axygen), (2) mixed with EBP double block copolypeptides, and (3) EBPPI hydroxylated via coexpression [G 1 A 4 F 1 ] 6- MFP [Mgfp5] 1 diblock copolypeptide mixed at 10 ° C., and (4) EBPPI [G 1 A 4 F 1 ] hydroxylated via coexpression A mixture of 6- MFP [Mgfp5] 1 double block copolypeptide at 40 ° C. was used.
  • Each block copolypeptide is 25 uM dissolved in 10 mM phosphate buffer (pH5).
  • phosphate buffer pH5

Abstract

The present invention relates to a multi-block copolypeptide having stimulus responsivity and surface adhesiveness. When the multi-block copolypeptide composed of an elastin-based peptide and a mussel foot protein, of the present invention, is used, a self-assembled core-shell structure and a hydrogel, both of which can be reversibly changed according to temperature stimuli, can be formed, and the multi-block copolypeptide has remarkably excellent surface adhesiveness, thereby being usable in the field of biomedical applications.

Description

자극 반응성 및 표면 부착성을 지닌 엘라스틴 기반 펩타이드 및 홍합 족사 단백질로 이루어진 다중 블럭 코폴리펩타이드 및 이의 제조 방법 및 그 용도Multi-block copolypeptides comprising elastin-based peptides and mussel quartet proteins with stimulatory responsiveness and surface adhesion, and methods for their preparation and use thereof
본 발명은 자극 반응성 및 표면 부착성을 지닌 다중 블럭 코폴리펩타이드에 관한 것으로, 더욱 자세하게는 엘라스틴 기반 펩타이드 및 홍합 족사 단백질로 이루어진 다중 블럭 코폴리펩타이드, 상기 다중 블럭 코폴리펩타이드의 제조방법, 상기 다중 블럭 코폴리펩타이드를 포함하는 코어-쉘 구조의 자가조립 나노구조체 및 상기 다중 블럭 코폴리펩타이드를 포함하는 하이드로겔에 관한 것이다.The present invention relates to a multi-block copolypeptide having a stimulus responsiveness and surface adhesion, and more particularly, to a multi-block copolypeptide consisting of an elastin-based peptide and a mussel foot protein, a method of preparing the multi-block copolypeptide, A core-shell self-assembled nanostructure comprising a block copolypeptide and a hydrogel comprising the multi-block copolypeptide.
온도, pH 및 이온 강도와 같은 환경 변화에 대한 반응성을 지닌 단백질 기반 공중합체 블럭의 미셀 또는 하이드로겔 구조로의 자가-조립은, 높은 생체 적합성 및 조절 가능한 분해능으로 인해 수십년 동안 연구되어 왔다. 코어-쉘 미셀로 자가조립되는 단백질 기반 폴리펩타이드 블럭은 약물 전달 시스템으로서 상당한 주목을 받아 왔으며, 특히, 삼중 블럭 폴리펩타이드는 물리적 또는 화학적 가교로 인한 졸-겔 전이가 일어나기 때문에 조직 공학 응용으로 연구되어 왔다. 이 밖에도 다양한 단백질 기반 물질들이 약물 전달 및 조직 공학 응용으로 개발되었다.Self-assembly of protein-based copolymer blocks into micelle or hydrogel structures with responsiveness to environmental changes such as temperature, pH and ionic strength has been studied for decades because of their high biocompatibility and controllable resolution. Protein-based polypeptide blocks self-assembled into core-shell micelles have received considerable attention as drug delivery systems, and in particular, triple block polypeptides have been studied for tissue engineering applications because sol-gel transitions due to physical or chemical crosslinking occur. come. In addition, various protein-based materials have been developed for drug delivery and tissue engineering applications.
생체접착제는 생물의 세포막, 세포벽, 지질, 단백질, DNA, 성장인자, 세포, 조직 등 단백질, DNA, 성장인자, 세포 등과 같은 다양한 생물시료에 부착 특성을 갖는 물질을 말하며, 조직접착제 또는 지혈제, 조직공학용 지지체, 약물 전달 담체, 조직충진제, 상처 치료, 또는 장유착 방지 등의 다양한 생의학적 응용이 가능하다. 생체접착제는 강력한 접착 및 가교 능력이 필요하고, 오랜 기간 생체 내부에서 그 기능을 유지해야 한다. 현재 상용화 또는 실용화되고 있는 생체접착제로는 시아노아크릴레이트 순간 접착제, 피브린 글루, 젤라틴 글루 및 폴리우레탄계 접착제 등이 있다. 그러나, 합성 고분자를 이용한 생체접착제의 경우 생체 내의 수용액이 있는 상태에서 매우 약한 힘을 보이고, 시아노아크릴레이트 계열 생체접착제는 인체에 면역 반응 등의 부작용을 일으키는 것이 큰 한계로 지적되고 있다. 또한, 현재 실제 환자에게 사용되고 있는 피브린 계열의 생체접착제의 경우, 부작용은 적지만 그 접착 능력이 매우 낮은 수준이기 때문에 사용에 한계가 있다. 젤라틴 조직접착제의 경우 가교제로 사용되는 포르말린이나 글루타알데하이드이 생체 내의 단백질과도 가교 반응을 일으켜 조직 독성을 일으키는 문제가 있고, 폴리우레탄계 조직접착제는 합성원료인 방향족 디아이소시아네이트가 생체 독성이 있다는 문제가 있다.Bioadhesives refer to substances that have adhesion properties to various biological samples such as proteins, DNA, growth factors, cells, etc., such as cell membranes, cell walls, lipids, proteins, DNA, growth factors, cells, and tissues. Various biomedical applications are possible, such as engineering supports, drug delivery carriers, tissue fillers, wound healing, or intestinal adhesion prevention. Bioadhesives require strong adhesion and crosslinking capabilities and must maintain their function in vivo for a long time. Bioadhesives currently commercially available or commercially available include cyanoacrylate instant adhesives, fibrin glues, gelatin glues and polyurethane-based adhesives. However, the bioadhesives using synthetic polymers show very weak strength in the presence of an aqueous solution in vivo, and cyanoacrylate-based bioadhesives have been pointed out as causing great side effects such as immune responses in the human body. In addition, the fibrin-based bioadhesives currently used in actual patients have little side effects, but their use is limited because of their very low adhesion. In the case of gelatin tissue adhesive, formalin or glutaaldehyde, which is used as a crosslinking agent, also causes cross-linking reaction with proteins in vivo, resulting in tissue toxicity, and polyurethane-based tissue adhesive has a problem in that aromatic diisocyanate, which is a synthetic raw material, is biotoxic. .
한편, 해양 홍합은 족사 단백질로 인해 혹독한 환경의 다양한 수중 표면에서 서식할 수 있다. 홍합 족사 단백질(mussel foot protein, MFP)의 도파(Dihydroxyphenylalanine, DOPA)는 표면 부착에 중요한 역할을 한다. 홍합은 유형 1에서 유형 6까지 여섯 가지 유형으로 분류된다. 각 MFP는 서로 다른 함량비의 DOPA 잔기를 가지며, 이에 따라 다양한 표면 부착성을 나타낸다. 예를 들어, MFP 1, 2 및 4는 단백질의 분자 내 및 분자 간 가교결합을 하며, MFP 3, 5 및 6은 무기 및 유기 분자와의 상호 작용에 의한 표면 부착성을 나타낸다. 따라서, DOPA는 분자 간 및 분자 내 가교 결합을 통해 부착성에 중요한 화학적 기여를 한다(Silverman H. G. et al., Marine biotechnology, 9(6), 661-681, 2007; Lee Haeshin. et al., Proceedings of the National Academy of Sciences, 103 (35), 12999-13003, 2006). 티로시나아제(tyrosinase)에 의해 티로신 잔기가 히드록실화된 카테콜 측쇄를 가진 도파는 배위 결합 또는 수소 결합을 통해 금속 이온, 산화물 및 반금속과 결합할 수 있다(Sever, M. J. et al., Angewandte Chemie, 116(4), 454-456, 2004). Marine mussels, on the other hand, can inhabit a variety of aquatic surfaces in harsh environments due to their footwort proteins. Dopa (Dihydroxyphenylalanine (DOPA)) of mussel foot protein (MFP) plays an important role in surface adhesion. Mussels are classified into six types, from type 1 to type 6. Each MFP has DOPA residues in different content ratios, thus exhibiting varying surface adhesion. For example, MFP 1, 2, and 4 cross-molecularly and intramolecularly crosslink the proteins, while MFP 3, 5, and 6 exhibit surface adhesion by interaction with inorganic and organic molecules. Thus, DOPA makes important chemical contributions to adhesion through intermolecular and intramolecular crosslinking (Silverman HG et al., Marine biotechnology, 9 (6), 661-681, 2007; Lee Haeshin. Et al., Proceedings of the National Academy of Sciences, 103 (35), 12999-13003, 2006). Waveguides with catechol side chains in which tyrosine residues are hydroxylated by tyrosinase can bind metal ions, oxides and semimetals through coordination bonds or hydrogen bonds (Sever, MJ et al., Angewandte). Chemie, 116 (4), 454-456, 2004).
최근, 엘라스틴 기반 펩타이드와 레질린-유사 폴리펩타이드로 이루어진 블럭 폴리펩타이드가 상 전이 거동을 가지며, 자가조립될 수 있다는 연구가 보고되고 있으나, 표면 부착성을 개시하고 있지 않다(대한민국 공개특허 제10-2017-0113209호). Recently, studies have been reported that block polypeptides composed of elastin-based peptides and resilin-like polypeptides have phase transfer behavior and can be self-assembled, but do not disclose surface adhesion. 2017-0113209).
이에, 본 발명자들은 생체 의학 응용 분야에서 사용될 수 있는 자극 반응성 및 표면 부착성을 가진 폴리펩타이드를 찾고자 예의 노력한 결과, 엘라스틴 기반 펩타이드(Elastin-based Polypeptide, EBP); 및 홍합 족사 단백질(MFP)로 이루어진 다중 블럭 코폴리펩타이드(multiblock copolypeptide)을 이용하면, 온도 자극에 따라 가역적인 변화가 가능한, 자가조립된 코어-쉘 구조 및 하이드로겔을 형성하며, 표면 부착성이 현저하게 우수하다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to find a polypeptide having a stimulus responsiveness and surface adhesion that can be used in biomedical applications, elastin-based peptide (Elastin-based Polypeptide, EBP); And using a multiblock copolypeptide (MFP) consisting of mussel quartet protein (MFP), forms a self-assembled core-shell structure and hydrogel, reversible change with temperature stimulation, surface adhesion It confirmed that it was remarkably excellent, and completed this invention.
본 발명의 목적은 자극 반응성 및 표면 부착성을 가진 다중 블럭 코폴리펩타이드를 제공하는데 있다.It is an object of the present invention to provide multiblock copolypeptides having stimulatory reactivity and surface adhesion.
본 발명의 다른 목적은 상기 다중 블럭 코폴리펩타이드를 코딩하는 유전자, 상기 유전자를 포함하는 재조합 벡터, 상기 유전자 또는 상기 재조합 벡터가 도입된 재조합 미생물 및 상기 재조합 미생물을 이용한 다중 블럭 코폴리펩타이드의 제조방법을 제공하는데 있다.Another object of the present invention is a gene encoding the multiblock copolypeptide, a recombinant vector comprising the gene, a recombinant microorganism into which the gene or the recombinant vector is introduced, and a method for producing a multiblock copolypeptide using the recombinant microorganism. To provide.
본 발명의 또 다른 목적은 상기 다중 블럭 코폴리펩타이드가 온도 자극에 의해, EBP 블럭이 코어 구조를 형성하고, MFP 블럭이 쉘 구조를 형성하는 코어-쉘 구조의 자가조립 나노구조체 및 상기 자가조립 나노구조체를 포함하는 약물 전달 조성물을 제공하는데 있다.Still another object of the present invention is a self-assembling nanostructure and a self-assembling nanostructure of the core-shell structure in which the multiblock copolypeptide is a temperature structure, the EBP block forms a core structure, and the MFP block forms a shell structure. To provide a drug delivery composition comprising a structure.
본 발명의 또 다른 목적은 상기 다중 블럭 코폴리펩타이드가 온도 자극에 의해 블럭 폴리펩타이드 간 가교 결합을 형성하여 제조되는, 하이드로겔, 상기 하이드로겔을 포함하는 생체접착제 조성물 및 상기 하이드로겔을 포함하는 수술용 봉합사를 제공하는데 있다.Still another object of the present invention is to prepare a multi-block copolypeptide cross-linking between block polypeptides by temperature stimulation, hydrogel, bioadhesive composition comprising the hydrogel and surgery comprising the hydrogel To provide a suture.
상기 목적을 달성하기 위하여, 본 발명은 엘라스틴 기반 펩타이드(EBP); 및 홍합 족사 단백질(MFP)로 이루어진 다중 블럭 코폴리펩타이드를 제공한다.In order to achieve the above object, the present invention provides an elastin-based peptide (EBP); And multi-block copolypeptides consisting of mussel foot protein (MFP).
본 발명은 또한, 상기 다중 블럭 코폴리펩타이드를 코딩하는 유전자, 상기 유전자를 포함하는 재조합 벡터, 상기 유전자 또는 상기 재조합 벡터가 도입된 재조합 미생물을 제공한다.The present invention also provides a gene encoding the multiblock copolypeptide, a recombinant vector comprising the gene, a recombinant microorganism into which the gene or the recombinant vector is introduced.
본 발명은 또한, (a) 재조합 미생물을 배양하여 상기 다중 블럭 코폴리펩타이드를 생성시키는 단계; 및 (b) 상기 생성된 다중 블럭 코폴리펩타이드를 수득하는 단계를 포함하는 다중 블럭 코폴리펩타이드의 제조방법을 제공한다.The present invention also comprises the steps of (a) culturing a recombinant microorganism to produce the multi-block copolypeptide; And (b) obtaining the generated multiblock copolypeptide.
본 발명은 또한, 상기 다중 블럭 코폴리펩타이드가 온도 자극에 의해, EBP 블럭이 코어 구조를 형성하고, MFP 블럭이 쉘 구조를 형성하는 코어-쉘 구조의 자가조립 나노구조체 및 상기 자가조립 나노구조체를 포함하는 약물 전달 조성물을 제공한다.The present invention also provides a self-assembled nanostructure and a self-assembled nanostructure of the core-shell structure wherein the multi-block copolypeptide is a temperature structure, the EBP block forms a core structure, the MFP block forms a shell structure It provides a drug delivery composition comprising.
본 발명은 또한, 다중 블럭 코폴리펩타이드가 온도 자극에 의해 블럭 폴리펩타이드 간 가교 결합을 형성하여 제조되는, 하이드로겔을 제공한다.The present invention also provides a hydrogel in which the multiblock copolypeptides are prepared by forming crosslinks between block polypeptides by temperature stimulation.
본 발명은 또한, 상기 하이드로겔을 포함하는 생체접착제 조성물 및 수술용 봉합사를 제공한다.The present invention also provides a bioadhesive composition and a surgical suture containing the hydrogel.
본 발명의 다중 블럭 코폴리펩타이드는 온도 자극에 따라 가역적인 변화가 가능한, 자가조립된 코어-쉘 구조 및 하이드로겔을 형성하며, 표면 부착성이 현저하게 우수하여, 생체의학 응용 분야에서 유용하게 사용될 수 있다.The multiblock copolypeptides of the present invention form self-assembled core-shell structures and hydrogels that can be reversibly changed with temperature stimulation, and have excellent surface adhesion, which makes them useful in biomedical applications. Can be.
도 1은 EBP 및 MFP로 구성된 다양한 블럭 코폴리펩타이드의 분자 개략도이다((A): 코어-쉘(미셀) 구조를 형성하는 이중 및 삼중 블럭 코폴리펩타이드, (B): 하이드로겔을 형성하는 MFP-EBP-MFP 삼중 블럭 코폴리펩타이드, (C): 하이드로겔을 형성하는 EBP-MFP-EBP 삼중 블럭 코폴리펩타이드, (D): EBP-MFP-EBP 삼중 블럭 코폴리펩타이드의 자극 반응성 및 표면 부착성 메커니즘).1 is a molecular schematic of various block copolypeptides composed of EBP and MFP ((A): double and triple block copolypeptides forming a core-shell (micelle) structure, (B): MFP forming a hydrogel) -EBP-MFP triple block copolypeptide, (C): EBP-MFP-EBP triple block copolypeptide to form hydrogel, (D): Stimulation responsiveness and surface adhesion of EBP-MFP-EBP triple block copolypeptide Sex mechanism).
도 2는 본 발명의 MFP DNA를 아가로스겔 전기영동으로 확인한 결과이다((A): Mcfp5, (B) Mgfp5, lane (M): 크기 마커, lane (1): 1개의 MFP 반복 단위, lane (2): 2개의 MFP 반복 단위, lane (3): 4개의 MFP 반복 단위).Figure 2 is a result of confirming the MFP DNA of the present invention by agarose gel electrophoresis ((A): Mcfp5, (B) Mgfp5, lane (M): size marker, lane (1): 1 MFP repeat unit, lane (2): 2 MFP repeat units, lane (3): 4 MFP repeat units).
도 3은 본 발명의 EBP-MFP 블럭 코폴리펩타이드 유전자의 클로닝을 도식화한 것이다((A): MFP의 다중화 클로닝, (B): EBP-MFP 블럭 코폴리펩타이드 클로닝).Figure 3 illustrates the cloning of the EBP-MFP block copolypeptide gene of the present invention ((A): multiplex cloning of MFP, (B): EBP-MFP block copolypeptide cloning).
도 4는 본 발명의 티로시나아제 및 ORF438 유전자의 클로닝을 도식화한 것이다((A): 티로시나아제 클로닝, (B): ORF438 클로닝).4 is a schematic of the cloning of the tyrosinase and ORF438 genes of the present invention ((A): tyrosinase cloning, (B): ORF438 cloning).
도 5는 본 발명의 (A) 티로시나아제 및 (B) ORF438DNA를 아가로스겔 전기영동으로 확인한 결과이다(lane (1) 및 (2) DNA 주형: 25ng, lane (3) 및 (4) DNA 주형: 50ng, lane (N): 음성 대조군).Figure 5 shows the results of (A) tyrosinase and (B) ORF438DNA of the present invention by agarose gel electrophoresis (lane (1) and (2) DNA template: 25ng, lane (3) and (4) DNA Template: 50 ng, lane (N): negative control).
도 6은 (A) 타이로시나제 유전자(824bp)와 orf438 유전자(438bp)의 DNA 아가로즈겔 전기 영동(1.2%) 결과; (B) 대장균에서 공동발현된 티로시나아제(~35kDa), EBP-MFP 이중 블럭 코폴리펩타이드(~ 24kDa) 및 orf438 (~ 15kDa)의 SDS-PAGE 결과(lane (1): EBP-MFP 이중 블럭 코폴리펩타이드, lane (2): 티로시나아제 및 orf438, lane (3): 대장균에서 공동발현된 이중 블럭 코폴리펩타이드, 티로시나아제 및 orf438); (C) 대장균에서 공동발현된 EBP-MFP-EBP 삼중 블록 코폴리펩타이드(~41kDa), 티로시나아제(~35kDa) 및 orf438 (~15kDa)의 SDS-PAGE 결과(lane (1): EBP-MFP-EBP 삼중 블록 코폴리펩타이드, lane (2): 대장균에서 동시발현(공동발현)된 삼중 블록 코폴리펩타이드, 티로시나아제 및 orf438); (D) EBP-MFP 블럭 코폴리펩타이드 티로신 변형의 화학적 메카니즘의 도식화; (E) EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 대장균에서 티로시나아제, ORF438 및 이중 블럭 코폴리펩타이드의 동시 발현 시스템을 통한 히드록실화를 NBT 염색으로 확인한 결과이다. (F) EBPPI[G1A4F1]6-MFP[Mgfp5]1- EBPPI[G1A4F1]6 삼중 블록 코폴리펩타이드의 대장균에서 티로시나아제, ORF438 및 삼중 블럭 코폴리펩타이드의 동시발현 시스템을 통한 히드록실화를 NBT 염색으로 확인한 결과이다. FIG. 6 shows (A) DNA agarose gel electrophoresis (1.2%) of tyrosinase gene (824bp) and orf438 gene (438bp); (B) SDS-PAGE results of tyrosinase (˜35 kDa), EBP-MFP double block copolypeptide (˜24 kDa) and orf438 (˜15 kDa) co-expressed in E. coli (lane (1): EBP-MFP double block) Copolypeptide, lane (2): tyrosinase and orf438, lane (3): double block copolypeptide, tyrosinase and orf438 co-expressed in E. coli); (C) SDS-PAGE results of EBP-MFP-EBP triple block copolypeptide (˜41 kDa), tyrosinase (˜35 kDa) and orf438 (˜15 kDa) co-expressed in E. coli (lane (1): EBP-MFP) -EBP triple block copolypeptide, lane (2): triple block copolypeptide, tyrosinase and orf438 co-expressed (coexpressed) in E. coli; (D) Schematic representation of the chemical mechanism of EBP-MFP block copolypeptide tyrosine modification; (E) NBT staining hydroxylation via a simultaneous expression system of tyrosinase, ORF438 and double block copolypeptides in E. coli of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides The result is confirmed. (F) EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 Triple Block Copolypeptides of Tyrosinase, ORF438 and Triple Block Copolypeptides in Escherichia coli Hydroxylation through the co-expression system was confirmed by NBT staining.
도 7은 본 발명의 이중 블럭 코폴리펩타이드의 티로신 잔기 변형를 확인하기 위해, 버섯유래 티로시나아제를 처리한 후 NBT/Glycinate 염색한 결과이다. ((1) 양성 대조군으로 도파민 하이드로클로라이드 (dopamine hydrochloride), (2) 버섯유래 티로시나아제를 처리한 EBPPI[G1A4F1]6-MFP[Mgfp5]1, (3) 음성 대조군으로 변형되지 않은 EBPPI[G1A4F1]6-MFP[Mgfp5]1, (4) EBPPI[G1A4F1]6)Figure 7 is a result of NBT / Glycinate staining after treatment with mushroom-derived tyrosinase in order to confirm the tyrosine residue modification of the double block copolypeptide of the present invention. (1) Dopamine hydrochloride as a positive control, (2) EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 treated with mushroom-derived tyrosinase, (3) as a negative control Unencoded EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 , (4) EBPPI [G 1 A 4 F 1 ] 6 )
도 8은 본 발명의 블럭 코폴리펩타이드를 구리 염색한 SDS-PAGE 결과이다((A): 버섯유래 티로시나아제를 처리한 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드, (B): 버섯유래 티로시나아제를 처리한 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드, (C): 다양한 농도의 NaIO4를 처리한 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 (Lane (M): 표준 단백질 마커, Lane (1): EBPPI[G1A4F1]6-MFP[Mgfp5]1, Lane (2): 5 mM NaIO4으로 처리한 EBPPI[G1A4F1]6-MFP[Mgfp5]1, Lane (3): 50 mM NaIO4으로 처리한 EBPPI[G1A4F1]6-MFP[Mgfp5]1, Lane (4): 하이드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1, Lane (5): 5 mM NaIO4으로 처리한 하이드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1, Lane (6): 50 mM NaIO4으로 처리한 하이드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1. 이중 및 삼중 블럭 코폴리펩타이드의 티로신 잔기를 변형하기 위해, 버섯유래 티로시나아제를 처리했다. 8 shows SDS-PAGE results of copper staining of the block copolypeptide of the present invention ((A): EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block treated with mushroom-derived tyrosinase. Copolypeptide, (B): EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block copolypeptide treated with mushroom derived tyrosinase, ( C): EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides treated with various concentrations of NaIO 4 (Lane (M): standard protein marker, Lane (1): EBPPI [G) 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 , Lane (2): EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 , Lane (3): 50 mM treated with 5 mM NaIO 4 a EBPPI treated with NaIO 4 [4 G 1 a F 1] 6 -MFP [Mgfp5] 1, Lane (4): hydroxylation of EBPPI [G 1 a 4 F 1 ] 6 -MFP [Mgfp5] 1, Lane ( 5): 5 mM NaIO hydroxylation EBPPI the four treated with [G 1 a 4 F 1] 6 -MFP [Mgfp5] 1, Lane (6): 50 mM NaIO 4 by hydroxylation of EBPPI [G treated with 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1. Dual and To modify the tyrosine residues of the triple block copolypeptides, mushroom derived tyrosinase was treated.
도 9는 각 조건에 따른 열적 프로파일을 확인한 결과이다((A) (a): 버섯유래 티로시나아제를 처리한 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드, (b): 비변형된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 및 (c): 대조군인 EBPPI[G1A4F1]6 모노 블럭; (B) 이중 블럭 코폴리펩타이드 농도에 따른, 버섯유래 티로시나아제 처리된 EBPPI[G1A4F1]6-MFP[Mgfp5]1; (C) NaIO4의 농도에 따른, 버섯유래 티로시나아제 처리된 EBPPI[G1A4F1]6-MFP[Mgfp5]1; (D) 25μM 농도의 버섯유래 티로시나아제 처리된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 및 버섯유래 티로시나아제 처리된 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드).9 is a result of confirming the thermal profile according to each condition ((A) (a): mushroom-derived tyrosinase-treated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide , (b): unmodified EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide and (c): control EBPPI [G 1 A 4 F 1 ] 6 monoblock; ( B) Mushroom-derived tyrosinase treated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 according to the double block copolypeptide concentration; (C) Mushroom-derived tyrosinase according to the concentration of NaIO 4 Treated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 ; (D) 25 μM concentration of mushroom-derived tyrosinase treated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block And mushroom-derived tyrosinase-treated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block copolypeptides).
도 10은 (A) 다양한 농도 (10 - 100mM)의 NaIO4로 처리한 버섯유래 티로시나아제 촉매된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 사진; (B) 100mM NaIO4로 처리한 30중량% 이중 블럭 코폴리펩타이드의 겔 사진; (C) 10mM NaIO4로 처리한 40중량% 이중 블럭 코폴리펩타이드의 사진이다.(A) Photograph of mushroom-derived tyrosinase-catalyzed EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide treated with various concentrations (10-100 mM) of NaIO 4 ; (B) a gel photograph of 30 wt% double block copolypeptides treated with 100 mM NaIO 4 ; (C) Photograph of 40% by weight double block copolypeptide treated with 10 mM NaIO 4 .
