WO2018186055A1 - Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing same, liquid crystal element, polymer and compound - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing same, liquid crystal element, polymer and compound Download PDF

Info

Publication number
WO2018186055A1
WO2018186055A1 PCT/JP2018/007185 JP2018007185W WO2018186055A1 WO 2018186055 A1 WO2018186055 A1 WO 2018186055A1 JP 2018007185 W JP2018007185 W JP 2018007185W WO 2018186055 A1 WO2018186055 A1 WO 2018186055A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
group
ring
organic group
Prior art date
Application number
PCT/JP2018/007185
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 村上
伸夫 安池
遼 須原
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201880015630.2A priority Critical patent/CN110383156B/en
Priority to JP2019511094A priority patent/JP7028241B2/en
Priority to KR1020197023941A priority patent/KR102269265B1/en
Publication of WO2018186055A1 publication Critical patent/WO2018186055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to a liquid crystal aligning agent, a liquid crystal aligning film and a manufacturing method thereof, a liquid crystal element, a polymer, and a compound.
  • Liquid crystal elements are widely used in TVs, mobile devices, various monitors, and so on.
  • a liquid crystal alignment film is used to control the alignment of liquid crystal molecules in the liquid crystal cell.
  • Conventional methods for obtaining an organic film having a liquid crystal alignment regulating force include a method of rubbing an organic film, a method of obliquely depositing silicon oxide, a method of forming a monomolecular film having a long chain alkyl group, and a photosensitive organic film.
  • a method of irradiating a film with light photo-alignment method
  • Patent Document 1 discloses forming a liquid crystal alignment film by irradiating a film obtained by applying and baking a liquid crystal aligning agent containing a polyamic acid having a cyclobutane ring structure in the main chain on a substrate and baking it. Has been.
  • the alignment regulating force of liquid crystal molecules is not sufficient as compared with a rubbing process, and image sticking called an AC afterimage tends to occur.
  • the AC afterimage is an afterimage that is generated due to the initial alignment direction deviating from the original direction of the liquid crystal device due to the liquid crystal device being driven for a long time.
  • improving the degree of alignment of the liquid crystal alignment film is one effective means.
  • As a liquid crystal element it is desired that the AC afterimage is sufficiently reduced in order to satisfy the recent demand for higher performance.
  • liquid crystal elements have been applied to a wide range of devices and applications from large-screen liquid crystal televisions to small display devices such as smartphones and tablet PCs. With such versatility, liquid crystal elements are placed or installed in places where they can be hot, such as in the car or outdoors, or they can be driven for a longer time than before, and are used under more severe temperature conditions. It is assumed that Therefore, the liquid crystal element is required to have high reliability with respect to heat resistance.
  • a liquid crystal alignment film is obtained by photo-alignment treatment using a liquid crystal aligning agent containing a polyimide polymer having a cyclobutane ring structure in the main chain, it can be obtained due to decomposition products generated by light irradiation on the coating film.
  • a liquid crystal element is exposed to a high temperature environment for a long time, a fine bright spot is likely to be generated, and there is a concern that the heat resistance (particularly long-term heat resistance) is inferior in reliability.
  • the present disclosure has been made in view of the above circumstances, and provides a liquid crystal aligning agent capable of obtaining a liquid crystal element excellent in AC afterimage characteristics and long-term heat resistance when a liquid crystal alignment film is obtained by a photo-alignment method.
  • a liquid crystal aligning agent capable of obtaining a liquid crystal element excellent in AC afterimage characteristics and long-term heat resistance when a liquid crystal alignment film is obtained by a photo-alignment method.
  • This disclosure employs the following means in order to solve the above problems.
  • X 1 is a tetravalent organic group having a cyclobutane ring structure
  • X 2 having at least one substituent in the ring portion of the cyclobutane ring, the following formula (4) or a divalent organic group represented by the following formula (5):
  • R 5 and R 6 are each independently a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms.
  • a 1 and A 2 are divalent aromatic ring groups, which may have a substituent in the ring portion. However, A 1 and A 2 are the same. Y 1 and Y 2 are each independently a single bond, an oxygen atom, a sulfur atom, or “—NR 7 —” (R 7 is a hydrogen atom or a monovalent organic group). However, Y 1 and Y 2 are different from each other, B 1 is a divalent heterocyclic group represented by the following formula (7) or formula (8), Y 3 is an oxygen atom or “ ⁇ NR 9 — ”(R 9 is a hydrogen atom or a monovalent organic group).
  • Z 1 has 1 to 15 carbon atoms having at least one of a chain hydrocarbon structure and an alicyclic hydrocarbon structure. a divalent organic group
  • Z 2 is a single bond, or a linear C 1 - having at least one hydrocarbon structures and alicyclic hydrocarbon structure 5 is a divalent organic group.
  • the carbon number of Z 1 is 2 or more.
  • “*” Indicates a bond.)
  • R 8 is a substituent
  • r is an integer of 0 to 3
  • m is an integer of 0 to (r + 2)
  • “*” represents a bond.
  • ⁇ 2> A liquid crystal alignment film formed using the liquid crystal aligning agent of ⁇ 1> above.
  • ⁇ 3> A method for producing a liquid crystal alignment film, comprising a photo-alignment step of forming a coating film using the liquid crystal aligning agent of ⁇ 1> and applying a light irradiation treatment to the coating film to impart liquid crystal alignment ability.
  • ⁇ 4> A liquid crystal element comprising the liquid crystal alignment film of ⁇ 2> above.
  • ⁇ 5> A polymer having at least one selected from the group consisting of a partial structure represented by the above formula (1) and a partial structure represented by the above formula (2).
  • ⁇ 6> A compound represented by the following formula (16).
  • a 3 and A 4 are divalent groups in which two hydrogen atoms have been removed from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part.
  • R 13 is a hydrogen atom or a monovalent organic group
  • Y 8 is an oxygen atom or a sulfur atom
  • n is 1-5. (It is an integer.)
