WO2018186469A1 - Fundus photography device - Google Patents

Fundus photography device Download PDF

Info

Publication number
WO2018186469A1
WO2018186469A1 PCT/JP2018/014581 JP2018014581W WO2018186469A1 WO 2018186469 A1 WO2018186469 A1 WO 2018186469A1 JP 2018014581 W JP2018014581 W JP 2018014581W WO 2018186469 A1 WO2018186469 A1 WO 2018186469A1
Authority
WO
WIPO (PCT)
Prior art keywords
fundus
focus
light
invisible light
optical path
Prior art date
Application number
PCT/JP2018/014581
Other languages
French (fr)
Japanese (ja)
Inventor
和典 松村
希 鳥羽
加藤 洋一
佑介 井澤
貴紀 山内
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2019511305A priority Critical patent/JP7094268B2/en
Publication of WO2018186469A1 publication Critical patent/WO2018186469A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to a fundus imaging apparatus.
  • the position of the focus lens is adjusted prior to fundus imaging.
  • chromatic aberration between visible light and invisible light
  • adjusting the position of the focus lens according to chromatic aberration complicates the control of the operating mechanism of the focus lens.
  • the present application discloses a fundus imaging apparatus capable of realizing the position adjustment of the focus lens using invisible light performed prior to fundus imaging with visible light without requiring complicated control.
  • an imaging device having sensitivity to at least visible light and invisible light is used, and when the fundus is photographed using visible light, the focus lens is adjusted to a position where the invisible light is focused. Decided to do it.
  • the optical path difference between visible light and invisible light is corrected by inserting and removing the optical path correction member.
  • the present invention relates to a fundus imaging apparatus, an imaging device having sensitivity to at least visible light and invisible light, a focus lens disposed in the optical path from the subject eye fundus to the imaging device, and a subject eye
  • the focus target is projected with the second invisible light having a peak wavelength different from that of the first invisible light used for observing the fundus, and the focus lens is adjusted to a position where the image of the focus target obtained by the image sensor is in focus.
  • a focus adjustment unit; and an optical path correction member that is inserted and removed when the subject eye fundus is imaged with visible light and corrects an optical path difference between visible light and invisible light from the subject eye fundus to the imaging device.
  • the invisible light is light that is not perceived by human eyes, and for example, infrared light can be applied.
  • the first invisible light is invisible light having a predetermined wavelength as a peak.
  • infrared light having a peak at a wavelength of 850 nm can be applied.
  • the second invisible light is invisible light having a peak different from a predetermined wavelength, and for example, infrared light having a peak at a wavelength of 805 nm can be applied.
  • the focus adjusting means of the fundus photographing apparatus adjusts the focus lens to a position where the image of the focus target projected with the second invisible light is in focus. Then, photographing of the fundus using visible light is performed while keeping the focus lens in the position where the invisible light is focused. That is, in the operation mechanism of the focus lens, complicated control in consideration of chromatic aberration between visible light and invisible light is not performed.
  • the in-focus position caused by chromatic aberration between visible light and invisible light is adjusted by an optical path correction member that is inserted and removed during fundus photography using visible light. Since this adjustment is realized by a simple operation of inserting and removing the optical path correction member, it does not require complicated control required for adjusting the position of the focus lens in consideration of chromatic aberration.
  • the focus adjustment unit may adjust the focus lens to a position where the image of the focus target obtained by the image sensor is in focus when the first invisible light is turned off. If the above fundus imaging apparatus includes such a focus adjustment unit, the focus target can be clearly captured.
  • the focus adjustment unit described above can generate an image of the focus target obtained by the imaging device when the first invisible light is turned off during fundus observation performed by blinking the first invisible light every frame.
  • the focus lens may be adjusted to the position to be focused. If the above fundus imaging apparatus includes such a focus adjustment unit, focus adjustment is performed during fundus observation.
  • the optical path correction member may have a function of blocking invisible light. If the fundus photographing apparatus includes the optical path correction member, invisible light is not reflected in the fundus photographed image, and thus a clear fundus photographed image can be obtained.
  • the above fundus imaging apparatus may include a plurality of optical path correction members respectively corresponding to a plurality of types of lenses that are exchanged according to the magnification. If the above-described fundus imaging apparatus includes such an optical path correction member, a clearer fundus image can be obtained.
  • the position adjustment of the focus lens using invisible light performed prior to fundus photographing with visible light can be realized without requiring complicated control.
  • FIG. 1 is a diagram illustrating a schematic configuration of an optical system of a fundus imaging apparatus according to the present embodiment.
  • FIG. 2 is a block diagram of an electric circuit provided in the fundus imaging apparatus.
  • FIG. 3 is a diagram illustrating a processing flow realized by the fundus imaging apparatus.
  • FIG. 4 is a diagram illustrating a timing chart of each process realized when the wide-angle lens is selected.
  • FIG. 5 is a diagram illustrating an example of an image acquired by the image sensor.
  • FIG. 6 is a diagram showing an example of an image displayed on the LCD panel.
  • FIG. 7 is a diagram illustrating an example of a video in which fundus images are used for focus target detection processing.
  • FIG. 8 is a first diagram illustrating a focus determination method.
  • FIG. 1 is a diagram illustrating a schematic configuration of an optical system of a fundus imaging apparatus according to the present embodiment.
  • FIG. 2 is a block diagram of an electric circuit provided in the fundus imaging apparatus.
  • FIG. 3 is
  • FIG. 9 is a second diagram illustrating the focus determination method.
  • FIG. 10 is a third diagram illustrating the focus determination method.
  • FIG. 11 is a first diagram comparing in-focus positions.
  • FIG. 12 is a diagram illustrating a timing chart of each process realized when the narrow-angle lens is selected.
  • FIG. 13 is a second diagram comparing in-focus positions.
  • Embodiment shown below is an example of embodiment of this invention, and does not limit the technical scope of this invention to the following aspects.
  • FIG. 1 is a diagram showing a schematic configuration of an optical system of the fundus imaging apparatus of the present embodiment.
  • the fundus imaging apparatus 1 is an apparatus for imaging the fundus of the eye E, and includes an objective lens 2, a perforated mirror 3, a focus lens 4, a half mirror 5, an internal fixation lamp 6, a relay lens 7, a focus dot mirror 8, Focus target projection system 9, black spot plate glass 10, relay lens 11, ring slit 12, diffuser plate 13, photographing illumination 14, observation illumination 15, imaging lens 16, narrow angle lens 17, wide angle lens 18, optical path A correction glass 19 (an example of an “optical path correction member” in the present application) and an image sensor 20 are provided.
  • an objective lens 2 includes an objective lens 2, a perforated mirror 3, a focus lens 4, a half mirror 5, an internal fixation lamp 6, a relay lens 7, a focus dot mirror 8, Focus target projection system 9, black spot plate glass 10, relay lens 11, ring slit 12, diffuser plate 13, photographing illumination 14, observation illumination 15, imaging lens 16, narrow angle lens 17, wide angle lens 18, optical path A correction glass 19
  • the objective lens 2 is a lens located in front of the eye E to be examined.
  • a perforated mirror 3 On the optical axis behind the objective lens 2, a perforated mirror 3, a focus lens 4, a half mirror 5, and an internal fixation lamp 6 are arranged in this order.
  • the perforated mirror 3 is a mirror in which a through hole is formed at a portion through which the optical axis of the objective lens 2 passes, and is fixed in the fundus photographing apparatus 1 at an appropriate inclination angle with respect to the optical axis of the objective lens 2. .
  • a ring slit 12, a diffusing plate 13, a photographing illumination 14, and an observation illumination 15 are arranged. Therefore, the light emitted from the photographing illumination 14 and the observation illumination 15 becomes an annular irradiation light in the process of passing through the diffusion plate 13 and the ring slit 12, and the relay lens 11, the black dot plate glass 10, the focus dot mirror 8, and the relay.
  • the light is reflected by the perforated mirror 3 through the lens 7, and illuminates the fundus of the eye E through the objective lens 2.
  • the black spot plate glass 10 prevents the reflected light from the objective lens 2 from appearing in the photographed image, and a small light blocking object is disposed at the center of the plate glass, that is, at a position where the optical axis is located.
  • Light from the focus target projection system 9 is incident on the focus dot mirror 8 between the black spot plate glass 10 and the relay lens 7 at an angle at which the reflected light coincides with the optical axis of the relay lens 7.
  • the focus target projection system 9 projects the focus target on the fundus of the eye E. Therefore, in addition to the light emitted from the photographing illumination 14 and the observation illumination 15, the light of the focus target emitted from the focus target projection system 9 enters the fundus of the eye E.
  • the focus target projection system 9 includes an infrared LED (Light Emitting Diode) that emits infrared light having a peak wavelength different from that of infrared light for fundus observation emitted by the observation illumination 15.
  • an infrared LED that emits infrared light having a peak wavelength of 850 nm is used as the light source for observation 15, for example, infrared light having a peak wavelength of 805 nm is used as the light source of the focus target projection system 9.
  • An infrared LED that emits light is used.
  • Reflected light from the fundus of the subject eye E illuminated with light from the imaging illumination 14 or observation illumination 15 passes through the objective lens 2, the perforated mirror 3, and the focus lens 4 and enters the half mirror 5.
  • the half mirror 5 is fixed in the fundus photographing apparatus 1 at an appropriate inclination angle with respect to the optical axis of the objective lens 2. Therefore, the reflected light from the fundus of the eye E is reflected by the half mirror 5 at an appropriate angle with respect to the optical axis of the objective lens 2.
  • An imaging lens 16, an optical path correction glass 19, and an image sensor 20 are sequentially provided on the optical axis of the reflected light of the half mirror 5 incident from the focus lens 4.
  • the photoelectric conversion elements arranged in a matrix form receive an energy of light and emit an electric signal, and an image of the fundus of the eye E is obtained.
  • the image sensor 20 is an image sensor having sensitivity to at least visible light and infrared light. Therefore, the image sensor 20 can obtain an image of the fundus regardless of whether the light source for illuminating the fundus of the eye E is the photographing illumination 14 or the observation illumination 15. Further, the image sensor 20 has a binning function for processing several adjacent photoelectric change elements as one pixel. Therefore, the image sensor 20 exhibits sensitivity that does not hinder obtaining a fundus image even in the reflected light from the fundus of the eye E to be examined, which is illuminated by the observation illumination 15 having a lower illuminance than the imaging illumination 14. Is possible. An example of such an image sensor 20 is a CMOS.
  • the optical path correction glass 19 is inserted into the optical path when photographing the fundus of the eye E to be examined with visible light, and is pulled out of the optical path during observation with infrared light.
  • the optical path correction glass 19 is a member that corrects an optical path difference between visible light and infrared light from the fundus of the eye E to the image sensor 20, and combines the fundus image of visible light and infrared light due to chromatic aberration. It is a plate-like glass prepared for the purpose of eliminating the shift of the focal position.
  • the optical path correction glass 19 preferably has a filter function for blocking infrared light.
  • the optical path correction glass 19 has a filter function for blocking infrared light, it is possible to prevent infrared light from being reflected in the fundus image.
  • the optical path correction glass 19 can be inserted and removed instantaneously in order to suppress as much as possible the time during which the fundus image due to infrared light is lost before and after photographing with visible light. preferable.
  • FIG. 2 is a block diagram of an electric circuit provided in the fundus imaging apparatus 1.
  • the fundus photographing apparatus 1 includes a CPU substrate 21, an LCD panel 22 (Liquid Crystal Display), an LCD backlight 23, an operation unit 24, and a main substrate 25.
  • an actuator that moves the focus lens 4 and the optical path correction glass 19 a high-voltage circuit that emits the photographing illumination 14, an LED provided in the focus target projection system 9, and the observation illumination 15 are all collected as electronic components 26. Show.