도 11은 (A) 10mM NaIO4를 처리한 버섯유래 티로시나아제-촉매된 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드(10 중량%) 사진; (B) 왼쪽의 사진은 (A) 조건에서의 버섯유래 티로시나아제-촉매된 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드의 표면 부착 사진, 오른쪽은 (A) 조건을 처리한 대조군으로써 20중량% EBP 삼중 블럭 코폴리펩타이드 사진.FIG. 11 shows (A) mushroom-derived tyrosinase-catalyzed EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block nose treated with 10 mM NaIO 4 Polypeptide (10% by weight) photo; (B) The photo on the left shows mushroom-derived tyrosinase-catalyzed EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block under (A) conditions Surface attachment picture of the copolypeptide, the right is a 20% by weight EBP triple block copolypeptide picture as a control treated with (A) conditions.
도 12는 (A) 공동발현 시스템에서 히드록실화된 블럭 코폴리펩타이드(10중량%)를 10mM NaIO4를 처리한 사진; (B) 공동발현 시스템에서 히드록실화된 블록코폴리펩타이드의 수분 존재 하 부착성 실험에 관한 사진.FIG. 12 is a photograph of 10 mM NaIO 4 treated with hydroxylated block copolypeptide (10 wt.%) In a coexpression system; (B) Photos of adhesion experiments in the presence of water of hydroxylated blockcopolypeptides in a coexpression system.
도 13은 (A) 버섯유래 티로시나아제-촉매된 히드록실화를 갖거나 혹은 변형되지 않은 블럭 코폴리펩타이드의 유체역학적 반경으로 DLS 기구로 측정하였다. 블럭 코폴리펩타이드의 유체역학적 반경은 10 mM 인산염 완충액(pH 5)에서 12.5uM에서 측정되었다. 위상 전이 이후의 블럭 코폴리펩타이드의 유체역학적 반경은 50nm에서 70nm인데, 이는 상기 블럭 코폴리펩타이드들이 특정 구조체의 형태로 존재함을 나타낸다. ((a): 10oC에서의 비변형된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드, (b): 45oC에서의 비변형된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드, (c): 10oC에서의 버섯유래 티로시나아제 처리된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 및 (d): 45C에서의 버섯유래 티로시나아제 처리된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드) (B) 공동발현 시스템에서 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 표면 부착성을 형광 염료를 통해 확인한 결과. ((1) 튜브의 표면과 형광염료의 비특이적 반응 확인, (2) EBP 이중 블럭 코폴리펩타이드와 형광염료의 표면 부착성 확인, (3) 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 전이 온도 이하에서의 포면 부착성 확인, (4) 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 전이 온도 이상에서의 포면 부착성 확인) FIG. 13 was measured by the DLS instrument with the hydrodynamic radius of (A) mushroom-derived tyrosinase-catalyzed hydroxylation with or without modification. The hydrodynamic radius of the block copolypeptides was measured at 12.5 uM in 10 mM phosphate buffer (pH 5). The hydrodynamic radius of the block copolypeptides after phase transition is 50 nm to 70 nm, indicating that the block copolypeptides are in the form of specific structures. ((a): unmodified EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide at 10 o C, (b): unmodified EBPPI [G at 45 o C 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide, (c): Mushroom-derived tyrosinase treated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] at 10 o C 1 double block copolypeptide and (d): mushroom-derived tyrosinase treated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide at 45C) (B) in a coexpression system Surface adhesion of the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide was confirmed by fluorescent dyes. (1) Confirmation of non-specific reaction between surface of tube and fluorescent dye, (2) Confirmation of surface adhesion between EBP double block copolypeptide and fluorescent dye, (3) Hydroxylated EBPPI [G 1 A 4 F 1 ] 6 Confirming surface adhesion below the transition temperature of -MFP [Mgfp5] 1 double block copolypeptide, (4) hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide Of surface adhesion above the transition temperature of
도 14는 버섯유래 티로시나아제-촉매된 히드록실화를 가지는 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 온도에 따른 투과전자현미경 사진 ((A, B, C) 10oC에서 관찰된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 나노구조체, 각각 0.2um, 50nm, 50nm의 축적을 가진다. (D, E, F) 37oC에서 관찰된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 구조체, 각각 0.5mm, 100nm, 50nm의 축적을 가진다. (G, H, I) 50oC에서 관찰된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 구조체, 각각 0.5um, 100nm, 50nm의 축적을 가진다. FIG. 14 shows transmission electron micrographs of the temperature of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides with mushroom-derived tyrosinase-catalyzed hydroxylation ((A, B , C) nanostructures of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides observed at 10 ° C., with accumulations of 0.2 μm, 50 nm and 50 nm, respectively (D, E , F) constructs of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides observed at 37 ° C., with accumulations of 0.5 mm, 100 nm and 50 nm, respectively (G, H, I) The structure of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides observed at 50 ° C., with accumulation of 0.5um, 100nm and 50nm, respectively.
본 발명에서는 엘라스틴 기반 펩타이드(EBP); 및 홍합 족사 단백질(MFP)로 이루어진 다중 블럭 코폴리펩타이드(multiblock copolypeptide)가 온도 자극에 따라 가역적인 변화가 가능한, 자가조립된 코어-쉘 구조 및 하이드로겔을 형성하며, 표면 부착성이 현저하게 우수하다는 것을 확인하였다. In the present invention, elastin-based peptide (EBP); And multiblock copolypeptides (MFPs) of mussels form a self-assembled core-shell structure and hydrogel that can be reversibly changed with temperature stimulation and have excellent surface adhesion. It was confirmed that.
따라서, 본 발명은 일 관점에서, 엘라스틴 기반 펩타이드(EBP); 및 홍합 족사 단백질(MFP)로 이루어진 다중 블럭 코폴리펩타이드(multiblock copolypeptide)에 관한 것이다.Thus, in one aspect, the present invention provides an elastin-based peptide (EBP); And it relates to a multiblock copolypeptide (multiblock copolypeptide) consisting of mussels musa protein (MFP).
본 발명에서, 용어 "코폴리펩타이드(copolypeptide)란 공중합체(copolymer)인 폴리펩타이드를 의미한다. In the present invention, the term "copolypeptide" means a polypeptide that is a copolymer.
본 발명에서, 용어 "폴리펩타이드"란 아미노산의 임의의 중합체 체인을 의미한다. "펩타이드" 및 "단백질"이란 용어는 폴리펩타이드란 용어와 혼용할 수 있는 것으로서, 이 역시 아미노산의 중합체 체인을 의미한다. "폴리펩타이드"란 용어는 천연 또는 합성 단백질, 단백질 단편 및 단백질 서열의 폴리펩타이드 유사체를 포함한다. 폴리펩타이드는 단량체 또는 중합체일 수 있다. In the present invention, the term "polypeptide" means any polymer chain of amino acids. The terms "peptide" and "protein" are interchangeable with the term "polypeptide", which also refers to a polymer chain of amino acids. The term "polypeptide" includes "polypeptide" analogs of natural or synthetic proteins, protein fragments and protein sequences. The polypeptide may be a monomer or a polymer.
용어 "상 전이(phase transition)"이란, 물이 수증기로 변하거나 얼음이 물로 변하는 것과 같이, 물질의 상태가 변하는 것을 의미한다.The term "phase transition" means that the state of a substance changes, such as when water turns into water vapor or ice turns into water.
본 발명에 따른 상기 상전이 거동을 가지는 폴리펩타이드는, 기본적으로, 자극 반응성 엘라스틴-기반 폴리펩타이드(elastin-based polypeptides: EBPs)이다. 상기 "엘라스틴-기반 폴리펩타이드"는 "엘라스틴-유사 폴리펩타이드(elastin-like polypeptides: ELPs)"라고도 불린다. 본 발명의 기술분야에서 널리 사용되는 용어이다.Polypeptides having the phase change behavior according to the present invention are basically stimulin reactive elastin-based polypeptides (EBPs). The "elastin-based polypeptides" are also called "elastin-like polypeptides (ELPs)." It is a term widely used in the technical field of the present invention.
상기 EBP는, 전이 온도(transition temperature: Tt)라고도 칭하는 하한 임계 용액 온도(lower critical solution temperature: LCST)에서 가역 상 전이를 거친다. 이들은, Tt 미만에서 수용성이 크지만, 온도가 Tt를 초과하면 불용성으로 된다. The EBP undergoes a reversible phase transition at lower critical solution temperature (LCST), also referred to as transition temperature (T t ). These have large water solubility below T t , but become insoluble when the temperature exceeds T t .
본 발명에서, EBP의 물리화학적 특성들은 펜타펩타이드 반복 단위인 Val-Pro-(Gly 또는 Ala)-Xaa-Gly[VP(G 또는 A)XG]의 조합에 의해 주로 제어된다. 구체적으로, 그 반복 단위의 3번째 아미노산은 상대적 기계적 특성을 결정한다. 예를 들어, 본 발명에서, 3번째 아미노산인 Gly는 탄성(elasticity)을, 또는 Ala는 가소성(plasticity) 결정한다. 상기 탄성 또는 가소성은 전이 이후에 나타나는 성질이다.In the present invention, the physicochemical properties of EBP are mainly controlled by the combination of pentapeptide repeat units Val-Pro- (Gly or Ala) -X aa -Gly [VP (G or A) XG]. Specifically, the third amino acid of that repeat unit determines the relative mechanical properties. For example, in the present invention, the third amino acid Gly determines elasticity, or Ala determines plasticity. The elasticity or plasticity is a property that appears after the transition.
한편, 4번째 아미노산인 게스트 잔기 Xaa의 소수성과 펜타펩타이드 반복 단위의 중합화(multimerization)는, 모두, Tt에 영향을 끼친다. On the other hand, both the hydrophobicity and the multimerization of the pentapeptide repeating unit of the guest residue X aa as the fourth amino acid affect T t .
본 발명의 홍합 족사 단백질은 도파를 통하여 다양한 표면에 부착할 수 있다. 카테콜 측쇄(side chain)를 갖는 DOPA는 표면 분자와의 수소 결합 및 배위 결합을 통해 표면 부착력을 부여하고, DOPA의 산화 형태인 퀴논은 분자 간 가교 결합을 통하여 응집력을 나타낸다. 퀴논은 DOPA의 산화 형태이므로, 표면 분자와 상호 작용할 수 없지만, 아릴-아릴 커플링(aryl-aryl coupling), 금속 킬레이트화, 아민 함유 단백질과의 미카엘 유형 첨가 반응(Michael-type addition reactions)을 통해 분자 내 및 분자 간 가교 결합을 형성하여 강력한 수중 응집력을 제공한다. 퀴논 형성을 통한 가교 결합은 경화된 외장(hardened sheath)을 생성하고, 습기-저항성(moisture-resistance)을 나타낸다. 그러므로, DOPA와 퀴논은 표면 부착에 필수적인 요소이며, 이는 pH 조건에 의해 결정된다. 홍합이 표면 부착을 위해 MFP를 분비할 때, 홍합 족사 주변 pH 조건은 pH 3.0보다 낮으며, 수소 결합 및 금속 이온 배위를 통해 표면 산화물에 흡착하기 위하여 DOPA의 산화를 제한한다. 표면부착 후, MFP는 해수(pH ~ 8.3)에 노출되어, DOPA에서 퀴논으로 산화를 유도하고, 가교 결합 및 단백질 응고가 진행된다. 또한, Ser 및 Gly와 같은 MFP의 친수성 아미노산은 수소 결합, cation-pi 상호 작용, 정전기(electrostatic) 및 소수성 상호 작용에 의한 결합성 상호 작용(cohesive interactions)에 참여한다(Waite, J. H., Journal of Experimental Biology, 220(4), 517-530, 2017).Mussel triglyceride protein of the present invention can be attached to various surfaces through waveguide. DOPA having a catechol side chain imparts surface adhesion through hydrogen bonds and coordinate bonds with surface molecules, and quinones, an oxidized form of DOPA, exhibit cohesion through intermolecular crosslinking. Since quinones are an oxidized form of DOPA, they cannot interact with surface molecules, but they can be reacted with aryl-aryl coupling, metal chelation, or Michael-type addition reactions with amine-containing proteins. Intramolecular and intermolecular crosslinking forms to provide strong underwater cohesion. Crosslinking through quinone formation produces a hardened sheath and exhibits moisture-resistance. Therefore, DOPA and quinone are essential for surface adhesion, which are determined by pH conditions. When mussels secrete MFP for surface attachment, the pH conditions around mussel quiescents are lower than pH 3.0, limiting the oxidation of DOPA to adsorb to surface oxides through hydrogen bonding and metal ion coordination. After surface attachment, MFP is exposed to seawater (pH-8.3) to induce oxidation from DOPA to quinones, crosslinking and protein coagulation. In addition, hydrophilic amino acids of MFPs such as Ser and Gly participate in cohesive interactions by hydrogen bonding, cation-pi interactions, electrostatic and hydrophobic interactions (Waite, JH, Journal of Experimental) Biology, 220 (4), 517-530, 2017).
본 발명에서는 다기능을 가진 EBP 블럭 및 MFP 블럭으로 구성된 새로운 형태의 블럭 코폴리펩타이드를 합리적으로 고안, 합성 및 특성화하였다. 자연 내 MFP 도메인의 표면 부착성을 토대로, 본 발명에서는 MFP와 자극 반응성 단백질인 EBP 블럭과 결합시켜, 바이오 모방된 수중 부착과 함께 자가 조립 구조를 관찰하고, 바이오 의학 분야에 적용하고자 하였다. 강한 계면 수중 부착성(interfacial underwater adhesive properties)을 얻기 위해, 모든 홍합 족사 단백질 유형에서 높은 비율의 티로신 함량(~30%)을 가지는 캘리포니아 홍합 족사 단백질 5(mussel californianus foot protein 5 (Mcfp5)) 및 지중해 홍합 족사 단백질 5(mussel galloprovincialis foot protein 5 (Mgfp5))의 유전자 서열을 선택하였다. MFP의 티로신 함량은 표면 부착 효율 및 세기와 관련이 있다(Silverman H. G. et al., Marine biotechnology, 9(6), 661-681, 2007). In the present invention, a novel type of block copolypeptide consisting of a multifunctional EBP block and an MFP block is reasonably designed, synthesized, and characterized. Based on the surface adhesion of the MFP domain in nature, the present invention was intended to combine with MFP and EBP block, a stimulatory reactive protein, to observe self-assembly structure with biomimetic underwater adhesion, and to apply it to the biomedical field. To achieve strong interfacial underwater adhesive properties, the mussel californianus foot protein 5 (Mcfp5) and the Mediterranean have a high percentage of tyrosine content (~ 30%) in all mussel foot protein types. The gene sequence of mussel galloprovincialis foot protein 5 (Mgfp5) was selected. Tyrosine content of MFP is related to surface adhesion efficiency and strength (Silverman H. G. et al., Marine biotechnology, 9 (6), 661-681, 2007).
본 발명에 있어서, 상기 다중 블럭 코폴리펩타이드는 (EBP)n(MFP)n, (EBP)n(MFP)n(EBP)n 및 (MFP)n(EBP)n(MFP)n으로 이루어진 군에서 어느 하나의 배열로 구성되며, 상기 n은 1 이상의 정수이고, EBP 또는 MFP의 반복 횟수인 것을 특징으로 할 수 있다.In the present invention, the multiblock copolypeptide is in the group consisting of (EBP) n (MFP) n, (EBP) n (MFP) n (EBP) n and (MFP) n (EBP) n (MFP) n It is composed of any one arrangement, wherein n is an integer of 1 or more, it may be characterized in that the repetition number of EBP or MFP.
본 발명에 있어서, 상기 엘라스틴 기반 펩타이드(EBP)는 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] 블럭, [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] 블럭 및 [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] 블럭으로 이루어진 군에서 선택되는 어느 하나의 식으로 표시되는 아미노산 배열로 구성되며, 상기 X는 프롤린을 제외한 아미노산인 것을 특징으로 할 수 있다.In the present invention, the elastin-based peptide (EBP) is selected from any one of a group consisting of [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block, [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] block and [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] block. It is composed of the amino acid sequence represented by the formula, X may be characterized in that the amino acid except proline.
본 발명에서, 상기 X (또는 Xaa)는 "게스트 잔기"라고 칭한다. 상기 Xaa를 다양하게 도입하여 본 발명에 따른 다양한 종류의 EBP를 제조할 수 있다.In the present invention, X (or X aa ) is referred to as a "guest residue". Various kinds of X aa may be introduced to prepare various kinds of EBP according to the present invention.
상기 폴리펩타이드는 다중 반응성 자극(multi-stimuli responsiveness)을 가질 수 있다.The polypeptide may have multi-stimuli responsiveness.
상기 용어 "다중-자극 반응성"이란, 하나 이상의 자극에 반응성을 가진다는 의미이다. 구체적으로 상기 자극은, 온도, pH, 이온 세기 및 리간드로 이루어진 군으로부터 선택되는 하나 이상일 수 있다. The term "multi-stimulatory responsiveness" means to be responsive to one or more stimuli. Specifically, the stimulus may be one or more selected from the group consisting of temperature, pH, ionic strength and ligand.
본 발명에서 리간드란, 어떤 목적 물질과 특이적으로 결합하는 물질로서, 예를 들면, 각종 항체, 항원, 효소, 기질, 리셉터, 펩타이드, DNA, RNA, 압타머, 단백질 A, 단백질 G, 아비딘, 비오틴, 킬레이트 화합물, 각종 금속 이온(예, 칼슘 이온 등) 등이다. Ligand in the present invention is a substance that specifically binds to a desired substance, for example, various antibodies, antigens, enzymes, substrates, receptors, peptides, DNA, RNA, aptamers, protein A, protein G, avidin, Biotin, chelate compounds, various metal ions (e.g., calcium ions) and the like.
본 발명에서, 상기 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] 블럭은 서열번호 1의 아미노산 서열로 표시되는 것을 특징으로 하며, 상기 [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] 블럭은 서열번호 2의 아미노산 서열로 표시되는 것을 특징으로 하며, 상기 [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] 블럭은 서열번호 3의 아미노산 서열로 표시되는 것을 특징으로 한다.In the present invention, the [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block is characterized by the amino acid sequence of SEQ ID NO: 1, wherein the [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] block is represented by the amino acid sequence of SEQ ID NO: 2 And the [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] block is represented by the amino acid sequence of SEQ ID NO.
본 발명에서 용어, "아미노산"은 천연 아미노산 또는 인공 아미노산을 의미하며, 바람직하게는 천연 아미노산을 의미한다. 예컨대 상기 아미노산은 글리신, 알라닌, 세린, 발린, 류신, 이소류신, 메티오닌, 글루타민, 아스파라진, 시스테인, 히스티딘, 페닐알라닌, 아르기닌, 타이로신 또는 트립토판 등을 의미한다.In the present invention, the term "amino acid" means a natural "amino acid" or "artificial" amino acid, and preferably means a natural "amino acid". For example, the amino acid refers to glycine, alanine, serine, valine, leucine, isoleucine, methionine, glutamine, asparagine, cysteine, histidine, phenylalanine, arginine, tyrosine or tryptophan.
상기 아미노산의 성질은 이 기술분야에 널리 공지되어 있다. 구체적으로 친수성(음전하성 또는 양전하성)을 나타내거나 소수성을 나타내고, 지방족 또는 방향족의 성질도 나타낸다. The nature of these amino acids is well known in the art. Specifically, it shows hydrophilicity (negative charge or positive charge) or hydrophobicity, and also shows the properties of aliphatic or aromatic.
본 발명에서 사용하는 Gly(G), Ala(A) 등의 약어는 아미노산 약어이다. 아미노산 약어는 글라이신 (Gly, G), 알라닌 (Ala, A), 발린 (Val, V), 류신 (Leu, L), 이소류신 (Ile, I), 프롤린 (Pro, P), 페닐알라닌 (Phe, F), 타이로신 (Tyr, Y), 트립토판 (Trp, W), 시스테인 (Cys, C), 메티오닌 (Met, M), 세린 (Ser, S), 트레오닌 (Thr, T), 라이신 (Lys, K), 아르기닌 (Arg, R), 히스티딘 (His, H), 아스파트산 (Asp, D), 글루탐산 (Glu, E), 아스파라진 (Asn, N), 글루타민 (Gln, Q)으로 표현한다. 상기 약어는 이 기술분야에서 널리 사용되는 표현이다.Abbreviations such as Gly (G) and Ala (A) used in the present invention are amino acid abbreviations. Amino acid abbreviations are glycine (Gly, G), alanine (Ala, A), valine (Val, V), leucine (Leu, L), isoleucine (Ile, I), proline (Pro, P), phenylalanine (Phe, F ), Tyrosine (Tyr, Y), tryptophan (Trp, W), cysteine (Cys, C), methionine (Met, M), serine (Ser, S), threonine (Thr, T), lysine (Lys, K) It is represented by arginine (Arg, R), histidine (His, H), aspartic acid (Asp, D), glutamic acid (Glu, E), asparagine (Asn, N), glutamine (Gln, Q). The abbreviation is a widely used expression in the art.
본 발명에서 "친수성 아미노산"이란, 친수성 성질을 나타내는 아미노산으로, 리신, 아르기닌 등이 있으며, "소수성 아미노산"이란 소수성 성질을 나타내는 아미노산으로, 페닐알라닌, 류신 등이 있다.In the present invention, "hydrophilic amino acid" is an amino acid exhibiting hydrophilic properties, such as lysine, arginine, and the like, "hydrophobic amino acid" is an amino acid showing hydrophobic properties, such as phenylalanine, leucine and the like.
본 발명에 있어서, 상기 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] 블럭의 X는 A(Ala), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; K(Lys), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; D(Asp), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; E(Glu), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; G(Gly), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지거나; K(Lys), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지거나; D(Asp), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지거나; K(Lys), F(Phe)가 3:3의 비율로 이루어지거나; D(Asp), F(Phe)가 3:3의 비율로 이루어지거나; H(His), A(Ala), I(Ile)가 3:2:1의 비율로 이루어지거나; H(His), G(Gly)가 5:1의 비율로 이루어지거나; 또는 G(Gly), C(Cys), F(Phe)가 1:3:2의 비율로 이루어지는 것을 특징으로 할 수 있다.In the present invention, X in the [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block is A (Ala), G (Gly), I (Ile) in a ratio of 1: 4: 1; K (Lys), G (Gly), I (Ile) are in a ratio of 1: 4: 1; Or D (Asp), G (Gly), I (Ile) in a ratio of 1: 4: 1; E (Glu), G (Gly), I (Ile) consists of a ratio of 1: 4: 1; G (Gly), A (Ala), F (Phe) consists of 1: 3: 2 ratio; K (Lys), A (Ala), F (Phe) consists of a ratio of 1: 3: 2; D (Asp), A (Ala), F (Phe) consists of a ratio of 1: 3: 2; K (Lys), F (Phe) consist of 3: 3 ratio; D (Asp), F (Phe) consist of 3: 3 ratio; H (His), A (Ala), I (Ile) are in a ratio of 3: 2: 1; H (His), G (Gly) is in the ratio of 5: 1; Or G (Gly), C (Cys), F (Phe) in a ratio of 1: 3: 2.
본 발명에 있어서, 상기 [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] 블럭의 X는 A(Ala), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; K(Lys), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; D(Asp), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; E(Glu), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; 또는 G(Gly), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지는 것을 특징으로 할 수 있다.In the present invention, X in the [VPAXG VPAXG VPAXG VPAXG VPAXG VPAX] block is A (Ala), G (Gly), I (Ile) in a ratio of 1: 4: 1; K (Lys), G (Gly), I (Ile) are in a ratio of 1: 4: 1; Or D (Asp), G (Gly), I (Ile) in a ratio of 1: 4: 1; E (Glu), G (Gly), I (Ile) consists of a ratio of 1: 4: 1; Or G (Gly), A (Ala), F (Phe) in a ratio of 1: 3: 2.
본 발명에 있어서, 상기 [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] 블럭의 X는 G(Gly), A(Ala), F(Phe)가 1:4:1 또는 1:3:2의 비율로 이루어지는 것을 특징으로 할 수 있다. In the present invention, X in the [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] block is characterized by G (Gly), A (Ala), and F (Phe) in a ratio of 1: 4: 1 or 1: 3: 2. You can do
본 발명에서, 펜타펩타이드 반복 단위인 Val-Pro-(Gly 또는 Ala)-Xaa-Gly[VP(G 또는 A)XG]를 갖는 서로 다른 EBP들은 다음과 같이 명명한다. 상기 Xaa는 Pro를 제외한 임의의 아미노산일 수 있다. 첫째, 가소성이 있는 Val-Pro-Ala-Xaa-Gly(VPAXG)의 펜타펩타이드 반복은 가소성이 있는 엘라스틴계 폴리펩타이드(elastin-based polypeptide with plasticity: EBPP)라고 정의한다. 한편 Val-Pro-Gly-Xaa-Gly(VPGXG)의 펜타펩타이드 반복은 탄성이 있는 엘라스틴계 폴리펩타이드(elastin-based polypeptide with elasticity: EBPE)라 칭한다. 또한, Ile-Pro-Ala-Xaa-Gly(IPAXG)의 펜타펩타이드 반복은 첫번째 위치가 Ile로 대체된 가소성이 있는 엘라스틴계 폴리펩타이드(EBPPI)라고 정의한다. [XiYjZk]n에서, 괄호 내의 대문자들은 게스트 잔기의 단글자 아미노산 코드, 즉, EBP 펜타펩타이드의 4번째 위치(Xaa 또는 X)에서의 아미노산이고, 이들의 해당하는 아래 첨자는 반복 단위로서 EBP 모노머 유전자의 게스트 잔기의 비율(ratio)을 나타낸다. [XiYjZk]n의 아래 첨자 수 n은 본 발명의 서열번호 1[VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG], 서열번호 2[VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG], 또는 서열번호 3[IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG]의 EBP의 반복 횟수의 총 수를 나타낸다. 예를 들어, EBPP[G1A3F2]12는 서열번호 2[VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG]의 단위가 12번 반복되어 이루어진 EBPP 블럭이며, 여기서 4번째 게스트 잔기 위치(Xaa)에서의 Gly, Ala, 및 Phe의 비는 1:3:2이다.In the present invention, different EBPs having a pentapeptide repeating unit Val-Pro- (Gly or Ala) -X aa -Gly [VP (G or A) XG] are named as follows. X aa may be any amino acid except Pro. First, the pentapeptide repeat of the plastic Val-Pro-Ala-X aa- Gly (VPAXG) is defined as the plastic elastin-based polypeptide with plasticity (EBPP). Meanwhile, the pentapeptide repeat of Val-Pro-Gly-X aa -Gly (VPGXG) is called an elastin-based polypeptide with elasticity (EBPE). The pentapeptide repeat of Ile-Pro-Ala-X aa- Gly (IPAXG) is also defined as a plastic elastin-based polypeptide (EBPPI) with the first position replaced by Ile. In [XiYjZk] n, the capital letters in parentheses are the short-term amino acid code of the guest residue, ie, the amino acid at position 4 (X aa or X) of the EBP pentapeptide, and their corresponding subscripts are EBP monomers as repeat units. Shows the ratio of guest residues in the gene. The subscript number n of [XiYjZk] n is SEQ ID NO: 1 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG], SEQ ID NO: 2 [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG], or SEQ ID NO: 3 [IPAXG IPAXG IPAXG IPAXG IPAXG] The total number of repetitions of the EBP is shown. For example, EBPP [G1A3F2] 12 is an EBPP block consisting of 12 repeating units of SEQ ID NO: 2 [VPAXG VPAXG VPAXG VPAXG VPAXG], wherein Gly, Ala, and at the fourth guest residue position (X aa ) The ratio of Phe is 1: 3: 2.