  • liquid crystal aligning agent of the present disclosure when a liquid crystal alignment film is obtained by a photo-alignment method, a liquid crystal element having excellent long-term heat resistance and reduced AC afterimage can be obtained.
  • FIG. 1 is a 1 H-NMR spectrum of diamine (DA-1).
  • FIG. 2 is a 1 H-NMR spectrum of diamine (DA-4).
  • FIG. 3 is a 1 H-NMR spectrum of diamine (DA-10).
  • the liquid crystal aligning agent of this indication contains the polymer (P) which has at least 1 type chosen from the group which consists of the partial structure represented by the said Formula (1), and the partial structure represented by the said Formula (2).
  • X 1 is a tetravalent organic group having a cyclobutane ring structure, and has at least one substituent in the ring portion of the cyclobutane ring.
  • substituents that the cyclobutane ring has include a halogen atom, an alkyl group, a halogenated alkyl group, an alkoxy group, an alkenyl group, and an alkynyl group.
  • the number of substituents is not particularly limited, but 1 to 4 is preferable.
  • X 1 is preferably a group represented by the following formula (3).
  • R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • the above formula (1) is represented by the following formula (1-A) or (1-B)
  • the above formula (2) is represented by the following formula (2-A).
  • X 2 , R 5 and R 6 are each synonymous with X 2, R 5 and R 6 in the formula (1) .
  • R 1 ⁇ R 4 has the same meaning as R 1 to R 4 in the above formula (3).
  • X 2 is .R 1 ⁇ R 4 are the same meaning as X 2 in the formula (1) are synonymous with R 1 ⁇ R 4 in each of the above formula (3) is there.
  • X 2 in the above formulas (1) and (2) is a divalent organic group represented by the above formula (4) or formula (5).
  • a 1 and A 2 are groups in which two hydrogen atoms have been removed from the ring portion of the aromatic ring, and the ring portion may have a substituent.
  • the aromatic ring include aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring and biphenyl ring; nitrogen-containing heterocycles such as pyridine ring, pyrazine ring, pyrimidine ring and pyridazine ring.
  • the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms.
  • a 1 and A 2 are identical, the monomer used in obtaining the polymer (P) can be easily synthesized, but has a high effect of reducing AC afterimage and improving long-term heat resistance. This is preferable.
  • a 1 and A 2 are benzene rings, biphenyl rings, pyridine rings or pyrimidines which may have a substituent among them because a liquid crystal element excellent in liquid crystal alignment and AC afterimage characteristics can be obtained.
  • a group obtained by removing two hydrogen atoms from the ring portion of the ring is preferable.
  • Y 1 and Y 2 in the formula (4) are each independently a single bond, an oxygen atom, a sulfur atom, or “—NR 7 —” (R 7 is a hydrogen atom or a monovalent organic group. .)
  • R 7 is a hydrogen atom or a monovalent organic group. .
  • Y 1 and Y 2 are different from each other. Among these, the sensitivity of the polymer (P) to light can be enhanced, and the effect of improving the liquid crystal orientation and AC afterimage characteristics of the obtained liquid crystal element is higher.
  • X 2 in the above formula (1) has an asymmetric structure, so that the solubility of the polymer can be improved and the crystallinity of the photodegradation product is lowered. Therefore, it is considered that the generation of minute bright spots can be reduced.
  • the monovalent organic group for R 7 include an alkyl group having 1 to 6 carbon atoms and a protecting group.
  • the protecting group is preferably a group capable of leaving by heat, and examples thereof include a carbamate protecting group, an amide protecting group, an imide protecting group, and a sulfonamide protecting group.
  • R 7 is preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a protecting group. From the viewpoint that generation of fine luminescent spots can be further reduced and transparency of the liquid crystal alignment film can be increased, R 7 has 1 to 3 carbon atoms.
  • the alkyl group is more preferable.
  • Y 3 in the above formula (5) is an oxygen atom or “—NR 9 —”. For the specific examples and preferred examples of R 9 , the description of R 7 in “—NR 7 —” described above applies.
  • Z 1 is a divalent organic group having 1 to 15 carbon atoms having at least one of a chain hydrocarbon structure and an alicyclic hydrocarbon structure
  • Z 2 is a single bond or a chain hydrocarbon structure and A divalent organic group having 1 to 15 carbon atoms and having at least one of alicyclic hydrocarbon structures.
  • the carbon number of Z 1 is an integer of 2 to 15.
  • the “chain hydrocarbon structure” means a linear hydrocarbon structure and a branched hydrocarbon structure composed of only a chain structure without including a cyclic structure.
  • the chain hydrocarbon structure may be saturated or unsaturated.
  • the “alicyclic hydrocarbon structure” means a hydrocarbon structure that includes only an alicyclic hydrocarbon structure as a ring structure and does not include an aromatic ring structure. However, the alicyclic hydrocarbon structure does not need to be constituted only by the structure of the alicyclic hydrocarbon, and includes a part having a chain structure.
  • Z 1 represents a divalent chain hydrocarbon group or a carbon-carbon bond between the chain hydrocarbon group, an oxygen atom, a sulfur atom or “—NR 12 —” (R 12 represents a hydrogen atom or a monovalent organic group). It is preferably a group having a group.
  • Z 2 may be a single bond, a divalent chain hydrocarbon group, or a group having an oxygen atom, a sulfur atom or “—NR 12 —” between carbon-carbon bonds of the chain hydrocarbon group. preferable.
  • the divalent organic group of Z 1 and Z 2 is preferably a divalent organic group represented by the following formula (6) from the viewpoint that the generation of fine bright spots caused by the photodecomposed product can be further reduced.
  • R 10 and R 11 are each independently an alkanediyl group, and the total carbon number of R 10 and R 11 is 1 to 15.
  • Y 4 represents an oxygen atom, a sulfur atom Or “—NR 12 —” (R 12 is a hydrogen atom or a monovalent organic group.)
  • P is an integer of 0 to 4.
