WO2018186076A1 - Uv shielding member, and composition and coated-body comprising same - Google Patents

Uv shielding member, and composition and coated-body comprising same Download PDF

Info

Publication number
WO2018186076A1
WO2018186076A1 PCT/JP2018/008055 JP2018008055W WO2018186076A1 WO 2018186076 A1 WO2018186076 A1 WO 2018186076A1 JP 2018008055 W JP2018008055 W JP 2018008055W WO 2018186076 A1 WO2018186076 A1 WO 2018186076A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide layer
thickness
glass
shielding material
ultraviolet shielding
Prior art date
Application number
PCT/JP2018/008055
Other languages
French (fr)
Japanese (ja)
Inventor
中村 浩一郎
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2018526280A priority Critical patent/JP6395987B1/en
Publication of WO2018186076A1 publication Critical patent/WO2018186076A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to an ultraviolet shielding material, specifically, an ultraviolet shielding material containing flaky glass as a substrate, and more specifically to an ultraviolet shielding material capable of providing white-based reflected light with high luminance.
  • the present invention further relates to a composition containing an ultraviolet shielding material and a coated body in which the coating film contains the ultraviolet shielding material.
  • UVB medium wavelength ultraviolet rays
  • UVA long wavelength ultraviolet rays
  • UVB is ultraviolet light having a wavelength of 280 to 320 nm. UVB causes the human skin to turn red, causing fever, blisters, pain, and the like.
  • UVA is ultraviolet light having a wavelength of 320 to 400 nm. UVA reaches the deep part of human dermis and causes wrinkles and sagging. Therefore, there is a demand for an ultraviolet shielding material that can efficiently shield both UVB and UVA.
  • Patent Document 1 discloses bis (resorcinyl) triazine as an organic ultraviolet shielding material for cosmetics.
  • Patent Document 2 discloses flaky glass in which fine particles of iron oxide are dispersed as an inorganic ultraviolet shielding material.
  • Iron oxide which is an inorganic substance, is superior to organic ultraviolet shielding materials in terms of the durability of the ultraviolet shielding effect.
  • iron oxide absorbs not only ultraviolet rays but also a part of visible light, it tends to color a matrix such as a cosmetic in which it is dispersed.
  • Patent Document 2 reports that the obtained flaky glass was reddish brown (Example 1). For this reason, iron oxide has been considered unsuitable for applications where coloring is not desirable, particularly for applications where white reflected light with high brightness is required.
  • an object of the present invention is to provide an ultraviolet shielding material suitable for providing white-based reflected light having high luminance while containing iron oxide.
  • the present inventor can sufficiently shield ultraviolet rays by forming a titanium oxide layer and an iron oxide layer on a flaky glass, and adjusting the thickness of the glass and the layer, and The present inventors have found that an ultraviolet shielding material capable of providing white-based reflected light with high luminance can be obtained.
  • the present invention A flake glass, and a titanium oxide layer and an iron oxide layer formed in this order on the flake glass,
  • the flake glass has a thickness of 300 nm to 400 nm
  • the titanium oxide layer has a thickness of 80 nm to 100 nm
  • An ultraviolet shielding material having a thickness of the iron oxide layer of 30 nm or more and 50 nm or less is provided.
  • an ultraviolet shielding material suitable for providing white-based reflected light having high luminance while containing iron oxide.
  • the ultraviolet shielding material 10 includes a flaky glass 1, and a titanium oxide layer 2 and an iron oxide layer 3 formed in this order on the flaky glass 1. More specifically, the titanium oxide layer 2 and the iron oxide layer 3 are formed on the first main surface 1a and the second main surface 1b on the opposite sides of the flaky glass 1, and further formed on the side surface 1s. Yes. In other words, the oxide film composed of the titanium oxide layer 2 and the iron oxide layer 3 covers the entire flaky glass 1.
  • the iron oxide layer 3 is the outermost layer of an oxide film that covers the flaky glass 1 and is in contact with an external atmosphere, typically air.
  • the ultraviolet shielding material 10 may have an additional layer on the iron oxide layer 3.
  • This additional layer is, for example, a protective layer.
  • the additional layer preferably has an optical thickness that exceeds the visible wavelength.
  • the first main surface 1 a and the second main surface 1 b are a pair of surfaces that are substantially parallel to each other, and the distance between them corresponds to the thickness t of the flaky glass 1.
  • a typical shape of the flaky glass 1 is shown in FIG. As shown in FIG. 2, the flaky glass 1 is, for example, a scaly thin piece.
  • the iron oxide layer 3 / titanium oxide layer 2 / flaked glass 1 / titanium oxide layer 2 / iron oxide layer 3 are laminated in this order in the direction along the thickness t of the flaky glass 1. It has a five-layer optical interference system.
  • the “optical interference system” means a unit of a layer formed by successively depositing layers having an optical film thickness of 780 nm or less, which is the upper limit of the wavelength in the visible range, in the thickness direction.
  • a thin layer having a thickness of 25 nm or less, particularly a very thin layer having a thickness of 15 nm or less, or a minute island-like deposit that does not constitute a layer has a very limited optical influence, it constitutes an optical interference system. Exclude from the layer to be considered. Therefore, even if a minute layer whose thickness is not more than the above upper limit is interposed between the layers of the optical interference system, the configuration of the optical interference system remains five layers. In general, as the number of layers constituting the optical interference system increases, the degree of freedom in optical design for controlling the transmission or reflection characteristics in the visible range increases.
  • White-colored reflected light can be obtained by adjusting the thickness of each layer of the optical interference system.
  • thickness means a physical film thickness (thickness), not an optical film thickness (thickness) unless otherwise specified.
  • White means that in the L * a * b * color system, the absolute values of a * and b * are both 30 or less, preferably 25 or less, more preferably 20 or less, particularly preferably 15 or less. Say something.
  • each layer of the optical interference system is adjusted as follows. ⁇ Flake glass: 300 to 400 nm ⁇ Titanium oxide layer: 80-100nm ⁇ Iron oxide layer: 30-50nm
  • each layer in the above range is suitable for realizing white reflected light with high luminance regardless of the surrounding materials of the ultraviolet shielding material.
  • the two-layered films 2 and 3 and the flaky glass 1 form a single five-layered optical interference system as a whole.
  • the reflection from each layer constituting the five-layer optical interference system provides white-based reflected light from the ultraviolet shielding material 10. More specifically, the reflected light of the light L incident from the direction substantially perpendicular to the first main surface 1a or the second main surface 1b is white (as described above, a * in the L * a * b * color system . And the absolute value of b * is 30 or less.
  • the formed layers are two layers, an optical interference system having a five-layer structure can be used. Therefore, the ultraviolet shielding material 10 has a two-layer structure in terms of optical design from the viewpoint of producing a white reflected light with high luminance. This is more advantageous than the ultraviolet shielding material having the optical interference system on both sides of the substrate.
  • the physical film thickness (physical thickness) of the flaky glass having an optical film thickness of 780 nm or less, which is the upper limit of the wavelength in the visible range, is about 500 nm or less.
  • the thickness of general-purpose flaky glass is 500 nm or more, but flaky glass having a thickness of less than 500 nm is also known.
  • an optical interference system including thin flaky glass has been used to obtain colored reflected light instead of white reflected light.
  • the optical interference system according to the present embodiment provides white reflected light.
  • the L * value in the L * a * b * color system of white reflected light from the ultraviolet shielding material calculated by optical simulation is, for example, 66 or more. It can be increased to 69 or more, more preferably 70 or more, still more preferably 72 or more, and particularly preferably 74 or more. Since this L * value is the reflected light from one ultraviolet shielding material, it is relatively larger than this, for example, 80 or more, from the actual coating film etc. in which light is reflected from a plurality of ultraviolet shielding materials. May have an L * value of 82 or more, particularly about 85 or more. Note that the L * value described in this paragraph is a value when the ultraviolet shielding material is present alone, in other words, in a state where the surrounding atmosphere is air without being surrounded by a solid or liquid matrix such as a coating film. .
  • the reflectance R at a wavelength of 550 nm of the incident light L for one ultraviolet shielding material calculated by optical simulation is 35% or more, further 37% or more, In particular, it can be increased to 40% or more, and in some cases to 44% or more.
  • “wavelength 550 nm” is selected as a wavelength having high visibility.
  • the reflectance and transmittance at a specific wavelength of the incident light L with respect to one ultraviolet shielding material calculated by optical simulation exist as a single ultraviolet shielding material. In this case, in other words, the value is described in a state where the surrounding atmosphere is air without being surrounded by a matrix such as a coating film.
  • the reflectance at a wavelength of 305 nm of incident light L for one ultraviolet shielding material calculated by optical simulation is 30% or more, further 32% or more, particularly 36. It becomes possible to raise it to more than%. Further, when the optical interference system having a five-layer structure according to the present embodiment is used, the transmittance at a wavelength of 305 nm of the incident light L for one ultraviolet shielding material calculated by optical simulation is reduced to 2% or less or 0%. It becomes possible to do.
  • “wavelength 305 nm” is selected as a wavelength serving as an index of UVB.
  • the reflectance at a wavelength of 380 nm of the incident light L for one ultraviolet shielding material calculated by optical simulation is 12% or more, further 25% or more, particularly 39. % Or more, and in some cases, it can be increased to 42% or more.
  • the transmittance at a wavelength of 380 nm of incident light L for one ultraviolet shielding material calculated by optical simulation is 7% or less, further 6% or less, particularly 4 % Or less, and in some cases, 1% or less.
  • “wavelength 380 nm” is selected as a wavelength serving as an index of UVA.
  • the five-layer optical interference system according to the present embodiment is dispersed not only in the case where the surrounding atmosphere is air but also in the case where the surrounding is a solid or fluid such as a resin, in other words, in a matrix such as a cosmetic or a resin.
  • the film thickness of each layer is designed in consideration of the case where it is. Therefore, the five-layer optical interference system according to the present embodiment can provide white reflected light with high brightness in a wide range of applications.
  • the flaky glass is easily obtained because it is mass-produced, and is composed of a stable oxide.
  • the flaky glass is a fine plate-like glass substrate also called scale glass.
