WO2018186407A1 - Parking assistance device - Google Patents

Parking assistance device Download PDF

Info

Publication number
WO2018186407A1
WO2018186407A1 PCT/JP2018/014291 JP2018014291W WO2018186407A1 WO 2018186407 A1 WO2018186407 A1 WO 2018186407A1 JP 2018014291 W JP2018014291 W JP 2018014291W WO 2018186407 A1 WO2018186407 A1 WO 2018186407A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
route
host vehicle
vehicle
path
Prior art date
Application number
PCT/JP2018/014291
Other languages
French (fr)
Japanese (ja)
Inventor
真 石野田
晋也 田川
範安 長谷島
Original Assignee
クラリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラリオン株式会社 filed Critical クラリオン株式会社
Priority to US16/603,537 priority Critical patent/US11249486B2/en
Priority to EP18780697.1A priority patent/EP3608204B1/en
Priority to CN201880023789.9A priority patent/CN110494345B/en
Publication of WO2018186407A1 publication Critical patent/WO2018186407A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle parking assistance device.
  • Patent Document 1 discloses a technology of a parking assistance device that calculates a guidance route including a turnback for parking a vehicle and assists the vehicle to reach a target position along the guidance route.
  • the position and orientation of the host vehicle may be shifted due to various factors such as sensor accuracy and error, and delay in steering operation during parking operation.
  • the present invention has been made in view of the above points, and the object of the present invention is to provide parking for assisting in re-parking the own vehicle parked in the wrong position and orientation in the correct position and orientation. It is to provide a support device.
  • the parking assist device of the present invention that solves the above problem is a parking assist device that supports parking of the host vehicle in a parking space provided on the side of the passage, from the initial position of the host vehicle on the passage.
  • a parking route setting unit that sets a parking route to the target parking position of the parking space and parking is performed based on the parking route, is there a displacement between the host vehicle and the parking space?
  • a misalignment determining unit that determines whether or not, and when it is determined that there is the misalignment, the host vehicle is moved from the parking space to the passage, and from the passage toward the target parking position of the parking space.
  • a misalignment path calculation unit that calculates a misalignment path that is moved to correct the misalignment.
  • the functional block diagram of the parking assistance apparatus concerning embodiment of this invention.
  • the figure explaining an example of the reachable determination by one side steering The figure explaining an example of the reachable determination by one side steering.
  • the image figure of the shared circle calculated gradually according to the movement of the own vehicle.
  • 9 is a flowchart for explaining a method for calculating a second repositioning path.
  • 10 is a flowchart for explaining a method for selecting a shift path.
  • FIG. 1 is a functional block diagram of a parking assistance apparatus according to an embodiment of the present invention
  • FIG. 2A is a diagram showing a state before and after parking in backward parallel parking
  • FIG. 2B is a parking before and after parking in forward parallel parking. It is a figure which shows a back state.
  • the parking assist device 1 is a device that assists the parking of the host vehicle V in the parking space 20, and in particular, the host vehicle in the parking space 20 in which the parking orientation 26 is provided at right angles to the passage orientation 25 of the passage 21. It is a device that supports so-called parallel parking, in which V is parked.
  • the parking space 20 refers to a partitioned area in which a parking direction is set in advance in order to park the vehicle in a predetermined direction. As other names, a parking frame, a parking section, a parking area, a parking place, or Also called a parking lot.
  • the parking space 20 is provided on the left side with respect to the passage direction 25 that is the direction of the passage 21, and the parking direction 26 is set so as to park the host vehicle V backward.
  • the parking space 20 is provided on the right side with respect to the passage direction 25 of the passage 21, and the parking direction 26 is set so as to park the host vehicle V forward.
  • the parking assist device 1 performs the target parking of the parking space 20 from the state where the vehicle orientation Vf of the host vehicle V is arranged in the same direction as the passage orientation 25 at the initial position P0 of the passage 21.
  • a route for guiding the host vehicle V is calculated so that the vehicle orientation Vf is arranged in the same direction as the parking orientation 26 at the position P1, and set as a parking route.
  • Obstacles 23, 24 such as other vehicles and other parking spaces are arranged in front of the passage and behind the parking space 20 of the passage 21, and on the side of the passage 21 opposite to the parking space 20 side.
  • An obstacle 22 such as a wall, a curb, or another vehicle extending along the passage direction 25 of the passage 21 is disposed.
  • the own vehicle V is disposed at each of the initial position P0, the target parking position P1, the intermediate target position P2, which will be described later, the first contact point 31, the second contact point 32, and the like.
  • the determination is based on a reference point Vo which is an intermediate position between the left and right rear wheels of the vehicle V.
  • turning shall be performed along a clothoid curve, for example.
  • the parking assist device 1 calculates a parking route for guiding the host vehicle V to the parking space 20. Therefore, it is possible to park in the parking space 20 beside the passage by moving the host vehicle V along the calculated parking route. Further, when the vehicle is parked in accordance with the parking route and the vehicle is parked at a different position or orientation, a repositioning route for correcting the positional displacement is calculated. Accordingly, the displacement can be corrected by moving the host vehicle V along the calculated displacement displacement route, and the vehicle can be parked at the correct position in the parking space 20 in the correct direction.
  • the movement of the host vehicle V may display the parking route on the in-vehicle monitor, and the driver may operate the host vehicle V while viewing the display. It is good also as a system which parks the own vehicle V in the target parking position P1 automatically or semi-automatically. Similarly, the driver may operate the own vehicle V while displaying the repositioning route on the in-vehicle monitor, and the driver may operate the host vehicle V while viewing the display. It is good also as a system which parks vehicle V in target parking position P1 automatically or semi-automatically.
  • the steering wheel operation is performed by automatic control
  • the accelerator operation and the brake operation are performed by the driver. In the automatic operation, the steering wheel operation, the accelerator operation, and the brake operation are all performed by automatic control.
  • the parking assistance device 1 is mounted on the host vehicle V and is realized by the cooperation of hardware such as a microcomputer and a software program. As shown in FIG. 1, the parking assistance device 1 includes an exit route calculation unit 11, a connection candidate position setting unit 12, a reachable route calculation unit 13, a parking route setting unit 14, a position deviation determination unit 15, A repositioning path calculation unit 16 is provided.
  • the exit route calculation unit 11 calculates at least one exit route that causes the host vehicle V to exit from the parking space 20 based on the information on the target parking space and the constraint condition of the own vehicle behavior.
  • the connection candidate position setting unit 12 sets a plurality of connection candidate positions on each delivery route.
  • the reachable route calculation unit 13 calculates a reachable route that can be reached from the initial position P0 that is the current position of the host vehicle V for each connection candidate position.
  • the parking route setting unit 14 sets the parking route of the host vehicle V by connecting the delivery route and the reachable route, and when there are a plurality of parking routes, selects an optimal parking route based on a predetermined condition from among them. To do.
  • target parking space information 191, target parking position information 192, own vehicle information 193, and own vehicle position information 194 are input to the parking assistance device 1.
  • the target parking space information 191 includes information that serves as a constraint condition for the parking space, such as the position and distance of obstacles around the parking space 20.
  • the target parking position information 192 includes information on the shape of the parking space 20 and the relative position with respect to the host vehicle V, and the host vehicle information 193 includes restrictions on the behavior of the host vehicle such as the turning radius of the host vehicle V. Information that is a condition is included. And as the own vehicle position information 194, the dead reckoning calculated by the vehicle model from the steering angle and speed of the own vehicle V and the rotation amount of the wheel is used, and the position information acquired by a sensor such as GPS, the road You may utilize the own vehicle position information obtained by inter-vehicle and inter-vehicle communication.
  • the operation input unit 195 inputs, for example, information on the parking space selected by the user to the parking support device 1.
  • the route display unit 17 is a vehicle-mounted monitor that can be seen by the driver in the vehicle, and can display the return position of the target parking route superimposed on the image from the camera. Further, not only the switching position but also the entire parking route may be displayed. The driver can check the switching position and parking path displayed on the in-vehicle monitor.
  • the exit route calculation unit 11 calculates the exit route based on the target parking space information 191, the target parking position information 192, and the host vehicle information 193.
  • the target parking space information 191 can be acquired from, for example, a detection signal of an ultrasonic sensor mounted on the host vehicle V or an image from an in-vehicle camera. Moreover, you may acquire the infrastructure information output from parking lot equipment.
  • the delivery route is a virtual travel route that estimates a route to be delivered from the state in which the host vehicle V is accurately arranged in the parking space 20.
  • the delivery route is calculated without any restriction on the initial position P0 of the host vehicle V and is completely independent.
  • the exit route calculation unit 11 does not use the vehicle position information 194 when calculating the exit route.
  • the delivery route is not limited to one, and at least one is calculated.
  • the delivery route is calculated based on the information on the target parking space and the constraints on the vehicle behavior.
  • a route is generated assuming that the vehicle is discharged in the same direction as the direction of the host vehicle V at the initial position P0 when the target parking position P1 is the origin.
  • the target parking position P1 A route is generated on the assumption that the vehicle exits in the direction opposite to the direction of the host vehicle V at the initial position P0.
  • the host vehicle V is moved straight from the target parking position P1 and is an intermediate position between the left and right rear wheels of the host vehicle V.
  • the vehicle is steered so that the reference point Vo (hereinafter referred to as the position Vo of the host vehicle) leaves the parking space 20 and exits in the same direction as the direction of the host vehicle V at the initial position P0.
  • the reachable limit position refers to a position away from the obstacle with a predetermined gap.
  • the predetermined gap has a margin in consideration of a predetermined error so as not to come into contact with an obstacle, and is preferably as small as possible, for example, set to about 1 cm to 5 cm.
  • a virtual frame having a predetermined gap is set on the outer periphery of the host vehicle V, and the position where the virtual frame contacts the obstacle is determined as the reachable limit position.
  • the host vehicle V is moved straight back from the target parking position P1, and the position Vo of the host vehicle V is predetermined from the parking space 20 Steering the vehicle so as to exit in the direction opposite to the direction of the host vehicle V at the initial position P0 and the route leading to the distance away, and the host vehicle V becomes the reachable limit position for the obstacle behind by reversing
  • the output route is calculated by alternately calculating the forward route and the backward route.
  • the exit route calculation unit 11 has a first condition in which the direction of the host vehicle V on the exit route is 90 degrees with respect to the parking direction 26 as a predetermined end condition, and the host vehicle V has a passage direction 25 from the target parking position P1.
  • the delivery route is calculated until at least one of the second condition for reaching a point separated by a predetermined distance Hmax along the second route and the third condition for reaching the predetermined number of times of return on the delivery route is satisfied.
  • FIG. 3 and 4 are diagrams illustrating an example of a method for calculating the exit route of the host vehicle in accordance with preset conditions.
  • FIG. 3 illustrates a case of backward parallel parking.
  • FIG. 4 illustrates forward parallel parking. It is a figure which shows a case.
  • the exit route is such that the host vehicle V is moved straight from the state (a) parked in the parking space 20 and the position Vo of the host vehicle V comes out of the parking space 20 ( b) From there, the vehicle V is steered to the left and moved forward to reach the reachable limit position for the obstacle 22 ahead (c), and the front wheel is straightened along the vehicle direction of the vehicle V at this position. As a result, the host vehicle V reaches the reachable limit position with respect to the rear obstacle 24 (d).
  • the vehicle V of the host vehicle V passes through a forward path (e) steered to the left, a reverse path (f) to recede straight, a forward path (g) steered to the left, and a receding path (h) to recede straight.
  • a route to the state (i) in which the direction is 90 degrees with respect to the parking direction of the parking space 20 is calculated.
  • the host vehicle V is retreated straight from the parking space 20 at the target parking position P ⁇ b> 1 (a), and the position Vo of the host vehicle V is the parking space 20.
  • (B) from which the vehicle V is steered to the right and then moved backward to reach the reachable limit position for the obstacle 22 behind (c) and to the left at this position.
  • the vehicle V is steered and moved forward to reach the reachable limit position for the obstacle 22 ahead (d).
  • the host vehicle passes through a backward path (e) that steers to the right, a forward path (f) that steers to the left, a backward path (g) that steers to the right, and an forward path (h) that steers to the left.
  • a route to a state (i) in which the vehicle orientation of V is 90 degrees with respect to the parking orientation of the parking space 20 is calculated.
  • the method of calculating the delivery route is not limited to the method described above, and may be calculated according to other conditions.
  • a condition suitable for the target parking space may be selected from a plurality of preset conditions for calculation.
  • connection candidate position setting unit 12 sets a plurality of connection candidate positions on the delivery route.
  • the connection candidate position is a candidate position for determining whether or not it is possible to connect to the initial position P0 via a reachable route.
  • the connection candidate position setting unit 12 sets a plurality of connection candidate lines PL at predetermined intervals in the passage direction of the passage 21 on the passage 21 as one method of setting the connection candidate positions, and the delivery route
  • the position where the position Vo of the host vehicle V intersects with these connection candidate lines PL is set as the connection candidate position D, and is stored by being linked to the vehicle direction Vf of the host vehicle V at this position.
  • FIG. 5 is a diagram showing connection candidate positions on the reverse route in the case of backward parallel parking.
  • the connection candidate line PLn (n is a number) is set so as to extend across the width direction of the passage 21 in front of the passage direction of the passage 21 from the target parking position B, and to the left from the parking space 20.
  • a predetermined interval is set on the passage 21 and the horizontal direction is set to 1.5 m to 0.5 m with reference to the target parking position B.
  • the position where the position Vo of the host vehicle V passes the connection candidate line PL on the delivery route is set as the connection candidate position D, and the vehicle direction Vf of the host vehicle V at this position is stored.
  • symbol A represents an initial position
  • symbol B represents a target parking position
  • symbol C represents a reachable limit position
  • symbol E represents a park-out position.
  • FIG. 6 is a diagram illustrating connection candidate positions on the leaving route in the case of forward parallel parking.
  • the connection candidate line PL is set so as to extend in the width direction of the passage 21 in front of the passage direction of the passage 21 from the target parking position B. In the present embodiment, along the passage direction of the passage 21. It is set in 0.5m increments. Then, the position where the position Vo of the host vehicle V passes the connection candidate line PL on the delivery route is set as the connection candidate position D, and the vehicle direction Vf of the host vehicle V at this position is stored.
  • FIG. 7 is a flowchart for explaining a method of calculating connection candidate positions on the delivery route.
  • a calculation for virtually moving the host vehicle V in the direction of leaving the target parking position P1 is performed (S101), and it is determined whether or not the virtual frame of the host vehicle V collides with an obstacle. (S102).
  • S101 a calculation for virtually moving the host vehicle V in the direction of leaving the target parking position P1 is performed
  • S102 it is determined whether or not the virtual frame of the host vehicle V collides with an obstacle.
  • the position is the reachable limit position C
  • the shift of the host vehicle V is switched from the D range to the R range or from the R range to the D range.
  • the traveling direction is switched back from forward to backward, or from backward to forward (S107).
  • connection candidate position D a predetermined connection candidate position D (S103).
  • this position is determined as the connection candidate position D.
  • the vehicle orientation Vf of the host vehicle V at this position is stored (S108).
  • the angle of the own vehicle V which is 1st condition became 90 [deg] with respect to the parking azimuth
  • the predetermined distance Hmax is set to 7 meters.
  • connection candidate position setting unit 12 sets the orientation of the host vehicle V to a predetermined relative designated angle.
  • a position may be set as a connection candidate position every time it changes by an amount (for example, every 5 [deg]).
  • the reachable route calculation unit 13 calculates a reachable route that can reach at least one of the plurality of connection candidate positions D from the initial position P0 of the host vehicle V.
  • the reachable route is a route that can reach the connection candidate position D from the initial position P0 of the host vehicle V only in one of forward and backward without switching between forward and backward. Whether or not the vehicle can be reached is determined based on the position Vo and the vehicle direction Vf of the host vehicle V, the position Vo of the host vehicle V matches the connection candidate position D, and the vehicle direction Vf of the host vehicle V is determined as the connection candidate position. When the vehicle direction Vf linked to D is stored, the vehicle direction is determined to be reachable.
  • the reachable route is calculated based on the own vehicle position information and the specification information of the own vehicle V.
  • the reachable route is calculated in order from the connection candidate position D having the smaller number of turnovers and closer to the initial position P0 of the own vehicle V.
  • the host vehicle V If the host vehicle V can be moved from the initial position P0 and placed at the connection candidate position D in the predetermined vehicle direction Vf, the host vehicle V is moved into the parking space 20 by following the exit route in the reverse direction. Can be moved. Therefore, in the reachable path
  • FIG. 8 is a process flow of reachability determination. This processing flow is looped by the connection candidate positions (S111), and it is first determined whether or not the one-side turning can be reached from the initial position P0 to the connection candidate position D (S112).
  • One-side steering is an operation of turning the steering of the host vehicle V only to one of the left and right sides of the host vehicle V. Then, when it is determined that the connection candidate position D cannot be reached by the one-side turning, it is determined whether or not the connection candidate position D can be reached by the S-shaped turning (S116).
  • the S-shaped steering is an operation of turning the steering of the host vehicle V to the left and right sides of the host vehicle V.
  • connection candidate position D When it is determined that the connection candidate position D can be reached by one-side turning or S-shaped turning, the connection candidate position is selected as the park-out position E, and the vehicle V is parked from the initial position P0. A reachable route to the out position E is generated (S113).
  • connection candidate position D cannot be reached by one-side turning and S-shaped turning (NO in S112 and S116), or when it is determined that contact is made in contact determination (YES in S114)
  • connection OK flag is turned OFF (S115), and the processing flow is terminated.
  • FIGS. 9A to 9C are diagrams illustrating an example of reachability determination by one-side turning
  • FIGS. 9D and 9E are diagrams illustrating an example of reachability determination by S-shaped steering.
  • the turning circle A1 and the turning circle E1 do not intersect with each other, so the condition (a4) is satisfied. Therefore, it is determined that it is reachable by S-shaped steering.
