WO2018186126A1 - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
WO2018186126A1
WO2018186126A1 PCT/JP2018/009842 JP2018009842W WO2018186126A1 WO 2018186126 A1 WO2018186126 A1 WO 2018186126A1 JP 2018009842 W JP2018009842 W JP 2018009842W WO 2018186126 A1 WO2018186126 A1 WO 2018186126A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
vehicle
blown
evaporator
air conditioner
Prior art date
Application number
PCT/JP2018/009842
Other languages
French (fr)
Japanese (ja)
Inventor
角 省吾
川田 洋
牧野 正
野口 純弘
直記 小川
靖人 福岡
犬塚 正人
足立 太
Original Assignee
株式会社デンソー
ダイハツ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017225833A external-priority patent/JP7025824B2/en
Application filed by 株式会社デンソー, ダイハツ工業株式会社 filed Critical 株式会社デンソー
Priority to MYPI2019005357A priority Critical patent/MY196683A/en
Publication of WO2018186126A1 publication Critical patent/WO2018186126A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present disclosure relates to a vehicle air conditioner that is disposed on a ceiling of a vehicle and used for air conditioning in a vehicle interior.
  • a vehicle air conditioner for air-conditioning a vehicle interior one installed on a ceiling portion of the vehicle interior is known.
  • a vehicle air conditioner disposed on the ceiling it is desired that the entire device be configured compactly in order to secure a passenger's living space as wide as possible under limited conditions such as vehicle size. .
  • Patent Documents 1 and 2 are known as techniques relating to such a vehicle air conditioner.
  • the vehicle air conditioner described in Patent Document 1 is configured by accommodating a heat exchanger and a blower in an air conditioning casing disposed on the ceiling of the vehicle, and heats the air blown by the blower. The temperature is adjusted by heat exchange in the exchanger and supplied from the ceiling to the passenger compartment.
  • the air conditioner for a vehicle described in Patent Document 2 has a blower and a heat exchanger inside the casing of the air blown by the blower, and heat is generated when the blown air passes through the heat exchanger.
  • the temperature of the air is adjusted by replacement, and the temperature-adjusted air is supplied to the vehicle interior.
  • the vehicle air conditioner described in Patent Document 2 is configured such that air flows in accordance with the ventilation gap formed so as to bend substantially at right angles inside the heat exchanger, and thus passes through the heat exchanger. Ventilation pressure loss when doing so will increase. Therefore, even if it is a structure like patent document 2, the part in which air stagnates will arise inside a heat exchanger, and it is possible that the original heat exchange performance of a heat exchanger cannot be exhibited effectively.
  • the present disclosure has been made in view of these points, and relates to a vehicle air conditioner disposed on a ceiling portion of a vehicle, and it is possible to suppress stagnation of blown air inside a heat exchanger while realizing downsizing of the entire device.
  • An object of the present invention is to provide a vehicle air conditioner.
  • the vehicle air conditioner includes:
  • the air conditioning case placed on the ceiling of the vehicle compartment has multiple tubes that are lined up at intervals in the vehicle longitudinal direction and the vehicle vertical direction and through which the heat exchange medium flows.
  • a heat exchanger, an air-conditioning case that is disposed on one side in the vehicle front-rear direction with respect to the heat exchanger, and a blower opening that blows air that passes through the heat exchanger The first inflow part into which the blown air that has passed between the tubes in the heat exchanger flows, and the vertical direction of the vehicle with respect to the heat exchanger are arranged in a position facing the blower opening via The second inflow part into which the blown air that has passed between the tubes in the heat exchanger flows, and the blowout port from which the blown air that has flowed into the first inflow part and the second inflow part is blown out from the inside of the air conditioning case into the vehicle interior. And having.
  • the blown air supplied from the blower opening and the heat exchange medium are heat-exchanged to blow the temperature-adjusted air. It can be supplied to the passenger compartment from the exit.
  • the heat exchanger is configured by arranging a plurality of tubes at intervals in the vehicle longitudinal direction and the vehicle vertical direction.
  • the said vehicle air conditioner has the 1st inflow part arrange
  • the vehicle air conditioner when the ventilation air from a ventilation opening passes a heat exchanger, the flow of the ventilation air which goes to a 1st inflow part from a ventilation opening, and a 2nd inflow part from a ventilation opening.
  • the flow of blast air toward That is, according to the vehicle air conditioner, it is possible to ensure a degree of freedom in the vehicle front-rear direction and the vehicle vertical direction with respect to the flow of the blown air in the heat exchanger.
  • the vehicle air conditioner can eliminate the stagnation of the blown air in the heat exchanger while improving the heat exchange performance of the heat exchanger while realizing a compact configuration for placement on the vehicle ceiling. Can be made.
  • FIG. 5 is a cross-sectional view showing a VV cross section in FIG. 1. It is a top sectional view showing the blast air flow inside the vehicle air conditioner when there is no second inflow part. It is a plane sectional view showing the flow of blowing air inside the air-conditioner for vehicles concerning this embodiment. It is a vertical sectional view showing the blown air flow in the first air passage.
  • the vehicle air conditioner 1 As shown in FIGS. 1 and 2, the vehicle air conditioner 1 according to the present embodiment is arranged on the ceiling portion R of the vehicle compartment I in order to make the vehicle cabin I of the vehicle C into a comfortable air conditioning environment.
  • the air conditioner case 10 is configured to accommodate the blower 20, the evaporator 50, and the like.
  • a suction port 16 and an air outlet 45 are disposed, and communicate with the interior of the passenger compartment I, respectively. Therefore, the air conditioner 1 for the vehicle sucks the air in the passenger compartment I from the suction port 16 into the air conditioning case 10 by the operation of the blower 20, and the blower outlet 45 as the blown air F whose temperature is adjusted by the evaporator 50. To the passenger compartment I.
  • the vehicle air conditioner 1 is mounted on a so-called minivan type vehicle C having a three-row seat.
  • the first row seat Sa, the second row seat Sb, and the third row seat Sc are arranged in this order from the front to the rear of the vehicle.
  • the first row seat Sa is configured as a driver seat and a passenger seat.
  • the second row seat Sb and the third row seat Sc are constituted by, for example, bench type seats on which three passengers can be seated.
  • the vehicle air conditioner 1 is arranged behind the first row seat Sa and in front of the second row seat Sb in the ceiling portion R of the passenger compartment I, and at the central portion in the vehicle width direction. positioned.
  • the vehicle air conditioner 1 operates according to the operation of the operation panel disposed in the vicinity of the second row seat Sb and the third row seat Sc, and the air conditioning on the second row seat Sb and third row seat Sc side in the passenger compartment I is performed. Is configured to do.
  • the vehicle air conditioner 1 is mainly operated by the occupant P seated on the second row seat Sb or the third row seat Sc to improve the comfort of the occupant P on the rear side of the passenger compartment I. Used. That is, the passengers in the second row seat Sb and the third row seat Sc can perform the air conditioning operation of the vehicle air conditioner 1 without the driver seat or the passenger seat passenger P.
  • the roof head lining that forms the ceiling portion R between the first row seat Sa and the second row seat Sb has openings so as to correspond to the positions of the suction port 16 and the air outlet 45 in the vehicle air conditioner 1. Is formed. Accordingly, the air inlet 16 and the air outlet 45 of the vehicle air conditioner 1 are arranged so as to be exposed to the vehicle compartment I side through the opening.
  • the vehicle air conditioner 1 includes the blower 20 and the evaporator 50 constituting a part of the vapor compression refrigeration cycle in the air conditioning case 10 disposed in the ceiling portion R of the vehicle C. Contained and configured.
  • the air conditioning case 10 includes an upper case 11 constituting the upper outer shell of the vehicle air conditioner 1 and a lower case constituting the lower outer shell of the vehicle air conditioner 1. 13, the vehicle is configured to be thin with a small size in the vertical direction.
  • the upper case 11 and the lower case 13 are assembled with screws or the like.
  • the upper case 11 is formed with a plurality of upper fixing parts 12 symmetrically.
  • the upper fixing portion 12 is used when the air conditioning case 10 is fixed to an upper body member in the ceiling portion R of the vehicle C.
  • the lower case 13 is formed with a plurality of lower fixing portions 14 symmetrically.
  • the lower fixing portion 14 is used when the air conditioning case 10 is fixed to a vehicle body member (for example, roof reinforcement) located on the vehicle compartment I side in the ceiling portion R.
  • each lower fixing portion 14 is located on the vehicle front side with respect to the upper fixing portion 12 in the air conditioning case 10. That is, since the air conditioning case 10 is fixed to the ceiling portion R of the vehicle C using the upper fixing portion 12 and the lower fixing portion 14 that are formed at different positions, the vehicle air conditioner 1 is attached to the predetermined ceiling portion R. Can be fixed in position.
  • a fan accommodating portion 15 is disposed in the center portion of the air conditioning case 10 in the vehicle width direction.
  • the fan accommodating part 15 comprises the vehicle rear side part in the said air-conditioning case 10, and accommodates the air blower 20 in the inside.
  • a suction port 16 is formed in the lower surface of the fan housing portion 15, and the interior of the air conditioning case 10 and the fan housing portion 15 communicates with the interior of the passenger compartment I.
  • the blower 20 is disposed inside the fan housing 15 so as to face the suction port 16, sucks air in the vehicle compartment I from the suction port 16, and blows it into the air conditioning case 10 as blown air F.
  • the blower 20 is disposed inside the fan accommodating portion 15 by being fixed to a vehicle body member (for example, roof reinforcement) in the ceiling portion R.
  • the blower 20 is an electric blower that drives a centrifugal multiblade fan (that is, a sirocco fan) by an electric motor 21.
  • the centrifugal multiblade fan has a substantially cylindrical shape, and has a large number of blades on the radially outer side.
  • the electric motor 21 constitutes the lower part of the blower 20 and has a drive shaft extending along the vehicle vertical direction. Since the centrifugal multiblade fan is fixed to the drive shaft of the electric motor 21, the blower 20 operates the electric motor 21, so that the air sucked into the shaft core portion of the centrifugal multiblade fan via the suction port 16. It can be blown out radially outward. And the rotation speed (blowing amount) of the centrifugal multiblade fan in the blower 20 is controlled by a control voltage output from an air conditioning control device (not shown).
  • a blower opening 25 is formed on the front side of the vehicle in the fan accommodating portion 15.
  • the air blowing port 25 is a portion that is blown out from the fan housing portion 15 when the air sucked from the suction port 16 is blown as blown air F by the operation of the blower 20.
  • the blower opening 25 is a part for supplying blown air F flowing through the air conditioning case 10, and functions as a blower opening in the present disclosure.
  • the vehicle air conditioner 1 includes a first air passage 30, a second air passage 35, and a third air passage 40 in addition to the fan housing portion 15.
  • the first air passage 30, the second air passage 35, and the third air passage 40 each function as a flow path for the blown air F blown through the blower opening 25.
  • the first air passage 30 is formed in the air conditioning case 10 of the vehicle air conditioner 1 so as to extend from the blower opening 25 formed in the fan accommodating portion 15 to the front side of the vehicle. Therefore, the blown air F blown from the blower opening 25 flows through the first air passage 30 toward the vehicle front side.
  • a rib 34 is arranged on the vehicle front side inside the air conditioning case 10.
  • the upper end of the rib 34 is located at a position away from the inner surface of the air conditioning case 10 on the upper side of the vehicle by a predetermined distance. Accordingly, the blown air F that has flowed through the first air passage 30 passes above the ribs 34 inside the air conditioning case 10. That is, the first air passage 30 according to the present embodiment can be defined as an air passage extending from the blower opening 25 of the fan housing portion 15 to the rib 34 toward the vehicle front side.
  • the vehicle air conditioner 1 has an evaporator 50 inside the first air passage 30 in the air conditioning case 10.
  • the evaporator 50 is disposed on the upper side of the first air passage 30 and is attached to the upper surface of the upper case 11.
  • the evaporator 50 is connected to a vapor compression refrigeration cycle via a refrigerant pipe connection portion 51, and includes a tube 52 through which refrigerant flows and a plurality of plate fins 53 joined to the tube 52. is doing.
  • the vapor compression refrigeration cycle includes a compressor, a condenser, and a decompression unit (for example, an expansion valve, a capillary tube, etc.) in addition to the evaporator 50. It is configured by connecting with refrigerant piping. Therefore, in the refrigeration cycle, the refrigerant is compressed into a high temperature and high pressure state by the compressor and radiated in the condenser, and then the refrigerant is decompressed by the decompression unit and flows into the evaporator 50.
  • a decompression unit for example, an expansion valve, a capillary tube, etc.
  • the evaporator 50 can absorb the heat from the blown air F and cool it by heat exchange between the blown air F flowing through the first air passage 30 and the refrigerant flowing through the tube 52. That is, the evaporator 50 functions as a cooling heat exchanger in the vehicle air conditioner 1 and corresponds to the heat exchanger in the present disclosure.
  • the tube 52 in the evaporator 50 includes a plurality of straight pipe portions 52a extending linearly so as to cross the first air passage 30 in the vehicle width direction, and ends of the straight pipe portions 52a.
  • the parts are connected by a U-shaped pipe part 52b having a substantially U shape. Therefore, the tube 52 is arranged to meander in the first air passage 30 in the vehicle width direction. Since the end of the tube 52 is connected to the refrigerant pipe connection 51, the refrigerant of the vapor compression refrigeration cycle flows into and out of the tube 52 through the refrigerant pipe connection 51.
  • a plurality (four in this embodiment) of straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle front-rear direction.
  • a plurality of straight pipe portions 52a are also arranged at predetermined intervals in the vertical direction of the vehicle in the evaporator 50. Note that the number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction (two in the present embodiment).
  • predetermined intervals are formed between the straight pipe portions 52a of the tubes 52 in the vehicle front-rear direction and the vehicle vertical direction, respectively, so that the flow path area when passing through the evaporator 50 is sufficiently large. can do.
  • the blown air F flowing through the first air passage 30 can flow not only in the vehicle longitudinal direction but also in the vehicle vertical direction when passing through the evaporator 50. And when passing between the straight pipe
  • the plurality of plate fins 53 are formed in a plate shape with a material having good thermal conductivity. As shown in FIGS. 1 and 5, the plate fins 53 are spaced from each other in the vehicle width direction with respect to the straight pipe portion 52 a of the tube 52. Are joined. Therefore, the refrigerant flowing inside the tube 52 can absorb heat from the blown air F flowing through the first air passage 30 via the plate fins 53 in addition to the tube wall of the tube 52. Since each plate fin 53 is arranged so that the thickness direction thereof coincides with the vehicle width direction, heat exchange between the blown air F and the refrigerant can be performed in a wider area.
  • the refrigerant used in this refrigeration cycle is an HFC refrigerant (specifically, R134a), and a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. It is composed.
  • an HFO refrigerant for example, R1234yf
  • These refrigerants are examples of the heat exchange medium in the present disclosure.
  • the first inflow portion 31 is located at a position facing the blower opening 25 via the evaporator 50. That is, the first inflow portion 31 is defined on the vehicle front side of the evaporator 50 above the first air passage 30 and on the vehicle rear side with respect to the rib 34. Accordingly, the blown air F that has flowed into the first air passage 30 from the blower opening 25 passes through the first inflow portion 31 when flowing straight through the evaporator 50 toward the front side of the vehicle.
  • the first inflow portion 31 functions as a first inflow portion in the present disclosure.
  • the 2nd inflow part 32 is located in the lower part of evaporator 50 in the 1st air passage 30. As shown in FIG.
  • the second inflow portion 32 is defined as a lower portion of the first air passage 30 and a portion extending from the blower opening 25 toward the rib 34 toward the front side of the vehicle.
  • the second inflow portion 32 functions as a second inflow portion in the present disclosure.
  • communication portions 32 a are disposed on the left and right sides of the second inflow portion 32. The communication portion 32a communicates the second inflow portion 32 with a third air passage 40 described later.
  • a merging portion 33 is located in an upper part of the upper end portion of the rib 34 in the first air passage 30.
  • the merging portion 33 is a portion that causes the blown air F that has passed through the first inflow portion 31 and the blown air F that has reached the second inflow portion 32 to merge and flow into the second air passage 35.
  • the merging portion 33 is defined as an upper portion of the upper end portion of the rib 34 and a portion on the vehicle front side of the first inflow portion 31 (that is, the downstream side of the blown air F). Therefore, the junction part 33 functions as a junction part in the present disclosure.
  • a second air passage 35 is formed on the front side of the vehicle inside the air conditioning case 10.
  • the second air passage 35 is formed by a space between the inner surface of the air conditioning case 10 on the vehicle front side and the rib 34. That is, the second air passage 35 extends in the vehicle right direction and the left direction from the end portion (that is, the junction portion 33) of the first air passage 30 that extends in the vehicle width direction central portion forward of the vehicle.
  • the blown air F that has passed through the first air passage 30 flows into the second air passage 35 on the front side of the vehicle and follows the second air passage 35 in the right direction of the vehicle and the left direction of the vehicle. Branch to and flow.
  • a third air passage 40 is formed on each side of the air conditioning case 10 in the vehicle width direction, and extends toward the vehicle rear side. That is, each third air passage 40 is formed at a position on the left and right sides of the vehicle with respect to the first air passage 30 and the evaporator 50 in the air conditioning case 10.
  • the third air passages 40 are connected to the second air passages 35 on both sides of the air-conditioning case 10 in the vehicle width direction, so that the blown air F that has passed through the second air passages 35 is guided to the vehicle rear side. be able to. That is, the second air passage 35 can change the direction of the flow of the blown air F that has passed through the first air passage 30 toward the front of the vehicle by 180 ° in the horizontal direction. It can be led to the rear side.
  • the third air passage 40 extends to the reinforcing portion 46 formed in the vehicle rear portion on both sides of the air conditioning case 10 in the vehicle width direction. As described above, the third air passage 40 communicates with the second inflow portion 32 via the communication portion 32a. Therefore, in the third air passage 40, the blown air F that flows in from the second air passage 35 and the blown air F that flows in from the second inflow portion 32 merge.
  • the air outlet 45 is formed in the front part of the reinforcement part 46 located in the rear-end part of the 3rd air passage 40, respectively.
  • Each air outlet 45 is formed by opening the lower case 13 on the vehicle rear side of the air conditioning case 10 and communicates the interior of the third air passage 40 and the interior of the passenger compartment I in the air conditioning case 10. Therefore, the blown air F that has flowed through the third air passage 40 is blown out from the inside of the air-conditioning case 10 into the vehicle compartment I through the air outlets 45.
  • the vehicular air conditioner 1 includes a first air passage 30 and a second air flow path in the air conditioning case 10 from the inlet 16 to the outlet 45.
  • the air passage 35 and the third air passage 40 By configuring the air passage 35 and the third air passage 40 so that the blown air F makes a U-turn along the vehicle front-rear direction, the size of the vehicle air-conditioning apparatus 1 in the vehicle front-rear direction can be reduced and compact. Can be configured.
  • the second air passage 35 changes the flow of the blown air F that has passed through the first air passage 30 in the horizontal direction by 180 ° in the vehicle front portion of the air conditioning case 10.
  • the three air passages 40 are configured to be guided.
  • the third air passage 40 is disposed on the left and right sides of the air conditioning case 10 with respect to the first air passage 30 and the evaporator 50.
  • the first air passage 30, the second air passage 35, and the third air passage 40 can be arranged on substantially the same horizontal plane.
  • the size of the air conditioner 1 in the vertical direction of the vehicle can be reduced and a compact configuration can be achieved.
  • the vehicle air conditioner 1 is disposed on the ceiling portion R of the vehicle C as shown in FIG. 2, the vehicle interior I is widened by configuring the device compactly in the vehicle longitudinal direction and the vehicle vertical direction. And a sufficient space for the occupant P can be secured.
  • the first air passage 30 has the second inflow portion 32. The case where it is not will be considered with reference to FIG.
  • the operation of the blower 20 is started together with the operation of the compressor in the refrigeration cycle.
  • the air in the passenger compartment I is sucked into the air conditioning case 10 through the suction port 16 of the fan accommodating portion 15.
  • the air sucked from the suction port 16 is blown out from the blower port 25 into the first air passage 30 as the blown air F along with the operation of the blower 20, and passes through the first air passage 30. It is cooled by heat exchange in the evaporator 50.
  • the first air passage 30 since the first air passage 30 does not have the second inflow portion 32, the first air passage 30 is configured by the first inflow portion 31. For this reason, even if the blown air F flowing through the first air passage 30 has a component in the vehicle vertical direction as the direction of the flow, it is restricted to flow in the first inflow portion 31.
  • the blown air F that has passed through the first inflow portion 31 passes through the upper portion of the rib 34 and flows into the second air passage 35. That is, in this case, all of the blown air F that has flowed into the first air passage 30 from the blower opening 25 flows into the second air passage 35.
  • the flow of the blown air F that has passed through the end portion side of the evaporator 50 in the vehicle width direction is guided by the wall surface on the vehicle front side in the second air passage 35 and flows toward the third air passage 40 side.
  • the blown air F flows toward the vehicle rear side, and is blown into the passenger compartment I from the air outlet 45, respectively.
  • the flow of the blown air F when flowing from the first air passage 30 into the second air passage 35 will be considered.
  • the blown air F that has passed through the right end portion of the evaporator 50 and has flowed into the second air passage 35 flows in the right direction of the vehicle along the second air passage 35 and passes through the left end portion of the evaporator 50.
  • the blown air F that has flowed into the second air passage 35 then flows in the left direction of the vehicle through the second air passage 35.
  • the air sucked from the suction port 16 is the first air as the blown air F from the blower port 25 formed on the vehicle front side of the fan housing portion 15 with the operation of the blower 20. It is blown out into the passage 30.
  • the blown air F that has flowed into the first air passage 30 passes between the tubes 52 and the plate fins 53 in the evaporator 50 and flows in the first air passage 30 toward the front side of the vehicle. At this time, the blown air F is cooled by exchanging heat with the refrigerant in the evaporator 50.
  • the flow of the blown air F in the first air passage 30 will be described in detail later.
  • the blown air F that has passed through the evaporator 50 in the first air passage 30 passes through the merging portion 33 located above the rib 34 and flows into the second air passage 35.
  • Part of the blown air F flowing into the second air passage 35 flows in the right direction of the vehicle according to the second air passage 35, and the other portion flows in the left direction of the vehicle according to the second air passage 35.
  • the blown air F that has flowed in the right direction of the vehicle through the second air passage 35 flows into the third air passage 40 disposed on the right side of the air conditioning case 10 in the vehicle.
  • the second air passage 35 changes the direction of the blown air F flowing through the first air passage 30 toward the front side of the vehicle by 180 ° toward the right side in the horizontal direction, so that the third air passage 40 on the right side of the vehicle. To the rear side of the vehicle.
  • the blown air F that has flowed in the left direction of the vehicle in the second air passage 35 flows into the third air passage 40 disposed on the left side of the air conditioning case 10 in the vehicle.
  • the second air passage 35 changes the direction of the blown air F flowing through the first air passage 30 toward the front side of the vehicle by 180 ° toward the left side in the horizontal direction, so that the third air passage 40 on the left side of the vehicle. To the rear side of the vehicle.
  • the blown air F that has flown into the third air passages 40 flows toward the vehicle rear side, and travels from the inside of the air conditioning case 10 through the air outlets 45 disposed in the vehicle rear portion of the air conditioning case 10. Blow out into chamber I.
  • the blowing air F temperature-adjusted by the heat exchange in the evaporator 50 can be supplied from each blower outlet 45, the comfort in the compartment I is improved. Can be made.
  • the evaporator 50 is arrange
  • the vehicle air conditioner 1 is disposed on the ceiling portion R of the vehicle C, the device size in the vertical direction of the vehicle is formed to be compact in terms of securing a living space called the cabin I. Is done. Therefore, as shown in FIGS. 1 to 5, the configuration of the evaporator 50 in the vehicle air conditioner 1 is also configured to be thin with a small size in the vehicle vertical direction.
  • a plurality of straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle front-rear direction, and the vehicle vertical direction in the evaporator 50 is also predetermined.
  • a plurality are arranged with an interval of.
  • the number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction.
  • size can be ensured as a flow-path area at the time of the ventilation air F passing the evaporator 50, regarding the flow direction of the ventilation air F Further, it is possible to give a degree of freedom in the vehicle vertical direction as well as the vehicle longitudinal direction.
  • a first inflow portion 31 and a second inflow portion 32 are disposed in the first air passage 30. Since the 1st inflow part 31 is facing the blower opening 25 via the evaporator 50, the said vehicle air conditioner 1 is the flow of the ventilation air F to the vehicle front side at the time of flowing through the evaporator 50. Can be tolerated.
  • the vehicle air conditioner 1 sends the air blown up and down in the vehicle when passing through the evaporator 50.
  • the flow of F can be allowed.
  • the detour air Fa which goes to each 3rd air passage 40 from the 2nd inflow part 32 is shown.
  • the flow is acceptable.
  • the flow of the bypass air Fa is a flow that bypasses the second air passage 35 and guides the blown air F in the first air passage 30 to the third air passage 40 and the outlet 45.
  • the vehicle air conditioner 1 by arranging the first inflow portion 31 and the second inflow portion 32 with respect to the evaporator 50 in the first air passage 30, the vehicle longitudinal direction and the vehicle vertical direction are arranged. The flow of the blast air F to can be permitted.
  • the vehicle air conditioner 1 can disperse the flow of the blown air F from the first air passage 30 into the flow on the second air passage 35 side and the flow on the second inflow portion 32 side. That is, the vehicle air conditioner 1 can alleviate the concentration of the flow of the blown air F with respect to the second air passage 35, and can eliminate the staying portion As at the position corresponding to the central portion of the evaporator 50. . And since the said vehicle air conditioner 1 can suppress the pressure loss of the ventilation air F low and can let the ventilation air F pass through without a hindrance, the fall of the air volume in the vehicle air conditioner 1 can be prevented.
  • the stagnation of the ventilation air F in the evaporator 50 can be eliminated.
  • the heat exchange performance in the evaporator 50 can be effectively exhibited using the tubes 52 and the plate fins 53.
  • a plurality (four in this embodiment) of the straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle longitudinal direction and the vehicle vertical direction. Further, the number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction (two in this embodiment).
  • the junction 33 is disposed above the rib 34 in the first air passage 30.
  • the temperature of the blown air F that has passed through the second inflow portion 32 is made as close as possible to the temperature of the blown air F that has passed through the first inflow portion 31. In the state, it can be merged at the merge section 33, and the possibility of white dew generation at the merge section 33 can be reduced.
  • the vehicle air conditioner 1 is disposed on the ceiling portion R of the vehicle C, and is configured to accommodate the blower 20 and the evaporator 50 inside the air conditioning case 10.
  • the vehicle air conditioner 1 adjusts the temperature of the blown air F flowing through the inside of the air conditioning case 10 with the operation of the blower 20 by the evaporator 50 and supplies the air to the passenger compartment I of the vehicle C.
  • the vehicle air conditioner 1 is arranged on the ceiling portion R and is configured so that the size in the vehicle vertical direction is compact in terms of securing a living space called the cabin I.
  • the evaporator 50 in the vehicle air conditioner 1 is configured by arranging the straight pipe portions 52a of the plurality of tubes 52 at intervals in the vehicle front-rear direction and the vehicle vertical direction so as to be thin in the vehicle vertical direction. ing.
  • the said vehicle air conditioner 1 has the 1st inflow part 31 arrange
  • the ventilation air F from the ventilation opening 25 passes the evaporator 50, the flow of the ventilation air F which goes to the 1st inflow part 31 from the ventilation opening 25, and ventilation The flow of the blown air F toward the second inflow portion 32 from the mouth 25 can be allowed. That is, according to the vehicle air conditioner 1, the degree of freedom in the vehicle longitudinal direction and the vehicle vertical direction can be ensured with respect to the flow of the blown air F in the evaporator 50.
  • the vehicle air conditioner 1 can eliminate the stagnation of the blown air F in the evaporator 50 while realizing a compact configuration for placement on the ceiling portion R of the vehicle C. Heat exchange performance can be exhibited effectively.
  • the merging portion 33 is disposed above the rib 34 corresponding to the end portion of the first air passage 30, and the blown air F that has passed through the first inflow portion 31, 2
  • the blown air F that has passed through the inflow portion 32 can be merged and flown into the second air passage 35. Then, the blown air F that has flowed into the second air passage 35 is blown out from the air outlet 45 into the vehicle compartment I through the third air passage 40.
  • the vehicle air conditioner 1 in the first air passage 30, the flow of the blown air F from the blower port 25 toward the first inflow portion 31 and the blown air from the blower port 25 toward the second inflow portion 32. Even if the flow of F is allowed, the blown air F can be supplied into the passenger compartment I without being wasted.
  • a plurality (four in this embodiment) of the straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle longitudinal direction and the vehicle vertical direction. Further, the number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction (two in this embodiment).
  • the junction 33 is disposed above the rib 34 in the first air passage 30.
  • the temperature of the blown air F that has passed through the second inflow portion 32 is made as close as possible to the temperature of the blown air F that has passed through the first inflow portion 31. In the state, it can be merged at the merge section 33, and the possibility of white dew generation at the merge section 33 can be reduced.
  • the second inflow portion 32 is disposed below the evaporator 50 in the first air passage 30, but the present invention is not limited to this mode.
  • the second inflow portion 32 may be disposed above the evaporator 50 in the first air passage 30, or the second inflow portion may be disposed above and below the evaporator 50.
  • the fan accommodating part 15 was formed in the vehicle rear side as a part of air-conditioning case 10, and the air blower 20 has been arrange
  • the suction port 16 and the blower 20 are arranged at a position away from the air conditioning case 10 in the vehicle C, and the blown air F is supplied from the blower port 25 to the first air passage 30 via a duct. May be.
  • the evaporator 50 which comprises a vapor compression refrigeration cycle was used as a heat exchanger, it is not limited to this aspect.
  • a heat exchanger according to the present disclosure it is sufficient that the temperature of the blown air F can be adjusted by exchanging heat with the blown air F. For example, even if a condenser constituting a vapor compression refrigeration cycle is used. good.
  • the heat exchange medium in the heat exchanger according to the present disclosure is not limited to the refrigerant circulating in the refrigeration cycle, and cooling water circulating in various cooling water circuits such as an engine cooling water circuit may be used. Is possible.

