WO2018186578A1 - Magnetic resonance imaging device and control method therefor - Google Patents

Magnetic resonance imaging device and control method therefor Download PDF

Info

Publication number
WO2018186578A1
WO2018186578A1 PCT/KR2018/001594 KR2018001594W WO2018186578A1 WO 2018186578 A1 WO2018186578 A1 WO 2018186578A1 KR 2018001594 W KR2018001594 W KR 2018001594W WO 2018186578 A1 WO2018186578 A1 WO 2018186578A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo component
pulse
magnetic resonance
image
tracking
Prior art date
Application number
PCT/KR2018/001594
Other languages
French (fr)
Korean (ko)
Inventor
박현욱
김병재
Original Assignee
삼성전자주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 한국과학기술원 filed Critical 삼성전자주식회사
Publication of WO2018186578A1 publication Critical patent/WO2018186578A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences

Definitions

  • a magnetic resonance imaging apparatus for obtaining a cross-sectional image of an object based on a magnetic resonance signal, and a control method thereof.
  • a medical imaging apparatus is an apparatus that provides an image by acquiring patient information.
  • Medical imaging apparatuses include X-ray apparatus, ultrasound diagnostic apparatus, computed tomography apparatus, magnetic resonance imaging apparatus, and the like.
  • magnetic resonance imaging apparatuses occupy an important position in the field of diagnosis using medical imaging because imaging conditions are relatively free, and excellent contrast in soft tissue and various diagnostic information images are provided.
  • Magnetic Resonance Imaging is an image of the density and physicochemical characteristics of nuclear nuclei by using nuclear magnetic field and non-electromagnetic radiation, RF, which is harmless to the human body, causing nuclear magnetic resonance.
  • magnetic resonance imaging needs to be performed on patients who do not breathe. If the patient breathes during the magnetic resonance imaging, since the data acquired during the breathing constitutes one k-space, there is a possibility that artifacts may occur in the magnetic resonance images generated based on this.
  • a magnetic resonance imaging apparatus for receiving an RF echo signal including image information and motion information of an object at each cycle, and generating a magnetic resonance image from which the motion information is removed from the received RF echo signal; It provides a control method.
  • the magnetic resonance imaging apparatus irradiates a first RF pulse with respect to a first cross section of the object and a second RF pulse with respect to a second cross section of the object at intervals, and generates the first RF pulse in response to the first RF pulse.
  • An RF coil unit configured to receive an RF echo signal including a captured image echo component and a tracking echo component generated in response to the second RF pulse; Construct a k-space based on the received RF echo signal, synchronize the data of the k-space with motion information obtained from the tracking echo component, and use an eigenvector of the tracking echo component
  • An image processor which removes the tracking echo component from the synchronized k-spatial data and generates a magnetic resonance image using the k-spatial data from which the tracking echo component is removed; And an output unit displaying the generated magnetic resonance image. It may include.
  • the RF coil unit may be operated such that the second RF pulse phases of the adjacent periods are opposite to each other.
  • the gradient magnetic field forming unit for applying a gradient magnetic field for phase encoding (Phase Encoding) to the object; It may further include.
  • the image processor may acquire the motion information of the object by using the center of gravity for each frequency component of the tracking echo component.
  • the image processor may extract the synchronized k-spatial data that falls within the valid range determined by the motion information, and may remove the tracking echo component from the extracted k-spatial data.
  • the image processing unit may further include k-spaces extracted from the plurality of k-spaces when a plurality of k-spaces are configured by the first RF pulse and the second RF pulses irradiated repeatedly for each period. Data obtained in the same phase among the data may be accumulated to reconstruct one k-space, and the tracking echo component may be removed from the reconstructed one k-space data.
  • the image processor may acquire the eigenvector of the tracking echo component using a frequency component equal to or greater than a predetermined reference frequency among the synchronized k-spatial data.
  • the image processor may remove the tracking echo component from the synchronized k-spatial data by projecting the synchronized k-spatial data to the eigenvector of the tracking echo component.
  • the image processor may restore the k-spatial data from which the tracking echo component has been removed through a parallel imaging method, and generate the magnetic resonance image using the restored k-spatial data. have.
  • a method of controlling a magnetic resonance imaging apparatus includes irradiating a first RF pulse with respect to a first cross section of an object and a second RF pulse with respect to a second cross section of an object at each cycle; Receiving an RF echo signal comprising an image echo component generated in response to the first RF pulse and a tracking echo component generated in response to the second RF pulse; Constructing k-space based on the received RF echo signal; Synchronizing the k-space data with motion information obtained from the tracking echo component; Removing the tracking echo component from the synchronized k-spatial data using an eigenvector of the tracking echo component; Generating a magnetic resonance image using the k-spatial data from which the tracking echo component has been removed; And displaying the generated magnetic resonance image. It may include.
  • the second RF pulse may be irradiated such that the second RF pulse phases of the adjacent periods are opposite to each other.
  • the method may further include applying a gradient magnetic field for phase encoding to the object after the first RF pulse irradiation and before the second RF pulse irradiation for each period; It may further include.
  • the synchronizing of the k-spatial data with the motion information may include obtaining motion information of the object by using a center of gravity for each frequency component of the tracking echo component, and obtaining the k-spatial data from the obtained motion information. Can be synchronized.
  • removing the tracking echo component from the synchronized k-spatial data includes: extracting the synchronized k-spatial data that falls within an effective range determined by the motion information; And removing the tracking echo component from the extracted k-spatial data; It may include.
  • the removing of the tracking echo component from the extracted k-space data may include: when a plurality of k-spaces are configured by the first RF pulse and the second RF pulse irradiated repeatedly for each period, Reconstructing one k-space by accumulating data acquired in the same phase among the k-space data extracted from the plurality of k-spaces; And removing the tracking echo component from the reconstructed one k-space data; It may include.
  • removing the tracking echo component from the synchronized k-spatial data may include obtaining the eigenvector of the tracking echo component using a frequency component equal to or greater than a predetermined reference frequency among the synchronized k-spatial data, The tracked echo component may be removed from the synchronized k-spatial data using the obtained eigenvectors.
  • removing the tracking echo component from the synchronized k-spatial data may include projecting the synchronized k-spatial data to the eigenvector of the tracking echo component to generate the synchronized k-spatial data.
  • the tracking echo component can be removed from the system.
  • the generating of the magnetic resonance image may include restoring the k-spatial data from which the tracking echo component has been removed through a parallel imaging method, and using the restored k-spatial data. An image can be generated.
  • the magnetic resonance image acquisition time may be shortened.
  • image information and motion information are not separately obtained, a steady state of the image information may be maintained.
  • FIG. 1 is a schematic diagram of an MRI system.
  • FIG. 2 is a sequence diagram of a magnetic resonance imaging apparatus according to an exemplary embodiment.
  • FIG 3 is an image of a k-space taken by a magnetic resonance imaging apparatus according to an exemplary embodiment.
  • FIG. 4 is a magnetic resonance image taken by the magnetic resonance imaging apparatus according to an embodiment.
  • FIG. 5 is a diagram for describing a method of searching for a weighting coefficient by a magnetic resonance imaging apparatus according to an exemplary embodiment.
  • FIG. 6A illustrates a 1D Fourier transform image of k-spatial data in a kx direction of a magnetic resonance imaging apparatus
  • FIG. 6B illustrates an estimated tracking echo of k-spatial data of the magnetic resonance imaging apparatus, according to an exemplary embodiment. It is a 1D Fourier transform image in the kx direction of the component.
  • FIGS. 7 to 9 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus, according to an exemplary embodiment.
  • 10 to 12 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus according to another exemplary embodiment.
  • 13 is a flowchart of a method of controlling a magnetic resonance imaging apparatus, according to an exemplary embodiment.
  • 'part' may be implemented in software or hardware. Depending on the embodiments, a plurality of 'parts' may be embodied as one unit or one' It is also possible for a subsection to include a plurality of elements.
  • an 'object' is an object to be photographed, and may include a person, an animal, or a part thereof.
  • the subject may comprise part of the body (organ or organ; organ) or phantom or the like.
  • FIG. 1 is a schematic diagram of an MRI system.
  • the MRI system may acquire a magnetic resonance (MR) signal and reconstruct the acquired magnetic resonance signal into an image.
  • the magnetic resonance signal may refer to an RF signal radiated from the object.
  • a main magnet forms a static magnetic field
  • the magnetic dipole moment direction of a specific atomic nucleus of an object located in the static field may be aligned in the direction of the static field.
  • the gradient magnetic field coil may apply an inclination signal to the static magnetic field to form a gradient magnetic field to induce a resonance frequency for each part of the object.
  • the RF coil unit may radiate an RF pulse according to a resonance frequency of a portion of which an image is to be acquired.
  • the RF coil unit may receive magnetic resonance signals of different resonance frequencies (hereinafter referred to as RF echo signals) emitted from various parts of the object.
  • RF echo signals magnetic resonance signals of different resonance frequencies
  • the MRI system 1 may include an operating unit 10, a controller 30, and a scanner 50.
  • the controller 30 may be independently implemented as shown in FIG. 1.
  • the controller 30 may be divided into a plurality of components and included in each component of the MRI system 1.
  • each component will be described in detail.
  • the scanner 50 may be embodied in a shape (eg, a bore shape) in which an object may be inserted, so that the internal space is empty. Static and gradient magnetic fields are formed in the internal space of the scanner 50, and RF signals may be irradiated.
  • the scanner 50 may include a static magnetic field forming unit 51, a gradient magnetic field forming unit 52, an RF coil unit 53, a table unit 55, and a display unit 56.
  • the static field forming unit 51 may form a static field for aligning the directions of the magnetic dipole moments of the nuclei included in the object in the direction of the static field.
  • the static field forming unit 51 may be implemented as a permanent magnet or a superconducting magnet using a cooling coil.
  • the gradient magnetic field forming unit 52 may be connected to the control unit 30. Inclination is applied to the static magnetic field according to the control signal received from the controller 30 to form a gradient magnetic field.
  • the gradient magnetic field forming unit 52 includes X, Y, and Z coils that form gradient magnetic fields in the X-, Y-, and Z-axis directions that are orthogonal to each other, and photographed to induce resonance frequencies differently for each part of the object.
  • the tilt signal can be generated according to the position.
  • the RF coil unit 53 may be connected to the controller 30 to irradiate an RF pulse to the object according to a control signal received from the controller 30 and receive an RF echo pulse emitted from the object.
  • the RF coil unit 53 may transmit an RF signal having a frequency equal to the frequency of the precession toward the atomic nucleus during the precession to the object, stop transmitting the RF pulse, and receive the RF echo pulse emitted from the object. .
  • the RF coil unit 53 is implemented as a transmitting RF coil for generating electromagnetic waves having a radio frequency corresponding to the type of atomic nucleus and a receiving RF coil for receiving electromagnetic waves radiated from the atomic nucleus, respectively, or having a transmission / reception function together. May be implemented as an RF transmit / receive coil.
  • a separate coil may be mounted on the object. For example, a head coil, a spine coil, a torso coil, a knee coil, or the like may be used as a separate coil according to a photographing part or a mounting part.
  • the display unit 56 may be provided outside and / or inside the scanner 50.
  • the display unit 56 may be controlled by the controller 30 to provide information related to medical image capturing to a user or an object.
  • the scanner 50 may be provided with an object monitoring information acquisition unit for obtaining and delivering monitoring information on the state of the object.
  • the object monitoring information acquisition unit may include a camera (not shown) for photographing the movement and position of the object, a respiratory meter (not shown) for measuring breathing of the object, and an electrocardiogram for measuring the object.
  • the monitoring information about the object may be obtained from the ECG measuring device (not shown) or the body temperature measuring device (not shown) for measuring the body temperature of the object and transferred to the controller 30.
  • the controller 30 may control the operation of the scanner 50 by using the monitoring information about the object.
  • the controller 30 will be described.
  • the controller 30 may control the overall operation of the scanner 50.
  • the controller 30 may control a sequence of signals formed in the scanner 50.
  • the controller 30 may control the gradient magnetic field forming unit 52 and the RF coil unit 53 according to a pulse sequence received from the operating unit 10 or a designed pulse sequence.
  • the pulse sequence includes all the information necessary for controlling the gradient magnetic field forming unit 52 and the RF coil unit 53, for example, the intensity of a pulse signal applied to the gradient magnetic field forming unit 52. , Application duration, application timing, and the like.
  • the controller 30 may include a waveform generator (not shown) for generating a gradient waveform, that is, a current pulse according to a pulse sequence, and a gradient amplifier (not shown) for amplifying the generated current pulse and transferring the gradient to the gradient magnetic field forming unit 52.
  • a waveform generator (not shown) for generating a gradient waveform, that is, a current pulse according to a pulse sequence
  • a gradient amplifier (not shown) for amplifying the generated current pulse and transferring the gradient to the gradient magnetic field forming unit 52.
  • the controller 30 may control the operation of the RF coil unit 53.
  • the controller 30 may irradiate an RF pulse having a resonance frequency by the RF coil unit 53, and receive an RF echo signal received by the RF coil unit 53.
  • the controller 30 may control the operation of a switch (for example, a T / R switch) capable of adjusting a transmission / reception direction through a control signal, and may adjust the irradiation of the RF pulse and the reception of the magnetic resonance signal according to the operation mode. .
  • the controller 30 may control the movement of the table unit 55 in which the object is located. Before the photographing is performed, the controller 30 may move the table 55 in advance in accordance with the photographed portion of the object.
  • the controller 30 may control the display 56.
  • the controller 30 may control on / off of the display 56 or a screen displayed through the display 56 through a control signal.
  • the controller 30 may include an algorithm for controlling the operation of components in the MRI system 1, a memory for storing data in a program form (not shown), and a processor for performing the above-described operations using data stored in the memory ( Not shown).
  • the memory and the processor may be implemented as separate chips.
  • the memory and the processor may be implemented in a single chip.
  • the operating unit 10 may control the overall operation of the MRI system 1.
  • the operating unit 10 may include an image processor 11, an input unit 12, and an output unit 13.
  • the image processor 11 may store the MR signals received from the controller 30 using a memory, and generate image data of the object from the stored MR signals by applying an image reconstruction technique using the image processor. Can be.
  • the image processor 11 may reconstruct various images through the image processor when the k-space data is completed by filling digital data in k-space (eg, also referred to as Fourier space or frequency space) of the memory.
  • k-space eg, also referred to as Fourier space or frequency space
  • the technique can be applied (eg, by inverse Fourier transform of k-spatial data) to reconstruct k-spatial data into image data.
  • various signal processings applied by the image processor 11 to the magnetic resonance signal may be performed in parallel.
  • a plurality of magnetic resonance signals received by the multi-channel RF coil may be signal-processed in parallel to restore the image data.
  • the image processor 11 may store the restored image data in a memory or the controller 30 may store the restored image data in an external server through the communication unit 60.
  • the input unit 12 may receive a control command regarding the overall operation of the MRI system 1 from the user.
  • the input unit 12 may receive object information, parameter information, scan conditions, information about a pulse sequence, and the like from a user.
  • the input unit 12 may be implemented as a keyboard, a mouse, a trackball, a voice recognition unit, a gesture recognition unit, a touch screen, or the like.
  • the output unit 13 may output image data generated by the image processor 11.
  • the output unit 13 may output a user interface (UI) configured to allow a user to receive a control command regarding the MRI system 1.
  • UI user interface
  • the output unit 13 may be implemented as a speaker, a printer, a display, or the like.
  • the operating unit 10 and the control unit 30 are illustrated as separate objects from each other, but as described above, may be included together in one device.
  • processes performed by each of the operating unit 10 and the control unit 30 may be performed in another object.
  • the image processor 11 may convert the magnetic resonance signal received by the controller 30 into a digital signal, or the controller 30 may directly convert the magnetic resonance signal.
  • the MRI system 1 includes a communication unit 60, and through the communication unit 60, an external device (not shown) (eg, a server, a medical device, a portable device (smartphone, tablet PC, wearable device, etc.)). Can be connected with an external device (not shown) (eg, a server, a medical device, a portable device (smartphone, tablet PC, wearable device, etc.)). Can be connected with an external device (not shown) (eg, a server, a medical device, a portable device (smartphone, tablet PC, wearable device, etc.)). Can be connected with a server, a server, a medical device, a portable device (smartphone, tablet PC, wearable device, etc.)). Can be connected with an external device (not shown) (eg, a server, a medical device, a portable device (smartphone, tablet PC, wearable device, etc.)). Can be connected with an external device (not shown) (eg, a server, a
  • the communication unit 60 may include one or more components that enable communication with an external device, for example, at least one of a short range communication module (not shown), a wired communication module 61, and a wireless communication module 62. It may include.
  • magnetic resonance imaging by the above-described magnetic resonance imaging apparatus 1 may take a relatively long time, if the movement of the subject (for example, the heart rate, breathing, etc. of the patient) during this time, finally Artifacts may occur in the acquired MRI signal. Therefore, in the case of an object having a high possibility of motion, it is necessary to additionally acquire information about the motion in addition to the information on the image when the MRI is taken.
  • the navigator echo signal is acquired by irradiating an RF pulse for the motion information separately from acquiring the image information
  • the total photographing time may be increased because the image information and the motion information are obtained by dividing the navigator echo signal.
  • a photographing for acquiring motion information is involved in the middle of photographing for acquiring image information, a steady state imaging technique which is frequently used in magnetic resonance imaging of a heart region cannot be applied.
  • the magnetic resonance imaging apparatus 1 and the control method according to the disclosed embodiment receive an RF echo signal including the image information and the motion information of the object at each cycle and remove the motion information from the received RF echo signal. Resonance images can be generated.
  • FIG. 2 is a sequence diagram of a magnetic resonance imaging apparatus according to an embodiment
  • FIG. 3 is an image of a k-space photographed by the magnetic resonance imaging apparatus according to an embodiment
  • FIG. 4 is a magnetic resonance according to an embodiment. Magnetic resonance image taken by the imaging device.
  • RF denotes a sequence of RF pulses radiated by the RF coil unit 53
  • SL denotes a sequence of Z-axis gradient magnetic fields applied by the gradient magnetic field forming unit 52
  • RE denotes gradient magnetic field formation. It may mean a sequence of the Y-axis gradient magnetic field applied by the unit 52
  • RO may mean a sequence of the RF echo signal received by the RF coil unit 53.
  • the RF coil unit 53 may radiate a first RF pulse having a flip angle of ⁇ ° and a second RF pulse having a flip angle of ⁇ ° every cycle.
  • the first RF pulse may be an RF pulse for obtaining image information
  • the second RF pulse may be an RF pulse for obtaining motion information.
  • the second RF pulse may be reversed in phase every period. That is, if the second RF pulse phase in the first period is 0 degrees, the RF pulse phase in the second period may be 180 degrees, and the RF pulse phase in the third period may be 0 degrees again. This is for easily removing the tracking echo component to be described later, which will be described later.
  • the gradient magnetic field forming unit 52 may apply the Z-axis gradient magnetic field to the object so that the cross section S1 of interest is selected.
  • the gradient magnetic field forming unit 52 may apply the Z-axis gradient magnetic field to the object such that the cross-section S2 of which movement is expected to be selected is selected.
  • the cross-section of interest S2 which is expected to generate a movement, may be set as a plane passing through the heart region and the liver region so that the cross-section of interest S2 may include both heart and respiration movement information.
  • the gradient magnetic field forming unit 52 may apply a Y-axis gradient magnetic field for phase encoding to the object at a time after the irradiation of the first RF pulse. .
  • phase coding by the gradient magnetic field forming unit 52 may not be performed after the irradiation of the second RF pulse.
  • the RF coil unit 53 includes an image echo component (including image information generated by the first RF pulse) generated in response to the first RF pulse and a tracking echo component (second second generated in response to the second RF pulse). And a single RF echo signal including image information and motion information generated by the RF pulse. That is, in response to the first RF pulse and the second RF pulse irradiated within one period, the RF coil unit 53 may receive one RF echo signal. Therefore, in order to eliminate the artifacts caused by the movement and to acquire the magnetic resonance image composed only of the image information, the magnetic resonance imaging apparatus 1 needs to remove the tracking echo component from the received RF echo signal.
  • the image processor 11 may remove the tracking echo component including motion information from the received RF echo signal.
  • the image processor 11 may form a k-space by storing an RF echo signal in a memory.
  • the k-space may be a two-dimensional space consisting of the kx axis and the ky axis, the kx axis may be in the frequency direction, and the ky axis may be in the phase direction.
  • the ky-axis may consist of 20 transverse lines, or 20 ky lines, obtained for each Y-axis gradient field.
  • the RF echo signal can fill one ky line. Therefore, if all RF echo signals are obtained for 20 different y-axis gradient fields, one k-space can be completed while all 20 ky lines are filled.
  • the image processor 11 may generate a magnetic resonance image by using the data of the k-space thus completed.
  • 3 is a k-space image formed by the above-described RF echo signal
  • FIG. 4 is a magnetic resonance image generated using k-space data constituting the k-space of FIG. 3. Since the above-described RF echo signal includes an image echo component and a tracking echo component, the magnetic resonance signal generated based on the RF echo signal may include information of each echo component.
  • FIG. 4 it can be seen that the ROI S1 representing the information of the image echo component generated in response to the first RF pulse and the ROI S2 representing the information of the trace echo component generated in response to the second RF pulse are also displayed.
  • the magnetic resonance image of FIG. 4 illustrates a case in which the region of interest S2 appears on one side. This is caused by reversing the phase of the second RF pulse for each period.
  • the ROI S2 may be shifted to one side or both sides of the image due to the phase difference.
  • the tracking echo component can be easily removed from the RF echo signal.
  • the image processor may first remove the tracking echo component from the k-spatial data and then image the result.
  • the image processor 11 may perform steps of estimating the ⁇ 1> tracking echo component, ⁇ 2> moving gating, and ⁇ 3> removing the tracking echo component.
  • the image processor 11 may estimate the ⁇ 1> tracking echo component.
  • the image processor 11 may extract the motion information included in the tracking echo component by estimating the tracking echo component in the k-spatial data.
  • the image processor 11 may estimate the tracking echo component from the k-spatial data according to the equation of Slice-GRAPPA.
  • K j, S1 + S2 is k-space data configured by the RF echo signal
  • K j, S2 is the tracking echo component of the k-space data
  • j, l is the Index of the RF coil unit 53 B may mean location information of k-space
  • N b may mean total position
  • n (j, b, l) may mean a weighting factor.
  • Equation 1 may mean that information about the tracking echo component may be estimated by weighting k-space data received by each receiving coil. have.
  • the image processor 11 needs to search the weight coefficient n (j, b, l). To this end, the magnetic resonance imaging apparatus 1 may obtain only k-spatial data by irradiating only the first RF pulse and then irradiate the RF pulse according to the above-described method.
  • FIG. 5 is a diagram for describing a method of searching a weight coefficient by a magnetic resonance imaging apparatus
  • FIG. 6A is a 1D Fourier in kx direction of k-space data of the magnetic resonance imaging apparatus, according to an exemplary embodiment.
  • 6B is a 1D Fourier transform image in the kx direction of an estimated tracking echo component among k-spatial data of the magnetic resonance imaging apparatus according to an exemplary embodiment.
  • the graph refers to a motion curve of the object over time
  • M1 is a weight coefficient search interval (preferably within the first 2 to 3 seconds)
  • M2 is a data acquisition interval.
  • an RF echo signal consisting of only trace echo components is obtained by first irradiating only the second RF pulse, and then, an image according to irradiation of the first RF pulse and the second RF pulse.
  • An RF echo signal can be obtained that includes an echo component and a tracking echo component.
  • the image processing unit 11 includes k-spatial data according to an RF echo signal composed only of the tracking echo components in the weight coefficient search interval M1, and an image echo component and a tracking echo component in a subsequent period.
  • the weighting coefficient n can be searched by comparing k-spatial data according to the RF echo signal.
  • FIG. 5 illustrates a case in which the weighting factor n is searched at various positions of the weighting coefficient search section M1 (indicated by X in FIG. 5), that is, in various motion states of the object. Since the receiving coil of the RF coil unit 53 may respond to the change in the magnetic field generated by the movement of the object, it is necessary to search for the weighting coefficient n for each movement state.
  • the search for the weighting coefficient n When the search for the weighting coefficient n is completed, it may be applied to Equation 1 to estimate the tracking echo component K S2 in the k-space data.
  • the image of FIG. 6A when the image of FIG. 6A is input to Equation 1, the image of FIG. 6B may be output.
  • the image of FIG. 6A is an image in which two k-space data are arranged in chronological order, and includes 384 (192 ⁇ 2) phase coding lines (PE lines) in total and was acquired for 1.8 seconds.
  • PE lines phase coding lines
  • the estimated tracking echo component K S2 may have a slight error according to factors such as the sensitivity of the receiving coil and the error of the weight coefficient. Therefore, the image processor 11 can use the estimated tracking echo component K S2 only to extract motion information.
  • the image processor 11 may digitize such motion information.
  • the image processor 11 may adopt any one of various known methods for digitizing motion information from the estimated tracking echo component K S2 .
  • the image processor 11 may quantify the motion information from the tracking echo component K S2 using the Center Of Mass (COM), and the equation for obtaining the center of gravity is shown in Equation (2).
  • COM Center Of Mass
  • COM may mean a center of gravity
  • I proj (x) may mean a value obtained by performing a 1D Fourier Transform on K S2 in the kx direction.
  • the image processor 11 After acquiring the COM value, the image processor 11 performs a band pass filter (BW: 50 to 120 bpm or 0.5 Hz to 2 Hz) corresponding to the heart movement and a band pass filter (BW: 0.1 Hz to 0.4 Hz corresponding to the respiratory movement). ) Can be applied to the acquired COM.
  • a band pass filter BW: 50 to 120 bpm or 0.5 Hz to 2 Hz
  • BW band pass filter
  • the image processor 11 may digitize the motion information of the object, thereby setting an effective range used for gating to be described later.
  • the effective range may mean a range in which the movement is minimized, such as the end of the exhalation in the breath can be obtained stably image information, and can act as a gating window in the gating to be described later have.
  • the image processing unit 11 may perform ⁇ 2> motion gating.
  • gating refers to reconstructing one k-space by synchronizing data constituting each of the plurality of k-spaces with motion information and then accumulating data acquired in the same phase with respect to k-space data belonging to an effective range. Can mean a process.
  • the image processor 11 may remove the motion information from the k-spatial data.
  • G s1 + S2 k-spatial data gated with motion information
  • the image processor 11 may remove the tracking echo component.
  • 7 to 9 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus, according to an exemplary embodiment.
  • the tracking echo component may include image information on the cross-section S2 of interest together with the motion information.
  • 7 is a magnetic resonance image generated based on G s1 + S2 of gated k-spatial data according to an embodiment, and it can be seen that noise images exist on both sides of the image. This indicates that the image information about the cross section S2 of interest is included in the magnetic resonance image.
  • the image processor 11 removes the gated tracking echo component G S2 from the gated k-spatial data G s1 + S2 . Needs to be.
  • the gated k-spatial data G s1 + S2 may be expressed in the form of adding the gated tracking echo component as the same DC component to all phase coding lines of the image echo component, which is expressed by Equation 3 below.
  • G s1 + S2 denotes the gated k-spatial data
  • G s1 denotes the image echo component of the gated k-spatial data
  • G S2 denotes the tracking echo component of the gated k-spatial data.
  • the gated tracking echo component G S2 may have a low rank property because the phase coding components configured in the phase coding direction are the same or very similar.
  • the gated picture echo component G S1 may not be low rank because the phase coding components are different.
  • the gated image echo component G S1 is a tracking echo component G S2 in which the magnitude of the phase coding component is gated in the high frequency region. Very small compared to Accordingly, the image processor 11 may remove G S2 from G s1 + S2 based on such characteristics.
  • the image processor 11 may extract a high frequency component of the gated k-spatial data G s1 + S2 . As described above, the characteristics of the tracking echo component G S2 are better revealed in the high frequency region. The image processor 11 may reconstruct the k-space of the k-spatial data G s1 + S2 gated based on the extracted high frequency component.
  • the image processor 11 may perform Principal Component Analysis (PCA) by applying Singular Value Decomposition (SVD) to the gated k-spatial data G s1 + S2 .
  • PCA Principal Component Analysis
  • a tracking echo component having a rank close to 1 may be positioned around a principal component, and an image echo component not otherwise may be located in a vector space other than the principal component.
  • the traced echo component G S2 gated. It is possible to obtain an eigenvector of.
  • the image processing unit 11 is gated tracking echo component G S2 By projecting k-spatial data G s1 + S2 gated in the eigenvector space excluding the eigenvector of, only the gated image echo component G S1 can be separated.
  • FIG. 8 is the gated tracking echo component G S2 removed from the image of FIG.
  • FIG. 9 shows a magnetic resonance image of a gated image echo component G S1 separated from the image of FIG. 7.
  • the image information of the region of interest S2 of the tracking echo component for tracking the motion information may be removed.
  • K s1 + S2 may not be obtained for a sufficient time, and thus data may not be stored in some phase coding lines.
  • the gated image echo component G S1 finally obtained by the image processor 11 may also have an under sampling pattern.
  • the image processor 11 may reconstruct an image by applying a parallel imaging method to an empty phase encoding line.
  • the output unit 13 may visually output the magnetic resonance image, for example, the image of FIG. This allows the user to collect more accurate anatomical information of the subject.
  • the image processor 11 may remove the gated tracking echo component from the gated k-spatial data according to a different method.
  • the gated k-spatial data is set to S acq to distinguish it from the above-described embodiment.
  • the component is S im
  • the gated trace echo component is denoted by S nav .
  • 10 to 12 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus according to another exemplary embodiment.
  • FIG. 10 is a diagram illustrating magnetic resonance images I acq obtained by performing two-dimensional Fourier transform of gated k-spatial data S acq and S acq according to another embodiment.
  • the gated k-spatial data S acq may include image information about a cross-section S2 of interest formed in the ky direction at the top thereof, and as a result, magnetic resonance images obtained by performing two-dimensional Fourier transform of S acq .
  • I acq may have noise on both sides.
  • the image processor 11 may add the gated k-spatial data to two adjacent components in S acq in the ky direction.
  • the image processor 11 may process S acq according to Equation 4 to obtain S im esti obtained by combining two adjacent components in the ky direction.
  • S im esti may mean an intermediate value for obtaining a gated image echo component S im .
  • ky is zero.
  • an N value may be set.
  • the sum of the components adjacent in the ky direction among the gated tracking echo components Snav may be calculated according to Equation 5 below.
  • the gated tracking echo component can be eliminated S nav by summing adjacent consecutive components in the ky direction.
  • the image processing unit 11 is an image from the echo component gating S S im im esti This 2D Fourier Converted I im Can be obtained.
  • the image processor 11 may follow Equation 6.
  • I im esti is the result of 2D Fourier transforming the gated image echo component S im
  • W (y) may mean a Magnitude Window for obtaining S im from S im esti .
  • the image processor 11 divides I im esti by W (y), thereby gating the image echo component S im.
  • This 2D Fourier Converted I im Can be obtained.
  • the obtained image I im may be an image obtained by removing not only the motion information of the object but also the image information of the region of interest S2 of the tracking echo component for tracking the motion information.
  • FIG. 11 is a diagram illustrating magnetic resonance images I im esti obtained by performing two-dimensional Fourier transformation of S im esti and S im esti according to another embodiment
  • FIG. 12 illustrates a magnitude window W (y) according to an embodiment. The illustrated figure.
  • Image processing unit 11 can obtain the I im im esti from I using the magnitude window W (y) as shown in FIG. 12.
  • FIG. 13 is a flowchart of a method of controlling the magnetic resonance imaging apparatus 1 according to an exemplary embodiment.
  • the magnetic resonance imaging apparatus 1 irradiates an RF pulse according to an RF pulse sequence for irradiating a first RF pulse for obtaining image information of a first section and a second RF pulse for obtaining motion information of a second section.
  • the irradiated second RF pulse may be reversed in phase every period.
  • the magnetic resonance imaging apparatus 1 may then obtain k-spatial data including an image echo component generated in response to the first RF pulse and a tracking echo component generated in response to the second RF pulse. Specifically, the magnetic resonance imaging apparatus 1 may configure a k-space by receiving an RF echo signal including an image echo component and a tracking echo component, and storing the received RF echo signal in a memory.
  • the magnetic resonance imaging apparatus 1 may identify motion information from the obtained tracking echo component of the k-space data. (930) For this purpose, the magnetic resonance imaging apparatus 1 may use the above-described math.
  • the tracking echo component can be estimated according to Equation 1, and the motion information can be confirmed using the estimated center of gravity of the tracking echo component. At this time, the magnetic resonance imaging apparatus 1 may also set the effective range according to the motion information.
  • the magnetic resonance imaging apparatus 1 may perform gating by synchronizing k-spatial data with the identified motion information.
  • gating refers to each of a plurality of k-spaces. After synchronizing the constituent data with motion information, it may mean a process of reconstructing one k-space by accumulating data acquired in the same phase with respect to k-space data belonging to the effective range. Through the gating process, the image processor 11 may remove the motion information from the k-spatial data.
  • the magnetic resonance imaging apparatus 1 may remove the tracking echo component from the gated k-spatial data.
  • the magnetic resonance imaging apparatus 1 may remove the tracking echo component from the gated k-space data using the eigenvector of the tracking echo component. Specifically, first, the magnetic resonance imaging apparatus 1 may obtain an eigenvector of the tracking echo component from the gated k-spatial data. To this end, the magnetic resonance imaging apparatus 1 may use high frequency components of gated k-spatial data.
  • the magnetic resonance imaging apparatus 1 may remove the tracking echo component from the k-space data by using the acquired eigenvector of the tracking echo component. Specifically, the magnetic resonance imaging apparatus 1 may remove the tracking echo component by projecting k-space data onto the eigenvector of the tracking echo component.
  • the magnetic resonance imaging apparatus 1 may remove the tracking echo component from the gated k-spatial data by adding two adjacent components in the ky direction among the gated k-spatial data. . Since the second RF pulse for obtaining the motion information is reversed in phase, the tracking echo component may be removed by adding adjacent components in the ky direction among the gated tracking echo components.
  • the magnetic resonance imaging apparatus 1 may generate the magnetic resonance image using the k-space data from which the tracking echo component has been removed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Provided are: a magnetic resonance imaging device for receiving an RF echo signal including image information and motion information of a subject for each period and generating magnetic resonance imaging in which the motion information has been removed from the received RF echo signal; and a control method therefor. The magnetic resonance imaging device according to one embodiment can comprise: an RF coil part for emitting a first RF pulse at a first cross-section of a subject and a second RF pulse at a second cross-section of the subject for each period, and receiving an RF echo signal including an image echo component generated in correspondence to the first RF pulse and a tracking echo component generated in correspondence to the second RF pulse; an image processing part for acquiring k-space data on the basis of the received RF echo signal, synchronizing the k-space data with the motion information acquired from the tracking echo component, removing the tracking echo component from the synchronized k-space data, and generating magnetic resonance imaging by using the k-space data from which the tracking echo component has been removed; and an output part for displaying the generated magnetic resonance imaging.