  • the condition (a4) is not satisfied, and it is determined that the arrival by the S-shaped steering is impossible.
  • FIG. 10 is a diagram illustrating a method for generating a reachable route by one-side turning.
  • first, as shown in FIG. 10A, between the intersection point K of the axis A2 and the axis E2 and the current position A The distance Ls and the distance Le between the intersection K and the connection candidate position E are calculated, and the shorter distance is selected (in the example shown in the figure, the distance Le is selected).
  • FIG. 12B a circle having two axes A2 and E2 as common tangent lines and passing through a position separated by a short distance from the intersection K is drawn, and the following equation (1) is calculated from geometric calculation. ) To calculate the radius R.
  • FIG. 11 is a diagram for explaining a method of generating a reachable route by S-shaped steering, and a generation method when the axis E2 is behind the connection candidate position E and does not intersect with the X axis that is the axis A2 of the current position A.
  • FIG. 11 is a diagram for explaining a method of generating a reachable route by S-shaped steering, and a generation method when the axis E2 is behind the connection candidate position E and does not intersect with the X axis that is the axis A2 of the current position A.
  • the radius R of the common circle having the same radius for drawing the S-shape is calculated. If a circle contact point is obtained, an S-shaped reachable path can be generated by combining the arc of the turning circle A1 and the arc of the turning circle E1.
  • the radius of the common circle can be obtained from the distance between the center coordinates because the center coordinates of each circle can be obtained.
  • FIG. 12 is a diagram for explaining a method of generating a reachable route by S-shaped steering, and a generation method when the axis line E2 intersects the X axis that is the axis line A2 of the current position A behind the connection candidate position E. It is a figure explaining.
  • the radius R of the common turning circles E1 and A1 having the same radius for drawing the S-shape is calculated. If a circle contact point is obtained, an S-shaped reachable path can be generated by combining the arc of the turning circle A1 and the arc of the turning circle E1. The radius of the common circle is obtained from the distance between the center coordinates because the center coordinates of each circle are obtained.
  • FIG. 13 is a diagram for explaining a method for generating a reachable route by S-shaped steering, and a method for generating a case where the axis E2 intersects the X axis that is the axis A2 of the current position A behind the connection candidate position E. It is a figure explaining.
  • the radius R of the common circles E1 and A1 having the same radius for drawing the S-shape is calculated. If a circle contact point is obtained, an S-shaped reachable path can be generated by combining the arc of the turning circle A1 and the arc of the turning circle E1.
  • the radius of the common circle can be obtained from the distance between the center coordinates because the center coordinates of each circle can be obtained.
  • the parking route setting unit 14 sets a parking route using information on the exit route from the target parking position P1 to the park-out position E and information on the reachable route from the initial position P0 of the host vehicle V to the park-out position E. To do.
  • the parking route setting unit 14 connects the reachable route generated by turning on the connection OK flag in step S117 of FIG. 10 and the delivery route including the park-out position E to which the reachable route is connected. Form a pathway.
  • the parking route is selected according to various evaluation values such as parking time, presence / absence of a following vehicle, parking accuracy, passage width, or driver's preference.
  • parking accuracy the accuracy of the parking position is higher when the vehicle V is approached straight after the direction of the host vehicle V is aligned with the parking direction 26 than when entering the parking space 20 while turning. Therefore, when priority is given to the accuracy of the parking position, a parking route that enters straight after the direction of the host vehicle V is aligned with the parking direction 26 is selected.
  • the time required for parking can be shortened if the number of times of turning back and forth and the steering amount are as small as possible. Therefore, in order to shorten the time required for parking, a parking route is selected in which the number of front and rear turnovers and the steering amount are minimized.
  • the intention to park in the parking space 20 can be clearly shown to the following vehicle if the vehicle does not move away from the parking space 20 rather than moving to a position far away from the parking space 20. Therefore, when there is a succeeding vehicle on the passage 21, a parking route that does not leave the parking space 20 is selected.
  • the parking assist device 1 calculates the delivery route from the target parking position P1, and among the plurality of connection candidate positions D set on the delivery route, the parking assistance device 1 can be reached from the initial position P0 of the own vehicle and is the most The closest connection candidate position D is selected as the park-out position E, and the exit route from the target parking position B to the park-out position E and the reachable route from the initial position P0 of the host vehicle V to the park-out position E are used.
  • Set the parking route. Therefore, the parking path including the turning back for guiding the host vehicle V to the target parking position P1 is calculated without depending on the start position or the vehicle attitude at which parking assistance is started, and the vehicle attitude that is correct at the position intended by the driver is calculated. You can park your vehicle at
  • the parking assist device 1 calculates a route for correcting the positional deviation and assists the positional deviation correction when the positional deviation occurs as a result of parking the host vehicle V along the parking path.
  • FIG. 14 is a diagram illustrating a state before and after repositioning.
  • the case of backward parallel parking will be described as an example.
  • the present embodiment can be similarly applied to the case of forward parallel parking.
  • the displacement determination unit 15 determines whether or not there is a displacement between the host vehicle V and the parking space 20.
  • the misalignment determination unit 15 determines the vehicle orientation Vf of the host vehicle V and the parking space when the separation distance ⁇ between the actual position V of the host vehicle V and the target parking position P1 of the parking space 20 is greater than or equal to a predetermined value. It is determined that there is a positional deviation when the angle ⁇ between the 20 parking directions 26 is at least one of the cases where the angle ⁇ is equal to or greater than a predetermined value.
  • Information on the position Vo of the host vehicle V with respect to the target parking position P1 and the vehicle direction Vf with respect to the parking direction 26 can be acquired from the host vehicle position information 194.
  • the vehicle direction Vf of the host vehicle V is tilted by a predetermined value or more from the parking direction 26 of the parking space 20, and the position Vo of the host vehicle V is the parking space 20. It is determined that there is a positional deviation because it is separated from the target parking position P1 by a predetermined value or more.
  • the vehicle direction Vf of the host vehicle V is parallel to the parking direction 26 of the parking space 20, but the reference point Vo of the host vehicle V is the target parking position of the parking space 20. It is determined that there is a positional deviation because it is separated from P1 by a predetermined value or more. Although not shown in particular, it is determined that there is a displacement even when the host vehicle V is stopped near the parking space 20.
  • the parking operation of the host vehicle V is started according to the parking route set by the parking route setting unit 14, and it is determined that the parking is completed when the operation ends.
  • the parking operation of the host vehicle V ends when the host vehicle V reaches the end point of the parking path.
  • the position Vo of the host vehicle V does not coincide with the target parking position P1 or the host vehicle V
  • the vehicle orientation Vf of the vehicle does not coincide with the parking orientation 26 of the parking space 20, or when an obstacle is detected during the parking operation and the vehicle orientation Vf is stopped, the process is also terminated.
  • the position deviation determination unit 15 performs position deviation determination when the parking operation of the host vehicle V using the parking route is completed, or when an instruction by the driver's operation is given after the parking operation is completed.
  • the repositioning route includes a delivery route in which the host vehicle V is temporarily delivered from the parking space 20 and moved to the passage 21 or moved to a position on the passage 21 away from the vicinity of the parking space 20 toward the delivery side, and a passage 21 and a warehousing route for moving toward the target parking position P1 of the parking space 20.
  • the host vehicle V corrects the position shift by moving along the position shift path, that is, the actual position Vo of the host vehicle V and the parking space 20 as in the example after the shift shown in FIG.
  • the separation distance ⁇ from the target parking position P1 can be less than a predetermined value, and the angle ⁇ between the vehicle orientation Vf of the host vehicle V and the parking orientation 26 of the parking space 20 can be less than a predetermined value.
  • the misalignment path calculation unit 16 includes a first misalignment path calculation unit and a second misalignment path calculation unit.
  • the first misalignment path calculation unit calculates a first misalignment path (see FIG. 15) that corrects misalignment with only one-side turning
  • the second misalignment path calculation unit includes an S-shape.
  • a second misalignment path (see FIG. 19) for correcting misalignment by turning is calculated.
  • ⁇ First misalignment path calculation unit> 15 is a diagram for explaining the operation of repositioning performed using the first repositioning route
  • FIG. 16 is an image diagram of a shared circle that is gradually calculated according to the movement of the host vehicle
  • FIG. It is a figure explaining the calculation method of a warehousing route.
  • the first repositioning route calculation unit includes an exit route that moves straight from the parking position of the host vehicle V to a position on the passage 21, and a warehousing that moves while turning to one side from the position on the passage 21 toward the parking space 20.
  • the route is calculated, and the first repositioning route is calculated by connecting the outgoing route and the incoming route.
  • the first repositioning path calculation unit calculates a shared circle 30 that has both the vehicle direction Vf of the host vehicle V and the parking direction 26 of the parking space 20 as a tangent line. Then, along the vehicle direction Vf of the host vehicle V, a straight line is connected from the parking position of the host vehicle V to the first contact point 31 where the vehicle direction Vf of the host vehicle V which is a position on the passage 21 and the shared circle 30 contact. The route is calculated as the outgoing route. Then, a second path along the parking direction 26 of the parking space 20 and a path that connects the first contact point 31 along the shared circle 30 to the second contact point 32 where the parking direction 26 of the parking space 20 contacts the second contact point 32 is in contact. The route connected from the contact point 32 to the target parking position P1 in a straight line is calculated as the warehousing route.
  • the exit route moves the host vehicle V in a direction away from the parking space 20 along the vehicle direction Vf of the host vehicle V (FIG. 15 (1)), and the position Vo of the host vehicle V is parked in the parking space 20.
  • the shared circle 30 is a circle that is in contact with both the vehicle direction Vf of the host vehicle V and the parking direction 26 of the parking space 20, and is in contact with the vehicle direction Vf at the first contact 31, and the parking direction 26 is at the second contact 32. Touch.
  • the warehousing path moves the host vehicle V in a direction approaching the parking space 20 while turning along the shared circle 30 from the first contact point 31 to the second contact point 32 (FIG. 15 (4)), and parks from the second contact point 32.
  • the vehicle is moved straight in the direction of approaching the parking space 20 along the direction 26, the position Vo of the host vehicle V is arranged at the target parking position P1, and the vehicle direction Vf of the host vehicle V is set to the parking direction of the parking space 20. 26 (FIG. 15 (5)).
  • the shared circle 30 virtually moves the host vehicle V in a direction away from the parking space 20 along the vehicle direction Vf of the host vehicle V, and the position Vo of the host vehicle V is the parking direction 26 of the parking space 20. Is sequentially calculated according to the movement of the host vehicle V from a position exceeding the threshold. As shown in FIGS. 16 (1) to 16 (3), the shared circle 30 gradually increases in diameter as the host vehicle V moves on the vehicle direction Vf.
  • FIG. 17 is a diagram illustrating a method for calculating a shared circle.
  • the first repositioning path calculation unit calculates a shared circle 30 that satisfies both of the following two conditions (A) and (B).
  • the coordinates of the first contact point 31 are V (Xv, Yv, ⁇ v), the coordinates of the target parking position P1 are P (Xp, Yp, ⁇ p), and the vehicle orientation Vf of the host vehicle V and the parking orientation 26 of the parking space 20 are sandwiched Let the angle be ⁇ vp. Rmin is the minimum turning radius of the host vehicle V.
  • FIG. 18 is a diagram for explaining parking NG conditions.
  • the shared circle 30 corresponds to at least one of the following three parking NG conditions, the host vehicle V cannot be parked in the parking space 20 without misalignment on the route using the shared circle 30.
  • the first repositioning route calculation unit sets the delivery route and the entry route using the shared circle 30 that does not correspond to any of the above three parking NG conditions. Specifically, a straight line portion from the parking position of the host vehicle V to the first contact 31 is set as a delivery route, an arc portion between the first contact 31 and the second contact 32 of the shared circle 30, A route obtained by connecting the straight portions 33 from the contact point 32 to the target parking position P1 is set as the warehousing route.
  • the first repositioning path proceeds straight along the vehicle direction Vf from the parking position of the host vehicle V to the first contact 31. Then, the vehicle proceeds while turning leftward from the first contact 31 toward the second contact 32 at the radius R of the common circle 30, and proceeds straight along the parking direction 26 from the second contact 32 toward the target parking position P1. Therefore, by guiding the host vehicle V along the first repositioning route, the host vehicle V can be arranged in the parking space 20 without any position shift.
  • FIG. 19 is a diagram for explaining the operation of repositioning performed by the second repositioning path
  • FIG. 20 is a flowchart for explaining a method for calculating the second repositioning path.
  • the second realignment route calculation unit includes an exit route 40 that moves while turning left and right from the parking position of the host vehicle V to a position on the passage 21, and FIG. 19 (4). ),
  • the second position is calculated by calculating the warehousing route 41 moving straight from the position on the passage 21 moved by the warehousing route 40 toward the parking space 20, and connecting the warehousing route 40 and the warehousing route 41. Calculate the shift path.
  • the second misalignment path calculation unit calculates the intermediate target position P2 (S121), and calculates an S-shaped path connecting the parking position of the host vehicle V and the intermediate target position P2 (S122). . Then, it is determined whether or not the host vehicle V can move along the S-shaped route (S123), and when it is determined that the vehicle can move, the reverse amount in the warehousing direction from the intermediate target position P2 is calculated. Then (S124), a route for causing the host vehicle V to recede straightly from the intermediate target position P2 by the receding amount is calculated (S125).
  • the intermediate target position P2 is set at a position away from the target parking position P1 along the parking direction 26 of the parking space 20.
  • the intermediate target position P2 is set based on the passage width W1 of the passage 21, and when the passage width W1 is wide, the set position is limited within a predetermined distance range from the parking space 20.
  • the intermediate target position P2 is set at a position away from the obstacle 22 in front of the parking space 20 by a predetermined distance W2.
  • the predetermined distance W2 is a length obtained by removing the rear overhang from the vehicle length of the host vehicle V, and when the host vehicle V is actually arranged, as shown in FIG. Is set so that a gap can be formed in consideration of an error margin.
  • step S122 there is a single contact with the same radius between the parking position of the host vehicle V and the intermediate target position P2, one of which passes the parking position of the host vehicle V, and the other is the intermediate target position.
  • a pair of common circles passing through P2 is calculated.
  • an arc connecting the parking position to a single contact point along one common circle and an arc connecting the single contact point to the intermediate target position P2 along the other common circle are combined to form an S-shape.
  • a method (S116 in FIG. 8) for generating the S-shaped route used when setting the reachable route in the above-described reachable route calculation unit 13 can be used.
  • step S123 it is determined that movement is possible by providing the following two conditions. (1) When the host vehicle V is moved along an S-shaped route, the host vehicle V does not contact the obstacles 23 and 24. (2) The radius R of the pair of common circles is the minimum rotation of the host vehicle V. Be greater than radius
  • step S124 the separation distance between the intermediate target position P2 and the target parking position P1 is calculated as the reverse amount.
  • step S125 a route for causing the host vehicle V to recede straightly by the receding amount is calculated.
  • the own vehicle V can be placed in the parking position with high accuracy by suppressing the occurrence of displacement when the vehicle V recedes straight rather than receding.
  • the second repositioning path proceeds by S-shaped steering from the parking position of the host vehicle V to the intermediate target position P2 (FIG. 19 (3)), and proceeds straight from the intermediate target position P2 to the target parking position P1 (FIG. 19). 19 (4)). Therefore, by guiding the host vehicle V along the second repositioning route, the host vehicle V can be arranged in the parking space 20 without any position shift.
  • FIG. 21 is a flowchart for explaining a method for selecting a deviation correction path.
  • the realignment path calculation unit 16 calculates the first realignment path by the first realignment path calculation unit (S201). Then, it is determined whether or not the position shift can be corrected by the calculated first position shift path (S202). If none of the above-mentioned three parking NG conditions is satisfied, it is determined that the position can be corrected again by the first position correcting path (YES in S203). Then, a process of selecting the first repositioning path as the repositioning path is performed.
  • the second position displacement is performed by the correction route calculation unit (S203). If neither of the above two conditions is satisfied, it is determined that the position can be repositioned by the second position realignment path. Then, a process of selecting the second position shift path as the position shift path is performed.
  • the first repositioning path is selected. Since the first repositioning path is one-side turning, the amount of operation of the host vehicle V is small and the movement error is small compared to S-shaped turning. Therefore, the time required for the repositioning operation can be shortened, the repositioning can be performed in a short time, and the parking accuracy can be increased.
  • the parking assist device 1 described above determines whether or not there is a displacement of the parking position as a result of guiding the host vehicle V along the parking route and parking the vehicle, and if it is determined that there is a displacement, Correcting the positional shift
  • the position correcting path is calculated.
  • the host vehicle V can correct the position shift by moving along the position shift correction path, and the separation distance ⁇ between the position Vo of the host vehicle V and the target parking position P1 of the parking space 20 is less than a predetermined value.
  • the angle ⁇ between the vehicle orientation Vf of the host vehicle V and the parking orientation 26 of the parking space 20 can be made less than a predetermined value.
  • the parking assist device 1 can perform support for re-parking the own vehicle V parked in the parking space 20 or in the vicinity of the parking space 20 with the position and orientation of the own vehicle V being shifted in the correct position and orientation. it can.
  • the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention described in the claims. Is something that can be done.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The purpose of the present invention is to achieve a parking assistance device that assists in reparking, in a correct position or orientation, a vehicle that has been parked such that the position or orientation is displaced. This parking assistance device (1) has: a parking route setting unit that assists in parking a host vehicle (V) in a parking space (20) provided to the side of a passage (21), the parking route setting unit setting a parking route from an initial position (P0) of the host vehicle V on the passage (21) to the target parking position (P1) of the parking space (20); a position displacement determination unit (15) for determining whether there is position displacement between the host vehicle (V) and the parking space (20) when parking is performed on the basis of the parking route; and a position displacement correction route calculation unit (16) that calculates a position displacement correction route when position displacement is determined to exist.

