WO2018186103A1 - Lens unit - Google Patents
Lens unit Download PDFInfo
- Publication number
- WO2018186103A1 WO2018186103A1 PCT/JP2018/009031 JP2018009031W WO2018186103A1 WO 2018186103 A1 WO2018186103 A1 WO 2018186103A1 JP 2018009031 W JP2018009031 W JP 2018009031W WO 2018186103 A1 WO2018186103 A1 WO 2018186103A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical axis
- thermal expansion
- axis direction
- lens barrel
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/02—Bodies
Definitions
- This disclosure relates to a lens unit.
- Japanese Unexamined Patent Application Publication No. 2016-184081 discloses a lens unit having a lens barrel made of a resin material reinforced with glass fibers (inorganic fibers).
- a lens barrel made of a resin material generally has a larger coefficient of thermal expansion than a lens barrel made of a metal such as aluminum, and particularly when the lens barrel is made of a resin material containing inorganic fibers, Anisotropy occurs in the coefficient of thermal expansion between the direction in which the resin material flows and the direction perpendicular thereto. For this reason, when the housing part such as the lens and the lens housed in the lens barrel is thermally expanded due to a rise in external temperature, for example, when the thermal expansion amount of the lens barrel is larger than the thermal expansion amount of the housing component, There is a possibility that the position of the lens may be shifted due to an increase in the distance between the lenses.
- the thermal expansion amount of the housing component is larger than the thermal expansion amount of the lens barrel, a compression stress is generated in the lens, so that the lens is easily plastically deformed, and the interval between the lenses is reduced when the external temperature returns to room temperature. There is a possibility that the position of the lens is shifted due to the clearance.
- the lens that is the housing component is made of a resin material, the lens is easily subjected to compressive stress due to the thermal expansion of the lens being restrained by the lens barrel due to the difference in thermal expansion between the lens barrel and the lens.
- the present disclosure is intended to provide a lens unit that can suppress the occurrence of compressive stress in the lens when the external temperature rises in consideration of the above facts.
- a lens unit includes a cylindrical lens barrel made of a resin material containing an inorganic fiber, and a plurality of lenses housed in the lens barrel side by side in the optical axis direction.
- the lens has a housing component made of a resin material, and the thermal expansion amount of the lens barrel in the optical axis direction is equal to the sum of the thermal expansion amounts of the housing component in the optical axis direction.
- the lens barrel is made of a resin material containing inorganic fibers
- anisotropy occurs in the thermal expansion coefficient of the lens barrel, so that the position of the lens as the housing component is shifted, or the thermal expansion of the lens is restricted by the lens barrel. This tends to cause compressive stress on the lens.
- the thermal expansion amount in the optical axis direction of the lens barrel equal to the sum of the thermal expansion amounts in the optical axis direction of the housing components, there is a space between the lenses or compression stress on the lenses. Can be prevented from occurring.
- the amount of thermal expansion in the optical axis direction is equal means that the difference in the amount of thermal expansion is within ⁇ 15 ⁇ m.
- the amount of thermal expansion is calculated by multiplying the length of the member by the coefficient of thermal expansion of the member.
- a lens unit includes a cylindrical lens barrel made of a resin material containing inorganic fibers, and a plurality of lenses accommodated in the optical axis direction in the lens barrel, and includes at least one lens
- the lens is made of a resin material, and the amount of thermal expansion in the optical axis direction of the barrel is equal to the sum of the amounts of thermal expansion in the optical axis direction of the barrel, and the optical axis direction of the barrel
- the amount of thermal expansion in the direction perpendicular to is equal to the amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens made of a resin material.
- the thermal expansion amount in the optical axis direction of the lens barrel is equal to the sum of the thermal expansion amounts in the optical axis direction of the housing component, and the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel is The amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens made of a resin material is made equal. For this reason, lens displacement can be further suppressed and compression stress applied to the lens compared to a configuration in which only one of the thermal expansion amount in the optical axis direction and the thermal expansion amount in the direction perpendicular to the optical axis is made equal. Can be further suppressed.
- the lens unit according to the third aspect of the present disclosure is the lens unit according to the first aspect or the second aspect, wherein the thermal expansion amount in the optical axis direction of the lens barrel is subtracted from the total thermal expansion amount in the optical axis direction of the housing component.
- the difference in thermal expansion amount is set to 0 ⁇ m or more and 10 ⁇ m or less.
- the difference in thermal expansion amount obtained by subtracting the thermal expansion amount in the optical axis direction of the lens barrel from the total thermal expansion amount in the optical axis direction of the housing component is set to 0 ⁇ m or more and 10 ⁇ m or less. For this reason, the positional deviation of the lens can be suppressed as compared with the case where the difference in thermal expansion is smaller than 0 ⁇ m, and the occurrence of compressive stress in the lens is suppressed as compared with the case where the difference in thermal expansion is larger than 10 ⁇ m. be able to.
- a lens unit includes a cylindrical lens barrel made of a resin material containing an inorganic fiber, and a plurality of lenses housed in the lens barrel side by side in the optical axis direction.
- the lens has a housing part made of a resin material, and the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel is equal to the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens made of the resin material.
- the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel equal to the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens made of a resin material, the axes of the lenses are shifted. Or compressive stress is generated in the lens.
- the amount of thermal expansion in the direction perpendicular to the optical axis direction is equal means that the difference in the amount of thermal expansion is within ⁇ 10 ⁇ m.
- a lens unit according to a fifth aspect of the present disclosure is the lens unit according to the fourth aspect.
- the amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens made of a resin material in the direction perpendicular to the optical axis direction of the lens barrel.
- the difference in thermal expansion amount after subtracting the thermal expansion amount is set to 0 ⁇ m or more and 10 ⁇ m or less.
- the difference in thermal expansion amount obtained by subtracting the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel from the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens made of the resin material is 0 ⁇ m or more and 10 ⁇ m. It is as follows. For this reason, it is possible to suppress the deviation of the axes of the lenses compared to the case where the difference in thermal expansion is smaller than 0 ⁇ m, and the compression stress is generated in the lens compared to the case where the difference in thermal expansion is larger than 10 ⁇ m. Can be suppressed.
- the lens unit according to the sixth aspect of the present disclosure is the lens unit according to any one of the first to third aspects, and the housing component includes a lens made of a glass material.
- a lens made of a glass material has a smaller thermal expansion coefficient than a lens made of a resin material and a lens barrel.
- the housing component has a lens made of a glass material, the total thermal expansion amount of the housing component in the optical axis direction can be adjusted by the lens made of the glass material.
- a lens unit according to a seventh aspect of the present disclosure is the lens unit according to the sixth aspect, wherein the thermal expansion coefficient in the optical axis direction of the lens barrel is smaller than the thermal expansion coefficient in the optical axis direction of the lens made of a resin material, and It is larger than the thermal expansion coefficient in the optical axis direction of a lens made of a glass material.
- the thermal expansion coefficient in the optical axis direction of the lens barrel is smaller than the thermal expansion coefficient in the optical axis direction of the lens made of the resin material, and larger than the thermal expansion coefficient in the optical axis direction of the lens made of the glass material. For this reason, the total of the thermal expansion amount in the optical axis direction of the housing component relative to the thermal expansion amount of the lens barrel can be adjusted by the lens made of the glass material and the lens made of the resin material.
- the lens unit according to an eighth aspect of the present disclosure is the lens unit according to any one of the first aspect to the third aspect, the sixth aspect, and the seventh aspect.
- the housing component is a resin material containing inorganic fibers. And an interval ring for defining an interval between the plurality of lenses.
- the spacing ring made of a resin material containing inorganic fibers is provided between the lenses. For this reason, the sum total of the thermal expansion amount of the optical component in the optical axis direction of the housing component can be adjusted by adjusting the thermal expansion amount of the spacing ring.
- the lens unit according to the ninth aspect of the present disclosure is the lens unit according to the eighth aspect.
- the lens or the spacing ring has a flat surface extending in a direction perpendicular to the optical axis direction, and the lens and the spacing ring, or The lenses are in contact with each other on a flat surface.
- the lens and the spacing ring, or the lenses are in surface contact with each other on a flat surface extending in the direction perpendicular to the optical axis. For this reason, compared with the configuration in which the lens and the interval ring, or the lenses are in point contact with each other, it is possible to suppress stress concentration on one point of the lens or the interval ring at the time of thermal expansion of the lens or the interval ring. It can suppress that a lens or a space
- the lens unit according to a tenth aspect of the present disclosure is the lens unit according to any one of the first to ninth aspects, wherein the thermal expansion coefficient in a direction perpendicular to the optical axis direction of the lens barrel is It is larger than the thermal expansion coefficient in the optical axis direction.
- the thermal expansion coefficient in the vertical direction of the optical axis of the lens barrel is larger than the thermal expansion coefficient in the optical axis direction of the lens barrel. Can be tolerated.
- the lens unit according to an eleventh aspect of the present disclosure is the lens unit according to any one of the first aspect to the tenth aspect.
- the thermal expansion coefficient of the lens barrel is the amount of inorganic fibers contained or the inorganic fibers. It is adjusted by changing the orientation.
- the amount of thermal expansion of the lens barrel can be adjusted to the amount of thermal expansion of the housing component by adjusting the amount of inorganic fibers contained or the direction of the inorganic fibers.
- the lens unit according to the twelfth aspect of the present disclosure is the lens unit according to any one of the first to tenth aspects, and the lens barrel is made of at least two kinds of resin materials.
- the thermal expansion coefficient of the lens barrel When adjusting the thermal expansion coefficient of the lens barrel by adjusting the content of inorganic fibers, there is a limit to the adjustment range, and when adjusting the thermal expansion coefficient of the lens barrel by adjusting the orientation of inorganic fibers It takes time and effort to adjust the gate position.
- the thermal expansion coefficient of the lens barrel can be adjusted by mixing a plurality of types of resin materials having different thermal expansion coefficients. . For this reason, compared with the case where the content of inorganic fiber and the orientation of inorganic fiber are adjusted, the thermal expansion coefficient can be easily adjusted.
- the lens unit according to the thirteenth aspect of the present disclosure is a lens unit according to any one of the first to twelfth aspects and is mounted on a vehicle-mounted camera or a surveillance camera.
- the lens unit of the present disclosure is installed in cameras that are exposed to high temperatures and difficult to maintain imaging performance, such as in-vehicle cameras installed in the car and surveillance cameras installed outdoors. Particularly useful as a lens unit.
- the Z direction indicates a direction horizontal to the optical axis, that is, the optical axis direction
- the Y direction indicates a direction perpendicular to the optical axis, that is, the optical axis vertical direction or radial direction.
- the lens unit 10 is exposed to high temperatures such as a surveillance camera installed outdoors or an in-vehicle camera installed inside a vehicle, and is difficult to maintain imaging performance. Mounted on the camera used. As shown in FIG. 1, the lens unit 10 includes a lens barrel 12, an accommodating component 14 accommodated in the lens barrel 12, and an imaging module 16 fixed to the lens barrel 12.
- the lens barrel 12 is a cylinder having the optical axis direction (Z direction) as the central axis direction, and is configured by injection molding a resin material containing inorganic fibers (hereinafter referred to as “inorganic-containing resin”).
- inorganic-containing resin a resin material containing inorganic fibers
- the inorganic fiber include glass fiber, carbon fiber, inorganic filler, and the like, and the strength of the lens barrel 12 is increased by the inorganic fiber.
- the orientation of the inorganic fibers is substantially the same as the optical axis direction.
- the resin material is less likely to expand in the direction horizontal to the fiber direction as compared to the direction perpendicular to the fiber direction of the inorganic fiber.
- the lens barrel 12 has a thermal expansion coefficient in the direction perpendicular to the optical axis that is greater than the thermal expansion coefficient in the optical axis direction.
- the thermal expansion coefficient in the optical axis direction of the lens barrel 12 is about 10 ppm to 30 ppm, and the thermal expansion coefficient in the direction perpendicular to the optical axis is about 50 ppm to 60 ppm.
- polyamide for example, polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyethylene, syndiotactic polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamide
- imide polyetherimide, polyetheretherketone, acrylonitrile butadiene distyrene, polyolefin, and each modified polymer, or a polymer alloy containing at least one selected from the group. it can.
- the lens barrel 12 is more preferably made of at least two kinds of resin materials having different thermal expansion coefficients among the above resin materials. By constituting the lens barrel 12 with two or more kinds of resin materials mixed together, the thermal expansion coefficient of the lens barrel 12 can be adjusted.
- the resin material used is preferably black, and the resin material preferably contains a black pigment or a black dye.
- the inner peripheral surface 12A of the lens barrel 12 can be made black, and more visible light can be reflected on the inner peripheral surface 12A of the lens barrel 12. It can be effectively suppressed.
- the lens barrel 12 has a cylindrical portion 18 having an opening 18A on one end side (left end side in FIG. 1) in the optical axis direction that is the light incident side, and the other optical axis direction other end side that is the light emission side of the cylindrical portion 18. And a bottom wall portion 20 that covers (the right end side in FIG. 1).
- a caulking portion 18B that is bent toward the inside in the radial direction of the lens barrel 12 by heat caulking is formed at the peripheral portion of the opening 18A of the tube portion 18 of the lens barrel 12, and the opening is opened in the state after the heat caulking.
- the portion 18A has a circular shape when viewed from the optical axis direction.
- an opening 20A having an inner diameter smaller than the opening 18A is formed through the bottom wall 20 of the lens barrel in the optical axis direction.
- the inner peripheral surface 12A of the lens barrel 12 is circular when viewed from the optical axis direction, and the inner diameter gradually decreases from one end side of the lens barrel 12 in the optical axis direction toward the other end side in the optical axis direction. Yes.
- An accommodating portion 22 for accommodating the accommodating component 14 is formed between the opening 18A and the opening 20A in the lens barrel 12.
- the housing component 14 includes, as an example, a first lens 24, a second lens 26, a third lens 28, and a first lens disposed in order from one end side in the optical axis direction in the housing portion 22 of the lens barrel 12.
- 4 lenses 30 and a fifth lens 32 (hereinafter, the first lens 24 to the fifth lens 32 may be collectively referred to as “lenses 24, 26, 28, 30, 32”).
- a spacing ring 34 is provided between the first lens 24 and the second lens 26, the second lens 26 and the third lens 28, and the fourth lens 30 and the fifth lens 32 in the housing portion 22 of the lens barrel 12.
- the first lens 24 and the second lens 26 are made of a glass material, and each has a circular shape when viewed from the optical axis direction.
- the thermal expansion coefficient in the optical axis direction and the thermal expansion coefficient in the optical axis vertical direction of the first lens 24 and the second lens 26 made of a glass material are uniform, and the first lens 24 and the second lens 26 have a uniform thermal expansion coefficient.
- the thermal expansion coefficient is smaller than the thermal expansion coefficient in the optical axis direction of the lens barrel 12.
- the thermal expansion coefficients of the first lens 24 and the second lens 26 are about 7 ppm.
- the first lens 24 is a plano-convex lens in which one end surface in the optical axis direction is a convex surface and the other end surface in the optical axis direction is a flat surface 24C, and the outer peripheral surface is recessed inward in the radial direction of the first lens 24.
- a stepped portion 24A is formed.
- a rubber seal material 40 is fitted over the entire circumference of the stepped portion 24A.
- the second lens 26 includes a lens portion 26A and a peripheral edge portion 26B projecting radially outward from the lens portion 26A.
- the lens portion 26A of the second lens 26 is, for example, an aspherical convex lens in which both end surfaces in the optical axis direction are aspherical convex surfaces. Further, both end surfaces in the optical axis direction of the peripheral edge portion 26B of the second lens 26 are flat surfaces 26C extending in a direction perpendicular to the optical axis direction.
- the third lens 28, the fourth lens 30, and the fifth lens 32 are made of a resin material and each have a circular shape when viewed from the optical axis direction.
- the third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material have a uniform thermal expansion coefficient in the optical axis direction and a thermal expansion coefficient in the direction perpendicular to the optical axis.
- the thermal expansion coefficients of the fourth lens 30 and the fifth lens 32 are larger than the thermal expansion coefficient in the optical axis direction of the lens barrel 12.
- the thermal expansion coefficients of the third lens 28, the fourth lens 30, and the fifth lens 32 are about 70 ppm.
- the third lens 28, the fourth lens 30, and the fifth lens 32 include lens portions 28A, 30A, and 32A, and peripheral portions 28B and 30B that protrude outward in the radial direction from the lens portions 28A, 30A, and 32A. 32B.