Description

자기공명영상장치 및 그 제어방법Magnetic Resonance Imaging Device and Control Method
자기공명신호에 기초하여 대상체의 단면 영상을 획득하는 자기공명영상장치, 및 그 제어방법에 관한 것이다.A magnetic resonance imaging apparatus for obtaining a cross-sectional image of an object based on a magnetic resonance signal, and a control method thereof.
일반적으로 의료용 영상 장치는 환자의 정보를 획득하여 영상을 제공하는 장치이다. 의료용 영상 장치는 X선 장치, 초음파 진단 장치, 컴퓨터 단층 촬영 장치, 자기공명영상장치 등이 있다. In general, a medical imaging apparatus is an apparatus that provides an image by acquiring patient information. Medical imaging apparatuses include X-ray apparatus, ultrasound diagnostic apparatus, computed tomography apparatus, magnetic resonance imaging apparatus, and the like.
이 중에서 자기공명영상장치는 영상 촬영 조건이 상대적으로 자유롭고, 연부 조직에서의 우수한 대조도와 다양한 진단 정보 영상을 제공해주기 때문에 의료용 영상을 이용한 진단 분야에서 중요한 위치를 차지하고 있다. Among these, magnetic resonance imaging apparatuses occupy an important position in the field of diagnosis using medical imaging because imaging conditions are relatively free, and excellent contrast in soft tissue and various diagnostic information images are provided.
자기공명영상(Magnetic Resonance Imaging, MRI)은 인체에 해가 없는 자장과 비전리 방사선인 RF를 이용하여 체내의 수소 원자핵에 핵자기 공명 현상을 일으켜 원자핵의 밀도 및 물리화학적 특성을 영상화한 것이다.Magnetic Resonance Imaging (MRI) is an image of the density and physicochemical characteristics of nuclear nuclei by using nuclear magnetic field and non-electromagnetic radiation, RF, which is harmless to the human body, causing nuclear magnetic resonance.
원칙적으로 자기공명영상 촬영은 호흡하지 않는 환자에 대하여 수행될 필요가 있다. 자기공명 영상 촬영 중 환자가 호흡을 하면, 호흡하는 동안 획득된 데이터가 하나의 k-공간을 구성하므로, 이를 기초로 생성된 자기공명영상에는 아티팩트(Artifact)가 발생할 가능성이 있기 때문이다.In principle, magnetic resonance imaging needs to be performed on patients who do not breathe. If the patient breathes during the magnetic resonance imaging, since the data acquired during the breathing constitutes one k-space, there is a possibility that artifacts may occur in the magnetic resonance images generated based on this.
개시된 발명의 일 실시예에 따르면, 주기 마다 대상체의 영상 정보 및 움직임 정보를 포함하는 RF 에코 신호를 수신하고, 수신된 RF 에코 신호로부터 움직임 정보가 제거된 자기공명 영상을 생성하는 자기공명영상장치 및 그 제어방법을 제공한다.According to an embodiment of the present invention, a magnetic resonance imaging apparatus for receiving an RF echo signal including image information and motion information of an object at each cycle, and generating a magnetic resonance image from which the motion information is removed from the received RF echo signal; It provides a control method.
일 실시예에 따른 자기공명영상장치는, 주기 마다 대상체의 제 1 단면에 대한 제 1 RF 펄스 및 상기 대상체의 제 2 단면에 대한 제 2 RF 펄스를 조사하고, 상기 제 1 RF 펄스에 대응하여 생성된 영상 에코 성분 및 상기 제 2 RF 펄스에 대응하여 생성된 추적 에코 성분을 포함하는 RF 에코 신호를 수신하는 RF 코일부; 상기 수신된 RF 에코 신호에 기초하여 k-공간을 구성하고, 상기 추적 에코 성분으로부터 획득된 움직임 정보에 상기 k-공간의 데이터를 동기화하고, 상기 추적 에코 성분의 고유 벡터(Eigen Vector)를 이용하여 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하고, 상기 추적 에코 성분이 제거된 상기 k-공간 데이터를 이용하여 자기공명영상을 생성하는 영상 처리부; 및 상기 생성된 자기공명영상을 표시하는 출력부; 를 포함할 수 있다.The magnetic resonance imaging apparatus according to an embodiment irradiates a first RF pulse with respect to a first cross section of the object and a second RF pulse with respect to a second cross section of the object at intervals, and generates the first RF pulse in response to the first RF pulse. An RF coil unit configured to receive an RF echo signal including a captured image echo component and a tracking echo component generated in response to the second RF pulse; Construct a k-space based on the received RF echo signal, synchronize the data of the k-space with motion information obtained from the tracking echo component, and use an eigenvector of the tracking echo component An image processor which removes the tracking echo component from the synchronized k-spatial data and generates a magnetic resonance image using the k-spatial data from which the tracking echo component is removed; And an output unit displaying the generated magnetic resonance image. It may include.
또한, 상기 RF 코일부는, 인접한 상기 주기의 상기 제 2 RF 펄스 위상이 서로 반대가 되도록 동작할 수 있다.The RF coil unit may be operated such that the second RF pulse phases of the adjacent periods are opposite to each other.
또한, 상기 제 1 RF 펄스 조사 후 상기 제 2 RF 펄스 조사 전, 위상 부호화(Phase Encoding)를 위한 경사자장을 상기 대상체에 인가하는 경사자장 형성부; 를 더 포함할 수 있다.In addition, after the first RF pulse irradiation, before the second RF pulse irradiation, the gradient magnetic field forming unit for applying a gradient magnetic field for phase encoding (Phase Encoding) to the object; It may further include.
또한, 상기 영상 처리부는, 상기 추적 에코 성분의 주파수 성분 별 무게 중심을 이용하여 상기 대상체의 움직임 정보를 획득할 수 있다.The image processor may acquire the motion information of the object by using the center of gravity for each frequency component of the tracking echo component.
또한, 상기 영상 처리부는, 상기 움직임 정보에 의해 결정된 유효 범위 내에 속하는 상기 동기화된 k-공간 데이터를 추출하고, 상기 추출된 k-공간 데이터에서 상기 추적 에코 성분을 제거할 수 있다.The image processor may extract the synchronized k-spatial data that falls within the valid range determined by the motion information, and may remove the tracking echo component from the extracted k-spatial data.
또한, 상기 영상 처리부는, 상기 주기마다 반복하여 조사된 상기 제 1 RF 펄스 및 상기 제 2 RF 펄스에 의해 상기 k-공간이 복수 개 구성된 경우, 상기 복수의 k-공간에서 추출된 상기 k-공간 데이터 중 동일 위상에서 획득된 데이터를 누적하여 하나의 k-공간을 재구성하고, 상기 재구성된 하나의 k-공간의 데이터에서 상기 추적 에코 성분을 제거할 수 있다.The image processing unit may further include k-spaces extracted from the plurality of k-spaces when a plurality of k-spaces are configured by the first RF pulse and the second RF pulses irradiated repeatedly for each period. Data obtained in the same phase among the data may be accumulated to reconstruct one k-space, and the tracking echo component may be removed from the reconstructed one k-space data.
또한, 상기 영상 처리부는, 상기 동기화된 k-공간 데이터 중 미리 정해진 기준 주파수 이상의 주파수 성분을 이용하여 상기 추적 에코 성분의 상기 고유 벡터를 획득할 수 있다.The image processor may acquire the eigenvector of the tracking echo component using a frequency component equal to or greater than a predetermined reference frequency among the synchronized k-spatial data.
또한, 상기 영상 처리부는, 상기 추적 에코 성분의 상기 고유 벡터에 상기 동기화된 k-공간 데이터를 사영(Projection)시켜, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거할 수 있다.The image processor may remove the tracking echo component from the synchronized k-spatial data by projecting the synchronized k-spatial data to the eigenvector of the tracking echo component.
또한, 상기 영상 처리부는, 상기 추적 에코 성분이 제거된 상기 k-공간 데이터를 병렬 영상(Parallel Imaging) 방법을 통해 복원하고, 상기 복원된 k-공간 데이터를 이용하여 상기 자기공명영상을 생성할 수 있다.The image processor may restore the k-spatial data from which the tracking echo component has been removed through a parallel imaging method, and generate the magnetic resonance image using the restored k-spatial data. have.
일 실시예에 따른 자기공명영상장치의 제어방법은, 주기마다 대상체의 제 1 단면에 대한 제 1 RF 펄스 및 상기 대상체의 제 2 단면에 대한 제 2 RF 펄스를 조사하는 단계; 상기 제 1 RF 펄스에 대응하여 생성된 영상 에코 성분 및 상기 제 2 RF 펄스에 대응하여 생성된 추적 에코 성분을 포함하는 RF 에코 신호를 수신하는 단계; 상기 수신된 RF 에코 신호에 기초하여 k-공간을 구성하는 단계; 상기 추적 에코 성분으로부터 획득된 움직임 정보에 상기 k-공간의 데이터를 동기화하는 단계; 상기 추적 에코 성분의 고유 벡터(Eigen Vector)를 이용하여 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 단계; 상기 추적 에코 성분이 제거된 상기 k-공간 데이터를 이용하여 자기공명영상을 생성하는 단계; 및 상기 생성된 자기공명영상을 표시하는 단계; 를 포함할 수 있다.In another embodiment, a method of controlling a magnetic resonance imaging apparatus includes irradiating a first RF pulse with respect to a first cross section of an object and a second RF pulse with respect to a second cross section of an object at each cycle; Receiving an RF echo signal comprising an image echo component generated in response to the first RF pulse and a tracking echo component generated in response to the second RF pulse; Constructing k-space based on the received RF echo signal; Synchronizing the k-space data with motion information obtained from the tracking echo component; Removing the tracking echo component from the synchronized k-spatial data using an eigenvector of the tracking echo component; Generating a magnetic resonance image using the k-spatial data from which the tracking echo component has been removed; And displaying the generated magnetic resonance image. It may include.
또한, 상기 제 1 RF 펄스 및 상기 제 2 RF 펄스를 조사하는 단계는, 인접한 상기 주기의 상기 제 2 RF 펄스 위상이 서로 반대가 되도록, 상기 제 2 RF 펄스를 조사할 수 있다.In the irradiating of the first RF pulse and the second RF pulse, the second RF pulse may be irradiated such that the second RF pulse phases of the adjacent periods are opposite to each other.
또한, 상기 주기마다 상기 제 1 RF 펄스 조사 후 상기 제 2 RF 펄스 조사 전, 위상 부호화(Phase Encoding)를 위한 경사자장을 상기 대상체에 인가하는 단계; 를 더 포함할 수 있다.The method may further include applying a gradient magnetic field for phase encoding to the object after the first RF pulse irradiation and before the second RF pulse irradiation for each period; It may further include.
또한, 상기 움직임 정보에 상기 k-공간 데이터를 동기화하는 단계는, 상기 추적 에코 성분의 주파수 성분 별 무게 중심을 이용하여 상기 대상체의 움직임 정보를 획득하고, 상기 획득된 움직임 정보에 상기 k-공간 데이터를 동기화할 수 있다.The synchronizing of the k-spatial data with the motion information may include obtaining motion information of the object by using a center of gravity for each frequency component of the tracking echo component, and obtaining the k-spatial data from the obtained motion information. Can be synchronized.
또한, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 단계는, 상기 움직임 정보에 의해 결정된 유효 범위 내에 속하는 상기 동기화된 k-공간 데이터를 추출하는 단계; 및 상기 추출된 k-공간 데이터에서 상기 추적 에코 성분을 제거하는 단계; 를 포함할 수 있다.In addition, removing the tracking echo component from the synchronized k-spatial data includes: extracting the synchronized k-spatial data that falls within an effective range determined by the motion information; And removing the tracking echo component from the extracted k-spatial data; It may include.
또한, 상기 추출된 k-공간 데이터에서 상기 추적 에코 성분을 제거하는 단계는, 상기 주기마다 반복하여 조사된 상기 제 1 RF 펄스 및 상기 제 2 RF 펄스에 의해 상기 k-공간이 복수 개 구성된 경우, 상기 복수의 k-공간에서 추출된 상기 k-공간 데이터 중 동일 위상에서 획득된 데이터들을 누적하여 하나의 k-공간을 재구성하는 단계; 및 상기 재구성된 하나의 k-공간의 데이터에서 상기 추적 에코 성분을 제거하는 단계; 를 포함할 수 있다.The removing of the tracking echo component from the extracted k-space data may include: when a plurality of k-spaces are configured by the first RF pulse and the second RF pulse irradiated repeatedly for each period, Reconstructing one k-space by accumulating data acquired in the same phase among the k-space data extracted from the plurality of k-spaces; And removing the tracking echo component from the reconstructed one k-space data; It may include.
또한, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 단계는, 상기 동기화된 k-공간 데이터 중 미리 정해진 기준 주파수 이상의 주파수 성분을 이용하여 상기 추적 에코 성분의 상기 고유 벡터를 획득하고, 상기 획득된 고유 벡터를 이용하여 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거할 수 있다.In addition, removing the tracking echo component from the synchronized k-spatial data may include obtaining the eigenvector of the tracking echo component using a frequency component equal to or greater than a predetermined reference frequency among the synchronized k-spatial data, The tracked echo component may be removed from the synchronized k-spatial data using the obtained eigenvectors.
또한, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 단계는, 상기 추적 에코 성분의 상기 고유 벡터에 상기 동기화된 k-공간 데이터를 사영(Projection)시켜, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거할 수 있다.In addition, removing the tracking echo component from the synchronized k-spatial data may include projecting the synchronized k-spatial data to the eigenvector of the tracking echo component to generate the synchronized k-spatial data. The tracking echo component can be removed from the system.
또한, 상기 자기공명영상을 생성하는 단계는, 상기 추적 에코 성분이 제거된 상기 k-공간 데이터를 병렬 영상(Parallel Imaging) 방법을 통해 복원하고, 상기 복원된 k-공간 데이터를 이용하여 상기 자기공명영상을 생성할 수 있다.The generating of the magnetic resonance image may include restoring the k-spatial data from which the tracking echo component has been removed through a parallel imaging method, and using the restored k-spatial data. An image can be generated.
일 측면에 따른 자기공명영상장치, 및 그 제어방법에 의하면, 주기마다 조사된 RF 펄스에 의해 영상 정보와 움직임 정보가 함께 포함된 RF 에코 펄스를 수신하므로, 자기공명영상 획득 시간이 단축될 수 있다. 또한, 영상 정보와 움직임 정보를 분리 획득하지 않으므로, 영상 정보의 정상상태(Steady State)를 유지할 수 있다.According to a magnetic resonance imaging apparatus and a control method thereof according to an aspect, since an RF echo pulse including both image information and motion information is received by RF pulses irradiated every cycle, the magnetic resonance image acquisition time may be shortened. . In addition, since image information and motion information are not separately obtained, a steady state of the image information may be maintained.
도 1은 MRI 시스템의 개략도이다.1 is a schematic diagram of an MRI system.
도 2는 일 실시예에 따른 자기공명영상장치의 시퀀스 다이어그램이다.2 is a sequence diagram of a magnetic resonance imaging apparatus according to an exemplary embodiment.
도 3은 일 실시예에 따른 자기공명영상장치에 의해 촬영된 k-공간의 영상이다.3 is an image of a k-space taken by a magnetic resonance imaging apparatus according to an exemplary embodiment.
도 4는 일 실시예에 따른 자기공명영상장치에 의해 촬영된 자기공명영상이다.4 is a magnetic resonance image taken by the magnetic resonance imaging apparatus according to an embodiment.
도 5는 일 실시예에 따른 자기공명영상장치가 가중치 계수를 탐색하는 방법을 설명하기 위한 도면이다.5 is a diagram for describing a method of searching for a weighting coefficient by a magnetic resonance imaging apparatus according to an exemplary embodiment.
도 6a는 일 실시예에 따른 자기공명영상장치의 k-공간 데이터의 kx방향으로의 1D 푸리에 변환 영상이고, 도 6b는 일 실시예에 따른 자기공명영상장치의 k-공간 데이터 중 추정된 추적 에코 성분의 kx 방향으로의 1D 푸리에 변환 영상이다.6A illustrates a 1D Fourier transform image of k-spatial data in a kx direction of a magnetic resonance imaging apparatus, and FIG. 6B illustrates an estimated tracking echo of k-spatial data of the magnetic resonance imaging apparatus, according to an exemplary embodiment. It is a 1D Fourier transform image in the kx direction of the component.
도 7 내지 9는 일 실시예에 따른 자기공명영상장치의 추적 에코 성분을 제거하는 방법을 설명하기 위한 도면이다.7 to 9 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus, according to an exemplary embodiment.