Description

駐車支援装置Parking assistance device
 本発明は、車両の駐車支援装置に関する。 The present invention relates to a vehicle parking assistance device.
 特許文献1には、車両を駐車させるための切り返しを含む誘導経路を算出し、その誘導経路に沿って車両が目標位置に到達するように支援を行う駐車支援装置の技術が示されている。 Patent Document 1 discloses a technology of a parking assistance device that calculates a guidance route including a turnback for parking a vehicle and assists the vehicle to reach a target position along the guidance route.
特開2010-208392号公報JP 2010-208392 A
 しかしながら、誘導経路に沿って実際に駐車したときに、センサの精度や誤差、駐車動作中のハンドル操作の遅れなどの種々の要因により、自車両の位置や向きにずれが生じるおそれがある。 However, when the vehicle is actually parked along the guidance route, the position and orientation of the host vehicle may be shifted due to various factors such as sensor accuracy and error, and delay in steering operation during parking operation.
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、位置や向きがずれて駐車された自車両を、正しい位置や向きに駐車し直すための支援を行う駐車支援装置を提供することである。 The present invention has been made in view of the above points, and the object of the present invention is to provide parking for assisting in re-parking the own vehicle parked in the wrong position and orientation in the correct position and orientation. It is to provide a support device.
 上記課題を解決する本発明の駐車支援装置は、通路の側方に設けられた駐車スペースへの自車両の駐車を支援する駐車支援装置であって、前記通路上の前記自車両の初期位置から前記駐車スペースの目標駐車位置までの駐車経路を設定する駐車経路設定部と、該駐車経路に基づいて駐車が行われた場合に、前記自車両と前記駐車スペースとの間に位置ずれがあるか否かを判定する位置ずれ判定部と、前記位置ずれがあると判定された場合に、前記自車両を前記駐車スペースから前記通路に移動させ、前記通路から前記駐車スペースの目標駐車位置に向かって移動させて前記位置ずれを直す位置ずれ直し経路を演算する位置ずれ直し経路演算部と、を有することを特徴とする。 The parking assist device of the present invention that solves the above problem is a parking assist device that supports parking of the host vehicle in a parking space provided on the side of the passage, from the initial position of the host vehicle on the passage. When there is a parking route setting unit that sets a parking route to the target parking position of the parking space and parking is performed based on the parking route, is there a displacement between the host vehicle and the parking space? A misalignment determining unit that determines whether or not, and when it is determined that there is the misalignment, the host vehicle is moved from the parking space to the passage, and from the passage toward the target parking position of the parking space. And a misalignment path calculation unit that calculates a misalignment path that is moved to correct the misalignment.
 本発明によれば、位置や向きがずれて駐車された車両を、正しい位置や向きに駐車し直すための支援を行うことができる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide assistance for re-parking a vehicle parked at a wrong position or orientation in the correct position or orientation. Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. Further, problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の実施形態に係わる駐車支援装置の機能ブロック図。The functional block diagram of the parking assistance apparatus concerning embodiment of this invention. 後ろ向き並列駐車の駐車前と駐車後の状態を示す図。The figure which shows the state before parking of the back-facing parallel parking, and after parking. 前向き並列駐車の駐車前と駐車後の状態を示す図。The figure which shows the state before parking of forward parallel parking, and after parking. 後ろ向き並列駐車の出庫経路を演算する方法の一例を示す図。The figure which shows an example of the method of calculating the delivery path | route of back facing parallel parking. 前向き並列駐車の出庫経路を演算する方法の一例を示す図。The figure which shows an example of the method of calculating the outgoing route of forward parallel parking. 後ろ向き並列駐車の場合の出庫経路における接続候補位置を示す図。The figure which shows the connection candidate position in the leaving route in the case of rearward parallel parking. 前向き並列駐車の場合の出庫経路における接続候補位置を示す図。The figure which shows the connection candidate position in the leaving route in the case of forward parallel parking. 出庫経路上の接続候補位置を演算する方法を説明するフローチャート。The flowchart explaining the method of calculating the connection candidate position on the delivery route. 到達可能判定の処理フロー。Process flow for reachability determination. 片側転舵による到達可能判定の一例を説明する図。The figure explaining an example of the reachable determination by one side steering. 片側転舵による到達可能判定の一例を説明する図。The figure explaining an example of the reachable determination by one side steering. 片側転舵による到達可能判定の一例を説明する図。The figure explaining an example of the reachable determination by one side steering. S字転舵による到達可能判定の一例を説明する図。The figure explaining an example of the reachable determination by S character steering. S字転舵による到達可能判定の一例を説明する図。The figure explaining an example of the reachable determination by S character steering. 片側転舵による順方向経路の生成方法を説明する図。The figure explaining the production | generation method of the forward direction path | route by one side steering. S字転舵による順方向経路の生成方法を説明する図。The figure explaining the production | generation method of the forward direction path | route by S-shaped steering. S字転舵による順方向経路の生成方法を説明する図。The figure explaining the production | generation method of the forward direction path | route by S-shaped steering. S字転舵による順方向経路の生成方法を説明する図。The figure explaining the production | generation method of the forward direction path | route by S-shaped steering. 位置ずれ直し前と位置ずれ直し後の状態を示す図。The figure which shows the state before repositioning and after repositioning. 第1の位置ずれ直し経路によって行われる位置ずれ直しの動作を説明する図。The figure explaining the operation | movement of the position shift performed by the 1st position shift path. 自車両の移動に応じて漸次算出される共有円のイメージ図。The image figure of the shared circle calculated gradually according to the movement of the own vehicle. 入庫経路の演算方法を説明する図。The figure explaining the calculation method of a warehousing route. 駐車NG条件を説明する図。The figure explaining parking NG conditions. 第2の位置ずれ直し経路によって行われる位置ずれ直しの動作を説明する図。The figure explaining the operation | movement of the position shift performed by the 2nd position shift path. 第2の位置ずれ直し経路を演算する方法を説明するフローチャート。9 is a flowchart for explaining a method for calculating a second repositioning path. ずれ直し経路の選択方法を説明するフローチャート。10 is a flowchart for explaining a method for selecting a shift path.
 次に、本発明の実施形態について図面を用いて説明する。
 図1は、本発明の実施形態に係わる駐車支援装置の機能ブロック図、図2Aは、後ろ向き並列駐車の駐車前と駐車後の状態を示す図、図2Bは、前向き並列駐車の駐車前と駐車後の状態を示す図である。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram of a parking assistance apparatus according to an embodiment of the present invention, FIG. 2A is a diagram showing a state before and after parking in backward parallel parking, and FIG. 2B is a parking before and after parking in forward parallel parking. It is a figure which shows a back state.
 駐車支援装置1は、自車両Vの駐車スペース20への駐車を支援する装置であり、特に、通路21の通路方位25に対して駐車方位26が直角に設けられている駐車スペース20に自車両Vを駐車する、いわゆる並列駐車を支援する装置である。駐車スペース20とは、車両を所定の向きで駐車するために予め駐車方位が設定されている区画された領域をいい、その他の呼び方として、駐車枠、駐車区画、駐車領域、駐車場所、または、パーキングロットとも呼ばれる。 The parking assist device 1 is a device that assists the parking of the host vehicle V in the parking space 20, and in particular, the host vehicle in the parking space 20 in which the parking orientation 26 is provided at right angles to the passage orientation 25 of the passage 21. It is a device that supports so-called parallel parking, in which V is parked. The parking space 20 refers to a partitioned area in which a parking direction is set in advance in order to park the vehicle in a predetermined direction. As other names, a parking frame, a parking section, a parking area, a parking place, or Also called a parking lot.
 図2Aに示す例では、駐車スペース20は、通路21の向きである通路方位25に対して左側方に設けられており、自車両Vを後ろ向きに駐車するように駐車方位26が設定されている。図2Bに示す例では、駐車スペース20は、通路21の通路方位25に対して右側方に設けられており、自車両Vを前向きに駐車するように駐車方位26が設定されている。 In the example shown in FIG. 2A, the parking space 20 is provided on the left side with respect to the passage direction 25 that is the direction of the passage 21, and the parking direction 26 is set so as to park the host vehicle V backward. . In the example shown in FIG. 2B, the parking space 20 is provided on the right side with respect to the passage direction 25 of the passage 21, and the parking direction 26 is set so as to park the host vehicle V forward.
 駐車支援装置1は、図2A及び図2Bに示すように、通路21の初期位置P0において自車両Vの車両方位Vfが通路方位25と同じ向きに配置された状態から、駐車スペース20の目標駐車位置P1において車両方位Vfが駐車方位26と同じ向きに配置されるように自車両Vを誘導する経路を演算し、駐車経路として設定する。 As shown in FIGS. 2A and 2B, the parking assist device 1 performs the target parking of the parking space 20 from the state where the vehicle orientation Vf of the host vehicle V is arranged in the same direction as the passage orientation 25 at the initial position P0 of the passage 21. A route for guiding the host vehicle V is calculated so that the vehicle orientation Vf is arranged in the same direction as the parking orientation 26 at the position P1, and set as a parking route.
 そして、設定された駐車経路にしたがって自車両Vの駐車動作が行われた場合に、自車両Vと駐車スペースとの間に位置ずれがあるか否かの判定を行う。そして、位置ずれがあると判定した場合に、位置ずれを直す経路を演算し、位置ずれ直し経路として設定する。 Then, when the own vehicle V is parked according to the set parking route, it is determined whether or not there is a positional deviation between the own vehicle V and the parking space. When it is determined that there is a positional deviation, a path for correcting the positional deviation is calculated and set as a positional deviation correcting path.
 通路21の駐車スペース20よりも通路前方及び通路後方には、他車両や他の駐車スペースなどの障害物23、24が配置され、通路21の駐車スペース20側とは反対側の側方には、通路21の通路方位25に沿って延在する壁や縁石、あるいは他車両などの障害物22が配置されている。 Obstacles 23, 24 such as other vehicles and other parking spaces are arranged in front of the passage and behind the parking space 20 of the passage 21, and on the side of the passage 21 opposite to the parking space 20 side. An obstacle 22 such as a wall, a curb, or another vehicle extending along the passage direction 25 of the passage 21 is disposed.
 本実施例では、自車両Vが初期位置P0、目標駐車位置P1、後述する中間目標位置P2、第1接点31、及び、第2接点32等の各位置に配置されているか否かは、自車両Vの左右の後輪の中間位置である基準点Voを基準に判断している。また、旋回は、例えばクロソイド曲線に沿って行われるものとする。 In the present embodiment, whether or not the own vehicle V is disposed at each of the initial position P0, the target parking position P1, the intermediate target position P2, which will be described later, the first contact point 31, the second contact point 32, and the like. The determination is based on a reference point Vo which is an intermediate position between the left and right rear wheels of the vehicle V. Moreover, turning shall be performed along a clothoid curve, for example.
 駐車支援装置1では、自車両Vを駐車スペース20まで誘導するための駐車経路を演算する。したがって、その演算した駐車経路に沿って自車両Vを移動させることによって通路脇の駐車スペース20に駐車させることができる。また、駐車経路にしたがって駐車した結果、位置や向きがずれて駐車されている場合には、位置ずれを直す位置ずれ直し経路を演算する。したがって、その演算した位置ずれ直し経路に沿って自車両Vを移動させることによって位置ずれを直すことができ、駐車スペース20内の正しい位置に正しい向きで駐車することができる。 The parking assist device 1 calculates a parking route for guiding the host vehicle V to the parking space 20. Therefore, it is possible to park in the parking space 20 beside the passage by moving the host vehicle V along the calculated parking route. Further, when the vehicle is parked in accordance with the parking route and the vehicle is parked at a different position or orientation, a repositioning route for correcting the positional displacement is calculated. Accordingly, the displacement can be corrected by moving the host vehicle V along the calculated displacement displacement route, and the vehicle can be parked at the correct position in the parking space 20 in the correct direction.
 自車両Vの移動は、例えば車内モニターに駐車経路を表示してドライバがその表示を見ながら自車両Vを操作してもよく、また、駐車支援装置1から駐車経路の情報を出力して、自車両Vを自動または半自動で目標駐車位置P1に駐車するシステムとしてもよい。同様に、車内モニターに位置ずれ直し経路を表示してドライバがその表示を見ながら自車両Vを操作してもよく、また、駐車支援装置1から位置ずれ直し経路の情報を出力して、自車両Vを自動または半自動で目標駐車位置P1に駐車するシステムとしてもよい。半自動では、例えばハンドル操作は自動制御により行われ、アクセル操作とブレーキ操作はドライバによって行われる。そして、自動では、ハンドル操作、アクセル操作、及び、ブレーキ操作の全てが自動制御により行われる。 For example, the movement of the host vehicle V may display the parking route on the in-vehicle monitor, and the driver may operate the host vehicle V while viewing the display. It is good also as a system which parks the own vehicle V in the target parking position P1 automatically or semi-automatically. Similarly, the driver may operate the own vehicle V while displaying the repositioning route on the in-vehicle monitor, and the driver may operate the host vehicle V while viewing the display. It is good also as a system which parks vehicle V in target parking position P1 automatically or semi-automatically. In the semi-automatic mode, for example, the steering wheel operation is performed by automatic control, and the accelerator operation and the brake operation are performed by the driver. In the automatic operation, the steering wheel operation, the accelerator operation, and the brake operation are all performed by automatic control.
 駐車支援装置1は、自車両Vに搭載されており、マイクロコンピュータなどのハードウエアとソフトウエアプログラムの協働によって実現される。駐車支援装置1は、図1に示すように、出庫経路演算部11と、接続候補位置設定部12と、到達可能経路演算部13と、駐車経路設定部14と、位置ずれ判定部15と、位置ずれ直し経路演算部16を有している。 The parking assistance device 1 is mounted on the host vehicle V and is realized by the cooperation of hardware such as a microcomputer and a software program. As shown in FIG. 1, the parking assistance device 1 includes an exit route calculation unit 11, a connection candidate position setting unit 12, a reachable route calculation unit 13, a parking route setting unit 14, a position deviation determination unit 15, A repositioning path calculation unit 16 is provided.
 出庫経路演算部11は、目標駐車空間の情報と自車挙動の制約条件に基づいて駐車スペース20から自車両Vを出庫させる少なくとも一つ以上の出庫経路を演算する。接続候補位置設定部12は、それぞれの出庫経路上に複数の接続候補位置を設定する。到達可能経路演算部13は、各接続候補位置に対して自車両Vの現在位置である初期位置P0から到達可能な到達可能経路を演算する。駐車経路設定部14は、出庫経路と到達可能経路とを繋げて自車両Vの駐車経路を設定し、駐車経路が複数ある場合には、その中から所定条件に基づいて最適な駐車経路を選択する。 The exit route calculation unit 11 calculates at least one exit route that causes the host vehicle V to exit from the parking space 20 based on the information on the target parking space and the constraint condition of the own vehicle behavior. The connection candidate position setting unit 12 sets a plurality of connection candidate positions on each delivery route. The reachable route calculation unit 13 calculates a reachable route that can be reached from the initial position P0 that is the current position of the host vehicle V for each connection candidate position. The parking route setting unit 14 sets the parking route of the host vehicle V by connecting the delivery route and the reachable route, and when there are a plurality of parking routes, selects an optimal parking route based on a predetermined condition from among them. To do.
 駐車支援装置1には、図1に示すように、目標駐車空間情報191と、目標駐車位置情報192と、自車両情報193と、自車位置情報194が入力される。目標駐車空間情報191には、駐車スペース20の周辺の障害物の位置や距離など、駐車空間の制約条件となる情報が含まれている。 As shown in FIG. 1, target parking space information 191, target parking position information 192, own vehicle information 193, and own vehicle position information 194 are input to the parking assistance device 1. The target parking space information 191 includes information that serves as a constraint condition for the parking space, such as the position and distance of obstacles around the parking space 20.
 そして、目標駐車位置情報192には、駐車スペース20の形状や自車両Vとの相対位置の情報等が含まれ、自車両情報193には、自車両Vの旋回半径などの自車挙動の制約条件となる情報が含まれている。そして、自車位置情報194として、自車両Vの操舵角や速度、車輪の回転量から車両モデルによって演算されるデッドレコニングを利用し、また、GPSなどのセンサによって取得される位置情報や、路車間、車車間通信によって得られる自車位置情報を利用してもよい。 The target parking position information 192 includes information on the shape of the parking space 20 and the relative position with respect to the host vehicle V, and the host vehicle information 193 includes restrictions on the behavior of the host vehicle such as the turning radius of the host vehicle V. Information that is a condition is included. And as the own vehicle position information 194, the dead reckoning calculated by the vehicle model from the steering angle and speed of the own vehicle V and the rotation amount of the wheel is used, and the position information acquired by a sensor such as GPS, the road You may utilize the own vehicle position information obtained by inter-vehicle and inter-vehicle communication.
 操作入力部195は、例えばユーザが選択した駐車スペースの情報などを駐車支援装置1に入力する。経路表示部17は、車内でドライバが見ることができる車載モニターであり、カメラからの映像に重ね合わせて目標となる駐車経路の切り返し位置を表示することができる。また、切り返し位置だけでなく、駐車経路全体を表示してもよい。ドライバは、車載モニターに表示される切り返し位置や駐車経路を見て、確認することができる。 The operation input unit 195 inputs, for example, information on the parking space selected by the user to the parking support device 1. The route display unit 17 is a vehicle-mounted monitor that can be seen by the driver in the vehicle, and can display the return position of the target parking route superimposed on the image from the camera. Further, not only the switching position but also the entire parking route may be displayed. The driver can check the switching position and parking path displayed on the in-vehicle monitor.
<出庫経路演算部>
 出庫経路演算部11は、目標駐車空間情報191と、目標駐車位置情報192と、自車両情報193とに基づいて出庫経路を演算する。目標駐車空間情報191は、例えば自車両Vに搭載された超音波センサの検出信号や車載カメラからの画像から取得することができる。また、駐車場設備から出力されるインフラ情報を取得してもよい。
<Outgoing route calculation unit>
The exit route calculation unit 11 calculates the exit route based on the target parking space information 191, the target parking position information 192, and the host vehicle information 193. The target parking space information 191 can be acquired from, for example, a detection signal of an ultrasonic sensor mounted on the host vehicle V or an image from an in-vehicle camera. Moreover, you may acquire the infrastructure information output from parking lot equipment.
 出庫経路は、自車両Vが駐車スペース20内に正確に配置されている状態から出庫させる経路を推定した仮想的な移動経路である。出庫経路は、自車両Vの初期位置P0に拘束されることなく、全く無関係に演算される。出庫経路演算部11では、出庫経路を演算する際に自車位置情報194を使用しない。出庫経路は、一つに限定されるものではなく、少なくとも一つ以上が演算される。 The delivery route is a virtual travel route that estimates a route to be delivered from the state in which the host vehicle V is accurately arranged in the parking space 20. The delivery route is calculated without any restriction on the initial position P0 of the host vehicle V and is completely independent. The exit route calculation unit 11 does not use the vehicle position information 194 when calculating the exit route. The delivery route is not limited to one, and at least one is calculated.
 出庫経路は、目標駐車空間の情報と自車挙動の制約条件に基づいて演算される。そして、後ろ向き並列駐車では、目標駐車位置P1を原点としたときに初期位置P0における自車両Vの向きと同じ方向に出庫することを想定した経路が生成され、前向き並列駐車では、目標駐車位置P1を原点としたときに初期位置P0における自車両Vの向きと反対方向に出庫することを想定した経路が生成される。 The delivery route is calculated based on the information on the target parking space and the constraints on the vehicle behavior. In the backward parallel parking, a route is generated assuming that the vehicle is discharged in the same direction as the direction of the host vehicle V at the initial position P0 when the target parking position P1 is the origin. In the forward parallel parking, the target parking position P1 A route is generated on the assumption that the vehicle exits in the direction opposite to the direction of the host vehicle V at the initial position P0.