- the lens portion 28A of the third lens 28 and the lens portion 32A of the fifth lens 32 are planoconvex lenses in which one end surface in the optical axis direction is a convex surface and the other end surface in the optical axis direction is a horizontal surface.
- the lens portion 30A of the fourth lens 30 is a biconvex lens in which both end surfaces in the optical axis direction are convex surfaces.
- both end surfaces in the optical axis direction of the peripheral portions 28B, 30B, and 32B of the third lens 28, the fourth lens 30, and the fifth lens 32 are flat surfaces 28C, 30C that extend in a direction perpendicular to the optical axis direction, respectively.
- the third lens 28 and the fourth lens 30 are in contact with each other at the flat surfaces 28C and 30C.
- the spacing rings 34, 36, and 38 are annular members as viewed from the optical axis direction, and are made of an inorganic-containing resin as an example.
- the resin material and the inorganic fiber constituting the spacing rings 34, 36, and 38 the same material as the resin material and the inorganic fiber constituting the lens barrel 12 may be used, or different materials may be used.
- the spacing rings 34, 36, 38 may be made of a metal material such as aluminum.
- the thermal expansion coefficient of the spacing rings 34, 36, 38 is, for example, about 23 ppm.
- one or two of the spacing rings 34, 36, and 38 may be made of an inorganic-containing resin, and the other may be made of a metal material.
- Both end surfaces in the optical axis direction of the spacing rings 34, 36, and 38 are flat surfaces 34A, 36A, and 38A extending in a direction perpendicular to the optical axis direction, respectively.
- the flat surface 34A of the spacing ring 34 abuts on the flat surface 24C of the first lens 24 and the flat surface 26C of the second lens 26, respectively, so that the first lens 24 and the second lens 26 in the optical axis direction are in contact with each other.
- the interval is specified.
- the flat surface 36A of the spacing ring 36 comes into contact with the flat surface 26C of the second lens 26 and the flat surface 28C of the third lens 28, so that the second lens 26 and the third lens 28 in the optical axis direction are in contact with each other.
- the interval is specified.
- the flat surface 38A of the spacing ring 38 abuts on the flat surface 30C of the fourth lens 30 and the flat surface 32C of the fifth lens 32, respectively, so that the distance between the fourth lens 30 and the fifth lens 32 in the optical axis direction. Is stipulated.
- the sum of the thermal expansion amounts of the housing component 14 in the optical axis direction is equal to the thermal expansion amount of the lens barrel 12 in the optical axis direction.
- the thermal expansion amounts of the third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material having the largest thermal expansion amount in the direction perpendicular to the optical axis are the optical axes of the lens barrel 12. The amount of thermal expansion in the vertical direction is made equal.
- the length in the optical axis direction of the housing portion 22 of the lens barrel 12 when the external temperature of the lens unit 10 is room temperature (40 ° C. as an example) is P1
- the housing portion 22 (mirror The width in the direction perpendicular to the optical axis of the smallest inner diameter portion of the cylinder 12 is defined as Q1.
- the total length of the housing component 14 in the optical axis direction that is, the first lens 24, the second lens 26, the third lens 28, the fourth lens 30, the fifth lens 32, and the interval rings 34, 36, 38.
- the sum of the lengths R1, R2, R3, R4, R5, R6, R7, and R8 in the optical axis direction is S1
- the width of the fifth lens 32 in the optical axis vertical direction is T1.
- the length in the optical axis direction of the housing portion 22 of the lens barrel 12 when the external temperature of the lens unit 10 is high is P2, and the housing portion 22 (of the lens barrel 12).
- the width in the direction perpendicular to the optical axis of the minimum inner diameter portion is Q2.
- the total sum of the lengths of the housing components 14 in the optical axis direction is S2, and the width of the fifth lens 32 in the optical axis vertical direction is T2.
- the sum of the thermal expansion amounts of the housing component 14 in the optical axis direction that is, the difference S2-S1 in the optical axis direction of the housing component 14 at high temperature and room temperature is the heat in the optical axis direction of the lens barrel 12.
- the amount of expansion that is, the difference P2-P1 in length in the optical axis direction of the lens barrel 12 at high temperature and at room temperature is made equal.
- the amount of thermal expansion in the optical axis direction is equal means that the thermal expansion amount in the optical axis direction of the barrel 12 from the sum S2-S1 of the thermal expansion amounts in the optical axis direction of the housing component 14. This means that the difference in thermal expansion (S2 ⁇ S1) ⁇ (P2 ⁇ P1) minus P2 ⁇ P1 is within ⁇ 15 ⁇ m.
- the “middle end model” refers to a model having the performance of about 1.3M or more pixels.
- the difference in thermal expansion (S2-S1)-(P2-P1) obtained by subtracting the thermal expansion amount P2-P1 in the optical axis direction of the lens barrel 12 from the sum S2-S1 of the thermal expansion amounts in the optical axis direction of the housing component 14 ) Is more preferably 0 ⁇ m or more and 10 ⁇ m or less.
- the “high-end model” refers to a model having a performance of about 2.0M or more.
- the thermal expansion amount of the fifth lens 32 (and the third lens 28 and the fourth lens 30) in the direction perpendicular to the optical axis that is, the fifth lens 32 (and the third lens 28 and the fourth lens 30 at high temperature and room temperature).
- a thermal expansion amount in the vertical direction of the optical axis of the lens barrel 12 that is, a difference in width Q2-Q1 in the vertical direction of the optical axis of the lens barrel 12 at high temperature and room temperature. Is equal to.
- the amount of thermal expansion in the direction perpendicular to the optical axis is equal means that the lens made of a resin material, that is, the third lens 28, the fourth lens 30, and the fifth lens 32 in the direction perpendicular to the optical axis.
- the difference in thermal expansion (T2-T1)-(Q2-Q1) obtained by subtracting the thermal expansion amount Q2-Q1 in the direction perpendicular to the optical axis of the lens barrel 12 from the thermal expansion amount T2-T1 in FIG. Say that.
- the resolution of the lens unit 10 can be increased, and the lens unit 10 having a resolution compatible with the middle end model can be obtained.
- Q1 is 0 ⁇ m or more and 10 ⁇ m or less.
- the imaging module 16 converts light (image of the object M shown in FIGS. 2A and 2B) that has reached through the housing component 14 into an electrical signal, and is a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device). ) It has an image sensor 16A such as an image sensor.
- the converted electrical signal is converted into analog data or digital data, which is image data.
- the imaging module 16 is supported by a holder (not shown) and is fixed to the other end side (light emission side) in the optical axis direction from the bottom wall portion 20 of the barrel 12, and the imaging element 16 ⁇ / b> A is located inside the barrel 12. It is arranged at the imaging point of the optical system of the housing component 14.
- the caulking portion 18B is formed by heat caulking the peripheral portion of the opening 18A of the tube portion 18 of the barrel 12 with a jig (not shown).
- the housing component 14 is fixed in the housing portion 22 of the lens barrel 12 by the crimping portion 18B.
- the imaging module 16 is fixed to the lens barrel 12 by a holder (not shown).
- the thermal expansion amount of the lens barrel 12 in the optical axis direction is made equal to the total thermal expansion amount of the housing component 14 in the optical axis direction. For this reason, it is possible to suppress the interval between the lenses 24, 26, 28, 30, and 32 and the occurrence of compressive stress in the lenses 24, 26, 28, 30, and 32.
- the thermal expansion amount in the direction perpendicular to the optical axis of the lens barrel 12 is made equal to the thermal expansion amount in the direction perpendicular to the optical axis of the third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material. For this reason, it can suppress that the axis
- the thermal expansion amount in the optical axis direction of the lens barrel 12 and the sum of the thermal expansion amounts in the optical axis direction of the housing component 14 are equalized, and the thermal expansion amount in the direction perpendicular to the optical axis of the lens barrel 12 is
- the third lens 28, the fourth lens 30, and the fifth lens 32 have the same amount of thermal expansion in the direction perpendicular to the optical axis.
- the positional deviation of the lenses 24, 26, 28, 30, and 32 is further increased. It can suppress, and it can suppress more that compressive stress arises in lenses 24, 26, 28, 30, and 32. Thereby, the fall of the resolution of the lens unit 10 can be suppressed, and it becomes useful especially as the lens unit 10 mounted in the vehicle-mounted camera, the surveillance camera installed outdoors, etc.
- the thermal expansion coefficient of the lens barrel 12 in the direction perpendicular to the optical axis is set to be larger than the thermal expansion coefficient in the optical axis direction. For this reason, thermal expansion in the direction perpendicular to the optical axis can be allowed while suppressing thermal expansion in the optical axis direction of the lens barrel 12.
- thermal expansion coefficient (thermal expansion amount) of the lens barrel 12 for example, a method of changing the amount of inorganic fibers contained or the orientation of the inorganic fibers can be mentioned. Moreover, the method of changing the kind or mixing ratio of the resin material which comprises the lens-barrel 12 is mentioned.
- the material and the number of the lenses 24, 26, 28, 30, and 32 are changed, or between the lenses 24, 26, 28, 30, and 32 And the like (the length of the spacing rings 34, 36, 38 in the optical axis direction).
- the thermal expansion coefficient in the optical axis direction of the lens barrel 12 is smaller than that of the third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material, and the first lens 24 made of a glass material, the first lens 24, and the like. 2 is larger than the lens 26.
- the amount of thermal expansion of the lenses 28, 30, 32 made of resin material can be made from glass material.
- the total amount of thermal expansion in the optical axis direction of the housing component 14 can be matched with the thermal expansion amount in the optical axis direction of the lens barrel 12 by canceling with the thermal expansion amounts of the lenses 24 and 26.
- the spacing rings 34, 36, 38 made of an inorganic-containing resin are made of a metal material, the amount or orientation of the contained inorganic fibers is adjusted, or the types of resin materials that make up the spacing rings 34, 36, 38 Alternatively, by changing the mixing ratio, the amount of thermal expansion of the spacing rings 34, 36, 38 can be adjusted, and the total amount of thermal expansion in the optical axis direction of the housing component 14 can be adjusted.
- the lenses 24, 26, 28, 30, 32 and the spacing rings 34, 36, 38 are flat surfaces 24 ⁇ / b> C, 26 ⁇ / b> C, extending in the direction perpendicular to the optical axis in the housing portion 22 of the lens barrel 12.
- 28C, 30C, 32C, 34A, 36A, and 38A are in surface contact with each other.
- the lenses 24, 26, 28, 30, 32 and the interval rings 34, 36, 38 are in point contact with each other, and the lenses 24, 26, 28, 30, 32, or the intervals during thermal expansion.
- the concentration of stress at one point of the rings 34, 36, 38 can be suppressed, and the lenses 24, 26, 28, 30, 32 or the spacing rings 34, 36, 38 can be prevented from being inclined with respect to the optical axis. be able to.
- the housing component 14 has five lenses 24, 26, 28, 30, and 32, but the number of lenses is not limited to five.
- the first lens 24 and the second lens 26 may be made of a resin material, and the third lens 28, the fourth lens 30, and the fifth lens 32 may be made of a glass material.
- the number of the spacing rings 34, 36, 38 and the number of sealing members 40 is not limited to the above embodiment, and a fixing (not shown) is provided between the lenses 24, 26, 28, 30, 32 and the spacing rings 34, 36, 38.
- a member may be provided.
- the fixing member is, for example, a thin film made of black resin (polyethylene terephthalate) attached to the flat surfaces 24C, 26C, 28C, 30C, and 32C of the lenses 24, 26, 28, 30, and 32.
- a diaphragm member and a light shielding plate may be provided.
- the thermal expansion amount in the optical axis direction of the lens barrel 12 and the sum of the thermal expansion amounts in the optical axis direction of the housing component 14 are equalized, and the thermal expansion in the vertical direction of the optical axis of the lens barrel 12 is made.
- the amount of thermal expansion of the third lens 28, the fourth lens 30, and the fifth lens 32 in the direction perpendicular to the optical axis was made equal.
- one of the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction may be equalized. By making either one equal, it is possible to suppress a decrease in resolution of the lens unit 10 as compared with a configuration in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction are not equal.
- the lenses 24, 26, 28, 30, 32 and the spacing rings 34, 36, 38 are in surface contact with each other on the flat surfaces 24C, 26C, 28C, 30C, 32C, 34A, 36A, 38A. It was. However, for example, a plurality of convex portions may be formed to protrude from the flat surfaces 34A, 36A, 38A of the spacing rings 34, 36, 38, and the convex portions may be in contact with the lenses 24, 26, 28, 30, 32.
- the contact portion is compared with the configuration in which surface contact is made. That is, it becomes easy to increase the dimensional accuracy of the tip of the convex portion, and the compressive stress generated in the lenses 24, 26, 28, 30, 32 can be reduced.
- the inner peripheral surface 12A of the lens barrel 12 is circular as viewed from the optical axis direction.
- the inner peripheral surface 12A of the lens barrel 12 is polygonal when viewed from the optical axis direction, and the inner peripheral surface 12A of the lens barrel 12 and the outer peripheral surfaces of the lenses 24, 26, 28, 30, 32 are brought into multipoint contact. It is good also as a structure.
- the thermal expansion in the direction perpendicular to the optical axis of the lenses 24, 26, 28, 30, and 32 is greater than in the configuration in which the entire inner peripheral surface 12 A is in surface contact with the lenses 24, 26, 28, 30, and 32. Restraining by the lens barrel 12 can suppress the occurrence of compressive stress in the lenses 24, 26, 28, 30, and 32.
- Comparative Example 1 a lens unit in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the vertical direction of the optical axis are not equal is used.
- the lens unit includes a lens barrel made of a kind of inorganic-containing resin, a lens made of a resin material, a lens made of a glass material, and a housing part including a spacing ring made of a resin material.
- Example 1 In Example 1, a lens unit in which only the amount of thermal expansion in the direction perpendicular to the optical axis was made equal was used.
- the lens barrel of the lens unit is made of two kinds of inorganic-containing resins, and the configuration other than the lens barrel is the same as that of the lens unit of Comparative Example 1.
- the amount of thermal expansion in the direction perpendicular to the optical axis of the lens barrel was adjusted to the amount of thermal expansion in the direction perpendicular to the optical axis of the lens made of a resin material by adjusting the content of inorganic fibers in the lens barrel.
- Example 2 a lens unit in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction are both equal is used.
- the interval ring of the lens unit is made of an inorganic-containing resin, and the configuration other than the interval ring is the same as that of the lens unit of the first embodiment.
- the thermal expansion amount in the optical axis direction of the housing component is matched with the thermal expansion amount in the optical axis direction of the lens barrel. It was.
- Example 3 In Example 3, in addition to the conditions of Example 1, a lens unit in which the thermal expansion amount in the optical axis direction of the housing component is matched with the thermal expansion amount in the optical axis direction of the barrel by using an aluminum spacing ring. Using. The configuration other than the interval ring is the same as that of the lens units of the first and second embodiments.
- the thermal expansion amounts of the lens barrel, the interval ring, and the lens are calculated by multiplying the lengths of the lens barrel, the interval ring, and the lens by the thermal expansion coefficients of the lens barrel, the interval ring, and the lens, respectively.
- the coefficient of thermal expansion is the amount of dimensional change in the optical axis direction and the optical axis vertical direction when the external temperature is changed from 23 ° C. to 125 ° C. for the lens barrel, the spacing ring, and the lens that are actually molded. Is calculated by converting the dimensional change amount into a dimensional change rate per unit temperature.
- the amount of resolution degradation before and after the heat resistance test of the lens unit was evaluated by the following procedure. First, the resolution of the lens unit before the heat resistance test is measured. Next, the lens unit is stored in a thermostatic apparatus at 105 ° C. or 125 ° C. for 1000 hours, further taken out to room temperature and allowed to stand for 2 hours, and then the resolution is measured. This is the resolution after the heat resistance test. For the 15 lens units, the amount of resolution deterioration after the heat resistance test is calculated before the heat resistance test, and the amount of deterioration of the lens unit with the largest amount of deterioration is adopted as the evaluation value of the resolution deterioration amount. The resolution in this evaluation was performed using an MTF (Modulation transfer function) measuring machine, and the MTF value measured at a spatial frequency of 60 lp / mm at the central field angle of the lens unit was used as the resolution evaluation value.
- MTF Modulation transfer function
- the lens unit in which only the thermal expansion amount in the optical axis vertical direction is equal is compared with the lens unit in which both the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction are not equal. It can be seen that a decrease (degradation) in resolution is suppressed.
- the resolution degradation amount in the heat resistance test at 125 ° C. was compared.