  • the CPU board 21 is a circuit board mainly responsible for processing the image acquired by the image sensor 20, and is a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array) for processing an image, and an SD card for recording an image ( Various electronic parts such as a registered trademark drive are mounted.
  • the image sensor 20 operates according to the control signal of the CPU board 21 and provides the acquired image to the CPU board 21.
  • various processes are performed on the image acquired by the image sensor 20, and the processed image is output to the LCD panel 22 or the SD card.
  • an image output from the CPU board 21 is displayed.
  • the main board 25 is a circuit board that controls the entire fundus photographing apparatus 1, and is mounted with an FPGA and other various electronic components.
  • the main board 25 operates the CPU board 21 and the electronic components 26 according to the operation content received by the operation unit 24.
  • the main board 25 realizes the following processing flow.
  • FIG. 3 is a diagram illustrating a processing flow realized by the fundus imaging apparatus 1.
  • the binning function of the image sensor 20 is enabled and the binning process of the image sensor 20 is started (S101).
  • the observation illumination 15 is energized, and the infrared LED of the observation illumination 15 starts synchronous light emission (S102). Further, the infrared LED of the focus target projection system 9 starts to emit light (S103).
  • the synchronized light emission means that the image sensor 20 repeats light emission and extinction in accordance with the timing of scanning one frame.
  • the image of the eye E to be inspected acquired by the image sensor 20 during the synchronized light emission of the observation illumination 15 includes the fundus image illuminated with the observation illumination 15 and the fundus image not illuminated with the observation illumination 15 on the time axis. It becomes a set of images arranged alternately along. Since the infrared LED of the focus target projection system 9 always emits light while the infrared LED of the observation illumination 15 emits light synchronously, the image sensor 20 acquires during the synchronous light emission of the observation illumination 15. Regardless of whether or not the fundus is illuminated with the observation illumination 15, the focus target is reflected in the image of the optometry E.
  • FIG. 4 is a diagram showing a timing chart of each process realized when the wide-angle lens 18 is selected.
  • the photographing start operation is performed in a state where the wide-angle lens 18 is selected
  • the binning process of the image sensor 20 is started as shown in the timing chart of FIG. Is started, and the infrared LED of the focus target projection system 9 starts to emit light. Therefore, the image sensor 20 acquires the following video.
  • FIG. 5 is a diagram illustrating an example of a video acquired by the image sensor 20.
  • the image sensor 20 has the observation illumination as shown in FIG. 15 is obtained by alternately repeating the fundus image illuminated by 15 (see the even frame in FIG. 5) and the fundus image not illuminated by the observation illumination 15 (see the odd frame in FIG. 5). Since the infrared LED of the focus target projection system 9 always emits light while the infrared LED of the observation illumination 15 emits light synchronously, the image acquired by the image sensor 20 is as shown in FIG. The focus target 30 is reflected over all frames. In addition to the focus target 30, the WD index 31 (WD: Working Distance) is reflected in the video acquired by the image sensor 20.
  • WD index 31 (WD: Working Distance) is reflected in the video acquired by the image sensor 20.
  • FIG. 6 is a diagram showing an example of an image displayed on the LCD panel 22.
  • the CPU substrate 21 performs processing for sending only the fundus image illuminated by the observation illumination 15 to the LCD panel 22.
  • the LCD panel 22 displays an image in which the fundus image illuminated by the observation illumination 15 is continuous.
  • the second frame, the fourth frame, the sixth frame, and so on shown in FIG. 5 are displayed at even intervals, and the images of all the target frames are displayed. There is no need to display the frame, and the second frame, the sixth frame, and the tenth frame may be displayed in a thinned-out manner.
  • the fundus imaging apparatus 1 has an autofocus function and an autoshot function, and can automatically adjust the focus lens 4 by electronic control.
  • autofocusing is performed. Disable function and auto shot function. The reason is that the optic nerve head that is likely to be observed by selecting the narrow-angle lens 17 has a higher reflectance than the so-called fundus portion. Therefore, when the focus target is projected onto the optic nerve head, the focus target is projected.
  • the fundus imaging apparatus 1 of the present embodiment when the wide-angle lens 18 is selected, processing related to the autofocus function and the autoshot function (from step S105 described later). If the narrow-angle lens 17 is selected, processing related to the manual focus function (processing from step S108 to step S109 described later) is performed.
  • step S104 it is determined whether or not the wide-angle lens 18 is selected (S104). If the wide-angle lens 18 is inserted between the imaging lens 16 and the optical path correction glass 19, a positive determination is made in the process of step S104. If the narrow-angle lens 17 is inserted between the imaging lens 16 and the optical path correction glass 19, a negative determination is made in the process of step S104. Which of the wide-angle lens 18 and the narrow-angle lens 17 is selected is detected by a contact switch provided in the lens switching mechanism.
  • step S104 After the affirmative determination is made in step S104, it is determined whether or not the focus is matched (S105). If the focus is not matched, the motor of the focus lens 4 operates as appropriate (S106). After step S106 is performed, the processing after step S104 is performed again. If it is determined in step S105 that the focus is matched, it is next determined whether or not the position and size of the WD index 31 are within a specified range (S107).
  • step S104 After a negative determination is made in step S104, the autofocus function and the autoshot function are invalidated (S108), and it is determined whether or not the shutter switch is pressed by the operation unit 24 (S109).
  • step S105 determination processing is performed as follows. That is, when the image sensor 20 starts acquiring images, the CPU board 21 is illuminated with the observation illumination 15 in addition to the process of sending only the fundus image illuminated with the observation illumination 15 to the LCD panel 22 as described above. Detection processing of the focus target 30 using a fundus image that has not been performed is performed.
  • FIG. 7 is a diagram illustrating an example of a video in which fundus images used for the process of detecting the focus target 30 are arranged. In the process of determining whether the focus is matched in step S105, a fundus image in which the fundus is not reflected in the background of the focus target 30 is used to facilitate detection of the focus target 30.
  • the first frame, the third frame, the fifth frame, and so on shown in FIG. 5 are displayed with odd-numbered frames at one interval, but the images of all target frames are not necessarily displayed. There is no need to display the image, and the first frame, the fifth frame, and the ninth frame may be used by being thinned.
  • FIG. 8 is a first diagram illustrating a focus determination method. In determining whether or not the focus is matched, first, as shown in FIG. 8, the upper and lower positions (y coordinates) of the focus target 30L in the left determination range 32L and the right determination range 32R. The positions (y coordinates) of the upper and lower ends of the focus target 30R are extracted.
  • FIG. 9 is a second diagram illustrating the focus determination method.
  • the positions of the upper and lower ends of the focus targets 30L and 30R within the determination ranges 32L and 32R are acquired as follows, for example. That is, the sum of the luminances of 10 pixels adjacent in the x-axis direction is calculated for each y coordinate, and the coordinates of the part where the luminance sum is 75% of the luminance peak are the upper and lower ends of the focus targets 30L and 30R. Get as coordinates.
  • FIG. 10 is a third diagram illustrating the focus determination method. After the coordinates of the upper and lower ends of the focus targets 30L and 30R within the determination ranges 32L and 32R are acquired, the center y coordinates of the upper and lower ends are calculated for the focus target 30L and the focus target 30R, respectively. Is called. If the difference between the center y coordinate of the focus target 30L and the center y coordinate of the focus target 30R is not zero, a negative determination is made in step S105, and the focus lens 4 is adjusted in step S106 so that the difference becomes zero. The motor is moved accordingly. If the difference is 0, an affirmative determination is made in step S105.
  • the autofocus function and the autoshot function are effective when the wide-angle lens 18 is selected, but the fundus imaging apparatus 1 is not limited to this.
  • the fundus imaging apparatus 1 may realize the processing from the above-described step S105 to step S107 regardless of whether or not the wide-angle lens 18 is selected, or the autofocus function and The auto-shot function may be eliminated and the processing from step S108 to step S109 described above may be realized while the wide-angle lens 18 is selected.
  • the processing from step S105 to step S107 is performed even when the narrow-angle lens 17 is selected as in the former case, for example, when the narrow-angle lens 17 is selected, the infrared of the focus target projection system 9 is selected. It is conceivable that the brightness of the focus target projected on the optic nerve head is changed by reducing the brightness of the LED, and the possibility that the autofocus function does not operate normally is suppressed.
  • step S110 preparation for fundus photography is performed in order to obtain a clear, high-resolution image of the fundus illuminated by the photographing illumination 14 having sufficient luminance. Is called. That is, the binning process of the image sensor 20 is stopped (S110), the observation illumination 15 is turned off (S111), and the infrared LED of the focus target projection system 9 is turned off (S112). Then, the optical path correction glass 19 is inserted between the wide-angle lens 18 and the image sensor 20 (S113), and the image sensor 20 photographs the fundus simultaneously with the light emission of the photographing illumination 14 (S114).
  • FIG. 11 is a first diagram comparing in-focus positions.
  • chromatic aberration is an element that cannot be ignored when photographing the fundus clearly.
  • the optical path correction glass 19 is not inserted between the wide-angle lens 18 and the image sensor 20 in a state where the position of the focus lens 4 is adjusted with infrared light as shown in FIG. The light is focused at a position away from the image sensor 20 as shown in FIG.
  • the optical path correction glass 19 whose thickness and material are selected in consideration of chromatic aberration between infrared light and visible light is inserted between the wide-angle lens 18 and the image sensor 20, the visible light is shown in FIG.
  • (C) focusing is performed on the surface of the image sensor 20. Therefore, the image sensor 20 can capture a clear image of the fundus illuminated by the imaging illumination 14 that emits visible light.
  • the contents of the processing realized by the fundus imaging apparatus 1 when the wide-angle lens 18 is selected are as described above. Next, the contents of processing realized by the fundus imaging apparatus 1 when the narrow-angle lens 17 is selected will be described.
  • FIG. 12 is a diagram showing a timing chart of each process realized when the narrow-angle lens 17 is selected.
  • the binning process of the image sensor 20, the synchronous light emission of the observation illumination 15, and the focus target projection The light emission of the system 9 is started, and an image in which the fundus image illuminated by the observation illumination 15 is continuous is displayed on the LCD panel 22.
  • a negative determination is made in the process of step S104, and the autofocus function and the autoshot function are invalidated (S108).
  • FIG. 13 is a second diagram comparing in-focus positions.
  • chromatic aberration in the optical system of the fundus photographing apparatus 1 becomes more prominent than when the wide-angle lens 18 is selected. That is, as can be seen by comparing the in-focus position shown in FIG. 11 with the in-focus position shown in FIG. 13, when the narrow-angle lens 17 is selected, the position of the focus lens 4 is adjusted with infrared light. In this state (see FIG. 13A), the visible light is focused at a position far away from the image sensor 20 as shown in FIG. 13B.
  • the optical path correction glass 19 inserted between the wide-angle lens 18 and the image sensor 20 when the narrow-angle lens 17 is selected is the wide-angle lens 18 when the wide-angle lens 18 is selected.
  • the optical path correction glass 19 inserted between the image sensor 20 and the image sensor 20 may have a different thickness or refractive index. If the optical path correction glass 19 is switched according to the characteristics of the lens disposed between the imaging lens 16 and the optical path correction glass 19, visible light is converted into the image sensor 20 as shown in FIG. Can focus on the surface.
  • the description of the fundus imaging apparatus 1 is as described above, but the fundus imaging apparatus 1 is not limited to the above form.
  • the fundus photographing apparatus 1 may include, for example, an infrared LED that emits infrared light other than the above-described wavelengths in the focus target projection system 9 and the observation illumination 15.
  • the fundus imaging apparatus 1 may be configured such that the perforated mirror 3 and the half mirror 5 tilt the optical axis at an angle different from the optical axis shown in FIG.