 例えば目標駐車位置P1における自車両Vの姿勢状態が後ろ向きである後ろ向き並列駐車とする場合には、目標駐車位置P1から自車両Vを直進させ、自車両Vの左右の後輪の中間位置である基準点Vo(以後、自車両の位置Vo)が、駐車スペース20から出るところまでに至る経路と、初期位置P0における自車両Vの向きと同一の方向に向かって出庫するように転舵して前進により自車両Vが前方の障害物に対する到達可能限界位置に至る前進経路と、前輪を自車両Vに対してまっすぐに直して後退により自車両Vが後方の障害物に対する到達可能限界位置に至る後退経路を演算する。そして、所定の終了条件を満たすまで、前進経路と後退経路を交互に演算する出庫経路の演算を行う。なお、到達可能限界位置とは、障害物との間に、所定の隙間を有して離れた位置を云う。所定の隙間は、障害物と接触しないように所定の誤差等を考慮したマージンを持ったものであり、なるべく小さい方が好ましく、例えば1cm~5cm位に設定されている。本実施形態では、自車両Vの外周に所定の隙間を持った仮想枠を設定し、仮想枠が障害物に接触した位置を到達可能限界位置と判断している。 For example, in the case of rearward parallel parking in which the posture state of the host vehicle V at the target parking position P1 is backward, the host vehicle V is moved straight from the target parking position P1 and is an intermediate position between the left and right rear wheels of the host vehicle V. The vehicle is steered so that the reference point Vo (hereinafter referred to as the position Vo of the host vehicle) leaves the parking space 20 and exits in the same direction as the direction of the host vehicle V at the initial position P0. A forward path through which the host vehicle V reaches a reachable limit position for an obstacle ahead, and the host vehicle V reaches a reachable limit position for an obstacle behind by moving the front wheel straight with respect to the host vehicle V and moving backward. Calculate the reverse path. Then, until the predetermined end condition is satisfied, the output route is calculated by alternately calculating the forward route and the backward route. The reachable limit position refers to a position away from the obstacle with a predetermined gap. The predetermined gap has a margin in consideration of a predetermined error so as not to come into contact with an obstacle, and is preferably as small as possible, for example, set to about 1 cm to 5 cm. In the present embodiment, a virtual frame having a predetermined gap is set on the outer periphery of the host vehicle V, and the position where the virtual frame contacts the obstacle is determined as the reachable limit position.
 一方、目標駐車位置P1における自車両Vの姿勢状態が前向きである前向き並列駐車の場合には、目標駐車位置P1から自車両Vをまっすぐ後退させ、自車両Vの位置Voが駐車スペース20から所定距離だけ離れるところまでに至る経路と、初期位置P0における自車両Vの向きと反対の方向に向かって出庫するように転舵して後退により自車両Vが後方の障害物に対する到達可能限界位置に至る後退経路と、初期位置P0における自車両Vの向きと同一の方向に向かって出庫するように転舵して前進により自車両Vが前方の障害物に対する到達可能限界位置に至る前進経路を演算する。そして、所定の終了条件を満たすまで、前進経路と後退経路を交互に演算する出庫経路の演算を行う。 On the other hand, in the case of forward parallel parking where the posture state of the host vehicle V at the target parking position P1 is forward, the host vehicle V is moved straight back from the target parking position P1, and the position Vo of the host vehicle V is predetermined from the parking space 20 Steering the vehicle so as to exit in the direction opposite to the direction of the host vehicle V at the initial position P0 and the route leading to the distance away, and the host vehicle V becomes the reachable limit position for the obstacle behind by reversing Calculates the reverse path to reach and the forward path from which the own vehicle V reaches the reachable limit position with respect to the obstacle ahead by turning the vehicle so as to exit in the same direction as the direction of the own vehicle V at the initial position P0. To do. Then, until the predetermined end condition is satisfied, the output route is calculated by alternately calculating the forward route and the backward route.
 出庫経路演算部11は、例えば所定の終了条件として、出庫経路における自車両Vの向きが駐車方位26に対して90度となる第1条件と、目標駐車位置P1から自車両Vが通路方位25に沿って所定距離Hmaxだけ離れた地点に到達する第2条件と、出庫経路における切り返し回数が所定回数に達する第3条件の少なくとも一つを満たすまで出庫経路の演算を行う。 For example, the exit route calculation unit 11 has a first condition in which the direction of the host vehicle V on the exit route is 90 degrees with respect to the parking direction 26 as a predetermined end condition, and the host vehicle V has a passage direction 25 from the target parking position P1. The delivery route is calculated until at least one of the second condition for reaching a point separated by a predetermined distance Hmax along the second route and the third condition for reaching the predetermined number of times of return on the delivery route is satisfied.
 図3と図4は、予め設定された条件に従って自車両の出庫経路を演算する方法の一例を示す図であり、図3は、後ろ向き並列駐車の場合を示し、図4は、前向き並列駐車の場合を示す図である。 3 and 4 are diagrams illustrating an example of a method for calculating the exit route of the host vehicle in accordance with preset conditions. FIG. 3 illustrates a case of backward parallel parking. FIG. 4 illustrates forward parallel parking. It is a figure which shows a case.
 出庫経路は、例えば図3に示す後ろ向き並列駐車の例では、自車両Vを駐車スペース20に駐車した状態(a)から直進させ、自車両Vの位置Voが駐車スペース20から出るところに至り(b)、そこから、左に転舵して前進により自車両Vが前方の障害物22に対する到達可能限界位置に至り(c)、かかる位置で前輪を自車両Vの車両方位に沿ってまっすぐに直して後退により自車両Vが後方の障害物24に対する到達可能限界位置に至る(d)。そして、左に転舵する前進経路(e)、まっすぐ後退する後退経路(f)、左に転舵する前進経路(g)、まっすぐに後退する後退経路(h)を経て、自車両Vの車両方位が駐車スペース20の駐車方位に対して90度となった状態(i)に至る経路が演算される。 For example, in the example of the backward parallel parking shown in FIG. 3, the exit route is such that the host vehicle V is moved straight from the state (a) parked in the parking space 20 and the position Vo of the host vehicle V comes out of the parking space 20 ( b) From there, the vehicle V is steered to the left and moved forward to reach the reachable limit position for the obstacle 22 ahead (c), and the front wheel is straightened along the vehicle direction of the vehicle V at this position. As a result, the host vehicle V reaches the reachable limit position with respect to the rear obstacle 24 (d). Then, the vehicle V of the host vehicle V passes through a forward path (e) steered to the left, a reverse path (f) to recede straight, a forward path (g) steered to the left, and a receding path (h) to recede straight. A route to the state (i) in which the direction is 90 degrees with respect to the parking direction of the parking space 20 is calculated.
 同様に、例えば図4に示す前向き並列駐車の例では、自車両Vを駐車スペース20から目標駐車位置P1に駐車した状態(a)からまっすぐに後退させ、自車両Vの位置Voが駐車スペース20から出て所定距離だけ離れるところに至り(b)、そこから、右に転舵して後退により自車両Vが後方の障害物22に対する到達可能限界位置に至り(c)、かかる位置で左に転舵して前進により自車両Vが前方の障害物22に対する到達可能限界位置に至る(d)。そして、右に転舵する後退経路(e)、左に転舵する前進経路(f)、右に転舵する後退経路(g)、左に転舵する前進経路(h)を経て、自車両Vの車両方位が駐車スペース20の駐車方位に対して90度となった状態(i)に至る経路が演算される。 Similarly, in the example of forward parallel parking shown in FIG. 4, for example, the host vehicle V is retreated straight from the parking space 20 at the target parking position P <b> 1 (a), and the position Vo of the host vehicle V is the parking space 20. (B) from which the vehicle V is steered to the right and then moved backward to reach the reachable limit position for the obstacle 22 behind (c) and to the left at this position. The vehicle V is steered and moved forward to reach the reachable limit position for the obstacle 22 ahead (d). Then, the host vehicle passes through a backward path (e) that steers to the right, a forward path (f) that steers to the left, a backward path (g) that steers to the right, and an forward path (h) that steers to the left. A route to a state (i) in which the vehicle orientation of V is 90 degrees with respect to the parking orientation of the parking space 20 is calculated.
 なお、出庫経路の演算方法は、上記した方法のみに限定されるものではなく、他の条件により演算してもよい。また、予め設定された複数の条件の中から、目標駐車空間に適した条件を選択して演算してもよい。 Note that the method of calculating the delivery route is not limited to the method described above, and may be calculated according to other conditions. In addition, a condition suitable for the target parking space may be selected from a plurality of preset conditions for calculation.
<接続候補位置設定部>
 接続候補位置設定部12は、出庫経路上に複数の接続候補位置を設定する。接続候補位置は、初期位置P0との間を到達可能経路で接続することができるか否かを判断するための候補位置である。接続候補位置設定部12は、接続候補位置を設定する方法の一つとして、例えば通路21の上に、通路21の通路方位に所定間隔をおいて複数の接続候補ラインPLを設定し、出庫経路において自車両Vの位置Voがこれらの接続候補ラインPLと交差する位置を接続候補位置Dとして設定し、かかる位置における自車両Vの車両方位Vfとリンクさせて記憶する。
<Connection candidate position setting section>
The connection candidate position setting unit 12 sets a plurality of connection candidate positions on the delivery route. The connection candidate position is a candidate position for determining whether or not it is possible to connect to the initial position P0 via a reachable route. For example, the connection candidate position setting unit 12 sets a plurality of connection candidate lines PL at predetermined intervals in the passage direction of the passage 21 on the passage 21 as one method of setting the connection candidate positions, and the delivery route The position where the position Vo of the host vehicle V intersects with these connection candidate lines PL is set as the connection candidate position D, and is stored by being linked to the vehicle direction Vf of the host vehicle V at this position.
 図5は、後ろ向き並列駐車の場合の逆方向経路における接続候補位置を示す図である。 接続候補ラインPLn(nは数字)は、目標駐車位置Bよりも通路21の通路方位前方で通路21の幅方向に亘って延在するように設定されており、駐車スペース20から左方向に向かって通路21上に所定間隔をおいて、本実施例では、目標駐車位置Bを基準として横方向1.5mから0.5m刻みに設定されている。そして、出庫経路上で自車両Vの位置Voが接続候補ラインPLを通過する位置を接続候補位置Dとして設定し、かかる位置における自車両Vの車両方位Vfを記憶する。なお、図中で符号Aは初期位置、符号Bは目標駐車位置、符号Cは到達可能限界位置、符号Eはパークアウト位置を示す。 FIG. 5 is a diagram showing connection candidate positions on the reverse route in the case of backward parallel parking. The connection candidate line PLn (n is a number) is set so as to extend across the width direction of the passage 21 in front of the passage direction of the passage 21 from the target parking position B, and to the left from the parking space 20. In this embodiment, a predetermined interval is set on the passage 21 and the horizontal direction is set to 1.5 m to 0.5 m with reference to the target parking position B. Then, the position where the position Vo of the host vehicle V passes the connection candidate line PL on the delivery route is set as the connection candidate position D, and the vehicle direction Vf of the host vehicle V at this position is stored. In the figure, symbol A represents an initial position, symbol B represents a target parking position, symbol C represents a reachable limit position, and symbol E represents a park-out position.
 図6は、前向き並列駐車の場合の出庫経路における接続候補位置を示す図である。
 接続候補ラインPLは、目標駐車位置Bよりも通路21の通路方位前方で通路21の幅方向に亘って延在するように設定されており、本実施例では、通路21の通路方位に沿って0.5m刻みに設定されている。そして、出庫経路上で自車両Vの位置Voが接続候補ラインPLを通過する位置を接続候補位置Dとして設定し、かかる位置における自車両Vの車両方位Vfを記憶する。
FIG. 6 is a diagram illustrating connection candidate positions on the leaving route in the case of forward parallel parking.
The connection candidate line PL is set so as to extend in the width direction of the passage 21 in front of the passage direction of the passage 21 from the target parking position B. In the present embodiment, along the passage direction of the passage 21. It is set in 0.5m increments. Then, the position where the position Vo of the host vehicle V passes the connection candidate line PL on the delivery route is set as the connection candidate position D, and the vehicle direction Vf of the host vehicle V at this position is stored.
 図7は、出庫経路上の接続候補位置を演算する方法を説明するフローチャートである。 まず、所定のルールに従って、自車両Vを目標駐車位置P1から出庫させる方向に仮想的に移動させる演算が行われ(S101)、自車両Vの仮想枠が障害物と衝突するか否かが判断される(S102)。そして、衝突すると判断されたときは、かかる位置が到達可能限界位置Cであると判断し、自車両VのシフトをDレンジからRレンジ、あるいはRレンジからDレンジに切り替えて、自車両Vの進行方向を前進から後退、あるいは後退から前進に切り返す(S107)。 FIG. 7 is a flowchart for explaining a method of calculating connection candidate positions on the delivery route. First, in accordance with a predetermined rule, a calculation for virtually moving the host vehicle V in the direction of leaving the target parking position P1 is performed (S101), and it is determined whether or not the virtual frame of the host vehicle V collides with an obstacle. (S102). When it is determined that a collision occurs, it is determined that the position is the reachable limit position C, and the shift of the host vehicle V is switched from the D range to the R range or from the R range to the D range. The traveling direction is switched back from forward to backward, or from backward to forward (S107).
 そして、所定の接続候補位置Dに自車両Vが到達しているか否かが判断され(S103)、自車両Vの位置Voが接続候補ラインPLを通過したときに、かかる位置を接続候補位置Dとして設定し、かかる位置における自車両Vの車両方位Vfを記憶する(S108)。そして、第1条件である自車両Vの角度が駐車方位26に対して90[deg]になったか否かが判断され(S104)、90[deg]になっている場合には、第1条件を満たすとして本ルーチンを終了する。 Then, it is determined whether or not the host vehicle V has reached a predetermined connection candidate position D (S103). When the position Vo of the host vehicle V passes the connection candidate line PL, this position is determined as the connection candidate position D. And the vehicle orientation Vf of the host vehicle V at this position is stored (S108). And it is judged whether the angle of the own vehicle V which is 1st condition became 90 [deg] with respect to the parking azimuth | direction 26 (S104), and when it is 90 [deg], 1st condition If this condition is satisfied, this routine is terminated.
 一方、自車両Vの車両方位Vfが駐車方位26に対して90[deg]になっていない場合には、所定距離Hmax以上移動して離れたか否かが判断される(S105)。本実施例では、所定距離Hmaxは7メートルに設定されている。自車両Vが所定距離Hmax以上移動しているときは、第2条件を満たすとして本ルーチンを終了する。 On the other hand, if the vehicle direction Vf of the host vehicle V is not 90 [deg] with respect to the parking direction 26, it is determined whether or not the vehicle has moved away by a predetermined distance Hmax (S105). In this embodiment, the predetermined distance Hmax is set to 7 meters. When the host vehicle V has moved by a predetermined distance Hmax or more, this routine is terminated assuming that the second condition is satisfied.
 接続候補位置設定部12は、接続候補位置を設定する他の方法として、例えば、出庫経路に沿って出庫方向に自車両Vを移動させた場合に、自車両Vの向きが所定の相対指定角度分だけ変化する毎(例えば5[deg]毎)に、かかる位置を接続候補位置として設定してもよい。 As another method for setting the connection candidate position, for example, when the host vehicle V is moved in the exit direction along the exit route, the connection candidate position setting unit 12 sets the orientation of the host vehicle V to a predetermined relative designated angle. Such a position may be set as a connection candidate position every time it changes by an amount (for example, every 5 [deg]).
<到達可能経路演算部>
 到達可能経路演算部13は、自車両Vの初期位置P0から複数の接続候補位置Dの少なくとも一つに到達可能な到達可能経路を演算する。到達可能経路とは、前進と後退を切り替えることなく、前進と後退のいずれか一方のみで自車両Vの初期位置P0から接続候補位置Dに到達可能な経路である。到達可能か否かは、自車両Vの位置Vo及び車両方位Vfに基づいて判断され、自車両Vの位置Voが接続候補位置Dに一致しかつ自車両Vの車両方位Vfが、接続候補位置Dにリンクして記憶されている車両方位Vfに一致している場合に、到達可能と判断される。到達可能経路の演算は、自車位置情報と自車両Vの仕様情報に基づいて行われ、切り返し回数が少なく且つ自車両Vの初期位置P0に近い方の接続候補位置Dから順に演算される。
<Reachable route calculation unit>
The reachable route calculation unit 13 calculates a reachable route that can reach at least one of the plurality of connection candidate positions D from the initial position P0 of the host vehicle V. The reachable route is a route that can reach the connection candidate position D from the initial position P0 of the host vehicle V only in one of forward and backward without switching between forward and backward. Whether or not the vehicle can be reached is determined based on the position Vo and the vehicle direction Vf of the host vehicle V, the position Vo of the host vehicle V matches the connection candidate position D, and the vehicle direction Vf of the host vehicle V is determined as the connection candidate position. When the vehicle direction Vf linked to D is stored, the vehicle direction is determined to be reachable. The reachable route is calculated based on the own vehicle position information and the specification information of the own vehicle V. The reachable route is calculated in order from the connection candidate position D having the smaller number of turnovers and closer to the initial position P0 of the own vehicle V.
 自車両Vを初期位置P0から移動させて接続候補位置Dにおいて所定の車両方位Vfで配置することができれば、後は、出庫経路を逆方向に辿ることによって、駐車スペース20内に自車両Vを移動させることができる。したがって、到達可能経路演算部13では、出庫経路上の複数の接続候補位置Dのうち、初期位置P0から所定の車両方位Vfで自車両Vを配置することができる接続候補位置Dをパークアウト位置Eとして設定し、初期位置P0からパークアウト位置Eまでの到達可能経路を演算する。 If the host vehicle V can be moved from the initial position P0 and placed at the connection candidate position D in the predetermined vehicle direction Vf, the host vehicle V is moved into the parking space 20 by following the exit route in the reverse direction. Can be moved. Therefore, in the reachable path | route calculating part 13, the connection candidate position D which can arrange | position the own vehicle V by the predetermined vehicle azimuth | direction Vf from the initial position P0 among the several connection candidate positions D on the delivery route is a park-out position. E is set, and the reachable route from the initial position P0 to the park-out position E is calculated.
 図8は、到達可能判定の処理フローである。
 この処理フローは、接続候補位置の分だけループされ(S111)、まず、初期位置P0から接続候補位置Dまで片側転舵で到達可能か否かが判断される(S112)。片側転舵とは、自車両Vのステアリングを自車両Vの左右のいずれか一方の片側のみに切る操作である。そして、片側転舵では接続候補位置Dに到達できないと判断されたときは、S字転舵で到達可能か否かが判断される(S116)。S字転舵とは、自車両Vのステアリングを自車両Vの左右両側に切る操作である。
FIG. 8 is a process flow of reachability determination.
This processing flow is looped by the connection candidate positions (S111), and it is first determined whether or not the one-side turning can be reached from the initial position P0 to the connection candidate position D (S112). One-side steering is an operation of turning the steering of the host vehicle V only to one of the left and right sides of the host vehicle V. Then, when it is determined that the connection candidate position D cannot be reached by the one-side turning, it is determined whether or not the connection candidate position D can be reached by the S-shaped turning (S116). The S-shaped steering is an operation of turning the steering of the host vehicle V to the left and right sides of the host vehicle V.
 そして、片側転舵あるいはS字転舵により接続候補位置Dに到達可能であると判断された場合には、かかる接続候補位置をパークアウト位置Eとして選択し、自車両Vの初期位置P0からパークアウト位置Eまでの到達可能経路を生成する(S113)。 When it is determined that the connection candidate position D can be reached by one-side turning or S-shaped turning, the connection candidate position is selected as the park-out position E, and the vehicle V is parked from the initial position P0. A reachable route to the out position E is generated (S113).
 そして、到達可能経路において自車両Vが障害物に接触するか否かの判定を行い(S114)、接触しないと判断された場合には、接続OKフラグをONにして生成した到達可能経路を記憶手段に格納し、ループを終了する(S117)。一方、片側転舵とS字転舵では接続候補位置Dに到達できないと判断された場合(S112とS116でNO)、あるいは、接触判定で接触すると判定された場合(S114でYES)は、かかる接続候補位置Dに対する判断を終了し、残りの接続候補位置Dに対する判断を行う。そして、全ての接続候補位置Dに対して到達できないと判断された場合には、接続OKフラグをOFFにして(S115)、処理フローを終了する。 Then, it is determined whether or not the host vehicle V contacts an obstacle on the reachable route (S114). If it is determined that the vehicle V does not contact, the reachable route generated by turning on the connection OK flag is stored. The data is stored in the means, and the loop is terminated (S117). On the other hand, when it is determined that the connection candidate position D cannot be reached by one-side turning and S-shaped turning (NO in S112 and S116), or when it is determined that contact is made in contact determination (YES in S114) The determination on the connection candidate position D is terminated, and the determination on the remaining connection candidate positions D is performed. If it is determined that all the connection candidate positions D cannot be reached, the connection OK flag is turned OFF (S115), and the processing flow is terminated.
 図9A~図9Cは、片側転舵による到達可能判定の一例を説明する図、図9D、図9Eは、S字転舵による到達可能判定の一例を説明する図である。 FIGS. 9A to 9C are diagrams illustrating an example of reachability determination by one-side turning, and FIGS. 9D and 9E are diagrams illustrating an example of reachability determination by S-shaped steering.
 S112の片側転舵による到達可能判定では、以下の(a1)~(a3)の条件が全て成立した場合に、到達可能と判定される(角度差と位置でも制限する)。
(a1)自車両Vの現在位置A(初期位置P0)における軸線(車両方位)A2と接続候補位置Eにおける軸線(車両方位)E2とが交差する。
(a2)現在位置Aでの旋回円A1と接続候補位置Eの軸線E2とが交差しない。
(a3)接続候補位置Eでの旋回円E1と現在位置Aの軸線A2とが交差しない。
 なお、旋回円とは、クロソイドを考慮した旋回側の円弧(最小回転軌跡)とする。
In the reachability determination by one-side turning in S112, it is determined that the vehicle can be reached if the following conditions (a1) to (a3) are all satisfied (the angle difference and the position are also limited).