Abstract

This vehicle air conditioner (1) is arranged in the ceiling portion (R) of a vehicle (C), and houses a fan (20) and an evaporator (50) inside of an air conditioning case (10). With the evaporator, the vehicle air conditioner adjusts the temperature of blown air (F) blown by the fan and supplies this to the vehicle cabin (I). So as to be thinner in the vertical direction of the vehicle, the evaporator in the vehicle air conditioner is configured with straight tube sections (52a) of multiple tubes (52) arranged side by side and spaced in the vehicle longitudinal direction and the vehicle vertical direction. The vehicle air conditioner comprises an air outlet (25) arranged in the vehicle rear side of the evaporator, a first inflow part (31) arranged in a position opposite of the air outlet with the evaporator interposed therebetween, and a second inflow part (32) arranged below the evaporator in the vertical direction of the vehicle. Thus, a vehicle air conditioner arranged in the ceiling portion of the vehicle can be provided that achieves greater overall device compactness and which can suppress stagnation in blown air inside of the heat exchange unit.

Description

車両用空調装置Air conditioner for vehicles 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2017年4月4日に出願された日本特許出願2017-074424号および、2017年11月24日に出願された日本特許出願2017-225833号を基にしている。 This application includes Japanese Patent Application No. 2017-074424 filed on Apr. 4, 2017 and Japanese Patent Application No. 2017 filed on Nov. 24, 2017, the disclosures of which are incorporated herein by reference. Based on -225833.
 本開示は、車両の天井部に配置され、車室内の空調に用いられる車両用空調装置に関する。 The present disclosure relates to a vehicle air conditioner that is disposed on a ceiling of a vehicle and used for air conditioning in a vehicle interior.
 従来、車両の車室内を空調する為の車両用空調装置の一つとして、車室内の天井部に設置されるものが知られている。この天井部に配置される車両用空調装置の場合、車両サイズ等の限られた条件の下で乗員の居住空間をできるだけ広く確保する為に、装置全体をコンパクトに構成することが要望されている。 Conventionally, as a vehicle air conditioner for air-conditioning a vehicle interior, one installed on a ceiling portion of the vehicle interior is known. In the case of a vehicle air conditioner disposed on the ceiling, it is desired that the entire device be configured compactly in order to secure a passenger's living space as wide as possible under limited conditions such as vehicle size. .
 このような車両用空調装置に関する技術として、特許文献1、2に記載された発明が知られている。特許文献1に記載された車両用空調装置は、車両の天井部に配置された空調ケーシング内に、熱交換器と送風機とを収容して構成されており、送風機によって送風される空気を、熱交換器での熱交換で温度調整して天井側から車室内に供給している。 The inventions described in Patent Documents 1 and 2 are known as techniques relating to such a vehicle air conditioner. The vehicle air conditioner described in Patent Document 1 is configured by accommodating a heat exchanger and a blower in an air conditioning casing disposed on the ceiling of the vehicle, and heats the air blown by the blower. The temperature is adjusted by heat exchange in the exchanger and supplied from the ceiling to the passenger compartment.
 そして、特許文献1に係る車両用空調装置では、空調ケース内に熱交換器での熱交換によって生じるドレン水が流れる排水流路の形状を工夫することで、装置全体の薄型に構成しようとしている。 And in the vehicle air conditioner which concerns on patent document 1, it is trying to comprise the thin apparatus of the whole apparatus by devising the shape of the drain flow path into which the drain water which arises by the heat exchange in a heat exchanger flows in an air conditioning case. .
 又、特許文献2に記載された車両用空調装置は、送風機によって送風された空気がケーシング内部に送風機と熱交換器を有しており、送風された空気が熱交換器を通過する際に熱交換することで空気を温度調整し、温度調整された空気を車室内に供給するように構成されている。 The air conditioner for a vehicle described in Patent Document 2 has a blower and a heat exchanger inside the casing of the air blown by the blower, and heat is generated when the blown air passes through the heat exchanger. The temperature of the air is adjusted by replacement, and the temperature-adjusted air is supplied to the vehicle interior.
 特許文献2に記載の車両用空調装置においては、熱交換器に対する空気流れ上流側、下流側での流れ方向を熱交換器内部で変更することによって、車両用空調装置における各構成の配置を工夫して、装置全体のコンパクト化を実現している。具体的には、特許文献2においては、熱交換器である蒸発器内には、当該蒸発器の上方側の空気導入部から流れ込んだ空気流れを略直角に曲げる通風間隙を形成して、上方からの空気を車両後側の空気送出部から送出させている。 In the vehicle air conditioner described in Patent Literature 2, the arrangement of each component in the vehicle air conditioner is devised by changing the flow direction on the upstream and downstream sides of the air flow with respect to the heat exchanger inside the heat exchanger. Thus, the entire device is made compact. Specifically, in Patent Document 2, a ventilation gap is formed in the evaporator, which is a heat exchanger, to bend the air flow flowing in from the air introduction unit on the upper side of the evaporator at a substantially right angle. The air from the vehicle is sent out from the air sending part on the rear side of the vehicle.
特開2008-110762号公報JP 2008-110762 A 特開2014-205476号公報JP 2014-205476 A
 ここで、特許文献1のような天井配置される車両用空調装置において、乗員の居住空間をできるだけ広く確保する為に装置全体を薄型化すると、熱交換器を通過する際の空気流路も狭くなる為、熱交換器を通過した後の通風圧損が大きくなってしまうことが想定される。この場合、熱交換器内部に空気が淀む部分が生じてしまい、熱交換器本来の熱交換性能を有効に発揮させることができないことが考えられる。 Here, in the vehicle air conditioner arranged on the ceiling as in Patent Document 1, if the entire apparatus is thinned in order to secure the occupant's living space as much as possible, the air flow path when passing through the heat exchanger becomes narrow. Therefore, it is assumed that the ventilation pressure loss after passing through the heat exchanger increases. In this case, it is conceivable that a portion where air is stagnated is generated inside the heat exchanger, and the original heat exchange performance of the heat exchanger cannot be exhibited effectively.
 又、特許文献2に記載された車両用空調装置では、熱交換器内部にて略直角に曲がるように形成された通風間隙に従って空気が流れるように構成されている為、当該熱交換器を通過する際の通風圧損が大きくなってしまう。従って、特許文献2のような構成であっても、熱交換器内部に空気が淀む部分が生じてしまい、熱交換器本来の熱交換性能を有効に発揮させることができないことが考えられる。 Further, the vehicle air conditioner described in Patent Document 2 is configured such that air flows in accordance with the ventilation gap formed so as to bend substantially at right angles inside the heat exchanger, and thus passes through the heat exchanger. Ventilation pressure loss when doing so will increase. Therefore, even if it is a structure like patent document 2, the part in which air stagnates will arise inside a heat exchanger, and it is possible that the original heat exchange performance of a heat exchanger cannot be exhibited effectively.
 本開示は、これらの点に鑑みてなされており、車両の天井部に配置される車両用空調装置に関し、装置全体のコンパクト化を実現しつつ、熱交換器内部における送風空気の淀みを抑制可能な車両用空調装置を提供することを目的とする。 The present disclosure has been made in view of these points, and relates to a vehicle air conditioner disposed on a ceiling portion of a vehicle, and it is possible to suppress stagnation of blown air inside a heat exchanger while realizing downsizing of the entire device. An object of the present invention is to provide a vehicle air conditioner.
 本開示の一態様によると、車両用空調装置は、
 車両の車室天井部に配置された空調ケースと、車両前後方向及び車両上下方向に間隔をあけて並び、内部を熱交換媒体が流れる複数本のチューブを有しており、空調ケース内部に配置された熱交換器と、空調ケースにおいて熱交換器に対して車両前後方向の一方側に配置され、熱交換器を通過する送風空気が送風される送風口と、空調ケース内部にて熱交換器を介して送風口に対向する位置に配置され、熱交換器におけるチューブの間を通過した送風空気が流入する第1流入部と、空調ケース内部にて熱交換器に対して車両上下方向に配置され、熱交換器におけるチューブの間を通過した送風空気が流入する第2流入部と、第1流入部及び第2流入部に流入した送風空気が空調ケース内部から車室内に吹き出される吹出口と、を有する。
According to one aspect of the present disclosure, the vehicle air conditioner includes:
The air conditioning case placed on the ceiling of the vehicle compartment has multiple tubes that are lined up at intervals in the vehicle longitudinal direction and the vehicle vertical direction and through which the heat exchange medium flows. A heat exchanger, an air-conditioning case that is disposed on one side in the vehicle front-rear direction with respect to the heat exchanger, and a blower opening that blows air that passes through the heat exchanger The first inflow part into which the blown air that has passed between the tubes in the heat exchanger flows, and the vertical direction of the vehicle with respect to the heat exchanger are arranged in a position facing the blower opening via The second inflow part into which the blown air that has passed between the tubes in the heat exchanger flows, and the blowout port from which the blown air that has flowed into the first inflow part and the second inflow part is blown out from the inside of the air conditioning case into the vehicle interior. And having.
 当該車両用空調装置によれば、車両の天井部に配置されており、熱交換器において、送風口から供給された送風空気と熱交換媒体とを熱交換させることで、温度調整した空気を吹出口から車室内に供給することができる。 According to the vehicle air conditioner, which is disposed on the ceiling of the vehicle, in the heat exchanger, the blown air supplied from the blower opening and the heat exchange medium are heat-exchanged to blow the temperature-adjusted air. It can be supplied to the passenger compartment from the exit.
 当該熱交換器は、複数本のチューブを車両前後方向及び車両上下方向に間隔をあけて並べて構成されている。そして、当該車両用空調装置は、熱交換器の車両前後方向一方側に配置された送風口と、当該熱交換器を介して送風口と対向する位置に配置された第1流入部と、当該熱交換器に対して車両上下方向に配置された第2流入部を有している。 The heat exchanger is configured by arranging a plurality of tubes at intervals in the vehicle longitudinal direction and the vehicle vertical direction. And the said vehicle air conditioner has the 1st inflow part arrange | positioned in the position facing a ventilation opening through the said heat exchanger, the ventilation opening arrange | positioned in the vehicle front-back direction one side, the said heat exchanger, It has the 2nd inflow part arranged at the vehicles up-and-down direction to a heat exchanger.
 これにより、当該車両用空調装置によれば、送風口からの送風空気が熱交換器を通過する際に、送風口から第1流入部へ向かう送風空気の流れと、送風口から第2流入部へ向かう送風空気の流れを許容することができる。即ち、当該車両用空調装置によれば、熱交換器内における送風空気の流れに関して、車両前後方向及び車両上下方向への自由度を確保することができる。これにより、車両用空調装置は、車両天井部に配置する為のコンパクトな構成を実現しつつ、熱交換器内における送風空気の淀みを解消することができ、熱交換器による熱交換性能を向上させることができる。 Thereby, according to the said vehicle air conditioner, when the ventilation air from a ventilation opening passes a heat exchanger, the flow of the ventilation air which goes to a 1st inflow part from a ventilation opening, and a 2nd inflow part from a ventilation opening The flow of blast air toward That is, according to the vehicle air conditioner, it is possible to ensure a degree of freedom in the vehicle front-rear direction and the vehicle vertical direction with respect to the flow of the blown air in the heat exchanger. As a result, the vehicle air conditioner can eliminate the stagnation of the blown air in the heat exchanger while improving the heat exchange performance of the heat exchanger while realizing a compact configuration for placement on the vehicle ceiling. Can be made.
本実施形態に係る車両用空調装置の上面図である。It is a top view of the air conditioner for vehicles concerning this embodiment. 本実施形態に係る車両用空調装置の車両搭載位置を示す模式図である。It is a schematic diagram which shows the vehicle mounting position of the vehicle air conditioner which concerns on this embodiment. 本実施形態に係る車両用空調装置の正面図である。It is a front view of the air-conditioner for vehicles concerning this embodiment. 本実施形態に係る車両用空調装置の側面図である。It is a side view of the vehicle air conditioner which concerns on this embodiment. 図1におけるV-V断面を示す断面図である。FIG. 5 is a cross-sectional view showing a VV cross section in FIG. 1. 第2流入部がない場合の車両空調装置の内部における送風空気流れを示す平面断面図である。It is a top sectional view showing the blast air flow inside the vehicle air conditioner when there is no second inflow part. 本実施形態に係る車両用空調装置の内部における送風空気流れを示す平面断面図である。It is a plane sectional view showing the flow of blowing air inside the air-conditioner for vehicles concerning this embodiment. 第1空気通路における送風空気流れを示す鉛直断面図である。It is a vertical sectional view showing the blown air flow in the first air passage.
 以下、実施形態について図に基づいて説明する。以下の実施形態において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 先ず、本実施形態に係る車両用空調装置の概略構成について、図面を参照しつつ説明する。以下の説明で前後左右上下の方向を用いて説明するときは、車両用シートに着座した乗員から見た前後左右上下の方向を示すものとする。そして、各図に適宜示す矢印についても同様の定義を用いており、車両幅方向とは左右方向に相当している。 First, a schematic configuration of a vehicle air conditioner according to the present embodiment will be described with reference to the drawings. In the following description, when using the front / rear / left / right / up / down directions, the front / rear / left / right / up / down directions viewed from the occupant seated on the vehicle seat are shown. And the same definition is used also about the arrow suitably shown in each figure, and the vehicle width direction is equivalent to the left-right direction.
 図1、図2に示すように、本実施形態に係る車両用空調装置1は、車両Cの車室I内を快適な空調環境にする為に、車室Iの天井部Rに配置されており、空調ケース10内部に送風機20や蒸発器50等を収容して構成されている。 As shown in FIGS. 1 and 2, the vehicle air conditioner 1 according to the present embodiment is arranged on the ceiling portion R of the vehicle compartment I in order to make the vehicle cabin I of the vehicle C into a comfortable air conditioning environment. The air conditioner case 10 is configured to accommodate the blower 20, the evaporator 50, and the like.
 当該車両用空調装置1の空調ケース10には、吸込口16及び吹出口45が配置されており、それぞれ車室I内と連通している。従って、当該車両用空調装置1は、送風機20の作動によって、吸込口16から車室I内の空気を空調ケース10内部に吸い込み、蒸発器50によって温度調整された送風空気Fとして、吹出口45から車室Iへ供給することができる。 In the air conditioning case 10 of the vehicle air conditioner 1, a suction port 16 and an air outlet 45 are disposed, and communicate with the interior of the passenger compartment I, respectively. Therefore, the air conditioner 1 for the vehicle sucks the air in the passenger compartment I from the suction port 16 into the air conditioning case 10 by the operation of the blower 20, and the blower outlet 45 as the blown air F whose temperature is adjusted by the evaporator 50. To the passenger compartment I.