본 발명의 EBP 블럭의 유전자 및 아미노산 서열은 표 1 및 2에 각각 나타내었다.The gene and amino acid sequences of the EBP block of the present invention are shown in Tables 1 and 2, respectively.
EBP 라이브러리의 유전자 서열Gene sequence of the EBP library
EBPE[A1G4I1](서열번호 4)EBPE [A 1 G 4 I 1 ] (SEQ ID NO: 4) GTC CCA GGT GGA GGT GTA CCC GGC GCG GGT GTC CCA GGT GGA GGTGTA CCT GGG GGT GGG GTC CCT GGT ATT GGC GTA CCT GGA GGC GGCGTC CCA GGT GGA GGT GTA CCC GGC GCG GGT GTC CCA GGT GGA GGTGTA CCT GGG GGT GGG GTC CCT GGT ATT GGC GTA CCT GGA GGC GGC
EBPP[A1G4I1](서열번호 5)EBPP [A 1 G 4 I 1 ] (SEQ ID NO: 5) GTT CCA GCT GGC GGT GTA CCT GCT GCT GCT GTT CCG GCC GGT GGTGTT CCG GCG GGC GGC GTG CCT GCA ATA GGA GTT CCC GCT GGT GGCGTT CCA GCT GGC GGT GTA CCT GCT GCT GCT GTT CCG GCC GGT GGTGTT CCG GCG GGC GGC GTG CCT GCA ATA GGA GTT CCC GCT GGT GGC
EBPE[K1G4I1](서열번호 6)EBPE [K 1 G 4 I 1 ] (SEQ ID NO: 6) GTT CCG GGT GGT GGT GTT CCG GGT AAA GGT GTT CCG GGT GGT GGTGTT CCG GGT GGT GGT GGT GTT CCG GGT ATC GGT GTT CCG GGT GGCGTT CCG GGT GGT GGT GTT CCG GGT AAA GGT GTT CCG GGT GGT GGTGTT CCG GGT GGT GGT GGT GTT CCG GGT ATC GGT GTT CCG GGT GGC
EBPP[K1G4I1](서열번호 7)EBPP [K 1 G 4 I 1 ] (SEQ ID NO: 7) GTT CCG GCG GGT GGT GTT CCG GCG AAA GGT GTT CCG GCG GGT GGTGTT CCG GCG GGT GGT GTT CCG GCG ATC GGT GTT CCG GCG GGT GGCGTT CCG GCG GGT GGT GTT CCG GCG AAA GGT GTT CCG GCG GGT GGTGTT CCG GCG GGT GGT GTT CCG GCG ATC GGT GTT CCG GCG GGT GGC
EBPE[D1G4I1](서열번호 8)EBPE [D 1 G 4 I 1 ] (SEQ ID NO: 8) GTT CCG GGT GGT GGT GTT CCG GGT GAT GGT GTT CCG GGT GGT GGTGTT CCG GGT GGT GGT GGT GTT CCG GGT ATC GGT GTT CCG GGT GGCGTT CCG GGT GGT GGT GTT CCG GGT GAT GGT GTT CCG GGT GGT GGTGTT CCG GGT GGT GGT GGT GTT CCG GGT ATC GGT GTT CCG GGT GGC
EBPP[D1G4I1](서열번호 9)EBPP [D 1 G 4 I 1 ] (SEQ ID NO: 9) GTT CCG GCG GGT GGT GTT CCG GCG GAT GGT GTT CCG GCG GGT GGTGTT CCG GCG GGT GGT GTT CCG GCG ATC GGT GTT CCG GCG GGT GGCGTT CCG GCG GGT GGT GTT CCG GCG GAT GGT GTT CCG GCG GGT GGTGTT CCG GCG GGT GGT GTT CCG GCG ATC GGT GTT CCG GCG GGT GGC
EBPE[E1G4I1](서열번호 10)EBPE [E 1 G 4 I 1 ] (SEQ ID NO: 10) GTT CCG GGT GGT GGT GTT CCG GGT GAA GGT GTT CCG GGT GGT GGTGTT CCG GGT GGT GGT GGT GTT CCG GGT ATC GGT GTT CCG GGT GGCGTT CCG GGT GGT GGT GTT CCG GGT GAA GGT GTT CCG GGT GGT GGTGTT CCG GGT GGT GGT GGT GTT CCG GGT ATC GGT GTT CCG GGT GGC
EBPP[E1G4I1](서열번호 11)EBPP [E 1 G 4 I 1 ] (SEQ ID NO: 11) GTT CCG GCG GGT GGT GTT CCG GCG GAA GGT GTT CCG GCG GGT GGTGTT CCG GCG GGT GGT GTT CCG GCG ATC GGT GTT CCG GCG GGT GGCGTT CCG GCG GGT GGT GTT CCG GCG GAA GGT GTT CCG GCG GGT GGTGTT CCG GCG GGT GGT GTT CCG GCG ATC GGT GTT CCG GCG GGT GGC
EBPE[G1A3F2](서열번호 12)EBPE [G 1 A 3 F 2 ] (SEQ ID NO: 12) GTC CCG GGT GCG GGC GTG CCG GGA TTT GGA GTT CCG GGT GCG GGTGTT CCA GGC GGT GGT GTT CCG GGC GCG GGC GTG CCG GGC TTT GGCGTC CCG GGT GCG GGC GTG CCG GGA TTT GGA GTT CCG GGT GCG GGTGTT CCA GGC GGT GGT GTT CCG GGC GCG GGC GTG CCG GGC TTT GGC
EBPP[G1A3F2](서열번호 13)EBPP [G 1 A 3 F 2 ] (SEQ ID NO: 13) GTG CCG GCG GCG GGC GTT CCA GCC TTT GGT GTG CCA GCG GCG GGAGTT CCG GCC GGT GGC GTG CCG GCA GCG GGC GTG CCG GCT TTT GGCGTG CCG GCG GCG GGC GTT CCA GCC TTT GGT GTG CCA GCG GCG GGAGTT CCG GCC GGT GGC GTG CCG GCA GCG GGC GTG CCG GCT TTT GGC
EBPP[K1A3F2](서열번호 14)EBPP [K 1 A 3 F 2 ] (SEQ ID NO: 14) GTG CCG GCG GCG GGC GTT CCA GCC TTT GGT GTG CCA GCG GCG GGAGTT CCG GCC AAA GGC GTG CCG GCA GCG GGC GTG CCG GCT TTT GGCGTG CCG GCG GCG GGC GTT CCA GCC TTT GGT GTG CCA GCG GCG GGAGTT CCG GCC AAA GGC GTG CCG GCA GCG GGC GTG CCG GCT TTT GGC
EBPP[D1A3F2](서열번호 15)EBPP [D 1 A 3 F 2 ] (SEQ ID NO: 15) GTG CCG GCG GCG GGC GTT CCA GCC TTT GGT GTG CCA GCG GCG GGAGTT CCG GCC GAT GGC GTG CCG GCA GCG GGC GTG CCG GCT TTT GGCGTG CCG GCG GCG GGC GTT CCA GCC TTT GGT GTG CCA GCG GCG GGAGTT CCG GCC GAT GGC GTG CCG GCA GCG GGC GTG CCG GCT TTT GGC
EBPP[K3F3](서열번호 16)EBPP [K 3 F 3 ] (SEQ ID NO: 16) GTT CCA GCG TTT GGC GTG CCA GCG AAA GGT GTT CCG GCG TTT GGGGTT CCC GCG AAA GGT GTG CCG GCC TTT GGT GTG CCG GCC AAA GGCGTT CCA GCG TTT GGC GTG CCA GCG AAA GGT GTT CCG GCG TTT GGGGTT CCC GCG AAA GGT GTG CCG GCC TTT GGT GTG CCG GCC AAA GGC
EBPP[D3F3](서열번호 17)EBPP [D 3 F 3 ] (SEQ ID NO: 17) GTT CCA GCG TTT GGC GTG CCA GCG GAT GGT GTT CCG GCG TTT GGGGTT CCC GCG GAT GGT GTG CCG GCC TTT GGT GTG CCG GCC GAT GGCGTT CCA GCG TTT GGC GTG CCA GCG GAT GGT GTT CCG GCG TTT GGGGTT CCC GCG GAT GGT GTG CCG GCC TTT GGT GTG CCG GCC GAT GGC
EBPP[H3A3I1](서열번호 18)EBPP [H 3 A 3 I 1 ] (SEQ ID NO: 18) GTG CCG GCG CAT GGA GTT CCT GCC GCC GGT GTT CCT GCG CAT GGTGTA CCG GCA ATT GGC GTT CCG GCA CAT GGT GTG CCG GCC GCC GGCGTG CCG GCG CAT GGA GTT CCT GCC GCC GGT GTT CCT GCG CAT GGTGTA CCG GCA ATT GGC GTT CCG GCA CAT GGT GTG CCG GCC GCC GGC
EBPP[H5G1](서열번호 19)EBPP [H 5 G 1 ] (SEQ ID NO: 19) GTT CCG GCC GGA GGT GTA CCG GCG CAT GGT GTT CCG GCA CAT GGTGTG CCG GCT CAC GGT GTG CCT GCG CAT GGC GTT CCT GCG CAT GGCGTT CCG GCC GGA GGT GTA CCG GCG CAT GGT GTT CCG GCA CAT GGTGTG CCG GCT CAC GGT GTG CCT GCG CAT GGC GTT CCT GCG CAT GGC
EBPP[G1C3F2](서열번호 20)EBPP [G 1 C 3 F 2 ] (SEQ ID NO: 20) GTG CCG GCG TGC GGC GTT CCA GCC TTT GGT GTG CCA GCG TGC GGA GTT CCG GCC GGT GGC GTG CCG GCA TGC GGC GTG CCG GCT TTT GGCGTG CCG GCG TGC GGC GTT CCA GCC TTT GGT GTG CCA GCG TGC GGA GTT CCG GCC GGT GGC GTG CCG GCA TGC GGC GTG CCG GCT TTT GGC
EBPPI[G1A4F1](서열번호 21)EBPPI [G 1 A 4 F 1 ] (SEQ ID NO: 21) ATT CCT GCA GCC GGT ATC CCG GCC GGT GGC ATT CCG GCA GCC GGC ATT CCG GCC GCC GGC ATC CCG GCA TTT GGC ATT CCT GCA GCA GGCATT CCT GCA GCC GGT ATC CCG GCC GGT GGC ATT CCG GCA GCC GGC ATT CCG GCC GCC GGC ATC CCG GCA TTT GGC ATT CCT GCA GCA GGC
EBPPI[G1A3F2](서열번호 22)EBPPI [G 1 A 3 F 2 ] (SEQ ID NO: 22) ATT CCG GCC GCA GGC ATT CCT GCA TTT GGT ATT CCG GCG GCA GGC ATT CCT GCC GGT GGC ATC CCG GCA GCG GGC ATT CCG GCC TTT GGCATT CCG GCC GCA GGC ATT CCT GCA TTT GGT ATT CCG GCG GCA GGC ATT CCT GCC GGT GGC ATC CCG GCA GCG GGC ATT CCG GCC TTT GGC
EBP 라이브러리의 아미노산 서열Amino acid sequence of the EBP library
EBPE[A1G4I1] (서열번호 23)EBPE [A 1 G 4 I 1 ] (SEQ ID NO: 23) VPGGGVPGGG VPGAGVPGAG VPGGGVPGGG VPGGGVPGGG VPGIGVPGIG VPGGGVPGGG
EBPP[A1G4I1](서열번호 24)EBPP [A 1 G 4 I 1 ] (SEQ ID NO: 24) VPAGGVPAGG VPAAGVPAAG VPAGGVPAGG VPAGGVPAGG VPAIGVPAIG VPAGGVPAGG
EBPE[K1G4I1](서열번호 25)EBPE [K 1 G 4 I 1 ] (SEQ ID NO: 25) VPGGGVPGGG VPGKGVPGKG VPGGGVPGGG VPGGGVPGGG VPGIGVPGIG VPGGGVPGGG
EBPP[K1G4I1](서열번호 26)EBPP [K 1 G 4 I 1 ] (SEQ ID NO: 26) VPAGGVPAGG VPAKGVPAKG VPAGGVPAGG VPAGGVPAGG VPAIGVPAIG VPAGGVPAGG
EBPE[D1G4I1](서열번호 27)EBPE [D 1 G 4 I 1 ] (SEQ ID NO: 27) VPGGGVPGGG VPGDGVPGDG VPGGGVPGGG VPGGGVPGGG VPGIGVPGIG VPGGGVPGGG
EBPP[D1G4I1](서열번호 28)EBPP [D 1 G 4 I 1 ] (SEQ ID NO: 28) VPAGGVPAGG VPADGVPADG VPAGGVPAGG VPAGGVPAGG VPAIGVPAIG VPAGGVPAGG
EBPE[E1G4I1](서열번호 29)EBPE [E 1 G 4 I 1 ] (SEQ ID NO: 29) VPGGGVPGGG VPGEGVPGEG VPGGGVPGGG VPGGGVPGGG VPGIGVPGIG VPGGGVPGGG
EBPP[E1G4I1](서열번호 30)EBPP [E 1 G 4 I 1 ] (SEQ ID NO: 30) VPAGGVPAGG VPAEGVPAEG VPAGGVPAGG VPAGGVPAGG VPAIGVPAIG VPAGGVPAGG
EBPE[G1A3F2](서열번호 31)EBPE [G 1 A 3 F 2 ] (SEQ ID NO: 31) VPGAGVPGAG VPGFGVPGFG VPGAGVPGAG VPGGGVPGGG VPGAGVPGAG VPGFGVPGFG
EBPP[G1A3F2](서열번호 32)EBPP [G 1 A 3 F 2 ] (SEQ ID NO: 32) VPAAGVPAAG VPAFGVPAFG VPAAGVPAAG VPAGGVPAGG VPAAGVPAAG VPAFGVPAFG
EBPP[K1A3F2] (서열번호 33)EBPP [K 1 A 3 F 2 ] (SEQ ID NO: 33) VPAAGVPAAG VPAFGVPAFG VPAAGVPAAG VPAGGVPAGG VPAAGVPAAG VPAFGVPAFG
EBPP[D1A3F2] (서열번호 34)EBPP [D 1 A 3 F 2 ] (SEQ ID NO: 34) VPAAGVPAAG VPAFGVPAFG VPAAGVPAAG VPAGGVPAGG VPAAGVPAAG VPAFGVPAFG
EBPP[K3F3] (서열번호 35)EBPP [K 3 F 3 ] (SEQ ID NO: 35) VPAFGVPAFG VPAKGVPAKG VPAFGVPAFG VPAKGVPAKG VPAFGVPAFG VPAKGVPAKG
EBPP[D3F3] (서열번호 36)EBPP [D 3 F 3 ] (SEQ ID NO: 36) VPAFGVPAFG VPADGVPADG VPAFGVPAFG VPADGVPADG VPAFGVPAFG VPADGVPADG
EBPP[H3A3I1](서열번호 37)EBPP [H 3 A 3 I 1 ] (SEQ ID NO: 37) VPAHGVPAHG VPAAGVPAAG VPAHGVPAHG VPAIGVPAIG VPAHGVPAHG VPAAGVPAAG
EBPP[H5G1] (서열번호 38)EBPP [H 5 G 1 ] (SEQ ID NO: 38) VPAGGVPAGG VPAHGVPAHG VPAHGVPAHG VPAHGVPAHG VPAHGVPAHG VPAHGVPAHG
EBPP[G1C3F2](서열번호 39)EBPP [G 1 C 3 F 2 ] (SEQ ID NO: 39) VPACGVPACG VPAFGVPAFG VPACGVPACG VPAGGVPAGG VPACGVPACG VPAFGVPAFG
EBPPI[G1A4F1] (서열번호 40)EBPPI [G 1 A 4 F 1 ] (SEQ ID NO: 40) IPAAGIPAAG IPAGGIPAGG IPAAGIPAAG IPAAGIPAAG IPAFGIPAFG IPAAGIPAAG
EBPPI[G1A3F2] (서열번호 41)EBPPI [G 1 A 3 F 2 ] (SEQ ID NO: 41) IPAAGIPAAG IPAFGIPAFG IPAAGIPAAG IPAGGIPAGG IPAAGIPAAG IPAFGIPAFG
본 발명에 있어서, 상기 홍합 족사 단백질(MFP)은 캘리포니아 홍합 족사 단백질 5(mussel californianus foot protein 5 (Mcfp5)) 또는 지중해 홍합 족사 단백질 5(mussel galloprovincialis foot protein 5 (Mgfp5))인 것을 특징으로 할 수 있다.In the present invention, the mussel triglyceride protein (MFP) may be characterized in that the mussel californianus foot protein 5 (Msselp5) or the mussel galloprovincialis foot protein 5 (Mgfp5). have.
본 발명에서, MFP[Mgfp5]n과 MFP[Mcfp5]n은 괄호 내 문자와 숫자가 홍합 종과 족사 단백질의 유형을 나타내고, 아래 첨자 'n'은 MFP 블럭의 반복 횟수를 나타낸다. 예를 들어, MFP[Mgfp5]1은 지중해 홍합((mussel galloprovincialis)종이고, MFP 유형 5이며, MFP 블럭 반복단위가 하나라는 것을 의미한다. 마지막으로, EBP와 MFP로 구성된 이중 및 삼중 블럭 코폴리펩타이드는 두 블럭 사이에 하이픈을 써서 MFP 블럭 및 EBP 블럭의 구성으로 나타냈다. 예를 들면, 이중 블럭 코플리펩타이드는 EBPPI[G1A4F1]n-MFP[Mgfp5]n와 같이, 삼중 블럭 코폴리펩타이드는 EBPPI[G1A4F1] n-MFP[Mgfp5] n-EBPPI[G1A4F1] n와 같이 나타낼 수 있다. In the present invention, MFP [Mgfp5] n and MFP [Mcfp5] n represents the type of mussel species and ligature proteins in the letters and numbers in parentheses, subscript 'n' indicates the number of repetitions of the MFP block. For example, MFP [Mgfp5] 1 means Mediterranean mussel (mussel galloprovincialis), MFP type 5, and one MFP block repeat unit. Finally, double and triple block copolys consisting of EBP and MFP Peptides are represented by the construction of an MFP block and an EBP block with a hyphen between the two blocks, for example, a double block copeptide is an EBPPI [G1A4F1] n -MFP [Mgfp5] n, and a triple block copolypeptide is an EBPPI [ G1A4F1] n -MFP [Mgfp5] n -EBPPI [G1A4F1] n .
본 발명의 MFP 블럭의 유전자 및 아미노산 서열은 표 3 및 4에 각각 나타내었다.Gene and amino acid sequences of the MFP block of the present invention are shown in Tables 3 and 4, respectively.
MFP 라이브러리의 유전자 서열Gene Sequences in the MFP Library
MFP[Mgfp5] (서열번호 42)MFP [Mgfp5] (SEQ ID NO: 42) TCT AGT GAA GAA TAT AAA GGT GGT TAT TAC CCC GGC AAC ACC TAT CAT TAT CAT AGT GGG GGC AGT TAT CAC GGC AGC GGC TAC CAT GGC GGC TAT AAA GGT AAA TAC TAC GGT AAA GCG AAA AAA TAC TAT TAT AAA TAC AAA AAC AGC GGC AAA TAT AAG TAC CTG AAA AAA GCT CGT AAA TAC CAT CGT AAA GGC TAT AAA AAA TAT TAC GGC GGC GGC AGT TCGTCT AGT GAA GAA TAT AAA GGT GGT TAT TAC CCC GGC AAC ACC TAT CAT TAT CAT AGT GGG GGC AGT TAT CAC GGC AGC GGC TAC CAT GGC GGC TAT AAA GGT AAA TAC TAC GGT AAA GCG AAA AAA TAC ATC GGC AAA TAT AAG TAC CTG AAA AAA GCT CGT AAA TAC CAT CGT AAA GGC TAT AAA AAA TAT TAC GGC GGC GGC AGT TCG
MFP[Mcfp5](서열번호 43) MFP [Mcfp5] (SEQ ID NO: 43 ) GTG GGT AGC GGC TAT GAC GGC TAT TCA GAT GGC TAC TAT CCT GGT AGT GCA TAT AAC TAC CCG TCA GGG TCC CAT GGC TAC CAT GGT CAT GGC TAT AAA GGC AAA TAC TAT GGC AAA GGC AAA AAA TAT TAC TAT AAA TAT AAA CGC ACC GGC AAG TAT AAA TAT CTG AAA AAA GCG CGC AAA TAT CAT CGC AAG GGC TAT AAA AAA TAC TAT GGT GGC GGC TCC AGTGTG GGT AGC GGC TAT GAC GGC TAT TCA GAT GGC TAC TAT CCT GGT AGT GCA TAT AAC TAC CCG TCA GGG TCC CAT GGC TAC CAT GGT CAT GGC TAT AAA GGC AAA TAC TAT GGC AAA GGC AAA AAA TAT A C GGC AAG TAT AAA TAT CTG AAA AAA GCG CGC AAA TAT CAT CGC AAG GGC TAT AAA AAA TAC TAT GGT GGC GGC TCC AGT
MFP 라이브러리의 아미노산 서열Amino acid sequence of the MFP library
MFP[Mgfp5] (서열번호 44)MFP [Mgfp5] (SEQ ID NO: 44) SSEEYKGGYY PGNTYHYHSG GSYHGSGYHG GYKGKYYGKA KKYYYKYKNS GKYKYLKKAR KYHRKGYKKY YGGGSSSSEEYKGGYY PGNTYHYHSG GSYHGSGYHG GYKGKYYGKA KKYYYKYKNS GKYKYLKKAR KYHRKGYKKY YGGGSS
MFP[Mcfp5](서열번호 45)MFP [Mcfp5] (SEQ ID NO 45) VGSGYDGYSD GYYPGSAYNY PSGSHGYHGH HYKGKYYGKG KKYYYKYKRT GKYKYLKKAR KYHRKGYKKY YGGGSS VGSGYDGYSD GYYPGSAYNY PSGSHGYHGH HYKGKYYGKG KKYYYKYKRT GKYKYLKKAR KYHRKGYKKY YGGGSS
본 발명에 있어서, 상기 다중 블록 코폴리펩타이드는 서열번호 50 내지 70의 아미노산 서열로 표시되는 것을 특징으로 하며, 서열번호 71 내지 91의 염기서열로 표시되는 것을 특징으로 할 수 있다.본 발명은 다른 관점에서, 상기 다중 블럭 코폴리펩타이드를 코딩하는 유전자에 관한 것이다.In the present invention, the multi-block copolypeptide is characterized by the amino acid sequence of SEQ ID NO: 50 to 70, it may be characterized by the nucleotide sequence of SEQ ID NO: 71 to 91. In view, the present invention relates to a gene encoding the multiblock copolypeptide.
본 발명은 또 다른 관점에서, 상기 유전자를 포함하는 재조합 벡터에 관한 것이다.In another aspect, the present invention relates to a recombinant vector comprising the gene.
본 발명은 또 다른 관점에서, 상기 유전자 또는 상기 재조합 벡터가 도입된 재조합 미생물에 관한 것이다.In another aspect, the present invention relates to a recombinant microorganism into which the gene or the recombinant vector is introduced.
본 발명에 있어서, 상기 재조합 미생물은 티로시나아제(tyrosinase)를 코딩하는 유전자 또는 티로시나아제를 코딩하는 유전자를 포함하는 발현벡터가 추가로 도입되어 공동발현되는 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism may be characterized in that the expression vector containing a gene encoding a tyrosinase (tyrosinase) or a gene encoding a tyrosinase is further introduced and co-expressed.
본 발명에서, 홍합 족사 단백질(MFP)은 티로시나아제(tyrosinase)에 의해 티로신 잔기가 히드록실화된 카테콜 측쇄를 가진 도파를 형성하며, 상기 도파는 배위 결합 또는 수소 결합을 통해 금속 이온, 산화물 및 반금속과 결합할 수 있다.In the present invention, the mussel quartet protein (MFP) forms a waveguide having a catechol side chain in which tyrosine residues are hydroxylated by tyrosinase, and the waveguide is a metal ion or oxide through coordination bond or hydrogen bond. And semimetals.
본 발명에서, 도파는 산화환원 반응으로 인해 NBT와 글리시네이트 용액에 특이적으로 염색된다. In the present invention, the waveguide is specifically dyed in the NBT and glycinate solution due to the redox reaction.
본 발명에 있어서, 상기 발현벡터에 orf438 유전자를 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, orf438 gene may be further included in the expression vector.
본 발명은 또 다른 관점에서, (a) 상기 재조합 미생물을 배양하여 상기 다중 블럭 코폴리펩타이드를 생성시키는 단계; 및 (b) 상기 생성된 다중 블럭 코폴리펩타이드를 수득하는 단계를 포함하는 다중 블럭 코폴리펩타이드의 제조방법에 관한 것이다.In another aspect, the present invention provides a method for producing a multi-block copolypeptide by culturing the recombinant microorganism; And (b) obtaining the generated multiblock copolypeptide.
본 발명에 있어서, 상기 (a) 단계의 재조합 미생물은, 티로시나아제(tyrosinase)를 코딩하는 유전자 또는 티로시나아제를 코딩하는 유전자를 포함하는 발현벡터가 추가로 도입되어 상기 다중 블록 코폴리펩티드와 티로시나아제가 공동발현되는 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism of step (a), the expression vector containing a gene encoding a tyrosinase (tyrosinase) or a gene encoding tyrosinase is further introduced to the multi-block copolypeptide and tyro It may be characterized by the co-expression of cinases.
본 발명에 있어서, 상기 다중 블록 코폴리펩타이드의 티로신 잔기는 상기 티로시나아제에 의해 도파(3,4-dihydroxyphenylalanine) 잔기로 변형되는 것을 특징으로 할 수 있다. In the present invention, the tyrosine residue of the multi-block copolypeptide may be characterized in that the tyrosinase is modified into a dopa (3,4-dihydroxyphenylalanine) residue.