도 10 내지 12는 다른 실시예에 따른 자기공명영상장치의 추적 에코 성분을 제거하는 방법을 설명하기 위한 도면이다. 도 13는 일 실시예에 따른 자기공명영상장치 제어방법의 흐름도이다.10 to 12 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus according to another exemplary embodiment. 13 is a flowchart of a method of controlling a magnetic resonance imaging apparatus, according to an exemplary embodiment.
본 명세서는 본 발명의 권리범위를 명확히 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 실시할 수 있도록, 본 발명의 원리를 설명하고, 실시예들을 개시한다. 개시된 실시예들은 다양한 형태로 구현될 수 있다. The present specification clarifies the scope of the present invention, describes the principles of the present invention, and discloses embodiments so that those skilled in the art can carry out the present invention. The disclosed embodiments can be implemented in various forms.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 명세서가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 '부'(part, portion)라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부'가 하나의 요소(unit, element)로 구현되거나, 하나의 '부'가 복수의 요소들을 포함하는 것도 가능하다. Like reference numerals refer to like elements throughout. The present specification does not describe all elements of the embodiments, and overlaps between general contents or embodiments in the technical field to which the present invention belongs. As used herein, the term 'part' may be implemented in software or hardware. Depending on the embodiments, a plurality of 'parts' may be embodied as one unit or one' It is also possible for a subsection to include a plurality of elements.
본 명세서에서 '대상체(object)'는 촬영의 대상이 되는 것으로서, 사람, 동물, 또는 그 일부를 포함할 수 있다. 예를 들어, 대상체는 신체의 일부(장기 또는 기관 등; organ) 또는 팬텀(phantom) 등을 포함할 수 있다.In the present specification, an 'object' is an object to be photographed, and may include a person, an animal, or a part thereof. For example, the subject may comprise part of the body (organ or organ; organ) or phantom or the like.
이하 첨부된 도면들을 참고하여 본 발명의 작용 원리 및 실시예들에 대해 설명한다.Hereinafter, the working principle and the embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 MRI 시스템의 개략도이다.1 is a schematic diagram of an MRI system.
MRI 시스템은 자기 공명(magnetic resonance, MR) 신호를 획득하고, 획득된 자기 공명 신호를 영상으로 재구성할 수 있다. 자기 공명 신호는 대상체로부터 방사되는 RF 신호를 의미할 수 있다.The MRI system may acquire a magnetic resonance (MR) signal and reconstruct the acquired magnetic resonance signal into an image. The magnetic resonance signal may refer to an RF signal radiated from the object.
MRI 시스템은 주자석이 정자장(static magnetic field)을 형성하여, 정자장 속에 위치한 대상체의 특정 원자핵의 자기 쌍극자 모멘트 방향을 정자장 방향으로 정렬시킬 수 있다. 경사자장 코일은 정자장에 경사 신호를 인가하여, 경사자장을 형성시켜, 대상체의 부위 별로 공명 주파수를 다르게 유도할 수 있다.In an MRI system, a main magnet forms a static magnetic field, and the magnetic dipole moment direction of a specific atomic nucleus of an object located in the static field may be aligned in the direction of the static field. The gradient magnetic field coil may apply an inclination signal to the static magnetic field to form a gradient magnetic field to induce a resonance frequency for each part of the object.
RF 코일부는 영상 획득을 원하는 부위의 공명 주파수에 맞추어 RF 펄스를 조사할 수 있다. 또한, RF 코일부는 경사자장이 형성됨에 따라, 대상체의 여러 부위로부터 방사되는 서로 다른 공명 주파수의 자기공명신호(이하 RF 에코 신호라 함)들을 수신할 수 있다. 이러한 단계를 통해 MRI 시스템은 영상 복원 기법을 이용하여 RF 에코 신호로부터 영상을 획득한다.The RF coil unit may radiate an RF pulse according to a resonance frequency of a portion of which an image is to be acquired. In addition, as the gradient coil is formed, the RF coil unit may receive magnetic resonance signals of different resonance frequencies (hereinafter referred to as RF echo signals) emitted from various parts of the object. In this step, the MRI system acquires an image from the RF echo signal using an image reconstruction technique.
이를 위해, 도 1을 참조하면, MRI 시스템(1)은 오퍼레이팅부(10), 제어부(30) 및 스캐너(50)를 포함할 수 있다. 여기서, 제어부(30)는 도 1에 도시된 바와 같이 독립적으로 구현될 수 있다. 또는, 제어부(30)는 복수 개의 구성 요소로 분리되어, MRI 시스템(1)의 각 구성 요소에 포함될 수도 있다. 이하에서는 각 구성 요소에 대해 구체적으로 살펴보도록 한다.To this end, referring to FIG. 1, the MRI system 1 may include an operating unit 10, a controller 30, and a scanner 50. Here, the controller 30 may be independently implemented as shown in FIG. 1. Alternatively, the controller 30 may be divided into a plurality of components and included in each component of the MRI system 1. Hereinafter, each component will be described in detail.
스캐너(50)는 내부 공간이 비어 있어, 대상체가 삽입될 수 있는 형상(예컨대, 보어(bore) 형상)으로 구현될 수 있다. 스캐너(50)의 내부 공간에는 정자장 및 경사자장이 형성되며, RF 신호가 조사될 수 있다.The scanner 50 may be embodied in a shape (eg, a bore shape) in which an object may be inserted, so that the internal space is empty. Static and gradient magnetic fields are formed in the internal space of the scanner 50, and RF signals may be irradiated.
스캐너(50)는 정자장 형성부(51), 경사자장 형성부(52), RF 코일부(53), 테이블부(55) 및 디스플레이부(56)를 포함할 수 있다. 정자장 형성부(51)는 대상체에 포함된 원자핵들의 자기 쌍극자 모멘트의 방향을 정자장 방향으로 정렬하기 위한 정자장을 형성할 수 있다. 정자장 형성부(51)는 영구 자석으로 구현되거나 또는 냉각 코일을 이용한 초전도 자석으로 구현될 수도 있다.The scanner 50 may include a static magnetic field forming unit 51, a gradient magnetic field forming unit 52, an RF coil unit 53, a table unit 55, and a display unit 56. The static field forming unit 51 may form a static field for aligning the directions of the magnetic dipole moments of the nuclei included in the object in the direction of the static field. The static field forming unit 51 may be implemented as a permanent magnet or a superconducting magnet using a cooling coil.
경사자장 형성부(52)는 제어부(30)와 연결될 수 있다. 제어부(30)로부터 전송 받은 제어신호에 따라 정자장에 경사를 인가하여, 경사자장을 형성할 수 있다. 경사자장 형성부(52)는 서로 직교하는 X축, Y축 및 Z축 방향의 경사자장을 형성하는 X, Y, Z 코일을 포함하며, 대상체의 부위 별로 공명 주파수를 서로 다르게 유도할 수 있도록 촬영 위치에 맞게 경사 신호를 발생 시킬 수 있다.The gradient magnetic field forming unit 52 may be connected to the control unit 30. Inclination is applied to the static magnetic field according to the control signal received from the controller 30 to form a gradient magnetic field. The gradient magnetic field forming unit 52 includes X, Y, and Z coils that form gradient magnetic fields in the X-, Y-, and Z-axis directions that are orthogonal to each other, and photographed to induce resonance frequencies differently for each part of the object. The tilt signal can be generated according to the position.
RF 코일부(53)는 제어부(30)와 연결되어, 제어부(30)로부터 전송 받은 제어신호에 따라 대상체에 RF 펄스를 조사하고, 대상체로부터 방출되는 RF 에코 펄스를 수신할 수 있다. RF 코일부(53)는 세차 운동을 하는 원자핵을 향하여 세차운동의 주파수와 동일한 주파수의 RF 신호를 대상체에게 전송한 후 RF 펄스의 전송을 중단하고, 대상체로부터 방출되는 RF 에코 펄스를 수신할 수 있다.The RF coil unit 53 may be connected to the controller 30 to irradiate an RF pulse to the object according to a control signal received from the controller 30 and receive an RF echo pulse emitted from the object. The RF coil unit 53 may transmit an RF signal having a frequency equal to the frequency of the precession toward the atomic nucleus during the precession to the object, stop transmitting the RF pulse, and receive the RF echo pulse emitted from the object. .
RF 코일부(53)는 원자핵의 종류에 대응하는 무선 주파수를 갖는 전자파를 생성하는 송신 RF 코일과, 원자핵으로부터 방사된 전자파를 수신하는 수신 RF 코일로서 각각 구현되거나 또는 송/수신 기능을 함께 갖는 하나의 RF 송수신 코일로서 구현될 수도 있다. 또한, RF 코일부(53)외에, 별도의 코일이 대상체에 장착될 수도 있다. 예를 들어, 촬영 부위 또는 장착 부위에 따라, 헤드 코일(Head coil), 척추 코일(spine coil), 몸통 코일(torso coil), 무릎 코일(knee coil) 등이 별도의 코일로 이용될 수 있다.The RF coil unit 53 is implemented as a transmitting RF coil for generating electromagnetic waves having a radio frequency corresponding to the type of atomic nucleus and a receiving RF coil for receiving electromagnetic waves radiated from the atomic nucleus, respectively, or having a transmission / reception function together. May be implemented as an RF transmit / receive coil. In addition, in addition to the RF coil unit 53, a separate coil may be mounted on the object. For example, a head coil, a spine coil, a torso coil, a knee coil, or the like may be used as a separate coil according to a photographing part or a mounting part.
스캐너(50)의 외측 및/또는 내측에는 디스플레이부(56)가 마련될 수 있다. 디스플레이부(56)는 제어부(30)에 의해 제어되어, 사용자 또는 대상체에게 의료 영상 촬영과 관련된 정보를 제공할 수 있다.The display unit 56 may be provided outside and / or inside the scanner 50. The display unit 56 may be controlled by the controller 30 to provide information related to medical image capturing to a user or an object.
또한, 스캐너(50)에는 대상체의 상태에 관한 모니터링정보를 획득하여 전달하는 대상체 모니터링정보 획득부가 마련될 수 있다. 예를 들어, 대상체 모니터링정보 획득부(미도시)는 대상체의 움직임, 위치 등을 촬영하는 카메라(미도시), 대상체의 호흡을 측정하기 위한 호흡 측정기(미도시), 대상체의 심전도를 측정하기 위한 ECG 측정기(미도시), 또는 대상체의 체온을 측정하기 위한 체온 측정기(미도시)로부터 대상체에 관한 모니터링정보를 획득하여 제어부(30)로 전달할 수 있다. 이에 따라, 제어부(30)는 대상체에 관한 모니터링정보를 이용하여 스캐너(50)의 동작을 제어할 수 있다. 이하에서는 제어부(30)에 대해 살펴보도록 한다.In addition, the scanner 50 may be provided with an object monitoring information acquisition unit for obtaining and delivering monitoring information on the state of the object. For example, the object monitoring information acquisition unit (not shown) may include a camera (not shown) for photographing the movement and position of the object, a respiratory meter (not shown) for measuring breathing of the object, and an electrocardiogram for measuring the object. The monitoring information about the object may be obtained from the ECG measuring device (not shown) or the body temperature measuring device (not shown) for measuring the body temperature of the object and transferred to the controller 30. Accordingly, the controller 30 may control the operation of the scanner 50 by using the monitoring information about the object. Hereinafter, the controller 30 will be described.
제어부(30)는 스캐너(50)의 전반적인 동작을 제어할 수 있다. The controller 30 may control the overall operation of the scanner 50.
제어부(30)는 스캐너(50) 내부에서 형성되는 신호들의 시퀀스를 제어할 수 있다. 제어부(30)는 오퍼레이팅부(10)로부터 수신받은 펄스 시퀀스(pulse sequence) 또는 설계한 펄스 시퀀스에 따라 경사자장 형성부(52) 및 RF 코일부(53)를 제어할 수 있다.The controller 30 may control a sequence of signals formed in the scanner 50. The controller 30 may control the gradient magnetic field forming unit 52 and the RF coil unit 53 according to a pulse sequence received from the operating unit 10 or a designed pulse sequence.
펄스 시퀀스란, 경사자장 형성부(52), 및 RF 코일부(53)를 제어하기 위해 필요한 모든 정보를 포함하며, 예를 들어 경사자장 형성부(52)에 인가하는 펄스(pulse) 신호의 강도, 인가 지속시간, 인가 타이밍 등에 관한 정보 등을 포함할 수 있다.The pulse sequence includes all the information necessary for controlling the gradient magnetic field forming unit 52 and the RF coil unit 53, for example, the intensity of a pulse signal applied to the gradient magnetic field forming unit 52. , Application duration, application timing, and the like.
제어부(30)는 펄스 시퀀스에 따라 경사 파형, 즉 전류 펄스를 발생시키는 파형 발생기(미도시), 및 발생된 전류 펄스를 증폭시켜 경사자장 형성부(52)로 전달하는 경사 증폭기(미도시)를 제어하여, 경사자장 형성부(52)의 경사자장 형성을 제어할 수 있다.The controller 30 may include a waveform generator (not shown) for generating a gradient waveform, that is, a current pulse according to a pulse sequence, and a gradient amplifier (not shown) for amplifying the generated current pulse and transferring the gradient to the gradient magnetic field forming unit 52. By controlling, the gradient magnetic field formation of the gradient magnetic field forming unit 52 can be controlled.
제어부(30)는 RF 코일부(53)의 동작을 제어할 수 있다. 예를 들어, 제어부(30)는 공명 주파수의 RF 펄스를 RF 코일부(53)에 의해 조사할 수 있고, RF 코일부(53)가 수신한 RF 에코 신호를 수신할 수 있다. 이때, 제어부(30)는 제어신호를 통해 송수신 방향을 조절할 수 있는 스위치(예컨대, T/R 스위치)의 동작을 제어하여, 동작 모드에 따라 RF 펄스의 조사 및 자기공명신호의 수신을 조절할 수 있다.The controller 30 may control the operation of the RF coil unit 53. For example, the controller 30 may irradiate an RF pulse having a resonance frequency by the RF coil unit 53, and receive an RF echo signal received by the RF coil unit 53. In this case, the controller 30 may control the operation of a switch (for example, a T / R switch) capable of adjusting a transmission / reception direction through a control signal, and may adjust the irradiation of the RF pulse and the reception of the magnetic resonance signal according to the operation mode. .
제어부(30)는 대상체가 위치하는 테이블부(55)의 이동을 제어할 수 있다. 촬영이 수행되기 전에, 제어부(30)는 대상체의 촬영 부위에 맞추어, 테이블부(55)를 미리 이동시킬 수 있다.The controller 30 may control the movement of the table unit 55 in which the object is located. Before the photographing is performed, the controller 30 may move the table 55 in advance in accordance with the photographed portion of the object.
제어부(30)는 디스플레이부(56)를 제어할 수 있다. 예를 들어, 제어부(30)는 제어신호를 통해 디스플레이부(56)의 온/오프 또는 디스플레이부(56)를 통해 표시되는 화면 등을 제어할 수 있다. The controller 30 may control the display 56. For example, the controller 30 may control on / off of the display 56 or a screen displayed through the display 56 through a control signal.
제어부(30)는 MRI 시스템(1) 내 구성요소들의 동작을 제어하기 위한 알고리즘, 프로그램 형태의 데이터를 저장하는 메모리(미도시), 및 메모리에 저장된 데이터를 이용하여 전술한 동작을 수행하는 프로세서(미도시)로 구현될 수 있다. 이때, 메모리와 프로세서는 각각 별개의 칩으로 구현될 수 있다. 또는, 메모리와 프로세서는 단일 칩으로 구현될 수도 있다.The controller 30 may include an algorithm for controlling the operation of components in the MRI system 1, a memory for storing data in a program form (not shown), and a processor for performing the above-described operations using data stored in the memory ( Not shown). In this case, the memory and the processor may be implemented as separate chips. Alternatively, the memory and the processor may be implemented in a single chip.
오퍼레이팅부(10)는 MRI 시스템(1)의 전반적인 동작을 제어할 수 있다. 오퍼레이팅부(10)는 영상 처리부(11), 입력부(12) 및 출력부(13)를 포함할 수 있다.The operating unit 10 may control the overall operation of the MRI system 1. The operating unit 10 may include an image processor 11, an input unit 12, and an output unit 13.
영상 처리부(11)는 메모리를 이용하여 제어부(30)로부터 수신 받은 자기공명신호를 저장하고, 이미지 프로세서를 이용하여 영상 복원 기법을 적용함으로써, 저장한 자기공명신호로부터 대상체에 대한 영상 데이터를 생성할 수 있다.The image processor 11 may store the MR signals received from the controller 30 using a memory, and generate image data of the object from the stored MR signals by applying an image reconstruction technique using the image processor. Can be.
예를 들어, 영상 처리부(11)는 메모리의 k-공간(예컨대, 푸리에(Fourier) 공간 또는 주파수 공간이라고도 지칭됨)에 디지털 데이터를 채워 k-공간 데이터가 완성되면, 이미지 프로세서를 통해 다양한 영상 복원기법을 적용하여(예컨대, k-공간 데이터를 역 푸리에 변환하여) k-공간 데이터를 영상 데이터로 복원할 수 있다.For example, the image processor 11 may reconstruct various images through the image processor when the k-space data is completed by filling digital data in k-space (eg, also referred to as Fourier space or frequency space) of the memory. The technique can be applied (eg, by inverse Fourier transform of k-spatial data) to reconstruct k-spatial data into image data.