Abstract

The present application discloses a fundus photography device with which position adjustment of a focus lens using invisible light, which is performed prior to performing fundus photography using visible light, can be performed without requiring complex control. The present invention provides a fundus photography device provided with: an image capture element sensitive to at least visible light and invisible light; a focus lens disposed partway along an optical path extending from the fundus of a subject's eye to the image capture element; a focus adjust means which projects a focus target using a second invisible light having a different peak wavelength from that of a first invisible light used for observing the fundus of the subject's eye, and which aligns the focus lens in a position at which a focus target image captured by means of the image capture element is focused; and an optical path correction member which is inserted or removed when an image of the fundus of the subject's eye is captured using visible light, and which corrects an optical path difference between visible light and invisible light traveling from the fundus of the subject's eye to the image capture element.

Description

眼底撮影装置Fundus photographing device
 本発明は、眼底撮影装置に関する。 The present invention relates to a fundus imaging apparatus.
 可視光による眼底撮影では、眼底に照射する可視光で瞳孔が閉じるのを防ぐため、眼が感知しない赤外光等の不可視光を用いて、被検眼と光学系との事前調整(光軸合わせ、ピントあわせなど)が行われる(例えば、特許文献1を参照)。 In fundus photography using visible light, in order to prevent the pupil from closing with visible light irradiating the fundus, pre-adjustment of the eye to be examined and the optical system using invisible light such as infrared light that the eye does not sense (optical axis alignment) , Focusing, etc.) are performed (for example, see Patent Document 1).
特許第5807701号公報Japanese Patent No. 5807701 特許第5215675号公報Japanese Patent No. 5215675 国際公開第2016/136859号International Publication No. 2016/136859
 眼底撮影装置では、眼底撮影に先立ち、フォーカスレンズの位置調整が行われる。しかし、可視光と不可視光との間には色収差があるため、フォーカスレンズの位置調整が不可視光を使って行われる場合には、色収差に起因するフォーカスレンズの位置ずれを考慮する必要がある。しかし、色収差に応じたフォーカスレンズの位置調整は、フォーカスレンズの動作機構の制御を複雑にする。 In the fundus imaging apparatus, the position of the focus lens is adjusted prior to fundus imaging. However, since there is chromatic aberration between visible light and invisible light, when the position adjustment of the focus lens is performed using invisible light, it is necessary to consider the position shift of the focus lens due to chromatic aberration. However, adjusting the position of the focus lens according to chromatic aberration complicates the control of the operating mechanism of the focus lens.
 そこで、本願は、可視光による眼底撮影に先立って行われる不可視光を使ったフォーカスレンズの位置調整を、複雑な制御を要することなく実現可能な眼底撮影装置を開示する。 Therefore, the present application discloses a fundus imaging apparatus capable of realizing the position adjustment of the focus lens using invisible light performed prior to fundus imaging with visible light without requiring complicated control.
 上記課題を解決するため、本発明では、少なくとも可視光および不可視光に感度を有する撮像素子を用いることとし、可視光を使った眼底の撮影は、不可視光で合焦する位置にフォーカスレンズを合わせた状態で行うことにした。そして、可視光と不可視光との光路差は、光路補正部材を挿抜して補正することにした。 In order to solve the above problems, in the present invention, an imaging device having sensitivity to at least visible light and invisible light is used, and when the fundus is photographed using visible light, the focus lens is adjusted to a position where the invisible light is focused. Decided to do it. The optical path difference between visible light and invisible light is corrected by inserting and removing the optical path correction member.
 詳細には、本発明は、眼底撮影装置であって、少なくとも可視光および不可視光に感度を有する撮像素子と、被験者眼眼底から撮像素子へ至る光路の途中に配置されるフォーカスレンズと、被験者眼眼底の観察に用いられる第1の不可視光とはピーク波長の異なる第2の不可視光でフォーカス視標を投影し、撮像素子で得られるフォーカス視標の像が合焦する位置にフォーカスレンズを合わせるフォーカス調整手段と、被験者眼眼底を可視光で撮影する際に挿抜され、被験者眼眼底から撮像素子へ至る可視光と不可視光との光路差を補正する光路補正部材と、を備える。 Specifically, the present invention relates to a fundus imaging apparatus, an imaging device having sensitivity to at least visible light and invisible light, a focus lens disposed in the optical path from the subject eye fundus to the imaging device, and a subject eye The focus target is projected with the second invisible light having a peak wavelength different from that of the first invisible light used for observing the fundus, and the focus lens is adjusted to a position where the image of the focus target obtained by the image sensor is in focus. A focus adjustment unit; and an optical path correction member that is inserted and removed when the subject eye fundus is imaged with visible light and corrects an optical path difference between visible light and invisible light from the subject eye fundus to the imaging device.
 ここで、不可視光とは、人の眼が感知しない光であり、例えば、赤外光を適用することができる。また、第1の不可視光とは、所定の波長をピークに持つ不可視光であり、例えば、850nmの波長をピークとする赤外光を適用することができる。また、第2の不可視光とは、所定の波長とは異なる波長をピークに持つ不可視光であり、例えば、805nmの波長をピークとする赤外光を適用することができる。 Here, the invisible light is light that is not perceived by human eyes, and for example, infrared light can be applied. The first invisible light is invisible light having a predetermined wavelength as a peak. For example, infrared light having a peak at a wavelength of 850 nm can be applied. The second invisible light is invisible light having a peak different from a predetermined wavelength, and for example, infrared light having a peak at a wavelength of 805 nm can be applied.
 上記の眼底撮影装置のフォーカス調整手段は、第2の不可視光で投影されるフォーカス視標の像が合焦する位置にフォーカスレンズを合わせる。そして、可視光を使った眼底の撮影は、不可視光で合焦する位置にフォーカスレンズを合わせた状態のままで行われる。すなわち、フォーカスレンズの動作機構において、可視光と不可視光との間にある色収差を考慮した複雑な制御は行われない。そして、可視光と不可視光との間にある色収差に起因する合焦位置は、可視光を使った眼底撮影の際に挿抜される光路補正部材で調整される。この調整は、光路補正部材の挿抜という簡単な動作で実現されるため、色収差を考慮したフォーカスレンズの位置調整に求められるような複雑な制御を必要としない。 The focus adjusting means of the fundus photographing apparatus adjusts the focus lens to a position where the image of the focus target projected with the second invisible light is in focus. Then, photographing of the fundus using visible light is performed while keeping the focus lens in the position where the invisible light is focused. That is, in the operation mechanism of the focus lens, complicated control in consideration of chromatic aberration between visible light and invisible light is not performed. The in-focus position caused by chromatic aberration between visible light and invisible light is adjusted by an optical path correction member that is inserted and removed during fundus photography using visible light. Since this adjustment is realized by a simple operation of inserting and removing the optical path correction member, it does not require complicated control required for adjusting the position of the focus lens in consideration of chromatic aberration.
 なお、上記のフォーカス調整手段は、第1の不可視光が消灯時に撮像素子で得られるフォーカス視標の像が合焦する位置にフォーカスレンズを合わせるものであってもよい。上記の眼底撮影装置がこのようなフォーカス調整手段を備えていれば、フォーカス視標が明確に捉えられる。 Note that the focus adjustment unit may adjust the focus lens to a position where the image of the focus target obtained by the image sensor is in focus when the first invisible light is turned off. If the above fundus imaging apparatus includes such a focus adjustment unit, the focus target can be clearly captured.
 また、上記のフォーカス調整手段は、第1の不可視光が1フレーム毎に点滅することにより行われる眼底観察の際に、第1の不可視光が消灯時に撮像素子で得られるフォーカス視標の像が合焦する位置にフォーカスレンズを合わせるものであってもよい。上記の眼底撮影装置がこのようなフォーカス調整手段を備えていれば、眼底観察中にフォーカス調整が行われる。 In addition, the focus adjustment unit described above can generate an image of the focus target obtained by the imaging device when the first invisible light is turned off during fundus observation performed by blinking the first invisible light every frame. The focus lens may be adjusted to the position to be focused. If the above fundus imaging apparatus includes such a focus adjustment unit, focus adjustment is performed during fundus observation.
 また、上記の光路補正部材は、不可視光を遮断する機能を有するものであってもよい。上記の眼底撮影装置がこのような光路補正部材を備えていれば、眼底の撮影画像に不可視光が映り込まないため、鮮明な眼底の撮影画像を得ることができる。 Further, the optical path correction member may have a function of blocking invisible light. If the fundus photographing apparatus includes the optical path correction member, invisible light is not reflected in the fundus photographed image, and thus a clear fundus photographed image can be obtained.
 また、上記の眼底撮影装置は、倍率に応じて交換される複数種のレンズに各々対応する複数の光路補正部材を備えていてもよい。上記の眼底撮像装置がこのような光路補正部材を備えていれば、より鮮明な眼底の撮影画像を得ることができる。 Further, the above fundus imaging apparatus may include a plurality of optical path correction members respectively corresponding to a plurality of types of lenses that are exchanged according to the magnification. If the above-described fundus imaging apparatus includes such an optical path correction member, a clearer fundus image can be obtained.
 上記の眼底撮影装置であれば、可視光による眼底撮影に先立って行われる不可視光を使ったフォーカスレンズの位置調整を、複雑な制御を要することなく実現可能である。 With the above fundus photographing apparatus, the position adjustment of the focus lens using invisible light performed prior to fundus photographing with visible light can be realized without requiring complicated control.
図1は、本実施形態の眼底撮影装置の光学系の概略構成を示した図である。FIG. 1 is a diagram illustrating a schematic configuration of an optical system of a fundus imaging apparatus according to the present embodiment. 図2は、眼底撮影装置に備わる電気回路のブロック線図である。FIG. 2 is a block diagram of an electric circuit provided in the fundus imaging apparatus. 図3は、眼底撮影装置で実現される処理フローを示した図である。FIG. 3 is a diagram illustrating a processing flow realized by the fundus imaging apparatus. 図4は、広角用レンズが選択されている場合に実現される各処理のタイミングチャートを示した図である。FIG. 4 is a diagram illustrating a timing chart of each process realized when the wide-angle lens is selected. 図5は、イメージセンサが取得する映像の一例を示した図である。FIG. 5 is a diagram illustrating an example of an image acquired by the image sensor. 図6は、LCDパネルに表示される映像の一例を示した図である。FIG. 6 is a diagram showing an example of an image displayed on the LCD panel. 図7は、フォーカス視標の検知処理に用いられる眼底画像が並ぶ映像の一例を示した図である。FIG. 7 is a diagram illustrating an example of a video in which fundus images are used for focus target detection processing. 図8は、フォーカスの判定方法を示す第1の図である。FIG. 8 is a first diagram illustrating a focus determination method. 図9は、フォーカスの判定方法を示す第2の図である。FIG. 9 is a second diagram illustrating the focus determination method. 図10は、フォーカスの判定方法を示す第3の図である。FIG. 10 is a third diagram illustrating the focus determination method. 図11は、合焦位置を比較した第1の図である。FIG. 11 is a first diagram comparing in-focus positions. 図12は、狭角用レンズが選択されている場合に実現される各処理のタイミングチャートを示した図である。FIG. 12 is a diagram illustrating a timing chart of each process realized when the narrow-angle lens is selected. 図13は、合焦位置を比較した第2の図である。FIG. 13 is a second diagram comparing in-focus positions.
 以下、本発明の実施形態について説明する。以下に示す実施形態は、本発明の実施形態の一例であり、本発明の技術的範囲を以下の態様に限定するものではない。 Hereinafter, embodiments of the present invention will be described. Embodiment shown below is an example of embodiment of this invention, and does not limit the technical scope of this invention to the following aspects.