 本実施形態において、車両用空調装置1は、三列シートの所謂ミニバンタイプの車両Cに搭載されている。当該車両Cの車室Iには、一列目シートSa、二列目シートSb及び三列目シートScが、車両前方から後方に向かってこの順番で配置されている。当該車両Cにおいて、一列目シートSaは、運転席及び助手席として構成されている。そして、二列目シートSb及び三列目シートScは、例えば、それぞれ3人の乗員が着座可能なベンチタイプのシートによって構成されている。 In this embodiment, the vehicle air conditioner 1 is mounted on a so-called minivan type vehicle C having a three-row seat. In the compartment I of the vehicle C, the first row seat Sa, the second row seat Sb, and the third row seat Sc are arranged in this order from the front to the rear of the vehicle. In the vehicle C, the first row seat Sa is configured as a driver seat and a passenger seat. The second row seat Sb and the third row seat Sc are constituted by, for example, bench type seats on which three passengers can be seated.
 図2に示すように、車両用空調装置1は、車室Iの天井部Rにおいて、一列目シートSaの後方且つ二列目シートSbの前方に配置されており、車両幅方向における中央部分に位置している。当該車両用空調装置1は、二列目シートSb、三列目シートSc近傍に配置された操作パネルの操作に従って作動し、車室Iにおける二列目シートSb、三列目シートSc側の空調を行うように構成されている。 As shown in FIG. 2, the vehicle air conditioner 1 is arranged behind the first row seat Sa and in front of the second row seat Sb in the ceiling portion R of the passenger compartment I, and at the central portion in the vehicle width direction. positioned. The vehicle air conditioner 1 operates according to the operation of the operation panel disposed in the vicinity of the second row seat Sb and the third row seat Sc, and the air conditioning on the second row seat Sb and third row seat Sc side in the passenger compartment I is performed. Is configured to do.
 つまり、当該車両用空調装置1は、主に、二列目シートSbや三列目シートScに着座した乗員Pによって操作され、当該車室I後側の乗員Pの快適性を向上させる為に用いられる。つまり、二列目シートSb、三列目シートScの乗員は、運転席や助手席の乗員Pを介さずに、当該車両用空調装置1の空調運転を行うことができる。 That is, the vehicle air conditioner 1 is mainly operated by the occupant P seated on the second row seat Sb or the third row seat Sc to improve the comfort of the occupant P on the rear side of the passenger compartment I. Used. That is, the passengers in the second row seat Sb and the third row seat Sc can perform the air conditioning operation of the vehicle air conditioner 1 without the driver seat or the passenger seat passenger P.
 尚、一列目シートSaと二列目シートSbの間にあたる天井部Rを構成するルーフヘッドライニングには、車両用空調装置1における吸込口16及び吹出口45の位置に対応するように開口部が形成されている。従って、車両用空調装置1の吸込口16及び吹出口45は、当該開口部を通じて車室I側へ露出するように配置される。 The roof head lining that forms the ceiling portion R between the first row seat Sa and the second row seat Sb has openings so as to correspond to the positions of the suction port 16 and the air outlet 45 in the vehicle air conditioner 1. Is formed. Accordingly, the air inlet 16 and the air outlet 45 of the vehicle air conditioner 1 are arranged so as to be exposed to the vehicle compartment I side through the opening.
 次に、本実施形態に係る車両用空調装置1の具体的構成について、図1~図5を参照しつつ詳細に説明する。上述したように、当該車両用空調装置1は、車両Cの天井部Rに配置される空調ケース10内部に、送風機20と、蒸気圧縮式の冷凍サイクルの一部を構成する蒸発器50とを収容して構成されている。 Next, a specific configuration of the vehicle air conditioner 1 according to the present embodiment will be described in detail with reference to FIGS. As described above, the vehicle air conditioner 1 includes the blower 20 and the evaporator 50 constituting a part of the vapor compression refrigeration cycle in the air conditioning case 10 disposed in the ceiling portion R of the vehicle C. Contained and configured.
 図3~図5に示すように、当該空調ケース10は、車両用空調装置1における上側の外殻を構成する上部ケース11と、車両用空調装置1における下側の外殻を構成する下部ケース13とによって、車両上下方向のサイズが小さな薄型に構成されている。上部ケース11と下部ケース13は、ネジ等によって組み付けられている。 As shown in FIGS. 3 to 5, the air conditioning case 10 includes an upper case 11 constituting the upper outer shell of the vehicle air conditioner 1 and a lower case constituting the lower outer shell of the vehicle air conditioner 1. 13, the vehicle is configured to be thin with a small size in the vertical direction. The upper case 11 and the lower case 13 are assembled with screws or the like.
 上部ケース11には、複数の上側固定部12が左右対称に形成されている。当該上側固定部12は、車両Cの天井部Rにおける上方側車体部材に対して、空調ケース10を固定する際に用いられる。一方、下部ケース13には、複数の下側固定部14が左右対称に形成されている。当該下側固定部14は、天井部Rにおける車室I側に位置する車体部材(例えば、ルーフリインフォースメント)に対して、空調ケース10を固定する際に用いられる。 The upper case 11 is formed with a plurality of upper fixing parts 12 symmetrically. The upper fixing portion 12 is used when the air conditioning case 10 is fixed to an upper body member in the ceiling portion R of the vehicle C. On the other hand, the lower case 13 is formed with a plurality of lower fixing portions 14 symmetrically. The lower fixing portion 14 is used when the air conditioning case 10 is fixed to a vehicle body member (for example, roof reinforcement) located on the vehicle compartment I side in the ceiling portion R.
 図1に示すように、各下側固定部14は、空調ケース10における上側固定部12よりも車両前方側に位置している。即ち、空調ケース10は、夫々異なる位置に形成された上側固定部12、下側固定部14を用いて車両Cの天井部Rに固定される為、車両用空調装置1を天井部Rにおける所定位置に固定することができる。 As shown in FIG. 1, each lower fixing portion 14 is located on the vehicle front side with respect to the upper fixing portion 12 in the air conditioning case 10. That is, since the air conditioning case 10 is fixed to the ceiling portion R of the vehicle C using the upper fixing portion 12 and the lower fixing portion 14 that are formed at different positions, the vehicle air conditioner 1 is attached to the predetermined ceiling portion R. Can be fixed in position.
 図1等に示すように、空調ケース10の車両幅方向中央部分には、ファン収容部15が配置されている。ファン収容部15は、当該空調ケース10における車両後方側部分を構成しており、その内部に送風機20を収容している。又、ファン収容部15の下面には、吸込口16が形成されており、空調ケース10及びファン収容部15の内部と車室I内とを連通している。 As shown in FIG. 1 and the like, a fan accommodating portion 15 is disposed in the center portion of the air conditioning case 10 in the vehicle width direction. The fan accommodating part 15 comprises the vehicle rear side part in the said air-conditioning case 10, and accommodates the air blower 20 in the inside. In addition, a suction port 16 is formed in the lower surface of the fan housing portion 15, and the interior of the air conditioning case 10 and the fan housing portion 15 communicates with the interior of the passenger compartment I.
 送風機20は、ファン収容部15内部において吸込口16に対向するように配置されており、吸込口16から車室I内の空気を吸い込み、送風空気Fとして空調ケース10内部へ送風する。送風機20は、天井部Rにおける車体部材(例えば、ルーフリインフォースメント)に対して固定されることで、ファン収容部15内部に配置されている。当該送風機20は、遠心多翼ファン(即ち、シロッコファン)を電動モータ21にて駆動する電動送風機である。遠心多翼ファンは略円筒形を為しており、径方向外側に多数の羽根を有している。 The blower 20 is disposed inside the fan housing 15 so as to face the suction port 16, sucks air in the vehicle compartment I from the suction port 16, and blows it into the air conditioning case 10 as blown air F. The blower 20 is disposed inside the fan accommodating portion 15 by being fixed to a vehicle body member (for example, roof reinforcement) in the ceiling portion R. The blower 20 is an electric blower that drives a centrifugal multiblade fan (that is, a sirocco fan) by an electric motor 21. The centrifugal multiblade fan has a substantially cylindrical shape, and has a large number of blades on the radially outer side.
 電動モータ21は、送風機20の下部を構成しており、車両上下方向に沿って伸びる駆動軸を有している。遠心多翼ファンは電動モータ21の駆動軸に固定されている為、送風機20は、電動モータ21を作動させることで、吸込口16を介して遠心多翼ファンの軸芯部に吸い込んだ空気を径方向外側へ吹き出させることができる。そして、送風機20における遠心多翼ファンの回転数(送風量)は、図示しない空調制御装置から出力される制御電圧によって制御される。 The electric motor 21 constitutes the lower part of the blower 20 and has a drive shaft extending along the vehicle vertical direction. Since the centrifugal multiblade fan is fixed to the drive shaft of the electric motor 21, the blower 20 operates the electric motor 21, so that the air sucked into the shaft core portion of the centrifugal multiblade fan via the suction port 16. It can be blown out radially outward. And the rotation speed (blowing amount) of the centrifugal multiblade fan in the blower 20 is controlled by a control voltage output from an air conditioning control device (not shown).
 図1等に示すように、ファン収容部15における車両前方側には、送風口25が形成されている。当該送風口25は、送風機20の作動によって、吸込口16から吸い込まれた空気が送風空気Fとして送風される際にファン収容部15から吹き出される部分である。当該送風口25は、空調ケース10内を流れる送風空気Fを供給する為の部分であり、本開示における送風口として機能する。 As shown in FIG. 1 and the like, a blower opening 25 is formed on the front side of the vehicle in the fan accommodating portion 15. The air blowing port 25 is a portion that is blown out from the fan housing portion 15 when the air sucked from the suction port 16 is blown as blown air F by the operation of the blower 20. The blower opening 25 is a part for supplying blown air F flowing through the air conditioning case 10, and functions as a blower opening in the present disclosure.
 そして、当該車両用空調装置1は、ファン収容部15に加えて、第1空気通路30と、第2空気通路35と、第3空気通路40とを有している。第1空気通路30、第2空気通路35、第3空気通路40は、それぞれ送風口25を介して送風された送風空気Fの流路として機能する。 The vehicle air conditioner 1 includes a first air passage 30, a second air passage 35, and a third air passage 40 in addition to the fan housing portion 15. The first air passage 30, the second air passage 35, and the third air passage 40 each function as a flow path for the blown air F blown through the blower opening 25.
 第1空気通路30は、車両用空調装置1の空調ケース10内部において、ファン収容部15に形成された送風口25から車両前方側に伸びるように形成されている。従って、送風口25から送風された送風空気Fは、第1空気通路30内部を車両前側に流れる。 The first air passage 30 is formed in the air conditioning case 10 of the vehicle air conditioner 1 so as to extend from the blower opening 25 formed in the fan accommodating portion 15 to the front side of the vehicle. Therefore, the blown air F blown from the blower opening 25 flows through the first air passage 30 toward the vehicle front side.
 図5に示すように、空調ケース10内部の車両前方側には、リブ34が配置されている。当該リブ34の上端は、空調ケース10における車両上側の内面から所定の距離だけ離れた位置に位置している。従って、第1空気通路30を流れた送風空気Fは、空調ケース10の内部においてリブ34の上方を通過する。つまり、本実施形態に係る第1空気通路30は、ファン収容部15の送風口25から車両前方側へリブ34まで伸びた空気通路として定義することができる。 As shown in FIG. 5, a rib 34 is arranged on the vehicle front side inside the air conditioning case 10. The upper end of the rib 34 is located at a position away from the inner surface of the air conditioning case 10 on the upper side of the vehicle by a predetermined distance. Accordingly, the blown air F that has flowed through the first air passage 30 passes above the ribs 34 inside the air conditioning case 10. That is, the first air passage 30 according to the present embodiment can be defined as an air passage extending from the blower opening 25 of the fan housing portion 15 to the rib 34 toward the vehicle front side.
 図1等に示すように、当該車両用空調装置1は、空調ケース10における第1空気通路30内部に蒸発器50を有している。当該蒸発器50は、第1空気通路30の上部側に配置されており、上部ケース11の上面に対して取り付けられている。そして、当該蒸発器50は、冷媒配管接続部51を介して、蒸気圧縮式の冷凍サイクルに接続されており、冷媒が流れるチューブ52と、チューブ52に接合された複数枚のプレートフィン53を有している。 As shown in FIG. 1 and the like, the vehicle air conditioner 1 has an evaporator 50 inside the first air passage 30 in the air conditioning case 10. The evaporator 50 is disposed on the upper side of the first air passage 30 and is attached to the upper surface of the upper case 11. The evaporator 50 is connected to a vapor compression refrigeration cycle via a refrigerant pipe connection portion 51, and includes a tube 52 through which refrigerant flows and a plurality of plate fins 53 joined to the tube 52. is doing.
 図示は省略するが、蒸気圧縮式の冷凍サイクルは、蒸発器50に加えて、圧縮機と、凝縮器と、減圧部(例えば、膨張弁やキャピラリチューブ等)とを有しており、これらを冷媒配管で接続して構成されている。従って、当該冷凍サイクルでは、圧縮機によって冷媒を高温高圧状態に圧縮して凝縮器において放熱させた後、この冷媒を減圧部で減圧させて蒸発器50内に流入させる。 Although not shown, the vapor compression refrigeration cycle includes a compressor, a condenser, and a decompression unit (for example, an expansion valve, a capillary tube, etc.) in addition to the evaporator 50. It is configured by connecting with refrigerant piping. Therefore, in the refrigeration cycle, the refrigerant is compressed into a high temperature and high pressure state by the compressor and radiated in the condenser, and then the refrigerant is decompressed by the decompression unit and flows into the evaporator 50.
 これにより、蒸発器50は、第1空気通路30を流れる送風空気Fとチューブ52内を流れる冷媒との間における熱交換によって、送風空気Fから吸熱して冷却することができる。即ち、蒸発器50は、当該車両用空調装置1における冷却用熱交換器として機能し、本開示における熱交換器に相当する。 Thereby, the evaporator 50 can absorb the heat from the blown air F and cool it by heat exchange between the blown air F flowing through the first air passage 30 and the refrigerant flowing through the tube 52. That is, the evaporator 50 functions as a cooling heat exchanger in the vehicle air conditioner 1 and corresponds to the heat exchanger in the present disclosure.
 そして、蒸発器50におけるチューブ52は、図1等に示すように、第1空気通路30を車両幅方向に横断するように直線状に伸びる複数の直管部52aと、直管部52aの端部を、略U字状を為すU字管部52bで接続して構成されている。従って、当該チューブ52は、第1空気通路30内を車両幅方向に従って蛇行するように配置される。そして、チューブ52の端部は、冷媒配管接続部51に接続されている為、チューブ52の内部には、冷媒配管接続部51を介して、蒸気圧縮式冷凍サイクルの冷媒が流出入する。 As shown in FIG. 1 and the like, the tube 52 in the evaporator 50 includes a plurality of straight pipe portions 52a extending linearly so as to cross the first air passage 30 in the vehicle width direction, and ends of the straight pipe portions 52a. The parts are connected by a U-shaped pipe part 52b having a substantially U shape. Therefore, the tube 52 is arranged to meander in the first air passage 30 in the vehicle width direction. Since the end of the tube 52 is connected to the refrigerant pipe connection 51, the refrigerant of the vapor compression refrigeration cycle flows into and out of the tube 52 through the refrigerant pipe connection 51.
 図5等に示すように、当該蒸発器50において、チューブ52の直管部52aは、車両前後方向に間隔をあけて複数(本実施形態では4本)配置されている。又、蒸発器50における車両上下方向についても、直管部52aは、所定の間隔をあけて複数配置されている。尚、蒸発器50の車両上下方向における直管部52aの本数は、車両前後方向よりも少ない本数(本実施形態では2本)となるように配置されている。 As shown in FIG. 5 and the like, in the evaporator 50, a plurality (four in this embodiment) of straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle front-rear direction. In addition, a plurality of straight pipe portions 52a are also arranged at predetermined intervals in the vertical direction of the vehicle in the evaporator 50. Note that the number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction (two in the present embodiment).