(A1) The axis (vehicle orientation) A2 at the current position A (initial position P0) of the host vehicle V and the axis (vehicle orientation) E2 at the connection candidate position E intersect.
(A2) The turning circle A1 at the current position A does not intersect with the axis E2 of the connection candidate position E.
(A3) The turning circle E1 at the connection candidate position E and the axis A2 of the current position A do not intersect.
The turning circle is a turning-side arc (minimum rotation locus) in consideration of clothoid.
 図9Aに示す例では、軸線A2とE2とが交差位置F1で交差しているので、上記(a1)の条件を満たしている。したがって、片側転舵により到達可能と判定される。一方、図9Bでは、旋回円E1と軸線A2とが交差しているので、上記(a3)の条件を満たしていない。そして、図9Cに示す例では、旋回円A1と軸線E2とが交差しているので、上記(a2)の条件を満たしていない。したがって、図9B及び図9Cに示す例では、片側転舵では到達不可能と判定され、S字転舵の利用が可能か否かの判定に移行する。 In the example shown in FIG. 9A, since the axes A2 and E2 intersect at the intersection position F1, the above condition (a1) is satisfied. Therefore, it is determined that it can be reached by one-side turning. On the other hand, in FIG. 9B, since the turning circle E1 and the axis A2 intersect, the condition (a3) is not satisfied. In the example shown in FIG. 9C, the turning circle A1 and the axis E2 intersect, so the condition (a2) is not satisfied. Therefore, in the example shown in FIG. 9B and FIG. 9C, it is determined that it cannot be reached by one-side turning, and the process proceeds to determination of whether or not use of S-shaped turning is possible.
 S116のS字転舵による到達可能判定では、以下の(a4)の条件が成立した場合に、到達可能と判定される(角度差と位置でも制限する)。
(a4)現在位置Aでの旋回円A1と接続候補位置Eの旋回円E1とが交差しない。
In the reachability determination by S-shaped turning in S116, it is determined that the vehicle can be reached when the following condition (a4) is satisfied (the angle difference and the position are also limited).
(A4) The turning circle A1 at the current position A does not intersect with the turning circle E1 at the connection candidate position E.
 図9Dに示す例では、旋回円A1と旋回円E1とが交差していないので、上記(a4)の条件を満たしている。したがって、S字転舵により到達可能と判定される。一方、図9Eに示す例では、旋回円A1と旋回円E1とが交差しているので、上記(a4)の条件を満たしておらず、S字転舵による到達は不可能と判定される。 In the example shown in FIG. 9D, the turning circle A1 and the turning circle E1 do not intersect with each other, so the condition (a4) is satisfied. Therefore, it is determined that it is reachable by S-shaped steering. On the other hand, in the example shown in FIG. 9E, since the turning circle A1 and the turning circle E1 intersect, the condition (a4) is not satisfied, and it is determined that the arrival by the S-shaped steering is impossible.
 図10は、片側転舵による到達可能経路の生成方法を説明する図である。
 現在位置Aから接続候補位置Eまでの片側転舵による経路を生成するには、まず、図10(a)に示すように、軸線A2と軸線E2との交点Kと現在位置Aとの間の距離Lsと、交点Kと接続候補位置Eとの間の距離Leをそれぞれ算出し、短い方の距離を選択する(図に示す例では、距離Leを選択)。そして、図12(b)に示すように、2本の軸線A2、E2を共通接線に持ち、交点Kから短い方の距離だけ離れた位置を通る円を描き、幾何計算から下記の式(1)により半径Rを算出する。
Figure JPOXMLDOC01-appb-M000001
FIG. 10 is a diagram illustrating a method for generating a reachable route by one-side turning.
In order to generate a route by one-side turning from the current position A to the connection candidate position E, first, as shown in FIG. 10A, between the intersection point K of the axis A2 and the axis E2 and the current position A The distance Ls and the distance Le between the intersection K and the connection candidate position E are calculated, and the shorter distance is selected (in the example shown in the figure, the distance Le is selected). Then, as shown in FIG. 12B, a circle having two axes A2 and E2 as common tangent lines and passing through a position separated by a short distance from the intersection K is drawn, and the following equation (1) is calculated from geometric calculation. ) To calculate the radius R.
Figure JPOXMLDOC01-appb-M000001
 以上により、直線と円弧を組み合わせた到達可能経路を生成することができる。
 図11は、S字転舵による到達可能経路の生成方法を説明する図であり、接続候補位置Eよりも後方で軸線E2が現在位置Aの軸線A2であるX軸と交わらない場合の生成方法を説明する図である。
As described above, a reachable route combining a straight line and an arc can be generated.
FIG. 11 is a diagram for explaining a method of generating a reachable route by S-shaped steering, and a generation method when the axis E2 is behind the connection candidate position E and does not intersect with the X axis that is the axis A2 of the current position A. FIG.
 ここでは、S字を描くための半径が同一の共通円の半径Rを算出する。円の接点を求めれば旋回円A1の円弧と、旋回円E1の円弧とを組み合わせてS字の到達可能経路を生成することができる。 Here, the radius R of the common circle having the same radius for drawing the S-shape is calculated. If a circle contact point is obtained, an S-shaped reachable path can be generated by combining the arc of the turning circle A1 and the arc of the turning circle E1.
 共通円の半径はそれぞれの円の中心座標が求まるので、中心座標間の距離から求まる。 The radius of the common circle can be obtained from the distance between the center coordinates because the center coordinates of each circle can be obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ただし、θ=0の場合は
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
However, if θ = 0
Figure JPOXMLDOC01-appb-M000004
 図11(a)に示す状態から図11(b)に示す交点F7の位置までが上記した計算式により算出可能である。
 図11(c)に示す公式からS字のそれぞれの旋回角度φ、φと、弧長b、bは以下の計算式により求められる。
From the state shown in FIG. 11A to the position of the intersection F7 shown in FIG. 11B can be calculated by the above-described calculation formula.
From the formula shown in FIG. 11C, the S-shaped turning angles φ 1 and φ 2 and the arc lengths b 1 and b 2 are obtained by the following calculation formulas.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図12は、S字転舵による到達可能経路の生成方法を説明する図であり、接続候補位置Eよりも後方で軸線E2が現在位置Aの軸線A2であるX軸と交わる場合の生成方法を説明する図である。 FIG. 12 is a diagram for explaining a method of generating a reachable route by S-shaped steering, and a generation method when the axis line E2 intersects the X axis that is the axis line A2 of the current position A behind the connection candidate position E. It is a figure explaining.
 ここでは、S字を描くための半径が同一となる共通の旋回円E1、A1の半径Rを算出する。そして、円の接点を求めれば、旋回円A1の円弧と、旋回円E1の円弧とを組み合わせてS字の到達可能経路を生成することができる。
 共通円の半径はそれぞれの円の中心座標が求まるので、中心座標間の距離から求まる。
Here, the radius R of the common turning circles E1 and A1 having the same radius for drawing the S-shape is calculated. If a circle contact point is obtained, an S-shaped reachable path can be generated by combining the arc of the turning circle A1 and the arc of the turning circle E1.
The radius of the common circle is obtained from the distance between the center coordinates because the center coordinates of each circle are obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 図11(c)に示す公式からS字のそれぞれの旋回角度φ、φと、弧長b、bは以下の計算式により求められる。 From the formula shown in FIG. 11C, the S-shaped turning angles φ 1 and φ 2 and the arc lengths b 1 and b 2 are obtained by the following calculation formulas.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 図13は、S字転舵による到達可能経路の生成方法を説明する図であり、接続候補位置Eよりも後方で軸線E2が現在位置Aの軸線A2であるX軸と交わる場合の生成方法を説明する図である。 FIG. 13 is a diagram for explaining a method for generating a reachable route by S-shaped steering, and a method for generating a case where the axis E2 intersects the X axis that is the axis A2 of the current position A behind the connection candidate position E. It is a figure explaining.
 ここでは、S字を描くための半径が同一となる共通円E1、A1の半径Rを算出する。そして、円の接点を求めれば、旋回円A1の円弧と、旋回円E1の円弧とを組み合わせてS字の到達可能経路を生成することができる。 Here, the radius R of the common circles E1 and A1 having the same radius for drawing the S-shape is calculated. If a circle contact point is obtained, an S-shaped reachable path can be generated by combining the arc of the turning circle A1 and the arc of the turning circle E1.
 共通円の半径はそれぞれの円の中心座標が求まるので、中心座標間の距離から求まる。 The radius of the common circle can be obtained from the distance between the center coordinates because the center coordinates of each circle can be obtained.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 図11(c)に示す公式からS字のそれぞれの旋回角度φ、φと、弧長b、bは以下の計算式により求められる。 From the formula shown in FIG. 11C, the S-shaped turning angles φ 1 and φ 2 and the arc lengths b 1 and b 2 are obtained by the following calculation formulas.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
<駐車経路設定部>
 駐車経路設定部14は、目標駐車位置P1からパークアウト位置Eまでの出庫経路の情報と、自車両Vの初期位置P0からパークアウト位置Eまでの到達可能経路の情報を用いて駐車経路を設定する。駐車経路設定部14は、図10のステップS117で接続OKフラグをONにして生成された到達可能経路と、かかる到達可能経路が接続されているパークアウト位置Eを含む出庫経路とを繋いで駐車経路を形成する。
<Parking route setting part>
The parking route setting unit 14 sets a parking route using information on the exit route from the target parking position P1 to the park-out position E and information on the reachable route from the initial position P0 of the host vehicle V to the park-out position E. To do. The parking route setting unit 14 connects the reachable route generated by turning on the connection OK flag in step S117 of FIG. 10 and the delivery route including the park-out position E to which the reachable route is connected. Form a pathway.
 駐車経路は、複数設定できる場合に、駐車時間、後続車両の有無、駐車精度の高さ、通路の幅、または運転者の好みなど種々の評価値に応じて選択される。例えば駐車精度は、駐車スペース20に曲がりながら進入するよりも、自車両Vの向きを駐車方位26に合わせてから真っ直ぐに進入する方が駐車位置の精度が高い。したがって、駐車位置の精度を優先する場合には、自車両Vの向きを駐車方位26に合わせてから真っ直ぐに進入する駐車経路を選択する。 When a plurality of parking routes can be set, the parking route is selected according to various evaluation values such as parking time, presence / absence of a following vehicle, parking accuracy, passage width, or driver's preference. For example, in terms of parking accuracy, the accuracy of the parking position is higher when the vehicle V is approached straight after the direction of the host vehicle V is aligned with the parking direction 26 than when entering the parking space 20 while turning. Therefore, when priority is given to the accuracy of the parking position, a parking route that enters straight after the direction of the host vehicle V is aligned with the parking direction 26 is selected.
 また、例えばパークアウト位置Eから駐車スペース20に駐車する際に、前後の切り返しの回数や操舵量がなるべく少ない方が駐車に要する時間を短くすることができる。したがって、駐車に要する時間を短くする場合には、前後の切り返しの回数や操舵量がなるべく少なくなる駐車経路を選択する。 Also, for example, when parking in the parking space 20 from the park-out position E, the time required for parking can be shortened if the number of times of turning back and forth and the steering amount are as small as possible. Therefore, in order to shorten the time required for parking, a parking route is selected in which the number of front and rear turnovers and the steering amount are minimized.
 また、例えば駐車する際に、駐車スペース20から遠く離れた位置まで移動するよりも駐車スペース20から離れない方が後続車両に駐車スペース20への駐車の意思を明確に示すことができる。したがって、通路21上に後続車両が存在する場合には、駐車スペース20から離れない駐車経路を選択する。 Also, for example, when parking, the intention to park in the parking space 20 can be clearly shown to the following vehicle if the vehicle does not move away from the parking space 20 rather than moving to a position far away from the parking space 20. Therefore, when there is a succeeding vehicle on the passage 21, a parking route that does not leave the parking space 20 is selected.
 上述のように、駐車支援装置1は、目標駐車位置P1から出庫経路を演算し、出庫経路上に設定された複数の接続候補位置Dのうち、自車の初期位置P0から到達可能でかつ最も近い接続候補位置Dをパークアウト位置Eとして選択し、目標駐車位置Bからパークアウト位置Eまでの出庫経路と、自車両Vの初期位置P0からパークアウト位置Eまでの到達可能経路とを用いて駐車経路を設定する。したがって、駐車支援を開始する開始位置や車両姿勢に依存せずに、目標駐車位置P1に自車両Vを誘導するための切り返しを含む駐車経路を演算して、ドライバの意図する位置に正しい車両姿勢で車両を駐車させることができる。 As described above, the parking assist device 1 calculates the delivery route from the target parking position P1, and among the plurality of connection candidate positions D set on the delivery route, the parking assistance device 1 can be reached from the initial position P0 of the own vehicle and is the most The closest connection candidate position D is selected as the park-out position E, and the exit route from the target parking position B to the park-out position E and the reachable route from the initial position P0 of the host vehicle V to the park-out position E are used. Set the parking route. Therefore, the parking path including the turning back for guiding the host vehicle V to the target parking position P1 is calculated without depending on the start position or the vehicle attitude at which parking assistance is started, and the vehicle attitude that is correct at the position intended by the driver is calculated. You can park your vehicle at
 次に、自車両Vの位置ずれ直しについて説明する。
 上述の駐車支援装置1によれば、自車両Vを駐車スペース20に誘導して、自車両Vの位置Voを駐車スペース20内の目標駐車位置P1に配置し、かつ自車両Vの車両方位Vfを駐車方位26に一致させることができる駐車経路を演算することができる。しかしながら、実際に駐車経路に沿って自車両Vを移動させたときに、センサの精度や誤差、駐車動作中のハンドル操作の遅れなどの種々の要因により、位置ずれを生じることがある。本実施形態の駐車支援装置1は、駐車経路に沿って自車両Vを駐車した結果、位置ずれが生じた場合に、位置ずれを直す経路を演算して、位置ずれ直しを支援する。
Next, repositioning of the vehicle V will be described.
According to the parking assist device 1 described above, the host vehicle V is guided to the parking space 20, the position Vo of the host vehicle V is arranged at the target parking position P1 in the parking space 20, and the vehicle direction Vf of the host vehicle V is set. It is possible to calculate a parking route that can be matched with the parking direction 26. However, when the host vehicle V is actually moved along the parking path, a positional shift may occur due to various factors such as sensor accuracy and error, and delay in steering operation during the parking operation. The parking assist device 1 according to the present embodiment calculates a route for correcting the positional deviation and assists the positional deviation correction when the positional deviation occurs as a result of parking the host vehicle V along the parking path.
<位置ずれ判定部>
 図14は、位置ずれ直し前と位置ずれ直し後の状態を示す図である。なお、以下の説明では、後ろ向き並列駐車の場合を例に説明するが、本実施形態は、前向き並列駐車の場合も同様に適用することができるものである。
<Position displacement determination unit>
FIG. 14 is a diagram illustrating a state before and after repositioning. In the following description, the case of backward parallel parking will be described as an example. However, the present embodiment can be similarly applied to the case of forward parallel parking.
 位置ずれ判定部15は、自車両Vと駐車スペース20との間に位置ずれがあるか否かを判定する。位置ずれ判定部15は、実際の自車両Vの位置Voと駐車スペース20の目標駐車位置P1との間の離間距離δが所定値以上の場合、及び、自車両Vの車両方位Vfと駐車スペース20の駐車方位26との間の角度θが所定値以上の場合の少なくとも一方であるときに、位置ずれがあると判定する。目標駐車位置P1に対する自車両Vの位置Vo及び駐車方位26に対する車両方位Vfの情報は、自車位置情報194から取得できる。 The displacement determination unit 15 determines whether or not there is a displacement between the host vehicle V and the parking space 20. The misalignment determination unit 15 determines the vehicle orientation Vf of the host vehicle V and the parking space when the separation distance δ between the actual position V of the host vehicle V and the target parking position P1 of the parking space 20 is greater than or equal to a predetermined value. It is determined that there is a positional deviation when the angle θ between the 20 parking directions 26 is at least one of the cases where the angle θ is equal to or greater than a predetermined value. Information on the position Vo of the host vehicle V with respect to the target parking position P1 and the vehicle direction Vf with respect to the parking direction 26 can be acquired from the host vehicle position information 194.
 図14(1)に示すずれ直し前の例では、自車両Vの車両方位Vfが駐車スペース20の駐車方位26から所定値以上傾いており、かつ、自車両Vの位置Voが駐車スペース20の目標駐車位置P1から所定値以上離間しており、位置ずれがあると判定される。図14(2)に示すずれ直し前の例では、自車両Vの車両方位Vfは駐車スペース20の駐車方位26と平行であるが、自車両Vの基準点Voが駐車スペース20の目標駐車位置P1から所定値以上離間しており、位置ずれがあると判定される。また、特に図示していないが、自車両Vが駐車スペース20近傍で停止している場合にも位置ずれがあると判定される。 14 (1), the vehicle direction Vf of the host vehicle V is tilted by a predetermined value or more from the parking direction 26 of the parking space 20, and the position Vo of the host vehicle V is the parking space 20. It is determined that there is a positional deviation because it is separated from the target parking position P1 by a predetermined value or more. 14 (2), the vehicle direction Vf of the host vehicle V is parallel to the parking direction 26 of the parking space 20, but the reference point Vo of the host vehicle V is the target parking position of the parking space 20. It is determined that there is a positional deviation because it is separated from P1 by a predetermined value or more. Although not shown in particular, it is determined that there is a displacement even when the host vehicle V is stopped near the parking space 20.
 駐車支援装置1では、駐車経路設定部14によって設定された駐車経路にしたがって自車両Vの駐車動作が開始されて動作終了により駐車完了と判定する。自車両Vの駐車動作は、自車両Vが駐車経路の終点に到達することによって終了するが、誘導した結果、自車両Vの位置Voが目標駐車位置P1に一致していない場合や自車両Vの車両方位Vfが駐車スペース20の駐車方位26に一致していない場合、あるいは、駐車動作中に障害物を検知して停止した場合にも終了する。位置ずれ判定部15は、駐車経路を用いた自車両Vの駐車動作が終了したときに、あるいは、駐車動作の終了後にドライバの操作による指示があったときに、位置ずれ判定を行う。 In the parking assistance device 1, the parking operation of the host vehicle V is started according to the parking route set by the parking route setting unit 14, and it is determined that the parking is completed when the operation ends. The parking operation of the host vehicle V ends when the host vehicle V reaches the end point of the parking path. However, as a result of the guidance, the position Vo of the host vehicle V does not coincide with the target parking position P1 or the host vehicle V When the vehicle orientation Vf of the vehicle does not coincide with the parking orientation 26 of the parking space 20, or when an obstacle is detected during the parking operation and the vehicle orientation Vf is stopped, the process is also terminated. The position deviation determination unit 15 performs position deviation determination when the parking operation of the host vehicle V using the parking route is completed, or when an instruction by the driver's operation is given after the parking operation is completed.
<位置ずれ直し経路演算部>
 位置ずれ直し経路演算部16は、位置ずれ判定部15によって位置ずれがあると判定された場合に、位置ずれを直す位置ずれ直し経路を演算する。位置ずれ直し経路は、自車両Vを駐車スペース20内から一旦出庫させて通路21まで移動させ、若しくは、駐車スペース20近傍から出庫側に離間した通路21上の位置まで移動させる出庫経路と、通路21から駐車スペース20の目標駐車位置P1に向かって移動させる入庫経路と、を有する。
<Position recalculation path calculator>
When the positional deviation determination unit 15 determines that there is a positional deviation, the positional deviation correction path calculation unit 16 calculates a positional deviation correction path that corrects the positional deviation. The repositioning route includes a delivery route in which the host vehicle V is temporarily delivered from the parking space 20 and moved to the passage 21 or moved to a position on the passage 21 away from the vicinity of the parking space 20 toward the delivery side, and a passage 21 and a warehousing route for moving toward the target parking position P1 of the parking space 20.
 自車両Vは、位置ずれ直し経路に沿って移動することによって位置ずれを直すこと、すなわち、図14に示すずれ直し後の例のように、実際の自車両Vの位置Voと駐車スペース20の目標駐車位置P1との間の離間距離δを所定値未満とし、かつ、自車両Vの車両方位Vfと駐車スペース20の駐車方位26との間の角度θを所定値未満とすることができる。 The host vehicle V corrects the position shift by moving along the position shift path, that is, the actual position Vo of the host vehicle V and the parking space 20 as in the example after the shift shown in FIG. The separation distance δ from the target parking position P1 can be less than a predetermined value, and the angle θ between the vehicle orientation Vf of the host vehicle V and the parking orientation 26 of the parking space 20 can be less than a predetermined value.
 位置ずれ直し経路演算部16は、第1の位置ずれ直し経路演算部と第2の位置ずれ直し経路演算部を有している。第1の位置ずれ直し経路演算部は、片側転舵のみで位置ずれを直す第1の位置ずれ直し経路(図15を参照)を演算し、第2の位置ずれ直し経路演算部は、S字転舵で位置ずれを直す第2の位置ずれ直し経路(図19を参照)を演算する。 The misalignment path calculation unit 16 includes a first misalignment path calculation unit and a second misalignment path calculation unit. The first misalignment path calculation unit calculates a first misalignment path (see FIG. 15) that corrects misalignment with only one-side turning, and the second misalignment path calculation unit includes an S-shape. A second misalignment path (see FIG. 19) for correcting misalignment by turning is calculated.