또한, 영상 처리부(11)가 자기공명신호에 대해 적용하는 각종 신호 처리는 병렬적으로 수행될 수 있다. 예를 들어, 다채널 RF 코일에 의해 수신되는 복수의 자기공명신호를 병렬적으로 신호 처리하여 영상 데이터로 복원할 수도 있다. 한편, 영상 처리부(11)는 복원한 영상 데이터를 메모리에 저장하거나 또는 후술할 바와 같이 제어부(30)가 통신부(60)를 통해 외부의 서버에 저장할 수 있다. In addition, various signal processings applied by the image processor 11 to the magnetic resonance signal may be performed in parallel. For example, a plurality of magnetic resonance signals received by the multi-channel RF coil may be signal-processed in parallel to restore the image data. The image processor 11 may store the restored image data in a memory or the controller 30 may store the restored image data in an external server through the communication unit 60.
입력부(12)는 사용자로부터 MRI 시스템(1)의 전반적인 동작에 관한 제어 명령을 입력 받을 수 있다. 예를 들어, 입력부(12)는 사용자로부터 대상체 정보, 파라미터 정보, 스캔 조건, 펄스 시퀀스에 관한 정보 등을 입력 받을 수 있다. 입력부(12)는 키보드, 마우스, 트랙볼, 음성 인식부, 제스처 인식부, 터치 스크린 등으로 구현될 수 있다.The input unit 12 may receive a control command regarding the overall operation of the MRI system 1 from the user. For example, the input unit 12 may receive object information, parameter information, scan conditions, information about a pulse sequence, and the like from a user. The input unit 12 may be implemented as a keyboard, a mouse, a trackball, a voice recognition unit, a gesture recognition unit, a touch screen, or the like.
출력부(13)는 영상 처리부(11)에 의해 생성된 영상 데이터를 출력할 수 있다. 또한, 출력부(13)는 사용자가 MRI 시스템(1)에 관한 제어 명령을 입력 받을 수 있도록 구성된 유저 인터페이스(User Interface, UI)를 출력할 수 있다. 출력부(13)는 스피커, 프린터, 디스플레이 등으로 구현될 수 다. The output unit 13 may output image data generated by the image processor 11. In addition, the output unit 13 may output a user interface (UI) configured to allow a user to receive a control command regarding the MRI system 1. The output unit 13 may be implemented as a speaker, a printer, a display, or the like.
한편, 도 1에서는 오퍼레이팅부(10), 제어부(30)를 서로 분리된 객체로 도시하였으나, 전술한 바와 같이, 하나의 기기에 함께 포함될 수도 있다. 또한, 오퍼레이팅부(10), 및 제어부(30) 각각에 의해 수행되는 프로세스들이 다른 객체에서 수행될 수도 있다. 예를 들어, 영상 처리부(11)는, 제어부(30)에서 수신한 자기공명신호를 디지털 신호로 변환하거나 또는, 제어부(30)가 직접 변환할 수도 있다.In FIG. 1, the operating unit 10 and the control unit 30 are illustrated as separate objects from each other, but as described above, may be included together in one device. In addition, processes performed by each of the operating unit 10 and the control unit 30 may be performed in another object. For example, the image processor 11 may convert the magnetic resonance signal received by the controller 30 into a digital signal, or the controller 30 may directly convert the magnetic resonance signal.
MRI 시스템(1)은 통신부(60)를 포함하며, 통신부(60)를 통해 외부 장치(미도시)(예를 들면, 서버, 의료 장치, 휴대 장치(스마트폰, 태블릿 PC, 웨어러블 기기 등))와 연결할 수 있다.The MRI system 1 includes a communication unit 60, and through the communication unit 60, an external device (not shown) (eg, a server, a medical device, a portable device (smartphone, tablet PC, wearable device, etc.)). Can be connected with
통신부(60)는 외부 장치와 통신을 가능하게 하는 하나 이상의 구성 요소를 포함할 수 있으며, 예를 들어 근거리 통신 모듈(미도시), 유선 통신 모듈(61) 및 무선 통신 모듈(62) 중 적어도 하나를 포함할 수 있다.The communication unit 60 may include one or more components that enable communication with an external device, for example, at least one of a short range communication module (not shown), a wired communication module 61, and a wireless communication module 62. It may include.
한편, 상술한 자기공명영상장치(1)에 의한 자기공명촬영은 비교적 긴 시간이 소요될 수 있는데, 이 시간 동안 대상체의 움직임(예를 들어, 환자의 심장 박동, 호흡 등)이 존재하면, 최종적으로 획득되는 자기공명영상 신호에는 아티팩트(Artifact)가 발생할 수 있다. 따라서, 움직임이 발생될 가능성이 높은 대상체의 경우에는, 자기공명영상촬영 시 영상에 대한 정보 이외에 움직임에 대한 정보를 추가적으로 획득할 필요가 있다.On the other hand, magnetic resonance imaging by the above-described magnetic resonance imaging apparatus 1 may take a relatively long time, if the movement of the subject (for example, the heart rate, breathing, etc. of the patient) during this time, finally Artifacts may occur in the acquired MRI signal. Therefore, in the case of an object having a high possibility of motion, it is necessary to additionally acquire information about the motion in addition to the information on the image when the MRI is taken.
만약, 영상 정보 획득과 별개로, 움직임 정보를 위한 RF 펄스를 조사하여 내비게이터 에코(Navigator Echo) 신호를 획득하는 경우, 영상 정보와 움직임 정보를 나누어 획득하므로 전체 촬영 시간이 증가할 수 있다. 또한, 영상 정보를 획득하기 위한 촬영 중간에 움직임 정보를 획득하기 위한 촬영이 수반되므로, 심장 영역에 대한 자기공명촬영 시 많이 이용되는 정상 상태(Steady State) 영상 기법을 적용할 수 없다.If the navigator echo signal is acquired by irradiating an RF pulse for the motion information separately from acquiring the image information, the total photographing time may be increased because the image information and the motion information are obtained by dividing the navigator echo signal. In addition, since a photographing for acquiring motion information is involved in the middle of photographing for acquiring image information, a steady state imaging technique which is frequently used in magnetic resonance imaging of a heart region cannot be applied.
따라서, 개시된 실시예에 따른 자기공명영상장치(1) 및 그 제어방법은 주기 마다 대상체의 영상 정보 및 움직임 정보를 포함하는 RF 에코 신호를 수신하고, 수신된 RF 에코 신호로부터 움직임 정보가 제거된 자기공명 영상을 생성할 수 있다.Accordingly, the magnetic resonance imaging apparatus 1 and the control method according to the disclosed embodiment receive an RF echo signal including the image information and the motion information of the object at each cycle and remove the motion information from the received RF echo signal. Resonance images can be generated.
도 2는 일 실시예에 따른 자기공명영상장치의 시퀀스 다이어그램이고, 도 3은 일 실시예에 따른 자기공명영상장치에 의해 촬영된 k-공간의 영상이고, 도 4는 일 실시예에 따른 자기공명영상장치에 의해 촬영된 자기공명영상이다. 도 2에서 RF는 RF 코일부(53)에 의해 조사되는 RF 펄스의 시퀀스를 의미하고, SL은 경사자장 형성부(52)가 인가하는 Z축 경사자장의 시퀀스를 의미하고, RE는 경사자장 형성부(52)가 인가하는 Y축 경사자장의 시퀀스를 의미하고, RO는 RF 코일부(53)에 의해 수신되는 RF 에코 신호의 시퀀스를 의미할 수 있다.2 is a sequence diagram of a magnetic resonance imaging apparatus according to an embodiment, FIG. 3 is an image of a k-space photographed by the magnetic resonance imaging apparatus according to an embodiment, and FIG. 4 is a magnetic resonance according to an embodiment. Magnetic resonance image taken by the imaging device. In FIG. 2, RF denotes a sequence of RF pulses radiated by the RF coil unit 53, SL denotes a sequence of Z-axis gradient magnetic fields applied by the gradient magnetic field forming unit 52, and RE denotes gradient magnetic field formation. It may mean a sequence of the Y-axis gradient magnetic field applied by the unit 52, RO may mean a sequence of the RF echo signal received by the RF coil unit 53.
도 2를 참조하면, RF 코일부(53)는 주기 마다 α˚의 플립 각도(Flip Angle)를 가지는 제 1 RF 펄스 및 β˚의 플립 각도를 가지는 제 2 RF 펄스를 조사할 수 있다. 여기서, 제 1 RF 펄스는 영상 정보를 얻기 위한 RF 펄스이고, 제 2 RF 펄스는 움직임 정보를 얻기 위한 RF 펄스일 수 있다. 특히, 제 2 RF 펄스는 주기마다 위상이 반대가 될 수 있다. 즉, 제 1 주기에서의 제 2 RF 펄스 위상이 0˚ 였다면, 제 2 주기에서의 RF 펄스 위상은 180˚이 되고, 제 3 주기에서의 RF 펄스 위상은 다시 0˚가 될 수 있다. 이는 후술할 추적 에코 성분을 용이하게 제거하기 위한 것으로, 자세한 설명은 후술한다.Referring to FIG. 2, the RF coil unit 53 may radiate a first RF pulse having a flip angle of α ° and a second RF pulse having a flip angle of β ° every cycle. Here, the first RF pulse may be an RF pulse for obtaining image information, and the second RF pulse may be an RF pulse for obtaining motion information. In particular, the second RF pulse may be reversed in phase every period. That is, if the second RF pulse phase in the first period is 0 degrees, the RF pulse phase in the second period may be 180 degrees, and the RF pulse phase in the third period may be 0 degrees again. This is for easily removing the tracking echo component to be described later, which will be described later.
따라서, 제 1 RF 펄스가 조사될 때, 경사자장 형성부(52)는 영상화를 원하는 관심 단면 S1이 선택되도록 Z축 경사자장을 대상체에 인가할 수 있다. 또한, 제 2 RF 펄스가 조사될 때, 경사자장 형성부(52)는 움직임 발생이 예상되는 관심 단면 S2가 선택되도록 Z축 경사자장을 대상체에 인가할 수 있다. 이 때, 관심 단면 S2가 심장과 호흡의 움직임 정보를 모두 포함할 수 있도록, 움직임 발생이 예상되는 관심 단면 S2는 심장 영역과 간 영역을 지나는 평면으로 설정될 수 있다.Therefore, when the first RF pulse is irradiated, the gradient magnetic field forming unit 52 may apply the Z-axis gradient magnetic field to the object so that the cross section S1 of interest is selected. In addition, when the second RF pulse is irradiated, the gradient magnetic field forming unit 52 may apply the Z-axis gradient magnetic field to the object such that the cross-section S2 of which movement is expected to be selected is selected. In this case, the cross-section of interest S2, which is expected to generate a movement, may be set as a plane passing through the heart region and the liver region so that the cross-section of interest S2 may include both heart and respiration movement information.
한편, 제 1 RF 펄스를 통해 영상 정보를 얻기 위해, 제 1 RF 펄스의 조사 이후 시점에 경사자장 형성부(52)는 위상 부호화(Phase Encoding)를 위한 Y축 경사자장을 대상체에 인가할 수 있다. Meanwhile, in order to obtain image information through the first RF pulse, the gradient magnetic field forming unit 52 may apply a Y-axis gradient magnetic field for phase encoding to the object at a time after the irradiation of the first RF pulse. .
반면, 제 2 RF 펄스는 움직임 정보를 얻는데 그 목적이 있으므로, 제 2 RF 펄스의 조사 이후 시점에 경사자장 형성부(52)에 의한 위상 부호화가 수행되지 않을 수 있다.On the other hand, since the second RF pulse has a purpose to obtain motion information, phase coding by the gradient magnetic field forming unit 52 may not be performed after the irradiation of the second RF pulse.
최종적으로, RF 코일부(53)는 제 1 RF 펄스에 대응하여 생성된 영상 에코 성분(제 1 RF 펄스에 의한 영상 정보를 포함)과 제 2 RF 펄스에 대응하여 생성된 추적 에코 성분(제 2 RF 펄스에 의한 영상 정보 및 움직임 정보를 포함)을 포함하는 하나의 RF 에코 신호를 수신할 수 있다. 즉, 한 주기 내에 조사된 제 1 RF 펄스 및 제 2 RF 펄스에 대응하여, RF 코일부(53)는 하나의 RF 에코 신호를 수신할 수 있다. 따라서, 움직임에 의한 아티팩트가 배제되고 영상 정보로만 구성되는 자기공명영상을 획득하기 위해, 자기공명영상장치(1)는 수신된 RF 에코 신호에서 추적 에코 성분을 제거할 필요가 있다.Finally, the RF coil unit 53 includes an image echo component (including image information generated by the first RF pulse) generated in response to the first RF pulse and a tracking echo component (second second generated in response to the second RF pulse). And a single RF echo signal including image information and motion information generated by the RF pulse. That is, in response to the first RF pulse and the second RF pulse irradiated within one period, the RF coil unit 53 may receive one RF echo signal. Therefore, in order to eliminate the artifacts caused by the movement and to acquire the magnetic resonance image composed only of the image information, the magnetic resonance imaging apparatus 1 needs to remove the tracking echo component from the received RF echo signal.
수신된 RF 에코 신호로부터 추적 에코 성분을 제거하기에 앞서, 영상 처리부(11)는 수신된 RF 에코 신호로부터 움직임 정보를 포함하는 추적 에코 성분을 제거할 수 있다. 먼저, 영상 처리부(11)는 RF 에코 신호를 메모리에 저장함으로써 k-공간을 형성할 수 있다. k-공간은 kx축과 ky축으로 이루어진 2차원 공간일 수 있으며, kx축은 주파수 방향이고, ky축은 위상 방향일 수 있다.Prior to removing the tracking echo component from the received RF echo signal, the image processor 11 may remove the tracking echo component including motion information from the received RF echo signal. First, the image processor 11 may form a k-space by storing an RF echo signal in a memory. The k-space may be a two-dimensional space consisting of the kx axis and the ky axis, the kx axis may be in the frequency direction, and the ky axis may be in the phase direction.
예를 들어, 20개의 서로 다른 Y축 경사자장에 대해 RF 에코 신호를 얻는 경우에는, ky축이 20개의 횡선 즉, 20개의 ky 라인들로 구성될 수 있고 각각의 Y축 경사 자장에 대해 획득된 RF 에코 신호가 하나의 ky 라인을 채울 수 있다. 따라서, 20개의 서로 다른 y축 경사자장에 대해 RF 에코 신호가 모두 얻어지면, 20개의 ky 라인이 모두 채워지면서 하나의 k-공간이 완성될 수 있다.For example, in the case of obtaining an RF echo signal for 20 different Y-axis gradient fields, the ky-axis may consist of 20 transverse lines, or 20 ky lines, obtained for each Y-axis gradient field. The RF echo signal can fill one ky line. Therefore, if all RF echo signals are obtained for 20 different y-axis gradient fields, one k-space can be completed while all 20 ky lines are filled.
영상 처리부(11)는 이렇게 완성된 k-공간의 데이터를 이용하여 자기공명영상을 생성할 수 있다. 도 3 은 상술한 RF 에코 신호에 의해 형성된 k-공간 영상이고, 도 4는 도 3의 k-공간을 구성하는 k-공간 데이터를 이용하여 생성된 자기공명영상이다. 상술한 RF 에코 신호는 영상 에코 성분과 추적 에코 성분을 포함하므로, 이를 기초로 생성된 자기공명신호에는 각각의 에코 성분의 정보가 포함될 수 있다. 도 4에서는 제 1 RF 펄스에 대응하여 생성된 영상 에코 성분의 정보를 나타내는 관심 단면 S1과 제 2 RF 펄스에 대응하여 생성된 추적 에코 성분의 정보를 나타내는 관심 영역 S2가 함께 나타남을 확인할 수 있다.The image processor 11 may generate a magnetic resonance image by using the data of the k-space thus completed. 3 is a k-space image formed by the above-described RF echo signal, and FIG. 4 is a magnetic resonance image generated using k-space data constituting the k-space of FIG. 3. Since the above-described RF echo signal includes an image echo component and a tracking echo component, the magnetic resonance signal generated based on the RF echo signal may include information of each echo component. In FIG. 4, it can be seen that the ROI S1 representing the information of the image echo component generated in response to the first RF pulse and the ROI S2 representing the information of the trace echo component generated in response to the second RF pulse are also displayed.
도 4의 자기공명영상에서는 관심 영역 S2가 일 측면에 나타나는 경우를 예시한다. 이는 주기마다 제 2 RF 펄스의 위상을 반대로 설정한대서 기인하는 것으로, 수신되는 RF 에코 신호의 추적 에코 성분이 영상화되는 과정에서 관심 영역 S2는 위상 차이에 의해 영상의 일측 또는 양측으로 shift 될 수 있다. 그 결과, 관심 영역 S1과 S2가 서로 분리되어 자기공명영상상에 나타나므로, RF 에코 신호로부터 용이하게 추적 에코 성분을 제거할 수 있다.The magnetic resonance image of FIG. 4 illustrates a case in which the region of interest S2 appears on one side. This is caused by reversing the phase of the second RF pulse for each period. In the process of imaging the tracking echo component of the received RF echo signal, the ROI S2 may be shifted to one side or both sides of the image due to the phase difference. As a result, since the ROIs S1 and S2 are separated from each other and appear on the magnetic resonance image, the tracking echo component can be easily removed from the RF echo signal.