 即ち、各チューブ52の直管部52aの間には、車両前後方向及び車両上下方向にそれぞれ所定の間隔が形成されており、蒸発器50を通過する際の流路面積を充分に大きなものにすることができる。 That is, predetermined intervals are formed between the straight pipe portions 52a of the tubes 52 in the vehicle front-rear direction and the vehicle vertical direction, respectively, so that the flow path area when passing through the evaporator 50 is sufficiently large. can do.
 従って、第1空気通路30を流れる送風空気Fは、蒸発器50を通過する際に、車両前後方向のみならず、車両上下方向にも流れることができる。そして、チューブ52における直管部52aの間を通過する際に、送風空気Fと、チューブ52内部を流れる冷媒との熱交換が行われる。 Therefore, the blown air F flowing through the first air passage 30 can flow not only in the vehicle longitudinal direction but also in the vehicle vertical direction when passing through the evaporator 50. And when passing between the straight pipe | tube parts 52a in the tube 52, heat exchange with the ventilation air F and the refrigerant | coolant which flows through the inside of the tube 52 is performed.
 複数枚のプレートフィン53は、熱伝導性の良い材料でプレート状に形成されており、図1、図5に示すように、車両幅方向に間隔をあけてチューブ52の直管部52aに対して接合されている。従って、チューブ52内部を流れる冷媒は、チューブ52の管壁に加えてプレートフィン53を介して、第1空気通路30を流れる送風空気Fから吸熱することができる。各プレートフィン53は、その厚み方向が車両幅方向と一致するように配置されている為、より広い面積で送風空気Fと冷媒との間の熱交換を行うことができる。 The plurality of plate fins 53 are formed in a plate shape with a material having good thermal conductivity. As shown in FIGS. 1 and 5, the plate fins 53 are spaced from each other in the vehicle width direction with respect to the straight pipe portion 52 a of the tube 52. Are joined. Therefore, the refrigerant flowing inside the tube 52 can absorb heat from the blown air F flowing through the first air passage 30 via the plate fins 53 in addition to the tube wall of the tube 52. Since each plate fin 53 is arranged so that the thickness direction thereof coincides with the vehicle width direction, heat exchange between the blown air F and the refrigerant can be performed in a wider area.
 尚、この冷凍サイクルで用いられる冷媒としては、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(例えば、R1234yf)等を採用してもよい。これらの冷媒は、本開示における熱交換媒体の一例である。 The refrigerant used in this refrigeration cycle is an HFC refrigerant (specifically, R134a), and a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. It is composed. Of course, an HFO refrigerant (for example, R1234yf) or the like may be adopted as the refrigerant. These refrigerants are examples of the heat exchange medium in the present disclosure.
 ここで、図5に示すように、第1空気通路30内部において、蒸発器50を介して、送風口25に対向する位置には、第1流入部31が位置している。即ち、当該第1流入部31は、第1空気通路30の上部における蒸発器50の車両前方側であって、リブ34よりも車両後方側に規定される。従って、送風口25から第1空気通路30に流入した送風空気Fは、蒸発器50内部を車両前方側にまっすぐ流れた場合、第1流入部31を通過することになる。当該第1流入部31は、本開示における第1流入部として機能する。 Here, as shown in FIG. 5, in the first air passage 30, the first inflow portion 31 is located at a position facing the blower opening 25 via the evaporator 50. That is, the first inflow portion 31 is defined on the vehicle front side of the evaporator 50 above the first air passage 30 and on the vehicle rear side with respect to the rib 34. Accordingly, the blown air F that has flowed into the first air passage 30 from the blower opening 25 passes through the first inflow portion 31 when flowing straight through the evaporator 50 toward the front side of the vehicle. The first inflow portion 31 functions as a first inflow portion in the present disclosure.
 そして、第1空気通路30における蒸発器50の下部には、第2流入部32が位置している。この第2流入部32は、第1空気通路30の下側部分であって、送風口25からリブ34へ向かって車両前方側に伸びる部分として規定される。 And the 2nd inflow part 32 is located in the lower part of evaporator 50 in the 1st air passage 30. As shown in FIG. The second inflow portion 32 is defined as a lower portion of the first air passage 30 and a portion extending from the blower opening 25 toward the rib 34 toward the front side of the vehicle.
 従って、第1空気通路30を流れる送風空気Fがその流れの向きとして車両上下方向の成分を有している場合、第2流入部32に到達することになる。即ち、当該第2流入部32は、本開示における第2流入部として機能する。又、第2流入部32の左右両側には、連通部32aが配置されている。当該連通部32aは、第2流入部32と後述する第3空気通路40を連通している。 Therefore, when the blown air F flowing through the first air passage 30 has a component in the vertical direction of the vehicle as the direction of the flow, it reaches the second inflow portion 32. That is, the second inflow portion 32 functions as a second inflow portion in the present disclosure. In addition, communication portions 32 a are disposed on the left and right sides of the second inflow portion 32. The communication portion 32a communicates the second inflow portion 32 with a third air passage 40 described later.
 又、第1空気通路30におけるリブ34の上端部の上方部分には、合流部33が位置している。当該合流部33は、第1流入部31を通過した送風空気Fと、第2流入部32に到達した送風空気Fとを合流させて、第2空気通路35へ流入させる部分である。具体的には、合流部33は、リブ34の上端部の上方部分であって、第1流入部31の車両前方側(即ち、送風空気Fの下流側)の部分として規定される。従って、当該合流部33は、本開示における合流部として機能する。 Further, a merging portion 33 is located in an upper part of the upper end portion of the rib 34 in the first air passage 30. The merging portion 33 is a portion that causes the blown air F that has passed through the first inflow portion 31 and the blown air F that has reached the second inflow portion 32 to merge and flow into the second air passage 35. Specifically, the merging portion 33 is defined as an upper portion of the upper end portion of the rib 34 and a portion on the vehicle front side of the first inflow portion 31 (that is, the downstream side of the blown air F). Therefore, the junction part 33 functions as a junction part in the present disclosure.
 そして、空調ケース10内部における車両前方側には、第2空気通路35が形成されている。第2空気通路35は、空調ケース10における車両前側の内面とリブ34の間の空間によって構成されている。即ち、第2空気通路35は、車両幅方向中央部分を車両前方に伸びる第1空気通路30の端部(即ち、合流部33)から、車両右方向及び左方向にそれぞれ伸びている。 A second air passage 35 is formed on the front side of the vehicle inside the air conditioning case 10. The second air passage 35 is formed by a space between the inner surface of the air conditioning case 10 on the vehicle front side and the rib 34. That is, the second air passage 35 extends in the vehicle right direction and the left direction from the end portion (that is, the junction portion 33) of the first air passage 30 that extends in the vehicle width direction central portion forward of the vehicle.
 従って、当該車両用空調装置1では、第1空気通路30を通過した送風空気Fは、車両前方側において第2空気通路35内に流入し、第2空気通路35に従って車両右方向、車両左方向へ分岐して流れる。 Therefore, in the vehicle air conditioner 1, the blown air F that has passed through the first air passage 30 flows into the second air passage 35 on the front side of the vehicle and follows the second air passage 35 in the right direction of the vehicle and the left direction of the vehicle. Branch to and flow.
 空調ケース10内部における車両幅方向両側には、夫々、第3空気通路40が形成されており、車両後方側に向かって伸びている。つまり、各第3空気通路40は、空調ケース10における第1空気通路30及び蒸発器50に対して、車両左右側方の位置に形成されている。 A third air passage 40 is formed on each side of the air conditioning case 10 in the vehicle width direction, and extends toward the vehicle rear side. That is, each third air passage 40 is formed at a position on the left and right sides of the vehicle with respect to the first air passage 30 and the evaporator 50 in the air conditioning case 10.
 そして、各第3空気通路40は、空調ケース10の車幅方向両側において、それぞれ第2空気通路35に接続されている為、第2空気通路35を通過した送風空気Fを車両後方側へ導くことができる。つまり、第2空気通路35は、車両前方に向かって第1空気通路30を通過した送風空気Fの流れの向きを、水平方向に180°転換させることができ、第3空気通路40内を車両後方側へ導くことができる。 The third air passages 40 are connected to the second air passages 35 on both sides of the air-conditioning case 10 in the vehicle width direction, so that the blown air F that has passed through the second air passages 35 is guided to the vehicle rear side. be able to. That is, the second air passage 35 can change the direction of the flow of the blown air F that has passed through the first air passage 30 toward the front of the vehicle by 180 ° in the horizontal direction. It can be led to the rear side.
 当該第3空気通路40は、空調ケース10の車両幅方向両側にて車両後方部分に形成された補強部46まで伸びている。上述したように、第3空気通路40は、連通部32aを介して、第2流入部32と連通している。従って、第3空気通路40では、第2空気通路35から流入した送風空気Fと、第2流入部32から流入した送風空気Fが合流する。 The third air passage 40 extends to the reinforcing portion 46 formed in the vehicle rear portion on both sides of the air conditioning case 10 in the vehicle width direction. As described above, the third air passage 40 communicates with the second inflow portion 32 via the communication portion 32a. Therefore, in the third air passage 40, the blown air F that flows in from the second air passage 35 and the blown air F that flows in from the second inflow portion 32 merge.
 第3空気通路40の後端部に位置する補強部46の前側部分には、吹出口45がそれぞれ形成されている。各吹出口45は、空調ケース10の車両後方側において、下部ケース13を開口して形成されており、空調ケース10における第3空気通路40内部と車室I内部とを連通している。従って、第3空気通路40を流れた送風空気Fは、各吹出口45を介して、空調ケース10内部から車室I内に吹き出される。 The air outlet 45 is formed in the front part of the reinforcement part 46 located in the rear-end part of the 3rd air passage 40, respectively. Each air outlet 45 is formed by opening the lower case 13 on the vehicle rear side of the air conditioning case 10 and communicates the interior of the third air passage 40 and the interior of the passenger compartment I in the air conditioning case 10. Therefore, the blown air F that has flowed through the third air passage 40 is blown out from the inside of the air-conditioning case 10 into the vehicle compartment I through the air outlets 45.
 図1~図5に示すように、当該車両用空調装置1は、空調ケース10内において、吸込口16から吹出口45までの送風空気Fの流路を、第1空気通路30と、第2空気通路35と、第3空気通路40とによって、車両前後方向に沿って送風空気FがUターンするように構成することで、車両用空調装置1における車両前後方向のサイズを小さくして、コンパクトに構成することができる。 As shown in FIGS. 1 to 5, the vehicular air conditioner 1 includes a first air passage 30 and a second air flow path in the air conditioning case 10 from the inlet 16 to the outlet 45. By configuring the air passage 35 and the third air passage 40 so that the blown air F makes a U-turn along the vehicle front-rear direction, the size of the vehicle air-conditioning apparatus 1 in the vehicle front-rear direction can be reduced and compact. Can be configured.
 又、当該車両用空調装置1において、第2空気通路35は、空調ケース10の車両前方部分において、第1空気通路30を通過した送風空気Fの流れを水平方向に180°転換させて、第3空気通路40に導くように構成されている。更に、第3空気通路40は、空調ケース10内部において、第1空気通路30及び蒸発器50に対して左右両側に配置されている。 Further, in the vehicle air conditioner 1, the second air passage 35 changes the flow of the blown air F that has passed through the first air passage 30 in the horizontal direction by 180 ° in the vehicle front portion of the air conditioning case 10. The three air passages 40 are configured to be guided. Further, the third air passage 40 is disposed on the left and right sides of the air conditioning case 10 with respect to the first air passage 30 and the evaporator 50.
 即ち、当該車両用空調装置1によれば、第1空気通路30と、第2空気通路35と、第3空気通路40とを、水平なほぼ同一平面上に配置することができる為、車両用空調装置1における車両上下方向のサイズを小さくして、コンパクトに構成することができる。 That is, according to the vehicle air conditioner 1, the first air passage 30, the second air passage 35, and the third air passage 40 can be arranged on substantially the same horizontal plane. The size of the air conditioner 1 in the vertical direction of the vehicle can be reduced and a compact configuration can be achieved.
 当該車両用空調装置1は、図2に示すように車両Cの天井部Rに配置される為、車両前後方向及び車両上下方向に関して、装置をコンパクトに構成することで、車室Iを広くすることができ、乗員Pの居住空間を充分に確保することができる。 Since the vehicle air conditioner 1 is disposed on the ceiling portion R of the vehicle C as shown in FIG. 2, the vehicle interior I is widened by configuring the device compactly in the vehicle longitudinal direction and the vehicle vertical direction. And a sufficient space for the occupant P can be secured.
 ここで、当該車両用空調装置1のように、第1空気通路30、第2空気通路35と、第3空気通路40を有する構成において、第1空気通路30が第2流入部32を有していない場合について、図6等を参照しつつ考察する。 Here, in the configuration having the first air passage 30, the second air passage 35, and the third air passage 40 as in the vehicle air conditioner 1, the first air passage 30 has the second inflow portion 32. The case where it is not will be considered with reference to FIG.
 この場合において空調運転が開始されると、冷凍サイクルにおける圧縮機の作動と共に、送風機20の作動が開始される。これにより、ファン収容部15の吸込口16を介して、車室I内の空気が空調ケース10内に吸い込まれる。そして、吸込口16から吸い込まれた空気は、送風機20の作動に伴って、送風口25から、送風空気Fとして第1空気通路30内に吹き出され、第1空気通路30を通過する際に、蒸発器50における熱交換によって冷却される。 In this case, when the air-conditioning operation is started, the operation of the blower 20 is started together with the operation of the compressor in the refrigeration cycle. As a result, the air in the passenger compartment I is sucked into the air conditioning case 10 through the suction port 16 of the fan accommodating portion 15. Then, the air sucked from the suction port 16 is blown out from the blower port 25 into the first air passage 30 as the blown air F along with the operation of the blower 20, and passes through the first air passage 30. It is cooled by heat exchange in the evaporator 50.
 この考察において、第1空気通路30は、第2流入部32を有していない為、第1流入部31によって構成された状態となる。この為、第1空気通路30を流れる送風空気Fがその流れの向きとして車両上下方向の成分を有していたとしても、第1流入部31内を流れるように制限される。 In this consideration, since the first air passage 30 does not have the second inflow portion 32, the first air passage 30 is configured by the first inflow portion 31. For this reason, even if the blown air F flowing through the first air passage 30 has a component in the vehicle vertical direction as the direction of the flow, it is restricted to flow in the first inflow portion 31.
 こうして第1流入部31を通過した送風空気Fは、リブ34の上方部分を通過して、第2空気通路35に流入する。即ち、この場合には、送風口25から第1空気通路30に流入した送風空気Fの全てが第2空気通路35に流入することになる。 Thus, the blown air F that has passed through the first inflow portion 31 passes through the upper portion of the rib 34 and flows into the second air passage 35. That is, in this case, all of the blown air F that has flowed into the first air passage 30 from the blower opening 25 flows into the second air passage 35.