 図1は、本実施形態の眼底撮影装置の光学系の概略構成を示した図である。眼底撮影装置1は、被検眼Eの眼底を撮影する装置であり、対物レンズ2、有孔ミラー3、フォーカスレンズ4、ハーフミラー5、内部固視灯6、リレーレンズ7、フォーカスドットミラー8、フォーカス視標投影系9、黒点板ガラス10、リレーレンズ11、リングスリット12、拡散板13、撮影用照明14、観察用照明15、結像レンズ16、狭角用レンズ17、広角用レンズ18、光路補正ガラス19(本願でいう「光路補正部材」の一例である)、イメージセンサ20を備える。 FIG. 1 is a diagram showing a schematic configuration of an optical system of the fundus imaging apparatus of the present embodiment. The fundus imaging apparatus 1 is an apparatus for imaging the fundus of the eye E, and includes an objective lens 2, a perforated mirror 3, a focus lens 4, a half mirror 5, an internal fixation lamp 6, a relay lens 7, a focus dot mirror 8, Focus target projection system 9, black spot plate glass 10, relay lens 11, ring slit 12, diffuser plate 13, photographing illumination 14, observation illumination 15, imaging lens 16, narrow angle lens 17, wide angle lens 18, optical path A correction glass 19 (an example of an “optical path correction member” in the present application) and an image sensor 20 are provided.
 まず、眼底撮影装置1に備わる各部品の位置関係および機能について説明する。対物レンズ2は、被検眼Eの正面に位置するレンズである。そして、対物レンズ2の後方の光軸上には、有孔ミラー3、フォーカスレンズ4、ハーフミラー5、内部固視灯6が順に配置されている。有孔ミラー3は、対物レンズ2の光軸が通過する部位に貫通孔が形成されたミラーであり、対物レンズ2の光軸に対し適当な傾き角で眼底撮影装置1内に固定されている。 First, the positional relationship and function of each component provided in the fundus imaging apparatus 1 will be described. The objective lens 2 is a lens located in front of the eye E to be examined. On the optical axis behind the objective lens 2, a perforated mirror 3, a focus lens 4, a half mirror 5, and an internal fixation lamp 6 are arranged in this order. The perforated mirror 3 is a mirror in which a through hole is formed at a portion through which the optical axis of the objective lens 2 passes, and is fixed in the fundus photographing apparatus 1 at an appropriate inclination angle with respect to the optical axis of the objective lens 2. .
 有効ミラーで反射されて被検眼Eに照射される照明光を導く照明光学系の軸上には有孔ミラー3側から順に、リレーレンズ7、フォーカスドットミラー8、黒点板ガラス10、リレーレンズ11、リングスリット12、拡散板13、撮影用照明14、観察用照明15が配置される。よって、撮影用照明14や観察用照明15から放たれた光は、拡散板13やリングスリット12を通過する過程で環状の照射光となり、リレーレンズ11、黒点板ガラス10、フォーカスドットミラー8、リレーレンズ7を経て有孔ミラー3で反射され、対物レンズ2を経て被検眼Eの眼底を照明する。 On the axis of the illumination optical system that guides the illumination light reflected by the effective mirror and applied to the eye E, the relay lens 7, the focus dot mirror 8, the black dot plate glass 10, the relay lens 11, in that order from the perforated mirror 3 side. A ring slit 12, a diffusing plate 13, a photographing illumination 14, and an observation illumination 15 are arranged. Therefore, the light emitted from the photographing illumination 14 and the observation illumination 15 becomes an annular irradiation light in the process of passing through the diffusion plate 13 and the ring slit 12, and the relay lens 11, the black dot plate glass 10, the focus dot mirror 8, and the relay. The light is reflected by the perforated mirror 3 through the lens 7, and illuminates the fundus of the eye E through the objective lens 2.
 黒点板ガラス10は対物レンズ2による反射光が撮影像に写りこむのを防ぐもので、板ガラスの中心、すなわち光軸のある位置に、小さい遮光物が配置されているものである。その黒点板ガラス10とリレーレンズ7との間にあるフォーカスドットミラー8には、反射光がリレーレンズ7の光軸に一致することになる角度でフォーカス視標投影系9からの光が入射する。フォーカス視標投影系9は、被検眼Eの眼底にフォーカス視標を投影する。よって、被検眼Eの眼底には、撮影用照明14及び観察用照明15が放つ光の他、フォーカス視標投影系9が放つフォーカス視標の光が入射することになる。フォーカス視標投影系9は、観察用照明15が放つ眼底観察用の赤外光とはピーク波長の異なる赤外光を放つ赤外LED(Light Emitting Diode)を有する。観察用照明15に850nmをピーク波長とする赤外光を放つ赤外LEDが光源として用いられている場合、フォーカス視標投影系9の光源には、例えば、805nmをピーク波長とする赤外光を放つ赤外LEDが用いられる。 The black spot plate glass 10 prevents the reflected light from the objective lens 2 from appearing in the photographed image, and a small light blocking object is disposed at the center of the plate glass, that is, at a position where the optical axis is located. Light from the focus target projection system 9 is incident on the focus dot mirror 8 between the black spot plate glass 10 and the relay lens 7 at an angle at which the reflected light coincides with the optical axis of the relay lens 7. The focus target projection system 9 projects the focus target on the fundus of the eye E. Therefore, in addition to the light emitted from the photographing illumination 14 and the observation illumination 15, the light of the focus target emitted from the focus target projection system 9 enters the fundus of the eye E. The focus target projection system 9 includes an infrared LED (Light Emitting Diode) that emits infrared light having a peak wavelength different from that of infrared light for fundus observation emitted by the observation illumination 15. When an infrared LED that emits infrared light having a peak wavelength of 850 nm is used as the light source for observation 15, for example, infrared light having a peak wavelength of 805 nm is used as the light source of the focus target projection system 9. An infrared LED that emits light is used.
 撮影用照明14や観察用照明15の光で照明された被検眼Eの眼底からの反射光は、対物レンズ2、有孔ミラー3、フォーカスレンズ4を通過してハーフミラー5に入射する。ハーフミラー5は、対物レンズ2の光軸に対し適当な傾き角で眼底撮影装置1内に固定されている。よって、被検眼Eの眼底からの反射光は、ハーフミラー5において、対物レンズ2の光軸に対し適当な角度をもって反射される。フォーカスレンズ4から入射したハーフミラー5の反射光の光軸上には、結像レンズ16、光路補正ガラス19、イメージセンサ20が順に設けられている。そして、結像レンズ16と光路補正ガラス19との間には、観察者が所望する倍率に応じて適宜選択される変倍レンズである狭角用レンズ17または広角用レンズ18が挿入される。よって、被検眼Eの眼底からの反射光は、ハーフミラー5で反射された後に結像レンズ16を通過し、狭角用レンズ17または広角用レンズ18を経た後、イメージセンサ20へ入射する。イメージセンサ20では、マトリクス状に配列された光電変換素子が光のエネルギーを受けて電気信号を発し、被検眼Eの眼底の画像が得られる。 Reflected light from the fundus of the subject eye E illuminated with light from the imaging illumination 14 or observation illumination 15 passes through the objective lens 2, the perforated mirror 3, and the focus lens 4 and enters the half mirror 5. The half mirror 5 is fixed in the fundus photographing apparatus 1 at an appropriate inclination angle with respect to the optical axis of the objective lens 2. Therefore, the reflected light from the fundus of the eye E is reflected by the half mirror 5 at an appropriate angle with respect to the optical axis of the objective lens 2. An imaging lens 16, an optical path correction glass 19, and an image sensor 20 are sequentially provided on the optical axis of the reflected light of the half mirror 5 incident from the focus lens 4. A narrow-angle lens 17 or a wide-angle lens 18, which is a variable power lens that is appropriately selected according to the magnification desired by the observer, is inserted between the imaging lens 16 and the optical path correction glass 19. Therefore, the reflected light from the fundus of the eye E is reflected by the half mirror 5, passes through the imaging lens 16, passes through the narrow-angle lens 17 or the wide-angle lens 18, and then enters the image sensor 20. In the image sensor 20, the photoelectric conversion elements arranged in a matrix form receive an energy of light and emit an electric signal, and an image of the fundus of the eye E is obtained.
 イメージセンサ20は、少なくとも可視光および赤外光に感度を有する撮像素子である。よって、イメージセンサ20は、被検眼Eの眼底を照明する光の光源が撮影用照明14と観察用照明15の何れであっても、眼底の画像を得ることができる。また、イメージセンサ20には、隣り合う幾つかの光電変化素子をまとめて1画素として処理するビニング機能が備わっている。よって、イメージセンサ20は、撮影用照明14に比べて照度の低い観察用照明15が照明する被検眼Eの眼底からの反射光においても、眼底像を得るのに支障の無い感度を発揮することが可能である。このようなイメージセンサ20としては、例えば、CMOSが挙げられる。 The image sensor 20 is an image sensor having sensitivity to at least visible light and infrared light. Therefore, the image sensor 20 can obtain an image of the fundus regardless of whether the light source for illuminating the fundus of the eye E is the photographing illumination 14 or the observation illumination 15. Further, the image sensor 20 has a binning function for processing several adjacent photoelectric change elements as one pixel. Therefore, the image sensor 20 exhibits sensitivity that does not hinder obtaining a fundus image even in the reflected light from the fundus of the eye E to be examined, which is illuminated by the observation illumination 15 having a lower illuminance than the imaging illumination 14. Is possible. An example of such an image sensor 20 is a CMOS.
 ところで、光路補正ガラス19は、被検眼Eの眼底を可視光で撮影する際に光路へ挿入され、赤外光による観察の際には光路から引き抜かれる。光路補正ガラス19は、被検眼Eの眼底からイメージセンサ20へ至る可視光と赤外光との光路差を補正する部材であり、色収差に起因する可視光と赤外光との眼底像の合焦位置のずれを解消する目的で用意される板状のガラスである。なお、光路補正ガラス19は、赤外光を遮断するフィルター機能を有することが好ましい。光路補正ガラス19が赤外光を遮断するフィルター機能を有していれば、眼底の撮像画像に赤外光が映り込むのを防止することができる。光路補正ガラス19がフィルター機能を有する場合、可視光による撮影前後における赤外光による眼底像が失われる時間を可及的に抑制するため、光路補正ガラス19は、瞬時に挿抜可能であることが好ましい。 Incidentally, the optical path correction glass 19 is inserted into the optical path when photographing the fundus of the eye E to be examined with visible light, and is pulled out of the optical path during observation with infrared light. The optical path correction glass 19 is a member that corrects an optical path difference between visible light and infrared light from the fundus of the eye E to the image sensor 20, and combines the fundus image of visible light and infrared light due to chromatic aberration. It is a plate-like glass prepared for the purpose of eliminating the shift of the focal position. The optical path correction glass 19 preferably has a filter function for blocking infrared light. If the optical path correction glass 19 has a filter function for blocking infrared light, it is possible to prevent infrared light from being reflected in the fundus image. When the optical path correction glass 19 has a filter function, the optical path correction glass 19 can be inserted and removed instantaneously in order to suppress as much as possible the time during which the fundus image due to infrared light is lost before and after photographing with visible light. preferable.
 図2は、眼底撮影装置1に備わる電気回路のブロック線図である。眼底撮影装置1には、CPU基板21、LCDパネル22(Liquid Crystal Display)、LCDバックライト23、操作部24、メイン基板25が備わっている。図2では、フォーカスレンズ4と光路補正ガラス19を動かすアクチュエータ、撮影用照明14を発光させる高圧回路、フォーカス視標投影系9に備わるLED、観察用照明15を全て電子部品類26として纏めて図示している。 FIG. 2 is a block diagram of an electric circuit provided in the fundus imaging apparatus 1. The fundus photographing apparatus 1 includes a CPU substrate 21, an LCD panel 22 (Liquid Crystal Display), an LCD backlight 23, an operation unit 24, and a main substrate 25. In FIG. 2, an actuator that moves the focus lens 4 and the optical path correction glass 19, a high-voltage circuit that emits the photographing illumination 14, an LED provided in the focus target projection system 9, and the observation illumination 15 are all collected as electronic components 26. Show.
 CPU基板21は、主にイメージセンサ20で取得された画像の処理を担う回路基板であり、画像を処理するCPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)、画像を記録するSDカード(登録商標)用のドライブ等の各種電子部品が実装されている。イメージセンサ20は、CPU基板21の制御信号に応じて作動し、取得した画像をCPU基板21に提供する。CPU基板21では、イメージセンサ20が取得した画像に対する各種の処理が行われ、処理された画像がLCDパネル22或いはSDカードへ出力される。LCDパネル22では、CPU基板21から出力された画像が表示される。 The CPU board 21 is a circuit board mainly responsible for processing the image acquired by the image sensor 20, and is a CPU (Central Processing Unit) or FPGA (Field Programmable Gate Array) for processing an image, and an SD card for recording an image ( Various electronic parts such as a registered trademark drive are mounted. The image sensor 20 operates according to the control signal of the CPU board 21 and provides the acquired image to the CPU board 21. On the CPU substrate 21, various processes are performed on the image acquired by the image sensor 20, and the processed image is output to the LCD panel 22 or the SD card. On the LCD panel 22, an image output from the CPU board 21 is displayed.
 メイン基板25は、眼底撮影装置1全体の制御を司る回路基板であり、FPGAやその他の各種電子部品が実装されている。メイン基板25は、操作部24で受け付けた操作内容に従ってCPU基板21や電子部品類26を作動させる。メイン基板25は、以下の処理フローを実現する。 The main board 25 is a circuit board that controls the entire fundus photographing apparatus 1, and is mounted with an FPGA and other various electronic components. The main board 25 operates the CPU board 21 and the electronic components 26 according to the operation content received by the operation unit 24. The main board 25 realizes the following processing flow.