<第1の位置ずれ直し経路演算部>
 図15は、第1の位置ずれ直し経路を用いて行われる位置ずれ直しの動作を説明する図、図16は、自車両の移動に応じて漸次算出される共有円のイメージ図、図17は、入庫経路の演算方法を説明する図である。
<First misalignment path calculation unit>
15 is a diagram for explaining the operation of repositioning performed using the first repositioning route, FIG. 16 is an image diagram of a shared circle that is gradually calculated according to the movement of the host vehicle, and FIG. It is a figure explaining the calculation method of a warehousing route.
 第1の位置ずれ直し経路演算部は、自車両Vの駐車位置から通路21上の位置まで真っ直ぐ移動する出庫経路と、通路21上の位置から駐車スペース20に向かって片側に曲がりながら移動する入庫経路とを演算し、出庫経路と入庫経路とを繋いで第1の位置ずれ直し経路を演算する。 The first repositioning route calculation unit includes an exit route that moves straight from the parking position of the host vehicle V to a position on the passage 21, and a warehousing that moves while turning to one side from the position on the passage 21 toward the parking space 20. The route is calculated, and the first repositioning route is calculated by connecting the outgoing route and the incoming route.
 第1の位置ずれ直し経路演算部は、自車両Vの車両方位Vfと駐車スペース20の駐車方位26の両方を接線とする共有円30を演算する。そして、自車両Vの車両方位Vfに沿って自車両Vの駐車位置から通路21上の位置である自車両Vの車両方位Vfと共有円30とが接する第1接点31までを直線で繋いだ経路を出庫経路として演算する。そして、共有円30に沿って第1接点31から駐車スペース20の駐車方位26と共有円30とが接する第2接点32までを円弧で繋ぐ経路と駐車スペース20の駐車方位26に沿って第2接点32から目標駐車位置P1まで直線で繋いだ経路とを入庫経路として演算する。 The first repositioning path calculation unit calculates a shared circle 30 that has both the vehicle direction Vf of the host vehicle V and the parking direction 26 of the parking space 20 as a tangent line. Then, along the vehicle direction Vf of the host vehicle V, a straight line is connected from the parking position of the host vehicle V to the first contact point 31 where the vehicle direction Vf of the host vehicle V which is a position on the passage 21 and the shared circle 30 contact. The route is calculated as the outgoing route. Then, a second path along the parking direction 26 of the parking space 20 and a path that connects the first contact point 31 along the shared circle 30 to the second contact point 32 where the parking direction 26 of the parking space 20 contacts the second contact point 32 is in contact. The route connected from the contact point 32 to the target parking position P1 in a straight line is calculated as the warehousing route.
 出庫経路は、自車両Vの車両方位Vfに沿って真っ直ぐに駐車スペース20から離間する方向に自車両Vを移動させ(図15(1))、自車両Vの位置Voが駐車スペース20の駐車方位26を越えて(図15(2))、さらに共有円30の第1接点31に至るまで移動させる経路を有する。共有円30は、自車両Vの車両方位Vfと駐車スペース20の駐車方位26の両方に接する円であり、車両方向Vfとは第1接点31で接し、駐車方位26とは第2接点32で接する。 The exit route moves the host vehicle V in a direction away from the parking space 20 along the vehicle direction Vf of the host vehicle V (FIG. 15 (1)), and the position Vo of the host vehicle V is parked in the parking space 20. There is a path that moves beyond the azimuth 26 (FIG. 15 (2)) to the first contact 31 of the common circle 30. The shared circle 30 is a circle that is in contact with both the vehicle direction Vf of the host vehicle V and the parking direction 26 of the parking space 20, and is in contact with the vehicle direction Vf at the first contact 31, and the parking direction 26 is at the second contact 32. Touch.
 入庫経路は、第1接点31から第2接点32まで共有円30に沿って曲がりながら駐車スペース20に接近する方向に自車両Vを移動させ(図15(4))、第2接点32から駐車方位26に沿って真っ直ぐに駐車スペース20に接近する方向に移動させて、自車両Vの位置Voを目標駐車位置P1に配置し、かつ、自車両Vの車両方位Vfを駐車スペース20の駐車方位26に沿う位置に配置する経路を有する(図15(5))。 The warehousing path moves the host vehicle V in a direction approaching the parking space 20 while turning along the shared circle 30 from the first contact point 31 to the second contact point 32 (FIG. 15 (4)), and parks from the second contact point 32. The vehicle is moved straight in the direction of approaching the parking space 20 along the direction 26, the position Vo of the host vehicle V is arranged at the target parking position P1, and the vehicle direction Vf of the host vehicle V is set to the parking direction of the parking space 20. 26 (FIG. 15 (5)).
 共有円30は、自車両Vの車両方位Vfに沿って真っ直ぐに駐車スペース20から離間する方向に自車両Vを仮想的に移動させて、自車両Vの位置Voが駐車スペース20の駐車方位26を越えた位置から自車両Vの移動に応じて逐次的に算出される。共有円30は、図16(1)から図16(3)に示すように、車両方位Vf上を自車両Vが移動するに応じて漸次径が大きくなる。 The shared circle 30 virtually moves the host vehicle V in a direction away from the parking space 20 along the vehicle direction Vf of the host vehicle V, and the position Vo of the host vehicle V is the parking direction 26 of the parking space 20. Is sequentially calculated according to the movement of the host vehicle V from a position exceeding the threshold. As shown in FIGS. 16 (1) to 16 (3), the shared circle 30 gradually increases in diameter as the host vehicle V moves on the vehicle direction Vf.
 図17は、共有円の算出方法を説明する図である。
 第1の位置ずれ直し経路演算部は、下記の2つの条件(A)、(B)の両方を満たす共有円30を算出する。
FIG. 17 is a diagram illustrating a method for calculating a shared circle.
The first repositioning path calculation unit calculates a shared circle 30 that satisfies both of the following two conditions (A) and (B).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 第1接点31の座標をV(Xv、Yv、θv)、目標駐車位置P1の座標をP(Xp、Yp、θp)、自車両Vの車両方位Vfと駐車スペース20の駐車方位26との挟み角をθvpとする。Rminは、自車両Vの最小回転半径である。 The coordinates of the first contact point 31 are V (Xv, Yv, θv), the coordinates of the target parking position P1 are P (Xp, Yp, θp), and the vehicle orientation Vf of the host vehicle V and the parking orientation 26 of the parking space 20 are sandwiched Let the angle be θvp. Rmin is the minimum turning radius of the host vehicle V.
 図18は、駐車NG条件を説明する図である。
 共有円30が、下記の3つの駐車NG条件の少なくとも一つに該当する場合、かかる共有円30を用いた経路では、自車両Vを駐車スペース20に位置ずれなく駐車することはできない。
FIG. 18 is a diagram for explaining parking NG conditions.
When the shared circle 30 corresponds to at least one of the following three parking NG conditions, the host vehicle V cannot be parked in the parking space 20 without misalignment on the route using the shared circle 30.
(1)共有円30が自車両Vの駐車位置前方で第2接点32を持てない場合、すなわち、第2接点32が自車両Vよりも出庫側にない場合。
(2)共有円30に沿って自車両を入庫する方向に移動させると内輪差で自車両Vが障害物23に衝突する場合。
(3)共有円30の半径が自車両Vの最小旋回半径よりも小さい場合
(1) When the shared circle 30 cannot have the second contact 32 in front of the parking position of the host vehicle V, that is, when the second contact 32 is not closer to the exit side than the host vehicle V.
(2) A case where the host vehicle V collides with the obstacle 23 due to an inner ring difference when the host vehicle is moved along the shared circle 30 in the direction in which the host vehicle is moved.
(3) When the radius of the shared circle 30 is smaller than the minimum turning radius of the host vehicle V
 第1の位置ずれ直し経路演算部は、上記の3つの駐車NG条件のいずれにも該当しない共有円30を用いて出庫経路と入庫経路を設定する。具体的には、自車両Vの駐車位置から第1接点31までの直線部分を出庫経路として設定し、共有円30の第1接点31と第2接点32との間の円弧部分と、第2接点32から目標駐車位置P1までの直線部分33をつなぎ合わせた経路を入庫経路として設定する。 The first repositioning route calculation unit sets the delivery route and the entry route using the shared circle 30 that does not correspond to any of the above three parking NG conditions. Specifically, a straight line portion from the parking position of the host vehicle V to the first contact 31 is set as a delivery route, an arc portion between the first contact 31 and the second contact 32 of the shared circle 30, A route obtained by connecting the straight portions 33 from the contact point 32 to the target parking position P1 is set as the warehousing route.
 第1の位置ずれ直し経路は、自車両Vの駐車位置から第1接点31まで車両方位Vfに沿って真っ直ぐ進む。そして、第1接点31から第2接点32に向かって共有円30の半径Rで左に旋回しながら進み、第2接点32から目標駐車位置P1に向かって駐車方位26に沿ってまっすぐ進む。したがって、第1の位置ずれ直し経路に沿って自車両Vを誘導することによって、自車両Vを位置ずれがない状態で駐車スペース20内に配置することができる。 The first repositioning path proceeds straight along the vehicle direction Vf from the parking position of the host vehicle V to the first contact 31. Then, the vehicle proceeds while turning leftward from the first contact 31 toward the second contact 32 at the radius R of the common circle 30, and proceeds straight along the parking direction 26 from the second contact 32 toward the target parking position P1. Therefore, by guiding the host vehicle V along the first repositioning route, the host vehicle V can be arranged in the parking space 20 without any position shift.
<第2の位置ずれ直し経路演算部>
 図19は、第2の位置ずれ直し経路によって行われる位置ずれ直しの動作を説明する図、図20は、第2の位置ずれ直し経路を演算する方法を説明するフローチャートである。
<Second misalignment path calculation unit>
FIG. 19 is a diagram for explaining the operation of repositioning performed by the second repositioning path, and FIG. 20 is a flowchart for explaining a method for calculating the second repositioning path.
 第2の位置ずれ直し経路演算部は、図19(3)に示すように、自車両Vの駐車位置から通路21上の位置まで左右両側に曲がりながら移動する出庫経路40と、図19(4)に示すように、出庫経路40により移動した通路21上の位置から駐車スペース20に向かって真っ直ぐ移動する入庫経路41とを演算し、出庫経路40と入庫経路41とを繋いで第2の位置ずれ直し経路を演算する。 As shown in FIG. 19 (3), the second realignment route calculation unit includes an exit route 40 that moves while turning left and right from the parking position of the host vehicle V to a position on the passage 21, and FIG. 19 (4). ), The second position is calculated by calculating the warehousing route 41 moving straight from the position on the passage 21 moved by the warehousing route 40 toward the parking space 20, and connecting the warehousing route 40 and the warehousing route 41. Calculate the shift path.
 第2の位置ずれ直し経路演算部は、中間目標位置P2を算出し(S121)、自車両Vの駐車位置と中間目標位置P2との間を接続するS字状の経路を演算する(S122)。そして、かかるS字状の経路に沿って自車両Vが移動可能か否かを判断し(S123)、移動可能と判断された場合に、中間目標位置P2からの入庫方向への後退量を算出し(S124)、自車両Vを中間目標位置P2から後退量だけ真っ直ぐに後退させる経路を演算する(S125)。 The second misalignment path calculation unit calculates the intermediate target position P2 (S121), and calculates an S-shaped path connecting the parking position of the host vehicle V and the intermediate target position P2 (S122). . Then, it is determined whether or not the host vehicle V can move along the S-shaped route (S123), and when it is determined that the vehicle can move, the reverse amount in the warehousing direction from the intermediate target position P2 is calculated. Then (S124), a route for causing the host vehicle V to recede straightly from the intermediate target position P2 by the receding amount is calculated (S125).
 ステップS121では、目標駐車位置P1から駐車スペース20の駐車方位26に沿って離れた位置に中間目標位置P2を設定する。中間目標位置P2は、通路21の通路幅W1に基づいて設定され、通路幅W1が広い場合には、駐車スペース20から所定の距離範囲内に設定位置が限定される。中間目標位置P2は、例えば図19(2)に示すように、駐車スペース20正面の障害物22から所定距離W2だけ離れた位置に設定される。所定距離W2は、自車両Vの車長からリヤオーバハングを除いた長さであり、自車両Vを実際に配置した場合に、図19(3)に示すように、自車両Vと障害物22との間に誤差余裕分を考慮した隙間を形成できるように設定されている。 In step S121, the intermediate target position P2 is set at a position away from the target parking position P1 along the parking direction 26 of the parking space 20. The intermediate target position P2 is set based on the passage width W1 of the passage 21, and when the passage width W1 is wide, the set position is limited within a predetermined distance range from the parking space 20. For example, as shown in FIG. 19B, the intermediate target position P2 is set at a position away from the obstacle 22 in front of the parking space 20 by a predetermined distance W2. The predetermined distance W2 is a length obtained by removing the rear overhang from the vehicle length of the host vehicle V, and when the host vehicle V is actually arranged, as shown in FIG. Is set so that a gap can be formed in consideration of an error margin.
 ステップS122では、自車両Vの駐車位置と中間目標位置P2との間に、互いに同一の半径で単一の接点を有し、一方が自車両Vの駐車位置を通過し、他方が中間目標位置P2を通過する一対の共通円を演算する。そして、一方の共通円に沿って駐車位置から単一の接点までを繋ぐ円弧と、他方の共通円に沿って単一の接点から中間目標位置P2までを繋ぐ円弧とを組み合わせて、S字状の経路を生成する。S字状の経路の演算には、上述の到達可能経路演算部13において到達可能経路を設定する際に使用したS字状の経路を生成する方法(図8のS116)を用いることができる。 In step S122, there is a single contact with the same radius between the parking position of the host vehicle V and the intermediate target position P2, one of which passes the parking position of the host vehicle V, and the other is the intermediate target position. A pair of common circles passing through P2 is calculated. Then, an arc connecting the parking position to a single contact point along one common circle and an arc connecting the single contact point to the intermediate target position P2 along the other common circle are combined to form an S-shape. Generate a route for. For the calculation of the S-shaped route, a method (S116 in FIG. 8) for generating the S-shaped route used when setting the reachable route in the above-described reachable route calculation unit 13 can be used.
 ステップS123では、下記の2つの条件を備えることによって移動可能と判断される。
(1)S字状の経路に沿って自車両Vを移動させた場合に自車両Vが障害物23、24に接触しないこと
(2)一対の共通円の半径Rが自車両Vの最小回転半径以上であること
In step S123, it is determined that movement is possible by providing the following two conditions.
(1) When the host vehicle V is moved along an S-shaped route, the host vehicle V does not contact the obstacles 23 and 24. (2) The radius R of the pair of common circles is the minimum rotation of the host vehicle V. Be greater than radius
 上記2つの条件のいずれかを満たさない場合には、自車両Vが移動不可であり、第2の位置ずれ直し経路を設定することができないとして、本ルーチンを終了する。 If either of the above two conditions is not satisfied, the host vehicle V cannot move, and the second repositioning path cannot be set, and this routine is terminated.
 ステップS124では、中間目標位置P2と目標駐車位置P1との離間距離を後退量として算出する。ステップS125では、自車両Vを後退量だけ真っ直ぐに後退させる経路を演算する。自車両Vは、曲がりながら後退するよりも真っ直ぐ後退する方が位置ずれの発生が抑制され、精度よく駐車位置に配置することができる。 In step S124, the separation distance between the intermediate target position P2 and the target parking position P1 is calculated as the reverse amount. In step S125, a route for causing the host vehicle V to recede straightly by the receding amount is calculated. The own vehicle V can be placed in the parking position with high accuracy by suppressing the occurrence of displacement when the vehicle V recedes straight rather than receding.
 第2の位置ずれ直し経路は、自車両Vの駐車位置から中間目標位置P2までS字転舵で進み(図19(3))、中間目標位置P2から目標駐車位置P1まで真っ直ぐ進む経路(図19(4))を有する。したがって、第2の位置ずれ直し経路に沿って自車両Vを誘導することによって、自車両Vを位置ずれがない状態で駐車スペース20に配置することができる。 The second repositioning path proceeds by S-shaped steering from the parking position of the host vehicle V to the intermediate target position P2 (FIG. 19 (3)), and proceeds straight from the intermediate target position P2 to the target parking position P1 (FIG. 19). 19 (4)). Therefore, by guiding the host vehicle V along the second repositioning route, the host vehicle V can be arranged in the parking space 20 without any position shift.
 図21は、ずれ直し経路の選択方法を説明するフローチャートである。
 位置ずれ直し経路演算部16は、まず、第1の位置ずれ直し経路演算部によって第1の位置ずれ直し経路の演算を行う(S201)。そして、演算された第1の位置ずれ直し経路によって位置ずれ直しが可能か否かを判断する(S202)。上述の3つの駐車NG条件のいずれにも該当しない場合には、第1の位置ずれ直し経路によって位置ずれ直しが可能と判断する(S203でYES)。そして、第1の位置ずれ直し経路を位置ずれ直し経路として選択する処理を行う。
FIG. 21 is a flowchart for explaining a method for selecting a deviation correction path.
First, the realignment path calculation unit 16 calculates the first realignment path by the first realignment path calculation unit (S201). Then, it is determined whether or not the position shift can be corrected by the calculated first position shift path (S202). If none of the above-mentioned three parking NG conditions is satisfied, it is determined that the position can be corrected again by the first position correcting path (YES in S203). Then, a process of selecting the first repositioning path as the repositioning path is performed.
 一方、上述の3つの駐車NG条件の少なくとも一つに該当し、第1の位置ずれ直し経路による位置ずれ直しが不可能であると判断した場合には(S203でNO)、第2の位置ずれ直し経路演算部によって第2の位置ずれ直し経路の演算を行う(S203)。そして、上述の2つの条件のいずれにも該当しない場合には、第2の位置ずれ直し経路によって位置ずれ直しが可能と判断する。そして、第2の位置ずれ直し経路を位置ずれ直し経路として選択する処理を行う。 On the other hand, when it corresponds to at least one of the above-mentioned three parking NG conditions and it is determined that the repositioning by the first repositioning route is impossible (NO in S203), the second position displacement The second correction route calculation is performed by the correction route calculation unit (S203). If neither of the above two conditions is satisfied, it is determined that the position can be repositioned by the second position realignment path. Then, a process of selecting the second position shift path as the position shift path is performed.
 上記した選択方法によれば、第1の位置ずれ直し経路と第2の位置ずれ直し経路の両方とも位置ずれ直しが可能な場合には、第1の位置ずれ直し経路が選択される。第1の位置ずれ直し経路は、片側転舵なのでS字転舵と比較して自車両Vの操作量が少なく、移動誤差も少ない。したがって、位置ずれ直し動作に必要な時間を短くすることができ、短時間で位置ずれ直しをすることができ、駐車精度を高くすることができる。 According to the selection method described above, when both the first repositioning path and the second repositioning path can be repositioned, the first repositioning path is selected. Since the first repositioning path is one-side turning, the amount of operation of the host vehicle V is small and the movement error is small compared to S-shaped turning. Therefore, the time required for the repositioning operation can be shortened, the repositioning can be performed in a short time, and the parking accuracy can be increased.
 上述の駐車支援装置1は、自車両Vを駐車経路に沿って誘導して駐車させた結果、駐車位置の位置ずれがあるか否かを判定し、位置ずれがあると判定された場合に、位置ずれを直す位置ずれ直し経路を演算する。自車両Vは、位置ずれ直し経路に沿って移動することによって位置ずれを直すことができ、自車両Vの位置Voと駐車スペース20の目標駐車位置P1との間の離間距離δを所定値未満とし、かつ、自車両Vの車両方位Vfと駐車スペース20の駐車方位26との間の角度θを所定値未満とすることができる。駐車支援装置1は、駐車スペース20内、あるいは駐車スペース20近傍で自車両Vの位置や向きがずれて駐車された自車両Vを、正しい位置や向きに駐車し直すための支援を行うことができる。 The parking assist device 1 described above determines whether or not there is a displacement of the parking position as a result of guiding the host vehicle V along the parking route and parking the vehicle, and if it is determined that there is a displacement, Correcting the positional shift The position correcting path is calculated. The host vehicle V can correct the position shift by moving along the position shift correction path, and the separation distance δ between the position Vo of the host vehicle V and the target parking position P1 of the parking space 20 is less than a predetermined value. In addition, the angle θ between the vehicle orientation Vf of the host vehicle V and the parking orientation 26 of the parking space 20 can be made less than a predetermined value. The parking assist device 1 can perform support for re-parking the own vehicle V parked in the parking space 20 or in the vicinity of the parking space 20 with the position and orientation of the own vehicle V being shifted in the correct position and orientation. it can.
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention described in the claims. Is something that can be done. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1 駐車支援装置
11 出庫経路演算部
12 接続候補位置設定部
13 到達可能経路演算部
14 駐車経路設定部
15 位置ずれ判定部
16 位置ずれ直し経路演算部
17 経路表示部
20 駐車スペース
21 通路
22、23、24 障害物
25 通路方位
26 駐車方位
V 自車両
Vo 基準点(自車両の位置)
P0 初期位置
P1 目標駐車位置
P2 中間目標位置
D 接続候補位置
E パークアウト位置
DESCRIPTION OF SYMBOLS 1 Parking assistance apparatus 11 Exit route calculating part 12 Connection candidate position setting part 13 Reachable route calculating part 14 Parking route setting part 15 Position shift | offset | difference determination part 16 Position shift corrective path | route calculating part 17 24 Obstacle 25 Passage direction 26 Parking direction V Own vehicle Vo Reference point (position of own vehicle)
P0 Initial position P1 Target parking position P2 Intermediate target position D Connection candidate position E Park-out position