  • the glass composition constituting the flaky glass is not particularly limited, but usually a glass composition containing silicon dioxide as a main component and further containing other metal oxide components such as aluminum oxide, calcium oxide and sodium oxide is used.
  • main component is used as a term that means a component having a maximum content on a mass basis. Examples of the glass composition that can be used include soda lime glass, A glass, C glass, E glass, borosilicate glass, and aluminosilicate glass.
  • the refractive indexes of these glass compositions are generally in the range of 1.50 to 1.60, although there are some differences because their main components are the same (silicon dioxide).
  • soda lime glass, C glass, E glass, and borosilicate glass are preferable, and the refractive index thereof is in the range of 1.52 to 1.58.
  • the preferable average particle diameter of the flaky glass is 1 to 1000 ⁇ m, more preferably 3 to 500 ⁇ m, and particularly 5 to 200 ⁇ m.
  • the average particle size of the flake glass is determined by the particle size distribution (D50) corresponding to 50% of the cumulative volume from the small particle size side in the particle size distribution of the light scattering equivalent diameter measured by the laser diffraction method. To do.
  • the thickness of the flaky glass is about 0.5 to 5 ⁇ m for general-purpose products.
  • the thickness of the flake glass is set to the above-mentioned very narrow range (300 to 400 nm).
  • the flaky glass having a thickness in this range can be produced by a conventionally known method such as a blow method or a rotary method.
  • FIG. 3 shows an example of an apparatus for producing flaky glass by a blow method.
  • the manufacturing apparatus includes a fireproof kiln 12, a blow nozzle 15, and a press roll 17.
  • the glass substrate 11 melted in the refractory kiln 12 (melting tank) is inflated into a balloon shape by the gas sent to the blow nozzle 15 and becomes a hollow glass film 16.
  • the flaky glass 1 is obtained.
  • the thickness of the flaky glass 1 can be controlled by adjusting the tensile speed of the hollow glass film 16 and the flow rate of the gas fed from the blow nozzle 15.
  • FIG. 4 shows an example of an apparatus for producing flaky glass by the rotary method.
  • the apparatus includes a rotating cup 22, a pair of annular plates 23, and an annular cyclone collector 24.
  • the molten glass substrate 11 is poured into the rotating cup 22, flows out radially from the upper edge of the rotating cup 22 by centrifugal force, is sucked by the air flow through the annular plate 23, and the annular cyclone collector 24.
  • the glass While passing through the annular plate 23, the glass is cooled and solidified in the form of a thin film, and further crushed into small pieces, whereby the flaky glass 1 is obtained.
  • the thickness of the flaky glass 1 can be controlled by adjusting the interval between the annular plates 23, the speed of the air flow, and the like.
  • [Laminated film of titanium oxide layer and iron oxide layer] A titanium oxide layer and an iron oxide layer are laminated in this order on the flaky glass. Each of these layers is formed to have the thickness described above. A technique for forming these layers has already been established, and it is easy to form these layers to have a desired film thickness.
  • the titanium oxide layer is preferably composed of rutile titanium oxide.
  • Anatase type is also known as a crystalline form of titanium oxide.
  • anatase-type titanium oxide has high activity as a photocatalyst and may decompose surrounding organic substances.
  • a rutile type having a relatively stable crystal form and a high refractive index is suitable for the titanium oxide layer constituting the optical interference unit.
  • the rutile-type titanium oxide layer can be formed by heating anatase-type titanium oxide to a high temperature of about 800 ° C. or more and transferring it to the rutile type. Moreover, a rutile type titanium oxide layer can be formed without requiring heating at a high temperature by depositing a tin compound on the surface on which the titanium oxide layer is to be formed to deposit titanium oxide. Details of the latter method are disclosed in JP-T-2006-510797 and JP-A-2001-31421.
  • the flaky glass having a titanium oxide layer formed on the surface develops a color tone corresponding to the thickness of the titanium oxide layer due to light interference by the titanium oxide layer.
  • the titanium oxide monolayer film formed on the flaky glass exhibits, for example, yellow with a thickness of about 100 nm, red with a thickness of about 130 nm, blue with a thickness of about 160 nm, and green with a thickness of about 175 nm.
  • the color tone may be slightly different even if the thickness of the titanium oxide film is the same.
  • the iron oxide layer is preferably composed of trivalent iron oxide (Fe 2 O 3 ). Fe 2 O 3 is superior in ultraviolet shielding ability compared to divalent iron oxide (FeO).
  • the iron oxide layer can be formed by applying a colloidal solution of Fe 2 O 3 to the surface on which the iron oxide layer is to be formed and drying.
  • the iron oxide layer can be formed by dispersing a base material having a surface on which an iron oxide layer is to be formed in an iron chloride (FeCl 3 ) aqueous solution and heat-treating the iron chloride aqueous solution in the presence of a base.
  • FeCl 3 iron chloride
  • composition and coating body containing UV shielding material exhibits a vivid white color when mixed with various compositions.
  • Another aspect of the present invention provides a composition comprising the ultraviolet shielding material according to the present invention.
  • the composition may be at least one selected from cosmetics, paints, inks, and resin compositions.
  • a cosmetic is suitable.
  • cosmetics include those containing an oil component together with an ultraviolet shielding material.
  • the cosmetic may further contain pigments, pH adjusters, humectants, thickeners, surfactants, dispersants, stabilizers, colorants, preservatives, antioxidants, fragrances and the like.
  • the cosmetic may be a foundation.
  • the resin composition include those containing a resin such as PMMA together with an ultraviolet shielding material.
  • the resin composition may be an artificial marble molded product.
  • the SPF value can be increased to 40 or more, and further to 50 or more (50+).
  • the PFA value can be increased to 16 or more.
  • the SPF value is an index representing the degree of the effect of shielding UVB.
  • the PFA value is an index representing the degree of the effect of shielding UVA.
  • this invention provides the coating body provided with the base material and the coating film formed on the base material containing the ultraviolet-ray shielding material by this invention from another side surface.
  • the painted body may be coated paper.
  • the base material in this case is paper, but the base material is not limited to paper, and may be metal, resin, ceramics, or the like.
  • the coating film may be comprised from the composition by this invention, and may be formed by apply
  • the thickness of the flaky glass is thin, the ratio of the weight of the iron oxide layer to the weight of the flaky glass is high. Therefore, even if the content of the ultraviolet shielding material in the composition or the coating film is a lower value than conventional, an effect of sufficiently shielding ultraviolet rays can be obtained.
  • the ultraviolet shielding material includes flaky glass having a thickness of 400 nm and 2 mg of the composition or coating film is disposed on 1 cm 2 of the surface of the substrate, the content of the ultraviolet shielding material in the composition or coating film If it is 5 weight% or more, the whole surface of a base material can be coat
  • the content of the ultraviolet shielding material in the composition or coating film is 4 If it is at least% by weight, the entire surface of the substrate can be covered with an ultraviolet shielding material.
  • the content of the ultraviolet shielding material of the present embodiment in the composition or coating film may be 15% by weight or less, further 10% by weight or less, and particularly 8% by weight or less.
  • the thickness of the flaky glass may be from 300 nm to 350 nm.
  • a titanium oxide layer and an iron oxide (Fe 2 O 3 ) layer are formed in this order on the flaky glass, and the thickness and reflection of the flaky glass and the layer in the ultraviolet shielding material constituting the optical interference system together with the flaky glass.
  • the relationship with characteristics was calculated.
  • optical characteristics including reflection characteristics are obtained from the refractive index (n) and extinction coefficient (k) and thickness of each material constituting the laminated structure (flaked glass and layer), and light.
  • the model of the configuration used in this calculation is ambient (external environment) / Fe 2 O 3 / TiO 2 / flaked glass / TiO 2 / Fe 2 O 3 / ambient (external environment).
  • soda lime glass was assumed.
  • the titanium oxide layer was a rutile type.
  • the surroundings were air (refractive index 1.0) or resin.
  • PMMA polymethyl methacrylate; refractive index 1.49
  • the assumed light source is a D65 light source, the assumed incident angle of light is 5 degrees, and the assumed measurement position of reflected light is in the direction of the reflected angle of 5 degrees.
  • Tables 1 to 6 show the calculation results for the reflection optical characteristics and the ultraviolet shielding characteristics.
  • R is the reflectivity at a wavelength of 550nm (%), L *, value of a * and b * L * a * b * based on the color system.
  • the ultraviolet shielding property the reflectance and transmittance at a wavelength of 305 nm and the reflectance and transmittance at a wavelength of 380 nm were calculated.
  • the SPF values in Tables 1-6 were calculated as follows. About the commercial cosmetics, the transmittance
  • permeability and SPF value in wavelength 305nm were measured. Commercially available cosmetics contained titanium oxide and zinc oxide as UV shielding materials. The respective contents of titanium oxide and zinc oxide in commercial cosmetics were changed, and the transmittance and SPF value at a wavelength of 305 nm were measured again. When this operation was repeated and the correlation between the transmittance at a wavelength of 305 nm and the SPF value was obtained based on the obtained plurality of data, the following relational expression (1) was obtained. The SPF values in Tables 1 to 6 were calculated by substituting the transmittance at a wavelength of 305 nm of the ultraviolet shielding material obtained by optical simulation into the relational expression (1). y 74.049x -0.888 (1)
  • y represents the SPF value
  • x represents the transmittance (%) at a wavelength of 305 nm.
  • the PFA values in Tables 1-6 were calculated as follows. About the commercial cosmetics, the transmittance
  • y indicates the PFA value
  • x indicates the transmittance (%) at a wavelength of 380 nm.
  • the absolute values of a * and b * are 30 or less by adjusting the thickness of the titanium oxide layer even if the thickness of the iron oxide layer is greater than 50 nm. It is possible to obtain reflected light. However, when the thickness of the iron oxide layer is greater than 50 nm, the L * value of the reflected light is significantly reduced. For example, in a combination of flaky glass having a thickness of 300 nm and a titanium oxide layer having a thickness of 80 nm, when the thickness of the iron oxide layer is 30 nm, the L * value of reflected light is 72 and the thickness of the iron oxide layer is 50 nm. The L * value of the reflected light is 71 (see Table 2).
  • the characteristics of the reflected light from one ultraviolet shielding material are calculated.
  • the brightness of reflected light is observed to be higher than this. It is often experienced that reflected light from about 3 to 6 UV shielding materials is observed in the coating film.