  • a plurality of R 10 , Y 4 may be the same as or different from each other, provided that when one of Y 1 and Y 2 in the formula (4) is a sulfur atom and the other is a single bond, R 10 and R 11 The total number of carbon atoms is 2 or more.
  • R 10 and R 11 may be linear or branched, but are preferably linear in that the effect of suppressing the formation of fine luminescent spots in the liquid crystal element can be enhanced.
  • the group represented by the above formula (6) (that is, Z 1 and Z 2 ) is an alkanediyl group or an oxygen atom, a sulfur atom, or a carbon-carbon bond of the alkanediyl group.
  • a group having “—NR 8 —” is preferable, and an alkanediyl group or a group having an oxygen atom between carbon-carbon bonds of the alkanediyl group is more preferable, and an alkanediyl group is preferable. Further preferred.
  • the description of R 7 in “—NR 7 —” described above applies to specific examples and preferred examples of R 12 .
  • p is preferably 0-2.
  • the total number of carbon atoms of R 10 and R 11 (when p is 2 or more, a plurality of R 10 And the total number of carbon atoms of R 11 ) is that the number of carbon atoms is 2 or more in terms of accelerating realignment of molecular chains by heating in the production of a liquid crystal alignment film and reducing the occurrence of minute bright spots in a liquid crystal element.
  • it has 3 or more carbon atoms.
  • Y 4 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • Z 2 in the above formula (5) is a divalent group represented by the above formula (6)
  • Z 2 is preferably a single bond or a methylene group.
  • B 1 in the above formula (5) is a nitrogen-containing heterocyclic group represented by the above formula (7) or formula (8).
  • substituent for R 8 include an alkyl group having 1 to 6 carbon atoms.
  • r is preferably 1 or 2, and more preferably 2.
  • B 1 is a substituted or unsubstituted piperidine-1,4-diyl group, or a substituted or unsubstituted piperazine-1,4-diyl group. From the viewpoint of liquid crystal alignment and AC afterimage characteristics The substituted or unsubstituted piperidine-1,4-diyl group is particularly preferable.
  • the above formula (4) is particularly preferably a group represented by the following formula (4A) in that the effect of improving liquid crystal orientation, AC afterimage characteristics and long-term heat resistance is high.
  • a 3 and A 4 are divalent groups obtained by removing two hydrogen atoms from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part.
  • Y 5 and Y 6 each independently represent a single bond, an oxygen atom, a sulfur atom, or “—NR 13 —” (R 13 is A hydrogen atom or a monovalent organic group, provided that Y 5 and Y 6 are different from each other, n is an integer of 1 to 5, provided that one of Y 5 and Y 6 is a sulfur atom. When the other is a single bond, n is 2 or more. “*” Indicates a bond.)
  • Examples of the substituent that A 3 and A 4 may have include an alkyl group having 1 to 6 carbon atoms.
  • R 13 With respect to specific examples and preferred examples of the monovalent organic group of R 13 , the description of R 7 described above is applied.
  • Y 5 and Y 6 of the group represented by the above formula (4A) are a single bond, an oxygen atom or a sulfur atom (however, Y 5 and Y 6 are different from each other), they are highly sensitive to light. However, it is preferable in that the yield can be increased in the synthesis of the polyamic acid ester.
  • X 2 is represented by the following formula (4C).
  • one of Y 51 and Y 61 is an oxygen atom and the other is a single bond.
  • Y 51 and Y 61 are each independently a single bond, an oxygen atom, or a sulfur atom, provided that Y 51 and Y 61 are different from each other, n is an integer of 1 to 5)
  • n is 2 or more
  • a 3 and A 4 have the same meanings as in the above formula (4A).
  • the bonding site on the benzene ring, pyridine ring or pyrimidine ring of A 3 and A 4 in Y 5 and Y 6 in the above formula (4A) is the above formula (1). and is preferably para to the nitrogen atom attached to X 2 in the formula (2).
  • the group represented by the above formula (4A) is particularly preferably a group represented by the following formula (4A-1).
  • Q 1 and Q 2 are each independently “CH” or a nitrogen atom.
  • R 13 , Y 5 , Y 6 and n have the same meanings as in Formula (4A) above). “*” Indicates a bond.
  • the above formula (5) is preferably a divalent organic group represented by the following formula (5A).
  • K in the formula (5) is preferably 0 to 3, more preferably 0 or 1.
  • a 5 and A 6 are divalent groups in which two hydrogen atoms have been removed from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part.
  • B 2 is a substituted or unsubstituted piperidine-1,4-diyl group, or a substituted or unsubstituted piperazine-1,4-diyl group.
  • Y 7 is an oxygen atom or “—NR 9 —” (R 9 is a hydrogen atom or a monovalent organic group), k is an integer of 0 to 5. “*” is a bond Showing hand.)
  • the polymer (P) is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide.
  • the polymer (P) has a partial structure derived from a tetracarboxylic acid derivative having a cyclobutane ring structure having at least one substituent in the ring portion, and a divalent compound represented by the above formula (4) or formula (5). And a partial structure derived from a diamine compound having an organic group.
  • the synthesis method of such a polymer (P) is not particularly limited, and can be obtained by appropriately combining organic chemistry methods.
  • tetracarboxylic acid derivative is meant to include tetracarboxylic dianhydride, tetracarboxylic acid diester, and tetracarboxylic acid diester dihalide.
  • polyamic acid When the polymer (P) is a polyamic acid, the polyamic acid (hereinafter also referred to as “polyamic acid (P)”) is, for example, a tetrabutane having a cyclobutane ring structure having at least one substituent in the ring portion.
  • a tetracarboxylic dianhydride including a carboxylic dianhydride hereinafter also referred to as “specific acid dianhydride”
  • specific acid dianhydride a divalent organic group represented by the above formula (4) or formula (5). It can be obtained by reacting a diamine compound containing a diamine compound (hereinafter also referred to as “specific diamine”).