- evaluation A when the resolution degradation amount is -10% to -40%, evaluation B, and when the resolution degradation amount is -40% to -60% Evaluation C was designated.
- the evaluation A has the same performance as when all the lenses of the housing component are made of a glass material.
- the comparison results are shown in Table 2.
- the lens unit in which the thermal expansion amount in the optical axis direction in addition to the thermal expansion amount in the optical axis vertical direction is equal is compared with the lens unit in which only the thermal expansion amount in the optical axis vertical direction is equal, It can be seen that the reduction (degradation) of the resolution is further suppressed.
- Lens unit 12 Lens barrel 12A Inner peripheral surface 14 Accommodating part 16 Imaging module 16A Imaging element 18 Cylinder part 18A Opening part 18B Caulking part 20 Bottom wall part 20A Opening part 22 Receiving part 24 First lens 24A Step part 24C Flat surface 26 First 2 lens 26A lens part 26B peripheral part 26C flat surface 28 third lens 28A lens part 28B peripheral part 28C flat surface 30 fourth lens 30A lens part 30B peripheral part 30C flat surface 32 fifth lens 32A lens part 32B peripheral part 32C flat surface 34 Space ring 34A Flat surface 36 Space ring 36A Flat surface 38 Space ring 38A Flat surface 40 Sealing material
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lens Barrels (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
Abstract
This lens unit has: a cylindrical lens barrel formed from a resin material which contains inorganic fibers; and contained components including a plurality of lenses contained in the lens barrel while being arranged side by side in the optical axis direction, at least one of the lenses being formed from a resin material. The amount of thermal expansion of the lens barrel in the optical axis direction is set equal to the sum of the amounts of thermal expansion of the contained components in the optical axis direction, or the amount of thermal expansion of the lens barrel in the direction perpendicular to the optical axis direction is set equal to the amount of the thermal expansion, in the direction perpendicular to the optical axis direction, of the lens formed from the resin material.
Description
本開示は、レンズユニットに関する。
This disclosure relates to a lens unit.
近年、低コスト化や成形性などの観点から、レンズユニットの鏡筒又はレンズを樹脂材料で構成することが試みられている。例えば、特開2016-184081号公報には、ガラス繊維(無機繊維)で強化された樹脂材料で構成された鏡筒を有するレンズユニットが開示されている。
In recent years, attempts have been made to construct the lens barrel or lens of a lens unit from a resin material from the viewpoint of cost reduction and moldability. For example, Japanese Unexamined Patent Application Publication No. 2016-184081 discloses a lens unit having a lens barrel made of a resin material reinforced with glass fibers (inorganic fibers).
しかしながら、樹脂材料から成る鏡筒は、一般的にアルミ等の金属から成る鏡筒と比較して熱膨張係数が大きく、特に鏡筒が無機繊維を含有する樹脂材料から成る場合には、成形時の樹脂材料が流れる方向とそれに直交する方向とで熱膨張係数に異方性が生じる。このため、外部温度の上昇によって鏡筒及び鏡筒内に収容されたレンズ等の収容部品が熱膨張した際に、例えば鏡筒の熱膨張量が収容部品の熱膨張量より大きい場合には、レンズ間の間隔が広がることによりレンズの位置がずれる虞がある。
However, a lens barrel made of a resin material generally has a larger coefficient of thermal expansion than a lens barrel made of a metal such as aluminum, and particularly when the lens barrel is made of a resin material containing inorganic fibers, Anisotropy occurs in the coefficient of thermal expansion between the direction in which the resin material flows and the direction perpendicular thereto. For this reason, when the housing part such as the lens and the lens housed in the lens barrel is thermally expanded due to a rise in external temperature, for example, when the thermal expansion amount of the lens barrel is larger than the thermal expansion amount of the housing component, There is a possibility that the position of the lens may be shifted due to an increase in the distance between the lenses.
一方、例えば収容部品の熱膨張量が鏡筒の熱膨張量より大きい場合には、レンズに圧縮応力が生じることでレンズが塑性変形し易く、外部温度が室温に戻った際にレンズ間に間隔が空くことでレンズの位置がずれる虞がある。特に、収容部品であるレンズが樹脂材料から成る場合、鏡筒とレンズとの熱膨張量差により、レンズの熱膨張が鏡筒によって拘束されることでレンズに圧縮応力が生じ易い。
On the other hand, for example, when the thermal expansion amount of the housing component is larger than the thermal expansion amount of the lens barrel, a compression stress is generated in the lens, so that the lens is easily plastically deformed, and the interval between the lenses is reduced when the external temperature returns to room temperature. There is a possibility that the position of the lens is shifted due to the clearance. In particular, when the lens that is the housing component is made of a resin material, the lens is easily subjected to compressive stress due to the thermal expansion of the lens being restrained by the lens barrel due to the difference in thermal expansion between the lens barrel and the lens.
本開示は、上記事実を考慮して、外部温度の上昇時にレンズに圧縮応力が生じることを抑制することができるレンズユニットを提供することを目的とする。
The present disclosure is intended to provide a lens unit that can suppress the occurrence of compressive stress in the lens when the external temperature rises in consideration of the above facts.
本開示の第1態様に係るレンズユニットは、無機繊維を含有する樹脂材料から成る筒状の鏡筒と、鏡筒内に光軸方向に並んで収容された複数のレンズを含み、少なくとも1枚のレンズが樹脂材料から成る収容部品と、を有し、鏡筒の光軸方向における熱膨張量は、収容部品の光軸方向における熱膨張量の総和と等しくされている。
A lens unit according to a first aspect of the present disclosure includes a cylindrical lens barrel made of a resin material containing an inorganic fiber, and a plurality of lenses housed in the lens barrel side by side in the optical axis direction. The lens has a housing component made of a resin material, and the thermal expansion amount of the lens barrel in the optical axis direction is equal to the sum of the thermal expansion amounts of the housing component in the optical axis direction.
特に鏡筒が無機繊維を含有する樹脂材料から成る場合、鏡筒の熱膨張係数に異方性が生じるため、収容部品であるレンズの位置がずれたり、レンズの熱膨張が鏡筒によって拘束されることでレンズに圧縮応力が生じたりし易い。
In particular, when the lens barrel is made of a resin material containing inorganic fibers, anisotropy occurs in the thermal expansion coefficient of the lens barrel, so that the position of the lens as the housing component is shifted, or the thermal expansion of the lens is restricted by the lens barrel. This tends to cause compressive stress on the lens.
ここで、上記構成によれば、鏡筒の光軸方向における熱膨張量を収容部品の光軸方向における熱膨張量の総和と等しくすることで、レンズ間に間隔が空いたり、レンズに圧縮応力が生じたりすることを抑制することができる。なお、「光軸方向における熱膨張量が等しくされている」とは、熱膨張量差が±15μm以内とされていることをいう。また、熱膨張量は、部材の長さに部材の熱膨張係数を乗じることによって算出される。
Here, according to the above configuration, by making the thermal expansion amount in the optical axis direction of the lens barrel equal to the sum of the thermal expansion amounts in the optical axis direction of the housing components, there is a space between the lenses or compression stress on the lenses. Can be prevented from occurring. Note that “the amount of thermal expansion in the optical axis direction is equal” means that the difference in the amount of thermal expansion is within ± 15 μm. The amount of thermal expansion is calculated by multiplying the length of the member by the coefficient of thermal expansion of the member.
本開示の第2態様に係るレンズユニットは、無機繊維を含有する樹脂材料から成る筒状の鏡筒と、鏡筒内に光軸方向に並んで収容された複数のレンズを含み、少なくとも1枚のレンズが樹脂材料から成る収容部品と、を有し、鏡筒の光軸方向における熱膨張量は、収容部品の光軸方向における熱膨張量の総和と等しく、かつ、鏡筒の光軸方向に垂直な方向における熱膨張量は、樹脂材料から成るレンズの光軸方向に垂直な方向における熱膨張量と等しくされている。
A lens unit according to a second aspect of the present disclosure includes a cylindrical lens barrel made of a resin material containing inorganic fibers, and a plurality of lenses accommodated in the optical axis direction in the lens barrel, and includes at least one lens The lens is made of a resin material, and the amount of thermal expansion in the optical axis direction of the barrel is equal to the sum of the amounts of thermal expansion in the optical axis direction of the barrel, and the optical axis direction of the barrel The amount of thermal expansion in the direction perpendicular to is equal to the amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens made of a resin material.
上記構成によれば、鏡筒の光軸方向における熱膨張量が、収容部品の光軸方向における熱膨張量の総和と等しくされ、鏡筒の光軸方向に垂直な方向における熱膨張量が、樹脂材料から成るレンズの光軸方向に垂直な方向における熱膨張量と等しくされている。このため、光軸方向の熱膨張量及び光軸に垂直な方向の熱膨張量のどちらか一方のみを等しくする構成と比較して、レンズのずれをより抑制することができ、レンズに圧縮応力が生じることをより抑制することができる。
According to the above configuration, the thermal expansion amount in the optical axis direction of the lens barrel is equal to the sum of the thermal expansion amounts in the optical axis direction of the housing component, and the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel is The amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens made of a resin material is made equal. For this reason, lens displacement can be further suppressed and compression stress applied to the lens compared to a configuration in which only one of the thermal expansion amount in the optical axis direction and the thermal expansion amount in the direction perpendicular to the optical axis is made equal. Can be further suppressed.
本開示の第3態様に係るレンズユニットは、第1態様又は第2態様に係るレンズユニットにおいて、収容部品の光軸方向における熱膨張量の総和から鏡筒の光軸方向における熱膨張量を差し引いた熱膨張量差は、0μm以上10μm以下とされている。
The lens unit according to the third aspect of the present disclosure is the lens unit according to the first aspect or the second aspect, wherein the thermal expansion amount in the optical axis direction of the lens barrel is subtracted from the total thermal expansion amount in the optical axis direction of the housing component. The difference in thermal expansion amount is set to 0 μm or more and 10 μm or less.
上記構成によれば、収容部品の光軸方向における熱膨張量の総和から鏡筒の光軸方向における熱膨張量を差し引いた熱膨張量差が、0μm以上10μm以下とされている。このため、熱膨張量差が0μmより小さい場合と比較してレンズの位置ずれを抑制することができ、熱膨張量差が10μmより大きい場合と比較してレンズに圧縮応力が生じることを抑制することができる。
According to the above configuration, the difference in thermal expansion amount obtained by subtracting the thermal expansion amount in the optical axis direction of the lens barrel from the total thermal expansion amount in the optical axis direction of the housing component is set to 0 μm or more and 10 μm or less. For this reason, the positional deviation of the lens can be suppressed as compared with the case where the difference in thermal expansion is smaller than 0 μm, and the occurrence of compressive stress in the lens is suppressed as compared with the case where the difference in thermal expansion is larger than 10 μm. be able to.
本開示の第4態様に係るレンズユニットは、無機繊維を含有する樹脂材料から成る筒状の鏡筒と、鏡筒内に光軸方向に並んで収容された複数のレンズを含み、少なくとも1枚のレンズが樹脂材料から成る収容部品と、を有し、鏡筒の光軸方向に垂直な方向における熱膨張量は、樹脂材料から成るレンズの光軸方向に垂直な方向における熱膨張量と等しくされている。
A lens unit according to a fourth aspect of the present disclosure includes a cylindrical lens barrel made of a resin material containing an inorganic fiber, and a plurality of lenses housed in the lens barrel side by side in the optical axis direction. The lens has a housing part made of a resin material, and the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel is equal to the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens made of the resin material. Has been.
上記構成によれば、鏡筒の光軸方向に垂直な方向における熱膨張量を樹脂材料から成るレンズの光軸方向に垂直な方向における熱膨張量と等しくすることで、レンズ同士の軸がずれたり、レンズに圧縮応力が生じたりすることを抑制することができる。なお、「光軸方向に垂直な方向における熱膨張量が等しくされている」とは、熱膨張量差が±10μm以内とされていることを言う。
According to the above configuration, by making the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel equal to the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens made of a resin material, the axes of the lenses are shifted. Or compressive stress is generated in the lens. Note that “the amount of thermal expansion in the direction perpendicular to the optical axis direction is equal” means that the difference in the amount of thermal expansion is within ± 10 μm.
本開示の第5態様に係るレンズユニットは、第4態様に係るレンズユニットにおいて、樹脂材料から成るレンズの光軸方向に垂直な方向における熱膨張量から鏡筒の光軸方向に垂直な方向における熱膨張量を差し引いた熱膨張量差は、0μm以上10μm以下とされている。
A lens unit according to a fifth aspect of the present disclosure is the lens unit according to the fourth aspect. In the lens unit according to the fourth aspect, the amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens made of a resin material in the direction perpendicular to the optical axis direction of the lens barrel. The difference in thermal expansion amount after subtracting the thermal expansion amount is set to 0 μm or more and 10 μm or less.
上記構成によれば、樹脂材料から成るレンズの光軸方向に垂直な方向における熱膨張量から鏡筒の光軸方向に垂直な方向における熱膨張量を差し引いた熱膨張量差が、0μm以上10μm以下とされている。このため、熱膨張量差が0μmより小さい場合と比較してレンズ同士の軸がずれることを抑制することができ、熱膨張量差が10μmより大きい場合と比較してレンズに圧縮応力が生じることを抑制することができる。
According to the above configuration, the difference in thermal expansion amount obtained by subtracting the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel from the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens made of the resin material is 0 μm or more and 10 μm. It is as follows. For this reason, it is possible to suppress the deviation of the axes of the lenses compared to the case where the difference in thermal expansion is smaller than 0 μm, and the compression stress is generated in the lens compared to the case where the difference in thermal expansion is larger than 10 μm. Can be suppressed.
本開示の第6態様に係るレンズユニットは、第1態様~第3態様のいずれか1つの態様に係るレンズユニットにおいて、収容部品は、ガラス材料から成るレンズを有している。
The lens unit according to the sixth aspect of the present disclosure is the lens unit according to any one of the first to third aspects, and the housing component includes a lens made of a glass material.
一般的に、ガラス材料から成るレンズは樹脂材料から成るレンズ及び鏡筒と比較して熱膨張係数が小さい。ここで、上記構成によれば、収容部品がガラス材料から成るレンズを有しているため、ガラス材料から成るレンズによって収容部品の光軸方向の熱膨張量の総和を調整することができる。
Generally, a lens made of a glass material has a smaller thermal expansion coefficient than a lens made of a resin material and a lens barrel. Here, since the housing component has a lens made of a glass material, the total thermal expansion amount of the housing component in the optical axis direction can be adjusted by the lens made of the glass material.
本開示の第7態様に係るレンズユニットは、第6態様に係るレンズユニットにおいて、鏡筒の光軸方向における熱膨張係数は、樹脂材料から成るレンズの光軸方向における熱膨張係数より小さく、かつガラス材料から成るレンズの光軸方向における熱膨張係数より大きい。
A lens unit according to a seventh aspect of the present disclosure is the lens unit according to the sixth aspect, wherein the thermal expansion coefficient in the optical axis direction of the lens barrel is smaller than the thermal expansion coefficient in the optical axis direction of the lens made of a resin material, and It is larger than the thermal expansion coefficient in the optical axis direction of a lens made of a glass material.
上記構成によれば、鏡筒の光軸方向における熱膨張係数が樹脂材料から成るレンズの光軸方向における熱膨張係数より小さく、ガラス材料から成るレンズの光軸方向における熱膨張係数より大きい。このため、ガラス材料から成るレンズと樹脂材料から成るレンズとで、鏡筒の熱膨張量に対する収容部品の光軸方向の熱膨張量の総和を調整することができる。
According to the above configuration, the thermal expansion coefficient in the optical axis direction of the lens barrel is smaller than the thermal expansion coefficient in the optical axis direction of the lens made of the resin material, and larger than the thermal expansion coefficient in the optical axis direction of the lens made of the glass material. For this reason, the total of the thermal expansion amount in the optical axis direction of the housing component relative to the thermal expansion amount of the lens barrel can be adjusted by the lens made of the glass material and the lens made of the resin material.
本開示の第8態様に係るレンズユニットは、第1態様~第3態様、第6態様、第7態様のいずれか1つの態様に係るレンズユニットにおいて、収容部品は、無機繊維を含有する樹脂材料から成り、かつ複数のレンズ間の間隔を規定する間隔環を有している。
The lens unit according to an eighth aspect of the present disclosure is the lens unit according to any one of the first aspect to the third aspect, the sixth aspect, and the seventh aspect. The housing component is a resin material containing inorganic fibers. And an interval ring for defining an interval between the plurality of lenses.