Abstract

The present invention provides a noble UV shielding member suitable for providing a white reflected light having high brightness. The UV shielding member 10 according to the present invention is provided with: a flake-shaped glass 1; a titanium oxide layer 2 and an iron oxide layer 3 which are formed in this order on the flake-shaped glass 1, wherein the flake-shaped glass 1 has a thickness of 300-400 nm, the titanium oxide layer 2 has a thickness of 80-100 nm, and the iron oxide layer 3 has a thickness of 30-50 nm. For example, the titanium oxide layer 2 and the iron oxide layer 3 are formed on a first main surface 1a and a second main surface 1b of the flake-shaped glass 1, the first and second main surfaces being opposite to each other.

Description

紫外線遮蔽材、並びに、それを配合した組成物及び塗装体Ultraviolet shielding material, composition and coating body containing the same
 本発明は、紫外線遮蔽材、具体的にはフレーク状ガラスを基体として含む紫外線遮蔽材に関し、より具体的には輝度が高い白色系の反射光を提供できる紫外線遮蔽材に関する。本発明はさらに、紫外線遮蔽材を含有する組成物、及び、塗膜が紫外線遮蔽材を含む塗装体に関する。 The present invention relates to an ultraviolet shielding material, specifically, an ultraviolet shielding material containing flaky glass as a substrate, and more specifically to an ultraviolet shielding material capable of providing white-based reflected light with high luminance. The present invention further relates to a composition containing an ultraviolet shielding material and a coated body in which the coating film contains the ultraviolet shielding material.
 紫外線は、中波長紫外線(UVB)及び長波長紫外線(UVA)を含む。UVBは、280~320nmの波長を有する紫外線である。UVBによって、ヒトの皮膚は、赤くなり、発熱、水泡、痛み等が生じる。UVAは、320~400nmの波長を有する紫外線である。UVAは、ヒトの真皮の深部まで到達し、シワ、たるみ等の原因になる。そのため、UVB及びUVAの両方を効率的に遮蔽できる紫外線遮蔽材が求められている。 Ultraviolet rays include medium wavelength ultraviolet rays (UVB) and long wavelength ultraviolet rays (UVA). UVB is ultraviolet light having a wavelength of 280 to 320 nm. UVB causes the human skin to turn red, causing fever, blisters, pain, and the like. UVA is ultraviolet light having a wavelength of 320 to 400 nm. UVA reaches the deep part of human dermis and causes wrinkles and sagging. Therefore, there is a demand for an ultraviolet shielding material that can efficiently shield both UVB and UVA.
 化粧料には、有機系紫外線遮蔽材が広く用いられている。例えば、特許文献1には、化粧料用の有機系紫外線遮蔽材として、ビス(レソルシニル)トリアジンが開示されている。 Organic UV shielding materials are widely used for cosmetics. For example, Patent Document 1 discloses bis (resorcinyl) triazine as an organic ultraviolet shielding material for cosmetics.
 特許文献2には、無機系紫外線遮蔽材として酸化鉄の微粒子が分散したフレーク状ガラスが開示されている。 Patent Document 2 discloses flaky glass in which fine particles of iron oxide are dispersed as an inorganic ultraviolet shielding material.
特開2003-212711号公報Japanese Patent Laid-Open No. 2003-212711 特開平7-330361号公報JP 7-330361 A
 無機物である酸化鉄は、紫外線遮蔽効果の持続性等では有機系紫外線遮蔽材よりも優れている。しかし、酸化鉄は、紫外線だけでなく、可視光の一部を吸収するため、それが分散する化粧料等のマトリックスを着色させる傾向がある。特許文献2には、得られたフレーク状ガラスが赤褐色であったことが報告されている(実施例1)。そのため、酸化鉄は、着色が望ましくない用途、特に輝度が高い白色系の反射光が求められる用途、には適さないと考えられていた。 Iron oxide, which is an inorganic substance, is superior to organic ultraviolet shielding materials in terms of the durability of the ultraviolet shielding effect. However, since iron oxide absorbs not only ultraviolet rays but also a part of visible light, it tends to color a matrix such as a cosmetic in which it is dispersed. Patent Document 2 reports that the obtained flaky glass was reddish brown (Example 1). For this reason, iron oxide has been considered unsuitable for applications where coloring is not desirable, particularly for applications where white reflected light with high brightness is required.
 そこで本発明は、酸化鉄を含みながらも、輝度が高い白色系の反射光を提供することに適した紫外線遮蔽材を提供することを目的とする。 Therefore, an object of the present invention is to provide an ultraviolet shielding material suitable for providing white-based reflected light having high luminance while containing iron oxide.
 本発明者は、鋭意検討した結果、フレーク状ガラス上に酸化チタン層及び酸化鉄層を形成し、かつ、ガラス及び層の厚みを調節することによって、十分に紫外線を遮蔽することができ、かつ、輝度が高い白色系の反射光を提供することができる紫外線遮蔽材が得られることを見出した。 As a result of intensive studies, the present inventor can sufficiently shield ultraviolet rays by forming a titanium oxide layer and an iron oxide layer on a flaky glass, and adjusting the thickness of the glass and the layer, and The present inventors have found that an ultraviolet shielding material capable of providing white-based reflected light with high luminance can be obtained.
 本発明は、
 フレーク状ガラスと、前記フレーク状ガラス上にこの順に形成された酸化チタン層及び酸化鉄層と、を備え、
 前記フレーク状ガラスの厚みが300nm以上400nm以下であり、
 前記酸化チタン層の厚みが80nm以上100nm以下であり、
 前記酸化鉄層の厚みが30nm以上50nm以下である、紫外線遮蔽材を提供する。
The present invention
A flake glass, and a titanium oxide layer and an iron oxide layer formed in this order on the flake glass,
The flake glass has a thickness of 300 nm to 400 nm,
The titanium oxide layer has a thickness of 80 nm to 100 nm,
An ultraviolet shielding material having a thickness of the iron oxide layer of 30 nm or more and 50 nm or less is provided.
 本発明によれば、酸化鉄を含みながらも、輝度が高い白色系の反射光を提供することに適した紫外線遮蔽材が提供される。 According to the present invention, there is provided an ultraviolet shielding material suitable for providing white-based reflected light having high luminance while containing iron oxide.
本発明による紫外線遮蔽材の一形態の構成を示す断面図である。It is sectional drawing which shows the structure of one form of the ultraviolet-ray shielding material by this invention. フレーク状ガラスの一形態を示す斜視図である。It is a perspective view which shows one form of flake shaped glass. フレーク状ガラスの製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus of flake shaped glass. フレーク状ガラスの製造装置の別の例を示す模式図である。It is a schematic diagram which shows another example of the manufacturing apparatus of flake shaped glass.
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。 Hereinafter, details of the present invention will be described, but the following description is not intended to limit the present invention to a specific embodiment.
[紫外線遮蔽材の層構成]
 図1に示した一形態において、紫外線遮蔽材10は、フレーク状ガラス1と、フレーク状ガラス1上にこの順に形成された酸化チタン層2及び酸化鉄層3と、を備えている。より詳しくは、酸化チタン層2及び酸化鉄層3は、フレーク状ガラス1の互いに反対側にある第1主面1a及び第2主面1b上に形成され、さらに側面1s上にも形成されている。言い換えると、酸化チタン層2と酸化鉄層3とからなる酸化物膜は、フレーク状ガラス1の全体を覆っている。酸化鉄層3は、フレーク状ガラス1を被覆する酸化物膜の最外層であって、外部雰囲気、典型的には空気、に接している。ただし、紫外線遮蔽材10は、付加的な層を酸化鉄層3の上に有していてもよい。この付加的な層は、例えば保護層である。付加的な層は、好ましくはその光学膜厚が可視域の波長を超えている。第1主面1a及び第2主面1bは、互いに実質的に平行な一対の面であって、その間隔はフレーク状ガラス1の厚みtに相当する。
[Layer structure of UV shielding material]
In one embodiment shown in FIG. 1, the ultraviolet shielding material 10 includes a flaky glass 1, and a titanium oxide layer 2 and an iron oxide layer 3 formed in this order on the flaky glass 1. More specifically, the titanium oxide layer 2 and the iron oxide layer 3 are formed on the first main surface 1a and the second main surface 1b on the opposite sides of the flaky glass 1, and further formed on the side surface 1s. Yes. In other words, the oxide film composed of the titanium oxide layer 2 and the iron oxide layer 3 covers the entire flaky glass 1. The iron oxide layer 3 is the outermost layer of an oxide film that covers the flaky glass 1 and is in contact with an external atmosphere, typically air. However, the ultraviolet shielding material 10 may have an additional layer on the iron oxide layer 3. This additional layer is, for example, a protective layer. The additional layer preferably has an optical thickness that exceeds the visible wavelength. The first main surface 1 a and the second main surface 1 b are a pair of surfaces that are substantially parallel to each other, and the distance between them corresponds to the thickness t of the flaky glass 1.
 フレーク状ガラス1の典型的な形状を図2に示す。図2に示したように、フレーク状ガラス1は、例えば鱗片状の薄片である。 A typical shape of the flaky glass 1 is shown in FIG. As shown in FIG. 2, the flaky glass 1 is, for example, a scaly thin piece.
 紫外線遮蔽材10は、フレーク状ガラス1の厚みtに沿った方向について、酸化鉄層3/酸化チタン層2/フレーク状ガラス1/酸化チタン層2/酸化鉄層3がこの順に積層している5層構成の光学干渉系を有している。本明細書において、「光学干渉系」とは、光学膜厚が可視域の波長上限である780nm以下にある層が厚み方向に連続して堆積することにより構成された層のユニットを意味する。ただし、厚みが25nm以下の薄い層、特に15nm以下のごく薄い層や、層を構成しない微小な島状の付着物、は、光学的な影響がごく限定されているため、光学干渉系を構成する層から除外して考える。したがって、上述の光学干渉系の層の間に厚みが上述の上限以下の微小な層が介在していたとしても、その光学干渉系の構成は5層のままである。一般に、光学干渉系を構成する層の数が増えるほど、可視域の透過又は反射特性を制御するための光学設計の自由度は高くなる。 In the ultraviolet shielding material 10, the iron oxide layer 3 / titanium oxide layer 2 / flaked glass 1 / titanium oxide layer 2 / iron oxide layer 3 are laminated in this order in the direction along the thickness t of the flaky glass 1. It has a five-layer optical interference system. In the present specification, the “optical interference system” means a unit of a layer formed by successively depositing layers having an optical film thickness of 780 nm or less, which is the upper limit of the wavelength in the visible range, in the thickness direction. However, since a thin layer having a thickness of 25 nm or less, particularly a very thin layer having a thickness of 15 nm or less, or a minute island-like deposit that does not constitute a layer has a very limited optical influence, it constitutes an optical interference system. Exclude from the layer to be considered. Therefore, even if a minute layer whose thickness is not more than the above upper limit is interposed between the layers of the optical interference system, the configuration of the optical interference system remains five layers. In general, as the number of layers constituting the optical interference system increases, the degree of freedom in optical design for controlling the transmission or reflection characteristics in the visible range increases.
 光学干渉系の各層の厚みを調整することによって、白色系の反射光が得られる。本明細書において、「厚み」は、特に断らない限り、光学膜厚(厚み)ではなく物理膜厚(厚み)を意味する。「白色系」とは、L***表色系において、a*及びb*の絶対値が共に、30以下、好ましくは25以下、より好ましくは20以下、特に好ましくは15以下、であることをいう。 White-colored reflected light can be obtained by adjusting the thickness of each layer of the optical interference system. In this specification, “thickness” means a physical film thickness (thickness), not an optical film thickness (thickness) unless otherwise specified. “White” means that in the L * a * b * color system, the absolute values of a * and b * are both 30 or less, preferably 25 or less, more preferably 20 or less, particularly preferably 15 or less. Say something.
 光学干渉系の各層の厚みは以下のように調整される。
・フレーク状ガラス:300~400nm
・酸化チタン層:80~100nm
・酸化鉄層:30~50nm
The thickness of each layer of the optical interference system is adjusted as follows.