  • Specific acid dianhydrides include tetracarboxylic dianhydrides having a partial structure represented by the above formula (3).
  • Specific examples of the specific acid dianhydride include compounds represented by the following formulas (TA-1-1) to (TA-1-15).
  • the specific acid dianhydride is preferably a compound represented by any of the above formulas (TA-1-1) to (TA-1-12), and 1,3-dimethyl-1,2, 3,4-cyclobutanetetracarboxylic dianhydride (a compound represented by the above formula (TA-1-2)) is particularly preferred.
  • specific acid dianhydride can be used individually by 1 type or in combination of 2 or more types.
  • tetracarboxylic dianhydrides other than the specific acid dianhydride may be used as the tetracarboxylic dianhydride together with the specific acid dianhydride.
  • Other tetracarboxylic dianhydrides are not particularly limited as long as they do not have a cyclobutane ring structure having at least one substituent in the ring portion.
  • Specific examples of other tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides such as ethylenediaminetetraacetic acid dianhydride;
  • Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-di Oxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8 -Methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3- Cyclohexene-1,2-dicarboxylic anhydride, 3,5,6-tricarboxy-2-carboxymethylnorbornane-2: 3,5: 6-dianhydride,
  • tetracarboxylic dianhydrides include ethylenediaminetetraacetic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, among them, in terms of increasing the effect of reducing the fine bright spot. , 2,3,5-tricarboxycyclopentylacetic dianhydride, pyromellitic dianhydride and at least one selected from the group consisting of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride It can be preferably used as a component.
  • combination of a polymer (P), as another tetracarboxylic dianhydride 1 type can be used individually or in combination of 2 or more types.
  • the use ratio of the specific acid dianhydride is 30 mol% with respect to the total amount of tetracarboxylic dianhydrides used for the synthesis from the viewpoint of sufficiently obtaining the effects of the present disclosure.
  • the above is preferable. More preferably, it is 50 mol% or more, More preferably, it is 80 mol% or more.
  • the proportions used are preferably 5 to 70 mol% with respect to the total amount of tetracarboxylic dianhydrides used in the synthesis, and 10 to 50 mol. % Is more preferable.
  • the specific diamine is a compound represented by the following formula (14) or the following formula (15).
  • a 1, A 2, B 1, Y 1, Y 2, Y 3, Z 1 and Z 1 are the above formula (4), with defined for formula (5) is there.
  • the compound represented by the above formula (14) is preferably a compound represented by the following formula (4B), and the compound represented by the above formula (15) is represented by the following formula (5B). It is preferable that it is a compound represented.
  • the primary amino group in the above formula (4B) and formula (5B) is relative to other groups bonded to the ring of A 3 , A 4 , A 5 and A 6 (benzene ring, pyridine ring or pyrimidine ring).
  • the para position is preferred.
  • Specific examples and preferred examples of A 3 , A 4 , Y 5 , Y 6 and n in the above formula (4B) and A 5 , A 6 , B 2 , Y 7 and k in the above formula (5B) The above description applies.
  • specific diamine examples include, for example, compounds represented by the following formulas (d-1) to (d-54).
  • the specific diamine can be synthesized by appropriately combining organic chemistry methods.
  • a specific diamine may be used individually by 1 type, or may be used in combination of 2 or more type.
  • “Boc” in the following formula represents a tert-butoxycarbonyl group.
  • diamine compound In the synthesis of polyamic acid (P), only a specific diamine may be used as the diamine compound, but other diamines other than the specific diamine may be used together with the specific diamine.
  • Other diamines are not particularly limited as long as they do not correspond to specific diamines, and examples thereof include aliphatic diamines, alicyclic diamines, aromatic diamines, and diaminoorganosiloxanes.
  • aliphatic diamines such as metaxylylenediamine, ethylenediamine, 1,3-propanediamine, tetramethylenediamine, hexamethylenediamine and the like
  • alicyclic diamines such as p-cyclohexanediamine, 4 , 4'-methylenebis (cyclohexylamine) and the like;
  • aromatic diamines examples include dodecanoxydiaminobenzene, hexadecanoxydiaminobenzene, octadecanoxydiaminobenzene, cholestanyloxydiaminobenzene, cholesteryloxydiaminobenzene, cholesteryl diaminobenzoate, cholesteryl diaminobenzoate, and diaminobenzoic acid.
  • R II is a single bond or an alkanediyl group having 1 to 3 carbon atoms, a is 0 or 1, b is an integer of 0 to 2, c is an integer of 1 to 20, and d is 0 or 1. However, a and b are not 0 at the same time.
  • Side-chain diamines such as compounds represented by: Paraphenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-ethylenedianiline, 4,4′-diaminodiphenylamine, 4,4′-diaminodiphenyl sulfide, 4-aminophenyl-4′-aminobenzoate, 4 , 4′-diaminoazobenzene, 3,5-diaminobenzoic acid, 1,2-bis (4-aminophenoxy) ethane, 1,5-bis (4-aminophenoxy) pentane, N, N′-di (4- Aminophenyl) -N
  • diamines used for the synthesis of the polyamic acid (P) include O, O′-di (4-aminophenyl) -ethylene glycol, and N, because they have a high effect of reducing the fine bright spots generated in the liquid crystal element.
  • N′-di (4-aminophenyl) -N, N′-dimethylethylenediamine is preferable, and a liquid crystal element having favorable liquid crystal alignment and AC afterimage characteristics can be obtained.
  • it preferably contains at least one selected from the group consisting of paraphenylenediamine, 1,4-bis (4-aminophenyl) -piperazine, and 2,2′-dimethyl-4,4′-diaminobiphenyl.
  • other diamines can be used alone or in combination of two or more.
  • the proportion of the specific diamine used is preferably 20 mol% or more based on the total amount of diamine compounds used in the synthesis of the polyamic acid (P) from the viewpoint of sufficiently obtaining the effects of the present disclosure. More preferably, it is 40 mol% or more, More preferably, it is 60 mol% or more. When other diamines are used, the proportions used are preferably 5 to 80 mol%, more preferably 10 to 60 mol%, based on the total amount of diamine compounds used in the synthesis.