본 발명에서, 티로시네이즈(tyrosinase)는 고가이므로, 본 발명의 다중 블럭 코폴리펩타이드의 제조방법에 따르면, 박테리아에서 티로시네이즈를 대량 발현할 수 있으므로, 경제적이다. In the present invention, tyrosinase (tyrosinase) is expensive, according to the method for producing a multi-block copolypeptide of the present invention, it is economical because it can express a large amount of tyrosinase in bacteria.
본 발명에서, 벡터는 적당한 숙주세포에서 목적 단백질을 발현할 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 암호화하는 폴리뉴클레오타이드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사와 해독의 종결을 조절하는 서열을 포함할 수 있으며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성 일 수 있다. 벡터는 적당한 숙주 내로 형질전환 된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.In the present invention, the vector refers to a DNA preparation containing a nucleotide sequence of the polynucleotide encoding the target protein operably linked to a suitable control sequence to express the target protein in a suitable host cell. The regulatory sequence may comprise a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence regulating the termination of transcription and translation, as desired It can be manufactured in various ways. The promoter of the vector may be constitutive or inducible. After being transformed into a suitable host, the vector can replicate or function independently of the host genome and integrate into the genome itself.
본 발명에서 사용되는 벡터는 숙주세포 중에서 복제 가능한 것이면 특별히 한정되지 않으며 당 업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합 된 상태의 플라스미드, 파지미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A, 및 Charon21A을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계를 사용할 수 있다. 본 발명에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다.The vector used in the present invention is not particularly limited as long as it can be replicated in a host cell, and any vector known in the art may be used. Examples of commonly used vectors include natural or recombinant plasmids, phagemids, cosmids, viruses and bacteriophages. For example, pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A, and Charon21A can be used as a phage vector or cosmid vector, and pBR, pUC, pBluescriptII, pGEM system, pTZ system, pCL system and pET system can be used. The vector usable in the present invention is not particularly limited and known expression vectors can be used.
“발현 조절 서열 (expression control sequence)"이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다. 고 발현용의 프로모터로서 SRα 프로모터와 사이토메가로바이러스(cytomegalovirus) 유래 프로모터 등이 바람직하게 사용된다.The expression “expression control sequence” refers to a DNA sequence that is essential for the expression of a coding sequence operably linked in a particular host organism. Such regulatory sequence is a promoter for transcription, for controlling such transcription. Any operator sequence, a sequence encoding a suitable mRNA ribosomal binding site, and a sequence that controls termination of transcription and translation, for example, a regulatory sequence suitable for prokaryotes includes a promoter, optionally an operator sequence, and a ribosomal binding site Eukaryotic cells include promoters, polyadenylation signals, and enhancers, the most influential factors affecting the expression levels of genes in the plasmids, the promoters for high expression, the SRα promoter and cytomegalovirus. Derived promoters and the like are preferably used.
본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열의 예에는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다. T7 RNA 폴리메라아제 프로모터 Φ10은 대장균에서 단백질 NSP를 발현시키는데 유용하게 사용될 수 있다.To express the DNA sequences of the invention, any of a wide variety of expression control sequences can be used in the vector. Examples of useful expression control sequences include, for example, early and late promoters of SV40 or adenovirus, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter region of phage lambda, fd Regulatory regions of the code protein, promoters for 3-phosphoglycerate kinase or other glycolysis enzymes, promoters of the phosphatase such as Pho5, promoters of the yeast alpha-crossing system and prokaryotic or eukaryotic cells or viruses thereof And other sequences of constitution and induction known to modulate the expression of the genes, and various combinations thereof. The T7 RNA polymerase promoter Φ 10 may be usefully used to express protein NSP in E. coli.
핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서(pre-sequence) 또는 분비 리더(leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.Nucleic acids are "operably linked" when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to allow gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s). For example, DNA for a pre-sequence or secretion leader is operably linked to DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence; Or the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation. In general, "operably linked" means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame. However, enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
본원 명세서에 사용된 용어 "발현 벡터"는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어(recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.As used herein, the term "expression vector" generally refers to a fragment of DNA that is generally double stranded as a recombinant carrier into which fragments of heterologous DNA have been inserted. Here, heterologous DNA refers to heterologous DNA, which is DNA not naturally found in host cells. Once expression vectors are within a host cell, they can replicate independently of the host chromosomal DNA and several copies of the vector and their inserted (heterologous) DNA can be produced.
당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, to raise the expression level of a transfected gene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host. Preferably, the expression control sequence and the gene of interest are included in one expression vector including the bacterial selection marker and the replication origin. If the expression host is a eukaryotic cell, the expression vector must further comprise an expression marker useful in the eukaryotic expression host.
본 발명의 폴리펩타이드를 코딩하는 유전자를 발현시키기 위해 매우 다양한 발현 숙주/벡터 조합이 이용될 수 있다. 진핵 숙주에 적합한 발현 벡터에는, 예를 들어 SV40, 소 유두종바이러스, 아네노바이러스, 아데노-연관 바이러스(adeno-associated virus), 시토메갈로바이러스 및 레트로바이러스로부터 유래된 발현 조절 서열을 포함한다. 세균 숙주에 사용할 수 있는 발현 벡터에는 pBluescript, pGEX2T, pUC벡터, colE1, pCR1, pBR322, pMB9 및 이들의 유도체와 같이 E. coli에서 얻는 것을 예시할 수 있는 세균성 플라스미드, RP4와 같이 보다 넓은 숙주 범위를 갖는 플라스미드, λgt10과 λgt11, NM989와 같은 매우 다양한 파지 람다(phage lambda) 유도체로 예시될 수 있는 파지 DNA, 및 M13과 필라멘트성 단일가닥의 DNA 파지와 같은 기타 다른 DNA 파지가 포함된다. 효모 세포에 유용한 발현 벡터는 2μ 플라스미드 및 그의 유도체이다. 곤충 세포에 유용한 벡터는 pVL 941이다.A wide variety of expression host / vector combinations can be used to express the genes encoding the polypeptides of the invention. Suitable expression vectors for eukaryotic hosts include, for example, expression control sequences derived from SV40, bovine papilloma virus, adenovirus, adeno-associated virus, cytomegalovirus and retrovirus. Expression vectors that can be used in bacterial hosts include a broader host range, such as bacterial plasmids, RP4, which can be exemplified in E. coli such as pBluescript, pGEX2T, pUC vectors, colE1, pCR1, pBR322, pMB9 and derivatives thereof. Phage plasmids, phage DNA that can be exemplified by a wide variety of phage lambda derivatives such as λgt10 and λgt11, NM989, and other DNA phages such as M13 and filamentary single-stranded DNA phages. Useful expression vectors for yeast cells are 2μ plasmids and derivatives thereof. A useful vector for insect cells is pVL 941.
상술한 발현 벡터에 의해 형질전환 또는 형질감염된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 "형질감염"은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다.Host cells transformed or transfected with the expression vectors described above constitute another aspect of the present invention. As used herein, the term “transformation” means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration. As used herein, the term "transfection" means that the expression vector is accepted by the host cell whether or not any coding sequence is actually expressed.
발명의 숙주 세포는 하나 이상의 목적 단백질을 암호화하는 폴리뉴클레오타이드를 갖는 벡터가 도입된 재조합 미생물이거나, 하나 이상의 목적 단백질을 암호화하는 폴리뉴클레오타이드가 미생물에 도입되어 폴리뉴클레오타이드가 염색체에 통합되어 목적 단백질을 발현시키도록 형질이 감염된 재조합 미생물을 의미한다. 원핵 또는 진핵생물 세포일 수 있다. 또한, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 대장균, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들, 스포도프테라 프루기페르다(SF9)와 같은 곤충 세포, CHO 및 생쥐 세포같은 동물 세포, COS 1, COS 7, BSC 1, BSC 40 및 BMT 10과 같은 아프리카 그린 원숭이 세포, 및 조직배양된 인간 세포는 사용될 수 있는 숙주 세포의 예이다. COS 세포를 이용하는 경우에는 COS 세포에서 SV40 라지 T안티겐(large T antigen)이 발현하고 있으므로 SV40의 복제개시점을 갖는 플라스미드는 세포중에서 다수 카피(copy)의 에피솜(episome)으로 존재하도록 되고 통상보다고 발현이 기대될 수 있다. 도입된 DNA 서열은 숙주 세포와 동일한 종으로부터 얻을 수 있거나, 숙주 세포와 다른 종의 것일 수 있거나, 또는 그것은 어떠한 이종 또는 상동성 DNA를 포함하는 하이브리드 DNA 서열일 수 있다.The host cell of the invention is a recombinant microorganism into which a vector having a polynucleotide encoding at least one target protein is introduced, or a polynucleotide encoding at least one target protein is introduced into the microorganism so that the polynucleotide is integrated into a chromosome to express the target protein. Refers to a recombinant microorganism infected with a trait. It may be a prokaryotic or eukaryotic cell. In addition, a host having a high DNA introduction efficiency and a high expression efficiency of the introduced DNA is usually used. Known eukaryotic and prokaryotic hosts such as Escherichia coli, Pseudomonas, Bacillus, Streptomyces, fungi, yeast, insect cells such as Spodoptera pruperferda (SF9), animal cells such as CHO and mouse cells, COS 1, COS African green monkey cells such as 7, BSC 1, BSC 40 and BMT 10, and tissue cultured human cells are examples of host cells that can be used. In the case of using COS cells, since SV40 large T antigen is expressed in COS cells, the plasmid having the origin of replication of SV40 is present as a large number of copies of the episome in the cells. And expression can be expected. The introduced DNA sequence may be obtained from the same species as the host cell, may be of a different species than the host cell, or it may be a hybrid DNA sequence comprising any heterologous or homologous DNA.
물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다. 발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다. 이들 변수의 범위내에서, 당업자는 본 발명의 DNA 서열을 발효 또는 대규모 동물 배양에서 발현시킬 수 있는 각종 벡터/발현 조절 서열/숙주 조합을 선정할 수 있다. 발현 클로닝에 의해 NSP 단백질의 cDNA를 클로닝 하려고 할 때의 스크리닝법으로서 바인딩법(binding법), 페닝법(panning법), 필름에멀션법(film emulsion 법)등이 적용될 수 있다.Of course, it should be understood that not all vectors and expression control sequences function equally in expressing the DNA sequences of the present invention. Likewise not all hosts function equally for the same expression system. However, those skilled in the art can make appropriate choices among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, in selecting a vector, the host must be considered, since the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered. In selecting expression control sequences, several factors must be considered. For example, the relative strength of the sequence, the controllability, and the compatibility with the DNA sequences of the present invention should be considered, particularly with regard to possible secondary structures. Single cell hosts may be selected from a host for the selected vector, the toxicity of the product encoded by the DNA sequence of the invention, the secretory properties, the ability to accurately fold the protein, the culture and fermentation requirements, the product encoded by the DNA sequence of the invention from the host. It should be selected in consideration of factors such as the ease of purification. Within the scope of these variables, one skilled in the art can select a variety of vector / expression control sequence / host combinations capable of expressing the DNA sequences of the invention in fermentation or large scale animal culture. As a screening method when cloning the cDNA of the NSP protein by expression cloning, a binding method (binding method), a panning method (panning method), a film emulsion method (film emulsion method) and the like can be applied.
본 발명에서 상기 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있으며, 비바이러스 전달 방법은 전지천공법, 리포펙션, 미세주사, 탄도법, 비로솜, 리포솜, 면역리포솜, 다가 양이온 또는 지질:핵산 접합체, 네이키드 DNA, 인공 바이론 및 화학물질 촉진 DNA 유입을 포함한다. 소노포레이션, 예를 들어 Sonitron 2000 시스템(Rich-Mar)을 이용한 방법도 핵산의 전달에 사용할 수 있으며, 다른 대표적인 핵산 전달 시스템은 Amaxa Biosystems(Cologne, Germany), Maxcyte, Inc.(Rockville, Maryland) 및 BTX Molesular Syetem(Holliston, MA)의 방법을 포함한다. 리포펙션 방법은 미국특허 제5,049,386호, 미국특허 제4,946,787호 및 미국특허 제4,897,355호에 명시되어 있으며 리포펙션 시약은 상업적으로 시판되고 있으며, 예를 들어, TransfectamTM 및 LipofectinTM이 있다. 폴리뉴클레오티드의 효과적인 리셉터-인식 리포펙션에 적당한 양이온 또는 중성 지질은 Felgner의 지질을 포함하며(WO91/17424 및 WO91/16024), 생체 외 도입을 통해 세포로, 생체 내 도입을 통해 표적 조직으로 전달할 수 있다. 면역지질 복합체 등 표적 리포솜을 포함하는 지질:핵산 복합체의 제조 방법은 당해 업계에 잘 알려져 있다(Crystal, Science., 270:404-410, 1995; Blaese et al., Cancer Gene Ther., 2:291-297, 1995; Behr et al., Bioconjugate Chem., 5:382389, 1994; Remy et al., Bioconjugate Chem., 5:647-654, 1994; Gao et al., Gene Therapy., 2:710-722, 1995; Ahmad et al., Cancer Res., 52:4817-4820, 1992; 미국특허 제4,186,183호; 미국특허 제4,217,344호; 미국특허 제4,235,871호; 미국특허 제4,261,975호; 미국특허 제4,485,054호; 미국특허 제4,501,728호; 미국특허 제4,774,085호; 미국특허 제4,837,028호; 미국특허 제4,946,787호).In the present invention, as a method of inserting the gene on the chromosome of the host cell, a conventionally known genetic manipulation method may be used, and the non-viral delivery method may be cell perforation, lipofection, microinjection, ballistic method, virosome, liposome. , Immunoliposomes, polyvalent cations or lipid: nucleic acid conjugates, naked DNA, artificial virons, and chemical promoted DNA influx. Sonorization, for example methods using the Sonitron 2000 system (Rich-Mar), can also be used for the delivery of nucleic acids. Other representative nucleic acid delivery systems are Amaxa Biosystems (Cologne, Germany), Maxcyte, Inc. (Rockville, Maryland). And BTX Molesular Syetem (Holliston, Mass.). Lipofection methods are specified in US Pat. No. 5,049,386, US Pat. No. 4,946,787 and US Pat. No. 4,897,355 and lipofection reagents are commercially available, for example Transfectam ™ and Lipofectin ™. Suitable cations or neutral lipids for effective receptor-recognition lipofection of polynucleotides include lipids from Felgner (WO91 / 17424 and WO91 / 16024) and can be delivered to cells via in vitro introduction and to target tissues via in vivo introduction. have. Methods of preparing lipid: nucleic acid complexes, including target liposomes, such as immunolipid complexes, are well known in the art (Crystal, Science., 270: 404-410, 1995; Blaese et al., Cancer Gene Ther., 2: 291). 297, 1995; Behr et al., Bioconjugate Chem., 5: 382389, 1994; Remy et al., Bioconjugate Chem., 5: 647-654, 1994; Gao et al., Gene Therapy., 2: 710- 722, 1995; Ahmad et al., Cancer Res., 52: 4817-4820, 1992; US Patent 4,186,183; US Patent 4,217,344; US Patent 4,235,871; US Patent 4,261,975; US Patent 4,485,054 US Patent 4,501,728 US Patent 4,774,085 US Patent 4,837,028 US Patent 4,946,787.
레트로바이러스의 친화성은 외부 외피 단백질과 일체화함으로써 변할 수 있어 표적 세포의 종류를 확대시킬 수 있다. 렌티바이러스 벡터는 비분열 세포를 형질도입 또는 감염시켜서 고바이러스 역가를 생성하는 레트로바이러스 벡터이다. 표적 조직에 따라 레트로바이러스 유전자 잔달 시스템이 결정된다. 레트로바이러스 벡터는 6-10kb 외부 서열을 포장할 수 있는 시스 액팅 긴 말단 반복을 포함한다. 벡터의 복제와 포장을 위해 충분한 최소의 시스 액팅 LTR은 영구적인 트랜스젠 발현을 위해 치료 유전자가 표적 세포로 통합되도록 사용할 수 있다. 널리 사용되는 레트로바이러스 벡터는 쥐 백혈병 바이러스(MuLV), 긴팔원숭이 백혈병 바이러스(GaLV), 원숭이 면역결핍 바이러스(SIV), 인간 면역결핍 바이러스(HIV), 및 그들의 조합 바이러스를 포함한다(Buchscher et al., J. Virol., 66:2731-2739, 1992; Johann et al., J. Virol., 66:1635-1640 1992; Sommerfelt et al., Virol., 176:58-59, 1990; Wilson et al., J. Virol., 63:2374-2378, 1989; Miller et al., J. Virol., 65:2220-2224, 1991; PCT/US94/05700). The affinity of retroviruses can be altered by integrating with outer envelope proteins, thereby expanding the type of target cell. Lentiviral vectors are retroviral vectors that generate high viral titers by transducing or infecting non-dividing cells. The target tissue determines the retroviral gene persistence system. Retroviral vectors contain cis acting long terminal repeats that can pack 6-10 kb outer sequences. Minimal cis acting LTRs sufficient for replication and packaging of the vector can be used to integrate the therapeutic gene into target cells for permanent transgene expression. Widely used retroviral vectors include murine leukemia virus (MuLV), gibbon leukemia virus (GaLV), monkey immunodeficiency virus (SIV), human immunodeficiency virus (HIV), and combination viruses thereof (Buchscher et al. , J. Virol., 66: 2731-2739, 1992; Johann et al., J. Virol., 66: 1635-1640 1992; Sommerfelt et al., Virol., 176: 58-59, 1990; Wilson et al. , J. Virol., 63: 2374-2378, 1989; Miller et al., J. Virol., 65: 2220-2224, 1991; PCT / US94 / 05700.
수크로오스 포스포릴라아제 단백질을 일시적으로 발현하는 경우에는 아데노바이러스 기반 시스템을 더욱 많이 이용하며, 아데노바이러스계 벡터는 많은 세포들에서 고효율로 형질도입을 일으키지만 세포 분열을 필요로 하지 않는다. 상기 벡터를 이용하면 높은 역가와 높은 수준의 발현을 얻을 수 있고, 간단한 시스템에서 대량으로 생산될 수 있다. 또한 아데노 부속 바이러스(AAV) 벡터는 표적 핵산을 가진 세포로 형질도입하는데 이용되는데, 예를 들면 생체 외 상에서 핵산과 펩티드의 생산 및 생체 내 및 생체 외 상에서 유전자 치료에 이용되며(West et al., Virology., 160:38-47, 1987; 미국특허 제4,797,368호; WO93/24641; Kotin, Human Gene Therapy., 5:793-801, 1994; Muzyczka, J. Clin. Invest., 94:1351, 1994), 재조합 AAV 벡터의 구성은 이미 알려져 있다(미국특허 제 5,173,414호; Tratschin et al., Mol. Cell. Biol., 5:3251-3260, 1985; Tratschin, et al., Mol. Cell. Biol., 4:20722081, 1984; Hermonat & Muzyczka, PNAS., 81:6466-6470, 1984; Samulski et al., J Virol., 63:038223828, 1989). 임상 실험에서는 적어도 6개의 바이러스 벡터를 이용한 유전자 전달 방법이 이용되고 있는데 형질도입제를 생성하는 도움 세포 라인에 유전자를 삽입함으로써 결함이 있는 벡터를 보완하는 접근법이다. pLASN과 MFG-S는 임상 실험에서 사용되고 있는 레트로바이러스의 예이고(Dunbar et al., Blood., 85:3048-305, 1995; Kohn et al., Nat. Med., 1:1017-102, 1995; Malech et al., PNAS., 94:(22)12133-12138, 1997), PA317/pLASN는 유전자 치료에 사용된 최초의 치료 벡터로(Blaese et al., Science., 270:475-480, 1995) MFG-S 포장 벡터의 형질도입 효율은 50% 또는 그 이상을 보였다(Ellem et al., Immunol Immunother., 44(1):10-20, 1997; Dranoff et al., Hum. Gene Ther., 1:111-2, 1997).Transient expression of sucrose phosphorylase proteins is more common with adenovirus-based systems, and adenovirus-based vectors cause high efficiency transduction in many cells but do not require cell division. The vector allows for high titers and high levels of expression and can be produced in large quantities in a simple system. Adeno accessory virus (AAV) vectors are also used to transduce into cells with target nucleic acids, for example for the production of nucleic acids and peptides in vitro and for gene therapy in vivo and in vitro (West et al., Virology., 160: 38-47, 1987; US Pat. No. 4,797,368; WO93 / 24641; Kotin, Human Gene Therapy., 5: 793-801, 1994; Muzyczka, J. Clin. Invest., 94: 1351, 1994 The construction of recombinant AAV vectors is already known (US Pat. No. 5,173,414; Tratschin et al., Mol. Cell. Biol., 5: 3251-3260, 1985; Tratschin, et al., Mol. Cell. Biol. , 4: 20722081, 1984; Hermonat & Muzyczka, PNAS., 81: 6466-6470, 1984; Samulski et al., J Virol., 63: 038223828, 1989). In clinical trials, gene transfer methods using at least six viral vectors are used, which complement the defective vector by inserting the gene into a helper cell line that generates transgenes. pLASN and MFG-S are examples of retroviruses used in clinical trials (Dunbar et al., Blood., 85: 3048-305, 1995; Kohn et al., Nat. Med., 1: 1017-102, 1995 Malech et al., PNAS., 94: (22) 12133-12138, 1997), PA317 / pLASN was the first therapeutic vector used in gene therapy (Blaese et al., Science., 270: 475-480, 1995) Transduction efficiency of MFG-S packaging vector was 50% or higher (Ellem et al., Immunol Immunother., 44 (1): 10-20, 1997; Dranoff et al., Hum. Gene Ther. , 1: 111-2, 1997).
재조합 아데노 연관 바이러스 벡터(rAAV)는 결함 있고 비병원성인 제2형 파르보바이러스 아데노 연관 바이러스를 기반으로 하는 유망한 대체 유전자 전달 시스템이다. 모든 벡터는 트랜스젠 발현 카세트 측면에 위치하는 AAV 145 bp 역위 말단 반복을 보유한 플라스미드로부터 유래한다. 형질도입된 세포의 게놈으로 통합에 기인하는 효율적인 유전자 전달 및 안정한 트랜스젠 전달은 상기 벡터 시스템의 큰 장점이다(Wagner et al., Lancet., 351:9117-17023, 1998; Kearns et al., Gene Ther., 9:748-55, 1996). Recombinant adeno-associated virus vectors (rAAV) are promising alternative gene delivery systems based on defective and nonpathogenic type 2 parvovirus adeno-associated viruses. All vectors are derived from plasmids with AAV 145 bp inverted terminal repeats flanking the transgene expression cassette. Efficient gene delivery and stable transgene delivery due to integration into the genome of transduced cells is a great advantage of the vector system (Wagner et al., Lancet., 351: 9117-17023, 1998; Kearns et al., Gene Ther., 9: 748-55, 1996).
본 발명에서, "co-expression"은 두 개 이상의 유전자가 동시에 발현되는 것을 의미하며, 본 발명에서는 공동발현이라고 표현한다.In the present invention, "co-expression" means that two or more genes are expressed at the same time, in the present invention is expressed as co-expression.
본 발명의 일 실시예에서는, MFP 블럭의 티로신 잔기를 두가지 방법으로 히드록실화시켰다((1) 박테리아 동시 발현 시스템(대장균에서 orf438와 티로시나아제 및 블럭 코폴리펩타이드가 동시발현됨) 및 (2) 버섯유래 티로시나아제 촉매 반응). EBP(A 블럭) 및 MFP(B 블럭)로 구성된 이중 및 삼중 블럭 코펩타이드는 AB-, ABA- 및 BAB- 타입으로 설계되어, 자가 조립 미셀 구조 및 주사 가능한 하이드로겔을 형성하며, 표면 접착성을 갖는 바이오 코팅 및 바이오접착 물질로 사용될 수 있다. 첫째, 정제된 EBP-MFP 블럭 코폴리펩타이드의 티로신 잔기를 버섯유래 티로시나아제에 의해 DOPA로 변형시켰다. 표면 부착성을 조사하기 위하여, 각 블럭 코폴리펩타이드는 10mM 인산염 완충액(pH 5)에 용해시키고(DOPA의 자체 산화를 막기 위함), 산화제인 NaIO4와 함께 배양하였다(분자 간 가교 결합을 위함). 그 결과, 10mM ~ 100mM 범위의 산화제 농도 및 블럭 코폴리펩타이드 유형에 따라, 서로 다른 표면 접착력을 보였다. 이를 통하여, DOPA와 퀴논이 벌크 접착성을 나타내는 필수 요소라는 것을 알 수 있다. MFP 내 도파(DOPA)는 표면 접착에서 중요한 역할을 하며, DOPA의 산화 형태인 퀴논(quinone)은 분자 간 가교결합을 통해 응집력을 부여한다. 또한, LCST 이상에서 상전이를 갖는 EBP 블럭은 물리적으로 가교 결합된 하이드로겔화(hydrogelation) 및 표면 접착에 대한 향상된 응집력을 나타낸다. 둘째로, EBP-MFP 블럭 코폴리펩타이드 및 orf438와 티로시나아제(tyrosinase)를 대장균에서 동시 발현시켜, 추가적인 처리없이, 블럭 코폴리펩타이드의 티로신 잔기를 히드록실화시켰다. 그 결과, 상기 EBP-MFP 블럭 코폴리펩타이드는 버섯유래 티로시나아제에 의해 변형된 EBP-MFP 블럭 코폴리펩타이드에 비해 우수한 부착력을 가지는 것을 확인하였으며, 산업적 스케일 업에 유용하다는 것을 알 수 있다(도 12). 또한, 본 발명에서는 미셀과 하이드로겔의 형태로 동시 발현된 블럭 코폴리펩타이드의 표면 부착 강도를 조사하였다. 그 결과, 본 발명의 EBP-MFP 블럭 코폴리펩타이드는 표면 부착성을 가진 미셀 및 하이드로겔로서 큰 잠재력을 지닌다는 것을 확인하였다(도 10, 도 11, 도 13 및 도 14).In one embodiment of the invention, tyrosine residues of the MFP block were hydroxylated in two ways ((1) bacterial coexpression system (orf438 and tyrosinase and block copolypeptides co-expressed in E. coli) and (2 ) Mushroom-derived tyrosinase catalysis). Double and triple block copeptides composed of EBP (A block) and MFP (B block) are designed in AB-, ABA- and BAB-types to form self-assembled micellar structures and injectable hydrogels, It can be used as a bio coating and a bioadhesive material having. First, tyrosine residues of the purified EBP-MFP block copolypeptides were transformed to DOPA by mushroom derived tyrosinase. To investigate surface adhesion, each block copolypeptide was dissolved in 10 mM phosphate buffer (pH 5) (to prevent DOPA self-oxidation) and incubated with the oxidant NaIO 4 (for cross-molecular crosslinking). . As a result, depending on the oxidant concentration and the block copolypeptide type in the range of 10 mM to 100 mM, different surface adhesive strengths were shown. Through this, it can be seen that DOPA and quinone are essential elements exhibiting bulk adhesiveness. Dopa (DOPA) in MFP plays an important role in surface adhesion, and quinone, an oxidized form of DOPA, imparts cohesion through intermolecular crosslinking. In addition, EBP blocks with phase transitions above LCST exhibit improved cohesion for physically crosslinked hydrogelation and surface adhesion. Second, the EBP-MFP block copolypeptide and orf438 and tyrosinase were co-expressed in E. coli to hydroxylate the tyrosine residues of the block copolypeptides without further treatment. As a result, it was confirmed that the EBP-MFP block copolypeptide has superior adhesion compared to the EBP-MFP block copolypeptide modified by mushroom-derived tyrosinase, it can be seen that it is useful for industrial scale up (Fig. 12). In the present invention, the surface adhesion strength of the block copolypeptides co-expressed in the form of micelles and hydrogels was investigated. As a result, it was confirmed that the EBP-MFP block copolypeptide of the present invention has great potential as micelles and hydrogels having surface adhesion (Figs. 10, 11, 13 and 14).