上記構成によれば、無機繊維を含有する樹脂材料から成る間隔環がレンズ間に設けられている。このため、間隔環の熱膨張量を調整することで、収容部品の光軸方向の熱膨張量の総和を調整することができる。
According to the above configuration, the spacing ring made of a resin material containing inorganic fibers is provided between the lenses. For this reason, the sum total of the thermal expansion amount of the optical component in the optical axis direction of the housing component can be adjusted by adjusting the thermal expansion amount of the spacing ring.
本開示の第9態様に係るレンズユニットは、第8態様に係るレンズユニットにおいて、レンズ又は間隔環は、光軸方向に垂直な方向に延びる平坦面を有しており、レンズと間隔環、又はレンズ同士は、平坦面で互いに接触している。
The lens unit according to the ninth aspect of the present disclosure is the lens unit according to the eighth aspect. The lens or the spacing ring has a flat surface extending in a direction perpendicular to the optical axis direction, and the lens and the spacing ring, or The lenses are in contact with each other on a flat surface.
上記構成によれば、レンズと間隔環、又はレンズ同士が光軸垂直方向に延びる平坦面で互いに面接触している。このため、レンズと間隔環、又はレンズ同士が互いに点接触している構成と比較して、レンズ又は間隔環の熱膨張時にレンズ又は間隔環の一点に応力が集中ことを抑制することができ、レンズ又は間隔環が光軸に対して傾くことを抑制することができる。
According to the above configuration, the lens and the spacing ring, or the lenses are in surface contact with each other on a flat surface extending in the direction perpendicular to the optical axis. For this reason, compared with the configuration in which the lens and the interval ring, or the lenses are in point contact with each other, it is possible to suppress stress concentration on one point of the lens or the interval ring at the time of thermal expansion of the lens or the interval ring. It can suppress that a lens or a space | interval ring inclines with respect to an optical axis.
本開示の第10態様に係るレンズユニットは、第1態様~第9態様のいずれか1つの態様に係るレンズユニットにおいて、鏡筒の光軸方向に垂直な方向における熱膨張係数は、鏡筒の光軸方向における熱膨張係数より大きい。
The lens unit according to a tenth aspect of the present disclosure is the lens unit according to any one of the first to ninth aspects, wherein the thermal expansion coefficient in a direction perpendicular to the optical axis direction of the lens barrel is It is larger than the thermal expansion coefficient in the optical axis direction.
上記構成によれば、鏡筒の光軸垂直方向の熱膨張係数が光軸方向の熱膨張係数より大きいため、鏡筒の光軸方向の熱膨張を抑制しつつ、光軸垂直方向の熱膨張を許容することができる。
According to the above configuration, the thermal expansion coefficient in the vertical direction of the optical axis of the lens barrel is larger than the thermal expansion coefficient in the optical axis direction of the lens barrel. Can be tolerated.
本開示の第11態様に係るレンズユニットは、第1態様~第10態様のいずれか1つの態様に係るレンズユニットにおいて、鏡筒の熱膨張係数は、含有されている無機繊維の量又は無機繊維の配向を変えることで調整される。
The lens unit according to an eleventh aspect of the present disclosure is the lens unit according to any one of the first aspect to the tenth aspect. The thermal expansion coefficient of the lens barrel is the amount of inorganic fibers contained or the inorganic fibers. It is adjusted by changing the orientation.
上記構成によれば、含有されている無機繊維の量又は無機繊維の方向を調整することで、鏡筒の熱膨張量を収容部品の熱膨張量に合わせることができる。
According to the above configuration, the amount of thermal expansion of the lens barrel can be adjusted to the amount of thermal expansion of the housing component by adjusting the amount of inorganic fibers contained or the direction of the inorganic fibers.
本開示の第12態様に係るレンズユニットは、第1態様~第10態様のいずれか1つの態様に係るレンズユニットであって、鏡筒は、少なくとも二種以上の樹脂材料から成る。
The lens unit according to the twelfth aspect of the present disclosure is the lens unit according to any one of the first to tenth aspects, and the lens barrel is made of at least two kinds of resin materials.
無機繊維の含有量を調整することで鏡筒の熱膨張係数を調整する場合には調整範囲に限界があり、無機繊維の配向を調整することで鏡筒の熱膨張係数を調整する場合にはゲートの位置を調整する等、手間がかかる。ここで、上記構成によれば、鏡筒が二種以上の樹脂材料から成るため、熱膨張係数の異なる複数の種類の樹脂材料を混合させることで鏡筒の熱膨張係数を調整することができる。このため、無機繊維の含有量や無機繊維の配向を調整する場合と比較して、熱膨張係数を容易に調整することができる。
When adjusting the thermal expansion coefficient of the lens barrel by adjusting the content of inorganic fibers, there is a limit to the adjustment range, and when adjusting the thermal expansion coefficient of the lens barrel by adjusting the orientation of inorganic fibers It takes time and effort to adjust the gate position. Here, according to the above configuration, since the lens barrel is made of two or more kinds of resin materials, the thermal expansion coefficient of the lens barrel can be adjusted by mixing a plurality of types of resin materials having different thermal expansion coefficients. . For this reason, compared with the case where the content of inorganic fiber and the orientation of inorganic fiber are adjusted, the thermal expansion coefficient can be easily adjusted.
本開示の第13態様に係るレンズユニットは、第1態様~第12態様のいずれか1つの態様に係るレンズユニットであって、車載用カメラ又は監視用カメラに搭載される。
The lens unit according to the thirteenth aspect of the present disclosure is a lens unit according to any one of the first to twelfth aspects and is mounted on a vehicle-mounted camera or a surveillance camera.
本開示のレンズユニットは、車内に設置される車載用カメラや屋外に設置される監視用カメラ等の、高温に晒される可能性があり結像性能の維持が難しい環境下で用いられるカメラに搭載されるレンズユニットとして特に有用である。
The lens unit of the present disclosure is installed in cameras that are exposed to high temperatures and difficult to maintain imaging performance, such as in-vehicle cameras installed in the car and surveillance cameras installed outdoors. Particularly useful as a lens unit.
本開示によれば、外部温度の上昇時にレンズに圧縮応力が生じることを抑制することができる。
According to the present disclosure, it is possible to suppress the occurrence of compressive stress in the lens when the external temperature increases.
以下、本開示に係るレンズユニットの実施形態の一例について、図1、図2A及び図2Bを用いて説明する。なお、図中において、Z方向は光軸に水平な方向、すなわち光軸方向を指し、Y方向は光軸に垂直な方向、すなわち光軸垂直方向あるいは径方向を指す。
Hereinafter, an example of an embodiment of a lens unit according to the present disclosure will be described with reference to FIGS. 1, 2A, and 2B. In the figure, the Z direction indicates a direction horizontal to the optical axis, that is, the optical axis direction, and the Y direction indicates a direction perpendicular to the optical axis, that is, the optical axis vertical direction or radial direction.
本実施形態におけるレンズユニット10は、例えば屋外に設置される監視用カメラや車両の内部に設置される車載用カメラ等の、高温に晒される可能性があり結像性能の維持が難しい環境下で用いられるカメラに搭載される。図1に示すように、レンズユニット10は、鏡筒12と、鏡筒12内に収容された収容部品14と、鏡筒12に固定された撮像モジュール16と、を備えている。
The lens unit 10 according to this embodiment is exposed to high temperatures such as a surveillance camera installed outdoors or an in-vehicle camera installed inside a vehicle, and is difficult to maintain imaging performance. Mounted on the camera used. As shown in FIG. 1, the lens unit 10 includes a lens barrel 12, an accommodating component 14 accommodated in the lens barrel 12, and an imaging module 16 fixed to the lens barrel 12.
<鏡筒の構成>
鏡筒12は、一例として、光軸方向(Z方向)を中心軸方向とする円筒であり、無機繊維を含有する樹脂材料(以下、「無機含有樹脂」という。)を射出成形することにより構成されている。無機繊維としては、例えばガラス繊維や炭素繊維、無機フィラー等が挙げられ、無機繊維によって鏡筒12の強度が高められている。 <Configuration of the lens barrel>
As an example, thelens barrel 12 is a cylinder having the optical axis direction (Z direction) as the central axis direction, and is configured by injection molding a resin material containing inorganic fibers (hereinafter referred to as “inorganic-containing resin”). Has been. Examples of the inorganic fiber include glass fiber, carbon fiber, inorganic filler, and the like, and the strength of the lens barrel 12 is increased by the inorganic fiber.
鏡筒12は、一例として、光軸方向(Z方向)を中心軸方向とする円筒であり、無機繊維を含有する樹脂材料(以下、「無機含有樹脂」という。)を射出成形することにより構成されている。無機繊維としては、例えばガラス繊維や炭素繊維、無機フィラー等が挙げられ、無機繊維によって鏡筒12の強度が高められている。 <Configuration of the lens barrel>
As an example, the
本実施形態の鏡筒12において、無機繊維の配向は光軸方向と略同一とされている。一般的に樹脂材料は、無機繊維の繊維方向に垂直な方向と比較して繊維方向に水平な方向は膨張し難い。このため、鏡筒12は、光軸垂直方向における熱膨張係数が光軸方向における熱膨張係数より大きくなっている。
In the lens barrel 12 of the present embodiment, the orientation of the inorganic fibers is substantially the same as the optical axis direction. Generally, the resin material is less likely to expand in the direction horizontal to the fiber direction as compared to the direction perpendicular to the fiber direction of the inorganic fiber. For this reason, the lens barrel 12 has a thermal expansion coefficient in the direction perpendicular to the optical axis that is greater than the thermal expansion coefficient in the optical axis direction.
なお、例えば鏡筒12の成形時に、樹脂射出用のゲートを撮像モジュール16側(光軸方向他端側)に形成し、樹脂材料を光軸方向に沿って流すことにより、無機繊維を光軸方向に配向させることができる。具体的には、例えば鏡筒12の光軸方向における熱膨張係数は10ppm~30ppm程度とされ、光軸垂直方向における熱膨張係数は50ppm~60ppm程度とされている。
For example, when the lens barrel 12 is molded, a resin injection gate is formed on the imaging module 16 side (the other end side in the optical axis direction), and the resin material is allowed to flow along the optical axis direction, whereby the inorganic fibers are moved along the optical axis. Can be oriented in the direction. Specifically, for example, the thermal expansion coefficient in the optical axis direction of the lens barrel 12 is about 10 ppm to 30 ppm, and the thermal expansion coefficient in the direction perpendicular to the optical axis is about 50 ppm to 60 ppm.
鏡筒12を構成する樹脂材料として、例えば、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、シンジオタクチックポリスチレン、ポリサルホン、ポリエーテルサルホン、ポリフェニレンスルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、アクリロニトリルブダジエンスチレン、ポリオレフィン、及び各々の変性ポリマーからなる群より選択される少なくとも一種、又は当該群から選択される少なくとも一種を含むポリマーアロイなどを用いることができる。
As a resin material constituting the lens barrel 12, for example, polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyethylene, syndiotactic polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, polyamide It is possible to use at least one selected from the group consisting of imide, polyetherimide, polyetheretherketone, acrylonitrile butadiene distyrene, polyolefin, and each modified polymer, or a polymer alloy containing at least one selected from the group. it can.
なお、鏡筒12は、上記の樹脂材料のうち、熱膨張係数の異なる少なくとも二種以上の樹脂材料で構成されていることがより好ましい。混ぜ合わされた二種以上の樹脂材料で鏡筒12を構成することにより、鏡筒12の熱膨張係数を調整することができる。
The lens barrel 12 is more preferably made of at least two kinds of resin materials having different thermal expansion coefficients among the above resin materials. By constituting the lens barrel 12 with two or more kinds of resin materials mixed together, the thermal expansion coefficient of the lens barrel 12 can be adjusted.
さらに、鏡筒12は、高い遮光性及び光吸収性が要求されるため、使用する樹脂材料は黒色であることが好ましく、上記の樹脂材料は黒色顔料又は黒色染料を含むことが好ましい。黒色顔料又は黒色染料を含む樹脂材料により鏡筒12を構成することにより、鏡筒12の内周面12Aを黒色とすることができ、鏡筒12の内周面12Aにおける可視光の反射をより有効に抑制することができる。
Furthermore, since the lens barrel 12 is required to have high light shielding properties and light absorption properties, the resin material used is preferably black, and the resin material preferably contains a black pigment or a black dye. By configuring the lens barrel 12 with a resin material containing a black pigment or a black dye, the inner peripheral surface 12A of the lens barrel 12 can be made black, and more visible light can be reflected on the inner peripheral surface 12A of the lens barrel 12. It can be effectively suppressed.
鏡筒12は、光の入射側である光軸方向一端側(図1における左端側)に開口部18Aを有する筒部18と、筒部18の光の出射側である光軸方向他端側(図1における右端側)を覆う底壁部20とを有している。
The lens barrel 12 has a cylindrical portion 18 having an opening 18A on one end side (left end side in FIG. 1) in the optical axis direction that is the light incident side, and the other optical axis direction other end side that is the light emission side of the cylindrical portion 18. And a bottom wall portion 20 that covers (the right end side in FIG. 1).
鏡筒12の筒部18の開口部18Aの周縁部分には、熱カシメにより鏡筒12の径方向内側に向けて屈曲されるカシメ部18Bが形成されており、熱カシメ後の状態において、開口部18Aは光軸方向から見て円形状とされている。一方、鏡筒の底壁部20には、開口部18Aよりも内径が小さい開口部20Aが光軸方向に貫通形成されている。
A caulking portion 18B that is bent toward the inside in the radial direction of the lens barrel 12 by heat caulking is formed at the peripheral portion of the opening 18A of the tube portion 18 of the lens barrel 12, and the opening is opened in the state after the heat caulking. The portion 18A has a circular shape when viewed from the optical axis direction. On the other hand, an opening 20A having an inner diameter smaller than the opening 18A is formed through the bottom wall 20 of the lens barrel in the optical axis direction.
鏡筒12の内周面12Aは、光軸方向から見て円形状とされており、鏡筒12の光軸方向一端側から光軸方向他端側へ向かって内径が段階的に小さくなっている。また、鏡筒12内の開口部18Aから開口部20Aまでの間には、収容部品14を収容する収容部22が形成されている。
The inner peripheral surface 12A of the lens barrel 12 is circular when viewed from the optical axis direction, and the inner diameter gradually decreases from one end side of the lens barrel 12 in the optical axis direction toward the other end side in the optical axis direction. Yes. An accommodating portion 22 for accommodating the accommodating component 14 is formed between the opening 18A and the opening 20A in the lens barrel 12.
<収容部品の構成>
図1に示すように、収容部品14は、一例として、鏡筒12の収容部22内に光軸方向一端側から順に配置された第1レンズ24、第2レンズ26、第3レンズ28、第4レンズ30、及び第5レンズ32を備えている(以下、第1レンズ24~第5レンズ32をまとめて「レンズ24、26、28、30、32」と呼ぶことがある。)。 <Configuration of housing parts>
As illustrated in FIG. 1, thehousing component 14 includes, as an example, a first lens 24, a second lens 26, a third lens 28, and a first lens disposed in order from one end side in the optical axis direction in the housing portion 22 of the lens barrel 12. 4 lenses 30 and a fifth lens 32 (hereinafter, the first lens 24 to the fifth lens 32 may be collectively referred to as “ lenses 24, 26, 28, 30, 32”).
図1に示すように、収容部品14は、一例として、鏡筒12の収容部22内に光軸方向一端側から順に配置された第1レンズ24、第2レンズ26、第3レンズ28、第4レンズ30、及び第5レンズ32を備えている(以下、第1レンズ24~第5レンズ32をまとめて「レンズ24、26、28、30、32」と呼ぶことがある。)。 <Configuration of housing parts>
As illustrated in FIG. 1, the
また、鏡筒12の収容部22内における第1レンズ24と第2レンズ26、第2レンズ26と第3レンズ28、第4レンズ30と第5レンズ32の間には、それぞれ間隔環34、36、38が設けられている。
In addition, between the first lens 24 and the second lens 26, the second lens 26 and the third lens 28, and the fourth lens 30 and the fifth lens 32 in the housing portion 22 of the lens barrel 12, a spacing ring 34, respectively. 36 and 38 are provided.