  • the polyamic acid (P) is obtained by reacting the tetracarboxylic dianhydride and the diamine compound as described above with a molecular weight adjusting agent (for example, acid monoanhydride, monoamine compound, monoisocyanate compound, etc.) as necessary. Obtainable.
  • a molecular weight adjusting agent for example, acid monoanhydride, monoamine compound, monoisocyanate compound, etc.
  • the ratio of the tetracarboxylic dianhydride and the diamine compound used in the polyamic acid (P) synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is equivalent to 1 equivalent of the amino group of the diamine compound. A ratio of 0.2 to 2 equivalents is preferred.
  • the synthesis reaction of polyamic acid (P) is preferably performed in an organic solvent.
  • the reaction temperature at this time is preferably ⁇ 20 ° C. to 150 ° C., and the reaction time is preferably 0.1 to 24 hours.
  • the organic solvent used in the reaction include aprotic polar solvents, phenol solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like.
  • organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol. And one or more selected from the group consisting of halogenated phenols, or a mixture of one or more of these and another organic solvent (for example, butyl cellosolve, diethylene glycol diethyl ether, etc.).
  • the amount of the organic solvent used is preferably such that the total amount of tetracarboxylic dianhydride and diamine compound is 0.1 to 50% by mass relative to the total amount of the reaction solution.
  • the reaction solution obtained by dissolving the polyamic acid (P) may be used as it is for the preparation of the liquid crystal aligning agent, and the polyamic acid (P) contained in the reaction solution is isolated and then used for the preparation of the liquid crystal aligning agent. May be.
  • the polyamic acid ester as the polymer (P) has a structural unit in which at least one of R 5 and R 6 is a monovalent organic group having 1 to 6 carbon atoms in the partial structure represented by the above formula (1). It is a polymer having.
  • R 5 and R 6 include, for example, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms, a cyclohexyl group, a phenyl group, and the like. Is mentioned.
  • the polyamic acid ester is, for example, [I] a method of reacting the polyamic acid (P) obtained above with an esterifying agent (for example, methanol, ethanol, N, N-dimethylformamide diethyl acetal, etc.), [II] A tetracarboxylic acid diester containing a tetracarboxylic acid diester having a partial structure represented by the above formula (3) and a diamine compound containing a specific diamine are preferably mixed in a suitable dehydration catalyst (for example, 4- (4 , 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium halide, carbonylimidazole, phosphorus condensing agent, etc.], [III] the above formula (3 Tetracarboxylic acid diester dihalogen containing a tetracarboxylic acid diester dihalide having a partial structure represented by And a diamine compound containing a specific diamine, preferably in an
  • the tetracarboxylic acid diester used in the above [II] can be obtained by ring-opening a specific acid dianhydride or other tetracarboxylic acid dianhydride with an alcohol or the like.
  • the tetracarboxylic acid diester dihalide used in the above [III] can be obtained by reacting the tetracarboxylic acid diester obtained as described above with an appropriate chlorinating agent such as thionyl chloride.
  • the polyamic acid ester may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist.
  • the solution may be used as it is for the preparation of the liquid crystal aligning agent.
  • the liquid crystal aligning agent is prepared. May be provided.
  • the polyimide as the polymer (P) is a polymer having a partial structure represented by the above formula (2).
  • the polyimide can be obtained, for example, by dehydrating and ring-closing and imidizing the polyamic acid (P) synthesized as described above.
  • the polyimide may be a completely imidized product obtained by dehydrating and cyclizing all of the amic acid structure of the polyamic acid (P) that is a precursor thereof, and only a part of the amic acid structure is dehydrated and cyclized.
  • a partially imidized product in which a structure and an imide ring structure coexist may be used.
  • the polyimide preferably has an imidation ratio of 40 to 100%, more preferably 60 to 90%.
  • This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of polyimide amic acid structures and the number of imide ring structures in percentage.
  • a part of the imide ring may be an isoimide ring.
  • the dehydration ring closure of the polyamic acid (P) is preferably carried out by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to the solution, and heating as necessary.
  • a dehydrating agent for example, acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used.
  • the amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid.
  • the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collidine, lutidine, triethylamine and the like can be used.
  • the amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 moles per mole of the dehydrating agent used.
  • an organic solvent to be used the organic solvent illustrated as what is used for the synthesis
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., and the reaction time is preferably 1.0 to 120 hours.
  • the reaction solution containing the polyimide thus obtained may be directly used for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after the polyimide is isolated.
  • a polyimide can also be obtained by imidation by the dehydration ring closure reaction of polyamic acid ester.
  • the solution viscosity of the polymer (P) preferably has a solution viscosity of 10 to 800 mPa ⁇ s, and a solution viscosity of 15 to 500 mPa ⁇ s when the solution is 10% by mass. It is more preferable.
  • the solution viscosity (mPa ⁇ s) is E for a polymer solution having a concentration of 10% by mass prepared using a good solvent for the polymer (P) (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25 ° C. using a mold rotational viscometer.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the polymer (P) is preferably 1,000 to 500,000, more preferably 5,000 to 100,000. It is.
  • the molecular weight distribution (Mw / Mn) represented by the ratio between Mw and the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the polymer (P) contained in a liquid crystal aligning agent may be only 1 type, or may combine 2 or more types.
  • the liquid crystal aligning agent of this indication may contain other components other than a polymer (P).
  • the other component include a polymer having neither the partial structure represented by the above formula (1) nor the partial structure represented by the above formula (2) (hereinafter referred to as “other polymer”). ), Compounds having at least one epoxy group in the molecule, functional silane compounds, antioxidants, metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, photosensitizers, acid generators Agents, base generators, radical generators and the like. These compounding ratios can be appropriately selected according to each compound within a range not impairing the effects of the present disclosure.