・ Flake glass: 300 to 400 nm
・ Titanium oxide layer: 80-100nm
・ Iron oxide layer: 30-50nm
 上記の範囲の各層の厚みは、紫外線遮蔽材の周囲の物質によらず、輝度が高い白色系の反射光を実現することに適している。 The thickness of each layer in the above range is suitable for realizing white reflected light with high luminance regardless of the surrounding materials of the ultraviolet shielding material.
 紫外線遮蔽材10では、2層構成の膜2、3とフレーク状ガラス1とが全体として1つの5層構成の光学干渉系を形成している。この5層構成の光学干渉系を構成する各層からの反射によって、紫外線遮蔽材10からは白色系の反射光が提供される。より詳しくは、第1主面1a又は第2主面1bに実質的に垂直な方向から入射する光Lについての反射光が白色系(上述のとおりL***表色系においてa*及びb*の絶対値が共に30以下)となる。形成された層は2層であるものの5層構成の光学干渉系を利用できるため、紫外線遮蔽材10は、輝度が高い白色系の反射光を生じさせる観点からは、光学設計上、2層構成の光学干渉系を基材の両側に有する紫外線遮蔽材よりも相対的に有利である。 In the ultraviolet shielding material 10, the two-layered films 2 and 3 and the flaky glass 1 form a single five-layered optical interference system as a whole. The reflection from each layer constituting the five-layer optical interference system provides white-based reflected light from the ultraviolet shielding material 10. More specifically, the reflected light of the light L incident from the direction substantially perpendicular to the first main surface 1a or the second main surface 1b is white (as described above, a * in the L * a * b * color system . And the absolute value of b * is 30 or less. Although the formed layers are two layers, an optical interference system having a five-layer structure can be used. Therefore, the ultraviolet shielding material 10 has a two-layer structure in terms of optical design from the viewpoint of producing a white reflected light with high luminance. This is more advantageous than the ultraviolet shielding material having the optical interference system on both sides of the substrate.
 光学膜厚が可視域の波長上限である780nm以下にあるフレーク状ガラスの物理膜厚(物理厚み)は、500nm程度以下である。汎用のフレーク状ガラスの厚みは500nm以上であるが、厚さが500nm未満程度のフレーク状ガラスも知られている。しかし、従来、薄いフレーク状ガラスを含む光学干渉系は、白色系の反射光ではなく、着色された反射光を得るために用いられていた。これに対し、本実施形態による光学干渉系は、白色系の反射光を提供する。 The physical film thickness (physical thickness) of the flaky glass having an optical film thickness of 780 nm or less, which is the upper limit of the wavelength in the visible range, is about 500 nm or less. The thickness of general-purpose flaky glass is 500 nm or more, but flaky glass having a thickness of less than 500 nm is also known. However, conventionally, an optical interference system including thin flaky glass has been used to obtain colored reflected light instead of white reflected light. On the other hand, the optical interference system according to the present embodiment provides white reflected light.
 本実施形態による5層構成の光学干渉系を利用すれば、光学シミュレーションによって算出される紫外線遮蔽材からの白色系反射光のL***表色系におけるL*値を、例えば66以上、好ましくは69以上、より好ましくは70以上、さらに好ましくは72以上、特に好ましくは74以上、にまで高くすることが可能となる。このL*値は紫外線遮蔽材1枚からの反射光であるから、複数枚の紫外線遮蔽材から光が反射する実際の塗膜等からは、これよりも相対的に大きい、例えば80以上、さらには82以上、特に85以上程度のL*値が得られることもある。なお、この段落で記述しているL*値は、紫外線遮蔽材が単体として存在する場合、言い換えると塗膜等の固体又は液体マトリックスに囲まれず周囲の雰囲気を空気としている状態での値である。 If the five-layer optical interference system according to the present embodiment is used, the L * value in the L * a * b * color system of white reflected light from the ultraviolet shielding material calculated by optical simulation is, for example, 66 or more. It can be increased to 69 or more, more preferably 70 or more, still more preferably 72 or more, and particularly preferably 74 or more. Since this L * value is the reflected light from one ultraviolet shielding material, it is relatively larger than this, for example, 80 or more, from the actual coating film etc. in which light is reflected from a plurality of ultraviolet shielding materials. May have an L * value of 82 or more, particularly about 85 or more. Note that the L * value described in this paragraph is a value when the ultraviolet shielding material is present alone, in other words, in a state where the surrounding atmosphere is air without being surrounded by a solid or liquid matrix such as a coating film. .
 本実施形態による5層構成の光学干渉系を利用すれば、光学シミュレーションによって算出される紫外線遮蔽材1枚についての入射光Lの波長550nmにおける反射率Rを、35%以上、さらに37%以上、特に40%以上、場合によっては44%以上にまで高くすることが可能となる。ここで、「波長550nm」は視感度が高い波長として選択されている。なお、この段落以降の段落において、特に断らない限り、光学シミュレーションによって算出される紫外線遮蔽材1枚についての入射光Lの特定の波長における反射率及び透過率は、紫外線遮蔽材が単体として存在する場合、言い換えると塗膜等のマトリックスに囲まれず周囲の雰囲気を空気としている状態での値を記述している。 If the optical interference system having a five-layer structure according to the present embodiment is used, the reflectance R at a wavelength of 550 nm of the incident light L for one ultraviolet shielding material calculated by optical simulation is 35% or more, further 37% or more, In particular, it can be increased to 40% or more, and in some cases to 44% or more. Here, “wavelength 550 nm” is selected as a wavelength having high visibility. In the following paragraphs, unless otherwise specified, the reflectance and transmittance at a specific wavelength of the incident light L with respect to one ultraviolet shielding material calculated by optical simulation exist as a single ultraviolet shielding material. In this case, in other words, the value is described in a state where the surrounding atmosphere is air without being surrounded by a matrix such as a coating film.
 本実施形態による5層構成の光学干渉系を利用すれば、光学シミュレーションによって算出される紫外線遮蔽材1枚についての入射光Lの波長305nmにおける反射率を30%以上、さらに32%以上、特に36%以上にまで高くすることが可能となる。また、本実施形態による5層構成の光学干渉系を利用すれば、光学シミュレーションによって算出される紫外線遮蔽材1枚についての入射光Lの波長305nmにおける透過率を2%以下又は0%にまで低くすることが可能になる。ここで、「波長305nm」はUVBの指標となる波長として選択されている。 If the optical interference system having a five-layer structure according to the present embodiment is used, the reflectance at a wavelength of 305 nm of incident light L for one ultraviolet shielding material calculated by optical simulation is 30% or more, further 32% or more, particularly 36. It becomes possible to raise it to more than%. Further, when the optical interference system having a five-layer structure according to the present embodiment is used, the transmittance at a wavelength of 305 nm of the incident light L for one ultraviolet shielding material calculated by optical simulation is reduced to 2% or less or 0%. It becomes possible to do. Here, “wavelength 305 nm” is selected as a wavelength serving as an index of UVB.
 本実施形態による5層構成の光学干渉系を利用すれば、光学シミュレーションによって算出される紫外線遮蔽材1枚についての入射光Lの波長380nmにおける反射率を12%以上、さらに25%以上、特に39%以上、場合によっては42%以上にまで高くすることが可能となる。本実施形態による5層構成の光学干渉系を利用すれば、光学シミュレーションによって算出される紫外線遮蔽材1枚についての入射光Lの波長380nmにおける透過率を7%以下、さらに6%以下、特に4%以下、場合によっては1%以下にまで低くすることが可能になる。ここで、「波長380nm」はUVAの指標となる波長として選択されている。 If the optical interference system having a five-layer structure according to the present embodiment is used, the reflectance at a wavelength of 380 nm of the incident light L for one ultraviolet shielding material calculated by optical simulation is 12% or more, further 25% or more, particularly 39. % Or more, and in some cases, it can be increased to 42% or more. If the optical interference system having a five-layer structure according to the present embodiment is used, the transmittance at a wavelength of 380 nm of incident light L for one ultraviolet shielding material calculated by optical simulation is 7% or less, further 6% or less, particularly 4 % Or less, and in some cases, 1% or less. Here, “wavelength 380 nm” is selected as a wavelength serving as an index of UVA.
 本実施形態による5層構成の光学干渉系は、周囲の雰囲気が空気である場合のみならず周囲が樹脂等の固形物又は流動物である場合、言い換えると化粧料、樹脂等のマトリックス中に分散している場合も考慮して、各層の膜厚が設計されている。そのため、本実施形態による5層構成の光学干渉系は、幅広い用途で輝度が高い白色系の反射光を提供することができる。 The five-layer optical interference system according to the present embodiment is dispersed not only in the case where the surrounding atmosphere is air but also in the case where the surrounding is a solid or fluid such as a resin, in other words, in a matrix such as a cosmetic or a resin. The film thickness of each layer is designed in consideration of the case where it is. Therefore, the five-layer optical interference system according to the present embodiment can provide white reflected light with high brightness in a wide range of applications.
[フレーク状ガラス]
 フレーク状ガラスは、量産されているために入手が容易であって、安定した酸化物により構成されている。フレーク状ガラスは、鱗片状ガラス等とも呼ばれる微細な板状のガラス基体である。フレーク状ガラスを構成するガラス組成物は、特に制限はないが、通常、二酸化珪素を主成分とし、酸化アルミニウム、酸化カルシウム、酸化ナトリウム等その他の金属酸化物成分をさらに含むものが用いられる。なお、ここでは、「主成分」を質量基準で含有率が最大となる成分を意味する用語として用いている。用い得るガラス組成物としては、ソーダライムガラス、Aガラス、Cガラス、Eガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス等を例示できる。これらのガラス組成物の屈折率は、その主成分が同一(二酸化ケイ素)であることから、多少の相違はあるが概ね1.50~1.60の範囲内にある。ガラス組成物としては、ソーダライムガラス、Cガラス、Eガラス、ホウケイ酸ガラスが好ましく、これらの屈折率は1.52~1.58の範囲内にある。
[Flake glass]
The flaky glass is easily obtained because it is mass-produced, and is composed of a stable oxide. The flaky glass is a fine plate-like glass substrate also called scale glass. The glass composition constituting the flaky glass is not particularly limited, but usually a glass composition containing silicon dioxide as a main component and further containing other metal oxide components such as aluminum oxide, calcium oxide and sodium oxide is used. Here, “main component” is used as a term that means a component having a maximum content on a mass basis. Examples of the glass composition that can be used include soda lime glass, A glass, C glass, E glass, borosilicate glass, and aluminosilicate glass. The refractive indexes of these glass compositions are generally in the range of 1.50 to 1.60, although there are some differences because their main components are the same (silicon dioxide). As the glass composition, soda lime glass, C glass, E glass, and borosilicate glass are preferable, and the refractive index thereof is in the range of 1.52 to 1.58.
 フレーク状ガラスの好ましい平均粒径は、1~1000μm、さらに3~500μm、特に5~200μmである。なお、フレーク状ガラスの平均粒径は、レーザ回折法により測定した光散乱相当径の粒度分布において、粒径が小さい側からの体積累積が50%に相当する粒径(D50)により定めることとする。 The preferable average particle diameter of the flaky glass is 1 to 1000 μm, more preferably 3 to 500 μm, and particularly 5 to 200 μm. The average particle size of the flake glass is determined by the particle size distribution (D50) corresponding to 50% of the cumulative volume from the small particle size side in the particle size distribution of the light scattering equivalent diameter measured by the laser diffraction method. To do.