第1レンズ24及び第2レンズ26は、一例として、ガラス材料から成り、光軸方向から見てそれぞれ円形状とされている。なお、ガラス材料から成る第1レンズ24及び第2レンズ26の光軸方向における熱膨張係数と光軸垂直方向における熱膨張係数は一様とされており、第1レンズ24及び第2レンズ26の熱膨張係数は、鏡筒12の光軸方向における熱膨張係数より小さくなっている。具体的には、例えば第1レンズ24及び第2レンズ26の熱膨張係数は7ppm程度とされている。
As an example, the first lens 24 and the second lens 26 are made of a glass material, and each has a circular shape when viewed from the optical axis direction. Note that the thermal expansion coefficient in the optical axis direction and the thermal expansion coefficient in the optical axis vertical direction of the first lens 24 and the second lens 26 made of a glass material are uniform, and the first lens 24 and the second lens 26 have a uniform thermal expansion coefficient. The thermal expansion coefficient is smaller than the thermal expansion coefficient in the optical axis direction of the lens barrel 12. Specifically, for example, the thermal expansion coefficients of the first lens 24 and the second lens 26 are about 7 ppm.
第1レンズ24は、一例として、光軸方向一端面が凸面、光軸方向他端面が平坦面24Cとされた平凸レンズとされており、外周面には第1レンズ24の径方向内側に窪んだ段差部24Aが形成されている。なお、図2A、図2Bに示すように、段差部24Aには、全周にわたってゴム製のシール材40が嵌められている。
For example, the first lens 24 is a plano-convex lens in which one end surface in the optical axis direction is a convex surface and the other end surface in the optical axis direction is a flat surface 24C, and the outer peripheral surface is recessed inward in the radial direction of the first lens 24. A stepped portion 24A is formed. As shown in FIGS. 2A and 2B, a rubber seal material 40 is fitted over the entire circumference of the stepped portion 24A.
図1に示すように、第2レンズ26は、レンズ部26Aと、レンズ部26Aから径方向外側に張り出された周縁部26Bとを備えている。なお、第2レンズ26のレンズ部26Aは、一例として、光軸方向両端面がともに非球面の凸面とされた非球面凸レンズとされている。また、第2レンズ26の周縁部26Bの光軸方向における両端面は、それぞれ光軸方向に垂直な方向に延びる平坦面26Cとされている。
As shown in FIG. 1, the second lens 26 includes a lens portion 26A and a peripheral edge portion 26B projecting radially outward from the lens portion 26A. The lens portion 26A of the second lens 26 is, for example, an aspherical convex lens in which both end surfaces in the optical axis direction are aspherical convex surfaces. Further, both end surfaces in the optical axis direction of the peripheral edge portion 26B of the second lens 26 are flat surfaces 26C extending in a direction perpendicular to the optical axis direction.
第3レンズ28、第4レンズ30、及び第5レンズ32は、一例として、樹脂材料から成り、光軸方向から見てそれぞれ円形状とされている。なお、樹脂材料から成る第3レンズ28、第4レンズ30、及び第5レンズ32の光軸方向における熱膨張係数と光軸垂直方向における熱膨張係数は一様とされており、第3レンズ28、第4レンズ30、及び第5レンズ32の熱膨張係数は、鏡筒12の光軸方向における熱膨張係数より大きくなっている。具体的には、例えば第3レンズ28、第4レンズ30、及び第5レンズ32の熱膨張係数は70ppm程度とされている。
As an example, the third lens 28, the fourth lens 30, and the fifth lens 32 are made of a resin material and each have a circular shape when viewed from the optical axis direction. The third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material have a uniform thermal expansion coefficient in the optical axis direction and a thermal expansion coefficient in the direction perpendicular to the optical axis. The thermal expansion coefficients of the fourth lens 30 and the fifth lens 32 are larger than the thermal expansion coefficient in the optical axis direction of the lens barrel 12. Specifically, for example, the thermal expansion coefficients of the third lens 28, the fourth lens 30, and the fifth lens 32 are about 70 ppm.
また、第3レンズ28、第4レンズ30、及び第5レンズ32は、レンズ部28A、30A、32Aと、レンズ部28A、30A、32Aから径方向外側に張り出された周縁部28B、30B、32Bと、をそれぞれ備えている。
The third lens 28, the fourth lens 30, and the fifth lens 32 include lens portions 28A, 30A, and 32A, and peripheral portions 28B and 30B that protrude outward in the radial direction from the lens portions 28A, 30A, and 32A. 32B.
第3レンズ28のレンズ部28A、及び第5レンズ32のレンズ部32Aは、一例として、光軸方向一端面が凸面、光軸方向他端面が水平面とされた平凸レンズとされている。第4レンズ30のレンズ部30Aは、一例として、光軸方向両端面が凸面とされた両凸レンズとされている。
As an example, the lens portion 28A of the third lens 28 and the lens portion 32A of the fifth lens 32 are planoconvex lenses in which one end surface in the optical axis direction is a convex surface and the other end surface in the optical axis direction is a horizontal surface. As an example, the lens portion 30A of the fourth lens 30 is a biconvex lens in which both end surfaces in the optical axis direction are convex surfaces.
また、第3レンズ28、第4レンズ30、及び第5レンズ32の周縁部28B、30B、32Bの光軸方向における両端面は、それぞれ光軸方向に垂直な方向に延びる平坦面28C、30C、32Cとされており、第3レンズ28と第4レンズ30は平坦面28C、30Cで互いに当接している。
In addition, both end surfaces in the optical axis direction of the peripheral portions 28B, 30B, and 32B of the third lens 28, the fourth lens 30, and the fifth lens 32 are flat surfaces 28C, 30C that extend in a direction perpendicular to the optical axis direction, respectively. The third lens 28 and the fourth lens 30 are in contact with each other at the flat surfaces 28C and 30C.
間隔環34、36、38は、光軸方向から見て環状の部材であり、一例として無機含有樹脂から成る。間隔環34、36、38を構成する樹脂材料及び無機繊維は、鏡筒12を構成する樹脂材料及び無機繊維と同じ材料を用いてもよく、また、異なる材料を用いてもよい。
The spacing rings 34, 36, and 38 are annular members as viewed from the optical axis direction, and are made of an inorganic-containing resin as an example. As the resin material and the inorganic fiber constituting the spacing rings 34, 36, and 38, the same material as the resin material and the inorganic fiber constituting the lens barrel 12 may be used, or different materials may be used.
具体的には、鏡筒12と同様に、間隔環34、36、38を構成する樹脂材料として、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、シンジオタクチックポリスチレン、ポリサルホン、ポリエーテルサルホン、ポリフェニレンスルファイド、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、アクリロニトリルブダジエンスチレン、ポリオレフィン、及び各々の変性ポリマーからなる群より選択される少なくとも一種、又は当該群から選択される少なくとも一種を含むポリマーアロイ等を用いることができる。
Specifically, as in the case of the lens barrel 12, as a resin material constituting the spacing rings 34, 36, 38, polyamide, polyacetal, polycarbonate, polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polyethylene, syndiotactic polystyrene, polysulfone , Polyethersulfone, polyphenylene sulfide, polyarylate, polyamide imide, polyether imide, polyether ether ketone, acrylonitrile budadiene styrene, polyolefin, and each modified polymer, or at least one selected from the group A polymer alloy containing at least one selected can be used.
なお、間隔環34、36、38は、アルミ等の金属材料で構成されていてもよく、この場合、間隔環34、36、38の熱膨張係数は、例えば23ppm程度とされる。また、間隔環34、36、38のうち、1つ又は2つを無機含有樹脂で構成し、その他を金属材料で構成してもよい。
The spacing rings 34, 36, 38 may be made of a metal material such as aluminum. In this case, the thermal expansion coefficient of the spacing rings 34, 36, 38 is, for example, about 23 ppm. Further, one or two of the spacing rings 34, 36, and 38 may be made of an inorganic-containing resin, and the other may be made of a metal material.
間隔環34、36、38の光軸方向両端面は、それぞれ光軸方向に垂直な方向に延びる平坦面34A、36A、38Aとされている。これにより、間隔環34の平坦面34Aが第1レンズ24の平坦面24C及び第2レンズ26の平坦面26Cにそれぞれ当接することで、光軸方向における第1レンズ24と第2レンズ26との間隔を規定している。
Both end surfaces in the optical axis direction of the spacing rings 34, 36, and 38 are flat surfaces 34A, 36A, and 38A extending in a direction perpendicular to the optical axis direction, respectively. Thereby, the flat surface 34A of the spacing ring 34 abuts on the flat surface 24C of the first lens 24 and the flat surface 26C of the second lens 26, respectively, so that the first lens 24 and the second lens 26 in the optical axis direction are in contact with each other. The interval is specified.
同様に、間隔環36の平坦面36Aが第2レンズ26の平坦面26C及び第3レンズ28の平坦面28Cにそれぞれ当接することで、光軸方向における第2レンズ26と第3レンズ28との間隔を規定している。また、間隔環38の平坦面38Aが第4レンズ30の平坦面30C及び第5レンズ32の平坦面32Cにそれぞれ当接することで、光軸方向における第4レンズ30と第5レンズ32との間隔を規定している。
Similarly, the flat surface 36A of the spacing ring 36 comes into contact with the flat surface 26C of the second lens 26 and the flat surface 28C of the third lens 28, so that the second lens 26 and the third lens 28 in the optical axis direction are in contact with each other. The interval is specified. Further, the flat surface 38A of the spacing ring 38 abuts on the flat surface 30C of the fourth lens 30 and the flat surface 32C of the fifth lens 32, respectively, so that the distance between the fourth lens 30 and the fifth lens 32 in the optical axis direction. Is stipulated.
ここで、収容部品14の光軸方向における熱膨張量の総和は、鏡筒12の光軸方向における熱膨張量と等しくされている。また、収容部品14のうち、光軸垂直方向における熱膨張量が最も大きい樹脂材料から成る第3レンズ28、第4レンズ30、及び第5レンズ32の熱膨張量は、鏡筒12の光軸垂直方向における熱膨張量と等しくされている。
Here, the sum of the thermal expansion amounts of the housing component 14 in the optical axis direction is equal to the thermal expansion amount of the lens barrel 12 in the optical axis direction. In addition, among the housing components 14, the thermal expansion amounts of the third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material having the largest thermal expansion amount in the direction perpendicular to the optical axis are the optical axes of the lens barrel 12. The amount of thermal expansion in the vertical direction is made equal.
具体的には、図2Aに示すように、レンズユニット10の外部温度が室温(一例として40℃)時の鏡筒12の収容部22の光軸方向における長さをP1、収容部22(鏡筒12の最小内径部分)の光軸垂直方向における幅をQ1とする。また、収容部品14の光軸方向における長さの総和、すなわち第1レンズ24、第2レンズ26、第3レンズ28、第4レンズ30、及び第5レンズ32、及び間隔環34、36、38の光軸方向における長さR1、R2、R3、R4、R5、R6、R7、R8の総和をS1、第5レンズ32の光軸垂直方向における幅をT1とする。
Specifically, as shown in FIG. 2A, the length in the optical axis direction of the housing portion 22 of the lens barrel 12 when the external temperature of the lens unit 10 is room temperature (40 ° C. as an example) is P1, and the housing portion 22 (mirror The width in the direction perpendicular to the optical axis of the smallest inner diameter portion of the cylinder 12 is defined as Q1. Further, the total length of the housing component 14 in the optical axis direction, that is, the first lens 24, the second lens 26, the third lens 28, the fourth lens 30, the fifth lens 32, and the interval rings 34, 36, 38. The sum of the lengths R1, R2, R3, R4, R5, R6, R7, and R8 in the optical axis direction is S1, and the width of the fifth lens 32 in the optical axis vertical direction is T1.
一方、図2Bに示すように、レンズユニット10の外部温度が高温(一例として125℃)時の鏡筒12の収容部22の光軸方向における長さをP2、収容部22(鏡筒12の最小内径部分)の光軸垂直方向における幅をQ2とする。また、収容部品14の光軸方向における長さの総和をS2、第5レンズ32の光軸垂直方向における幅をT2とする。
On the other hand, as shown in FIG. 2B, the length in the optical axis direction of the housing portion 22 of the lens barrel 12 when the external temperature of the lens unit 10 is high (for example, 125 ° C.) is P2, and the housing portion 22 (of the lens barrel 12). The width in the direction perpendicular to the optical axis of the minimum inner diameter portion) is Q2. Further, the total sum of the lengths of the housing components 14 in the optical axis direction is S2, and the width of the fifth lens 32 in the optical axis vertical direction is T2.
このとき、収容部品14の光軸方向における熱膨張量の総和、すなわち高温時と室温時の収容部品14の光軸方向における長さの差S2-S1は、鏡筒12の光軸方向における熱膨張量、すなわち高温時と室温時の鏡筒12の光軸方向における長さの差P2-P1と等しくされている。
At this time, the sum of the thermal expansion amounts of the housing component 14 in the optical axis direction, that is, the difference S2-S1 in the optical axis direction of the housing component 14 at high temperature and room temperature is the heat in the optical axis direction of the lens barrel 12. The amount of expansion, that is, the difference P2-P1 in length in the optical axis direction of the lens barrel 12 at high temperature and at room temperature is made equal.
本実施形態において、「光軸方向における熱膨張量が等しくされている」とは、収容部品14の光軸方向における熱膨張量の総和S2-S1から鏡筒12の光軸方向における熱膨張量P2-P1を差し引いた熱膨張量差(S2-S1)-(P2-P1)が、±15μm以内とされていることを言う。
In the present embodiment, “the amount of thermal expansion in the optical axis direction is equal” means that the thermal expansion amount in the optical axis direction of the barrel 12 from the sum S2-S1 of the thermal expansion amounts in the optical axis direction of the housing component 14. This means that the difference in thermal expansion (S2−S1) − (P2−P1) minus P2−P1 is within ± 15 μm.
光軸方向における熱膨張量差が±15μm以内とされていることで、レンズユニット10の解像度を高めることができ、ミドルエンドモデルに対応可能な解像度を有するレンズユニット10とすることができる。ここで、「ミドルエンドモデル」とは、画素数が1.3M程度以上の性能を有しているものを指す。
Since the difference in thermal expansion in the optical axis direction is within ± 15 μm, the resolution of the lens unit 10 can be increased, and the lens unit 10 having a resolution compatible with the middle end model can be obtained. Here, the “middle end model” refers to a model having the performance of about 1.3M or more pixels.
なお、収容部品14の光軸方向における熱膨張量の総和S2-S1から鏡筒12の光軸方向における熱膨張量P2-P1を差し引いた熱膨張量差(S2-S1)-(P2-P1)は、0μm以上10μm以下とされていることがより好ましい。光軸方向における熱膨張量差を0μm以上10μm以下とすることで、熱膨張量差が0μmより小さい場合と比較して鏡筒12内でのレンズ24、26、28、30、32の位置ずれを抑制することができる。
Note that the difference in thermal expansion (S2-S1)-(P2-P1) obtained by subtracting the thermal expansion amount P2-P1 in the optical axis direction of the lens barrel 12 from the sum S2-S1 of the thermal expansion amounts in the optical axis direction of the housing component 14 ) Is more preferably 0 μm or more and 10 μm or less. By setting the difference in thermal expansion in the optical axis direction to 0 μm or more and 10 μm or less, the positional deviation of the lenses 24, 26, 28, 30, and 32 in the lens barrel 12 compared to the case where the difference in thermal expansion is smaller than 0 μm. Can be suppressed.
また、熱膨張量差が10μmより大きい場合と比較してレンズ24、26、28、30、32に圧縮応力が生じることを抑制することができる。これにより、レンズユニット10の解像度を高めることができ、ハイエンドモデルに対応可能な解像度を有するレンズユニット10とすることができる。ここで、「ハイエンドモデル」とは、画素数が2.0M程度以上の性能を有しているものを指す。
Further, it is possible to suppress the occurrence of compressive stress in the lenses 24, 26, 28, 30, and 32 as compared with the case where the difference in thermal expansion is larger than 10 μm. Thereby, the resolution of the lens unit 10 can be increased, and the lens unit 10 having a resolution compatible with a high-end model can be obtained. Here, the “high-end model” refers to a model having a performance of about 2.0M or more.
また、第5レンズ32(及び第3レンズ28、第4レンズ30)の光軸垂直方向における熱膨張量、すなわち高温時と室温時の第5レンズ32(及び第3レンズ28、第4レンズ30)の光軸垂直方向における幅の差T2-T1は、鏡筒12の光軸垂直方向における熱膨張量、すなわち高温時と室温時の鏡筒12の光軸垂直方向における幅の差Q2-Q1と等しくされている。
Further, the thermal expansion amount of the fifth lens 32 (and the third lens 28 and the fourth lens 30) in the direction perpendicular to the optical axis, that is, the fifth lens 32 (and the third lens 28 and the fourth lens 30 at high temperature and room temperature). ) In the vertical direction of the optical axis of the lens barrel 12 is a thermal expansion amount in the vertical direction of the optical axis of the lens barrel 12, that is, a difference in width Q2-Q1 in the vertical direction of the optical axis of the lens barrel 12 at high temperature and room temperature. Is equal to.