본 발명은 또 다른 관점에서, 상기 다중 블럭 코폴리펩타이드가 온도 자극에 의해, EBP 블럭이 코어 구조를 형성하고, MFP 블럭이 쉘 구조를 형성하는 코어-쉘 구조의 자가조립 나노구조체에 관한 것이다.In another aspect, the present invention relates to a self-assembled nanostructure of a core-shell structure in which the multiblock copolypeptide is a temperature stimulus so that the EBP block forms a core structure and the MFP block forms a shell structure.
본 발명에서 코어-쉘 구조는 미셀(micelle) 구조를 의미하며, 미셀은 일반적으로 양친성, 예컨대 친수성기와 소수성기를 동시에 갖는 저분자량의 물질들이 이루는 열역학적으로 안정하고 균일한 구형의 구조를 지칭하는 것이다. 상기 마이셀 구조를 갖는 화합물에 비수용성 약물을 녹여 투입하는 경우 약물은 마이셀 내부에 존재하게 되며, 이러한 마이셀은 체내에서 온도나 pH 변화에 반응하여 표적 지향적 약물방출을 할 수 있으므로, 약물전달용 캐리어로서의 응용 가능성이 대단히 높다고 볼 수 있다.In the present invention, the core-shell structure refers to a micelle structure, and micelles generally refer to a thermodynamically stable and uniform spherical structure formed by low molecular weight materials having both amphiphilic, for example, hydrophilic and hydrophobic groups. . When a non-aqueous drug is dissolved and added to the compound having the micelle structure, the drug is present in the micelle, and the micelle can release the target-oriented drug in response to a change in temperature or pH in the body, thereby serving as a carrier for drug delivery. The possibility of application is very high.
본 발명에서, 블럭 길이가 상이한 MFP를 EBPPI와 융합하여, 열적 자극으로 자가 조립 나노 구조를 형성하였다. EBPPI-MFP 이중 블럭 코폴리펩타이드의 분자는 온도에 반응하여 코어-쉘 나노 구조로 자가 조립될 수 있다(도 1(A)). MFP는 EBPPI[G1A4F1]6의 N- 말단 또는 C- 말단에 융합되어, 수분 조건 하에서 표면 부착성을 나타낸다. 표면 부착성 미셀은 스텐트에 표면 코팅 나노 구조에 적용될 수 있으며, 이는 해부학적 혈관의 루멘 내로 삽입되어 통로 및 약물 전달 캐리어를 유지할 수 있다.In the present invention, MFPs with different block lengths were fused with EBPPI to form self-assembled nanostructures by thermal stimulation. Molecules of the EBPPI-MFP biblock copolypeptide can self assemble into core-shell nanostructures in response to temperature (FIG. 1 (A)). MFP is fused to the N-terminus or C-terminus of EBPPI [G1A4F1] 6 to exhibit surface adhesion under moisture conditions. Surface adherent micelles can be applied to the surface-coated nanostructures on the stent, which can be inserted into the lumen of anatomical vessels to maintain passage and drug delivery carriers.
본 발명은 또 다른 관점에서, 상기 자가조립 나노구조체를 포함하는 약물 전달 조성물에 관한 것이다.In another aspect, the present invention relates to a drug delivery composition comprising the self-assembled nanostructure.
본 발명에 따른 자가조립 나노구조체는 약물 전달용 유효 골격(scaffold)으로서의 인공세포외 매트릭스로 사용될 수 있다. 상기 약물은 특별하게 제한되지 않으며, 화학물질, 소분자, 펩타이드 또는 단백질 의약품, 핵산, 바이러스, 항균제, 항암제, 또는 항염증제 등을 포함한다.The self-assembled nanostructures according to the present invention can be used as an extracellular matrix as an effective scaffold for drug delivery. The drug is not particularly limited and includes chemicals, small molecules, peptide or protein medicines, nucleic acids, viruses, antibacterial agents, anticancer agents, anti-inflammatory agents and the like.
상기 소분자는 예를 들어, 조영제(예컨대, T1 조영제, 초상자성 물질과 같은 T2 조영제, 방사성 동위 원소 등), 형광 마커, 염색 물질 등이 될 수 있으나, 이에 제한되지 않는다.The small molecules may be, for example, but not limited to, contrast agents (eg, T1 contrast agents, T2 contrast agents such as superparamagnetics, radioisotopes, etc.), fluorescent markers, dyeing materials, and the like.
상기 펩타이드 또는 단백질 의약품은 호르몬, 호르몬 유사체, 효소, 효소저해제, 신호전달단백질 또는 그 일부분, 항체 또는 그 일부분, 단쇄 항체, 결합단백질 또는 그 결합 도메인, 항원, 부착단백질, 구조단백질, 조절단백질, 독소단백질, 사이토카인, 전사조절 인자, 혈액 응고 인자 및 백신 등을 포함하나, 이에 한정되지 않는다. 보다 구체적으로는, 섬유아세포 성장인자(fibroblast growth factor;FGF), 혈관내피세포 성장인자(vascular endothelial growth factor; VEGF), 전환 성장인자(transforming growth factor; TGF), 골형성 성장인자(bone morphogenetic protein; BMP), 인간성장호르몬(hGH), 돼지성장호르몬(pGH), 백혈구성장인자(G-CSF), 적혈구성장인자(EPO), 대식세포성장인자(M-CSF), 종양 괴사 인자(TNF), 상피세포 성장인자(EGF), 혈소판유도성장인자(PDGF), 인터페론류, 인터루킨류, 칼시토닌, 신경성장인자(NGF), 성장호르몬 방출인자, 엔지오텐신, 황체형성호르몬 방출 호르몬(LHRH), 황체 형성 호르몬 방출 호르몬 작동약(LHRH agonist), 인슐린, 갑상선 자극 호르몬 방출 호르몬(TRH), 엔지오스타틴, 엔도스타틴, 소마토스타틴, 글루카곤, 엔도르핀, 바시트라신, 머게인, 콜리스틴, 단일 항체, 백신류 또는 이들의 혼합물을 포함하나, 이에 제한되지 않는다.The peptide or protein drug product may be a hormone, a hormone analog, an enzyme, an enzyme inhibitor, a signaling protein or a part thereof, an antibody or a part thereof, a single chain antibody, a binding protein or a binding domain, an antigen, an adhesion protein, a structural protein, a regulatory protein, a toxin Proteins, cytokines, transcriptional regulators, blood clotting factors, vaccines, and the like. More specifically, fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), transforming growth factor (TGF), bone morphogenetic protein BMP), human growth hormone (hGH), pig growth hormone (pGH), leukocyte growth factor (G-CSF), red blood cell growth factor (EPO), macrophage growth factor (M-CSF), tumor necrosis factor (TNF) , Epidermal growth factor (EGF), platelet-induced growth factor (PDGF), interferon, interleukin, calcitonin, nerve growth factor (NGF), growth hormone releasing factor, engiotensin, luteinizing hormone releasing hormone (LHRH), corpus luteum LHRH agonist, insulin, thyroid-stimulating hormone releasing hormone (TRH), endostatin, endostatin, somatostatin, glucagon, endorphins, vacitracin, mergain, colistin, single antibodies, vaccines or these Containing a mixture of , But it is not limited thereto.
상기 핵산은 예컨대, RNA, DNA 또는 cDNA가 될 수 있으며, 핵산의 시퀀스는 암호화 부위 서열 또는 비암호화 부위 서열(예컨대, 안티센스 올리고뉴클레오티드 또는 siRNA)이 될 수 있다.The nucleic acid can be, for example, RNA, DNA or cDNA, and the sequence of nucleic acids can be a coding site sequence or a non-coding site sequence (eg antisense oligonucleotide or siRNA).
상기 바이러스는 바이러스 전체 또는 바이러스의 핵산을 포함하는 바이러스 코어(즉, 바이러스의 엔빌로프 없이 패키지된 바이러스의 핵산)가 될 수 있다. 운반될 수 있는 바이러스 및 바이러스 코어의 예로는 파필로마 바이러스, 아데노 바이러스, 배큘로바이러스, 레트로 바이러스 코어 및 세밀키 바이러스 코어 등이 있으나, 이에 제한되지 않는다.The virus may be a virus core (ie, a nucleic acid of a virus packaged without a virus envelope) comprising the virus or the nucleic acid of the virus. Examples of viruses and viral cores that can be transported include, but are not limited to, papilloma virus, adenovirus, baculovirus, retroviral core and semilky virus core.
상기 항균제는 미노싸이클린, 테트라싸이클린, 오플록사신, 포스포마이신, 머게인, 프로플록사신, 암피실린, 페니실린, 독시싸이클린, 티에나마이신, 세팔로스포린, 노르카디신, 겐타마이신, 네오마이신, 가나마이신, 파로모마이신, 미크로 노마이신, 아미카신, 토브라마이신, 디베카신, 세포탁신, 세파클러, 에리스로마이신, 싸이프로플록사신, 레보플록사신, 엔옥사신, 반코마이신, 이미페넴, 후시딕산 및 이들의 혼합물일 수 있으나, 이에 제한되지 않는다.The antimicrobial agent may be minocycline, tetracycline, oploxacin, phosphomycin, mergaine, profloxacin, ampicillin, penicillin, doxycycline, thienamycin, cephalosporin, norcardycin, gentamicin, neomycin, kanamycin , Paromomycin, micronomycin, amikacin, tobramycin, dibecasin, cytotaxin, cefacller, erythromycin, ciprofloxacin, levofloxacin, endoxacin, vancomycin, imipenem, fusidic acid and mixtures thereof It may be, but is not limited thereto.
상기 항암제는 파클리탁셀, 텍소티어, 아드리아마이신, 엔도스타틴, 앤지오스타틴, 미토마이신, 블레오마이신, 시스플레틴, 카보플레틴, 독소루비신, 다우노루비신, 이다루비신, 5-플로로우라실, 메토트렉세이트, 엑티노마이신-D 및 이들의 혼합물일 수 있으나, 이에 제한되지 않는다.The anticancer agents include paclitaxel, taxotier, adriamycin, endostatin, angiostatin, mitomycin, bleomycin, cisplatin, carboplatin, doxorubicin, daunorubicin, idarubicin, 5-fluorouracil, methotrexate, exec Tinomycin-D and mixtures thereof, but is not limited thereto.
상기 항염증제는 아세트아미노펜, 아스피린, 이부프로펜, 디크로페낙, 인도메타신, 피록시캄, 페노프로펜, 플루비프로펜, 케토프로펜, 나프록센, 수프로펜, 록소프로펜, 시녹시캄, 테녹시캄 및 이들의 혼합물일 수 있으나, 이에 제한되지 않는다.The anti-inflammatory agents are acetaminophen, aspirin, ibuprofen, diclofenac, indomethacin, pyricampam, phenopropene, flubiprofen, ketoprofen, naproxen, suprofen, roxofene, synoxycamp , Tenoxycam, and mixtures thereof, but is not limited thereto.
본 발명은 또 다른 관점에서, 상기 다중 블럭 코폴리펩타이드가 온도 자극에 의해 블럭 폴리펩타이드 간 가교 결합을 형성하여 제조되는, 하이드로겔에 관한 것이다.In another aspect, the present invention relates to a hydrogel in which the multiblock copolypeptide is prepared by forming crosslinks between block polypeptides by temperature stimulation.
본 발명의 하이드로젤은 실제 조직과 비슷한 기계적 유연함을 가지고 있고, 물을 많이 함유하되, 물에 의해 젤의 결합이 끊어지지 않기 때문에, 수분을 포함하는 젖은 생체 표면과의 접착을 필요로 하고 외부 수분에도 저항성을 가지고 있어야 하는 의료용 접착제 등으로의 응용이 활발하게 이루어지고 있다. 따라서, 본 발명에 따른 우수한 조직 접착성을 갖는 하이드로젤은 조직 접착제 또는 지혈제, 조직공학용 지지체, 약물 전달 담체, 조직충진제, 상처 치료, 또는 장유착 방지 등의 다양한 생의학적 응용이 가능하다.Hydrogel of the present invention has a mechanical flexibility similar to the actual tissue, and contains a lot of water, but since the bond of the gel is not broken by water, it requires adhesion with a wet biological surface containing water and external moisture Applications to medical adhesives and the like that must have resistance to Edo have been actively made. Accordingly, the hydrogel having excellent tissue adhesion according to the present invention is capable of various biomedical applications such as tissue adhesives or hemostatic agents, tissue engineering supports, drug delivery carriers, tissue fillers, wound healing, and intestinal adhesion prevention.
본 발명에서는, 다양한 블럭 순서 및 길이를 갖는 2개의 삼중 블럭 코폴리펩타이드를 제작하였다. MFP[Mgfp5]1-EBPPI[G1A4F1]6-MFP[Mgfp5]1 및 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드는 표면 부착성이 있는 주사 가능한 하이드로겔로 제작하였다(도 1(B) 및 도 1(C)). In the present invention, two triple block copolypeptides of various block order and length were constructed. MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 and EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 Triple block copolypeptides were prepared as injectable hydrogels with surface adhesion (FIGS. 1B and 1C).
본 발명에서, EBP 블럭은 자극 반응성을 가진 물리적 가교제로 사용되는 반면, MFP 블럭은 퀴논 형성에 의한 표면 부착성 및 화학적 가교 결합의 도입에 사용된다. MFP-EBP-MFP 및 EBP-MFP-EBP를 포함하는 삼중 블럭 코폴리펩타이드는 온도 변화 및 NaIO4 처리에 의해 산화 반응하여 하이드로겔로 자가 조립될 수 있다. 도 1(D)에서는 상기 삼중 블럭 코폴리펩타이드의 표면 부착, 분자간 가교 결합 및 자극 반응성의 메커니즘을 나타낸다.In the present invention, the EBP block is used as a physical crosslinker with stimulatory reactivity, while the MFP block is used for the introduction of chemical crosslinking and surface adhesion by quinone formation. Triple block copolypeptides, including MFP-EBP-MFP and EBP-MFP-EBP, can be self-assembled into hydrogels by oxidation by temperature change and NaIO 4 treatment. 1 (D) shows the mechanism of surface adhesion, intermolecular crosslinking and stimulus reactivity of the triple block copolypeptides.
본 발명에 있어서, 상기 하이드로겔은 홍합 족사 단백질(MFP)에 포함된 도파(3,4-dihydroxyphenylalanine) 잔기의 산화 또는 비공유 상호 작용으로 형성되는 것을 특징으로 할 수 있다.In the present invention, the hydrogel may be formed by the oxidative or non-covalent interaction of the dopa (3,4-dihydroxyphenylalanine) residue contained in the mussel musa protein (MFP).
본 발명은 또 다른 관점에서, 상기 하이드로겔을 포함하는 생체접착제 조성물에 관한 것이다.In another aspect, the present invention relates to a bioadhesive composition comprising the hydrogel.
본 발명의 생체접착제 조성물은 현재 시중에서 주로 이용되고 있는 시아노아크릴계 접착제 또는 피브린계 접착제 등을 대체하여, 피부, 혈관, 소화기, 뇌신경, 성형외과, 정형외과 등의 여러 영역에서 사용할 수 있다. 예컨대, 본 발명의 생체적합성 생체조직접착제는 외과 수술용 봉합사를 대체 할 수 있고, 불필요한 혈관을 폐색하는 데 사용될 수 있으며, 안면조직, 연골 등의 연조직과 뼈, 치아 등의 경조직 지혈 및 봉합에 이용될 수 있고, 가정 상비약으로 적용하는 것이 가능하다. 본 발명의 생체적합성 생체접착제 조성물의 다양한 응용 분야를 정리하면 다음과 같다.The bioadhesive composition of the present invention can be used in various areas such as skin, blood vessels, digestive organs, cranial nerves, plastic surgery, orthopedics, and the like, by replacing cyanoacrylic adhesives or fibrin adhesives that are mainly used in the market. For example, the biocompatible biotissue adhesive of the present invention can replace surgical sutures, can be used to block unnecessary blood vessels, and can be used for hemostasis and suturing of soft tissues such as facial tissues and cartilage, and hard tissues such as bones and teeth. It is possible to apply as a home medicine. Various application fields of the biocompatible bioadhesive composition of the present invention are summarized as follows.
일구현예로, 본 발명의 생체접착제는 인체의 내부 및 외부 표면에 적용될 수 있으며, 즉 본 발명의 생체접착제는 피부와 같은 인체의 외부 표면 또는 외과수술 과정에서 노출되는 내부기관의 표면 등에 국소적으로 적용될수 있다. 또한, 본 발명의 생체접착제는 조직의 손상된 부분을 접착시키거나 조직에서 공기/유체가 누출되는 것을 봉합하거나, 의료기구를 조직에 접착시키거나 또는 조직의 결함부분을 채우는데 이용될 수 있다. 본 명세서에서 용어 "생체 조직"은 특별하게 제한되지 않으며, 예를 들어 피부, 뼈, 신경, 액손, 연골, 혈관, 각막, 근육, 근막, 뇌, 전립선, 유방, 자궁내막, 폐, 비장, 소장, 간, 정소, 난소, 경부, 직장, 위, 림프절, 골수 및 신장 등을 포함한다.In one embodiment, the bioadhesive of the present invention may be applied to the internal and external surfaces of the human body, that is, the bioadhesive of the present invention may be applied to the external surface of the human body such as skin or the surface of an internal organ exposed during a surgical procedure. Can be applied as In addition, the bioadhesives of the present invention can be used to bond damaged parts of a tissue, to seal leakage of air / fluid from the tissue, to adhere a medical device to the tissue, or to fill a defective portion of the tissue. The term “biological tissue” herein is not particularly limited and includes, for example, skin, bones, nerves, axons, cartilage, blood vessels, corneas, muscles, fascia, brain, prostate, breast, endometrium, lung, spleen, small intestine. , Liver, testes, ovaries, cervix, rectum, stomach, lymph nodes, bone marrow and kidneys.
다른 구현예로, 본 발명의 생체접착제는 상처치유(wound healing)에 이용될 수 있다. 예를 들어, 본 발명의 생체적합성 생체접착제는 상처에 적용되는 드레싱으로 이용될 수 있다.In another embodiment, the bioadhesive of the present invention may be used for wound healing. For example, the biocompatible bioadhesive of the present invention can be used as a dressing applied to a wound.
다른 구현예로, 본 발명의 생체접착제는 피부 봉합에 이용될 수 있다. 즉, 본 발명의 생체접착제는 국소적으로 적용되어 상처를 봉합하는 데 이용되어, 봉합사를 대체 할 수 있다. 또한, 본 발명의 생체접착제는 탈장 복원에도 적용될 수 있으며, 예를 들어 탈장복원에 이용되는 메쉬의 표면 코팅에 이용될 수 있다.In another embodiment, the bioadhesive of the present invention can be used for skin closure. That is, the bioadhesive of the present invention may be applied topically and used to seal the wound, replacing the suture. In addition, the bioadhesive of the present invention can be applied to restoring hernia, for example, can be used for the surface coating of the mesh used for restoring hernia.
다른 구현예로, 본 발명의 생체접착제는 혈관과 같은 관 구조의 봉합 및 누출을 방지하는 데에도 이용될 수 있다. 또한, 본 발명의 생체접착제는 지혈에도 이용될 수 있다.In another embodiment, the bioadhesive of the present invention can also be used to prevent closure and leakage of tubular structures such as blood vessels. In addition, the bioadhesive of the present invention can also be used for hemostasis.
다른 구현예로, 본 발명의 생체접착제는 수술 후의 유착방지제로 이용될 수 있다. 유착이란 모든 수술 부위에서 발생하는 것으로 수술 부위의 주변에서 다른 조직들이 상처 주위에 달라붙는 현상이다. 유착은 수술 후 97% 정도 발생을 하며, 특히 그 중에서 5-7%가 심각한 문제를 야기한다. 이러한 유착을 방지하기 위해서 수술시 상처를 최소화 한다거나 소염제를 사용하기도 한다. 또한 섬유소의 형성을 방지하기 위하여 TPA(tissue plasminogen activator)를 활성화 하거나 결정성 용액, 고분자 용액, 고체 막 등의 물리적 장벽을 사용하고 있지만 이러한 방법들은 생체 내에서 독성을 나타낼 수 있으며 다른 부작용을 나타낼 수 있다. 본 발명의 생체접착제는 수술 후에 노출된 조직에 적용되어 그 조직과 주위의 조직 사이에 발생되는 유착을 방지하는 데 이용될 수 있다.In another embodiment, the bioadhesive of the present invention may be used as an anti-adhesion agent after surgery. Adhesion occurs at all surgical sites, where other tissues stick around the wound around the surgical site. Adhesion occurs 97% after surgery, especially 5-7% of which causes serious problems. To prevent these adhesions, the wound may be minimized during surgery or anti-inflammatory agents may be used. It also activates tissue plasminogen activators (TPAs) or physical barriers such as crystalline solutions, polymer solutions, and solid membranes to prevent fibrin formation, but these methods can be toxic in vivo and have other side effects. have. The bioadhesive of the present invention can be applied to exposed tissue after surgery to be used to prevent adhesions occurring between the tissue and surrounding tissue.
본 발명은 또 다른 관점에서, 상기 하이드로겔을 포함하는 수술용 봉합사에 관한 것이다.In another aspect, the present invention relates to a surgical suture comprising the hydrogel.
또 하나의 양태로서, 본 발명의 하이드로젤을 포함하는 조직공학용 지지체에 관한 것일 수 있다.As another aspect, it may be related to a support for tissue engineering comprising a hydrogel of the present invention.
조직공학 기술이란 환자의 조직으로부터 분리된 세포를 지지체에 배양하여 세포-지지체 복합체를 제조한 후 제조된 세포-지지체 복합체를 다시 인체 내에 이식하는 것을 말하며, 조직공학 기술은 인공피부, 인공뼈, 인공연골, 인공각막, 인공혈관, 인공근육 등 인체의 거의 모든 장기의 재생에 적용되고 있다. 본 발명의 생체접착성 하이드로젤은 조직공학 기술에서 생체조직 및 장기의 재생을 최적화하기 위하여 생체조직과 유사한 지지체(scaffold)를 제공할 수 있다. 또한 본 발명의 지지체를 이용하여 간편하게 인공 세포외 기질을 구현할 수 있으며, 화장품, 상처피복재, 치과용 매트릭스 등의 의료용 소재로도 활용될 수 있다.Tissue engineering technology refers to a method of culturing cells isolated from a patient's tissue in a support to prepare a cell-support complex, and then transplanting the prepared cell-support complex back into the human body. It is applied to the regeneration of almost all organs of the human body such as cartilage, artificial cornea, artificial blood vessel, artificial muscle. Bioadhesive hydrogels of the present invention can provide scaffolds similar to living tissue to optimize the regeneration of living tissue and organs in tissue engineering techniques. In addition, by using the support of the present invention can easily implement an artificial extracellular matrix, it can be used as a medical material such as cosmetics, wound dressings, dental matrix.