 車両幅方向における蒸発器50の端部側を通過した送風空気Fの流れは、第2空気通路35における車両前方側の壁面によって案内され、第3空気通路40側に流れていく。各第3空気通路40に流入すると、送風空気Fは、車両後方側に向かって流れていき、それぞれ吹出口45から車室I内に吹き出される。 The flow of the blown air F that has passed through the end portion side of the evaporator 50 in the vehicle width direction is guided by the wall surface on the vehicle front side in the second air passage 35 and flows toward the third air passage 40 side. When the air flows into the third air passages 40, the blown air F flows toward the vehicle rear side, and is blown into the passenger compartment I from the air outlet 45, respectively.
 ここで、第1空気通路30から第2空気通路35へ流入する際の送風空気Fの流れについて考察する。この構成において、蒸発器50の右端部側を通過して第2空気通路35に流入した送風空気Fは、第2空気通路35に従って車両右方向に流れ、蒸発器50の左端部側を通過して第2空気通路35に流入した送風空気Fは、第2空気通路35を車両左方向に流れていく。 Here, the flow of the blown air F when flowing from the first air passage 30 into the second air passage 35 will be considered. In this configuration, the blown air F that has passed through the right end portion of the evaporator 50 and has flowed into the second air passage 35 flows in the right direction of the vehicle along the second air passage 35 and passes through the left end portion of the evaporator 50. The blown air F that has flowed into the second air passage 35 then flows in the left direction of the vehicle through the second air passage 35.
 この時、蒸発器50における車両幅方向中央部分を通過した送風空気Fは、第2空気通路35に流入すると、第2空気通路35の前方側の壁面に従って車両幅方向へ流れることになる。しかしながら、この時、蒸発器50の中央部分を通過した送風空気Fの流れは、車両幅方向両側を流れる送風空気Fの流れによって妨げられてしまう。 At this time, when the blown air F that has passed through the central portion of the evaporator 50 in the vehicle width direction flows into the second air passage 35, it flows in the vehicle width direction along the wall surface on the front side of the second air passage 35. However, at this time, the flow of the blown air F that has passed through the central portion of the evaporator 50 is hindered by the flow of the blown air F that flows on both sides in the vehicle width direction.
 これにより、図6に示すように、第2空気通路35の内部において、蒸発器50の中央部分の正面にあたる部分に、送風空気Fの流れが淀む滞留部Asが発生してしまう。この滞留部Asが第2空気通路35の内部に発生することで、当該車両用空調装置1における送風空気Fの圧損が高くなってしまい、車両用空調装置1における風量を低下させてしまうと考えられる。 As a result, as shown in FIG. 6, in the second air passage 35, a stay portion As where the flow of the blown air F stagnates is generated in a portion corresponding to the front of the central portion of the evaporator 50. When this stay part As is generated inside the second air passage 35, the pressure loss of the blown air F in the vehicle air conditioner 1 is increased, and the air volume in the vehicle air conditioner 1 is reduced. It is done.
 続いて、上述した車両用空調装置1における送風空気Fの流れについて、図面を参照しつつ詳細に説明する。即ち、第1空気通路30が第1流入部31及び第2流入部32を有している場合における送風空気Fの流れについて説明する。先ず、車両用空調装置1における吸込口16から吹出口45までの送風空気Fの流れについて、図7を参照しつつ説明する。 Subsequently, the flow of the blown air F in the vehicle air conditioner 1 described above will be described in detail with reference to the drawings. That is, the flow of the blown air F when the first air passage 30 includes the first inflow portion 31 and the second inflow portion 32 will be described. First, the flow of the blown air F from the inlet 16 to the outlet 45 in the vehicle air conditioner 1 will be described with reference to FIG.
 当該車両用空調装置1による空調運転が開始されると、冷凍サイクルにおける圧縮機の作動と共に、電動モータ21の作動が開始される。これにより、送風機20の作動が開始され、車両用空調装置1における車両後方側に配置されたファン収容部15の吸込口16を介して、車室I内の空気が空調ケース10内に吸い込まれる。 When the air conditioning operation by the vehicle air conditioner 1 is started, the operation of the electric motor 21 is started together with the operation of the compressor in the refrigeration cycle. Thereby, the operation of the blower 20 is started, and the air in the passenger compartment I is sucked into the air conditioning case 10 through the suction port 16 of the fan accommodating portion 15 arranged on the vehicle rear side in the vehicle air conditioner 1. .
 図7に示すように、吸込口16から吸い込まれた空気は、送風機20の作動に伴って、ファン収容部15の車両前方側に形成された送風口25から、送風空気Fとして、第1空気通路30内に吹き出される。 As shown in FIG. 7, the air sucked from the suction port 16 is the first air as the blown air F from the blower port 25 formed on the vehicle front side of the fan housing portion 15 with the operation of the blower 20. It is blown out into the passage 30.
 第1空気通路30内に流入した送風空気Fは、蒸発器50におけるチューブ52及びプレートフィン53の間を通過して、第1空気通路30内を車両前方側に流れていく。この時、送風空気Fは、蒸発器50にて冷媒との間で熱交換を行って冷却される。この第1空気通路30における送風空気Fの流れについては、後に詳細に説明する。 The blown air F that has flowed into the first air passage 30 passes between the tubes 52 and the plate fins 53 in the evaporator 50 and flows in the first air passage 30 toward the front side of the vehicle. At this time, the blown air F is cooled by exchanging heat with the refrigerant in the evaporator 50. The flow of the blown air F in the first air passage 30 will be described in detail later.
 そして、第1空気通路30内の蒸発器50を通過した送風空気Fは、リブ34の上方に位置する合流部33を通過して第2空気通路35内に流入する。第2空気通路35に流入した送風空気Fの一部は、第2空気通路35に従って車両右方向に流れ、他の部分は第2空気通路35に従って車両左方向に流れていく。 The blown air F that has passed through the evaporator 50 in the first air passage 30 passes through the merging portion 33 located above the rib 34 and flows into the second air passage 35. Part of the blown air F flowing into the second air passage 35 flows in the right direction of the vehicle according to the second air passage 35, and the other portion flows in the left direction of the vehicle according to the second air passage 35.
 第2空気通路35内を車両右方向に流れた送風空気Fは、空調ケース10の車両右側に配置された第3空気通路40内に流れ込む。この場合の第2空気通路35は、第1空気通路30を車両前方側に向かって流れる送風空気Fの向きを、水平方向右側に向かって180°転換させて、車両右側の第3空気通路40を車両後方側へ導く。 The blown air F that has flowed in the right direction of the vehicle through the second air passage 35 flows into the third air passage 40 disposed on the right side of the air conditioning case 10 in the vehicle. In this case, the second air passage 35 changes the direction of the blown air F flowing through the first air passage 30 toward the front side of the vehicle by 180 ° toward the right side in the horizontal direction, so that the third air passage 40 on the right side of the vehicle. To the rear side of the vehicle.
 一方、第2空気通路35内を車両左方向に流れた送風空気Fは、空調ケース10の車両左側に配置された第3空気通路40内に流れ込む。この場合の第2空気通路35は、第1空気通路30を車両前方側に向かって流れる送風空気Fの向きを、水平方向左側に向かって180°転換させて、車両左側の第3空気通路40を車両後方側へ導く。 Meanwhile, the blown air F that has flowed in the left direction of the vehicle in the second air passage 35 flows into the third air passage 40 disposed on the left side of the air conditioning case 10 in the vehicle. In this case, the second air passage 35 changes the direction of the blown air F flowing through the first air passage 30 toward the front side of the vehicle by 180 ° toward the left side in the horizontal direction, so that the third air passage 40 on the left side of the vehicle. To the rear side of the vehicle.
 各第3空気通路40に流入した送風空気Fは、車両後方側に向かって流れていき、空調ケース10における車両後方部分に配置されている各吹出口45を介して、空調ケース10内部から車室I内部へ吹き出される。 The blown air F that has flown into the third air passages 40 flows toward the vehicle rear side, and travels from the inside of the air conditioning case 10 through the air outlets 45 disposed in the vehicle rear portion of the air conditioning case 10. Blow out into chamber I.
 これにより、当該車両用空調装置1によれば、蒸発器50における熱交換によって温度調整された送風空気Fを、各吹出口45から供給することができるので、車室I内の快適性を向上させることができる。 Thereby, according to the said vehicle air conditioner 1, since the blowing air F temperature-adjusted by the heat exchange in the evaporator 50 can be supplied from each blower outlet 45, the comfort in the compartment I is improved. Can be made.
 又、当該車両用空調装置1によれば、送風空気Fの流れが車両左右方向に分岐する前の第1空気通路30内に蒸発器50が配置されている為、例えば、各第3空気通路40内に熱交換器を配置する場合に比べて、蒸発器50の組付け工数を低減することができる。 Moreover, according to the said vehicle air conditioner 1, since the evaporator 50 is arrange | positioned in the 1st air path 30 before the flow of the ventilation air F branches in the vehicle left-right direction, for example, each 3rd air path Compared with the case where a heat exchanger is arranged in 40, the assembly man-hour of the evaporator 50 can be reduced.
 続いて、当該車両用空調装置1における第1空気通路30内の送風空気Fの流れについて、図8を参照しつつ説明する。 Subsequently, the flow of the blown air F in the first air passage 30 in the vehicle air conditioner 1 will be described with reference to FIG.
 上述したように、当該車両用空調装置1は、車両Cの天井部Rに配置される為、車室Iという居住空間を確保する関係上、車両上下方向の装置サイズがコンパクトになるように形成される。従って、図1~図5に示すように、車両用空調装置1における蒸発器50の構成についても、車両上下方向のサイズが小さな薄型に構成される。 As described above, since the vehicle air conditioner 1 is disposed on the ceiling portion R of the vehicle C, the device size in the vertical direction of the vehicle is formed to be compact in terms of securing a living space called the cabin I. Is done. Therefore, as shown in FIGS. 1 to 5, the configuration of the evaporator 50 in the vehicle air conditioner 1 is also configured to be thin with a small size in the vehicle vertical direction.
 この点、当該車両用空調装置1における蒸発器50においては、チューブ52の直管部52aは、車両前後方向に間隔をあけて複数配置されており、蒸発器50における車両上下方向についても、所定の間隔をあけて複数配置されている。蒸発器50の車両上下方向における直管部52aの本数は、車両前後方向よりも少ない本数となるように配置されている。 In this regard, in the evaporator 50 in the vehicle air conditioner 1, a plurality of straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle front-rear direction, and the vehicle vertical direction in the evaporator 50 is also predetermined. A plurality are arranged with an interval of. The number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction.
 これにより、当該車両用空調装置1によれば、蒸発器50を送風空気Fが通過する際の流路面積として十分な大きさの間隔を確保することができるので、送風空気Fの流れ方向に関して、車両前後方向だけでなく車両上下方向に関する自由度を与えることができる。 Thereby, according to the said vehicle air conditioner 1, since the space | interval of sufficient magnitude | size can be ensured as a flow-path area at the time of the ventilation air F passing the evaporator 50, regarding the flow direction of the ventilation air F Further, it is possible to give a degree of freedom in the vehicle vertical direction as well as the vehicle longitudinal direction.
 そして、図8に示すように、第1空気通路30内には、第1流入部31と、第2流入部32が配置されている。第1流入部31は、蒸発器50を介して、送風口25に対向している為、当該車両用空調装置1は、蒸発器50を流れる際における車両前方側への送風空気Fの流れを許容することができる。 As shown in FIG. 8, a first inflow portion 31 and a second inflow portion 32 are disposed in the first air passage 30. Since the 1st inflow part 31 is facing the blower opening 25 via the evaporator 50, the said vehicle air conditioner 1 is the flow of the ventilation air F to the vehicle front side at the time of flowing through the evaporator 50. Can be tolerated.
 又、第2流入部32は、第1空気通路30における蒸発器50の下方に配置されている為、当該車両用空調装置1は、蒸発器50を通過する際の車両上下方向への送風空気Fの流れを許容することができる。 Further, since the second inflow portion 32 is disposed below the evaporator 50 in the first air passage 30, the vehicle air conditioner 1 sends the air blown up and down in the vehicle when passing through the evaporator 50. The flow of F can be allowed.
 そして、図7に示すように、第2流入部32は、車両幅方向両側の連通部32aを有している為、第2流入部32から各第3空気通路40へと向かう迂回空気Faの流れを許容できる。当該迂回空気Faの流れは、第2空気通路35をバイパスして、第1空気通路30の送風空気Fを第3空気通路40及び吹出口45へ導く流れである。 And since the 2nd inflow part 32 has the communication part 32a of the vehicle width direction both sides as shown in FIG. 7, the detour air Fa which goes to each 3rd air passage 40 from the 2nd inflow part 32 is shown. The flow is acceptable. The flow of the bypass air Fa is a flow that bypasses the second air passage 35 and guides the blown air F in the first air passage 30 to the third air passage 40 and the outlet 45.
 即ち、当該車両用空調装置1によれば、第1空気通路30内の蒸発器50に対して、第1流入部31、第2流入部32を配置することによって、車両前後方向及び車両上下方向への送風空気Fの流れを許容することができる。 That is, according to the vehicle air conditioner 1, by arranging the first inflow portion 31 and the second inflow portion 32 with respect to the evaporator 50 in the first air passage 30, the vehicle longitudinal direction and the vehicle vertical direction are arranged. The flow of the blast air F to can be permitted.
 この結果、当該車両用空調装置1は、第1空気通路30からの送風空気Fの流れを、第2空気通路35側の流れと、第2流入部32側の流れに分散させることができる。即ち、当該車両用空調装置1は、第2空気通路35に対する送風空気Fの流れの集中を緩和することができ、蒸発器50の中央部分に対応する位置における滞留部Asを解消することができる。そして、当該車両用空調装置1は、送風空気Fの圧損を低く抑え、送風空気Fを滞りなく通過させることができる為、車両用空調装置1における風量の低下を防止することができる。 As a result, the vehicle air conditioner 1 can disperse the flow of the blown air F from the first air passage 30 into the flow on the second air passage 35 side and the flow on the second inflow portion 32 side. That is, the vehicle air conditioner 1 can alleviate the concentration of the flow of the blown air F with respect to the second air passage 35, and can eliminate the staying portion As at the position corresponding to the central portion of the evaporator 50. . And since the said vehicle air conditioner 1 can suppress the pressure loss of the ventilation air F low and can let the ventilation air F pass through without a hindrance, the fall of the air volume in the vehicle air conditioner 1 can be prevented.
 これにより、当該車両用空調装置1によれば、車両Cの天井部Rに配置する為の薄型コンパクトな構成であっても、蒸発器50内における送風空気Fの淀みを解消することができる。又、蒸発器50内における送風空気Fの流れを円滑にすることで、チューブ52やプレートフィン53を用いて、蒸発器50における熱交換性能を有効に発揮させることができる。 Thereby, according to the said vehicle air conditioner 1, even if it is a thin and compact structure for arrange | positioning in the ceiling part R of the vehicle C, the stagnation of the ventilation air F in the evaporator 50 can be eliminated. In addition, by smoothing the flow of the blown air F in the evaporator 50, the heat exchange performance in the evaporator 50 can be effectively exhibited using the tubes 52 and the plate fins 53.