  • the liquid crystal aligning agent is preferable in that it can enhance the effect of suppressing the formation of minute bright spots by containing other polymer.
  • the main skeleton of the other polymer is not particularly limited.
  • the other polymer is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide from the viewpoint that generation of fine bright spots can be suitably suppressed.
  • the blending ratio is preferably 1 to 90% by weight, more preferably 10 to 80% by weight, more preferably 20 to 20% by weight based on the total amount of the polymer in the liquid crystal aligning agent. 70 mass% is still more preferable.
  • the liquid crystal aligning agent of the present disclosure is prepared as a liquid composition in which the polymer (P) and components used as necessary are preferably dispersed or dissolved in an appropriate solvent.
  • the organic solvent used include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, ⁇ -butyrolactam, and N, N-dimethylformamide.
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. That is, the liquid crystal aligning agent is applied to the substrate surface as will be described later, and preferably heated to form a coating film that is a liquid crystal alignment film or a coating film that becomes a liquid crystal alignment film. At this time, when the solid content concentration is less than 1% by mass, the film thickness of the coating film is too small to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
  • the content ratio of the polymer (P) in the liquid crystal aligning agent is preferably 10 parts by mass or more, more preferably 20 parts by mass with respect to a total of 100 parts by mass of the solid components (components other than the solvent) in the liquid crystal aligning agent. As mentioned above, More preferably, it is 30 mass parts or more.
  • the liquid crystal alignment film of the present disclosure is formed by the liquid crystal aligning agent prepared as described above.
  • the liquid crystal alignment film of the present disclosure can be manufactured by a method including a photo-alignment step of forming a coating film using the liquid crystal aligning agent and applying a light irradiation treatment to the coating film to impart liquid crystal alignment ability.
  • the liquid crystal element of this indication comprises the liquid crystal aligning film formed using the liquid crystal aligning agent demonstrated above.
  • the operation mode of the liquid crystal in the liquid crystal element is not particularly limited, and includes, for example, a TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical Alignment) type (VA-MVA type, VA-PVA type, etc.). It can be applied to various modes such as an IPS (In-Plane Switching) type, an FFS (Fringe Field Switching) type, and an OCB (Optically Compensated Bend) type.
  • the liquid crystal element can be manufactured, for example, by a method including the following steps 1 to 3. In step 1, the substrate to be used varies depending on the desired operation mode. Step 2 and step 3 are common to each operation mode.
  • a liquid crystal aligning agent is apply
  • the substrate for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, poly (cycloaliphatic olefin) can be used.
  • an NESA film registered trademark of PPG, USA
  • tin oxide SnO 2
  • ITO film indium oxide-tin oxide
  • a TN type, STN type, or VA type liquid crystal element two substrates provided with a patterned transparent conductive film are used.
  • an IPS type or FFS type liquid crystal element a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and a counter substrate provided with no electrode Is used.
  • the metal film for example, a film made of a metal such as chromium can be used.
  • Application of the liquid crystal aligning agent to the substrate is preferably performed on the electrode forming surface by an offset printing method, a flexographic printing method, a spin coating method, a roll coater method or an ink jet method.
  • preheating is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent.
  • the pre-bake temperature is preferably 30 to 200 ° C., and the pre-bake time is preferably 0.25 to 10 minutes.
  • a baking (post-baking) step is performed for the purpose of thermally imidizing the amic acid structure present in the polymer.
  • the firing temperature (post-bake temperature) at this time is preferably 80 to 300 ° C., and the post-bake time is preferably 5 to 200 minutes.
  • the thickness of the film thus formed is preferably 0.001 to 1 ⁇ m.
  • Step 2 Orientation treatment
  • a treatment for imparting liquid crystal alignment ability to the coating film formed in Step 1 is performed.
  • the orientation ability of a liquid crystal molecule is provided to a coating film, and it becomes a liquid crystal aligning film.
  • the alignment treatment a rubbing treatment in which a roll wound with a cloth is rubbed in a certain direction may be used.
  • the polymer (P) has high photosensitivity, and can develop anisotropy in the coating film even with a small exposure amount.
  • a photo-alignment treatment in which the coating film formed on the substrate is irradiated with light to impart liquid crystal alignment ability to the coating film can be preferably used.
  • the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment treatment.
  • the light irradiation in the photo-alignment treatment is a method of irradiating the coating film after the post-baking process, a method of irradiating the coating film after the pre-baking process and before the post-baking process, at least the pre-baking process and the post-baking process. In any case, it can be performed by a method of irradiating the coating film while the coating film is heated.
  • ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm can be used as radiation applied to the coating film, for example.
  • it is an ultraviolet ray containing light having a wavelength of 200 to 400 nm.
  • the radiation When the radiation is polarized light, it may be linearly polarized light or partially polarized light. When the radiation used is linearly polarized light or partially polarized light, irradiation may be performed from a direction perpendicular to the substrate surface, an oblique direction, or a combination thereof. When non-polarized radiation is irradiated, the irradiation direction is an oblique direction.
  • a light source to be used for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used.
  • the radiation dose is preferably 400 to 20,000 J / m 2 , more preferably 1,000 to 5,000 J / m 2 . You may perform light irradiation with respect to a coating film, heating a coating film, in order to improve the reactivity.
  • the liquid crystal alignment film may further include a contact step of bringing the coating film that has been subjected to the light irradiation treatment into contact with water, a water-soluble organic solvent, or a mixed solvent of water and a water-soluble organic solvent.
  • a contact step of bringing the coating film that has been subjected to the light irradiation treatment into contact with water, a water-soluble organic solvent, or a mixed solvent of water and a water-soluble organic solvent.
  • examples of the water-soluble organic solvent include methanol, ethanol, 1-propanol, isopropanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone.
  • the solvent used in the contacting step is preferably water, isopropanol, or a mixture thereof.
  • Examples of the contact method between the coating film and the solvent include, but are not limited to, spraying, showering, dipping, and liquid filling.