Claims (8)

  1.  通路の側方に設けられた駐車スペースへの自車両の駐車を支援する駐車支援装置であって、
     前記通路上の前記自車両の初期位置から前記駐車スペースの目標駐車位置までの駐車経路を設定する駐車経路設定部と、
     該駐車経路に基づいて駐車が行われた場合に、前記自車両と前記駐車スペースとの間に位置ずれがあるか否かを判定する位置ずれ判定部と、
     前記位置ずれがあると判定された場合に、前記自車両を前記駐車スペースから前記通路に移動させ、前記通路から前記駐車スペースの目標駐車位置に向かって移動させて前記位置ずれを直す位置ずれ直し経路を演算する位置ずれ直し経路演算部と、
     を有することを特徴とする駐車支援装置。
    A parking assistance device for assisting parking of the vehicle in a parking space provided on the side of a passage,
    A parking route setting unit for setting a parking route from an initial position of the host vehicle on the passage to a target parking position of the parking space;
    A misalignment determination unit that determines whether there is a misalignment between the host vehicle and the parking space when parking is performed based on the parking route;
    When it is determined that there is a displacement, the vehicle is moved from the parking space to the passage, and moved from the passage toward the target parking position of the parking space to correct the displacement. A repositioning path calculating unit for calculating a path;
    A parking assistance device comprising:
  2.  前記位置ずれ判定部は、前記自車両の駐車位置と前記駐車スペースの目標駐車位置との間の距離が所定値以上の場合、及び、前記自車両の車両方位と前記駐車スペースの駐車方位との間の角度が所定値以上の場合の少なくとも一方であるときに、前記位置ずれがあると判定することを特徴とする請求項1に記載の駐車支援装置。 The positional deviation determination unit is configured to determine whether the distance between the parking position of the host vehicle and the target parking position of the parking space is a predetermined value or more, and the vehicle direction of the host vehicle and the parking direction of the parking space. The parking assistance device according to claim 1, wherein when there is at least one of the cases where the angle between the two is greater than or equal to a predetermined value, it is determined that the positional deviation is present.
  3.  前記位置ずれ直し経路演算部は、
     前記自車両の駐車位置から前記通路上の位置まで真っ直ぐ移動する出庫経路と、前記通路上の位置から前記駐車スペースに向かって片側に曲がりながら移動する入庫経路と、を演算し、前記出庫経路と前記入庫経路とを繋いで第1の位置ずれ直し経路を演算する第1の位置ずれ直し経路演算部と、
     前記自車両の駐車位置から前記通路上の位置まで左右両側に曲がりながら移動する出庫経路と、該出庫経路により移動した前記通路上の位置から前記駐車スペースに向かって真っ直ぐ移動する入庫経路と、を演算し、前記出庫経路と前記入庫経路とを繋いで第2の位置ずれ直し経路を演算する第2の位置ずれ直し経路演算部の少なくとも一方を有することを特徴とする請求項2に記載の駐車支援装置。
    The repositioning path calculating unit is
    Calculating an exit route that moves straight from the parking position of the host vehicle to a position on the passage, and an entry route that moves while turning to one side from the position on the passage toward the parking space, and the exit route; A first repositioning path calculating unit that connects the warehousing path and calculates a first repositioning path;
    An exit route that moves while turning left and right from the parking position of the host vehicle to a position on the passage, and an entry route that moves straight from the position on the passage moved by the exit route toward the parking space. The parking according to claim 2, further comprising at least one of a second repositioning path calculation unit that calculates and calculates a second repositioning path by connecting the delivery route and the warehousing route. Support device.
  4.  前記第1の位置ずれ直し経路演算部は、
     前記自車両の車両方位と前記駐車スペースの駐車方位の両方を接線とする共有円を演算し、
     前記自車両の車両方位に沿って前記自車両の駐車位置から前記自車両の車両方位と前記共有円とが接する第1接点までを直線で繋いだ経路を前記出庫経路として演算し、
     前記共有円に沿って前記第1接点から前記駐車スペースの駐車方位と前記共有円とが接する第2接点までを円弧で繋ぐ経路と前記駐車スペースの駐車方位に沿って前記第2接点から前記目標駐車位置まで直線で繋いだ経路とを前記入庫経路として演算することを特徴とする請求項3に記載の駐車支援装置。
    The first misalignment path calculation unit includes:
    Calculate a shared circle that has both the vehicle direction of the host vehicle and the parking direction of the parking space as tangents,
    A route connecting a straight line from the parking position of the host vehicle to the first contact point where the vehicle direction of the host vehicle and the shared circle contact along the vehicle direction of the host vehicle is calculated as the delivery route,
    A path connecting with a circular arc from the first contact point along the shared circle to a second contact point where the parking direction of the parking space and the shared circle contact each other, and the target from the second contact point along the parking direction of the parking space The parking support apparatus according to claim 3, wherein a route connected in a straight line to a parking position is calculated as the warehousing route.
  5.  前記第1の位置ずれ直し経路演算部は、
     前記第2接点が前記目標駐車位置よりも出庫側に位置すること、及び、前記共有円に沿って前記自車両を移動させた場合に前記自車両が障害物に接触しないこと、及び、前記共有円が前記自車両の最小回転半径以上の半径を有することの3つの演算条件を全て満たす場合に、前記第1の位置ずれ直し経路を演算することを特徴とする請求項4に記載の駐車支援装置。
    The first misalignment path calculation unit includes:
    The second contact point is located on the exit side with respect to the target parking position, and the own vehicle does not contact an obstacle when the own vehicle is moved along the shared circle, and the sharing The parking assistance according to claim 4, wherein the first repositioning path is calculated when all three calculation conditions that a circle has a radius equal to or greater than a minimum turning radius of the host vehicle are satisfied. apparatus.
  6.  前記第2の位置ずれ直し経路演算部は、
     前記通路の通路幅に基づいて前記目標駐車位置から前記駐車スペースの駐車方位に沿って離れた前記通路上の位置に中間目標位置を設定し、
     互いに同一の半径で単一の接点を有し、一方が前記自車両の駐車位置を通過し、他方が前記中間目標位置を通過する一対の共通円を演算し、前記一方の共通円に沿って前記目標駐車位置から前記単一の接点までを円弧で繋ぐ経路と、前記他方の共通円に沿って前記単一の接点から前記中間目標位置までを円弧で繋ぐ経路とを前記出庫経路として演算し、
     前記駐車方位に沿って前記中間目標位置から前記目標駐車位置までを直線で繋いだ経路を前記入庫経路として演算することを特徴とする請求項3に記載の駐車支援装置。
    The second misalignment path calculation unit includes:
    An intermediate target position is set at a position on the passage away from the target parking position along the parking direction of the parking space based on the passage width of the passage,
    A pair of common circles having a single contact with the same radius and one passing through the parking position of the host vehicle and the other passing through the intermediate target position are calculated, and along the one common circle A route connecting the target parking position to the single contact point with an arc and a route connecting the single contact point to the intermediate target position with an arc along the other common circle are calculated as the delivery route. ,
    The parking assist device according to claim 3, wherein a route connecting the intermediate target position and the target parking position along the parking direction with a straight line is calculated as the warehousing route.
  7.  前記第2の位置ずれ直し経路演算部は、
     前記一対の共有円に沿って前記自車両を移動させた場合に前記自車両が障害物に接触しないこと、及び、前記一対の共通円が前記自車両の最小回転半径以上の半径を有するという条件を満たす場合に、前記第2の位置ずれ直し経路を演算することを特徴とする請求項6に記載の駐車支援装置。
    The second misalignment path calculation unit includes:
    A condition that when the host vehicle is moved along the pair of shared circles, the host vehicle does not contact an obstacle, and the pair of common circles have a radius equal to or greater than a minimum turning radius of the host vehicle. The parking assistance device according to claim 6, wherein when the condition is satisfied, the second repositioning route is calculated.
  8.  前記ずれ直し経路演算部は、前記第1の位置ずれ直し経路演算部によって前記第1の位置ずれ直し経路の演算ができない場合に、前記第2の位置ずれ直し経路演算部による前記第2の位置ずれ直し経路の演算を行うことを特徴とする請求項3に記載の駐車支援装置。 When the first position correction path calculation unit cannot calculate the first position correction path, the second position correction path calculation unit performs the second position correction by the second position correction path calculation unit. The parking assist device according to claim 3, wherein a re-shift route is calculated.
PCT/JP2018/014291 2017-04-07 2018-04-03 Parking assistance device WO2018186407A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/603,537 US11249486B2 (en) 2017-04-07 2018-04-03 Parking assistance device
EP18780697.1A EP3608204B1 (en) 2017-04-07 2018-04-03 Parking assistance device
CN201880023789.9A CN110494345B (en) 2017-04-07 2018-04-03 Parking assist apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-077171 2017-04-07
JP2017077171A JP6793085B2 (en) 2017-04-07 2017-04-07 Parking support device