상술한 바와 같이, RF 에코 신호가 저장된 k-공간의 데이터에서 추적 에코 성분의 제거 없이 자기공명영상으로 변환할 경우, 자기공명영상 상에 불필요한 관심 영역 S2가 나타날 수 있다. 따라서, 영상처리부는 k-공간 데이터로부터 추적 에코 성분을 먼저 제거한 후, 그 결과를 영상화할 수 있다.As described above, when the RF echo signal is converted into the magnetic resonance image without removing the tracking echo component from the k-space data stored therein, an unnecessary region of interest S2 may appear on the magnetic resonance image. Therefore, the image processor may first remove the tracking echo component from the k-spatial data and then image the result.
추적 에코 성분을 제거하기 위해, 영상 처리부(11)는 <1>추적 에코 성분의 추정, <2>움직임 게이팅(Gating), <3>추적 에코 성분의 제거 의 단계를 수행할 수 있다.In order to remove the tracking echo component, the image processor 11 may perform steps of estimating the <1> tracking echo component, <2> moving gating, and <3> removing the tracking echo component.
먼저 영상 처리부(11)는 <1>추적 에코 성분을 추정할 수 있다. 이 단계에서 영상 처리부(11)는 k-공간 데이터 내의 추적 에코 성분을 추정함으로써, 추적 에코 성분에 포함된 움직임 정보를 추출해 낼 수 있다.First, the image processor 11 may estimate the <1> tracking echo component. In this step, the image processor 11 may extract the motion information included in the tracking echo component by estimating the tracking echo component in the k-spatial data.
구체적으로, 영상 처리부(11)는 Slice-GRAPPA의 수식에 따라 k-공간 데이터로부터 추적 에코 성분을 추정할 수 있으며, 이는 수학식 1과 같다.In detail, the image processor 11 may estimate the tracking echo component from the k-spatial data according to the equation of Slice-GRAPPA.
Figure PCTKR2018001594-appb-M000001
Figure PCTKR2018001594-appb-M000001
여기서, Kj,S1 +S2는 RF 에코 신호에 의해 구성된 k-공간의 데이터이고, Kj,S2는 k-공간 데이터의 추적 에코 성분이고, j, l은 RF 코일부(53)의 Index를 의미하고, b는k-공간의 위치 정보를 의미하고, Nb는 총 위치를 의미하고, n(j, b, l)은 가중치 계수를 의미할 수 있다. Here, K j, S1 + S2 is k-space data configured by the RF echo signal, K j, S2 is the tracking echo component of the k-space data, j, l is the Index of the RF coil unit 53 B may mean location information of k-space, N b may mean total position, and n (j, b, l) may mean a weighting factor.
RF 코일부(53)의 수신 코일은 복수의 채널을 가지므로, 수학식 1은 각각의 수신 코일에서 수신한 k-공간 데이터를 가중합하여 추적 에코 성분에 대한 정보를 추정할 수 있음을 의미할 수 있다.Since the receiving coil of the RF coil unit 53 has a plurality of channels, Equation 1 may mean that information about the tracking echo component may be estimated by weighting k-space data received by each receiving coil. have.
수학식 1을 적용하기 위해, 영상 처리부(11)는 가중치 계수 n(j, b, l)을 탐색할 필요가 있다. 이를 위해, 자기공명영상장치(1)는 최초 제 2 RF 펄스만을 조사하여 k-공간 데이터를 획득한 후, 상술한 방법에 따라 RF 펄스를 조사할 수 있다.In order to apply Equation 1, the image processor 11 needs to search the weight coefficient n (j, b, l). To this end, the magnetic resonance imaging apparatus 1 may obtain only k-spatial data by irradiating only the first RF pulse and then irradiate the RF pulse according to the above-described method.
도 5는 일 실시예에 따른 자기공명영상장치가 가중치 계수를 탐색하는 방법을 설명하기 위한 도면이고, 도 6a는 일 실시예에 따른 자기공명영상장치의 k-공간 데이터의 kx방향으로의 1D 푸리에 변환 영상이고, 도 6b는 일 실시예에 따른 자기공명영상장치의 k-공간 데이터 중 추정된 추적 에코 성분의 kx 방향으로의 1D 푸리에 변환 영상이다. 도 5에서, 그래프는 시간에 따른 대상체의 움직임 커브를 의미하고, M1은 가중치 계수 탐색 구간(바람직하게는, 최초 2 내지 3초 내)이고, M2는 데이터 획득 구간이다.FIG. 5 is a diagram for describing a method of searching a weight coefficient by a magnetic resonance imaging apparatus, and FIG. 6A is a 1D Fourier in kx direction of k-space data of the magnetic resonance imaging apparatus, according to an exemplary embodiment. 6B is a 1D Fourier transform image in the kx direction of an estimated tracking echo component among k-spatial data of the magnetic resonance imaging apparatus according to an exemplary embodiment. In FIG. 5, the graph refers to a motion curve of the object over time, M1 is a weight coefficient search interval (preferably within the first 2 to 3 seconds), and M2 is a data acquisition interval.
상술한 바와 같이, 자기공명영상 촬영이 시작되면 최초에는 제 2 RF 펄스만을 조사하여 추적 에코 성분으로만 구성된 RF 에코 신호가 획득되고, 이후부터는 제 1 RF 펄스 및 제 2 RF 펄스의 조사에 따른 영상 에코 성분 및 추적 에코 성분을 포함하는 RF 에코 신호가 획득될 수 있다. 따라서, 도 5와 같이, 영상 처리부(11)는 가중치 계수 탐색 구간 M1에서 추적 에코 성분으로만 구성된 RF 에코 신호에 따른 k-공간 데이터와 그 다음 주기에서의 영상 에코 성분 및 추적 에코 성분을 포함하는 RF 에코 신호에 따른 k-공간 데이터를 비교함으로써 가중치 계수 n을 탐색할 수 있다.As described above, when magnetic resonance imaging is started, an RF echo signal consisting of only trace echo components is obtained by first irradiating only the second RF pulse, and then, an image according to irradiation of the first RF pulse and the second RF pulse. An RF echo signal can be obtained that includes an echo component and a tracking echo component. Accordingly, as shown in FIG. 5, the image processing unit 11 includes k-spatial data according to an RF echo signal composed only of the tracking echo components in the weight coefficient search interval M1, and an image echo component and a tracking echo component in a subsequent period. The weighting coefficient n can be searched by comparing k-spatial data according to the RF echo signal.
도 5에서는 가중치 계수 탐색 구간 M1의 다양한 위치(도 5에서 X로 표시), 즉 대상체의 다양한 움직임 상태에서 가중치 계수 n을 탐색하는 경우를 예시한다. RF 코일부(53)의 수신 코일은 대상체의 움직임에 따라 발생하는 자기장의 변화에 반응할 수 있으므로, 각각의 움직임 상태에 대한 가중치 계수 n을 각각 탐색할 필요가 있다.FIG. 5 illustrates a case in which the weighting factor n is searched at various positions of the weighting coefficient search section M1 (indicated by X in FIG. 5), that is, in various motion states of the object. Since the receiving coil of the RF coil unit 53 may respond to the change in the magnetic field generated by the movement of the object, it is necessary to search for the weighting coefficient n for each movement state.
가중치 계수 n의 탐색이 완료되면, 이를 수학식 1에 적용하여 k-공간 데이터 중 추적 에코 성분 KS2를 추정할 수 있다. 그 결과, 도 6a의 영상이 수학식 1에 입력되면, 도 6b의 영상이 출력될 수 있다. 참고로, 도 6a의 영상은 2 개의 k-공간 데이터를 시간 순서대로 나열한 영상으로 총 384(192x2)개의 위상 부호화 라인(PE Line)을 포함하며, 1.8초 동안 획득되었다.When the search for the weighting coefficient n is completed, it may be applied to Equation 1 to estimate the tracking echo component K S2 in the k-space data. As a result, when the image of FIG. 6A is input to Equation 1, the image of FIG. 6B may be output. For reference, the image of FIG. 6A is an image in which two k-space data are arranged in chronological order, and includes 384 (192 × 2) phase coding lines (PE lines) in total and was acquired for 1.8 seconds.
이렇게 추정된 추적 에코 성분 KS2는 수신 코일의 민감도, 가중치 계수의 오차 등의 요인에 따라 미세한 오차가 존재할 수 있다. 따라서, 영상 처리부(11)는 추정된 추적 에코 성분 KS2를 움직임 정보를 추출하기 위해서만 이용할 수 있다.The estimated tracking echo component K S2 may have a slight error according to factors such as the sensitivity of the receiving coil and the error of the weight coefficient. Therefore, the image processor 11 can use the estimated tracking echo component K S2 only to extract motion information.
수학식 1의 결과에 따른 도 6b의 영상을 참조하면, 심장의 움직임 정보를 나타낸 C 영역과, 호흡의 움직임 정보를 나타낸 R 영역을 포함함을 확인할 수 있다. 이처럼, 추정된 추적 에코 성분 KS2에는 움직임 정보가 포함되므로, 영상 처리부(11)는 이와 같은 움직임 정보를 수치화할 수 있다.Referring to the image of FIG. 6B according to the result of Equation 1, it can be seen that the region including the C region representing the heart movement information and the R region representing the movement information of the breath. As such, since the estimated tracking echo component K S2 includes motion information, the image processor 11 may digitize such motion information.
영상 처리부(11)는 추정된 추적 에코 성분 KS2으로부터 움직임 정보를 수치화하기 위해 공지된 다양한 방법 중 어느 하나를 채택할 수 있다. 예를 들어, 영상 처리부(11)는 Center Of Mass(COM)을 이용하여 추적 에코 성분KS2으로부터 움직임 정보를 수치화할 수 있으며, 무게 중심을 구하는 식은 수학식 2와 같다.The image processor 11 may adopt any one of various known methods for digitizing motion information from the estimated tracking echo component K S2 . For example, the image processor 11 may quantify the motion information from the tracking echo component K S2 using the Center Of Mass (COM), and the equation for obtaining the center of gravity is shown in Equation (2).
Figure PCTKR2018001594-appb-M000002
Figure PCTKR2018001594-appb-M000002
여기서, COM은 무게 중심을 의미하고, Iproj(x)는 KS2를 kx 방향으로 1D 푸리에 변환(Fourier Transform)한 값을 의미할 수 있다. Here, COM may mean a center of gravity, and I proj (x) may mean a value obtained by performing a 1D Fourier Transform on K S2 in the kx direction.
COM 값을 획득한 후, 영상 처리부(11)는 심장 움직임에 대응되는 대역 통과 필터(BW: 50~120bpm 또는 0.5hz~2hz) 와 호흡 움직임에 대응되는 대역 통과 필터(BW: 0.1hz~0.4hz)를 획득한 COM에 적용할 수 있다. After acquiring the COM value, the image processor 11 performs a band pass filter (BW: 50 to 120 bpm or 0.5 Hz to 2 Hz) corresponding to the heart movement and a band pass filter (BW: 0.1 Hz to 0.4 Hz corresponding to the respiratory movement). ) Can be applied to the acquired COM.
이를 통해, 영상 처리부(11)는 대상체의 움직임 정보를 수치화 할 수 있고, 그에 따라 후술할 게이팅(Gating)에 이용되는 유효 범위를 설정할 수 있다. 여기서, 유효 범위는 호흡에 있어서 날숨의 끝부분과 같이 움직임이 최소화 되어 안정적으로 영상 정보를 획득할 수 있는 범위를 의미할 수 있으며, 후술할 게이팅에서 게이팅 윈도우(Gating Window)로서 역할을 수행할 수 있다.In this way, the image processor 11 may digitize the motion information of the object, thereby setting an effective range used for gating to be described later. Here, the effective range may mean a range in which the movement is minimized, such as the end of the exhalation in the breath can be obtained stably image information, and can act as a gating window in the gating to be described later have.
움직임 정보를 통해 유효 범위의 설정이 완료되면, 영상 처리부(11)는 <2>움직임 게이팅을 수행할 수 있다. 여기서 게이팅이란, 복수의 k-공간 각각을 구성하는 데이터를 움직임 정보와 동기화한 후, 유효 범위에 속하는 k-공간 데이터에 대하여 동일 위상에서 획득된 데이터를 누적함으로써, 하나의 k-공간을 재구성하는 과정을 의미할 수 있다. 게이팅 과정을 통해, 영상 처리부(11)는 k-공간 데이터로부터 움직임 정보를 제거할 수 있다. When the setting of the effective range is completed through the motion information, the image processing unit 11 may perform <2> motion gating. Here, gating refers to reconstructing one k-space by synchronizing data constituting each of the plurality of k-spaces with motion information and then accumulating data acquired in the same phase with respect to k-space data belonging to an effective range. Can mean a process. Through the gating process, the image processor 11 may remove the motion information from the k-spatial data.
이하에서는 움직임 정보가 게이팅된 k-공간 데이터를 Gs1+S2라 한다.Hereinafter, k-spatial data gated with motion information is referred to as G s1 + S2 .
게이팅된 k-공간 데이터를 Gs1 +S2를 획득한 후, 영상 처리부(11)는 <3>추적 에코 성분의 제거 를 수행할 수 있다. 도 7 내지 9는 일 실시예에 따른 자기공명영상장치의 추적 에코 성분을 제거하는 방법을 설명하기 위한 도면이다.After acquiring G s1 + S2 from the gated k-spatial data, the image processor 11 may remove the tracking echo component. 7 to 9 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus, according to an exemplary embodiment.
상술한 바와 같이, 추적 에코 성분에는 움직임 정보와 함께 관심 단면 S2에 대한 영상 정보가 포함될 수 있다. 도 7은 일 실시예에 따른 게이팅된 k-공간 데이터를 Gs1 +S2에 기초하여 생성된 자기공명영상으로, 영상 양측에 노이즈 영상이 존재함을 확인할 수 있다. 이는 관심 단면 S2에 대한 영상 정보가 자기공명영상에 포함되었음을 타나낸다.As described above, the tracking echo component may include image information on the cross-section S2 of interest together with the motion information. 7 is a magnetic resonance image generated based on G s1 + S2 of gated k-spatial data according to an embodiment, and it can be seen that noise images exist on both sides of the image. This indicates that the image information about the cross section S2 of interest is included in the magnetic resonance image.
게이팅을 통해 움직임 정보가 제거되었음에도 추적 에코 성분에는 아직 불필요한 관심 단면 S2의 영상 정보가 포함되므로, 영상 처리부(11)는 게이팅된 k-공간 데이터 Gs1+S2로부터 게이팅된 추적 에코 성분 GS2를 제거할 필요가 있다.Since the tracking echo component includes image information of the cross-section S2 that is not yet necessary even though the motion information is removed through gating, the image processor 11 removes the gated tracking echo component G S2 from the gated k-spatial data G s1 + S2 . Needs to be.
게이팅된 k-공간 데이터 Gs1 +S2는 영상 에코 성분의 모든 위상 부호화 라인 마다 동일한 DC 성분으로서 게이팅된 추적 에코 성분이 부가된 형태로 표현될 수 있으며, 이는 수학식 3과 같다.The gated k-spatial data G s1 + S2 may be expressed in the form of adding the gated tracking echo component as the same DC component to all phase coding lines of the image echo component, which is expressed by Equation 3 below.
Figure PCTKR2018001594-appb-M000003
Figure PCTKR2018001594-appb-M000003
여기서, Gs1 +S2는 게이팅된 k-공간 데이터를 의미하고, Gs1는 게이팅된 k-공간 데이터의 영상 에코 성분을 의미하고, GS2는 게이팅된 k-공간 데이터의 추적 에코 성분을 의미할 수 있다.Here, G s1 + S2 denotes the gated k-spatial data, G s1 denotes the image echo component of the gated k-spatial data, and G S2 denotes the tracking echo component of the gated k-spatial data. Can be.
이 때, 게이팅된 추적 에코 성분GS2는 위상 부호화 방향으로 구성된 위상 부호화 성분이 동일하거나 매우 유사하기 때문에, low Rank 한 성질을 가질 수 있다. 반면, 게이팅된 영상 에코 성분GS1은 위상 부호화 성분이 서로 다르기 때문에 low Rank하지 않을 수 있다. 또한, 게이팅된 영상 에코 성분GS1은 고주파 영역에서 위상 부호화 성분의 크기가 게이팅된 추적 에코 성분GS2 에 비해 매우 작다. 따라서, 영상 처리부(11)는 이와 같은 특성에 기초하여 Gs1+S2으로부터 GS2를 제거할 수 있다.In this case, the gated tracking echo component G S2 may have a low rank property because the phase coding components configured in the phase coding direction are the same or very similar. On the other hand, the gated picture echo component G S1 may not be low rank because the phase coding components are different. In addition, the gated image echo component G S1 is a tracking echo component G S2 in which the magnitude of the phase coding component is gated in the high frequency region. Very small compared to Accordingly, the image processor 11 may remove G S2 from G s1 + S2 based on such characteristics.
구체적으로, 먼저 영상 처리부(11)는 게이팅된 k-공간 데이터 Gs1 +S2의 고주파 성분을 추출할 수 있다. 상술한 바와 같이, 고주파 영역에서 추적 에코 성분GS2의 특성이 더욱 잘 드러나기 때문이다. 영상 처리부(11)는 추출된 고주파 성분에 기초하여 게이팅된 k-공간 데이터 Gs1+S2의 k-공간을 재구성할 수 있다.Specifically, first, the image processor 11 may extract a high frequency component of the gated k-spatial data G s1 + S2 . As described above, the characteristics of the tracking echo component G S2 are better revealed in the high frequency region. The image processor 11 may reconstruct the k-space of the k-spatial data G s1 + S2 gated based on the extracted high frequency component.