 図3は、眼底撮影装置1で実現される処理フローを示した図である。操作部24で撮影開始操作が行われると、イメージセンサ20のビニング機能が有効にされ、イメージセンサ20のビニング処理が開始される(S101)。また、観察用照明15が通電され、観察用照明15の赤外LEDが同期発光を開始する(S102)。また、フォーカス視標投影系9の赤外LEDが発光を開始する(S103)。ここで、同期発光とは、イメージセンサ20が1フレームを走査するタイミングに合わせて発光と消灯を繰り返すことをいう。よって、観察用照明15の同期発光中にイメージセンサ20が取得する被検眼Eの映像は、観察用照明15で照明された眼底画像と観察用照明15で照明されていない眼底画像が時間軸に沿って交互に並ぶ画像の集合となる。観察用照明15の赤外LEDが同期発光している間もフォーカス視標投影系9の赤外LEDは常時発光しているため、観察用照明15の同期発光中にイメージセンサ20が取得する被検眼Eの画像には、眼底が観察用照明15で照明されていると否とに関わりなく、フォーカス視標が映り込む。 FIG. 3 is a diagram illustrating a processing flow realized by the fundus imaging apparatus 1. When a shooting start operation is performed at the operation unit 24, the binning function of the image sensor 20 is enabled and the binning process of the image sensor 20 is started (S101). In addition, the observation illumination 15 is energized, and the infrared LED of the observation illumination 15 starts synchronous light emission (S102). Further, the infrared LED of the focus target projection system 9 starts to emit light (S103). Here, the synchronized light emission means that the image sensor 20 repeats light emission and extinction in accordance with the timing of scanning one frame. Therefore, the image of the eye E to be inspected acquired by the image sensor 20 during the synchronized light emission of the observation illumination 15 includes the fundus image illuminated with the observation illumination 15 and the fundus image not illuminated with the observation illumination 15 on the time axis. It becomes a set of images arranged alternately along. Since the infrared LED of the focus target projection system 9 always emits light while the infrared LED of the observation illumination 15 emits light synchronously, the image sensor 20 acquires during the synchronous light emission of the observation illumination 15. Regardless of whether or not the fundus is illuminated with the observation illumination 15, the focus target is reflected in the image of the optometry E.
 図4は、広角用レンズ18が選択されている場合に実現される各処理のタイミングチャートを示した図である。広角用レンズ18が選択されている状態で撮影開始操作が行われると、図4のタイミングチャートに示されるように、イメージセンサ20のビニング処理が開始される他、観察用照明15の赤外LEDによる同期発光が開始され、フォーカス視標投影系9の赤外LEDの発光が開始される。よって、イメージセンサ20は、以下のような映像を取得する。 FIG. 4 is a diagram showing a timing chart of each process realized when the wide-angle lens 18 is selected. When the photographing start operation is performed in a state where the wide-angle lens 18 is selected, the binning process of the image sensor 20 is started as shown in the timing chart of FIG. Is started, and the infrared LED of the focus target projection system 9 starts to emit light. Therefore, the image sensor 20 acquires the following video.
 図5は、イメージセンサ20が取得する映像の一例を示した図である。撮影開始操作により、観察用照明15の赤外LEDによる同期発光とフォーカス視標投影系9の赤外LEDの発光が開始されると、イメージセンサ20は、図5に示すように、観察用照明15で照明された眼底画像(図5の偶数フレームを参照)と観察用照明15で照明されていない眼底画像(図5の奇数フレームを参照)が交互に繰り返される映像を取得する。観察用照明15の赤外LEDが同期発光している間もフォーカス視標投影系9の赤外LEDは常時発光しているため、イメージセンサ20が取得する映像には、図5に示すように、フォーカス視標30が全てのフレームに渡って映り込んでいる。なお、イメージセンサ20が取得する映像には、フォーカス視標30の他に、WD指標31(WD:Working Distance)が映り込んでいる。 FIG. 5 is a diagram illustrating an example of a video acquired by the image sensor 20. When the synchronous light emission by the infrared LED of the observation illumination 15 and the emission of the infrared LED of the focus target projection system 9 are started by the photographing start operation, the image sensor 20 has the observation illumination as shown in FIG. 15 is obtained by alternately repeating the fundus image illuminated by 15 (see the even frame in FIG. 5) and the fundus image not illuminated by the observation illumination 15 (see the odd frame in FIG. 5). Since the infrared LED of the focus target projection system 9 always emits light while the infrared LED of the observation illumination 15 emits light synchronously, the image acquired by the image sensor 20 is as shown in FIG. The focus target 30 is reflected over all frames. In addition to the focus target 30, the WD index 31 (WD: Working Distance) is reflected in the video acquired by the image sensor 20.
 図6は、LCDパネル22に表示される映像の一例を示した図である。イメージセンサ20が映像の取得を開始すると、CPU基板21では観察用照明15で照明された眼底画像のみをLCDパネル22へ送る処理が行われる。これにより、LCDパネル22には、例えば、図6に示されるように、観察用照明15で照明された眼底画像が連続する映像が表示される。この場合、図5に示される2フレーム目、4フレーム目、6フレーム目・・・と1つ間隔で偶数番目のフレームの画像を表示することになるが、必ずしも対象となる全てのフレームの画像を表示する必要はなく、2フレーム目、6フレーム目、10フレーム目、というように間引きして表示しても差し支えない。 FIG. 6 is a diagram showing an example of an image displayed on the LCD panel 22. When the image sensor 20 starts acquiring images, the CPU substrate 21 performs processing for sending only the fundus image illuminated by the observation illumination 15 to the LCD panel 22. Thereby, for example, as shown in FIG. 6, the LCD panel 22 displays an image in which the fundus image illuminated by the observation illumination 15 is continuous. In this case, the second frame, the fourth frame, the sixth frame, and so on shown in FIG. 5 are displayed at even intervals, and the images of all the target frames are displayed. There is no need to display the frame, and the second frame, the sixth frame, and the tenth frame may be displayed in a thinned-out manner.
 図3のフローチャートを再参照しつつ、ステップS104以降の処理について説明する。眼底撮影装置1にはオートフォーカス機能およびオートショット機能が備わっており、電子制御によるフォーカスレンズ4の自動調整等が可能である。しかし、本実施形態の眼底撮影装置1では、観察部位に応じて観察者が適宜選択する狭角用レンズ17と広角用レンズ18のうち、狭角用レンズ17が選択されている場合はオートフォーカス機能およびオートショット機能を無効にする。その理由は、狭角用レンズ17を選択して観察される可能性が高い視神経乳頭が、いわゆる眼底部分に比べて反射率が高いため、フォーカス視標が視神経乳頭に投影されるとフォーカス視標の明るさが眼底部分に比べて不安定になり、オートフォーカス機能が正常に動作しない可能性があることに由来する。よって、図3のフローチャートに示されるように、本実施形態の眼底撮影装置1では、広角用レンズ18が選択されている場合にはオートフォーカス機能およびオートショット機能に係る処理(後述するステップS105からステップS107までの処理)が行われ、狭角用レンズ17が選択されている場合にはマニュアルフォーカス機能に係る処理(後述するステップS108からステップS109までの処理)が行われる。 The processing after step S104 will be described with reference to the flowchart of FIG. The fundus imaging apparatus 1 has an autofocus function and an autoshot function, and can automatically adjust the focus lens 4 by electronic control. However, in the fundus imaging apparatus 1 according to the present embodiment, when the narrow-angle lens 17 is selected from the narrow-angle lens 17 and the wide-angle lens 18 that are appropriately selected by the observer according to the observation site, autofocusing is performed. Disable function and auto shot function. The reason is that the optic nerve head that is likely to be observed by selecting the narrow-angle lens 17 has a higher reflectance than the so-called fundus portion. Therefore, when the focus target is projected onto the optic nerve head, the focus target is projected. This is because the brightness of the camera becomes unstable compared to the fundus, and the autofocus function may not operate normally. Therefore, as shown in the flowchart of FIG. 3, in the fundus imaging apparatus 1 of the present embodiment, when the wide-angle lens 18 is selected, processing related to the autofocus function and the autoshot function (from step S105 described later). If the narrow-angle lens 17 is selected, processing related to the manual focus function (processing from step S108 to step S109 described later) is performed.
 すなわち、眼底撮影装置1では、ステップS103の処理が行われた後、広角用レンズ18が選択されているか否かの判定が行われる(S104)。広角用レンズ18が結像レンズ16と光路補正ガラス19との間に挿入された状態であれば、ステップS104の処理では肯定判定が行われる。また、狭角用レンズ17が結像レンズ16と光路補正ガラス19との間に挿入された状態であれば、ステップS104の処理では否定判定が行われる。広角用レンズ18と狭角用レンズ17の何れが選択されているかは、レンズの切替機構に設けられた接触式スイッチ等により検知される。 That is, in the fundus imaging apparatus 1, after the process of step S103 is performed, it is determined whether or not the wide-angle lens 18 is selected (S104). If the wide-angle lens 18 is inserted between the imaging lens 16 and the optical path correction glass 19, a positive determination is made in the process of step S104. If the narrow-angle lens 17 is inserted between the imaging lens 16 and the optical path correction glass 19, a negative determination is made in the process of step S104. Which of the wide-angle lens 18 and the narrow-angle lens 17 is selected is detected by a contact switch provided in the lens switching mechanism.
 ステップS104で肯定判定が行われた後は、フォーカスが合致しているか否かの判定が行われ(S105)、フォーカスが合致していなければフォーカスレンズ4のモータが適宜動作する(S106)。ステップS106が行われた後は、ステップS104以降の処理が再び行われる。ステップS105の処理でフォーカスが合致していると判定されれば、次に、WD指標31の位置とサイズが規定範囲内にあるか否かの判定が行われる(S107)。 After the affirmative determination is made in step S104, it is determined whether or not the focus is matched (S105). If the focus is not matched, the motor of the focus lens 4 operates as appropriate (S106). After step S106 is performed, the processing after step S104 is performed again. If it is determined in step S105 that the focus is matched, it is next determined whether or not the position and size of the WD index 31 are within a specified range (S107).
 また、ステップS104で否定判定が行われた後は、オートフォーカス機能およびオートショット機能が無効化され(S108)、操作部24でシャッタースイッチが押されたか否かの判定が行われる(S109)。 Further, after a negative determination is made in step S104, the autofocus function and the autoshot function are invalidated (S108), and it is determined whether or not the shutter switch is pressed by the operation unit 24 (S109).
 ところで、ステップS105では、次のようにして判定処理が行われる。すなわち、イメージセンサ20が映像の取得を開始すると、CPU基板21では、上述したように観察用照明15で照明された眼底画像のみをLCDパネル22へ送る処理の他、観察用照明15で照明されていない眼底画像を使ったフォーカス視標30の検知処理が行われる。図7は、フォーカス視標30の検知処理に用いられる眼底画像が並ぶ映像の一例を示した図である。ステップS105で行われるフォーカスが合致しているか否かの判定処理においては、フォーカス視標30の検知を容易にするため、フォーカス視標30の背景に眼底が映り込んでいない眼底画像が用いられる。この場合、図5に示される1フレーム目、3フレーム目、5フレーム目・・・と1つ間隔で奇数番目のフレームの画像を表示することになるが、必ずしも対象となる全てのフレームの画像を表示する必要はなく、1フレーム目、5フレーム目、9フレーム目、というように間引きして用いても差し支えない。 Incidentally, in step S105, determination processing is performed as follows. That is, when the image sensor 20 starts acquiring images, the CPU board 21 is illuminated with the observation illumination 15 in addition to the process of sending only the fundus image illuminated with the observation illumination 15 to the LCD panel 22 as described above. Detection processing of the focus target 30 using a fundus image that has not been performed is performed. FIG. 7 is a diagram illustrating an example of a video in which fundus images used for the process of detecting the focus target 30 are arranged. In the process of determining whether the focus is matched in step S105, a fundus image in which the fundus is not reflected in the background of the focus target 30 is used to facilitate detection of the focus target 30. In this case, the first frame, the third frame, the fifth frame, and so on shown in FIG. 5 are displayed with odd-numbered frames at one interval, but the images of all target frames are not necessarily displayed. There is no need to display the image, and the first frame, the fifth frame, and the ninth frame may be used by being thinned.
 フォーカスが合致しているか否かは、次のようにして判定される。図8は、フォーカスの判定方法を示す第1の図である。フォーカスが合致しているか否かの判定においては、まず、図8に示すように、左側の判定範囲32L内におけるフォーカス視標30Lの上下端の位置(y座標)と、右側の判定範囲32R内におけるフォーカス視標30Rの上下端の位置(y座標)とが抽出される。 Whether or not the focus is in agreement is determined as follows. FIG. 8 is a first diagram illustrating a focus determination method. In determining whether or not the focus is matched, first, as shown in FIG. 8, the upper and lower positions (y coordinates) of the focus target 30L in the left determination range 32L and the right determination range 32R. The positions (y coordinates) of the upper and lower ends of the focus target 30R are extracted.