Publications (1)

Publication Number Publication Date
WO2018186407A1 true WO2018186407A1 (en) 2018-10-11

Family

ID=63712259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014291 WO2018186407A1 (en) 2017-04-07 2018-04-03 Parking assistance device

Country Status (5)

Country Link
US (1) US11249486B2 (en)
EP (1) EP3608204B1 (en)
JP (1) JP6793085B2 (en)
CN (1) CN110494345B (en)
WO (1) WO2018186407A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838244A (en) * 2019-10-17 2020-02-25 惠州市德赛西威智能交通技术研究院有限公司 Parking space course adjusting method suitable for ultrasonic vertical parking space
CN111413969A (en) * 2020-03-18 2020-07-14 东软睿驰汽车技术(沈阳)有限公司 Reversing control method and device, electronic equipment and storage medium
US11370453B2 (en) * 2018-12-28 2022-06-28 Nissan Motor Co., Ltd. Driving assistance method and driving assistance device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123876A1 (en) * 2016-01-14 2017-07-20 Continental Automotive Systems, Inc. Trailer towing assistant for tight spot reversal
JP7218172B2 (en) * 2018-12-25 2023-02-06 フォルシアクラリオン・エレクトロニクス株式会社 In-vehicle processing device and control method for in-vehicle processing device
JP7123844B2 (en) * 2019-03-29 2022-08-23 本田技研工業株式会社 Parking lot management device, parking lot management method, and program
DE102019206210A1 (en) * 2019-04-30 2020-11-05 Ford Global Technologies, Llc Method for operating a motor vehicle with a self-parking function
JP7219815B2 (en) * 2019-06-21 2023-02-08 日立Astemo株式会社 parking assist device
JP7453850B2 (en) 2020-05-26 2024-03-21 フォルシアクラリオン・エレクトロニクス株式会社 Parking support device and parking support method
CN112365743B (en) * 2020-10-12 2021-11-09 中国民用航空总局第二研究所 Method and device for correcting flight path positioning data offset of aircraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184649A (en) * 2008-02-11 2009-08-20 Aisin Aw Co Ltd Parking support device, parking support method and computer program
JP2010208392A (en) 2009-03-09 2010-09-24 Nissan Motor Co Ltd Parking support device and parking support method
JP2012232608A (en) * 2011-04-28 2012-11-29 Daihatsu Motor Co Ltd Target trajectory calculating device
JP2014189097A (en) * 2013-03-26 2014-10-06 Honda Motor Co Ltd Parking support device
JP2014227021A (en) * 2013-05-22 2014-12-08 クラリオン株式会社 Parking support device
JP2016084029A (en) * 2014-10-27 2016-05-19 本田技研工業株式会社 Parking support apparatus
JP2017030567A (en) * 2015-07-31 2017-02-09 アイシン精機株式会社 Parking support device, method and program

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009745A1 (en) * 2007-02-28 2008-09-04 Continental Automotive Gmbh Method for controlling vehicle steering during parking process, involves measuring parking place selected for parking vehicle and establishing orientation field, where orientation field determines number of support points
JP5182545B2 (en) * 2007-05-16 2013-04-17 アイシン精機株式会社 Parking assistance device
JP2010143465A (en) * 2008-12-19 2010-07-01 Toyota Industries Corp Parking assisting device
EP2340980B1 (en) * 2009-12-30 2012-05-30 Magneti Marelli S.p.A. Parking assistant system
DE102010023162A1 (en) * 2010-06-09 2011-12-15 Valeo Schalter Und Sensoren Gmbh A method for assisting a driver of a motor vehicle when parking in a parking space, Fahrerassistzeinrichtung and motor vehicle
JP5516992B2 (en) 2010-11-30 2014-06-11 アイシン精機株式会社 Parking position adjustment device
JP5626280B2 (en) 2012-07-18 2014-11-19 タイガー魔法瓶株式会社 Electric kettle
CN102874252B (en) * 2012-08-30 2015-12-09 江苏大学 Auxiliary trajectory planning and modification method and the system of parking
JP6094266B2 (en) * 2013-02-28 2017-03-15 アイシン精機株式会社 Parking assistance device, parking assistance method and program
US9102330B2 (en) * 2013-07-31 2015-08-11 Here Global B.V. Method and apparatus for causing an adjustment in parking position for vehicles
JP6303377B2 (en) 2013-10-04 2018-04-04 アイシン精機株式会社 Parking assistance device
KR101477232B1 (en) * 2013-11-29 2014-12-29 현대모비스 주식회사 Apparatus and method for controlling head-in parking of vehicle, and system for head-in parking of vehicle with the said apparatus
JP6129800B2 (en) * 2014-09-12 2017-05-17 アイシン精機株式会社 Parking assistance device
DE102014221751A1 (en) * 2014-10-27 2016-04-28 Robert Bosch Gmbh Method and device for driving a vehicle in a parking lot
JP2016213551A (en) * 2015-04-30 2016-12-15 富士通テン株式会社 Drive assist system and drive assist method
JP2017030549A (en) * 2015-07-31 2017-02-09 アイシン精機株式会社 Parking support device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184649A (en) * 2008-02-11 2009-08-20 Aisin Aw Co Ltd Parking support device, parking support method and computer program
JP2010208392A (en) 2009-03-09 2010-09-24 Nissan Motor Co Ltd Parking support device and parking support method
JP2012232608A (en) * 2011-04-28 2012-11-29 Daihatsu Motor Co Ltd Target trajectory calculating device
JP2014189097A (en) * 2013-03-26 2014-10-06 Honda Motor Co Ltd Parking support device
JP2014227021A (en) * 2013-05-22 2014-12-08 クラリオン株式会社 Parking support device
JP2016084029A (en) * 2014-10-27 2016-05-19 本田技研工業株式会社 Parking support apparatus
JP2017030567A (en) * 2015-07-31 2017-02-09 アイシン精機株式会社 Parking support device, method and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608204A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370453B2 (en) * 2018-12-28 2022-06-28 Nissan Motor Co., Ltd. Driving assistance method and driving assistance device
CN110838244A (en) * 2019-10-17 2020-02-25 惠州市德赛西威智能交通技术研究院有限公司 Parking space course adjusting method suitable for ultrasonic vertical parking space
CN110838244B (en) * 2019-10-17 2021-02-02 惠州市德赛西威智能交通技术研究院有限公司 Ultrasonic-based vertical parking space course adjusting method
CN111413969A (en) * 2020-03-18 2020-07-14 东软睿驰汽车技术(沈阳)有限公司 Reversing control method and device, electronic equipment and storage medium
CN111413969B (en) * 2020-03-18 2023-07-28 东软睿驰汽车技术(沈阳)有限公司 Reversing control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP6793085B2 (en) 2020-12-02
CN110494345B (en) 2022-03-29
EP3608204B1 (en) 2023-05-31
CN110494345A (en) 2019-11-22
EP3608204A4 (en) 2020-12-23
EP3608204A1 (en) 2020-02-12
US20200081446A1 (en) 2020-03-12
JP2018176911A (en) 2018-11-15
US11249486B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2018186407A1 (en) Parking assistance device
WO2018186252A1 (en) Parking assistance device
WO2018186406A1 (en) Parking assistance device
CN110214097B (en) Parking assist apparatus
CN111148665B (en) Parking assist apparatus
CN109311443B (en) Parking assist apparatus
CN111071247B (en) Automatic driving control device and automatic driving path calculation method
WO2018186253A1 (en) Parking assistance device
JP7203826B2 (en) parking assist device
JP6751191B2 (en) Parking assistance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018780697

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018780697

Country of ref document: EP

Effective date: 20191107