그 다음, 영상 처리부(11)는 게이팅된 k-공간 데이터 Gs1 +S2에 SVD(Singular Value Decomposition)를 적용하여 PCA(Principal Component Analysis)를 수행할 수 있다. Rank가 1에 가까운 추적 에코 성분은 주성분(Principal Component) 주변에 위치하게 되고, 그렇지 않은 영상 에코 성분은 주성분 이외의 벡터 공간에 위치할 수 있다. 따라서, 가장 큰 고유값(Eigen Value) λ에 대응되는 고유 벡터(Eigen Vector)를 확인함으로써, 게이팅된 추적 에코 성분GS2 의 고유 벡터(Eigen Vector)를 획득할 수 있다.Next, the image processor 11 may perform Principal Component Analysis (PCA) by applying Singular Value Decomposition (SVD) to the gated k-spatial data G s1 + S2 . A tracking echo component having a rank close to 1 may be positioned around a principal component, and an image echo component not otherwise may be located in a vector space other than the principal component. Thus, by checking the eigenvector corresponding to the largest eigenvalue λ, the traced echo component G S2 gated. It is possible to obtain an eigenvector of.
마지막으로, 영상 처리부(11)는 게이팅된 추적 에코 성분GS2 의 고유 벡터를 제외한 고유 벡터 공간에 게이팅된 k-공간 데이터 Gs1 +S2를 사영(Projection)시킴으로써, 게이팅된 영상 에코 성분GS1 만을 분리해 낼 수 있다.Finally, the image processing unit 11 is gated tracking echo component G S2 By projecting k-spatial data G s1 + S2 gated in the eigenvector space excluding the eigenvector of, only the gated image echo component G S1 can be separated.
도 8은 도 7의 영상으로부터 제거된 게이팅된 추적 에코 성분GS2 의 자기공명영상이고, 도 9는 도 7의 영상으로부터 분리된 게이팅된 영상 에코 성분GS1 의 자기공명영상을 나타낸다. 최종적으로 획득된 도 9의 영상에서는 대상체의 움직임 정보가 배제되었을 뿐만 아니라, 움직임 정보를 추적하기 위한 추적 에코 성분의 관심 영역 S2에 대한 영상 정보 까지 제거되었음을 확인할 수 있다.8 is the gated tracking echo component G S2 removed from the image of FIG. FIG. 9 shows a magnetic resonance image of a gated image echo component G S1 separated from the image of FIG. 7. In the finally obtained image of FIG. 9, not only the motion information of the object is excluded, but also the image information of the region of interest S2 of the tracking echo component for tracking the motion information may be removed.
한편, 충분한 시간 동안 K s1+S2를 획득하지 못하여 일부 위상 부호화 라인에 데이터가 저장되지 못할 수도 있다. 이 경우, 영상 처리부(11)에서 최종적으로 획득하는 게이팅된 영상 에코 성분GS1 역시 under sampling pattern을 갖게 될 수 있다. 이 경우, 영상 처리부(11)는 비어있는 위상 부호화 라인에 병렬 영상(Parallel Imaging) 방법을 적용하여 영상을 복원할 수 있다. On the other hand, K s1 + S2 may not be obtained for a sufficient time, and thus data may not be stored in some phase coding lines. In this case, the gated image echo component G S1 finally obtained by the image processor 11 may also have an under sampling pattern. In this case, the image processor 11 may reconstruct an image by applying a parallel imaging method to an empty phase encoding line.
마지막으로 출력부(13)는 움직임 정보가 배제되고 영상 정보만으로 구성되는 자기공명영상, 예를 들어 도 9의 영상, 을 시각적으로 출력할 수 있다. 사용자는 이를 통해 보다 정확한 대상체의 해부학적 정보를 수집할 수 있다.Finally, the output unit 13 may visually output the magnetic resonance image, for example, the image of FIG. This allows the user to collect more accurate anatomical information of the subject.
지금까지는 고유 벡터를 이용하여 추적 에코 성분을 제거하는 실시예에 대하여 설명하였다. 그러나, 영상 처리부(11)는 이와 상이한 방법에 따라, 게이팅된 k-공간 데이터로부터 게이팅된 추적 에코 성분을 제거할 수도 있다. So far, the embodiment of removing the tracking echo component using the eigenvector has been described. However, the image processor 11 may remove the gated tracking echo component from the gated k-spatial data according to a different method.
이하에서는 게이팅된 k-공간 데이터로부터 게이팅된 추적 에코 성분을 제거하는 다른 실시예에 대하여 설명하며, 상술한 실시예와의 구분을 위해 게이팅된 k-공간 데이터를 Sacq로 하고, 게이팅된 영상 에코 성분을 Sim으로 하며, 게이팅된 추적 에코 성분을 Snav로 표기한다.Hereinafter, another embodiment of removing the gated tracking echo component from the gated k-spatial data will be described. The gated k-spatial data is set to S acq to distinguish it from the above-described embodiment. The component is S im , and the gated trace echo component is denoted by S nav .
도 10 내지 12는 다른 실시예에 따른 자기공명영상장치의 추적 에코 성분을 제거하는 방법을 설명하기 위한 도면이다.10 to 12 are diagrams for describing a method of removing a tracking echo component of a magnetic resonance imaging apparatus according to another exemplary embodiment.
도 10은 다른 실시예에 따른 게이팅된 k-공간 데이터 Sacq 및 Sacq 를 2차원 푸리에 변환하여 획득한 자기공명영상 Iacq 를 도시한 도면이다.FIG. 10 is a diagram illustrating magnetic resonance images I acq obtained by performing two-dimensional Fourier transform of gated k-spatial data S acq and S acq according to another embodiment.
도 10을 참조하면, 게이팅된 k-공간 데이터 Sacq는 상단에 ky 방향으로 형성되는 관심 단면 S2에 대한 영상 정보를 포함할 수 있고, 그 결과 Sacq 를 2차원 푸리에 변환하여 획득한 자기공명영상 Iacq 는 양측에 노이즈가 존재할 수 있다. Referring to FIG. 10, the gated k-spatial data S acq may include image information about a cross-section S2 of interest formed in the ky direction at the top thereof, and as a result, magnetic resonance images obtained by performing two-dimensional Fourier transform of S acq . I acq may have noise on both sides.
이를 제거하기 위해, 영상 처리부(11)는 게이팅된 k-공간 데이터를 Sacq에서 ky방향으로 인접한 두 개의 성분을 합할 수 있다. 구체적으로, 영상 처리부(11)는 수학식 4에 따라 Sacq를 처리함으로써, ky방향으로 인접한 두 개의 성분을 합해진 Sim esti 를 획득할 수 있다.In order to eliminate this, the image processor 11 may add the gated k-spatial data to two adjacent components in S acq in the ky direction. In detail, the image processor 11 may process S acq according to Equation 4 to obtain S im esti obtained by combining two adjacent components in the ky direction.
Figure PCTKR2018001594-appb-M000004
Figure PCTKR2018001594-appb-M000004
여기서, Sim esti 는 게이팅된 영상 에코 성분 Sim을 획득하기 위한 중간 단계의 결과 값을 의미할 수 있다. 또한, 게이팅된 추적 에코 성분 Snav는 경사자장 형성부(52)에 의한 위상 부호화가 수행되지 않아 ky가 0이므로. 이를 고려하여 N값이 설정될 수 있다.Here, S im esti may mean an intermediate value for obtaining a gated image echo component S im . Also, since the gated tracking echo component S nav is not subjected to phase coding by the gradient magnetic field forming unit 52, ky is zero. In consideration of this, an N value may be set.
상술한 바와 같이, 움직임 정보를 얻기 위한 제 2 RF 펄스는 주기마다 위상이 반대이므로, 게이팅된 추적 에코 성분 Snav 중 ky방향으로 인접한 성분간의 합은 수학식 5에 따라 연산될 수 있다.As described above, since the phases of the second RF pulse for obtaining the motion information are reversed for each period, the sum of the components adjacent in the ky direction among the gated tracking echo components Snav may be calculated according to Equation 5 below.
Figure PCTKR2018001594-appb-M000005
Figure PCTKR2018001594-appb-M000005
수학식 5를 참조하면, ky 방향으로 연속하는 인접 성분을 합함으로써 게이팅된 추적 에코 성분이 Snav 을 제거될 수 있다. Referring to Equation 5, the gated tracking echo component can be eliminated S nav by summing adjacent consecutive components in the ky direction.
상술한 과정을 통해 Sim esti 이 획득되면, 영상 처리부(11)는 Sim esti 으로부터 게이팅된 영상 에코 성분을 Sim 이 2D 푸리에 변환된 Iim 을 획득할 수 있다. 이 때, 영상 처리부(11)는 수학식 6을 따를 수 있다.When the S im esti obtained through the above process, the image processing unit 11 is an image from the echo component gating S S im im esti This 2D Fourier Converted I im Can be obtained. In this case, the image processor 11 may follow Equation 6.
Figure PCTKR2018001594-appb-M000006
Figure PCTKR2018001594-appb-M000006
여기서, Iim esti 는 게이팅된 영상 에코 성분 Sim을 2D 푸리에 변환한 결과이고, Iim 은 게이팅된 영상 에코 성분 Sim 을 2D 푸리에 변환한 결과를 의미할 수 있다. 또한, W(y)는 Sim esti 로부터 Sim을 획득하기 위한 매그니튜드 윈도우(Magnitude Window)를 의미할 수 있다.Where I im esti is the result of 2D Fourier transforming the gated image echo component S im , and I im Is gated image echo component S im 2D Fourier It can mean the result of the conversion. In addition, W (y) may mean a Magnitude Window for obtaining S im from S im esti .
수학식 6을 참조하면, 영상 처리부(11)는 Iim esti 를 W(y)로 나눔으로써, 게이팅된 영상 에코 성분 Sim 이 2D 푸리에 변환된 Iim 을 획득할 수 있다. 이렇게 획득된 영상 Iim은 대상체의 움직임 정보 뿐만 아니라, 움직임 정보를 추적하기 위한 추적 에코 성분의 관심 영역 S2에 대한 영상 정보 까지 제거된 영상일 수 있다.Referring to Equation 6, the image processor 11 divides I im esti by W (y), thereby gating the image echo component S im. This 2D Fourier Converted I im Can be obtained. The obtained image I im may be an image obtained by removing not only the motion information of the object but also the image information of the region of interest S2 of the tracking echo component for tracking the motion information.
도 11은 다른 실시예에 따른 Sim esti 및 Sim esti 를 2차원 푸리에 변환하여 획득한 자기공명영상 Iim esti 를 도시한 도면이고, 도 12는 일 실시예에 따른 매그니튜드 윈도우 W(y)를 예시한 도면이다.FIG. 11 is a diagram illustrating magnetic resonance images I im esti obtained by performing two-dimensional Fourier transformation of S im esti and S im esti according to another embodiment, and FIG. 12 illustrates a magnitude window W (y) according to an embodiment. The illustrated figure.
도 11을 참조하면, 상술한 바와 같이, Sim esti 에서 추적 에코 성분, 구체적으로 관심 단면 S2에 대한 영상 정보가 제거 되었음을 확인할 수 있다. 그 결과, Sim esti 를 2차원 푸리에 변환하여 획득한 자기공명영상 Iim esti 에서도 양측에 존재하던 노이즈가 제거되었음을 확인할 수 있다. 영상 처리부(11)는 도 12와 같은 매그니튜드 윈도우 W(y)를 이용하여 Iim esti 로부터 Iim 을 획득할 수 있다.Referring to FIG. 11, as described above, it may be confirmed that image information about a tracking echo component, specifically, the section S2 of interest is removed from S im esti . As a result, in the obtained two-dimensional Fourier transform to S im esti MRI I im esti can be concluded that the noise is removed, that existed on both sides. Image processing unit 11 can obtain the I im im esti from I using the magnitude window W (y) as shown in FIG. 12.
도 13은 일 실시예에 따른 자기공명영상장치(1) 제어방법의 흐름도이다. 13 is a flowchart of a method of controlling the magnetic resonance imaging apparatus 1 according to an exemplary embodiment.
먼저, 자기공명영상장치(1)는 제 1 단면의 영상 정보 획득을 위한 제1 RF 펄스, 및 제 2 단면의 움직임 정보 획득을 위한 제 2 RF 펄스를 조사하는 RF 펄스 시퀀스에 따라 RF 펄스를 조사할 수 있다.(910) 이 때, 조사되는 제 2 RF 펄스는 주기마다 위상이 반대일 수 있다.First, the magnetic resonance imaging apparatus 1 irradiates an RF pulse according to an RF pulse sequence for irradiating a first RF pulse for obtaining image information of a first section and a second RF pulse for obtaining motion information of a second section. In this case, the irradiated second RF pulse may be reversed in phase every period.
그 다음, 자기공명영상장치(1)는 제 1 RF 펄스에 대응하여 생성된 영상 에코 성분 및 제 2 RF 펄스에 대응하여 생성된 추적 에코 성분을 포함하는 k-공간 데이터를 획득할 수 있다.(920) 구체적으로 자기공명영상장치(1)는 영상 에코 성분 및 추적 에코 성분을 포함하는 RF 에코 신호를 수신하고, 수신된 RF 에코 신호를 메모리에 저장함으로써 k-공간을 구성할 수 있다.The magnetic resonance imaging apparatus 1 may then obtain k-spatial data including an image echo component generated in response to the first RF pulse and a tracking echo component generated in response to the second RF pulse. Specifically, the magnetic resonance imaging apparatus 1 may configure a k-space by receiving an RF echo signal including an image echo component and a tracking echo component, and storing the received RF echo signal in a memory.
k-공간이 구성되면, 자기공명영상장치(1)는 획득된 k-공간 데이터의 추적 에코 성분으로부터 움직임 정보를 확인할 수 있다.(930) 이를 위해, 자기공명영상장치(1)는 상술한 수학식 1에 따라 추적 에코 성분을 추정할 수 있고, 추정된 추적 에코 성분의 무게 중심을 이용하여 움직임 정보를 확인할 수 있다. 이 때, 자기공명영상장치(1)는 움직임 정보에 따라 유효 범위를 함께 설정할 수 있다.When the k-space is configured, the magnetic resonance imaging apparatus 1 may identify motion information from the obtained tracking echo component of the k-space data. (930) For this purpose, the magnetic resonance imaging apparatus 1 may use the above-described math. The tracking echo component can be estimated according to Equation 1, and the motion information can be confirmed using the estimated center of gravity of the tracking echo component. At this time, the magnetic resonance imaging apparatus 1 may also set the effective range according to the motion information.
움직임 정보를 확인한 후, 자기공명영상장치(1)는 확인된 움직임 정보에 k-공간 데이터를 동기화시켜 게이팅(Gating)을 수행할 수 있다.(940) 여기서 게이팅이란, 복수의 k-공간 각각을 구성하는 데이터를 움직임 정보와 동기화한 후, 유효 범위에 속하는 k-공간 데이터에 대하여 동일 위상에서 획득된 데이터를 누적함으로써, 하나의 k-공간을 재구성하는 과정을 의미할 수 있다. 게이팅 과정을 통해, 영상 처리부(11)는 k-공간 데이터로부터 움직임 정보를 제거할 수 있다.After confirming the motion information, the magnetic resonance imaging apparatus 1 may perform gating by synchronizing k-spatial data with the identified motion information. (940) Here, gating refers to each of a plurality of k-spaces. After synchronizing the constituent data with motion information, it may mean a process of reconstructing one k-space by accumulating data acquired in the same phase with respect to k-space data belonging to the effective range. Through the gating process, the image processor 11 may remove the motion information from the k-spatial data.
다음으로, 자기공명영상장치(1)는 게이팅된 k-공간 데이터에서 추적 에코 성분을 제거할 수 있다.(950)Next, the magnetic resonance imaging apparatus 1 may remove the tracking echo component from the gated k-spatial data.
일 실시예에 따른 자기공명영상장치(1)는 추적 에코 성분의 고유 벡터를 이용하여 게이팅된 k-공간 데이터에서 추적 에코 성분을 제거할 수 있다. 구체적으로, 먼저 자기공명영상장치(1)는 게이팅 된 k-공간 데이터에서 추적 에코 성분의 고유 벡터(Eigen Vector)를 획득할 수 있다. 이를 위해, 자기공명영상장치(1)는 게이팅 된 k-공간 데이터의 고주파 성분을 이용할 수 있다.The magnetic resonance imaging apparatus 1 according to an exemplary embodiment may remove the tracking echo component from the gated k-space data using the eigenvector of the tracking echo component. Specifically, first, the magnetic resonance imaging apparatus 1 may obtain an eigenvector of the tracking echo component from the gated k-spatial data. To this end, the magnetic resonance imaging apparatus 1 may use high frequency components of gated k-spatial data.
고유 벡터를 획득한 후, 자기공명영상장치(1)는 획득된 추적 에코 성분의 고유 벡터를 이용하여 k-공간 데이터에서 추적 에코 성분을 제거할 수 있다. 구체적으로, 자기공명영상장치(1)는 추적 에코 성분의 고유 벡터에 k-공간 데이터를 사영(Projection)시킴으로써 추적 에코 성분을 제거할 수 있다.After acquiring the eigenvector, the magnetic resonance imaging apparatus 1 may remove the tracking echo component from the k-space data by using the acquired eigenvector of the tracking echo component. Specifically, the magnetic resonance imaging apparatus 1 may remove the tracking echo component by projecting k-space data onto the eigenvector of the tracking echo component.
이와는 달리, 다른 실시예에 따른 자기공명영상장치(1)는 게이팅된 k-공간 데이터 중 ky방향으로 인접한 두 개의 성분을 합하여, 상기 게이팅된 k-공간 데이터로부터 상기 추적 에코 성분을 제거할 수도 있다. 움직임 정보를 얻기 위한 제 2 RF 펄스는 주기마다 위상이 반대이므로, 게이팅된 추적 에코 성분 중 ky방향으로 인접한 성분을 합함으로써 추적 에코 성분을 제거할 수 있다.Alternatively, the magnetic resonance imaging apparatus 1 according to another embodiment may remove the tracking echo component from the gated k-spatial data by adding two adjacent components in the ky direction among the gated k-spatial data. . Since the second RF pulse for obtaining the motion information is reversed in phase, the tracking echo component may be removed by adding adjacent components in the ky direction among the gated tracking echo components.
마지막으로, 자기공명영상장치(1)는 추적 에코 성분이 제거된 k-공간 데이터를 이용하여 자기공명영상을 생성할 수 있다.Finally, the magnetic resonance imaging apparatus 1 may generate the magnetic resonance image using the k-space data from which the tracking echo component has been removed.