 ここで、当該蒸発器50において、チューブ52の直管部52aは、車両前後方向及び車両上下方向に間隔をあけて複数(本実施形態では4本)配置されている。又、蒸発器50の車両上下方向における直管部52aの本数は、車両前後方向よりも少ない本数(本実施形態では2本)となるように配置されている。 Here, in the evaporator 50, a plurality (four in this embodiment) of the straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle longitudinal direction and the vehicle vertical direction. Further, the number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction (two in this embodiment).
 従って、送風口25から第1流入部31へ向かって真っすぐ流れる送風空気Fは、図8に示すように、最も多くの直管部52aの周辺を通過する為、各チューブ52内の冷媒との熱交換によって最も低い温度を示すと考えられる。 Therefore, the blown air F that flows straight from the blower opening 25 toward the first inflow portion 31 passes around the most straight pipe portions 52a as shown in FIG. It is thought that the lowest temperature is exhibited by heat exchange.
 一方、送風口25から第2流入部32へ流れる送風空気Fにおいては、送風口25に近い位置で第2流入部32に到達する送風空気Fである程、熱交換可能な直管部52aの本数が少なくなる。この為、送風口25に近い位置で第2流入部32に到達する送風空気Fである程、十分に冷却されないことになり、第1流入部31に到達した送風空気Fに対する温度差が拡大してしまうことになる。 On the other hand, in the blown air F flowing from the blower opening 25 to the second inflow part 32, the more the blown air F reaches the second inflow part 32 at a position close to the blower opening 25, the more the heat exchangeable straight pipe part 52 a is. The number is reduced. For this reason, as the blown air F reaches the second inflow portion 32 at a position close to the blower opening 25, the air is not sufficiently cooled, and the temperature difference with respect to the blown air F that reaches the first inflow portion 31 increases. It will end up.
 ここで、第1流入部31における送風空気Fと、第2流入部32における送風空気Fとの温度差が大きいと、合流部33で合流させた際に白露が発生し、車室I内に供給する際の不具合となることが考えられる。 Here, if the temperature difference between the blown air F in the first inflow portion 31 and the blown air F in the second inflow portion 32 is large, white dew is generated when the merging portion 33 merges, and the interior of the passenger compartment I It may be a problem when supplying.
 この点、当該車両用空調装置1によれば、合流部33は、第1空気通路30におけるリブ34の上方に配置されている。この配置とすることによって、第2流入部32を通過して合流部33に到達する送風空気Fに関して、熱交換可能な直管部52aの本数を多くすることができる。 In this regard, according to the vehicle air conditioner 1, the junction 33 is disposed above the rib 34 in the first air passage 30. With this arrangement, it is possible to increase the number of straight pipe portions 52 a that can exchange heat with respect to the blown air F that passes through the second inflow portion 32 and reaches the merging portion 33.
 即ち、本実施形態に係る車両用空調装置1によれば、第2流入部32を通過した送風空気Fの温度を、第1流入部31を通過する送風空気Fの温度に可能な限り近づけた状態で、合流部33で合流させることができ、合流部33における白露発生の可能性を低減することができる。 That is, according to the vehicle air conditioner 1 according to the present embodiment, the temperature of the blown air F that has passed through the second inflow portion 32 is made as close as possible to the temperature of the blown air F that has passed through the first inflow portion 31. In the state, it can be merged at the merge section 33, and the possibility of white dew generation at the merge section 33 can be reduced.
 以上説明したように、本実施形態に係る車両用空調装置1は、車両Cの天井部Rに配置されており、空調ケース10内部に送風機20や蒸発器50を収容して構成されている。当該車両用空調装置1は、送風機20の作動に伴い空調ケース10内部を流れる送風空気Fを、蒸発器50によって温度調整して車両Cの車室I内に供給する。 As described above, the vehicle air conditioner 1 according to the present embodiment is disposed on the ceiling portion R of the vehicle C, and is configured to accommodate the blower 20 and the evaporator 50 inside the air conditioning case 10. The vehicle air conditioner 1 adjusts the temperature of the blown air F flowing through the inside of the air conditioning case 10 with the operation of the blower 20 by the evaporator 50 and supplies the air to the passenger compartment I of the vehicle C.
 当該車両用空調装置1は、天井部Rに配置すると共に、車室Iという居住空間を確保する関係上、車両上下方向のサイズがコンパクトになるように構成されている。この為、車両用空調装置1における蒸発器50は、車両上下方向に薄型になるように、複数本のチューブ52の直管部52aを車両前後方向及び車両上下方向に間隔をあけて並べて構成されている。そして、当該車両用空調装置1は、蒸発器50の車両後方に配置された送風口25と、蒸発器50を介して送風口25と対向する位置に配置された第1流入部31と、当該蒸発器50に対して車両下方に配置された第2流入部32を有している。 The vehicle air conditioner 1 is arranged on the ceiling portion R and is configured so that the size in the vehicle vertical direction is compact in terms of securing a living space called the cabin I. For this reason, the evaporator 50 in the vehicle air conditioner 1 is configured by arranging the straight pipe portions 52a of the plurality of tubes 52 at intervals in the vehicle front-rear direction and the vehicle vertical direction so as to be thin in the vehicle vertical direction. ing. And the said vehicle air conditioner 1 has the 1st inflow part 31 arrange | positioned in the position facing the ventilation opening 25 via the evaporator 50, the ventilation opening 25 arrange | positioned behind the evaporator 50, the said A second inflow portion 32 is provided below the vehicle with respect to the evaporator 50.
 これにより、当該車両用空調装置1によれば、送風口25からの送風空気Fが蒸発器50を通過する際に、送風口25から第1流入部31へ向かう送風空気Fの流れと、送風口25から第2流入部32へ向かう送風空気Fの流れを許容することができる。即ち、当該車両用空調装置1によれば、蒸発器50内における送風空気Fの流れに関して、車両前後方向及び車両上下方向への自由度を確保することができる。 Thereby, according to the said vehicle air conditioner 1, when the ventilation air F from the ventilation opening 25 passes the evaporator 50, the flow of the ventilation air F which goes to the 1st inflow part 31 from the ventilation opening 25, and ventilation The flow of the blown air F toward the second inflow portion 32 from the mouth 25 can be allowed. That is, according to the vehicle air conditioner 1, the degree of freedom in the vehicle longitudinal direction and the vehicle vertical direction can be ensured with respect to the flow of the blown air F in the evaporator 50.
 これにより、車両用空調装置1は、車両Cの天井部Rに配置する為のコンパクトな構成を実現しつつ、蒸発器50内における送風空気Fの淀みを解消することができ、蒸発器50による熱交換性能を有効に発揮させることができる。 Thereby, the vehicle air conditioner 1 can eliminate the stagnation of the blown air F in the evaporator 50 while realizing a compact configuration for placement on the ceiling portion R of the vehicle C. Heat exchange performance can be exhibited effectively.
 又、当該車両用空調装置1によれば、第1空気通路30の端部にあたるリブ34の上方に、合流部33が配置されており、第1流入部31を通過した送風空気Fと、第2流入部32を通過した送風空気Fとを合流させて、第2空気通路35内に流入させることができる。そして、第2空気通路35に流入した送風空気Fは、第3空気通路40を介して、吹出口45から車室I内に吹き出される。 Further, according to the vehicle air conditioner 1, the merging portion 33 is disposed above the rib 34 corresponding to the end portion of the first air passage 30, and the blown air F that has passed through the first inflow portion 31, 2 The blown air F that has passed through the inflow portion 32 can be merged and flown into the second air passage 35. Then, the blown air F that has flowed into the second air passage 35 is blown out from the air outlet 45 into the vehicle compartment I through the third air passage 40.
 従って、当該車両用空調装置1によれば、第1空気通路30において、送風口25から第1流入部31へ向かう送風空気Fの流れと、送風口25から第2流入部32へ向かう送風空気Fの流れを許容した場合であっても、送風空気Fを無駄にすることなく、車室I内に供給することができる。 Therefore, according to the vehicle air conditioner 1, in the first air passage 30, the flow of the blown air F from the blower port 25 toward the first inflow portion 31 and the blown air from the blower port 25 toward the second inflow portion 32. Even if the flow of F is allowed, the blown air F can be supplied into the passenger compartment I without being wasted.
 ここで、当該蒸発器50において、チューブ52の直管部52aは、車両前後方向及び車両上下方向に間隔をあけて複数(本実施形態では4本)配置されている。又、蒸発器50の車両上下方向における直管部52aの本数は、車両前後方向よりも少ない本数(本実施形態では2本)となるように配置されている。 Here, in the evaporator 50, a plurality (four in this embodiment) of the straight pipe portions 52a of the tube 52 are arranged at intervals in the vehicle longitudinal direction and the vehicle vertical direction. Further, the number of straight pipe portions 52a in the vehicle vertical direction of the evaporator 50 is arranged to be smaller than that in the vehicle front-rear direction (two in this embodiment).
 従って、送風口25から第1流入部31へ向かって真っすぐ流れる送風空気Fは、図8に示すように、最も多くの直管部52aの周辺を通過する為、各チューブ52内の冷媒との熱交換によって最も低い温度を示すと考えられる。 Therefore, the blown air F that flows straight from the blower opening 25 toward the first inflow portion 31 passes around the most straight pipe portions 52a as shown in FIG. It is thought that the lowest temperature is exhibited by heat exchange.
 一方、送風口25から第2流入部32へ流れる送風空気Fにおいては、送風口25に近い位置で第2流入部32に到達する送風空気Fである程、熱交換可能な直管部52aの本数が少なくなる。この為、送風口25に近い位置で第2流入部32に到達する送風空気Fである程、十分に冷却されないことになり、第1流入部31に到達した送風空気Fに対する温度差が拡大してしまうことになる。 On the other hand, in the blown air F flowing from the blower opening 25 to the second inflow part 32, the more the blown air F reaches the second inflow part 32 at a position near the blower opening 25, the more the heat exchangeable straight pipe part 52 a is The number is reduced. For this reason, as the blown air F reaches the second inflow portion 32 at a position close to the blower opening 25, the air is not sufficiently cooled, and the temperature difference with respect to the blown air F that reaches the first inflow portion 31 increases. It will end up.
 この点、当該車両用空調装置1によれば、合流部33は、第1空気通路30におけるリブ34の上方に配置されている。この配置とすることによって、第2流入部32を通過して合流部33に到達する送風空気Fに関して、熱交換可能な直管部52aの本数を多くすることができる。 In this regard, according to the vehicle air conditioner 1, the junction 33 is disposed above the rib 34 in the first air passage 30. With this arrangement, it is possible to increase the number of straight pipe portions 52 a that can exchange heat with respect to the blown air F that passes through the second inflow portion 32 and reaches the merging portion 33.
 即ち、本実施形態に係る車両用空調装置1によれば、第2流入部32を通過した送風空気Fの温度を、第1流入部31を通過する送風空気Fの温度に可能な限り近づけた状態で、合流部33で合流させることができ、合流部33における白露発生の可能性を低減することができる。 That is, according to the vehicle air conditioner 1 according to the present embodiment, the temperature of the blown air F that has passed through the second inflow portion 32 is made as close as possible to the temperature of the blown air F that has passed through the first inflow portion 31. In the state, it can be merged at the merge section 33, and the possibility of white dew generation at the merge section 33 can be reduced.
 以上、実施形態に基づき本開示を説明したが、本開示は上述した実施形態に何ら限定されるものではない。即ち、本開示の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した実施形態の構成を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。 As mentioned above, although this indication was explained based on an embodiment, this indication is not limited to the embodiment mentioned above at all. That is, various improvements and modifications can be made without departing from the spirit of the present disclosure. For example, the configurations of the above-described embodiments may be combined as appropriate, and the above-described embodiments may be variously modified.
 上述した実施形態においては、図8等に示すように、第1空気通路30における蒸発器50の下部に、第2流入部32を配置していたが、この態様に限定されるものではない。例えば、第1空気通路30における蒸発器50の上部に、第2流入部32を配置しても良いし、蒸発器50の上部及び下部に第2流入部を配置してもよい。 In the above-described embodiment, as shown in FIG. 8 and the like, the second inflow portion 32 is disposed below the evaporator 50 in the first air passage 30, but the present invention is not limited to this mode. For example, the second inflow portion 32 may be disposed above the evaporator 50 in the first air passage 30, or the second inflow portion may be disposed above and below the evaporator 50.
 又、上述した実施形態においては、空調ケース10の一部として、車両後方側にファン収容部15を形成し、その内部に送風機20を配置していたが、この態様に限定されるものではない。例えば、吸込口16及び送風機20を、車両Cにおける空調ケース10から離れた位置に配置して、ダクトを介して、送風口25から第1空気通路30に送風空気Fを供給するように構成してもよい。 Moreover, in embodiment mentioned above, although the fan accommodating part 15 was formed in the vehicle rear side as a part of air-conditioning case 10, and the air blower 20 has been arrange | positioned in the inside, it is not limited to this aspect. . For example, the suction port 16 and the blower 20 are arranged at a position away from the air conditioning case 10 in the vehicle C, and the blown air F is supplied from the blower port 25 to the first air passage 30 via a duct. May be.
 そして、上述した実施形態においては、熱交換器として、蒸気圧縮式の冷凍サイクルを構成する蒸発器50を用いていたが、この態様に限定されるものではない。本開示に係る熱交換器としては、送風空気Fと熱交換することで、送風空気Fの温度を調整することができればよく、例えば、蒸気圧縮式の冷凍サイクルを構成する凝縮器を用いても良い。 And in embodiment mentioned above, although the evaporator 50 which comprises a vapor compression refrigeration cycle was used as a heat exchanger, it is not limited to this aspect. As a heat exchanger according to the present disclosure, it is sufficient that the temperature of the blown air F can be adjusted by exchanging heat with the blown air F. For example, even if a condenser constituting a vapor compression refrigeration cycle is used. good.
 又、本開示に係る熱交換器における熱交換媒体としても、冷凍サイクルを循環する冷媒に限定されるものではなく、エンジン冷却水回路等、種々の冷却水回路を循環する冷却水を用いることも可能である。 Further, the heat exchange medium in the heat exchanger according to the present disclosure is not limited to the refrigerant circulating in the refrigeration cycle, and cooling water circulating in various cooling water circuits such as an engine cooling water circuit may be used. Is possible.
 本開示は実施例を参照して記載されているが、本開示は開示された上記実施例や構造に限定されるものではないと理解される。寧ろ、本開示は、様々な変形例や均等範囲内の変形を包含する。加えて、本開示の様々な要素が、様々な組み合わせや形態によって示されているが、それら要素よりも多くの要素、あるいは少ない要素、またはそのうちの1つだけの要素を含む他の組み合わせや形態も、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to embodiments, it is understood that the present disclosure is not limited to the above-described embodiments and structures. Rather, the present disclosure includes various modifications and modifications within the equivalent scope. In addition, although various elements of the present disclosure have been shown in various combinations and forms, other combinations or forms that include more or fewer elements than those elements, or only one of them. Are within the scope and spirit of the present disclosure.