  • the contact time between the coating film and the solvent is not particularly limited, but is, for example, 5 seconds to 15 minutes.
  • a heating step of heating the coating film subjected to the light irradiation treatment within a temperature range of 120 ° C. or higher and 280 ° C. or lower before at least one of the contact step and after the contact step. May be further performed.
  • the heating temperature is preferably 140 ° C. or higher, and more preferably 150 ° C. to 250 ° C., from the viewpoint of promoting reorientation of molecular chains by heating.
  • the heating time is preferably 5 minutes to 200 minutes, more preferably 10 minutes to 60 minutes.
  • a method of sealing the injection hole after injecting and filling liquid crystal into the cell gap defined by bonding, the substrate surface and the sealing agent, and (2) sealing at a predetermined place on one substrate on which the liquid crystal alignment film is formed A method of applying an agent and dropping liquid crystal to a predetermined number of locations on the surface of the liquid crystal alignment film, and then bonding the other substrate so that the liquid crystal alignment film faces each other and spreading the liquid crystal over the entire surface of the substrate (ODF method) ) And the like.
  • the manufactured liquid crystal cell is preferably heated to a temperature at which the used liquid crystal takes an isotropic phase, and then slowly cooled to room temperature to remove the flow alignment at the time of filling the liquid crystal.
  • an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • a photo spacer, a bead spacer, or the like can be used.
  • the liquid crystal include nematic liquid crystal and smectic liquid crystal. Among them, nematic liquid crystal is preferable. For example, Schiff base liquid crystal, azoxy liquid crystal, biphenyl liquid crystal, phenylcyclohexane liquid crystal, ester liquid crystal, terphenyl liquid crystal, biphenyl.
  • Cyclohexane liquid crystals pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like can be used. Further, for example, a cholesteric liquid crystal, a chiral agent, or a ferroelectric liquid crystal may be added to these liquid crystals.
  • a polarizing plate is bonded to the outer surface of the liquid crystal cell as necessary.
  • the polarizing plate include a polarizing plate comprising a polarizing film called an “H film” in which iodine is absorbed while stretching and orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate made of the H film itself. Thereby, a liquid crystal element is obtained.
  • the reason why the liquid crystal alignment agent containing the polymer (P) can provide a liquid crystal element excellent in AC afterimage characteristics and long-term heat resistance is not clear, but the following may be considered.
  • the polymer (P) has a structural unit having an asymmetric structure as a structural unit derived from diamine. For this reason, it is surmised that the crystallinity of the photodegradation product generated when the coating film containing the polymer (P) is irradiated with light is low, and the generation of fine bright spots is suppressed. In addition, the crystallinity of the photodegradation product is lowered due to the chain hydrocarbon structure and alicyclic hydrocarbon structure of X 2 , which is one reason why a liquid crystal element with few generation of fine bright spots was obtained.
  • the liquid crystal element of the present disclosure can be effectively applied to various applications, for example, watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors. It can be used for various display devices such as liquid crystal televisions and information displays, and light control films. Moreover, the liquid crystal element formed using the liquid crystal aligning agent of this indication can also be applied to retardation film.
  • FIG. 1 shows the measurement result of 1 H-NMR spectrum (DMSO-d 6 , 400 MHz) of diamine (DA-1).
  • FIG. 2 shows the measurement result of 1 H-NMR spectrum (DMSO-d 6 , 400 MHz) of diamine (DA-4).
  • a diamine (DA-7) was obtained in the same manner as in Synthesis Example 1 except that N-methylethanolamine was changed to 2-aminoethanethiol.
  • a diamine (DA-8) was obtained in the same manner as in Synthesis Example 1 except that 4-fluoronitrobenzene was changed to 2-fluoro-5-nitropyridine.
  • a diamine (DA-9) was obtained in the same manner as in Synthesis Example 4 except that 4-fluoronitrobenzene was changed to 2-fluoro-5-nitropyridine.
  • Example 1 Photo-alignment FFS type liquid crystal display element
  • a liquid crystal aligning agent (R-1) was prepared by filtering this solution through a filter having a pore diameter of 0.2 ⁇ m.
  • the surface of the coating film was irradiated with ultraviolet rays of 3,000 J / m 2 containing a linearly polarized 254 nm emission line from the normal direction of the substrate to perform photo-alignment treatment.
  • the coating film that had been subjected to the photo-alignment treatment was heated in a clean oven at 230 ° C. for 30 minutes for heat treatment to form a liquid crystal alignment film.
  • liquid crystal display element About the pair of substrates having the liquid crystal alignment film prepared in (2) above, containing aluminum oxide spheres having a diameter of 5.5 ⁇ m leaving the liquid crystal injection port at the edge of the surface on which the liquid crystal alignment film is formed
  • the substrates are stacked and pressure-bonded so that the projection direction of the polarization axis on the substrate surface during light irradiation is antiparallel, and the adhesive is heated at 150 ° C. for 1 hour. Cured.
  • a nematic liquid crystal (MLC-7028, manufactured by Merck & Co., Inc.) was filled between the pair of substrates through the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Furthermore, in order to remove the flow alignment during liquid crystal injection, this was heated at 120 ° C. and then gradually cooled to room temperature. Next, a polarizing plate was bonded to both sides of the substrate to manufacture an FFS type liquid crystal display element.
  • B 100 is the transmission amount of light under a blank and paranicols.
  • is a polarizer under crossed Nicols. (This is the minimum light transmission amount with the liquid crystal cell sandwiched between the analyzers.)
  • the black level in the dark state is represented by the minimum relative transmittance of the liquid crystal cell. In the FFS type liquid crystal cell, the smaller the black level in the dark state, the better the contrast. “Excellent” if the minimum relative transmittance is less than 0.2%, “Good” if the minimum relative transmittance is 0.2% or more and less than 0.5%, 1.0% or more was regarded as “bad”. As a result, this example was evaluated as “excellent”.
  • the observation area was 680 ⁇ m ⁇ 680 ⁇ m, and the microscope magnification was 100 times.