본 발명의 하이드로젤에는 인체의 세포나 조직과 상호작용을 통하여 세포의 성장과 분화를 촉진시키고 아울러 조직의 재생과 회복을 도와주는 작용에 관여하는 각종 생리활성물질들이 쉽게 부착될 수 있다. 또한, 상기 생리활성물질은 천연 세포외 기질과 유사하게 유사한 구조의 인공 세포외 기질을 구현하기 위하여 포함될 수 있는 각종 생체분자들을 총칭하기도 한다. 생리활성물질은 세포, 단백질, 핵산, 당, 효소 등을 포함하며, 일 예로 세포, 단백질, 폴리펩타이드, 다당류, 단당류, 올리고당류, 지방산, 핵산 등을 들 수 있으며, 바람직하게는 세포를 들 수 있다. 상기 세포는 원핵세포 및 진핵세포를 포함한 모든 세포일 수 있고, 일 예로 조골세포(osteoblast), 섬유세포(fibroblast), 간세포(hepatocyte), 신경세포(neurons), 암세포(cancer cell), B cell, 백혈구세포(white blood cell) 등을 포함한 면역세포 및 배아세포 등일 수 있다. 이 외에도, 생리활성물질은 핵산 물질로서 플라스미드 핵산, 당 물질로서 히아루론산, 헤파린 황산염, 콘드로이틴 황산염, 알진염, 단백질 물질로서 호르몬 단백질을 포함하나, 이에 제한되지는 않는다.Hydrogels of the present invention can be easily attached to various bioactive substances involved in the action of promoting the growth and differentiation of cells through the interaction with the cells or tissues of the human body and help the regeneration and recovery of tissues. In addition, the physiologically active substance may collectively refer to various biomolecules that may be included to implement an artificial extracellular matrix having a structure similar to a natural extracellular matrix. Bioactive substances include cells, proteins, nucleic acids, sugars, enzymes, and the like, and examples thereof include cells, proteins, polypeptides, polysaccharides, monosaccharides, oligosaccharides, fatty acids, nucleic acids, and the like. have. The cell may be any cell including prokaryotic and eukaryotic cells. For example, osteoblast, fibroblast, hepatocyte, neurons, cancer cell, B cell, Immune cells and embryonic cells, including white blood cells, and the like. In addition, the physiologically active substance includes, but is not limited to, plasmid nucleic acid as a nucleic acid material, hyaluronic acid as a sugar substance, heparin sulfate, chondroitin sulfate, alginate, and hormonal protein as a protein substance.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: 실험 재료 준비Example 1 Experimental Material Preparation
Novagen Inc.(Madison, WI, U.S.)로부터 pET-21a 벡터 및 BL21(DE3) E. coli 세포를 구입하였다. Invitrogen (Carlsbad, CA, U.S.)로부터 Top 10의 수용세포들(competent cells)을 구입하였다. Cosmo Gene Tech(Seoul, South Korea)에서 올리고뉴클레오티드들을 화학적으로 합성하였다. Fermentas(Ontario, Canada)로부터 감열성 알칼리 포스포타제인 Fast AP, 및 BamHI와 XbaI를 포함하는 제한 엔도뉴클레아제를 구매하였다. New England Biolabs(Ipswich, MA, U.S.)로부터 BseRI, AcuI, 및 기타 제한 효소를 포함하는 다른 제한 엔도뉴클레아제를 얻었다. Elpis Bio-tech(Taejeon, South Korea)로부터 T4 DNA 리가아제를 얻었다. Geneall Biotechnology (Seoul, South Korea)에서 DNA 미니-제조, 겔 추출, 및 PCR 정제를 위한 모든 키트들을 얻었다. DYNE BIO(Seongnam, South Korea)로부터 Dyne Agarose High를 얻었다. 모든 Top10 세포들을 TB DRY 배지(MO BIO Laboratories, Carlsbad, CA, U.S.) 및 20mM 글루코스가 보충된 SOC(super optimal broth with catabolite repression) 배지(Formedium, UK)에서 성장시켰다. 모든 BL21(DE3) 세포들을 MP Biomedicals(Solon, OH, U.S.)로부터 얻은 원형 성장 배지에서 성장시켰다. 프리캐스트 겔인 Ready Gel(Tris-HCI, 2-20%)을 Bio-Rad(Hercules, CA, U.S.)로부터 얻었다. 인산 완충 식염수(PBS, pH 7.4), 암피실린 및 폴리에틸렌이민(PEI)을 Sigma-Aldrich (St Louis, MO)로부터 구입하였다.PET-21a vector and BL21 (DE3) E. coli cells were purchased from Novagen Inc. (Madison, WI, U.S.). Top 10 competent cells were purchased from Invitrogen (Carlsbad, CA, U.S.). Oligonucleotides were chemically synthesized by Cosmo Gene Tech (Seoul, South Korea). Fermentas (Ontario, Canada) was purchased from Fast AP, a thermosensitive alkaline phosphatase, and restriction endonucleases including BamHI and XbaI. Other restriction endonucleases were obtained from New England Biolabs (Ipswich, MA, U.S.), including BseRI, AcuI, and other restriction enzymes. T4 DNA ligase was obtained from Elpis Bio-tech (Taejeon, South Korea). All kits for DNA mini-preparation, gel extraction, and PCR purification were obtained from Geneall Biotechnology (Seoul, South Korea). Dyne Agarose High was obtained from DYNE BIO (Seongnam, South Korea). All Top10 cells were grown in TB DRY medium (MO BIO Laboratories, Carlsbad, CA, U.S.) and super optimal broth with catabolite repression (SOC) medium supplemented with 20 mM glucose (Formedium, UK). All BL21 (DE3) cells were grown in circular growth medium obtained from MP Biomedicals (Solon, OH, U.S.). Ready Gel (Tris-HCI, 2-20%), a precast gel, was obtained from Bio-Rad (Hercules, CA, U.S.). Phosphate buffered saline (PBS, pH 7.4), ampicillin and polyethyleneimine (PEI) were purchased from Sigma-Aldrich (St Louis, MO).
실시예 2: MFP의 유전자 합성Example 2: Gene Synthesis of MFP
MFP 유전자는 M. galloprovincialis- 및 M. californianus- foot protein 5에서 획득하였다. MFP 유전자 서열을 함유하는 pUC 플라스미드를 37℃조건에서 10U의 XbaI 및 15U의 Acu1를 포함하는 완충액으로 30~60분 동안 처리하고, mpET-21a 플라스미드 벡터도 10U의 XbaI 및 15U의 BseRI의 제한효소를 처리하였다. 이 후, 90pmol의 MFP dsDNA 및 30pmol의 선형화된 mpET-21a 클로닝 벡터를 1U의 T4 DNA 리가아제를 포함하는 T4 DNA 리가아제 완충액에서 16℃조건으로 30분 동안 배양하여 라이게이션(ligation)하였다. 라이게이션된 플라스미드를 Top 10의 화학적 수용세포들(competent cells)로 형질전환시킨 다음, 50㎍/㎖의 암피실린이 보충된 SOC 플레이트 상에 도포하였다. 그 후, 삽입된 서열을 DNA 시퀀싱으로 확인하였다(표 3).MFP gene was obtained from M. galloprovincialis- and M. californianus-foot protein 5. The pUC plasmid containing the MFP gene sequence was treated with a buffer containing 10 U of XbaI and 15 U of Acu1 at 37 ° C. for 30 to 60 minutes, and the mpET-21a plasmid vector was also subjected to restriction enzymes of 10 U of XbaI and 15 U of BseRI. Treated. Thereafter, 90 pmol of MFP dsDNA and 30 pmol of linearized mpET-21a cloning vector were incubated in T4 DNA ligase buffer containing 1 U of T4 DNA ligase for 30 minutes at 16 ° C. for ligation. The ligated plasmids were transformed into Top 10 chemical receptor cells and then applied onto SOC plates supplemented with 50 μg / ml ampicillin. The inserted sequence was then confirmed by DNA sequencing (Table 3).
증가된 DOPA 분자 수에 따른 강한 접착력을 얻기 위해, MFP의 유전자 서열을 반복 단위 4개까지 다량화하였다. 다량화된 MFP를 코딩하는 유전자 서열 및 사이즈는 DNA 시퀀싱과 DNA 아가로오스겔 전기영동을 이용하여 확인하였다.To achieve strong adhesion with increased DOPA molecule counts, the gene sequence of MFP was multiplied up to four repeat units. Gene sequences and sizes encoding multimerized MFP were confirmed using DNA sequencing and DNA agarose gel electrophoresis.
그 결과, 도 2에 나타난 바와 같이, MFP길이가 231bp에서 924bp까지 다양하게 나타나는 것을 확인하였고, 이는 MFP를 1, 2 및 4번 반복하였기 때문이다.As a result, as shown in Figure 2, it was confirmed that the MFP length appears to vary from 231bp to 924bp, because the MFP was repeated 1, 2 and 4 times.
실시예 3: EBP 및 MFP로 이루어진 블럭 코폴리펩타이드의 유전자 구축Example 3: Gene Construction of Block Copolypeptides Consisting of EBP and MFP
EBP 또는 MFP 단일블럭 유전자를 가진 플라스미드를 사용하여 EBP 및 MFP로 구성된 블럭 코폴리펩타이드 라이브러리를 합성하였다. 상기 표 1및 표 2에 나타나 있는 유전자 및 아미노산 서열로 표시되는 EBP를 함유하는 플라스미드는 37℃조건에서 30~60분 동안 10U의 XbaI 및 15U의 BseRI를 포함하는 완충액으로 처리한 다음, PCR 정제 키트로 정제하였다. MFP 블럭 유전자를 가진 플라스미드를 37℃조건에서 30~60분 동안 10U의 XbaI 및 15U의 AcuI를 포함하는 완충액으로 처리하였다. 상기 표 3의 아미노산서열로 표시되는 MFP 유전자는 아가로스겔 전기영동을 이용하여 분리하고, 겔 정제 키트로 정제하였다. EBP 블럭을 가진 플라스미드를 벡터로 사용하였고, MFP 유전자를 삽입체(insert)로 하여 융합시켰다. 90pmol의 정제된 삽입체와 30pmol의 선형화된 벡터를 1U의 T4 DNA 리가아제를 갖는 리가아제 완충액에서 16℃조건으로 30~60분 동안 배양하여 라이게이션을 수행하였다. 이 후, 산물을 Top10의 수용 세포들로 형질전환한 후, 50㎍/ml의 암피실린이 보충된 SOC 플레이트 상에 도말(streaking)하였다. EBP와 MFP의 이중 및 삼중 블럭 코폴리펩타이드를 합성하기 위하여, EBPPI 유전자의 5' 또는 3' 말단에 MFP 유전자를 삽입하여 EBPPI-MFP의 이중 블럭 유전자를 합성하였다. MFP-EBPPI-MFP 또는 EBPPI-MFP-EBPPI 삼중 블럭 유전자는 MFP 또는 EBPPI 유전자를 이전에 합성한 EBPPI-MFP 이중 블럭 유전자의 5' 또는 3' 말단에 삽입하여 합성하였다. 다른 이중 및 삼중 블럭 코폴리펩타이드 유전자는 EBP와 MFP의 블럭 순서와 길이를 변화시킴으로써 합성하였다.Block copolypeptide libraries consisting of EBP and MFP were synthesized using plasmids with EBP or MFP single block genes. The plasmid containing EBP represented by the gene and amino acid sequence shown in Table 1 and Table 2 was treated with a buffer containing 10 U of XbaI and 15 U of BseRI for 30-60 minutes at 37 ° C., followed by PCR purification kit. Purification with Plasmids with MFP block gene were treated with a buffer containing 10 U of XbaI and 15 U of AcuI for 30-60 minutes at 37 ° C. The MFP gene represented by the amino acid sequence of Table 3 was isolated using agarose gel electrophoresis and purified by gel purification kit. Plasmids with EBP blocks were used as vectors and fused with the MFP gene as insert. Ligation was performed by incubating 90 pmol of purified insert and 30 pmol of linearized vector in ligase buffer containing 1 U of T4 DNA ligase for 30-60 minutes at 16 ° C. The product was then transformed into Top10 recipient cells and then streaked onto SOC plates supplemented with 50 μg / ml ampicillin. In order to synthesize double and triple block copolypeptides of EBP and MFP, the double block gene of EBPPI-MFP was synthesized by inserting the MFP gene at the 5 'or 3' end of the EBPPI gene. The MFP-EBPPI-MFP or EBPPI-MFP-EBPPI triple block gene was synthesized by inserting the MFP or EBPPI gene into the 5 'or 3' end of the previously synthesized EBPPI-MFP double block gene. Other double and triple block copolypeptide genes were synthesized by varying the block order and length of EBP and MFP.
삼중 블럭 코폴리펩타이드는 빌딩 블럭으로 이중 블럭 코폴리펩타이드를 사용하여 RDL(recursive directional ligation) 방법으로 합성하였다(도 3(B)). EBPPI[G1A4F1]6 유전자는 RDL에 의해 MFP[Mgfp5]1-EBPPI[G1A4F1]6 이중 블럭 코폴리펩타이드 유전자의 N- 말단에 이음새 없이 융합하여, EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드 유전자를 합성하였다.Triple block copolypeptides were synthesized by a recursive directional ligation (RDL) method using double block copolypeptides as building blocks (FIG. 3 (B)). The EBPPI [G1A4F1] 6 gene was seamlessly fused to the N-terminus of the MFP [Mgfp5] 1-EBPPI [G1A4F1] 6 double block copolypeptide gene by RDL, resulting in EBPPI [G1A4F1] 6-MFP [Mgfp5] 1-EBPPI [G1A4F1] 6 triple block copolypeptide genes were synthesized.
이중 블럭 코폴리펩타이드의 길이 및 분자량은 하기 표 5에 나타내었다.The length and molecular weight of the double block copolypeptides are shown in Table 5 below.
Di-block copolypeptidesDi-block copolypeptides Nucleotide chain length (bp)Nucleotide chain length (bp) M.W (kDa)M.W (kDa)
MFP[Mgfp5]1-EBPP[G1A3F2]24(서열번호 50)MFP [Mgfp5] 1 -EBPP [G 1 A 3 F 2 ] 24 (SEQ ID NO: 50) 24002400 69.5569.55
MFP[Mgfp5]2-EBPP[G1A3F2]24(서열번호 51)MFP [Mgfp5] 2 -EBPP [G 1 A 3 F 2 ] 24 (SEQ ID NO: 51) 26312631 78.4778.47
MFP[Mgfp5]4-EBPP[G1A3F2]24(서열번호 52)MFP [Mgfp5] 4 -EBPP [G 1 A 3 F 2 ] 24 (SEQ ID NO: 52) 30933093 96.3196.31
MFP[Mgfp5]1-EBPPI[G1A3F2]6(서열번호 53)MFP [Mgfp5] 1 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 53) 780780 25.2325.23
MFP[Mgfp5]2-EBPPI[G1A3F2]6(서열번호 54)MFP [Mgfp5] 2 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 54) 10111011 34.1534.15
MFP[Mgfp5]4-EBPPI[G1A3F2]6(서열번호 55)MFP [Mgfp5] 4 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 55) 14701470 51.9851.98
MFP[Mgfp5]1-EBPPI[G1A4F1]6(서열번호 56)MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 (SEQ ID NO: 56) 780780 24.4024.40
MFP[Mgfp5]2- EBPPI[G1A4F1]6(서열번호 57)MFP [Mgfp5] 2 -EBPPI [G 1 A 4 F 1 ] 6 (SEQ ID NO: 57) 10111011 33.2033.20
MFP[Mgfp5]4- EBPPI[G1A4F1]6(서열번호 58)MFP [Mgfp5] 4 -EBPPI [G 1 A 4 F 1 ] 6 (SEQ ID NO: 58) 14701470 50.1550.15
삼중 블럭 코폴리펩타이드의 길이 및 분자량은 하기 표 6에 나타내었다.The length and molecular weight of the triple block copolypeptides are shown in Table 6 below.
Tri-block copolypeptidesTri-block copolypeptides Chain length (bp) Chain length (bp) M.W (kDa)M.W (kDa)
EBPPI[G1A3F2]6- MFP[Mgfp5]1- EBPPI[G1A3F2]6(서열번호 59)EBPPI [G 1 A 3 F 2 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 59) 13201320 41.1341.13
EBPPI[G1A3F2]6-MFP[Mgfp5]2- EBPPI[G1A3F2]6(서열번호 60)EBPPI [G 1 A 3 F 2 ] 6 -MFP [Mgfp5] 2 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 60) 15511551 50.0550.05
EBPPI[G1A3F2]6-MFP[Mgfp5]4- EBPPI[G1A3F2]6(서열번호 61)EBPPI [G 1 A 3 F 2 ] 6 -MFP [Mgfp5] 4 -EBPPI [G 1 A 3 F 2 ] 6 (SEQ ID NO: 61) 20102010 67.8867.88
EBPPI[G1A4F1]6- MFP[Mgfp5]1-EBPPI[G1A4F1]6(서열번호 62)EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 (SEQ ID NO: 62) 13201320 40.1040.10
EBPPI[G1A4F1]6-MFP[Mgfp5]2- EBPPI[G1A4F1]6(서열번호 63)EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 2 -EBPPI [G 1 A 4 F 1 ] 6 (SEQ ID NO: 63) 15511551 49.5049.50
EBPPI[G1A4F1]6-MFP[Mgfp5]4- EBPPI[G1A4F1]6(서열번호 64)EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 4 -EBPPI [G 1 A 4 F 1 ] 6 (SEQ ID NO: 64) 20102010 67.1067.10
MFP[Mgfp5]1- EBPPI[G1A3F2]6- MFP[Mgfp5]1(서열번호 65)MFP [Mgfp5] 1 -EBPPI [G 1 A 3 F 2 ] 6 -MFP [Mgfp5] 1 (SEQ ID NO: 65) 10501050 34.1634.16
MFP[Mgfp5]2- EBPPI[G1A3F2]6-MFP[Mgfp5]2(서열번호 66)MFP [Mgfp5] 2 -EBPPI [G 1 A 3 F 2 ] 6 -MFP [Mgfp5] 2 (SEQ ID NO: 66) 15001500 52.4052.40
MFP[Mgfp5]4- EBPPI[G1A3F2]6-MFP[Mgfp5]4(서열번호 67)MFP [Mgfp5] 4 -EBPPI [G 1 A 3 F 2 ] 6 -MFP [Mgfp5] 4 (SEQ ID NO: 67) 24362436 94.7794.77
MFP[Mgfp5]1-EBPPI[G1A4F1]6- MFP[Mgfp5]1(서열번호 68)MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 (SEQ ID NO: 68) 10501050 33.4033.40
MFP[Mgfp5]2-EBPPI[G1A4F1]6MFP[Mgfp5]2(서열번호 69)MFP [Mgfp5] 2 -EBPPI [G 1 A 4 F 1 ] 6 MFP [Mgfp5] 2 (SEQ ID NO: 69) 15001500 52.3552.35
MFP[Mgfp5]4- EBPPI[G1A4F1]6-MFP[Mgfp5]4(서열번호 70)MFP [Mgfp5] 4 -EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 4 (SEQ ID NO: 70) 24362436 88.0388.03
실시예 4: 박테리아 co-expression을 위한 티로시나아제 및 orf438의 PCR 및 벡터 구축Example 4: PCR and vector construction of tyrosinase and orf438 for bacterial co-expression
E. coli 세포를 50㎍/mL 암피실린을 포함하는 TB 건조 배지에서 성장시켰다. pIJ702, 티로시나아제를 포함하는 플라스미드 및 orf438를 포함하는 S. lividans는 American Type Culture Collection(ATCC, 35387)에서 입수하였다. S. lividans의 단일 콜로니를 R2 YE 배지에서 30℃조건으로 성장시켰다. 티로시나아제 및 orf438을 모두 포함하는 플라스미드는 S.lividans로부터 정제하였다. 티로시나아제 유전자는 pSA-tyr-5p 및 pSA-tyr-3'의 프라이머를 사용하여, 중합효소 연쇄반응(polymerase chain reaction, PCR)에 의해 증폭시켰다(pSA-tyr-5p(서열번호 46): 5' - g gaG GAT CCg acc gtc cgc aag aac cag - 3' 및 pSA-tyr-3'(서열번호 47): 5' gga AAG CTT gac gtc gaa ggt gta gtg ccg - 3'). 증폭된 PCR 산물을 BamI 및 HindIII로 처리하였다. 유사하게, orf438 유전자는 pSA-438-5' 및 pSA-438-3'의 프라이머를 사용하여 PCR로 증폭시키고, 증폭된 산물을 EcoRV 및 KpnI로 처리하였다(pSA-438-5'(서열번호 48): 5'- c acG ATA TCg ccg gaa ctc acc cgt cgt - 3', pSA-438-3'(서열번호 49): 5'- caa GTT ACC gtt gga ggg gaa ggg gag gag - 3'). 발현 벡터인 pACYCDuet-1 플라스미드(Merck, Darmstadt, Germany)도 PCR 산물과 동일한 제한 효소를 처리한 후, 상기 절단된 산물을 도입시켰다. 마지막으로, DNA 서열은 DNA 염기 서열 분석(sequencing)으로 확인하였다.E. coli cells were grown in TB dry medium containing 50 μg / mL ampicillin. pIJ702, a plasmid containing tyrosinase and S. lividans comprising orf438 were obtained from the American Type Culture Collection (ATCC, 35387). Single colonies of S. lividans were grown at 30 ° C. in R2 YE medium. Plasmids containing both tyrosinase and orf438 were purified from S.lividans. The tyrosinase gene was amplified by polymerase chain reaction (PCR) using primers of pSA-tyr-5p and pSA-tyr-3 '(pSA-tyr-5p (SEQ ID NO: 46): 5′-g gaG GAT CCg acc gtc cgc aag aac cag-3 ′ and pSA-tyr-3 ′ (SEQ ID NO: 47): 5 ′ gga AAG CTT gac gtc gaa ggt gta gtg ccg −3 ′. Amplified PCR products were treated with BamI and HindIII. Similarly, the orf438 gene was amplified by PCR using primers of pSA-438-5 'and pSA-438-3' and the amplified product was treated with EcoRV and KpnI (pSA-438-5 '(SEQ ID NO: 48). ): 5'- c acG ATA TCg ccg gaa ctc acc cgt cgt-3 ', pSA-438-3' (SEQ ID NO: 49): 5'- caa GTT ACC gtt gga ggg gaa ggg gag gag-3 '. The expression vector pACYCDuet-1 plasmid (Merck, Darmstadt, Germany) was also subjected to the same restriction enzyme as the PCR product, and then the cleaved product was introduced. Finally, the DNA sequence was confirmed by DNA sequencing.
실시예 5: 블럭 코폴리펩타이드, orf438 및 타이로시나아제의 공동 발현 및 블럭 코폴리펩타이드 정제Example 5: Co-Expression and Block Copolypeptide Purification of Block Copolypeptides, orf438 and Tyrosinase
블럭 코폴리펩타이드를 갖는 pET21a 및 orf438와 티로시나아제의 pACYC 듀엣을 갖는 플라스미드를 함유하는 대장균 BL21 (DE3) 세포를 서클그로우(Circlegrow) 배지에서 성장시켰다. 콜로니를 ml 당 50㎍/ml의 암피실린(Duchefa)과 50㎍/ml의 클로람페니콜(Duchefa)을 보충한 50mL의 TB 배지에 접종하였다. 전배양은 37℃, 200rpm조건에서 overnight 동안 진탕 배양하였다. 전배양된 배지에 50㎍/mL의 암피실린 및 클로람페니콜을 포함하는 500mL의 고영양배지(circlegrow)를 접종하고, OD600이 0.6 ~ 0.8에 도달할 때까지 37℃, 200rpm조건에서 배양하였다. 단백질 발현을 유도하기 위하여, 최종농도 1mM의 Isopropyl-
Figure PCTKR2018004029-appb-I000001
-D-thiogalactopyranoside(IPTG)를 첨가하고, 37℃, 200rpm조건에서 overnight동안 추가 배양하였다. 이 후, 4℃, 4,500rpm조건에서 10분 동안 원심 분리하여 세포를 획득하였다. 발현된 EBPPI-MFP 블럭 코폴리펩타이드는 ITC(inverse transition cycling)를 이용하여 정제하였다. 세포 펠릿을 8M 요소를 포함하는 5% 아세트산에 재현탁시켰다. 그 후, 얼음 수조에서 10초 동안 초음파 처리(VC-505, Sonic and materials Inc, Danbury, CT) 처리하고, 30초 쿨링(fooling)을 통해 세포를 파괴시켰다. 50mL 원심분리 튜브에서 4℃, 13000rpm조건으로 15분 동안 세포 용해물을 원심분리하여, 세포 용해물의 불용성 잔해를 침전시켰다. 이어서, 수용성 EBPPI-MFP 블럭 코폴리펩타이드를 함유하는 상층액을 새로운 50mL 원심분리 튜브에 옮겨 4℃, 13000rpm조건으로 15분 동안 원심분리하여 핵산 오염물을 침전시켰다. EBPPI의 ITC(inverse transition cycling)는 최종 농도 0.5-1.0M의 염화나트륨의 첨가를 통해 여러 번 수행되었다. EBPPI-MFP 블럭 코폴리펩타이드는 염 효과에 의해 응집되었고, 37℃, 13,000 rpm 조건으로 15 분 동안 원심분리하여 용해물로부터 분리하였다. 응집된 블럭 코폴리펩타이드를 4℃조건에서 30 mL의 아세트산 나트륨 완충액(pH 5.0) 및 4M 우레아를 포함하는 웰에 재현탁시켰다. 임의의 응집된 단백질 오염물을 제거하기 위하여, 재현탁한 단백질 용액을 4℃, 13,000 rpm조건에서 15분간 원심 분리하였다. 상기 응집 및 재현탁 처리는 블럭 코폴리펩타이드의 순도가 약 95%에 도달할 때까지 5 내지 10회 반복하였다. 상기 순도는 나트륨도데실 페이트-폴리아크릴아미드겔 전기영동(sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE))을 이용하여 측정하였다.
E. coli BL21 (DE3) cells containing pET21a with block copolypeptides and plasmids with orf438 and pACYC duet of tyrosinase were grown in Circlegrow medium. Colonies were inoculated in 50 mL TB medium supplemented with 50 μg / ml Ampicillin (Duchefa) and 50 μg / ml Chloramphenicol (Duchefa) per ml. The preculture was shaken overnight at 37 ° C. and 200 rpm. The precultured medium was inoculated with 500 mL of high nutrition medium (circlegrow) containing 50 μg / mL of ampicillin and chloramphenicol, and cultured at 37 ° C. and 200 rpm until the OD600 reached 0.6 to 0.8. To induce protein expression, Isopropyl- at a final concentration of 1 mM
Figure PCTKR2018004029-appb-I000001
-D-thiogalactopyranoside (IPTG) was added and further incubated overnight at 37 ° C and 200 rpm. Thereafter, cells were obtained by centrifugation at 4 ° C and 4,500 rpm for 10 minutes. The expressed EBPPI-MFP block copolypeptides were purified using inverse transition cycling (ITC). Cell pellets were resuspended in 5% acetic acid containing 8M urea. After sonication (VC-505, Sonic and materials Inc, Danbury, CT) for 10 seconds in an ice bath, cells were destroyed by 30 seconds of cooling (fooling). Cell lysates were centrifuged at 50 ° C. and 13000 rpm for 15 minutes in a 50 mL centrifuge tube to precipitate insoluble debris of the cell lysates. Subsequently, the supernatant containing the water-soluble EBPPI-MFP block copolypeptide was transferred to a new 50 mL centrifuge tube and centrifuged at 4 ° C. and 13000 rpm for 15 minutes to precipitate nucleic acid contaminants. Inverse transition cycling (ITC) of EBPPI was performed several times through the addition of sodium chloride at a final concentration of 0.5-1.0 M. EBPPI-MFP block copolypeptides were aggregated by the salt effect and separated from lysates by centrifugation for 15 minutes at 37 ° C., 13,000 rpm. Aggregated block copolypeptides were resuspended in wells containing 30 mL of sodium acetate buffer (pH 5.0) and 4M urea at 4 ° C. To remove any aggregated protein contaminants, the resuspended protein solution was centrifuged at 4 ° C. and 13,000 rpm for 15 minutes. The aggregation and resuspension treatment was repeated 5 to 10 times until the purity of the block copolypeptide reached about 95%. The purity was measured using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
블럭 코폴리펩타이드의 티로신 잔기의 히드록실화를 위해, 블럭 코폴리펩타이드, 티로시나아제(~ 32kDa) 및 orf438(~ 15kDa)을 가용성 형태로 공동 발현시켰다. For the hydroxylation of tyrosine residues of block copolypeptides, block copolypeptides, tyrosinase (˜32 kDa) and orf438 (˜15 kDa) were co-expressed in soluble form.