Claims (3)

  1.  車両(C)の車室天井部(R)に配置された空調ケース(10)と、
     車両前後方向及び車両上下方向に間隔をあけて並び、内部を熱交換媒体が流れる複数本のチューブ(52、52a)を有しており、前記空調ケース内部に配置された熱交換器(50)と、
     前記空調ケースにおいて前記熱交換器に対して車両前後方向の一方側に配置され、前記熱交換器を通過する送風空気が送風される送風口(25)と、
     前記空調ケース内部にて前記熱交換器を介して前記送風口に対向する位置に配置され、前記熱交換器における前記チューブの間を通過した送風空気が流入する第1流入部(31)と、
     前記空調ケース内部にて前記熱交換器に対して車両上下方向に配置され、前記熱交換器における前記チューブの間を通過した送風空気が流入する第2流入部(32)と、
     前記第1流入部及び前記第2流入部に流入した送風空気が前記空調ケース内部から前記車室内に吹き出される吹出口(45)と、を有する車両用空調装置。
    An air-conditioning case (10) disposed in a vehicle compartment ceiling (R) of the vehicle (C);
    A heat exchanger (50) which has a plurality of tubes (52, 52a) which are arranged at intervals in the vehicle longitudinal direction and the vehicle vertical direction and through which the heat exchange medium flows, and which are arranged inside the air conditioning case. When,
    An air outlet (25) that is disposed on one side of the vehicle front-rear direction with respect to the heat exchanger in the air-conditioning case and blows air that passes through the heat exchanger;
    A first inflow part (31) that is disposed in a position facing the air blowing port via the heat exchanger inside the air conditioning case and into which the blown air that has passed between the tubes in the heat exchanger flows;
    A second inflow portion (32) that is arranged in the vehicle vertical direction with respect to the heat exchanger inside the air conditioning case and into which the blown air that has passed between the tubes in the heat exchanger flows;
    An air conditioner for a vehicle having an air outlet (45) through which blown air that has flowed into the first inflow portion and the second inflow portion is blown out from the inside of the air conditioning case into the vehicle interior.
  2.  前記空調ケース内において、前記吹出口に対して前記送風空気流れ上流側に配置され、前記第1流入部に流入した送風空気と前記第2流入部に流入した送風空気とを合流させると共に、合流させた送風空気を前記吹出口へ導く合流部(33)を有する請求項1に記載の車両用空調装置。 In the air conditioning case, the air blower is disposed on the upstream side of the blower air flow, and merges the blown air that has flowed into the first inflow part and the blown air that has flowed into the second inflow part. The vehicle air conditioner according to claim 1, further comprising a merging portion (33) for guiding the blown air to the blowout port.
  3.  前記熱交換器において、車両上下方向に並んだ前記チューブの本数よりも車両前後方向に並んだ前記チューブの本数が多くなるように構成されており、
     前記合流部は、前記第1流入部に流入した送風空気と前記第2流入部に流入した送風空気の温度差が最も小さくなる位置に配置されている請求項2に記載の車両用空調装置。
    In the heat exchanger, the number of tubes arranged in the vehicle front-rear direction is greater than the number of tubes arranged in the vehicle up-down direction,
    The vehicle air conditioner according to claim 2, wherein the merging portion is disposed at a position where a temperature difference between the blown air flowing into the first inflow portion and the blown air flowing into the second inflow portion is minimized.
PCT/JP2018/009842 2017-04-04 2018-03-14 Air conditioner for vehicle WO2018186126A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2019005357A MY196683A (en) 2017-04-04 2018-03-14 Vehicular Air Conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-074424 2017-04-04
JP2017074424 2017-04-04
JP2017225833A JP7025824B2 (en) 2017-04-04 2017-11-24 Vehicle air conditioner
JP2017-225833 2017-11-24