Claims (15)

  1. 주기 마다 대상체의 제 1 단면에 대한 제 1 RF 펄스 및 상기 대상체의 제 2 단면에 대한 제 2 RF 펄스를 조사하고, 상기 제 1 RF 펄스에 대응하여 생성된 영상 에코 성분 및 상기 제 2 RF 펄스에 대응하여 생성된 추적 에코 성분을 포함하는 RF 에코 신호를 수신하는 RF 코일부;Irradiating a first RF pulse for a first cross section of the object and a second RF pulse for a second cross section of the object every period, and applying the image echo component and the second RF pulse generated in response to the first RF pulse. An RF coil unit for receiving an RF echo signal including a correspondingly generated tracking echo component;
    상기 수신된 RF 에코 신호에 기초하여 k-공간을 구성하고, 상기 추적 에코 성분으로부터 획득된 움직임 정보에 상기 k-공간의 데이터를 동기화하고, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하고, 상기 추적 에코 성분이 제거된 상기 k-공간 데이터를 이용하여 자기공명영상을 생성하는 영상 처리부; 및Construct a k-space based on the received RF echo signal, synchronize the data of the k-space to motion information obtained from the tracking echo component, and remove the tracking echo component from the synchronized k-space data An image processor configured to generate a magnetic resonance image using the k-spatial data from which the tracking echo component is removed; And
    상기 생성된 자기공명영상을 표시하는 출력부; 를 포함하는 자기공명영상장치.An output unit displaying the generated magnetic resonance image; Magnetic resonance imaging apparatus comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 RF 코일부는,The RF coil unit,
    인접한 상기 주기의 상기 제 2 RF 펄스 위상이 서로 반대가 되도록 동작하는 자기공명영상장치.And a magnetic resonance imaging device configured to reverse the second RF pulse phases of the adjacent periods.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 RF 펄스 조사 후 상기 제 2 RF 펄스 조사 전, 위상 부호화(Phase Encoding)를 위한 경사자장을 상기 대상체에 인가하는 경사자장 형성부; 를 더 포함하는 자기공명영상장치.A gradient magnetic field forming unit configured to apply a gradient magnetic field for phase encoding to the object after the first RF pulse irradiation and before the second RF pulse irradiation; Magnetic resonance imaging device further comprising.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 영상 처리부는,The image processor,
    상기 추적 에코 성분의 주파수 성분 별 무게 중심을 이용하여 상기 대상체의 움직임 정보를 획득하는 자기공명영상장치.Magnetic resonance imaging apparatus for acquiring the motion information of the object by using the center of gravity for each frequency component of the tracking echo component.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 영상 처리부는,The image processor,
    상기 움직임 정보에 의해 결정된 유효 범위 내에 속하는 상기 동기화된 k-공간 데이터를 추출하고, 상기 추출된 k-공간 데이터에서 상기 추적 에코 성분을 제거하는 자기공명영상장치.And extracting the synchronized k-spatial data within the effective range determined by the motion information, and removing the tracking echo component from the extracted k-spatial data.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 영상 처리부는,The image processor,
    상기 주기마다 반복하여 조사된 상기 제 1 RF 펄스 및 상기 제 2 RF 펄스에 의해 상기 k-공간이 복수 개 구성된 경우, 상기 복수의 k-공간에서 추출된 상기 k-공간 데이터 중 동일 위상에서 획득된 데이터를 누적하여 하나의 k-공간을 재구성하고, 상기 재구성된 하나의 k-공간의 데이터에서 상기 추적 에코 성분을 제거하는 자기공명영상장치.When a plurality of k-spaces are configured by the first RF pulse and the second RF pulse irradiated repeatedly for each period, the k-space data extracted from the plurality of k-spaces are acquired in the same phase. And reconstruct one k-space by accumulating data and removing the tracking echo component from the reconstructed one k-space data.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 영상 처리부는,The image processor,
    상기 추적 에코 성분의 고유 벡터(Eigen Vector)를 이용하여 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 자기공명영상장치.Magnetic resonance imaging apparatus for removing the tracking echo component from the synchronized k-spatial data by using the eigenvector (Eigen Vector) of the tracking echo component.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 영상 처리부는,The image processor,
    상기 동기화된 k-공간 데이터 중 미리 정해진 기준 주파수 이상의 주파수 성분을 이용하여 상기 추적 에코 성분의 상기 고유 벡터를 획득하고, 상기 추적 에코 성분의 상기 고유 벡터를 제외한 고유 벡터 공간에 상기 동기화된 k-공간 데이터를 사영(Projection)시켜, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 자기공명영상장치.The eigenvector of the tracking echo component is obtained by using a frequency component equal to or greater than a predetermined reference frequency among the synchronized k-space data, and the synchronized k-space in the eigenvector space excluding the eigenvector of the tracking echo component. Magnetic resonance imaging apparatus for projecting the data, to remove the tracking echo component from the synchronized k-spatial data.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 영상 처리부는,The image processor,
    상기 동기화된 k-공간 데이터 중 ky방향으로 인접한 두 개의 성분을 합하여, 상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 자기공명영상장치.And summing two adjacent components in the ky direction of the synchronized k-spatial data to remove the tracking echo component from the synchronized k-spatial data.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 영상 처리부는,The image processor,
    상기 추적 에코 성분이 제거된 상기 k-공간 데이터를 병렬 영상(Parallel Imaging) 방법을 통해 복원하고, 상기 복원된 k-공간 데이터를 이용하여 상기 자기공명영상을 생성하는 자기공명영상장치. And reconstructing the k-spatial data from which the tracking echo component has been removed through a parallel imaging method, and generating the magnetic resonance image using the reconstructed k-spatial data.
  11. 주기마다 대상체의 제 1 단면에 대한 제 1 RF 펄스 및 상기 대상체의 제 2 단면에 대한 제 2 RF 펄스를 조사하는 단계;Irradiating a first RF pulse for a first cross section of the object and a second RF pulse for a second cross section of the object at each period;
    상기 제 1 RF 펄스에 대응하여 생성된 영상 에코 성분 및 상기 제 2 RF 펄스에 대응하여 생성된 추적 에코 성분을 포함하는 RF 에코 신호를 수신하는 단계;Receiving an RF echo signal comprising an image echo component generated in response to the first RF pulse and a tracking echo component generated in response to the second RF pulse;
    상기 수신된 RF 에코 신호에 기초하여 k-공간을 구성하는 단계;Constructing k-space based on the received RF echo signal;
    상기 추적 에코 성분으로부터 획득된 움직임 정보에 상기 k-공간의 데이터를 동기화하는 단계;Synchronizing the k-space data with motion information obtained from the tracking echo component;
    상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 단계;Removing the tracking echo component from the synchronized k-spatial data;
    상기 추적 에코 성분이 제거된 상기 k-공간 데이터를 이용하여 자기공명영상을 생성하는 단계; 및Generating a magnetic resonance image using the k-spatial data from which the tracking echo component has been removed; And
    상기 생성된 자기공명영상을 표시하는 단계; 를 포함하는 자기공명영상장치의 제어방법.Displaying the generated magnetic resonance image; Control method of a magnetic resonance imaging apparatus comprising a.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 제 1 RF 펄스 및 상기 제 2 RF 펄스를 조사하는 단계는,Irradiating the first RF pulse and the second RF pulse,
    인접한 상기 주기의 상기 제 2 RF 펄스 위상이 서로 반대가 되도록, 상기 제 2 RF 펄스를 조사하는 자기공명영상장치의 제어방법.And controlling the second RF pulse so that the second RF pulse phases of the adjacent periods are opposite to each other.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 주기마다 상기 제 1 RF 펄스 조사 후 상기 제 2 RF 펄스 조사 전, 위상 부호화(Phase Encoding)를 위한 경사자장을 상기 대상체에 인가하는 단계; 를 더 포함하는 자기공명영상장치의 제어방법.Applying a gradient magnetic field for phase encoding to the object after the first RF pulse irradiation and before the second RF pulse irradiation for each period; Control method of the magnetic resonance imaging apparatus further comprising.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 움직임 정보에 상기 k-공간 데이터를 동기화하는 단계는,Synchronizing the k-spatial data with the motion information,
    상기 추적 에코 성분의 주파수 성분 별 무게 중심을 이용하여 상기 대상체의 움직임 정보를 획득하고, 상기 획득된 움직임 정보에 상기 k-공간 데이터를 동기화하는 자기공명영상장치의 제어방법.And obtaining motion information of the object using the center of gravity for each frequency component of the tracking echo component, and synchronizing the k-spatial data with the obtained motion information.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 동기화된 k-공간 데이터로부터 상기 추적 에코 성분을 제거하는 단계는,Removing the tracking echo component from the synchronized k-spatial data,
    상기 움직임 정보에 의해 결정된 유효 범위 내에 속하는 상기 동기화된 k-공간 데이터를 추출하는 단계; 및Extracting the synchronized k-spatial data that falls within an effective range determined by the motion information; And
    상기 추출된 k-공간 데이터에서 상기 추적 에코 성분을 제거하는 단계; 를 포함하는 자기공명영상장치의 제어방법.Removing the tracking echo component from the extracted k-spatial data; Control method of a magnetic resonance imaging apparatus comprising a.
PCT/KR2018/001594 2017-04-03 2018-02-06 Magnetic resonance imaging device and control method therefor WO2018186578A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0043036 2017-04-03
KR1020170043036A KR102393288B1 (en) 2017-04-03 2017-04-03 Magnetic resonance imaging apparatus, and controlling method for the same