 図9は、フォーカスの判定方法を示す第2の図である。判定範囲32L,32R内におけるフォーカス視標30L,30Rの上下端の位置は、例えば、次のようにして取得される。すなわち、x軸方向の隣接する10ピクセルの輝度の和を各y座標毎に算出し、輝度の和が輝度のピークの75%となる部位の座標をフォーカス視標30L,30Rの上端および下端の座標として取得する。 FIG. 9 is a second diagram illustrating the focus determination method. The positions of the upper and lower ends of the focus targets 30L and 30R within the determination ranges 32L and 32R are acquired as follows, for example. That is, the sum of the luminances of 10 pixels adjacent in the x-axis direction is calculated for each y coordinate, and the coordinates of the part where the luminance sum is 75% of the luminance peak are the upper and lower ends of the focus targets 30L and 30R. Get as coordinates.
 図10は、フォーカスの判定方法を示す第3の図である。判定範囲32L,32R内におけるフォーカス視標30L,30Rの上端および下端の座標が取得された後は、フォーカス視標30Lとフォーカス視標30Rのそれぞれについて、上端および下端の中心y座標の算出が行われる。そして、フォーカス視標30Lの中心y座標とフォーカス視標30Rの中心y座標との差が0でなければステップS105で否定判定が行われ、差が0となるようにステップS106でフォーカスレンズ4のモータが適宜動かされる。また、差が0であればステップS105で肯定判定が行われる。 FIG. 10 is a third diagram illustrating the focus determination method. After the coordinates of the upper and lower ends of the focus targets 30L and 30R within the determination ranges 32L and 32R are acquired, the center y coordinates of the upper and lower ends are calculated for the focus target 30L and the focus target 30R, respectively. Is called. If the difference between the center y coordinate of the focus target 30L and the center y coordinate of the focus target 30R is not zero, a negative determination is made in step S105, and the focus lens 4 is adjusted in step S106 so that the difference becomes zero. The motor is moved accordingly. If the difference is 0, an affirmative determination is made in step S105.
 なお、本実施形態では、上記したように、広角用レンズ18が選択されている場合にオートフォーカス機能およびオートショット機能が有効となっているが、眼底撮影装置1はこれに限定されない。眼底撮影装置1は、例えば、広角用レンズ18が選択されていると否とに関わり無く上述のステップS105からステップS107までの処理が実現されるようにしてもよいし、或いは、オートフォーカス機能およびオートショット機能を廃して上述のステップS108からステップS109までの処理が広角用レンズ18の選択中も実現されるようにしてもよい。前者のように狭角用レンズ17の選択中もステップS105からステップS107までの処理が実現されるようにする場合、例えば、狭角用レンズ17の選択中はフォーカス視標投影系9の赤外LEDの輝度を低下させることで、視神経乳頭に投影されるフォーカス視標の輝度を変化させ、オートフォーカス機能が正常に動作しない可能性を抑制することが考えられる。 In the present embodiment, as described above, the autofocus function and the autoshot function are effective when the wide-angle lens 18 is selected, but the fundus imaging apparatus 1 is not limited to this. For example, the fundus imaging apparatus 1 may realize the processing from the above-described step S105 to step S107 regardless of whether or not the wide-angle lens 18 is selected, or the autofocus function and The auto-shot function may be eliminated and the processing from step S108 to step S109 described above may be realized while the wide-angle lens 18 is selected. When the processing from step S105 to step S107 is performed even when the narrow-angle lens 17 is selected as in the former case, for example, when the narrow-angle lens 17 is selected, the infrared of the focus target projection system 9 is selected. It is conceivable that the brightness of the focus target projected on the optic nerve head is changed by reducing the brightness of the LED, and the possibility that the autofocus function does not operate normally is suppressed.
 図3のフローチャートを再参照しつつ、ステップS110以降の処理について説明する。上記のステップS107またはステップS109の処理で肯定判定が行われた後は、十分な輝度を有する撮影用照明14で照明された眼底の鮮明な高解像度の画像を得るため、眼底撮影の準備が行われる。すなわち、イメージセンサ20のビニング処理が停止され(S110)、観察用照明15が消灯され(S111)、フォーカス視標投影系9の赤外LEDが消灯される(S112)。そして、光路補正ガラス19が広角用レンズ18とイメージセンサ20との間に挿入され(S113)、撮影用照明14の発光と同時にイメージセンサ20が眼底の撮影を行う(S114)。 The processing after step S110 will be described with reference to the flowchart of FIG. After an affirmative determination is made in step S107 or step S109 above, preparation for fundus photography is performed in order to obtain a clear, high-resolution image of the fundus illuminated by the photographing illumination 14 having sufficient luminance. Is called. That is, the binning process of the image sensor 20 is stopped (S110), the observation illumination 15 is turned off (S111), and the infrared LED of the focus target projection system 9 is turned off (S112). Then, the optical path correction glass 19 is inserted between the wide-angle lens 18 and the image sensor 20 (S113), and the image sensor 20 photographs the fundus simultaneously with the light emission of the photographing illumination 14 (S114).
 光路補正ガラス19の挿入は、以下の理由で行われる。図11は、合焦位置を比較した第1の図である。眼底撮影装置1が擁する光学系において、色収差は、眼底を鮮明に撮影する上で無視できない要素である。例えば、図11(A)で示されるように赤外光でフォーカスレンズ4の位置が調整された状態において、光路補正ガラス19が広角用レンズ18とイメージセンサ20との間に挿入されない場合、可視光は、図11(B)で示されるようにイメージセンサ20から離れた位置で合焦する。一方、赤外光と可視光との色収差を考慮して厚みや素材が選定された光路補正ガラス19が広角用レンズ18とイメージセンサ20との間に挿入される場合、可視光は、図11(C)で示されるようにイメージセンサ20の表面で合焦する。したがって、イメージセンサ20は、可視光を放つ撮影用照明14で照明された眼底の鮮明な像を撮影することができる。 The optical path correction glass 19 is inserted for the following reason. FIG. 11 is a first diagram comparing in-focus positions. In the optical system of the fundus photographing apparatus 1, chromatic aberration is an element that cannot be ignored when photographing the fundus clearly. For example, when the optical path correction glass 19 is not inserted between the wide-angle lens 18 and the image sensor 20 in a state where the position of the focus lens 4 is adjusted with infrared light as shown in FIG. The light is focused at a position away from the image sensor 20 as shown in FIG. On the other hand, when the optical path correction glass 19 whose thickness and material are selected in consideration of chromatic aberration between infrared light and visible light is inserted between the wide-angle lens 18 and the image sensor 20, the visible light is shown in FIG. As shown in (C), focusing is performed on the surface of the image sensor 20. Therefore, the image sensor 20 can capture a clear image of the fundus illuminated by the imaging illumination 14 that emits visible light.
 広角用レンズ18が選択されている場合に眼底撮影装置1で実現される処理の内容は以上の通りである。次に、狭角用レンズ17が選択されている場合に眼底撮影装置1で実現される処理の内容を説明する。 The contents of the processing realized by the fundus imaging apparatus 1 when the wide-angle lens 18 is selected are as described above. Next, the contents of processing realized by the fundus imaging apparatus 1 when the narrow-angle lens 17 is selected will be described.
 図12は、狭角用レンズ17が選択されている場合に実現される各処理のタイミングチャートを示した図である。狭角用レンズ17が選択されている状態で撮影開始操作が行われると、図12のタイミングチャートに示されるように、イメージセンサ20のビニング処理や観察用照明15の同期発光、フォーカス視標投影系9の発光が開始され、観察用照明15で照明された眼底画像が連続する映像がLCDパネル22に表示される。そして、図3のフローチャートに示したように、ステップS104の処理で否定判定が行われ、オートフォーカス機能およびオートショット機能が無効化される(S108)。そして、操作部24でシャッタースイッチが押されたか否かの判定が行われ(S109)、ステップS109で肯定判定が行われると上記ステップS110からステップS114までの一連の処理が実行されて眼底の撮影が完了する。 FIG. 12 is a diagram showing a timing chart of each process realized when the narrow-angle lens 17 is selected. When a shooting start operation is performed with the narrow-angle lens 17 selected, as shown in the timing chart of FIG. 12, the binning process of the image sensor 20, the synchronous light emission of the observation illumination 15, and the focus target projection The light emission of the system 9 is started, and an image in which the fundus image illuminated by the observation illumination 15 is continuous is displayed on the LCD panel 22. Then, as shown in the flowchart of FIG. 3, a negative determination is made in the process of step S104, and the autofocus function and the autoshot function are invalidated (S108). Then, it is determined whether or not the shutter switch has been pressed by the operation unit 24 (S109). If an affirmative determination is made in step S109, a series of processing from step S110 to step S114 is executed, and the fundus is photographed. Is completed.
 図13は、合焦位置を比較した第2の図である。狭角用レンズ17が選択されている場合、広角用レンズ18が選択されている場合に比べて、眼底撮影装置1が擁する光学系における色収差が顕著になる。すなわち、図11に示した合焦位置と図13に示す合焦位置とを見比べると判るように、狭角用レンズ17が選択されている場合、赤外光でフォーカスレンズ4の位置が調整された状態において(図13(A)を参照)、可視光は、図13(B)で示されるようにイメージセンサ20から大きく離れた位置で合焦する。そこで、狭角用レンズ17が選択されている場合に広角用レンズ18とイメージセンサ20との間に挿入される光路補正ガラス19は、広角用レンズ18が選択されている場合に広角用レンズ18とイメージセンサ20との間に挿入される光路補正ガラス19とは厚さ若しくは屈折度の異なるものであってもよい。結像レンズ16と光路補正ガラス19との間に配置されるレンズの特性に応じて光路補正ガラス19の切り替えが行われれば、図13(C)で示されるように可視光をイメージセンサ20の表面に合焦させることができる。 FIG. 13 is a second diagram comparing in-focus positions. When the narrow-angle lens 17 is selected, chromatic aberration in the optical system of the fundus photographing apparatus 1 becomes more prominent than when the wide-angle lens 18 is selected. That is, as can be seen by comparing the in-focus position shown in FIG. 11 with the in-focus position shown in FIG. 13, when the narrow-angle lens 17 is selected, the position of the focus lens 4 is adjusted with infrared light. In this state (see FIG. 13A), the visible light is focused at a position far away from the image sensor 20 as shown in FIG. 13B. Therefore, the optical path correction glass 19 inserted between the wide-angle lens 18 and the image sensor 20 when the narrow-angle lens 17 is selected is the wide-angle lens 18 when the wide-angle lens 18 is selected. The optical path correction glass 19 inserted between the image sensor 20 and the image sensor 20 may have a different thickness or refractive index. If the optical path correction glass 19 is switched according to the characteristics of the lens disposed between the imaging lens 16 and the optical path correction glass 19, visible light is converted into the image sensor 20 as shown in FIG. Can focus on the surface.
 眼底撮影装置1の説明は以上の通りであるが、眼底撮影装置1は、上記形態に限定されるものではない。眼底撮影装置1は、例えば、上記した波長以外の赤外光を放つ赤外LEDをフォーカス視標投影系9や観察用照明15に備えたものであってもよい。また、眼底撮影装置1は、例えば、有孔ミラー3やハーフミラー5が図1に示される光軸とは異なる角度に光軸を傾けるものであってもよい。 The description of the fundus imaging apparatus 1 is as described above, but the fundus imaging apparatus 1 is not limited to the above form. The fundus photographing apparatus 1 may include, for example, an infrared LED that emits infrared light other than the above-described wavelengths in the focus target projection system 9 and the observation illumination 15. In addition, for example, the fundus imaging apparatus 1 may be configured such that the perforated mirror 3 and the half mirror 5 tilt the optical axis at an angle different from the optical axis shown in FIG.
1・・眼底撮影装置:2・・対物レンズ:3・・有孔ミラー:4・・フォーカスレンズ:5・・ハーフミラー:6・・内部固視灯:7・・リレーレンズ:8・・フォーカスドットミラー:9・・フォーカス視標投影系:10・・黒点板ガラス:11・・リレーレンズ:12・・リングスリット:13・・拡散板:14・・撮影用照明:15・・観察用照明:16・・結像レンズ:17・・狭角用レンズ:18・・広角用レンズ:19・・光路補正ガラス:20・・イメージセンサ:21・・CPU基板:22・・LCDパネル:23・・LCDバックライト:24・・操作部:25・・メイン基板:26・・電子部品類:30,30L,30R・・フォーカス視標:31・・WD指標:32L,32R・・判定範囲:E・・被検眼 1. Fundus photographing device: 2. Objective lens: 3. Perforated mirror: 4. Focus lens: 5. Half mirror: 6. Internal fixation lamp: 7. Relay lens: 8. Focus Dot mirror: 9. Focus target projection system: 10. Black spot plate glass: 11. Relay lens: 12. Ring slit: 13. Diffuser plate: 14. Imaging illumination: 15. Observation illumination: 16. Image forming lens: 17. Narrow angle lens: 18. Wide angle lens: 19. Optical path correction glass: 20. Image sensor: 21. CPU board: 22. LCD panel: 23. LCD backlight: 24 ... Operation unit: 25 Main board: 26 Electronic parts: 30, 30L, 30R Focus target: 31 WD index: 32L, 32R Determination range: E -Eye to be examined