 フレーク状ガラスの厚みは、汎用品については0.5~5μm程度である。しかし、酸化チタン層と酸化鉄層との積層膜との組み合わせにおいて輝度が高い白色系の反射光を得るために、フレーク状ガラスの厚みは上述したごく狭い範囲(300~400nm)に設定される。この範囲の厚みを有するフレーク状ガラスは、従来から知られている方法、例えばブロー法、ロータリー法により、製造することができる。 The thickness of the flaky glass is about 0.5 to 5 μm for general-purpose products. However, in order to obtain white-based reflected light with high luminance in the combination of the laminated film of the titanium oxide layer and the iron oxide layer, the thickness of the flake glass is set to the above-mentioned very narrow range (300 to 400 nm). . The flaky glass having a thickness in this range can be produced by a conventionally known method such as a blow method or a rotary method.
 図3に、ブロー法によりフレーク状ガラスを製造するための装置の一例を示す。この製造装置は、耐火窯槽12、ブローノズル15及び押圧ロール17を備えている。耐火窯槽12(溶解槽)で溶融されたガラス素地11は、ブローノズル15に送り込まれたガスによって、風船状に膨らまされ、中空状ガラス膜16となる。中空状ガラス膜16を押圧ロール17により粉砕することにより、フレーク状ガラス1が得られる。中空状ガラス膜16の引張速度、ブローノズル15から送り込むガスの流量等を調節することにより、フレーク状ガラス1の厚みを制御できる。 FIG. 3 shows an example of an apparatus for producing flaky glass by a blow method. The manufacturing apparatus includes a fireproof kiln 12, a blow nozzle 15, and a press roll 17. The glass substrate 11 melted in the refractory kiln 12 (melting tank) is inflated into a balloon shape by the gas sent to the blow nozzle 15 and becomes a hollow glass film 16. By pulverizing the hollow glass film 16 with the pressing roll 17, the flaky glass 1 is obtained. The thickness of the flaky glass 1 can be controlled by adjusting the tensile speed of the hollow glass film 16 and the flow rate of the gas fed from the blow nozzle 15.
 図4に、ロータリー法によりフレーク状ガラスを製造するための装置の一例を示す。この装置は、回転カップ22、1組の環状プレート23及び環状サイクロン型捕集機24を備えている。溶融ガラス素地11は、回転カップ22に流し込まれ、遠心力によって回転カップ22の上縁部から放射状に流出し、環状プレート23の間を通って空気流で吸引され、環状サイクロン型捕集機24に導入される。環状プレート23を通過する間に、ガラスが薄膜の形で冷却及び固化し、さらに微小片に破砕されることにより、フレーク状ガラス1が得られる。環状プレート23の間隔、空気流の速度等を調節することによって、フレーク状ガラス1の厚みを制御できる。 FIG. 4 shows an example of an apparatus for producing flaky glass by the rotary method. The apparatus includes a rotating cup 22, a pair of annular plates 23, and an annular cyclone collector 24. The molten glass substrate 11 is poured into the rotating cup 22, flows out radially from the upper edge of the rotating cup 22 by centrifugal force, is sucked by the air flow through the annular plate 23, and the annular cyclone collector 24. To be introduced. While passing through the annular plate 23, the glass is cooled and solidified in the form of a thin film, and further crushed into small pieces, whereby the flaky glass 1 is obtained. The thickness of the flaky glass 1 can be controlled by adjusting the interval between the annular plates 23, the speed of the air flow, and the like.
[酸化チタン層と酸化鉄層との積層膜]
 フレーク状ガラス上には酸化チタン層と酸化鉄層とがこの順に積層される。これらの層は、それぞれ上述した厚みとなるように形成される。これらの層の成膜技術は既に確立されており、所望の膜厚となるように形成することそれ自体は容易である。
[Laminated film of titanium oxide layer and iron oxide layer]
A titanium oxide layer and an iron oxide layer are laminated in this order on the flaky glass. Each of these layers is formed to have the thickness described above. A technique for forming these layers has already been established, and it is easy to form these layers to have a desired film thickness.
 酸化チタン層は、ルチル型酸化チタンにより構成されていることが好ましい。酸化チタンの結晶形態としてはアナターゼ型も知られている。しかし、アナターゼ型の酸化チタンは光触媒としての活性が高く、周囲の有機物を分解することがある。光学干渉ユニットを構成する酸化チタン層には、相対的に安定な結晶形態であって屈折率が高いルチル型が適している。 The titanium oxide layer is preferably composed of rutile titanium oxide. Anatase type is also known as a crystalline form of titanium oxide. However, anatase-type titanium oxide has high activity as a photocatalyst and may decompose surrounding organic substances. A rutile type having a relatively stable crystal form and a high refractive index is suitable for the titanium oxide layer constituting the optical interference unit.
 ルチル型酸化チタン層は、アナターゼ型酸化チタンを800℃程度以上の高温に加熱してルチル型へと転移させることにより形成することができる。また、酸化チタン層を形成するべき表面にスズ化合物を付着させて酸化チタンを析出させることにより、高温での加熱を要することなく、ルチル型酸化チタン層を形成することができる。後者の方法の詳細は、特表2006-510797号公報、特開2001-31421号公報等に開示されている。 The rutile-type titanium oxide layer can be formed by heating anatase-type titanium oxide to a high temperature of about 800 ° C. or more and transferring it to the rutile type. Moreover, a rutile type titanium oxide layer can be formed without requiring heating at a high temperature by depositing a tin compound on the surface on which the titanium oxide layer is to be formed to deposit titanium oxide. Details of the latter method are disclosed in JP-T-2006-510797 and JP-A-2001-31421.
 なお、酸化チタン層が表面に形成されたフレーク状ガラスは、酸化チタン層による光干渉により、酸化チタン層の厚みに応じた色調に発色する。フレーク状ガラス上に成膜した酸化チタンの単層膜は、例えば、厚み100nm程度で黄色を、厚み130nm程度で赤色を、厚み160nm程度で青色を、厚み175nm程度で緑色をそれぞれ呈する。ただし、成膜条件その他によっては、酸化チタン膜の膜厚が同じであっても色調が微妙に異なることはある。 Note that the flaky glass having a titanium oxide layer formed on the surface develops a color tone corresponding to the thickness of the titanium oxide layer due to light interference by the titanium oxide layer. The titanium oxide monolayer film formed on the flaky glass exhibits, for example, yellow with a thickness of about 100 nm, red with a thickness of about 130 nm, blue with a thickness of about 160 nm, and green with a thickness of about 175 nm. However, depending on the film formation conditions and the like, the color tone may be slightly different even if the thickness of the titanium oxide film is the same.
 酸化鉄層は、三価の酸化鉄(Fe23)により構成されていることが好ましい。Fe23は、二価の酸化鉄(FeO)に比べて、紫外線の遮蔽能に優れている。 The iron oxide layer is preferably composed of trivalent iron oxide (Fe 2 O 3 ). Fe 2 O 3 is superior in ultraviolet shielding ability compared to divalent iron oxide (FeO).
 酸化鉄層は、酸化鉄層を形成するべき表面にFe23のコロイド溶液を塗布し、乾燥することにより形成することができる。また、酸化鉄層を形成するべき表面を有する基材を塩化鉄(FeCl3)水溶液に分散させ、塩基存在下で塩化鉄水溶液を加熱処理することにより酸化鉄層を形成することもできる。Fe23のコロイド溶液の詳細は、特許文献2等に開示されている。後者の方法の詳細は、特表2009-516035号公報、特表平11-510552号公報等に開示されている。 The iron oxide layer can be formed by applying a colloidal solution of Fe 2 O 3 to the surface on which the iron oxide layer is to be formed and drying. Alternatively, the iron oxide layer can be formed by dispersing a base material having a surface on which an iron oxide layer is to be formed in an iron chloride (FeCl 3 ) aqueous solution and heat-treating the iron chloride aqueous solution in the presence of a base. Details of the colloidal solution of Fe 2 O 3 are disclosed in Patent Document 2 and the like. Details of the latter method are disclosed in JP-T 2009-516035, JP-T 11-510552, and the like.
[紫外線遮蔽材を配合した組成物及び塗装体]
 本発明による紫外線遮蔽材は、各種組成物に配合されることにより鮮やかな白色系の発色を示す。本発明は、その別の側面から、本発明による紫外線遮蔽材を含む組成物を提供する。組成物は、化粧料、塗料、インキ及び樹脂組成物から選ばれる少なくとも1つであってもよい。組成物としては、化粧料が好適である。化粧料としては、紫外線遮蔽材と共に、油性成分を含むものを例示できる。化粧料は、顔料、pH調整剤、保湿剤、増粘剤、界面活性剤、分散剤、安定化剤、着色剤、防腐剤、酸化防止剤、香料等をさらに含んでいてもよい。化粧料は、ファンデーションであってもよい。樹脂組成物としては、紫外線遮蔽材と共に、PMMA等の樹脂を含むものを例示できる。樹脂組成物は、人造大理石成型品であってもよい。
[Composition and coating body containing UV shielding material]
The ultraviolet shielding material according to the present invention exhibits a vivid white color when mixed with various compositions. Another aspect of the present invention provides a composition comprising the ultraviolet shielding material according to the present invention. The composition may be at least one selected from cosmetics, paints, inks, and resin compositions. As the composition, a cosmetic is suitable. Examples of cosmetics include those containing an oil component together with an ultraviolet shielding material. The cosmetic may further contain pigments, pH adjusters, humectants, thickeners, surfactants, dispersants, stabilizers, colorants, preservatives, antioxidants, fragrances and the like. The cosmetic may be a foundation. Examples of the resin composition include those containing a resin such as PMMA together with an ultraviolet shielding material. The resin composition may be an artificial marble molded product.
 本実施形態による紫外線遮蔽材を含む化粧料によれば、SPF値を40以上、さらに50以上(50+)にまで高くすることができる。また、本実施形態による紫外線遮蔽材を含む化粧料によれば、PFA値を16以上にまで高くすることができる。なお、SPF値は、UVBを遮蔽する効果の程度を表す指標である。PFA値は、UVAを遮蔽する効果の程度を表す指標である。 According to the cosmetic including the ultraviolet shielding material according to the present embodiment, the SPF value can be increased to 40 or more, and further to 50 or more (50+). In addition, according to the cosmetic including the ultraviolet shielding material according to the present embodiment, the PFA value can be increased to 16 or more. The SPF value is an index representing the degree of the effect of shielding UVB. The PFA value is an index representing the degree of the effect of shielding UVA.
 また、本発明は、さらに別の側面から、基材と、本発明による紫外線遮蔽材を含む、基材上に形成された塗膜とを備えた塗装体を提供する。塗装体は塗装紙であってもよい。この場合の基材は紙であるが、基材は紙に限られるわけでなく、金属、樹脂、セラミックスその他であってもよい。塗膜は、本発明による組成物から構成されていてもよく、本発明による組成物を基材上に塗布することによって形成されていてもよい。 Moreover, this invention provides the coating body provided with the base material and the coating film formed on the base material containing the ultraviolet-ray shielding material by this invention from another side surface. The painted body may be coated paper. The base material in this case is paper, but the base material is not limited to paper, and may be metal, resin, ceramics, or the like. The coating film may be comprised from the composition by this invention, and may be formed by apply | coating the composition by this invention on a base material.