Publications (1)

Publication Number Publication Date
WO2018186578A1 true WO2018186578A1 (en) 2018-10-11

Family

ID=63713239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001594 WO2018186578A1 (en) 2017-04-03 2018-02-06 Magnetic resonance imaging device and control method therefor

Country Status (2)

Country Link
KR (1) KR102393288B1 (en)
WO (1) WO2018186578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062988A (en) * 2020-07-31 2022-02-18 上海联影医疗科技股份有限公司 Magnetic resonance spectrum imaging method, magnetic resonance spectrum imaging apparatus, computer device, and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102190577B1 (en) * 2018-11-22 2020-12-14 한국과학기술원 Image signal generation method, image reconstruction method and image acquisition apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143626A (en) * 2005-11-24 2007-06-14 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
JP2015503432A (en) * 2012-01-12 2015-02-02 コーニンクレッカ フィリップス エヌ ヴェ MR imaging with B1 mapping
JP2015506775A (en) * 2012-02-09 2015-03-05 コーニンクレッカ フィリップス エヌ ヴェ MRI with motion compensation using navigator acquired using Dixon method
JP2016049298A (en) * 2014-08-29 2016-04-11 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance apparatus and program
JP2016067687A (en) * 2014-09-30 2016-05-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664433B1 (en) * 2015-03-24 2016-10-10 삼성전자주식회사 Magnetic resonance imaging apparatus and image processing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143626A (en) * 2005-11-24 2007-06-14 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
JP2015503432A (en) * 2012-01-12 2015-02-02 コーニンクレッカ フィリップス エヌ ヴェ MR imaging with B1 mapping
JP2015506775A (en) * 2012-02-09 2015-03-05 コーニンクレッカ フィリップス エヌ ヴェ MRI with motion compensation using navigator acquired using Dixon method
JP2016049298A (en) * 2014-08-29 2016-04-11 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance apparatus and program
JP2016067687A (en) * 2014-09-30 2016-05-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114062988A (en) * 2020-07-31 2022-02-18 上海联影医疗科技股份有限公司 Magnetic resonance spectrum imaging method, magnetic resonance spectrum imaging apparatus, computer device, and storage medium
CN114062988B (en) * 2020-07-31 2023-09-22 上海联影医疗科技股份有限公司 Magnetic resonance spectrum imaging method, apparatus, computer device and storage medium

Also Published As

Publication number Publication date
KR20180112312A (en) 2018-10-12
KR102393288B1 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
US11363988B2 (en) Systems and methods for accelerated MRI scan
KR101775028B1 (en) Magnetic resonance imaging apparatus and method of obtaining magnetic resonance image
CN111721238A (en) Depth data measuring apparatus and target object data collecting method
WO2018186578A1 (en) Magnetic resonance imaging device and control method therefor
KR101826702B1 (en) Magnetic resonance imaging apparatus and method thereof
WO2016195281A1 (en) Gradient magnetic field generation module using plurality of coils so as to generate gradient magnetic field
JP2004209084A (en) Inspection apparatus using nuclear magnetic resonance
KR20160012559A (en) Magnetic resonance imaging apparatus and imaging method for magnetic resonance image thereof
WO2011033422A1 (en) Mr imaging system comprising physiological sensors
WO2017111412A1 (en) Medical imaging device and magnetic resonance imaging device, and control method therefor
WO2018034543A1 (en) Chemical exchange saturation transfer magnetic resonance imaging device and method
WO2016003070A1 (en) Method of measuring blood flow velocity performed by medical imaging apparatus, and the medical imaging apparatus
KR101837689B1 (en) magnetic resonance imaging apparatus and image processing method thereof
KR102232606B1 (en) Device and method for dynamic tagged magnet resonance imaging
WO2019009487A1 (en) Magnetic resonance imaging apparatus and blood flow image reconstructing method using the same
KR101958093B1 (en) Magnet resonance imaging device and method for generating blood imaging thereof
WO2018093206A1 (en) Contrast-enhanced magnetic resonance imaging device and method
WO2018135812A1 (en) Medical imaging apparatus and medical imaging processing method
KR102190577B1 (en) Image signal generation method, image reconstruction method and image acquisition apparatus
WO2018221831A1 (en) Method of generating magnetic resonance image and magnetic resonance imaging apparatus therefor
KR20190013103A (en) Magnetic resonance image apparatus and method of generating magnetic resonance image
WO2018097644A1 (en) Magnetic resonance imaging apparatus and magnetic resonance image generation method
WO2017183885A1 (en) Magnetic resonance image processing apparatus and image processing method thereof
WO2018043878A1 (en) Magnetic resonance imaging device
WO2019117417A1 (en) Method for acquiring water-fat separation image, and magnetic resonance imaging apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780816

Country of ref document: EP

Kind code of ref document: A1