本実施形態において、「光軸垂直方向における熱膨張量が等しくされている」とは、樹脂材料から成るレンズ、すなわち第3レンズ28、第4レンズ30、及び第5レンズ32の光軸垂直方向における熱膨張量T2-T1から鏡筒12の光軸垂直方向における熱膨張量Q2-Q1を差し引いた熱膨張量差(T2-T1)-(Q2-Q1)が、±10μm以内とされていることを言う。
In the present embodiment, “the amount of thermal expansion in the direction perpendicular to the optical axis is equal” means that the lens made of a resin material, that is, the third lens 28, the fourth lens 30, and the fifth lens 32 in the direction perpendicular to the optical axis. The difference in thermal expansion (T2-T1)-(Q2-Q1) obtained by subtracting the thermal expansion amount Q2-Q1 in the direction perpendicular to the optical axis of the lens barrel 12 from the thermal expansion amount T2-T1 in FIG. Say that.
光軸垂直方向における熱膨張量差が±10μm以内とされていることで、レンズユニット10の解像度を高めることができ、ミドルエンドモデルに対応可能な解像度を有するレンズユニット10とすることができる。
Since the difference in thermal expansion in the direction perpendicular to the optical axis is within ± 10 μm, the resolution of the lens unit 10 can be increased, and the lens unit 10 having a resolution compatible with the middle end model can be obtained.
なお、第5レンズ32の光軸垂直方向における熱膨張量T2-T1から鏡筒12の光軸垂直方向における熱膨張量Q2-Q1を差し引いた熱膨張量差(T2-T1)-(Q2-Q1)は、0μm以上10μm以下とされていることがより好ましい。光軸垂直方向における熱膨張量差を0μm以上10μm以下とすることで、熱膨張量差が0μmより小さい場合と比較して鏡筒12内でレンズ24、26、28、30、32同士の軸がずれることを抑制することができる。
Note that the difference in thermal expansion (T2-T1) − (Q2−) obtained by subtracting the thermal expansion amount Q2−Q1 in the optical axis vertical direction of the lens barrel 12 from the thermal expansion amount T2−T1 in the optical axis vertical direction of the fifth lens 32. More preferably, Q1) is 0 μm or more and 10 μm or less. By setting the difference in thermal expansion in the direction perpendicular to the optical axis to be 0 μm or more and 10 μm or less, the axes of the lenses 24, 26, 28, 30, and 32 in the lens barrel 12 are compared with the case where the difference in thermal expansion is less than 0 μm. Can be prevented from shifting.
また、熱膨張量差が10μmより大きい場合と比較してレンズ24、26、28、30、32に圧縮応力が生じることを抑制することができる。これにより、レンズユニット10の解像度を高めることができ、ハイエンドモデルに対応可能な解像度を有するレンズユニット10とすることができる。
Further, it is possible to suppress the occurrence of compressive stress in the lenses 24, 26, 28, 30, and 32 as compared with the case where the difference in thermal expansion is larger than 10 μm. Thereby, the resolution of the lens unit 10 can be increased, and the lens unit 10 having a resolution compatible with a high-end model can be obtained.
<撮像モジュールの構成>
撮像モジュール16は、収容部品14を通して到達した光(図2A、図2Bに示す物体Mの像)を電気信号に変換するものであり、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)イメージセンサ等の撮像素子16Aを有している。なお、変換された電気信号は、画像データであるアナログデータやデジタルデータに変換される。 <Configuration of imaging module>
Theimaging module 16 converts light (image of the object M shown in FIGS. 2A and 2B) that has reached through the housing component 14 into an electrical signal, and is a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device). ) It has an image sensor 16A such as an image sensor. The converted electrical signal is converted into analog data or digital data, which is image data.
撮像モジュール16は、収容部品14を通して到達した光(図2A、図2Bに示す物体Mの像)を電気信号に変換するものであり、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)イメージセンサ等の撮像素子16Aを有している。なお、変換された電気信号は、画像データであるアナログデータやデジタルデータに変換される。 <Configuration of imaging module>
The
また、撮像モジュール16は、図示しないホルダによって支持されて鏡筒12の底壁部20より光軸方向他端側(光の出射側)に固定されており、撮像素子16Aは鏡筒12内における収容部品14の光学系の結像点に配置されている。
The imaging module 16 is supported by a holder (not shown) and is fixed to the other end side (light emission side) in the optical axis direction from the bottom wall portion 20 of the barrel 12, and the imaging element 16 </ b> A is located inside the barrel 12. It is arranged at the imaging point of the optical system of the housing component 14.
<組立方法>
レンズユニット10を組立てる場合、図1に示すように、鏡筒12の収容部22内に底壁部20側(光軸方向他端側)から順に、第5レンズ32、間隔環38、第4レンズ30、第3レンズ28、間隔環36、第2レンズ26、間隔環34、シール材40が嵌められた第1レンズ24が嵌め込まれる。このとき、シール材40が径方向に圧縮されることで、第1レンズ24と鏡筒12の内周面12Aとの隙間が密閉される。 <Assembly method>
When assembling thelens unit 10, as shown in FIG. 1, the fifth lens 32, the spacing ring 38, and the fourth in order from the bottom wall 20 side (the other end side in the optical axis direction) in the housing portion 22 of the barrel 12. The lens 30, the third lens 28, the spacing ring 36, the second lens 26, the spacing ring 34, and the first lens 24 fitted with the sealing material 40 are fitted. At this time, the gap between the first lens 24 and the inner peripheral surface 12A of the lens barrel 12 is sealed by compressing the sealing material 40 in the radial direction.
レンズユニット10を組立てる場合、図1に示すように、鏡筒12の収容部22内に底壁部20側(光軸方向他端側)から順に、第5レンズ32、間隔環38、第4レンズ30、第3レンズ28、間隔環36、第2レンズ26、間隔環34、シール材40が嵌められた第1レンズ24が嵌め込まれる。このとき、シール材40が径方向に圧縮されることで、第1レンズ24と鏡筒12の内周面12Aとの隙間が密閉される。 <Assembly method>
When assembling the
その後、図示しない治具によって鏡筒12の筒部18の開口部18Aの周縁部分を熱カシメすることにより、カシメ部18Bを形成する。このとき、カシメ部18Bにより、収容部品14が鏡筒12の収容部22内に固定される。また、撮像モジュール16を図示しないホルダによって鏡筒12に固定する。
Thereafter, the caulking portion 18B is formed by heat caulking the peripheral portion of the opening 18A of the tube portion 18 of the barrel 12 with a jig (not shown). At this time, the housing component 14 is fixed in the housing portion 22 of the lens barrel 12 by the crimping portion 18B. Further, the imaging module 16 is fixed to the lens barrel 12 by a holder (not shown).
<作用及び効果>
<Action and effect>
本実施形態によれば、鏡筒12の光軸方向における熱膨張量が収容部品14の光軸方向における熱膨張量の総和と等しくされている。このため、レンズ24、26、28、30、32間に間隔が空いたり、レンズ24、26、28、30、32に圧縮応力が生じたりすることを抑制することができる。
According to the present embodiment, the thermal expansion amount of the lens barrel 12 in the optical axis direction is made equal to the total thermal expansion amount of the housing component 14 in the optical axis direction. For this reason, it is possible to suppress the interval between the lenses 24, 26, 28, 30, and 32 and the occurrence of compressive stress in the lenses 24, 26, 28, 30, and 32.
また、鏡筒12の光軸垂直方向における熱膨張量が樹脂材料から成る第3レンズ28、第4レンズ30、及び第5レンズ32の光軸垂直方向における熱膨張量と等しくされている。このため、レンズ24、26、28、30、32同士の軸がずれたり、レンズ24、26、28、30、32に圧縮応力が生じたりすることを抑制することができる。
Further, the thermal expansion amount in the direction perpendicular to the optical axis of the lens barrel 12 is made equal to the thermal expansion amount in the direction perpendicular to the optical axis of the third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material. For this reason, it can suppress that the axis | shaft of lenses 24, 26, 28, 30, and 32 shift | deviates, and that a compressive stress arises in the lenses 24, 26, 28, 30, and 32.
本実施形態では、鏡筒12の光軸方向における熱膨張量と収容部品14の光軸方向における熱膨張量の総和とが等しくされるとともに、鏡筒12の光軸垂直方向における熱膨張量と第3レンズ28、第4レンズ30、及び第5レンズ32の光軸垂直方向における熱膨張量とが等しくされている。
In the present embodiment, the thermal expansion amount in the optical axis direction of the lens barrel 12 and the sum of the thermal expansion amounts in the optical axis direction of the housing component 14 are equalized, and the thermal expansion amount in the direction perpendicular to the optical axis of the lens barrel 12 is The third lens 28, the fourth lens 30, and the fifth lens 32 have the same amount of thermal expansion in the direction perpendicular to the optical axis.
このため、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量のどちらか一方のみが等しくされている構成と比較して、レンズ24、26、28、30、32の位置ずれをより抑制することができ、レンズ24、26、28、30、32に圧縮応力が生じることをより抑制することができる。これにより、レンズユニット10の解像度の低下を抑制することができ、車載用カメラや屋外に設置される監視用カメラ等に搭載されるレンズユニット10として特に有用となる。
For this reason, as compared with the configuration in which only one of the thermal expansion amount in the optical axis direction and the thermal expansion amount in the vertical direction of the optical axis is equal, the positional deviation of the lenses 24, 26, 28, 30, and 32 is further increased. It can suppress, and it can suppress more that compressive stress arises in lenses 24, 26, 28, 30, and 32. Thereby, the fall of the resolution of the lens unit 10 can be suppressed, and it becomes useful especially as the lens unit 10 mounted in the vehicle-mounted camera, the surveillance camera installed outdoors, etc.
また、本実施形態によれば、鏡筒12の光軸垂直方向の熱膨張係数が光軸方向の熱膨張係数より大きくされている。このため、鏡筒12の光軸方向の熱膨張を抑制しつつ、光軸垂直方向の熱膨張を許容することができる。
Further, according to the present embodiment, the thermal expansion coefficient of the lens barrel 12 in the direction perpendicular to the optical axis is set to be larger than the thermal expansion coefficient in the optical axis direction. For this reason, thermal expansion in the direction perpendicular to the optical axis can be allowed while suppressing thermal expansion in the optical axis direction of the lens barrel 12.
なお、鏡筒12の熱膨張係数(熱膨張量)を調整する方法としては、例えば、含有されている無機繊維の量又は無機繊維の配向を変える方法が挙げられる。また、鏡筒12を構成する樹脂材料の種類又は混合割合を変える方法が挙げられる。
In addition, as a method of adjusting the thermal expansion coefficient (thermal expansion amount) of the lens barrel 12, for example, a method of changing the amount of inorganic fibers contained or the orientation of the inorganic fibers can be mentioned. Moreover, the method of changing the kind or mixing ratio of the resin material which comprises the lens-barrel 12 is mentioned.
無機繊維の含有量を調整することで鏡筒12の熱膨張係数を調整する場合には調整範囲に限界があり、無機繊維の配向を調整することで鏡筒12の熱膨張係数を調整する場合には樹脂材料射出用のゲートの位置を調整する等、手間がかかる。ここで、二種以上の樹脂材料を混合させて鏡筒12を構成することで、無機繊維の含有量や無機繊維の配向を調整する場合と比較して、熱膨張係数を容易に調整することができる。
When adjusting the thermal expansion coefficient of the lens barrel 12 by adjusting the content of inorganic fibers, there is a limit to the adjustment range, and when adjusting the thermal expansion coefficient of the lens barrel 12 by adjusting the orientation of the inorganic fibers It takes time and effort to adjust the position of the gate for resin material injection. Here, it is possible to easily adjust the thermal expansion coefficient by mixing two or more kinds of resin materials and configuring the lens barrel 12 as compared with the case of adjusting the content of inorganic fibers and the orientation of inorganic fibers. Can do.
また、収容部品14の光軸方向における熱膨張量を調整する方法としては、例えばレンズ24、26、28、30、32の材料、数を変えたり、レンズ24、26、28、30、32間の間隔(間隔環34、36、38の光軸方向における長さ)を変えたりする方法が挙げられる。
Further, as a method of adjusting the thermal expansion amount of the housing component 14 in the optical axis direction, for example, the material and the number of the lenses 24, 26, 28, 30, and 32 are changed, or between the lenses 24, 26, 28, 30, and 32 And the like (the length of the spacing rings 34, 36, 38 in the optical axis direction).
具体的には、鏡筒12の光軸方向における熱膨張係数は、樹脂材料から成る第3レンズ28、第4レンズ30、及び第5レンズ32より小さく、ガラス材料から成る第1レンズ24、第2レンズ26より大きくされている。
Specifically, the thermal expansion coefficient in the optical axis direction of the lens barrel 12 is smaller than that of the third lens 28, the fourth lens 30, and the fifth lens 32 made of a resin material, and the first lens 24 made of a glass material, the first lens 24, and the like. 2 is larger than the lens 26.
このため、例えば樹脂材料から成るレンズ28、30、32と、ガラス材料から成るレンズ24、26の枚数を調整することで、樹脂材料から成るレンズ28、30、32の熱膨張量をガラス材料から成るレンズ24、26の熱膨張量で相殺し、収容部品14の光軸方向の熱膨張量の総和を鏡筒12の光軸方向における熱膨張量に合わせることができる。
For this reason, for example, by adjusting the number of lenses 28, 30, 32 made of resin material and the number of lenses 24, 26 made of glass material, the amount of thermal expansion of the lenses 28, 30, 32 made of resin material can be made from glass material. The total amount of thermal expansion in the optical axis direction of the housing component 14 can be matched with the thermal expansion amount in the optical axis direction of the lens barrel 12 by canceling with the thermal expansion amounts of the lenses 24 and 26.
また、無機含有樹脂から成る間隔環34、36、38を金属材料で構成する、含有されている無機繊維の量又は配向を調整する、又は間隔環34、36、38を構成する樹脂材料の種類又は混合割合を変えることにより、間隔環34、36、38の熱膨張量を調整し、収容部品14の光軸方向の熱膨張量の総和を調整することもできる。
Also, the spacing rings 34, 36, 38 made of an inorganic-containing resin are made of a metal material, the amount or orientation of the contained inorganic fibers is adjusted, or the types of resin materials that make up the spacing rings 34, 36, 38 Alternatively, by changing the mixing ratio, the amount of thermal expansion of the spacing rings 34, 36, 38 can be adjusted, and the total amount of thermal expansion in the optical axis direction of the housing component 14 can be adjusted.
また、本実施形態では、鏡筒12の収容部22内において、レンズ24、26、28、30、32と間隔環34、36、38とが、光軸垂直方向に延びる平坦面24C、26C、28C、30C、32C、34A、36A、38Aで互いに面接触している。
In the present embodiment, the lenses 24, 26, 28, 30, 32 and the spacing rings 34, 36, 38 are flat surfaces 24 </ b> C, 26 </ b> C, extending in the direction perpendicular to the optical axis in the housing portion 22 of the lens barrel 12. 28C, 30C, 32C, 34A, 36A, and 38A are in surface contact with each other.
このため、レンズ24、26、28、30、32と間隔環34、36、38とが互いに点接触している構成と比較して、熱膨張時にレンズ24、26、28、30、32又は間隔環34、36、38の一点に応力が集中することを抑制することができ、レンズ24、26、28、30、32又は間隔環34、36、38が光軸に対して傾くことを抑制することができる。
Therefore, the lenses 24, 26, 28, 30, 32 and the interval rings 34, 36, 38 are in point contact with each other, and the lenses 24, 26, 28, 30, 32, or the intervals during thermal expansion. The concentration of stress at one point of the rings 34, 36, 38 can be suppressed, and the lenses 24, 26, 28, 30, 32 or the spacing rings 34, 36, 38 can be prevented from being inclined with respect to the optical axis. be able to.
(その他の実施形態)
なお、本開示について実施形態の一例を説明したが、本開示はかかる実施形態に限定されるものではなく、本開示の範囲内にて他の種々の実施形態が可能である。 (Other embodiments)
In addition, although an example of embodiment was demonstrated about this indication, this indication is not limited to this embodiment, Other various embodiment is possible within the scope of this indication.