Claims (7)

  1.  少なくとも可視光および不可視光に感度を有する撮像素子と、
     被験者眼眼底から前記撮像素子へ至る光路の途中に配置されるフォーカスレンズと、
     前記被験者眼眼底の観察に用いられる第1の不可視光とはピーク波長の異なる第2の不可視光でフォーカス視標を投影し、前記撮像素子で得られる前記フォーカス視標の像が合焦する位置に前記フォーカスレンズを合わせるフォーカス調整手段と、
     前記被験者眼眼底を可視光で撮影する際に挿抜され、前記被験者眼眼底から前記撮像素子へ至る可視光と不可視光との光路差を補正する光路補正部材と、を備える、
     眼底撮影装置。
    An image sensor having sensitivity to at least visible light and invisible light; and
    A focus lens arranged in the middle of the optical path from the subject's eye fundus to the image sensor;
    A position at which the focus target is projected with the second invisible light having a peak wavelength different from that of the first invisible light used for observing the fundus of the subject's eye, and the image of the focus target obtained by the imaging element is focused. Focus adjusting means for aligning the focus lens with
    An optical path correction member that is inserted and removed when imaging the fundus of the subject's eye with visible light and corrects an optical path difference between visible light and invisible light that reaches the imaging device from the fundus of the subject's eye.
    Fundus photographing device.
  2.  前記フォーカス調整手段は、前記第1の不可視光が消灯時に前記撮像素子で得られる前記フォーカス視標の像が合焦する位置に前記フォーカスレンズを合わせる、
     請求項1に記載の眼底撮影装置。
    The focus adjustment unit adjusts the focus lens to a position where an image of the focus target obtained by the imaging element is in focus when the first invisible light is turned off.
    The fundus imaging apparatus according to claim 1.
  3.  前記フォーカス調整手段は、前記第1の不可視光が1フレーム毎に点滅することにより行われる眼底観察の際に、前記第1の不可視光が消灯時に前記撮像素子で得られる前記フォーカス視標の像が合焦する位置に前記フォーカスレンズを合わせる、
     請求項1または2に記載の眼底撮影装置。
    The focus adjustment unit is configured to obtain an image of the focus target obtained by the imaging device when the first invisible light is turned off during fundus observation performed by blinking the first invisible light every frame. Align the focus lens at the position where the
    The fundus imaging apparatus according to claim 1 or 2.
  4.  前記光路補正部材は、不可視光を遮断する機能を有する、
     請求項1から3の何れか一項に記載の眼底撮影装置。
    The optical path correction member has a function of blocking invisible light,
    The fundus imaging apparatus according to any one of claims 1 to 3.
  5.  前記眼底撮影装置は、倍率に応じて交換される複数種のレンズに各々対応する複数の前記光路補正部材を備える、
     請求項1から4の何れか一項に記載の眼底撮影装置。
    The fundus imaging apparatus includes a plurality of the optical path correction members respectively corresponding to a plurality of types of lenses exchanged according to magnification.
    The fundus imaging apparatus according to any one of claims 1 to 4.
  6.  前記不可視光とは、赤外光である、
     請求項1から5の何れか一項に記載の眼底撮影装置。
    The invisible light is infrared light.
    The fundus imaging apparatus according to any one of claims 1 to 5.
  7.  前記第1の不可視光とは、850nmの波長をピークとする赤外光であり、
     前記第2の不可視光とは、805nmの波長をピークとする赤外光である、
     請求項1から6の何れか一項に記載の眼底撮影装置。
    The first invisible light is infrared light having a peak at a wavelength of 850 nm,
    The second invisible light is infrared light having a peak at a wavelength of 805 nm.
    The fundus imaging apparatus according to any one of claims 1 to 6.
PCT/JP2018/014581 2017-04-06 2018-04-05 Fundus photography device WO2018186469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019511305A JP7094268B2 (en) 2017-04-06 2018-04-05 Fundus photography device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075949 2017-04-06
JP2017-075949 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186469A1 true WO2018186469A1 (en) 2018-10-11