 本実施形態による紫外線遮蔽材では、フレーク状ガラスの厚みが薄いため、フレーク状ガラスの重量に対する酸化鉄層の重量の比率が高い。そのため、組成物又は塗膜における紫外線遮蔽材の含有率が従来に比べて低い値であっても、十分に紫外線を遮蔽する効果が得られる。例えば、紫外線遮蔽材が厚み400nmのフレーク状ガラスを含み、かつ、基材の表面1cm2に対して2mgの組成物又は塗膜を配置する場合、組成物又は塗膜における紫外線遮蔽材の含有率が5重量%以上であれば、基材の表面全体を紫外線遮蔽材によって被覆できる。紫外線遮蔽材が厚み300nmのフレーク状ガラスを含み、かつ、基材の表面1cm2に対して2mgの組成物又は塗膜を配置する場合、組成物又は塗膜における紫外線遮蔽材の含有率が4重量%以上であれば、基材の表面全体を紫外線遮蔽材で被覆できる。このように、フレーク状ガラスの厚みが薄いほど、組成物又は塗膜における紫外線遮蔽材の含有率を低くすることができる。組成物又は塗膜における本実施形態の紫外線遮蔽材の含有率は、15重量%以下、さらには10重量%以下、特に8重量%以下であってもよい。組成物又は塗膜における紫外線遮蔽材の含有率を低下させる観点から、フレーク状ガラスの厚みは、300nm以上350nm以下であってもよい。 In the ultraviolet shielding material according to this embodiment, since the thickness of the flaky glass is thin, the ratio of the weight of the iron oxide layer to the weight of the flaky glass is high. Therefore, even if the content of the ultraviolet shielding material in the composition or the coating film is a lower value than conventional, an effect of sufficiently shielding ultraviolet rays can be obtained. For example, when the ultraviolet shielding material includes flaky glass having a thickness of 400 nm and 2 mg of the composition or coating film is disposed on 1 cm 2 of the surface of the substrate, the content of the ultraviolet shielding material in the composition or coating film If it is 5 weight% or more, the whole surface of a base material can be coat | covered with a ultraviolet-ray shielding material. When the ultraviolet shielding material contains flaky glass having a thickness of 300 nm and 2 mg of the composition or coating film is disposed with respect to 1 cm 2 of the surface of the substrate, the content of the ultraviolet shielding material in the composition or coating film is 4 If it is at least% by weight, the entire surface of the substrate can be covered with an ultraviolet shielding material. Thus, the thinner the thickness of the flaky glass, the lower the content of the ultraviolet shielding material in the composition or coating film. The content of the ultraviolet shielding material of the present embodiment in the composition or coating film may be 15% by weight or less, further 10% by weight or less, and particularly 8% by weight or less. From the viewpoint of reducing the content of the ultraviolet shielding material in the composition or coating film, the thickness of the flaky glass may be from 300 nm to 350 nm.
[光学シミュレーション]
 フレーク状ガラス上に酸化チタン層と酸化鉄(Fe23)層とがこの順に形成され、フレーク状ガラスと共に光学干渉系を構成している紫外線遮蔽材におけるフレーク状ガラス及び層の厚みと反射特性との関係を計算した。反射特性を含む光学特性は、よく知られているとおり、積層構造(フレーク状ガラス及び層)を構成する材料の各波長における屈折率(n)及び消衰係数(k)と厚みとから、光の直進性と反射や屈折(スネル)の法則とに基づいて計算することができる。幾何光学の理論により計算される反射特性が実際の製品の特性に高いレベルで一致することは周知である。酸化鉄層/酸化チタン層/フレーク状ガラス/酸化チタン層/酸化鉄層の構成においても、シミュレーションの結果が実際の製品によく一致することは実験により確認されている。
[Optical simulation]
A titanium oxide layer and an iron oxide (Fe 2 O 3 ) layer are formed in this order on the flaky glass, and the thickness and reflection of the flaky glass and the layer in the ultraviolet shielding material constituting the optical interference system together with the flaky glass. The relationship with characteristics was calculated. As is well known, optical characteristics including reflection characteristics are obtained from the refractive index (n) and extinction coefficient (k) and thickness of each material constituting the laminated structure (flaked glass and layer), and light. Can be calculated on the basis of the straightness and the laws of reflection and refraction (Snell). It is well known that the reflection properties calculated by the theory of geometric optics match the actual product properties at a high level. It has been confirmed by experiments that the simulation results agree well with the actual product even in the structure of the iron oxide layer / titanium oxide layer / flaked glass / titanium oxide layer / iron oxide layer.
 今回の計算に用いた構成のモデルは、周囲(外部環境)/Fe23/TiO2/フレーク状ガラス/TiO2/Fe23/周囲(外部環境)である。フレーク状ガラスとしてはソーダライムガラスを想定した。酸化チタン層はルチル型とした。周囲は、空気(屈折率1.0)又は樹脂とした。樹脂としては、代表的な透明樹脂であるPMMA(ポリメチルメタクリレート;屈折率1.49)を想定した。想定した光源はD65光源であり、想定した光の入射角は5度であり、想定した反射光の測定位置は反射角5度の方向である。反射光学特性及び紫外線遮蔽特性についての計算結果を表1~6に示す。Rは波長550nmにおける反射率(%)であり、L*、a*及びb*の数値はL***表色系に基づく。紫外線遮蔽特性としては、波長305nmにおける反射率及び透過率と、波長380nmにおける反射率及び透過率とを算出した。 The model of the configuration used in this calculation is ambient (external environment) / Fe 2 O 3 / TiO 2 / flaked glass / TiO 2 / Fe 2 O 3 / ambient (external environment). As the flaky glass, soda lime glass was assumed. The titanium oxide layer was a rutile type. The surroundings were air (refractive index 1.0) or resin. As the resin, PMMA (polymethyl methacrylate; refractive index 1.49), which is a typical transparent resin, was assumed. The assumed light source is a D65 light source, the assumed incident angle of light is 5 degrees, and the assumed measurement position of reflected light is in the direction of the reflected angle of 5 degrees. Tables 1 to 6 show the calculation results for the reflection optical characteristics and the ultraviolet shielding characteristics. R is the reflectivity at a wavelength of 550nm (%), L *, value of a * and b * L * a * b * based on the color system. As the ultraviolet shielding property, the reflectance and transmittance at a wavelength of 305 nm and the reflectance and transmittance at a wavelength of 380 nm were calculated.
 表1~6のSPF値は、次のようにして計算した。市販の化粧料について、波長305nmにおける透過率とSPF値とを測定した。市販の化粧料は、紫外線遮蔽材として酸化チタン及び酸化亜鉛を含んでいた。市販の化粧料における酸化チタン及び酸化亜鉛のそれぞれの含有率を変え、波長305nmにおける透過率とSPF値とを再度測定した。この操作を繰り返し、得られた複数のデータに基づいて、波長305nmにおける透過率とSPF値との相関を求めたところ、以下の関係式(1)が得られた。関係式(1)に、光学シミュレーションで得られた紫外線遮蔽材の波長305nmにおける透過率を代入することによって、表1~6のSPF値を計算した。
 y=74.049x-0.888   (1)
 ここで、関係式(1)において、yはSPF値を示しており、xは波長305nmにおける透過率(%)を示している。
The SPF values in Tables 1-6 were calculated as follows. About the commercial cosmetics, the transmittance | permeability and SPF value in wavelength 305nm were measured. Commercially available cosmetics contained titanium oxide and zinc oxide as UV shielding materials. The respective contents of titanium oxide and zinc oxide in commercial cosmetics were changed, and the transmittance and SPF value at a wavelength of 305 nm were measured again. When this operation was repeated and the correlation between the transmittance at a wavelength of 305 nm and the SPF value was obtained based on the obtained plurality of data, the following relational expression (1) was obtained. The SPF values in Tables 1 to 6 were calculated by substituting the transmittance at a wavelength of 305 nm of the ultraviolet shielding material obtained by optical simulation into the relational expression (1).
y = 74.049x -0.888 (1)
Here, in relational expression (1), y represents the SPF value, and x represents the transmittance (%) at a wavelength of 305 nm.
 表1~6のPFA値は、次のようにして計算した。市販の化粧料について、波長380nmにおける透過率とPFA値とを測定した。市販の化粧料における酸化チタン及び酸化亜鉛のそれぞれの含有率を変え、波長380nmにおける透過率とPFA値とを再度測定した。この操作を繰り返し、得られた複数のデータに基づいて、波長380nmにおける透過率とPFA値との相関を求めたところ、以下の関係式(2)が得られた。関係式(2)に、光学シミュレーションで得られた紫外線遮蔽材の波長380nmにおける透過率を代入することによって、表1~6のPFA値を計算した。
 y=208.17x-1.062   (2)
 ここで、関係式(2)において、yはPFA値を示しており、xは波長380nmにおける透過率(%)を示している。
The PFA values in Tables 1-6 were calculated as follows. About the commercial cosmetics, the transmittance | permeability in wavelength 380nm and the PFA value were measured. The respective contents of titanium oxide and zinc oxide in the commercial cosmetics were changed, and the transmittance at a wavelength of 380 nm and the PFA value were measured again. When this operation was repeated and the correlation between the transmittance at a wavelength of 380 nm and the PFA value was obtained based on the obtained data, the following relational expression (2) was obtained. The PFA values in Tables 1 to 6 were calculated by substituting the transmittance at a wavelength of 380 nm of the ultraviolet shielding material obtained by optical simulation into the relational expression (2).
y = 208.17x -1.062 (2)
Here, in the relational expression (2), y indicates the PFA value, and x indicates the transmittance (%) at a wavelength of 380 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるとおり、酸化チタン層を有さない場合には、周囲が空気であっても透明樹脂であっても、紫外線遮蔽材からa*及びb*の絶対値が30以下である反射光を得ることは容易でない。また、表1より、酸化鉄層の厚みが30nm以上であれば、十分に高いSPF値及びPFA値が得られることが確認できる。 As can be seen from Table 1, when there is no titanium oxide layer, the reflected light whose absolute value of a * and b * is 30 or less from the ultraviolet shielding material, whether it is air or transparent resin. It is not easy to get. Further, from Table 1, it can be confirmed that if the thickness of the iron oxide layer is 30 nm or more, sufficiently high SPF value and PFA value can be obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2~5より、周囲が空気であっても透明樹脂であっても、a*及びb*の絶対値が30以下である反射光が得られるフレーク状ガラス及び各層の厚みは以下の範囲が適切であることが確認できる。
・フレーク状ガラス:300nm以上400nm以下
・酸化チタン層:80nm以上100nm以下
・酸化鉄層:30nm以上50nm以下
From Tables 2 to 5, regardless of whether the surroundings are air or transparent resin, the flake glass and the thickness of each layer from which reflected light having an absolute value of a * and b * of 30 or less can be obtained are as follows. It can be confirmed that it is appropriate.
・ Flake glass: 300 to 400 nm ・ Titanium oxide layer: 80 to 100 nm ・ Iron oxide layer: 30 to 50 nm
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、周囲が空気である場合、酸化鉄層の厚みが50nmより厚くても、酸化チタン層の厚みを調節することによって、a*及びb*の絶対値が30以下である反射光を得ることは可能である。しかし、酸化鉄層の厚みを50nmより厚くすると、反射光のL*値が大幅に低下する。例えば、厚み300nmのフレーク状ガラス、及び、厚み80nmの酸化チタン層の組み合わせにおいて、酸化鉄層の厚みが30nmであるときに反射光のL*値は72であり、酸化鉄層の厚みが50nmであるときに反射光のL*値は71である(表2参照)。これに対して、表6からわかるとおり、上記の厚みのフレーク状ガラス及び酸化チタン層の組み合わせにおいて、酸化鉄層の厚みが90nmであるときには、反射光のL*値は56まで低下する。このように、酸化鉄層の厚みが50nm以下であることによって、輝度が高い反射光を提供することができる。 As shown in Table 6, when the surroundings are air, the absolute values of a * and b * are 30 or less by adjusting the thickness of the titanium oxide layer even if the thickness of the iron oxide layer is greater than 50 nm. It is possible to obtain reflected light. However, when the thickness of the iron oxide layer is greater than 50 nm, the L * value of the reflected light is significantly reduced. For example, in a combination of flaky glass having a thickness of 300 nm and a titanium oxide layer having a thickness of 80 nm, when the thickness of the iron oxide layer is 30 nm, the L * value of reflected light is 72 and the thickness of the iron oxide layer is 50 nm. The L * value of the reflected light is 71 (see Table 2). On the other hand, as can be seen from Table 6, when the thickness of the iron oxide layer is 90 nm in the combination of the flaky glass and the titanium oxide layer having the above thickness, the L * value of the reflected light decreases to 56. Thus, when the thickness of the iron oxide layer is 50 nm or less, reflected light with high luminance can be provided.
 以上の光学シミュレーションではすべて紫外線遮蔽材1枚からの反射光の特性が算出されることになる。しかし、実際の塗膜等には紫外線遮蔽材が光線の透過方向に複数枚存在するため、反射光の輝度がこれよりも高く観察される。塗膜中では3~6枚程度の紫外線遮蔽材からの反射光が観察されることはよく経験される。 In all the optical simulations described above, the characteristics of the reflected light from one ultraviolet shielding material are calculated. However, since a plurality of ultraviolet shielding materials exist in the light transmission direction in an actual coating film or the like, the brightness of reflected light is observed to be higher than this. It is often experienced that reflected light from about 3 to 6 UV shielding materials is observed in the coating film.