그 결과, 재조합 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드는 이중 블럭 코폴리펩타이드를 포함하는 pET21a 벡터 및 타이로시나제 및 orf438을 포함하는 pACYC 듀엣 벡터의 이중 벡터 시스템을 통하여 대장균에서 티로시나아제 및 orf438과 함께 공동 발현되었다. As a result, the recombinant EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide was prepared from a pET21a vector comprising a double block copolypeptide and a pACYC duet vector comprising tyrosinase and orf438. Co-expressed with tyrosinase and orf438 in E. coli via a dual vector system.
도 5 및 도 6(A)에 나타난 바와 같이, 증폭된 티로시나아제 및 orf438가 코딩된 pACYC 듀엣 벡터에서 티로시나아제와 orf438 유전자를 확인하였다. As shown in FIG. 5 and FIG. 6 (A), tyrosinase and orf438 genes were identified in the amplified tyrosinase and orf438 encoded pACYC duet vectors.
도 6(B)는 (1) pET21 단독으로 박테리아 발현된 이중 블럭 코폴리펩타이드, (2) pACYC 듀엣 벡터단독으로 박테리아 발현된 티로시나아제와 orf438, 및 (3) 공동 발현된 pET21a벡터의 이중 블럭 코폴리펩타이드 및 pACYC 듀엣 벡터의 티로시나아제와 orf438를 나타낸다. 각 벡터의 플라스미드 카피 수에 따르면, pET 벡터 내의 블럭 코폴리펩타이드는 티로시나아제와 orf438를 코딩하는 pACYC 듀엣 벡터의 카피 수(~ 12)보다 높은 카피 수(~ 40)를 가진다. 즉, pET 벡터단독의 블럭 코폴리펩타이드가 동시 발현 시스템보다 많이 발현되었다. Figure 6 (B) shows a double block copolypeptide of (1) bacterial expression of pET21 alone, (2) tyrosinase and orf438 of bacterial expression of pACYC duet alone, and (3) a coexpressed pET21a vector. Tyrosinase and orf438 of copolypeptide and pACYC duet vectors. According to the plasmid copy number of each vector, the block copolypeptide in the pET vector has a copy number (-40) that is higher than the copy number (-12) of the tyrosinase and the pACYC duet vector encoding orf438. That is, the block copolypeptide of the pET vector alone was expressed more than the coexpression system.
또한, 도 6(C)는 (1) pET21 단독으로의 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6의 삼중 블럭 코폴리펩타이드, 및 (2) 공동 발현된 pET21a벡터의 삼중 블럭 코폴리펩타이드 및 pACYC 듀엣 벡터의 티로시나아제와 orf438를 확인하였다.6 (C) also shows (1) a triple block copolypeptide of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 alone with pET21, and (2) Tyrosinase and orf438 of the triple-block copolypeptide of pET21a vector and pACYC duet vector were identified.
그 결과, 도 6(E) 및 도 6(F)에 나타난 바와 같이, 티로시나아제 및 orf438와 공동발현된 블럭 코폴리펩타이드는 보라색으로 염색되었고, 대조군인 단독으로 발현된 블럭 코폴리펩타이드는 노란색으로 염색되었다. 따라서, 티로시나아제, orf438와의 공동발현에 의해 블럭 코폴리펩타이드에 히드록실화가 일어난다는 것을 알 수 있다. As a result, as shown in FIGS. 6 (E) and 6 (F), the block copolypeptides co-expressed with tyrosinase and orf438 were stained purple, and the block copolypeptides expressed alone as controls were yellow. Stained with. Thus, it can be seen that hydroxylation occurs in the block copolypeptide by co-expression with tyrosinase, orf438.
실시예 6: 버섯유래 티로시나아제에 의한 EBP-MFP 블럭 코폴리펩타이드 티로신 잔기의 히드록실화Example 6: Hydroxylation of EBP-MFP Block Copolypeptide Tyrosine Residues by Mushroom-derived Tyrosinase
EBP-MFP 블럭 코폴리펩타이드의 티로신 잔기는 버섯 유래 티로시나아제(Sigma Aldrich, T3824)에 의한 변형을 통해 DOPA로 전환되었다(도 6(D)).Tyrosine residues of the EBP-MFP block copolypeptide were converted to DOPA via modification by mushroom derived tyrosinase (Sigma Aldrich, T3824) (FIG. 6 (D)).
EBP-MFP 블럭 코폴리펩타이드는 10mM 소듐 보레이트(sodium borate)가 보충된 10mM 인산 완충액에 재현탁하였고, pH는 아스코르브 산을 사용하여 pH 7.0으로 조정하였다. 이 후, 최종 농도 ~ 0.01 mg/ml의 버섯 유래 티로시나아제를 첨가하였다. 상기 용액을 실온(RT)에서 3시간 동안 완만하게 진탕 배양하였다. 티로시나아제 처리된 EBP-MFP 블럭 코폴리펩타이드는 40℃에서 온도가 상승함에 따라 상 전이(phase transition)되었으며, 타이로시나제를 제거하기 위하여, 40℃에서 10분간 16,000rpm으로 원심 분리하여 정제하였다. 응집된 변형 블럭 코폴리펩타이드는 얼음 수조에서 10mM 인산염(pH 5)에 재현탁시키고, 상기 샘플을 4℃, 16,000 rpm조건으로 15분 동안 원심 분리하여 남아있는 불용성 물질을 제거하였다.EBP-MFP block copolypeptide was resuspended in 10 mM phosphate buffer supplemented with 10 mM sodium borate and the pH was adjusted to pH 7.0 using ascorbic acid. Then, mushroom-derived tyrosinase at a final concentration of 0.01 mg / ml was added. The solution was gently incubated for 3 hours at room temperature (RT). The tyrosinase-treated EBP-MFP block copolypeptides were phase transitioned at 40 ° C as the temperature increased, and purified by centrifugation at 16,000 rpm for 10 minutes at 40 ° C to remove tyrosinase. It was. Aggregated modified block copolypeptides were resuspended in 10 mM phosphate (pH 5) in an ice bath and the sample was centrifuged at 16,000 rpm for 15 minutes to remove remaining insoluble material.
특히, 정제 단계 동안 자가 산화를 방지하기 위하여, EBP-MFP 블럭 코폴리펩타이드에 5% 아세트산(pH 3)용액으로 첨가하고, 동결 건조시켰다. 이는, DOPA의 산화형태인 퀴논(quinone)이 분자 간 공유 결합을 유도하고, 산화 조건에서 표면 분자와의 상호 작용을 감소시키기 때문이다. In particular, to prevent autooxidation during the purification step, EBP-MFP block copolypeptide was added as a 5% acetic acid (pH 3) solution and lyophilized. This is because quinone, the oxidized form of DOPA, induces intermolecular covalent bonds and reduces interaction with surface molecules in oxidizing conditions.
대장균에서 단독으로 발현된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드는 ITC에 의해 정제되었고, 상기 이중 블럭 코폴리펩타이드의 티로신 잔기는 버섯 유래 티로시나아제-촉매 반응에 의해 DOPA로 변형되었다. EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides expressed alone in E. coli were purified by ITC, and tyrosine residues of the double block copolypeptides were mushroom-derived tyrosinase-. It was transformed into DOPA by catalytic reaction.
도 7에 나타난 바와 같이, 히드록실화된 이중 블럭 코폴리펩타이드는 티로신 잔기의 히드록실화로 인해 NBT 염색에서 보라색으로 발색되었다. 대조적으로, 대조군으로서 변형되지 않은 이중 블럭 코폴리펩타이드는 희끄무레한 황색(whitish yellow)으로 발색되었다.As shown in FIG. 7, the hydroxylated double block copolypeptides developed purple in NBT staining due to the hydroxylation of tyrosine residues. In contrast, unmodified double block copolypeptides developed as whitish yellow as controls.
실시예 7: EBP-MFP 블럭 코폴리펩타이드의 특성 분석Example 7: Characterization of EBP-MFP Block Copolypeptides
모든 블럭 코폴리펩타이드의 순도 및 분자량은 구리 염색을 포함하는 SDS-PAGE로 특성화하였다. 블럭 코폴리펩타이드의 상전이 거동은 UV-가시분광광도계(UV-visible spectrophotometer)로 특성화하였다. The purity and molecular weight of all block copolypeptides were characterized by SDS-PAGE including copper staining. The phase transition behavior of the block copolypeptides was characterized by UV-visible spectrophotometer.
블럭 길이가 다른 MFP들은 EBPPI와 융합되어, 열 자극에 의해 자가 조립 나노 구조를 형성하였다.MFPs with different block lengths were fused with EBPPI to form self-assembled nanostructures by thermal stimulation.
12.5uM 농도 이상의 EBPPI-MFP 이중 블럭 코폴리펩타이드, MFP-EBPPI-MFP 삼중 블럭 코폴리펩타이드 및 EBPPI-MFP-EBPPI 삼중 블럭 코폴리펩타이드는 20nm ~ 40nm의 유체역학적 반경 (hydrodynamic radius, Rh)을 가지는 코어-쉘 나노 구조에 자가 조립되나, 농축 조건하의 삼중 블럭 코폴리펩타이드는 온도에 반응하여 하이드로겔을 형성하였다.EBPPI-MFP double block copolypeptides, MFP-EBPPI-MFP triple block copolypeptides, and EBPPI-MFP-EBPPI triple block copolypeptides with concentrations above 12.5 uM have a hydrodynamic radius (R h ) of 20 nm to 40 nm. Eggplants self-assemble into core-shell nanostructures, but the triple block copolypeptides under concentrated conditions formed hydrogels in response to temperature.
도 8(A) 및 8(B)는 각각 버섯 유래 티로시나아제-촉매된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 및 버섯 유래 티로시나아제-촉매된 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드가 구리 염색된 SDS-PAGE 사진 이미지를 나타낸다. 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 MW는 예상 MW(~ 24.6kDa)와 유사하며, 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드 또한 예상 MW(~40.1 kDa)와 유사하다. 8 (A) and 8 (B) show mushroom derived tyrosinase-catalyzed EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide and mushroom derived tyrosinase-catalyzed, respectively. EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 Triple block copolypeptides show copper stained SDS-PAGE photographic images. The MW of the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides is similar to the expected MW (~ 24.6 kDa) and the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 The triple block copolypeptides are also similar to the expected MW (~ 40.1 kDa).
48.0 kDa와 92.0 kDa의 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 다중화(Multimerization) 형태를 확인하였다. Multimerization forms of hydroxylated EBPPI [G1A4F1] 6-MFP [Mgfp5] 1 double block copolypeptides of 48.0 kDa and 92.0 kDa were identified.
마찬가지로, 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드는 ~ 80.0kDa 및 ~ 120.0kDa로 다중화된 형태를 확인하였다.Likewise, hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block copolypeptides are multiplexed to ˜80.0 kDa and ˜120.0 kDa It was confirmed.
DOPA의 자가 산화에 의해 형성된 퀴논에 의해 분자 간 가교 결합이 발생했기 때문에, 10mM 인산염 완충액(pH5.0) 내에서 히드록실화된 이중 - 및 삼중 - 블럭 코폴리펩타이드의 다중화된 형태가 형성되었다. 이는, 블럭 코폴리펩타이드의 버섯 유래 티로시나아제-촉매된 히드록실화가 발생했음을 의미한다.  Because of the intermolecular crosslinking caused by the quinone formed by autooxidation of DOPA, multiplexed forms of hydroxylated double- and triple-block copolypeptides were formed in 10 mM phosphate buffer (pH5.0). This means that mushroom derived tyrosinase-catalyzed hydroxylation of the block copolypeptide has occurred.
도 8(C)는 다양한 농도의 NaIO4의 산화제로 처리된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 및 이들의 히드록실화된 형태의 구리 염색된 SDS-PAGE 이미지를 나타낸다. NaIO4로 처리하면 다이(di) 티로신 잔기의 형성으로 인해, 변형되지 않은 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 분자 간 가교 결합이 발생하여, SDS-PAGE 동안 웰에 화학적으로 가교 결합된 이중 블럭 코폴리펩타이드가 잔류하게 된다(도 8(C)의 lane(2 - 3)). FIG. 8 (C) shows EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides treated with various concentrations of oxidizer of NaIO 4 and copper stained SDS in their hydroxylated form. -PAGE image. Treatment with NaIO 4 results in intermolecular crosslinking of unmodified EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides due to the formation of di tyrosine residues, resulting in SDS The chemically crosslinked double block copolypeptides remain in the wells during PAGE (lanes (2-3) in FIG. 8 (C)).
반면에, 히드록실화된 이중 블럭 코폴리펩타이드는 중성 pH에서 다이(di) 티로신 잔기의 형성뿐만 아니라, DOPA 자기 산화에 의해 유도된 퀴논의 형성으로 인해 다중화 되었다. 즉, NaIO4는 퀴논 및 다이(di) 티로신 잔기의 형성을 통해 분자 간 가교 결합을 유도하였으며, SDS-PAGE 동안 화학적으로 가교 결합된 히드록실화된 이중 블럭 코폴리펩타이드의 이동이 발생하지 않았다. On the other hand, hydroxylated double block copolypeptides were multiplexed due to the formation of di tyrosine residues at neutral pH as well as the formation of quinones induced by DOPA self oxidation. That is, NaIO 4 induced intermolecular crosslinking through the formation of quinone and di tyrosine residues, and no migration of chemically crosslinked hydroxylated double block copolypeptides occurred during SDS-PAGE.
EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 열적 특성은 10mM 인산염 완충액(pH 5, 산화를 방지하기 위해)에서 1℃/분의 가열 속도로 10℃ ~ 70℃의 온도 범위에서 350nm 흡광도를 측정함으로써 관찰하였다. The thermal properties of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides range from 10 ° C. to 1 ° C./min heating rate in 10 mM phosphate buffer (pH 5, to prevent oxidation). It observed by measuring 350 nm absorbance in the temperature range of 70 degreeC.
그 결과, 도 9(A)는 대조군인 EBPPI[G1A4F1]6, 25μM의 버섯유래 티로시나아제-촉매된 히드록실화를 갖거나 혹은 갖지 않는 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 열적 프로파일을 나타낸다. 모노 블럭, EBPPI[G1A4F1]6은 Tt 이하(약 45℃), 아쿠아 조건에서 완전한 용해도를 나타내었고, EBPPI[G1A4F1]6의 전체 응집 때문에 LCST 이상에서 급격한 전이를 보였다. As a result, FIG. 9 (A) shows EBPPI [G 1 A 4 F 1 ] 6 , 25 μM of mushroom-derived tyrosinase-catalyzed hydroxylation with or without the control EBPPI [G 1 A 4 F 1 ] Thermal profile of 6- MFP [Mgfp5] 1 double block copolypeptide. Monoblock, EBPPI [G 1 A 4 F 1 ] 6 exhibited complete solubility under T t (approx. 45 ° C.), aqua conditions, and abruptly above LCST due to total aggregation of EBPPI [G 1 A 4 F 1 ] 6 Metastasis was shown.
반면, EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드는 EBPPI의 모노 블럭과 다른 열적 반응성을 보인다. MFP 블럭이 EBPPI[G1A4F1]6을 더 소수성으로 만들기 때문에, EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 LCST는 버섯 티로시나아제에 의한 히드록실화와 상관없이 35℃로 감소하였다. 또한, 전이 온도 이상의 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 흡광도는 EBPPI 블럭(코어) 및 수용성 MFP 블럭(쉘)의 열적-유도된 응집을 보여 주며, 자가 조립 나노 구조를 형성하였다. In contrast, EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides exhibit different thermal reactivity from the monoblock of EBPPI. Since the MFP block makes EBPPI [G 1 A 4 F 1 ] 6 more hydrophobic, the LCST of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides was induced by mushroom tyrosinase. It decreased to 35 ° C. regardless of hydroxylation. In addition, the absorbance of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides above the transition temperature shows thermally-induced aggregation of the EBPPI block (core) and water soluble MFP block (shell). , Self-assembling nanostructures were formed.
블럭 코폴리펩타이드와 NaIO4 산화제의 농도에 따른 LCST 거동을 분석하였다. 그 결과, 250μM의 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 및 10mM NaIO4 처리된 25μM의 이중 블럭 코폴리펩타이드는 EBP 블럭의 급격한 전이가 나타났다(도 9(B) 및 9(C)). 이는, DOPA 자기 산화에 의해 유도된 퀴논의 형성 및 MFP 블럭의 비공유 상호 작용 뿐만 아니라 중성 pH에서 다이(di) 티로신 잔기 때문에 유도된 것이다. 특히, 고농도의 MFP 블럭의 응집은 수소 결합,
Figure PCTKR2018004029-appb-I000002
스태킹, 정전기 및 소수성 상호 작용과 같은 비공유 상호 작용에 의해 유도된다.
LCST behavior was analyzed according to the concentration of block copolypeptide and NaIO 4 oxidant. As a result, 250 μM of the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide and 10 mM NaIO 4 treated 25 μM double block copolypeptide exhibited rapid transition of EBP block. 9 (B) and 9 (C). This is due to the formation of quinones induced by DOPA self oxidation and non-covalent interactions of the MFP blocks as well as di tyrosine residues at neutral pH. In particular, the aggregation of high concentrations of MFP block is hydrogen bond,
Figure PCTKR2018004029-appb-I000002
Induced by non-covalent interactions such as stacking, electrostatic and hydrophobic interactions.
도 9(D)는 10mM의 인산염 완충액(pH 5)에서 1℃/분의 가열 속도로 350nm 흡광도를 측정한, 25μM의 버섯 유래 티로시나아제-촉매된 히드록실화를 갖는 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드 및 EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드의 열적 특성을 나타낸다. 삼중 블럭의 LCST는 25℃?까지 감소하였다. 이 결과는, EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드보다 10℃ 더 낮다. 이는, 소수성 EBPPI 블럭이 MFP[Mgfp5]1 중간 블럭의 양쪽 말단에 도입되었기 때문이다. 또한, 삼중 블럭 코폴리펩타이드의 열적 반응성은 도 9(C)에 나타난 10mM의 NaIO4로 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드와 유사하다. 삼중 블럭 코폴리펩타이드는 EBPPI 블럭의 LCST보다 높은 온도에서 응집되었다. 이는, 이중 및 삼중 블럭 코폴리펩타이드 내 EBPPI 블럭은 물리적 교차 결합 및 퀴논 형성을 통한 MFP의 화학적 가교 결합을 모두 형성할 수 있기 때문이다.9 (D) shows EBPPI [G 1 A 4 with mushroom-derived tyrosinase-catalyzed hydroxylation of 25 μM measured 350 nm absorbance at 1 ° C./min in 10 mM phosphate buffer (pH 5). F 1 ] 6 -MFP [Mgfp5] 1 Double Block Copolypeptide and EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 Triple Block Copolypeptides Characteristics. The LCST of the triple block decreased to 25 ° C. This result is 10 ° C. lower than EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides. This is because hydrophobic EBPPI blocks were introduced at both ends of the MFP [Mgfp5] 1 intermediate block. In addition, the thermal reactivity of the triple block copolypeptides is similar to the EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides hydroxylated with 10 mM NaIO 4 as shown in FIG. 9 (C). Do. Triple block copolypeptides aggregated at temperatures higher than the LCST of the EBPPI block. This is because EBPPI blocks in double and triple block copolypeptides can form both chemical crosslinking of MFP through physical crosslinking and quinone formation.
실시예 8: (1)버섯 유래 티로시나아제를 처리한 블럭 코폴리펩타이드 및 (2) 동시 발현 시스템에서 히드록실화된 블럭 코폴리펩타이드의, 벌크 스케일 표면 부착성 분석Example 8: Bulk scale surface adhesion analysis of (1) a block copolypeptide treated with mushroom derived tyrosinase and (2) a hydroxylated block copolypeptide in a co-expression system
알루미늄 부착물에 대한 벌크 스케일 전단 강도 시험을 수행하기 위하여, 블럭 코폴리펩타이드와 NaIO4의 농도에 따른 표면 부착 강도의 분석하였다. In order to perform bulk scale shear strength tests on aluminum deposits, surface adhesion strengths were analyzed according to the concentration of block copolypeptides and NaIO 4 .
버섯 유래 티로시나아제 처리된 또는 박테리아 공동 발현 시스템에서 히드록실화된 이중 블럭 및 삼중 블럭 코폴리펩타이드를 준비하였다. 먼저, 10, 20 및 30중량%의 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드에 10mM 및 100mM의 NaIO4를 포함하는 10mM 인산 완충액(pH 5)을 용해시켰다. 부착물 표면은 아세톤, 에탄올 및 물로 헹구었다. 각 블럭 코폴리펩타이드 용액을 부착물에 직접 놓고, 10mM NaIO4 산화제와 혼합하였다. 부착물을 다른 부착물로 덮어 중첩된 영역을 형성하고, 4℃조건에서 1시간 동안 경화시켰다. 표면 접착력은 25℃의 DW에 담궈 경화시킨 후, 대조군인 EBPPI[G1A3F2]12-EBPP[A1G4I1]6-EBPPI[G1A3F2]12 삼중 블럭 코폴리펩타이드와 비교하였다.Hydroxylated double block and triple block copolypeptides were prepared in mushroom derived tyrosinase treated or bacterial co-expression systems. First, 10 mM phosphate buffer (pH 5) containing 10 mM and 100 mM NaIO 4 was dissolved in 10, 20 and 30% by weight of EBPPI [G1A4F1] 6-MFP [Mgfp5] 1 double block copolypeptides. The adherent surface was rinsed with acetone, ethanol and water. Each block copolypeptide solution was placed directly on the attachment and mixed with 10 mM NaIO 4 oxidant. The deposits were covered with other deposits to form overlapping regions and cured at 4 ° C. for 1 hour. Surface adhesion was hardened by immersion in DW at 25 ° C., and then EBPPI [G 1 A 3 F 2 ] 12 -EBPP [A 1 G 4 I 1 ] 6 -EBPPI [G 1 A 3 F 2 ] 12 Compared to the polypeptide.
그 결과, 도 10(B)에 나타난 바와 같이, 100mM NaIO4로 처리된 30중량% 이중 블럭 코폴리펩타이드는 퀴논-매개 분자 간 가교 결합으로 인해, 화학적 겔화가 나타났다. 그러나, 10mM NaIO4로 처리된 이중 블럭 코폴리펩타이드보다 낮은 표면 부착성을 나타냈다(도 10(C)). 따라서, 100mM NaIO4로 처리된 이중 블럭 코폴리펩타이드의 DOPA 분자가 10mM NaIO4를 처리한 것에 비해 퀴논으로 산화가 더 진행되었다는 것을 의미한다.As a result, as shown in FIG. 10 (B), 30 wt% double block copolypeptide treated with 100 mM NaIO 4 exhibited chemical gelation due to crosslinking between quinone-mediated molecules. However, it showed lower surface adhesion than double block copolypeptides treated with 10 mM NaIO 4 (FIG. 10 (C)). Therefore, it means that DOPA molecule of the dual block co polypeptides treated with 100mM NaIO 4 is that the more the oxidation proceeds to quinone than those treated with 10mM NaIO 4.
또한, EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드(10 중량%)를 10mM NaIO4로 처리하였고, 대조군인 EBPPI[G1A3F2]12-EBPP[G1A4F1]6-EBPPI[G1A3F2]12 삼중 블럭 코폴리펩타이드에 비해 더 강한 표면 부착성을 나타내는 것을 확인하였다. 이는, MFP 중간 블럭이 표면 부착성을 가지기 때문이다(도 11). In addition, EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1 ] 6 triple block copolypeptide (10% by weight) was treated with 10 mM NaIO 4 , the control EBPPI [G 1 A 3 F 2 ] 12 -EBPP [G 1 A 4 F 1 ] 6 -EBPPI [G 1 A 3 F 2 ] 12 It was confirmed that the surface adhesion is stronger than the triple block copolypeptide. This is because the MFP intermediate block has surface adhesion (FIG. 11).
또한, EBPPI[G1A4F1]6-MFP[Mgfp5]1-EBPPI[G1A4F1]6 삼중 블럭 코폴리펩타이드의 표면 부착 강도는 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드보다 우수하다는 것을 확인하였다. 이는 물리적으로 가교 결합을 통해 응집된 EBPPI 블럭에 의해 유도된 응집력 때문이다. Also, EBPPI [G 1 A 4 F 1] 6 -MFP [Mgfp5] 1 -EBPPI [G 1 A 4 F 1] 6 surface adhesion strength of the triple-block copolyester peptides EBPPI [G 1 A 4 F 1 ] 6 - It was found to be superior to MFP [Mgfp5] 1 double block copolypeptides. This is due to the cohesion induced by the EBPPI blocks physically aggregated via crosslinking.
실시예 9: 박테리아 공동 발현(co-expression)으로 발현 정제한 블럭 코폴리펩타이드의 특성 및 하이드로겔의 접착성 확인Example 9 Characterization of Block Copolypeptides Expressed by Bacterial Co-Expression and Confirmation of Hydrogel Adhesion
박테리아 공동 발현 시스템에서 히드록실화된 블럭 코폴리펩타이드를 다양한 중량%로 준비하였다. 먼저, 10 중량%의 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드를 10mM 인산 완충액(pH 5)에 용해시켰다. 각 블럭 코폴리펩타이드 용액을 부착물에 놓기 전에 10mM~100mM의 NaIO4 산화제와 혼합하였다. 각 블럭 코폴리펩타이드를 부착물에 놓은 후 다른 부착물로 덮어 중첩된 영역을 형성하고, 4℃조건에서 1시간 동안 경화시켰다.Hydroxylated block copolypeptides were prepared in various weight percents in a bacterial co-expression system. First, 10% by weight of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide was dissolved in 10 mM phosphate buffer (pH 5). Each block copolypeptide solution was mixed with 10 mM-100 mM NaIO 4 oxidant prior to placing the attachment. Each block copolypeptide was placed on an attachment and then covered with another attachment to form an overlapped region and cured for 1 hour at 4 ° C.
그 결과, 도 12(A)에 나타난 바와 같이, 박테리아 공동 발현 시스템에서 히드록실화된 10 중량%의 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 표면 부착성에 의해 부착물들끼리 강하게 결합하는 것을 확인할 수 있었다. 또한, 이 부착물은 수중 환경에서 또한 강한 부착성을 보였다(도 12(B)). As a result, as shown in FIG. 12 (A), surface adhesion of 10% by weight of the hydroxylated EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide in a bacterial co-expression system It was confirmed that the attachments strongly bound by sex. In addition, this deposit also showed strong adhesion in the aquatic environment (FIG. 12 (B)).