Family

ID=63712523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014581 WO2018186469A1 (en) 2017-04-06 2018-04-05 Fundus photography device

Country Status (3)

Country Link
JP (1) JP7094268B2 (en)
TW (1) TW201838582A (en)
WO (1) WO2018186469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110025288A (en) * 2019-05-17 2019-07-19 上海新眼光医疗器械股份有限公司 A kind of Portable Automatic focusing eyeground imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226336A (en) * 1987-03-14 1988-09-21 キヤノン株式会社 Auxiliary lens unit for ophthalmic machine
JPH0299032A (en) * 1988-10-06 1990-04-11 Topcon Corp Ophthalmic examination apparatus
JPH02149246A (en) * 1988-12-01 1990-06-07 Topcon Corp Fundus camera
JP2007289219A (en) * 2006-04-21 2007-11-08 Kowa Co Ocular fundus imaging apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253053A (en) * 1996-03-27 1997-09-30 Canon Inc Eyegrounds camera
JP5436030B2 (en) 2009-04-30 2014-03-05 キヤノン株式会社 Ophthalmic apparatus and control method
JP5787060B2 (en) 2011-03-17 2015-09-30 株式会社ニデック Fundus photographing device
JP2014094118A (en) 2012-11-09 2014-05-22 Canon Inc Ophthalmologic photography apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226336A (en) * 1987-03-14 1988-09-21 キヤノン株式会社 Auxiliary lens unit for ophthalmic machine
JPH0299032A (en) * 1988-10-06 1990-04-11 Topcon Corp Ophthalmic examination apparatus
JPH02149246A (en) * 1988-12-01 1990-06-07 Topcon Corp Fundus camera
JP2007289219A (en) * 2006-04-21 2007-11-08 Kowa Co Ocular fundus imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110025288A (en) * 2019-05-17 2019-07-19 上海新眼光医疗器械股份有限公司 A kind of Portable Automatic focusing eyeground imaging system

Also Published As

Publication number Publication date
JPWO2018186469A1 (en) 2020-02-20
JP7094268B2 (en) 2022-07-01
TW201838582A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US8356898B2 (en) Fundus camera and ophthalmologic image processing apparatus
US8002411B2 (en) Fundus camera
US5572266A (en) Fundus camera
US9004684B2 (en) Fundus camera
JP2007029726A (en) Ring light fundus camera
CN101190121A (en) Focusing unit and ophthalmic photographing apparatus
CN102438504A (en) Ophthalmologic photographing apparatus
EP0625332B1 (en) Viewing apparatus
WO2019085476A1 (en) Eye imaging system, method, and device
JP2002207169A (en) Optical viewing device
US20090180072A1 (en) Ophthalmic photography apparatus
JP5460152B2 (en) Ophthalmic equipment
WO2018186469A1 (en) Fundus photography device
JP2004157173A (en) Wide visual region retina projection type display system
JP6124556B2 (en) Ophthalmic apparatus and ophthalmic imaging method
JPH08117192A (en) Ophthalmologic photographing apparatus
JP7302924B2 (en) ophthalmic imaging equipment
WO2019088070A1 (en) Scan type eyeground imaging device
US7912364B2 (en) Optical observation apparatus and image-pickup apparatus
JP2003241079A (en) Image observing device
JP7435961B2 (en) fundus imaging device
JPH08299280A (en) Fundus camera
JP7355194B2 (en) fundus imaging device
JP7468162B2 (en) Fundus image processing program and fundus photographing device
JPH07327931A (en) Eye ground camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781658

Country of ref document: EP

Kind code of ref document: A1