Claims (4)

  1.  フレーク状ガラスと、前記フレーク状ガラス上にこの順に形成された酸化チタン層及び酸化鉄層と、を備え、
     前記フレーク状ガラスの厚みが300nm以上400nm以下であり、
     前記酸化チタン層の厚みが80nm以上100nm以下であり、
     前記酸化鉄層の厚みが30nm以上50nm以下である、紫外線遮蔽材。
    A flake glass, and a titanium oxide layer and an iron oxide layer formed in this order on the flake glass,
    The flake glass has a thickness of 300 nm to 400 nm,
    The titanium oxide layer has a thickness of 80 nm to 100 nm,
    The ultraviolet shielding material whose thickness of the said iron oxide layer is 30 nm or more and 50 nm or less.
  2.  前記酸化チタン層及び前記酸化鉄層は、前記フレーク状ガラスの互いに反対側にある第1主面上及び第2主面上に形成されている、請求項1に記載の紫外線遮蔽材。 The ultraviolet shielding material according to claim 1, wherein the titanium oxide layer and the iron oxide layer are formed on a first main surface and a second main surface on opposite sides of the flaky glass.
  3.  請求項1又は2に記載の紫外線遮蔽材を含む、組成物。 A composition comprising the ultraviolet shielding material according to claim 1 or 2.
  4.  基材と、
     請求項1又は2に記載の紫外線遮蔽材を含む、前記基材上に形成された塗膜と、を備えた塗装体。
    A substrate;
    The coating body provided with the coating film formed on the said base material containing the ultraviolet-ray shielding material of Claim 1 or 2.
PCT/JP2018/008055 2017-04-06 2018-03-02 Uv shielding member, and composition and coated-body comprising same WO2018186076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018526280A JP6395987B1 (en) 2017-04-06 2018-03-02 Ultraviolet shielding material, composition and coating body containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-075832 2017-04-06
JP2017075832 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186076A1 true WO2018186076A1 (en) 2018-10-11