버섯 유래 티로시나아제 처리된 이중 블럭 코폴리펩타이드와 박테리아 공동 발현 시스템에서 히드록실화된 이중 블럭 코폴리펩타이드의 부착 성능을 10중량%에서 비교해 보았을 때, 박테리아 공동 발현 시스템에서 히드록실화된 블럭 코폴리펩타이드의 표면 부착력이 더 강하다는 것을 확인하였다. When comparing the adhesion performance of hydroxylated double block copolypeptides in a bacterial co-expression system with a bacterial-derived tyrosinase treated double block copolypeptide at 10% by weight, It was found that the surface adhesion of the polypeptide is stronger.
따라서, 공동 발현 시스템에서 히드록실화된 이중 또는 삼중 블럭 코폴리펩타이드의 경우 티로신 잔기의 히드록실화 비율이 증가하였고, 이에 따라 동일한 블럭 코폴리펩타이드라도 박테리아 공동 발현 시스템에서 히드록실화 될 경우. 강한 표면 부착력을 보일 뿐 만 아니라 산업적 스케일 업에 유용하다는 것을 알 수 있다. Thus, the hydroxylation rate of tyrosine residues was increased in the case of hydroxylated double or triple block copolypeptides in a co-expression system, so that the same block copolypeptides would be hydroxylated in a bacterial co-expression system. Not only does it show strong surface adhesion, but it is also useful for industrial scale-up.
실시예 10: 이중 및 삼중 블럭 코폴리펩타이드의 코어-쉘 구조체의 특성 및 표면 부착성 확인Example 10: Characterization and Surface Adhesion of Core-Shell Structures of Double and Triple Block Copolypeptides
히드록실기를 갖거나 혹은 갖지 않는 EBP-MFP 블럭 코폴리펩타이드의 코어-쉘 구조의 특성은 동적 광 산란 (dynamic light scattering, DLS) 기구(Malvern instruments, 영국, 우스터셔)에 의해 분석되었다. 10mM 인산염완충액(pH5)에서 12.5μM의 블럭 코폴리펩타이드의 유체역학적 반경(hydrodynamic radius, Rh)은 10oC 와 45oC에서 1분 동안 평형을 시킨 후 11연속으로 측정되었다.The properties of the core-shell structure of EBP-MFP block copolypeptides with or without hydroxyl groups were analyzed by dynamic light scattering (DLS) instruments (Malvern instruments, Worcestershire, UK). The hydrodynamic radius (R h ) of the 12.5 μM block copolypeptide in 10 mM phosphate buffer (pH5) was measured for 11 min after equilibration at 10 o C and 45 o C for 1 min.
그 결과 도 13(A)의 (c)에 나타난 바와 같이, 버섯유래 티로시나아제-촉매된 히드록실화를 갖는 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 10oC 에서 측정된 유체역학적 반경의 경우, 10oC에서 25nm~30nm의 유체역학적 반경을 가지는 것을 확인하였다. 이는 MFP 분자들의 응집력에 의해, MFP분자의 소수성 상호작용이 크게 증가하고 이로 인해 MFP의 코어로 이루어진 구조를 형성하는 것을 확인한 것이다(도 14(A), 도 14(B) 및 도 14(C)). 또한 (d)에 나타난 바와 같이, 45oC에서 버섯유래 티로시나아제-촉매된 히드록실화를 갖는 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드의 유체역학적 반경을 측정한 결과, 50nm~60nm의 유체역학적 반경을 가지는것을 확인하였다. 이는 전이온도 이하에서 가용성이었던 EBP 블럭이, 전이온도 이상에서 상전이에 의해 소수성의 코어를 이루면서 코어-쉘 구조체를 형성하는 것을 확인한 것이다(도 14(G), 도 14(H) 및 도 14(I)).As a result, as shown in (c) of FIG. 13 (A), EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptide with mushroom-derived tyrosinase-catalyzed hydroxylation. of 10 o for a hydrodynamic radius from the measured C, it was found to have a hydrodynamic radius of 25nm ~ 30nm at 10 o C. This confirms that due to the cohesion of the MFP molecules, the hydrophobic interaction of the MFP molecules is greatly increased, thereby forming a structure composed of the core of the MFP (Figs. 14 (A), 14 (B) and 14 (C)). ). Also shown in (d), hydrodynamics of EBPPI [G 1 A 4 F 1 ] 6 -MFP [Mgfp5] 1 double block copolypeptides with mushroom-derived tyrosinase-catalyzed hydroxylation at 45 ° C. As a result of measuring the radius, it was confirmed that the hydrodynamic radius of 50nm ~ 60nm. This confirms that the EBP block, which was soluble at or below the transition temperature, forms a core-shell structure by forming a hydrophobic core by phase transition above the transition temperature (Figs. 14 (G), 14 (H) and 14 (I). )).
또한 EBP-MFP 블럭 코폴리펩타이드의 코어-쉘 구조체에 대한 표면 부착성을 확인하기 위해 소수성의 형광염료를 이용하여 표면 부착성에 대한 실험이 수행되었다.Also, in order to confirm surface adhesion of the core-shell structure of the EBP-MFP block copolypeptide, an experiment was performed on the surface adhesion using hydrophobic fluorescent dyes.
코어-쉘 구조체의 표면부착성을 확인하기 위해서 최종 농도 0.5 w/v%의 로다민 6G 형광염료가 사용되었다. 형광 염료는 각각 (1) PCR tube (#PCR-02-C, Axygen)에 아무것도 없는 것, (2) EBP 이중 블럭 코폴리펩타이드와 혼합된 것, (3) 공동발현을 통해 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드와 10oC에서 혼합된 것, 및 (4) 공동발현을 통해 히드록실화된 EBPPI[G1A4F1]6-MFP[Mgfp5]1 이중 블럭 코폴리펩타이드와 40oC에서 혼합된 것을 이용했다. 각각의 블럭 코폴리펩타이드는 10mM 인산염 완충액(pH5)에 25uM 녹아있다. 또한 (2), (3), (4)의 경우에는 수산화 나트륨을 이용해 pH를 8까지 올려준 뒤, 각각 25oC, 50 oC, 10 oC, 40 oC에서 3시간 동안 안정화 시킨다. 그리고 모든 튜브를 증류수와 에탄올을 이용해 세척해 주었다.In order to confirm the surface adhesion of the core-shell structure, a rhodamine 6G fluorescent dye with a final concentration of 0.5 w / v% was used. The fluorescent dyes were each (1) nothing in the PCR tube (# PCR-02-C, Axygen), (2) mixed with EBP double block copolypeptides, and (3) EBPPI hydroxylated via coexpression [G 1 A 4 F 1 ] 6- MFP [Mgfp5] 1 diblock copolypeptide mixed at 10 ° C., and (4) EBPPI [G 1 A 4 F 1 ] hydroxylated via coexpression A mixture of 6- MFP [Mgfp5] 1 double block copolypeptide at 40 ° C. was used. Each block copolypeptide is 25 uM dissolved in 10 mM phosphate buffer (pH5). In addition, in the case of (2), (3), (4) to raise the pH to 8 using sodium hydroxide, and then stabilize for 3 hours at 25 o C, 50 o C, 10 o C, 40 o C, respectively. And all the tubes were washed with distilled water and ethanol.
그 결과 도 13(B)에서 나타난 바와 같이, (4)의 튜브만 형광염료의 색의 띠는 것을 확인하였다. 블럭 코폴리펩타이드가 소수성의 코어를 형성할 때, 소수성의 형광 염료는 코어의 폴리펩타이드와 소수성 상호작용을 통해 결합하게 된다. 이에 따라 (2)의 경우에는 소수성 코어를 이루는 EBP 블럭과 형광염료가 결합하여서 존재하지만 표면 부착성이 존재하지 않기 때문에 세척시 형광염료를 포함하는 코어-쉘 구조의 EBP 이중 블럭 코폴리펩타이드가 모두 씻겨 나가서 형광염료를 확인할 수 없다. (3)의 경우에는 소수성 코어를 MFP 블럭이 이루고 있기 때문에 형광염료가 MFP 블럭과 상호작용을 하고 있지만, 코어에 존재하는 MFP 블럭에 의해서 표면 부착성이 큰 비율로 감소하게 되고, 세척 후 형광염료를 관찰할 수 없었다. (1)의 경우는 튜브에서 안정화를 시키는 동안 형광염료와 튜브와의 비특이적 반응에 의한 결합을 알아보기 위해 수행되었다. 그 결과 세척 후 형광염료를 관찰할 수 없었다. (4)의 경우 전이온도 이상에서 EBP 블럭의 소수성 코어의 형성을 통해 형광 염료와 상호작용을 하고, 쉘에 존재하는 동시발현을 통해 히드록실화된 MFP 블럭에 의해서 표면 부착성을 띠고 있기 때문에 세척 후에도 형광 염료의 색을 띠는 것을 확인하였다. As a result, as shown in Fig. 13 (B), only the tube of (4) was confirmed that the band of the color of the fluorescent dye. When the block copolypeptide forms a hydrophobic core, the hydrophobic fluorescent dye binds via hydrophobic interaction with the polypeptide of the core. Accordingly, in the case of (2), the EBP block forming the hydrophobic core and the fluorescent dye are present in combination, but since there is no surface adhesion, all of the core-shell structured EBP double block copolypeptides containing the fluorescent dye are washed. It is impossible to check the fluorescent dye by washing off. In the case of (3), since the hydrophobic core is composed of the MFP block, the fluorescent dye interacts with the MFP block, but the surface adhesion is greatly reduced by the MFP block present in the core. Could not be observed. Case (1) was performed to investigate the nonspecific reaction between the fluorescent dye and the tube during stabilization in the tube. As a result, the fluorescent dye could not be observed after washing. In the case of (4), the hydrophobic core of the EBP block interacts with the fluorescent dye at the transition temperature and the surface is adhered by the hydroxylated MFP block through co-expression in the shell. It was confirmed that the fluorescent dye had a color later.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it will be apparent to those skilled in the art that these specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (21)

  1. 엘라스틴 기반 펩타이드(EBP); 및Elastin-based peptides (EBPs); And
    홍합 족사 단백질(MFP)로 이루어진 다중 블럭 코폴리펩타이드(multiblock copolypeptide).Multiblock copolypeptide consisting of mussel murine protein (MFP).
  2. 제1항에 있어서, 상기 다중 블럭 코폴리펩타이드는 (EBP)n(MFP)n; (EBP)n(MFP)n(EBP)n; 및 (MFP)n(EBP)n(MFP)n으로 이루어진 군에서 어느 하나의 배열로 구성되며, 상기 n은 1 이상의 정수이고, EBP 또는 MFP의 반복 횟수인 것을 특징으로 하는 다중 블럭 코폴리펩타이드.The method of claim 1, wherein the multiblock copolypeptide comprises (EBP) n (MFP) n; (EBP) n (MFP) n (EBP) n; And (MFP) n (EBP) n (MFP) n, wherein the array is any one of n, wherein n is an integer of 1 or more, and the number of repetitions of EBP or MFP is repeated.
  3. 제1항에 있어서, 상기 엘라스틴 기반 펩타이드(EBP)는 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] 블럭; [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] 블럭; 및 [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] 블럭으로 이루어진 군에서 선택되는 어느 하나의 식으로 표시되는 아미노산 배열로 구성되며, 상기 X는 프롤린을 제외한 아미노산인 것을 특징으로 하는 다중 블럭 코폴리펩타이드.The elastin-based peptide (EBP) of claim 1, wherein the elastin-based peptide (EBP) comprises: [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block; [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] block; And [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] A multi-block copolypeptide, characterized in that the amino acid sequence represented by any one selected from the group consisting of blocks, wherein X is an amino acid except proline.
  4. 제3항에 있어서, 상기 [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] 블럭의 X는The X of the [VPGXG VPGXG VPGXG VPGXG VPGXG VPGXG] block,
    A(Ala), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나;A (Ala), G (Gly), I (Ile) consists of a ratio of 1: 4: 1;
    K(Lys), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나;K (Lys), G (Gly), I (Ile) are in a ratio of 1: 4: 1;
    D(Asp), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나;Or D (Asp), G (Gly), I (Ile) in a ratio of 1: 4: 1;
    E(Glu), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; E (Glu), G (Gly), I (Ile) consists of a ratio of 1: 4: 1;
    G(Gly), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지거나;G (Gly), A (Ala), F (Phe) consists of 1: 3: 2 ratio;
    K(Lys), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지거나;K (Lys), A (Ala), F (Phe) consists of a ratio of 1: 3: 2;
    D(Asp), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지거나;D (Asp), A (Ala), F (Phe) consists of a ratio of 1: 3: 2;
    K(Lys), F(Phe)가 3:3의 비율로 이루어지거나;K (Lys), F (Phe) consist of 3: 3 ratio;
    D(Asp), F(Phe)가 3:3의 비율로 이루어지거나;D (Asp), F (Phe) consist of 3: 3 ratio;
    H(His), A(Ala), I(Ile)가 3:2:1의 비율로 이루어지거나;H (His), A (Ala), I (Ile) are in a ratio of 3: 2: 1;
    H(His), G(Gly)가 5:1의 비율로 이루어지거나; 또는H (His), G (Gly) is in the ratio of 5: 1; or
    G(Gly), C(Cys), F(Phe)가 1:3:2의 비율로 이루어지는 것을 특징으로 하는 다중 블럭 코폴리펩타이드.G (Gly), C (Cys), F (Phe) is a multi-block copolypeptide, characterized in that the ratio of 1: 3: 2.
  5. 제3항에 있어서, 상기 [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] 블럭의 X는4. The X according to claim 3, wherein X in the [VPAXG VPAXG VPAXG VPAXG VPAXG VPAXG] block is
    A(Ala), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나;A (Ala), G (Gly), I (Ile) consists of a ratio of 1: 4: 1;
    K(Lys), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나;K (Lys), G (Gly), I (Ile) are in a ratio of 1: 4: 1;
    D(Asp), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나;Or D (Asp), G (Gly), I (Ile) in a ratio of 1: 4: 1;
    E(Glu), G(Gly), I(Ile)가 1:4:1의 비율로 이루어지거나; 또는E (Glu), G (Gly), I (Ile) consists of a ratio of 1: 4: 1; or
    G(Gly), A(Ala), F(Phe)가 1:3:2의 비율로 이루어지는 것을 특징으로 하는 다중 블럭 코폴리펩타이드.G (Gly), A (Ala), F (Phe) is a multi-block copolypeptide, characterized in that the ratio of 1: 3: 2.
  6. 제3항에 있어서, 상기 [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] 블럭의 X는4. The X according to claim 3, wherein X in the [IPAXG IPAXG IPAXG IPAXG IPAXG IPAXG] block is
    G(Gly), A(Ala), F(Phe)가 1:4:1 또는 1:3:2의 비율로 이루어지는 것을 특징으로 하는 다중 블럭 코폴리펩타이드.G (Gly), A (Ala), F (Phe) is a multi-block copolypeptide, characterized in that the ratio of 1: 4: 1 or 1: 3: 2.
  7. 제1항에 있어서, 상기 홍합 족사 단백질(MFP)은 캘리포니아 홍합 족사 단백질 5(mussel californianus foot protein 5 (Mcfp5)) 또는 지중해 홍합 족사 단백질 5(mussel galloprovincialis foot protein 5 (Mgfp5))인 것을 특징으로 하는 다중 블럭 코폴리펩타이드.According to claim 1, wherein the mussel musa protein (MFP) is a mussel californianus foot protein 5 (Mcfp5) or the mussel galloprovincialis foot protein 5 (Mgfp5) characterized in that Multiblock Copolypeptides.
  8. 제1항에 있어서, 서열번호 50 내지 70의 아미노산 서열로 표시되는 것을 특징으로 하는 다중 블록 코폴리펩타이드.The multiblock copolypeptide of claim 1, wherein the multi-block copolypeptide is represented by an amino acid sequence represented by SEQ ID NO: 50 to 70.
  9. 제1항의 다중 블럭 코폴리펩타이드를 코딩하는 유전자.The gene encoding the multiblock copolypeptide of claim 1.
  10. 제9항의 유전자를 포함하는 재조합 벡터.Recombinant vector comprising the gene of claim 9.
  11. 제9항의 유전자 또는 제10항의 재조합 벡터가 도입된 재조합 미생물.A recombinant microorganism into which the gene of claim 9 or the recombinant vector of claim 10 is introduced.
  12. 제11항에 있어서, 티로시나아제(tyrosinase)를 코딩하는 유전자 또는 티로시나아제를 코딩하는 유전자를 포함하는 발현벡터가 추가로 도입되어 공동발현되는 것을 특징으로 하는 재조합 미생물.The recombinant microorganism of claim 11, wherein an expression vector comprising a gene encoding tyrosinase or a gene encoding tyrosinase is further introduced and co-expressed.
  13. 다음 단계를 포함하는 다중 블럭 코폴리펩타이드의 제조방법:Method for preparing a multiblock copolypeptide comprising the following steps:
    (a) 제11항의 재조합 미생물을 배양하여 다중 블럭 코폴리펩타이드를 생성시키는 단계; 및 (a) culturing the recombinant microorganism of claim 11 to produce a multi-block copolypeptide; And
    (b) 상기 생성된 다중 블럭 코폴리펩타이드를 수득하는 단계.(b) obtaining the resulting multiblock copolypeptides.
  14. 제13항에 있어서, 상기 (a) 단계의 재조합 미생물은, 티로시나아제(tyrosinase)를 코딩하는 유전자 또는 티로시나아제를 코딩하는 유전자를 포함하는 발현벡터가 추가로 도입되어 상기 다중 블록 코폴리펩티드와 티로시나아제가 공동발현되는 것을 특징으로 하는 제조방법.The method according to claim 13, wherein the recombinant microorganism of step (a) is further introduced with an expression vector comprising a gene encoding a tyrosinase (tyrosinase) or a gene encoding a tyrosinase and the multi-block copolypeptide A method for producing tyrosinase, which is co-expressed.
  15. 제14항에 있어서, 상기 다중 블록 코폴리펩타이드의 티로신 잔기는 상기 티로시나아제에 의해 도파(3,4-dihydroxyphenylalanine) 잔기로 변형되는 것을 특징으로 하는 제조방법.The method of claim 14, wherein the tyrosine residue of the multiblock copolypeptide is modified by the tyrosinase to a dopa (3,4-dihydroxyphenylalanine) residue.
  16. 제1항 내지 제8항 중 어느 한 항의 다중 블럭 코폴리펩타이드가 온도 자극에 의해, EBP 블럭이 코어 구조를 형성하고, MFP 블럭이 쉘 구조를 형성하는 코어-쉘 구조의 자가조립 나노구조체.The self-assembled nanostructure of the core-shell structure according to any one of claims 1 to 8, wherein the EBP block forms a core structure and the MFP block forms a shell structure by temperature stimulation.
  17. 제16항의 자가조립 나노구조체를 포함하는 약물 전달 조성물.A drug delivery composition comprising the self-assembled nanostructure of claim 16.
  18. 제1항 내지 제8항 중 어느 한 항의 다중 블럭 코폴리펩타이드가 온도 자극에 의해 블럭 폴리펩타이드 간 가교 결합을 형성하여 제조되는, 하이드로겔.The hydrogel of claim 1, wherein the multiblock copolypeptides of claim 1 are prepared by forming crosslinks between block polypeptides by temperature stimulation.
  19. 제18항에 있어서, 상기 하이드로겔은 홍합 족사 단백질(MFP)에 포함된 도파(3,4-dihydroxyphenylalanine) 잔기의 산화 또는 비공유 상호 작용으로 형성되는 것을 특징으로 하는 하이드로겔.19. The hydrogel of claim 18, wherein the hydrogel is formed by oxidative or non-covalent interaction of dopa (3,4-dihydroxyphenylalanine) residues contained in mussel murine protein (MFP).
  20. 제18항의 하이드로겔을 포함하는 생체접착제 조성물.A bioadhesive composition comprising the hydrogel of claim 18.
  21. 제18항의 하이드로겔을 포함하는 수술용 봉합사.Surgical suture comprising a hydrogel of claim 18.
PCT/KR2018/004029 2017-04-05 2018-04-05 Multi-block copolypeptide, which is composed of elastin-based peptide and mussel foot protein and has stimulus responsivity and surface adhesiveness, preparation method therefor, and use thereof WO2018186702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/500,177 US20200199199A1 (en) 2017-04-05 2018-04-05 Multiblock copolypeptides of elastin-based polypeptides and mussel foot proteins with stimuli-responsiveness and surface-adhesive, methods of preparing thereof and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170044225 2017-04-05
KR10-2017-0044225 2017-04-05
KR10-2018-0039787 2018-04-05
KR1020180039787A KR102070124B1 (en) 2017-04-05 2018-04-05 Multiblock Copolypeptides of Elastin-based Polypeptides and Mussel Foot Proteins with Stimuli-responsiveness and Surface-adhesion, Methods of Preparing Thereof and Use Thereof

Publications (1)

Publication Number Publication Date
WO2018186702A1 true WO2018186702A1 (en) 2018-10-11

Family

ID=63712965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004029 WO2018186702A1 (en) 2017-04-05 2018-04-05 Multi-block copolypeptide, which is composed of elastin-based peptide and mussel foot protein and has stimulus responsivity and surface adhesiveness, preparation method therefor, and use thereof

Country Status (1)

Country Link
WO (1) WO2018186702A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114197068A (en) * 2021-12-31 2022-03-18 清华大学 High-strength protein fiber based on bioengineering protein and preparation method thereof
CN114213521A (en) * 2021-12-16 2022-03-22 中国海洋大学 Novel cell matrix-like biomaterial with wet adhesion performance and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116665A2 (en) * 2014-01-28 2015-08-06 Los Alamos National Security, Llc Genetically engineered polymer libraries and methods of using them
US20160220727A1 (en) * 2013-11-13 2016-08-04 Massachusetts Institute Of Technology Self-assembling underwater adhesives
KR101722503B1 (en) * 2015-03-13 2017-04-04 포항공과대학교 산학협력단 PH-responsive nanoparticle using mussel adhesive protein for drug delivery and method for preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160220727A1 (en) * 2013-11-13 2016-08-04 Massachusetts Institute Of Technology Self-assembling underwater adhesives
WO2015116665A2 (en) * 2014-01-28 2015-08-06 Los Alamos National Security, Llc Genetically engineered polymer libraries and methods of using them
KR101722503B1 (en) * 2015-03-13 2017-04-04 포항공과대학교 산학협력단 PH-responsive nanoparticle using mussel adhesive protein for drug delivery and method for preparing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Molecular design and characterization of fusion proteins with temperature responsiveness and surface adhesion'' 3PS-262" *
LEE, J. H, CO-EXPRESSION OF STIMULI-RESPONSIVE AND SURFACE-ADHESIVE FUS ION PROTEINS WITH TYROSINE HYDROXYLASE IN E. COLI *
ROBERTS, S.: "Elastin-like polypeptides as models of intrinsically disordered proteins", FEBS LETTERS, vol. 589, 2015, pages 2477 - 2486, XP029279392, doi:10.1016/j.febslet.2015.08.029 *
YOSHIKI, ITO: "Genetically engineered synthesis of artificial proteins incorporated with adhesive functional amino acid residues into repetitive sequence of elastin", POLYMER PREPRINTS, vol. 53, no. 2, 2010, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/spsjppj/53m/0/53m_0_5216/_article> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213521A (en) * 2021-12-16 2022-03-22 中国海洋大学 Novel cell matrix-like biomaterial with wet adhesion performance and application thereof
CN114197068A (en) * 2021-12-31 2022-03-18 清华大学 High-strength protein fiber based on bioengineering protein and preparation method thereof
CN114197068B (en) * 2021-12-31 2023-01-06 清华大学 High-strength protein fiber based on bioengineering protein and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102070124B1 (en) Multiblock Copolypeptides of Elastin-based Polypeptides and Mussel Foot Proteins with Stimuli-responsiveness and Surface-adhesion, Methods of Preparing Thereof and Use Thereof
JP4697982B2 (en) Modular transfection system
WO2018186702A1 (en) Multi-block copolypeptide, which is composed of elastin-based peptide and mussel foot protein and has stimulus responsivity and surface adhesiveness, preparation method therefor, and use thereof
KR20140029559A (en) Long lasting drug formulations
WO2013052681A1 (en) Methods and compositions for regulating hiv infection
KR101591887B1 (en) Long lasting drug formulations
JP2005110565A (en) Agent for keeping differentiation/pluripotency
AU2018321105A1 (en) Improved transposase polypeptide and uses thereof
Kadkhodayan et al. Generation of GFP native protein for detection of its intracellular uptake by cell-penetrating peptides
KR20120114072A (en) Mussel adhesive proteins obtained from tyrosinase co-expression
US10508265B2 (en) Cell-permeable reprogramming factor (iCP-RF) recombinant protein and use thereof
WO2022045751A1 (en) Adhesive elastin and suckerin-based multiblock copolypeptide with stimulus responsiveness and surface adhesion, self-assembled structure thereof, and application of injectable hydrogel as bioadhesive
TWI667253B (en) Recombinant polypeptides and nucleic acid molecules, compositions, and methods of making and uses thereof
WO2020061796A1 (en) Bcma-and-cd19-targeting chimeric antigen receptor and uses thereof
WO2021090787A1 (en) Polypeptide
EP1061941A2 (en) A pharmaceutical composition containing ezrin mutated on tyrosine 353
JP2024506068A (en) Chimeric antigen receptors that replace single-domain antibodies with endogenous protein molecules
KR20140046994A (en) Cell penetrating peptide comprising np2 polypeptide or dnp2 polypeptide derived from human nlbp and cargo delivery system using the same
KR20220025685A (en) Sticky elastin-based multiblock copolypeptides with stimuli-responsiveness and surface adhesion properties, their self-assembled nanostructures and injectable hydrogels as bio-adhesives for biomedical applications
US20030039984A1 (en) Sequences upstream of the CARP gene, vectors containing them and uses thereof
KR100722578B1 (en) Biotin-binding receptor molecules
KR20220026515A (en) Stimuli-responsive and surface-adhesive, sticky elastin and suckerin based multiblock copolypeptides, their self-assembled nanostructures and injectable hydrogels as bio-adhesives for applications
EP3916009A1 (en) Recombinant proteins based on fibrinogen
Zhang et al. Functional analysis of hybrid peptide CAMA-Syn: expression in mammalian cells and antimicrobial potential
KR101936470B1 (en) Polypeptides with phase transition, triblock polypeptides of the polypeptide-calmodulin-polypeptide with multi-stimuli responsiveness, hydrogel of the triblock polypeptides, and its uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781466

Country of ref document: EP

Kind code of ref document: A1