Publications (1)

Publication Number Publication Date
WO2018186126A1 true WO2018186126A1 (en) 2018-10-11

Family

ID=63712579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009842 WO2018186126A1 (en) 2017-04-04 2018-03-14 Air conditioner for vehicle

Country Status (2)

Country Link
MY (1) MY196683A (en)
WO (1) WO2018186126A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238719A (en) * 1991-01-09 1992-08-26 Zexel Corp Cleaning unit
JPH11157330A (en) * 1997-11-27 1999-06-15 Denso Corp Ceiling type cooler unit for vehicle
JP2000335231A (en) * 1999-05-24 2000-12-05 Bosch Automotive Systems Corp Air conditioning unit for vehicle
JP2004338595A (en) * 2003-05-16 2004-12-02 Zexel Valeo Climate Control Corp Air conditioning unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238719A (en) * 1991-01-09 1992-08-26 Zexel Corp Cleaning unit
JPH11157330A (en) * 1997-11-27 1999-06-15 Denso Corp Ceiling type cooler unit for vehicle
JP2000335231A (en) * 1999-05-24 2000-12-05 Bosch Automotive Systems Corp Air conditioning unit for vehicle
JP2004338595A (en) * 2003-05-16 2004-12-02 Zexel Valeo Climate Control Corp Air conditioning unit

Also Published As

Publication number Publication date
MY196683A (en) 2023-04-30

Similar Documents

Publication Publication Date Title
JP5639800B2 (en) Air conditioner for vehicles
US11511651B2 (en) Vehicular air conditioner
US10543732B2 (en) Vehicle air-conditioning unit
US20160221414A1 (en) Air conditioning unit
US11338642B2 (en) Vehicle cabin air conditioning system
US10661635B2 (en) Vehicle air-conditioning unit
WO2018186126A1 (en) Air conditioner for vehicle
JP5127204B2 (en) Air conditioner for vehicles
CN107953740B (en) Air conditioning unit
JP7025824B2 (en) Vehicle air conditioner
JP2018177190A (en) Vehicle air conditioner
WO2018186125A1 (en) Air conditioner for vehicle
JP7457481B2 (en) How to assemble a vehicle air conditioner
JP2019084840A (en) Air conditioner for vehicle
JP7169124B2 (en) vehicle air conditioner
JP7129297B2 (en) vehicle air conditioner
JP7169123B2 (en) vehicle air conditioner
WO2020066383A1 (en) Vehicle air conditioning device
WO2015029395A1 (en) Back seat air conditioning unit
JP2000177359A (en) Air-conditioner for vehicle
JP2007083774A (en) Air conditioner for vehicle rear seat
JP5137377B2 (en) Air conditioner for vehicles
JP2022020878A (en) Vehicular air conditioner
JP2023130860A (en) Vehicular air conditioner
WO2017150285A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781216

Country of ref document: EP

Kind code of ref document: A1