Family

ID=63713375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008055 WO2018186076A1 (en) 2017-04-06 2018-03-02 Uv shielding member, and composition and coated-body comprising same

Country Status (1)

Country Link
WO (1) WO2018186076A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021014981A1 (en) * 2019-07-23 2021-01-28

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330542A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Flaky glass, production thereof and cosmetic compounded with the glass
JPH07330361A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Iron oxide fine particle-dispersed flaky glass and cosmetic formulated therewith
JPH0971417A (en) * 1995-09-07 1997-03-18 Nippon Sheet Glass Co Ltd Flaky powder and cosmetic compounded therewith
JP2004307424A (en) * 2003-04-09 2004-11-04 Kao Corp Makeup cosmetic
WO2007116769A1 (en) * 2006-03-27 2007-10-18 Nippon Sheet Glass Company, Limited Brightening pigment with gold tone and cosmetic preparation, coating material, ink, or resin composition each containing the same
JP2011520764A (en) * 2008-05-27 2011-07-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Glass-ceramic flakes for use in pigments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330542A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Flaky glass, production thereof and cosmetic compounded with the glass
JPH07330361A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Iron oxide fine particle-dispersed flaky glass and cosmetic formulated therewith
JPH0971417A (en) * 1995-09-07 1997-03-18 Nippon Sheet Glass Co Ltd Flaky powder and cosmetic compounded therewith
JP2004307424A (en) * 2003-04-09 2004-11-04 Kao Corp Makeup cosmetic
WO2007116769A1 (en) * 2006-03-27 2007-10-18 Nippon Sheet Glass Company, Limited Brightening pigment with gold tone and cosmetic preparation, coating material, ink, or resin composition each containing the same
JP2011520764A (en) * 2008-05-27 2011-07-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Glass-ceramic flakes for use in pigments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021014981A1 (en) * 2019-07-23 2021-01-28
WO2021014981A1 (en) * 2019-07-23 2021-01-28 日本板硝子株式会社 Near-infrared shielding material
JP7227376B2 (en) 2019-07-23 2023-02-21 日本板硝子株式会社 Near-infrared shielding material

Similar Documents

Publication Publication Date Title
US9482798B2 (en) Plasmonic nano-color coating layer and method for fabricating the same
US10577502B2 (en) Bright pigment, method for producing same, pigment-containing composition, and pigment-containing painted product
JP2006508982A5 (en)
KR20170097142A (en) Effect pigments with high chroma and high brilliancy, method for the production and use thereof
JP6395987B1 (en) Ultraviolet shielding material, composition and coating body containing the same
KR20170101248A (en) Pigment for red coloring having high saturation and high luminance, method for producing the same and uses thereof
WO2018186076A1 (en) Uv shielding member, and composition and coated-body comprising same
US11472963B2 (en) Glitter pigment, pigment-containing composition, and pigment-containing painted product
WO2018198294A1 (en) Lustrous pigment having electromagnetic wave-transmitting characteristics, composition containing this pigment, and coated body
JP6243093B1 (en) Bright pigment, pigment-containing composition, and pigment-containing coated body
WO2018123125A1 (en) Glitter pigment, pigment-containing composition, and pigment-containing coated object
JP2016519172A (en) Ultraviolet reflective pigment and method for producing and using the same
KR101276447B1 (en) Pearl shiny pigment and a cosmetic composition containing the same
Pfaff Special effect pigments
WO2021014981A1 (en) Near-infrared shielding material
JP2004124030A (en) Multilayer coherent pigment
KR20240002973A (en) Active functional deco film
TW202339950A (en) Anti-reflective film-attached transparent substrate and image display device
TW202400409A (en) Antireflection film-equipped transparent substrate and image display device
JPH0234589A (en) Powdery material having selective light transmissivity
JP2002144481A (en) Glass thin film laminate having optical function and its manufacturing method
Shaul Writing 340, Section 66818 Illumin Paper Layer-by-layer: Engineering Surfaces
JPH0234331A (en) Selective light-transmitting mica

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526280

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780901

Country of ref document: EP

Kind code of ref document: A1