なお、本開示について実施形態の一例を説明したが、本開示はかかる実施形態に限定されるものではなく、本開示の範囲内にて他の種々の実施形態が可能である。 (Other embodiments)
In addition, although an example of embodiment was demonstrated about this indication, this indication is not limited to this embodiment, Other various embodiment is possible within the scope of this indication.
例えば、上記実施形態において、収容部品14は5枚のレンズ24、26、28、30、32を有していたが、レンズの数は5枚に限られない。また、第1レンズ24及び第2レンズ26が樹脂材料で構成されていてもよく、第3レンズ28、第4レンズ30、及び第5レンズ32がガラス材料で構成されていてもよい。
For example, in the above embodiment, the housing component 14 has five lenses 24, 26, 28, 30, and 32, but the number of lenses is not limited to five. The first lens 24 and the second lens 26 may be made of a resin material, and the third lens 28, the fourth lens 30, and the fifth lens 32 may be made of a glass material.
また、間隔環34、36、38、及びシール材40の数も上記実施形態には限られず、レンズ24、26、28、30、32と間隔環34、36、38との間に図示しない固定部材が設けられていてもよい。固定部材は、例えばレンズ24、26、28、30、32の平坦面24C、26C、28C、30C、32Cに取り付けられた、黒色の樹脂(ポリエチレンテレフタレート)製の薄膜とされている。その他、図示しない絞り部材や遮光板が設けられていてもよい。
Further, the number of the spacing rings 34, 36, 38 and the number of sealing members 40 is not limited to the above embodiment, and a fixing (not shown) is provided between the lenses 24, 26, 28, 30, 32 and the spacing rings 34, 36, 38. A member may be provided. The fixing member is, for example, a thin film made of black resin (polyethylene terephthalate) attached to the flat surfaces 24C, 26C, 28C, 30C, and 32C of the lenses 24, 26, 28, 30, and 32. In addition, a diaphragm member and a light shielding plate (not shown) may be provided.
また、上記実施形態では、鏡筒12の光軸方向における熱膨張量と収容部品14の光軸方向における熱膨張量の総和とが等しくされるとともに、鏡筒12の光軸垂直方向における熱膨張量と第3レンズ28、第4レンズ30、及び第5レンズ32の光軸垂直方向における熱膨張量とが等しくされていた。
Further, in the above embodiment, the thermal expansion amount in the optical axis direction of the lens barrel 12 and the sum of the thermal expansion amounts in the optical axis direction of the housing component 14 are equalized, and the thermal expansion in the vertical direction of the optical axis of the lens barrel 12 is made. The amount of thermal expansion of the third lens 28, the fourth lens 30, and the fifth lens 32 in the direction perpendicular to the optical axis was made equal.
しかし、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量のどちらか一方が等しくされていればよい。どちらか一方を等しくすることで、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量が等しくされていない構成と比較して、レンズユニット10の解像度の低下を抑制することができる。
However, one of the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction may be equalized. By making either one equal, it is possible to suppress a decrease in resolution of the lens unit 10 as compared with a configuration in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction are not equal.
また、上記実施形態では、レンズ24、26、28、30、32と間隔環34、36、38とが、平坦面24C、26C、28C、30C、32C、34A、36A、38Aで互いに面接触していた。しかし、例えば間隔環34、36、38の平坦面34A、36A、38Aに複数の凸部を突出形成し、凸部がレンズ24、26、28、30、32に当接する構成としてもよい。
In the above embodiment, the lenses 24, 26, 28, 30, 32 and the spacing rings 34, 36, 38 are in surface contact with each other on the flat surfaces 24C, 26C, 28C, 30C, 32C, 34A, 36A, 38A. It was. However, for example, a plurality of convex portions may be formed to protrude from the flat surfaces 34A, 36A, 38A of the spacing rings 34, 36, 38, and the convex portions may be in contact with the lenses 24, 26, 28, 30, 32.
間隔環34、36、38に凸部を形成してレンズ24、26、28、30、32と間隔環34、36、38とを点接触させることで、面接触させる構成と比較して接触部分、すなわち凸部の先端の寸法精度を高めることが容易となるとともに、レンズ24、26、28、30、32に生じる圧縮応力を低減させることができる。
By forming convex portions on the spacing rings 34, 36, 38 and making the lenses 24, 26, 28, 30, 32 and the spacing rings 34, 36, 38 make point contact, the contact portion is compared with the configuration in which surface contact is made. That is, it becomes easy to increase the dimensional accuracy of the tip of the convex portion, and the compressive stress generated in the lenses 24, 26, 28, 30, 32 can be reduced.
また、上記実施形態では、光軸方向から見て鏡筒12の内周面12Aが円形状とされていた。しかし、例えば光軸方向から見て鏡筒12の内周面12Aを多角形状とし、鏡筒12の内周面12Aとレンズ24、26、28、30、32の外周面とを多点接触させる構成としてもよい。
In the above embodiment, the inner peripheral surface 12A of the lens barrel 12 is circular as viewed from the optical axis direction. However, for example, the inner peripheral surface 12A of the lens barrel 12 is polygonal when viewed from the optical axis direction, and the inner peripheral surface 12A of the lens barrel 12 and the outer peripheral surfaces of the lenses 24, 26, 28, 30, 32 are brought into multipoint contact. It is good also as a structure.
これにより、内周面12A全体がレンズ24、26、28、30、32に面接触している構成と比較して、レンズ24、26、28、30、32の光軸垂直方向における熱膨張が鏡筒12によって拘束されることでレンズ24、26、28、30、32に圧縮応力が生じることを抑制することができる。
As a result, the thermal expansion in the direction perpendicular to the optical axis of the lenses 24, 26, 28, 30, and 32 is greater than in the configuration in which the entire inner peripheral surface 12 A is in surface contact with the lenses 24, 26, 28, 30, and 32. Restraining by the lens barrel 12 can suppress the occurrence of compressive stress in the lenses 24, 26, 28, 30, and 32.
以下に実施例を挙げて、本開示の実施形態の一例を詳細に説明する。本開示の実施形態の一例は、以下に示す実施例により限定的に解釈されるべきものではない。
Hereinafter, an example of the embodiment of the present disclosure will be described in detail with reference to examples. An example of the embodiment of the present disclosure should not be construed as being limited by the following example.
[比較例1]
比較例1では、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量がともに等しくされていないレンズユニットを用いた。レンズユニットは、一種の無機含有樹脂から成る鏡筒と、樹脂材料から成るレンズ、ガラス材料から成るレンズ、及び樹脂材料から成る間隔環を含む収容部品と、を有している。 [Comparative Example 1]
In Comparative Example 1, a lens unit in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the vertical direction of the optical axis are not equal is used. The lens unit includes a lens barrel made of a kind of inorganic-containing resin, a lens made of a resin material, a lens made of a glass material, and a housing part including a spacing ring made of a resin material.
比較例1では、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量がともに等しくされていないレンズユニットを用いた。レンズユニットは、一種の無機含有樹脂から成る鏡筒と、樹脂材料から成るレンズ、ガラス材料から成るレンズ、及び樹脂材料から成る間隔環を含む収容部品と、を有している。 [Comparative Example 1]
In Comparative Example 1, a lens unit in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the vertical direction of the optical axis are not equal is used. The lens unit includes a lens barrel made of a kind of inorganic-containing resin, a lens made of a resin material, a lens made of a glass material, and a housing part including a spacing ring made of a resin material.
[実施例1]
実施例1では、光軸垂直方向における熱膨張量のみが等しくされているレンズユニットを用いた。レンズユニットの鏡筒は二種の無機含有樹脂から成り、鏡筒以外の構成は比較例1のレンズユニットと同様とされている。具体的には、鏡筒の無機繊維の含有量を調整することにより、鏡筒の光軸垂直方向における熱膨張量を樹脂材料から成るレンズの光軸垂直方向における熱膨張量に合わせた。 [Example 1]
In Example 1, a lens unit in which only the amount of thermal expansion in the direction perpendicular to the optical axis was made equal was used. The lens barrel of the lens unit is made of two kinds of inorganic-containing resins, and the configuration other than the lens barrel is the same as that of the lens unit of Comparative Example 1. Specifically, the amount of thermal expansion in the direction perpendicular to the optical axis of the lens barrel was adjusted to the amount of thermal expansion in the direction perpendicular to the optical axis of the lens made of a resin material by adjusting the content of inorganic fibers in the lens barrel.
実施例1では、光軸垂直方向における熱膨張量のみが等しくされているレンズユニットを用いた。レンズユニットの鏡筒は二種の無機含有樹脂から成り、鏡筒以外の構成は比較例1のレンズユニットと同様とされている。具体的には、鏡筒の無機繊維の含有量を調整することにより、鏡筒の光軸垂直方向における熱膨張量を樹脂材料から成るレンズの光軸垂直方向における熱膨張量に合わせた。 [Example 1]
In Example 1, a lens unit in which only the amount of thermal expansion in the direction perpendicular to the optical axis was made equal was used. The lens barrel of the lens unit is made of two kinds of inorganic-containing resins, and the configuration other than the lens barrel is the same as that of the lens unit of Comparative Example 1. Specifically, the amount of thermal expansion in the direction perpendicular to the optical axis of the lens barrel was adjusted to the amount of thermal expansion in the direction perpendicular to the optical axis of the lens made of a resin material by adjusting the content of inorganic fibers in the lens barrel.
[実施例2]
実施例2では、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量がともに等しくされているレンズユニットを用いた。レンズユニットの間隔環は無機含有樹脂から成り、間隔環以外の構成は実施例1のレンズユニットと同様とされている。具体的には、実施例1の条件に加え、間隔環の無機繊維の含有量を調整することにより、収容部品の光軸方向における熱膨張量を鏡筒の光軸方向における熱膨張量に合わせた。 [Example 2]
In Example 2, a lens unit in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction are both equal is used. The interval ring of the lens unit is made of an inorganic-containing resin, and the configuration other than the interval ring is the same as that of the lens unit of the first embodiment. Specifically, in addition to the conditions of Example 1, by adjusting the content of the inorganic fibers in the spacing ring, the thermal expansion amount in the optical axis direction of the housing component is matched with the thermal expansion amount in the optical axis direction of the lens barrel. It was.
実施例2では、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量がともに等しくされているレンズユニットを用いた。レンズユニットの間隔環は無機含有樹脂から成り、間隔環以外の構成は実施例1のレンズユニットと同様とされている。具体的には、実施例1の条件に加え、間隔環の無機繊維の含有量を調整することにより、収容部品の光軸方向における熱膨張量を鏡筒の光軸方向における熱膨張量に合わせた。 [Example 2]
In Example 2, a lens unit in which the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction are both equal is used. The interval ring of the lens unit is made of an inorganic-containing resin, and the configuration other than the interval ring is the same as that of the lens unit of the first embodiment. Specifically, in addition to the conditions of Example 1, by adjusting the content of the inorganic fibers in the spacing ring, the thermal expansion amount in the optical axis direction of the housing component is matched with the thermal expansion amount in the optical axis direction of the lens barrel. It was.
[実施例3]
実施例3では、実施例1の条件に加え、アルミ製の間隔環を用いることで、収容部品の光軸方向における熱膨張量を鏡筒の光軸方向における熱膨張量により合わせたレンズユニットを用いた。なお、間隔環以外の構成は、実施例1、実施例2のレンズユニットと同様とされている。 [Example 3]
In Example 3, in addition to the conditions of Example 1, a lens unit in which the thermal expansion amount in the optical axis direction of the housing component is matched with the thermal expansion amount in the optical axis direction of the barrel by using an aluminum spacing ring. Using. The configuration other than the interval ring is the same as that of the lens units of the first and second embodiments.
実施例3では、実施例1の条件に加え、アルミ製の間隔環を用いることで、収容部品の光軸方向における熱膨張量を鏡筒の光軸方向における熱膨張量により合わせたレンズユニットを用いた。なお、間隔環以外の構成は、実施例1、実施例2のレンズユニットと同様とされている。 [Example 3]
In Example 3, in addition to the conditions of Example 1, a lens unit in which the thermal expansion amount in the optical axis direction of the housing component is matched with the thermal expansion amount in the optical axis direction of the barrel by using an aluminum spacing ring. Using. The configuration other than the interval ring is the same as that of the lens units of the first and second embodiments.
ここで、鏡筒、間隔環、及びレンズの熱膨張量は、鏡筒、間隔環、及びレンズの長さに鏡筒、間隔環、及びレンズの熱膨張係数を乗じることによってそれぞれ算出される。また、熱膨張係数は、実際に成形した鏡筒、間隔環、及びレンズの各部材について、外部温度を23℃から125℃に変化させた場合の光軸方向及び光軸垂直方向の寸法変化量をそれぞれ測定し、寸法変化量を単位温度あたりの寸法変化率に換算することで算出される。
Here, the thermal expansion amounts of the lens barrel, the interval ring, and the lens are calculated by multiplying the lengths of the lens barrel, the interval ring, and the lens by the thermal expansion coefficients of the lens barrel, the interval ring, and the lens, respectively. The coefficient of thermal expansion is the amount of dimensional change in the optical axis direction and the optical axis vertical direction when the external temperature is changed from 23 ° C. to 125 ° C. for the lens barrel, the spacing ring, and the lens that are actually molded. Is calculated by converting the dimensional change amount into a dimensional change rate per unit temperature.
<耐熱試験による解像度劣化量の評価方法>
レンズユニットの耐熱試験前後の解像度劣化量を以下の手順で評価した。まず、耐熱試験前のレンズユニットの解像度を測定する。次に、レンズユニットを105℃、もしくは125℃の恒温装置内に1000時間保管し、さらに室温に取り出して2時間放置した後で解像度を測定し、これを耐熱試験後の解像度とする。15個のレンズユニットについて、耐熱試験前から耐熱試験後の解像度の劣化量を算出し、劣化量が最も多いレンズユニットの劣化量を、解像度劣化量の評価値として採用する。なお、本評価における解像度は、MTF(Modulation transfer function)測定機を用いて行い、レンズユニットの中心画角における空間周波数60lp/mmで測定したMTF値を解像度の評価値とした。 <Evaluation method of resolution degradation by heat test>
The amount of resolution degradation before and after the heat resistance test of the lens unit was evaluated by the following procedure. First, the resolution of the lens unit before the heat resistance test is measured. Next, the lens unit is stored in a thermostatic apparatus at 105 ° C. or 125 ° C. for 1000 hours, further taken out to room temperature and allowed to stand for 2 hours, and then the resolution is measured. This is the resolution after the heat resistance test. For the 15 lens units, the amount of resolution deterioration after the heat resistance test is calculated before the heat resistance test, and the amount of deterioration of the lens unit with the largest amount of deterioration is adopted as the evaluation value of the resolution deterioration amount. The resolution in this evaluation was performed using an MTF (Modulation transfer function) measuring machine, and the MTF value measured at a spatial frequency of 60 lp / mm at the central field angle of the lens unit was used as the resolution evaluation value.
レンズユニットの耐熱試験前後の解像度劣化量を以下の手順で評価した。まず、耐熱試験前のレンズユニットの解像度を測定する。次に、レンズユニットを105℃、もしくは125℃の恒温装置内に1000時間保管し、さらに室温に取り出して2時間放置した後で解像度を測定し、これを耐熱試験後の解像度とする。15個のレンズユニットについて、耐熱試験前から耐熱試験後の解像度の劣化量を算出し、劣化量が最も多いレンズユニットの劣化量を、解像度劣化量の評価値として採用する。なお、本評価における解像度は、MTF(Modulation transfer function)測定機を用いて行い、レンズユニットの中心画角における空間周波数60lp/mmで測定したMTF値を解像度の評価値とした。 <Evaluation method of resolution degradation by heat test>
The amount of resolution degradation before and after the heat resistance test of the lens unit was evaluated by the following procedure. First, the resolution of the lens unit before the heat resistance test is measured. Next, the lens unit is stored in a thermostatic apparatus at 105 ° C. or 125 ° C. for 1000 hours, further taken out to room temperature and allowed to stand for 2 hours, and then the resolution is measured. This is the resolution after the heat resistance test. For the 15 lens units, the amount of resolution deterioration after the heat resistance test is calculated before the heat resistance test, and the amount of deterioration of the lens unit with the largest amount of deterioration is adopted as the evaluation value of the resolution deterioration amount. The resolution in this evaluation was performed using an MTF (Modulation transfer function) measuring machine, and the MTF value measured at a spatial frequency of 60 lp / mm at the central field angle of the lens unit was used as the resolution evaluation value.
<解像度劣化量の比較>
まず、実施例1及び比較例1のレンズユニットを用い、105℃の耐熱試験における解像度劣化量を比較した。解像度劣化量が0%~-5%である場合を評価A、解像度劣化量が-5%~-30%である場合を評価B、解像度劣化量が-30%~-60%である場合を評価Cとした。なお、評価Aは、収容部品のレンズが全てガラス材料から成る場合と同等の性能となっている。比較結果を表1に示す。 <Comparison of resolution degradation amount>
First, using the lens units of Example 1 and Comparative Example 1, the amount of resolution degradation in a heat resistance test at 105 ° C. was compared. When the resolution degradation amount is 0% to -5%, evaluation A, when the resolution degradation amount is -5% to -30%, evaluation B, and when the resolution degradation amount is -30% to -60% Evaluation C was designated. The evaluation A has the same performance as when all the lenses of the housing component are made of a glass material. The comparison results are shown in Table 1.
まず、実施例1及び比較例1のレンズユニットを用い、105℃の耐熱試験における解像度劣化量を比較した。解像度劣化量が0%~-5%である場合を評価A、解像度劣化量が-5%~-30%である場合を評価B、解像度劣化量が-30%~-60%である場合を評価Cとした。なお、評価Aは、収容部品のレンズが全てガラス材料から成る場合と同等の性能となっている。比較結果を表1に示す。 <Comparison of resolution degradation amount>
First, using the lens units of Example 1 and Comparative Example 1, the amount of resolution degradation in a heat resistance test at 105 ° C. was compared. When the resolution degradation amount is 0% to -5%, evaluation A, when the resolution degradation amount is -5% to -30%, evaluation B, and when the resolution degradation amount is -30% to -60% Evaluation C was designated. The evaluation A has the same performance as when all the lenses of the housing component are made of a glass material. The comparison results are shown in Table 1.
表1より、光軸垂直方向における熱膨張量のみが等しくされているレンズユニットは、光軸方向における熱膨張量及び光軸垂直方向における熱膨張量がともに等しくされていないレンズユニットと比較して、解像度の低下(劣化)が抑制されていることが分かる。
From Table 1, the lens unit in which only the thermal expansion amount in the optical axis vertical direction is equal is compared with the lens unit in which both the thermal expansion amount in the optical axis direction and the thermal expansion amount in the optical axis vertical direction are not equal. It can be seen that a decrease (degradation) in resolution is suppressed.
次に、実施例1~3のレンズユニットを用い、125℃の耐熱試験における解像度劣化量を比較した。解像度劣化量が0%~-10%である場合を評価A、解像度劣化量が-10%~-40%である場合を評価B、解像度劣化量が-40%~-60%である場合を評価Cとした。なお、評価Aは、収容部品のレンズが全てガラス材料から成る場合と同等の性能となっている。比較結果を表2に示す。
Next, using the lens units of Examples 1 to 3, the resolution degradation amount in the heat resistance test at 125 ° C. was compared. When the resolution degradation amount is 0% to -10%, evaluation A, when the resolution degradation amount is -10% to -40%, evaluation B, and when the resolution degradation amount is -40% to -60% Evaluation C was designated. The evaluation A has the same performance as when all the lenses of the housing component are made of a glass material. The comparison results are shown in Table 2.
表2より、光軸垂直方向における熱膨張量に加えて光軸方向における熱膨張量が等しくされたレンズユニットは、光軸垂直方向における熱膨張量のみが等しくされたレンズユニットと比較して、解像度の低下(劣化)がより抑制されていることが分かる。
From Table 2, the lens unit in which the thermal expansion amount in the optical axis direction in addition to the thermal expansion amount in the optical axis vertical direction is equal is compared with the lens unit in which only the thermal expansion amount in the optical axis vertical direction is equal, It can be seen that the reduction (degradation) of the resolution is further suppressed.
2017年4月5日に出願された日本国特許出願2017-075493の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2017-0775493 filed on Apr. 5, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2017-0775493 filed on Apr. 5, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
10 レンズユニット
12 鏡筒
12A 内周面
14 収容部品
16 撮像モジュール
16A 撮像素子
18 筒部
18A 開口部
18B カシメ部
20 底壁部
20A 開口部
22 収容部
24 第1レンズ
24A 段差部
24C 平坦面
26 第2レンズ
26A レンズ部
26B 周縁部
26C 平坦面
28 第3レンズ
28A レンズ部
28B 周縁部
28C 平坦面
30 第4レンズ
30A レンズ部
30B 周縁部
30C 平坦面
32 第5レンズ
32A レンズ部
32B 周縁部
32C 平坦面
34 間隔環
34A 平坦面
36 間隔環
36A 平坦面
38 間隔環
38A 平坦面
40 シール材 DESCRIPTION OFSYMBOLS 10 Lens unit 12 Lens barrel 12A Inner peripheral surface 14 Accommodating part 16 Imaging module 16A Imaging element 18 Cylinder part 18A Opening part 18B Caulking part 20 Bottom wall part 20A Opening part 22 Receiving part 24 First lens 24A Step part 24C Flat surface 26 First 2 lens 26A lens part 26B peripheral part 26C flat surface 28 third lens 28A lens part 28B peripheral part 28C flat surface 30 fourth lens 30A lens part 30B peripheral part 30C flat surface 32 fifth lens 32A lens part 32B peripheral part 32C flat surface 34 Space ring 34A Flat surface 36 Space ring 36A Flat surface 38 Space ring 38A Flat surface 40 Sealing material
12 鏡筒
12A 内周面
14 収容部品
16 撮像モジュール
16A 撮像素子
18 筒部
18A 開口部
18B カシメ部
20 底壁部
20A 開口部
22 収容部
24 第1レンズ
24A 段差部
24C 平坦面
26 第2レンズ
26A レンズ部
26B 周縁部
26C 平坦面
28 第3レンズ
28A レンズ部
28B 周縁部
28C 平坦面
30 第4レンズ
30A レンズ部
30B 周縁部
30C 平坦面
32 第5レンズ
32A レンズ部
32B 周縁部
32C 平坦面
34 間隔環
34A 平坦面
36 間隔環
36A 平坦面
38 間隔環
38A 平坦面
40 シール材 DESCRIPTION OF
Claims (13)
- 無機繊維を含有する樹脂材料から成る筒状の鏡筒と、
前記鏡筒内に光軸方向に並んで収容された複数のレンズを含み、少なくとも1枚のレンズが樹脂材料から成る収容部品と、
を有し、
前記鏡筒の光軸方向における熱膨張量は、前記収容部品の光軸方向における熱膨張量の総和と等しくされている、
レンズユニット。 A cylindrical lens barrel made of a resin material containing inorganic fibers;
A plurality of lenses housed in the optical axis direction in the lens barrel, and at least one lens housing part made of a resin material;
Have
The amount of thermal expansion in the optical axis direction of the lens barrel is equal to the total amount of thermal expansion in the optical axis direction of the housing component.
Lens unit. - 無機繊維を含有する樹脂材料から成る筒状の鏡筒と、
前記鏡筒内に光軸方向に並んで収容された複数のレンズを含み、少なくとも1枚のレンズが樹脂材料から成る収容部品と、
を有し、
前記鏡筒の光軸方向における熱膨張量は、前記収容部品の光軸方向における熱膨張量の総和と等しく、かつ、前記鏡筒の光軸方向に垂直な方向における熱膨張量は、樹脂材料から成る前記レンズの光軸方向に垂直な方向における熱膨張量と等しくされている、
レンズユニット。 A cylindrical lens barrel made of a resin material containing inorganic fibers;
A plurality of lenses housed in the optical axis direction in the lens barrel, and at least one lens housing part made of a resin material;
Have
The thermal expansion amount in the optical axis direction of the lens barrel is equal to the sum of the thermal expansion amounts in the optical axis direction of the housing component, and the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel is a resin material. The amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens consisting of
Lens unit. - 前記収容部品の光軸方向における熱膨張量の総和から前記鏡筒の光軸方向における熱膨張量を差し引いた熱膨張量差は、0μm以上10μm以下とされている、請求項1又は2に記載のレンズユニット。 The thermal expansion amount difference obtained by subtracting the thermal expansion amount in the optical axis direction of the lens barrel from the total thermal expansion amount in the optical axis direction of the housing component is set to 0 μm or more and 10 μm or less. Lens unit.
- 無機繊維を含有する樹脂材料から成る筒状の鏡筒と、
前記鏡筒内に光軸方向に並んで収容された複数のレンズを含み、少なくとも1枚のレンズが樹脂材料から成る収容部品と、
を有し、
前記鏡筒の光軸方向に垂直な方向における熱膨張量は、樹脂材料から成る前記レンズの光軸方向に垂直な方向における熱膨張量と等しくされている、
レンズユニット。 A cylindrical lens barrel made of a resin material containing inorganic fibers;
A plurality of lenses housed in the optical axis direction in the lens barrel, and at least one lens housing part made of a resin material;
Have
The amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens barrel is equal to the amount of thermal expansion in the direction perpendicular to the optical axis direction of the lens made of a resin material.
Lens unit. - 樹脂材料から成る前記レンズの光軸方向に垂直な方向における熱膨張量から前記鏡筒の光軸方向に垂直な方向における熱膨張量を差し引いた熱膨張量差は、0μm以上10μm以下とされている、請求項4に記載のレンズユニット。 The difference in thermal expansion amount obtained by subtracting the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens barrel from the thermal expansion amount in the direction perpendicular to the optical axis direction of the lens made of a resin material is 0 μm or more and 10 μm or less. The lens unit according to claim 4.
- 前記収容部品は、ガラス材料から成るレンズを有している、請求項1~3のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 3, wherein the housing component includes a lens made of a glass material.
- 前記鏡筒の光軸方向における熱膨張係数は、樹脂材料から成る前記レンズの光軸方向における熱膨張係数より小さく、かつガラス材料から成る前記レンズの光軸方向における熱膨張係数より大きい、請求項6に記載のレンズユニット。 The thermal expansion coefficient in the optical axis direction of the lens barrel is smaller than the thermal expansion coefficient in the optical axis direction of the lens made of a resin material and larger than the thermal expansion coefficient in the optical axis direction of the lens made of a glass material. 6. The lens unit according to 6.
- 前記収容部品は、無機繊維を含有する樹脂材料から成り、かつ複数の前記レンズ間の間隔を規定する間隔環を有している、請求項1~3、6、7のいずれか1項に記載のレンズユニット。 8. The housing part according to claim 1, wherein the housing part is made of a resin material containing inorganic fibers, and has a spacing ring that defines a spacing between the plurality of lenses. Lens unit.
- 前記レンズ又は前記間隔環は、光軸方向に垂直な方向に延びる平坦面を有しており、
前記レンズと前記間隔環、又は前記レンズ同士は、前記平坦面で互いに接触している、請求項8に記載のレンズユニット。 The lens or the spacing ring has a flat surface extending in a direction perpendicular to the optical axis direction,
The lens unit according to claim 8, wherein the lens and the interval ring, or the lenses are in contact with each other on the flat surface. - 前記鏡筒の光軸方向に垂直な方向における熱膨張係数は、前記鏡筒の光軸方向における熱膨張係数より大きい、請求項1~9のいずれか1項に記載のレンズユニット。 10. The lens unit according to claim 1, wherein a thermal expansion coefficient in a direction perpendicular to the optical axis direction of the lens barrel is larger than a thermal expansion coefficient in the optical axis direction of the lens barrel.
- 前記鏡筒の熱膨張係数は、含有されている無機繊維の量又は無機繊維の配向を変えることで調整される、請求項1~10のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 10, wherein a thermal expansion coefficient of the lens barrel is adjusted by changing an amount of inorganic fibers contained or an orientation of inorganic fibers.
- 前記鏡筒は、少なくとも二種以上の樹脂材料から成る、請求項1~10のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 10, wherein the lens barrel is made of at least two kinds of resin materials.
- 車載用カメラ又は監視用カメラに搭載される、請求項1~12のいずれか1項に記載のレンズユニット。 The lens unit according to any one of claims 1 to 12, which is mounted on a vehicle-mounted camera or a surveillance camera.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019511109A JP6739629B2 (en) | 2017-04-05 | 2018-03-08 | Lens unit |
CN201880023373.7A CN110520775B (en) | 2017-04-05 | 2018-03-08 | Lens unit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017075493 | 2017-04-05 | ||
JP2017-075493 | 2017-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186103A1 true WO2018186103A1 (en) | 2018-10-11 |
Family
ID=63712489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009031 WO2018186103A1 (en) | 2017-04-05 | 2018-03-08 | Lens unit |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6739629B2 (en) |
CN (1) | CN110520775B (en) |
WO (1) | WO2018186103A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI738013B (en) * | 2018-11-27 | 2021-09-01 | 鴻海精密工業股份有限公司 | Retaining ring, lens module and electronic device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008304642A (en) * | 2007-06-06 | 2008-12-18 | Sumitomo Electric Ind Ltd | Lens unit, imaging device, and image processing system |
JP2016109959A (en) * | 2014-12-09 | 2016-06-20 | オリンパス株式会社 | Optical device |
JP2016118607A (en) * | 2014-12-19 | 2016-06-30 | オリンパス株式会社 | Lens frame, lens barrel, and optical device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6132809A (en) * | 1984-07-25 | 1986-02-15 | Konishiroku Photo Ind Co Ltd | Lens barrel |
JPH01172809A (en) * | 1987-12-26 | 1989-07-07 | Canon Inc | Laser unit |
WO2010061604A1 (en) * | 2008-11-28 | 2010-06-03 | 住友電気工業株式会社 | Lens unit and infrared lens unit for mounting on vehicle |
CN201383027Y (en) * | 2009-03-30 | 2010-01-13 | 北京蓝思泰克科技有限公司 | Far infrared athermalizing optical system |
JP6539120B2 (en) * | 2015-06-11 | 2019-07-03 | 日本電産サンキョー株式会社 | Lens unit for in-vehicle camera |
JP2017040835A (en) * | 2015-08-21 | 2017-02-23 | 株式会社日立ハイテクノロジーズ | Optical microscope and electron microscope |
-
2018
- 2018-03-08 WO PCT/JP2018/009031 patent/WO2018186103A1/en active Application Filing
- 2018-03-08 JP JP2019511109A patent/JP6739629B2/en active Active
- 2018-03-08 CN CN201880023373.7A patent/CN110520775B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008304642A (en) * | 2007-06-06 | 2008-12-18 | Sumitomo Electric Ind Ltd | Lens unit, imaging device, and image processing system |
JP2016109959A (en) * | 2014-12-09 | 2016-06-20 | オリンパス株式会社 | Optical device |
JP2016118607A (en) * | 2014-12-19 | 2016-06-30 | オリンパス株式会社 | Lens frame, lens barrel, and optical device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI738013B (en) * | 2018-11-27 | 2021-09-01 | 鴻海精密工業股份有限公司 | Retaining ring, lens module and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN110520775A (en) | 2019-11-29 |
JP6739629B2 (en) | 2020-08-12 |
JPWO2018186103A1 (en) | 2020-01-09 |
CN110520775B (en) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6559523B2 (en) | Lens unit | |
US11125965B2 (en) | Lens unit | |
US8456769B2 (en) | Lens unit and vehicle-mounted infrared lens unit | |
US10656366B2 (en) | Lens unit | |
US7609322B2 (en) | Imaging apparatus | |
CN109073853B (en) | Lens unit | |
CN102230999B (en) | Mutually clamped and leaned optical lens group | |
KR102355179B1 (en) | imaging lens assembly | |
WO2019187460A1 (en) | Image capturing lens unit and electronic device | |
JP6499608B2 (en) | Lens unit | |
CN114371541A (en) | Optical system | |
WO2018186103A1 (en) | Lens unit | |
JP2019109381A (en) | Lens unit and camera module | |
JP6941471B2 (en) | Lens unit | |
JP7252074B2 (en) | lens unit | |
JP7163369B2 (en) | IMAGING LENS AND CAMERA DEVICE WITH THIS IMAGING LENS | |
US20220179289A1 (en) | Imaging lens unit | |
CN111999860B (en) | Wide-angle imaging lens for video transmission | |
WO2020189285A1 (en) | Lens unit | |
JP7010749B2 (en) | Imaging lens unit | |
JP2014115304A (en) | Lens unit and imaging unit | |
WO2018055897A1 (en) | Lens unit | |
WO2018051634A1 (en) | Lens unit | |
JP6872405B2 (en) | Lens unit | |
JP2020030334A (en) | Lens unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781830 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511109 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18781830 Country of ref document: EP Kind code of ref document: A1 |