  • the evaluation is “excellent” when no fine luminescent spots are observed, “good” when the number of fine luminescent spots is 1 or more and 5 or less, and the number of fine luminescent spots is 6 or more and 10 or less.
  • the case was “OK”, and the case where the number of fine luminescent spots was 11 points or more was “bad”. As a result, in this example, the evaluation was “good”.
  • Example 2 Comparative Examples 1 to 6
  • a liquid crystal aligning agent was prepared to form a liquid crystal aligning film in the same manner as in Example 1, and FFS A liquid crystal display element and a liquid crystal cell were manufactured and various evaluations were performed. The evaluation results are shown in Table 2 below.
  • Example 13 Example 1 in Example 1 except that “(1) Preparation of liquid crystal aligning agent” and “(2) Formation of liquid crystal alignment film by photo-alignment method” were changed as described in (1a) and (2a) below. In the same manner as described above, an FFS type liquid crystal display element and a liquid crystal cell were manufactured and various evaluations were performed. The evaluation results are shown in Table 2 below.
  • the surface of the coating film was irradiated with ultraviolet rays of 3,000 J / m 2 containing a linearly polarized 254 nm emission line from the normal direction of the substrate to perform photo-alignment treatment.
  • the coating film subjected to the photo-alignment treatment was heated for 30 minutes in an oven at 230 ° C. in which the inside of the chamber was replaced with nitrogen to perform heat treatment (post-bake), thereby forming a liquid crystal alignment film.
  • Example 14 In Example 13, except that the polymer contained in the liquid crystal aligning agent was changed as shown in Table 2 below, a liquid crystal aligning agent was prepared in the same manner as in Example 13 to form a liquid crystal aligning film, and the FFS type A liquid crystal display element and a liquid crystal cell were manufactured and subjected to various evaluations. The evaluation results are shown in Table 2 below.
  • liquid crystal alignment was “good” in Examples 1 to 16. Further, the AC afterimage characteristics were “excellent” or “good” in Examples 1 to 16. These are considered due to the improvement of the photoreactivity of the liquid crystal alignment film. That is, the liquid crystal aligning agents of Examples 1 to 16 contain a polymer of substituted cyclobutanetetracarboxylic dianhydride and diamine. In addition, the diamine used for the synthesis of the polymer has an aromatic ring to which a polymerization bond group (—NH 2 ) is bonded, an alkylamino group, a piperidinediyl group, an oxyalkylene group (—C n H 2n —O—).
  • Examples 1 to 16 were “excellent” or “good”.
  • the liquid crystal aligning agents of Examples 1 to 16 contain a polymer having a structural unit derived from a diamine having an asymmetric structure as a polymer component.
  • the mechanism of long-term heat resistance improvement is not clear, but in the case of diamines having an asymmetric structure, the photolysis product generated by the photo-alignment treatment process becomes an asymmetric structure, which lowers the crystallinity of the photolysis product and generates fine bright spots. Is presumed to be suppressed.
  • the polymer (P) contained in the liquid crystal aligning agents of Examples 8 to 10, 14, and 16 is composed of a compound of plural kinds of acid dianhydride components or diamine components. Therefore, it is presumed that the photodegradation product has various chemical structures, inhibits crystallization of the photodegradation product, and suppresses the generation of fine bright spots. Furthermore, in Examples 11, 12, 15, and 16 (blend system), since the content ratio of the polymer (polymer 1) that undergoes photodegradation is small, the amount of photodegradation product that is generated is small. It is presumed that generation was suppressed.
  • Comparative Examples 1 to 5 using polymers having no partial structure derived from a substituted cyclobutane ring and a specific diamine, the long-term heat resistance of the liquid crystal cell was “poor”.
  • These liquid crystal aligning agents of Comparative Examples 1 to 5 contain a polymer using only a diamine having a symmetric structure as a diamine component. In this case, it is presumed that the photolysis product generated by the photo-alignment treatment has a symmetric structure, and the crystallinity of the photolysis product becomes high, so that fine bright spots are easily generated.
  • Comparative Example 6 the liquid crystal orientation and AC afterimage characteristics of the liquid crystal cell were “bad”. The long-term heat resistance could not be evaluated because the liquid crystal alignment of the liquid crystal cell was “bad”.
  • FIG. 3 shows the measurement result of 1 H-NMR spectrum (DMSO-d 6 , 400 MHz) of diamine (DA-10).
  • the numerical value in Table 3 represents the usage rate (mole part) of each compound with respect to 100 mol part of total amount of the tetracarboxylic dianhydride used for the synthesis about tetracarboxylic dianhydride. Represents the use ratio (mole parts) of each compound with respect to 100 mol parts of the total amount of diamine compounds used in the synthesis.
  • the obtained powder was dissolved in ⁇ BL to obtain a 15% by mass solution of polyamic acid ester (PAE-1) having a structural unit represented by the following formula (PAE-1).
  • the liquid crystal orientation and AC afterimage characteristics were “excellent” or “good” in Examples 17 to 24. These results indicate that, as in Examples 1 to 16, the aromatic ring to which the polymerization bonding group (—NH 2 ) is bonded is formed by the electron donating group (“—O—CH 2 —” of the diamine (DA-10)). It is considered that the photoreactivity of the liquid crystal alignment film was improved by including a polymer having a structural unit derived from a substituted diamine. Further, in terms of long-term heat resistance (reduction of fine bright spot defects), all of Examples 17 to 24 were “excellent”.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

According to the present invention, when a liquid crystal alignment film is obtained by an optical alignment method, a liquid crystal element having an excellent AC afterimage characteristics and long-term heat resistance is achieved. This liquid crystal alignment agent contains a polymer (P) having at least one selected from the group consisting of a partial structure represented by formula (1) and a partial structure represented by formula (2). In the formula, X1 is a tetra-valent organic group having a cyclobutane ring structure and has at least one substituent at a ring portion of the cyclobutane ring, X2 a divalent organic group having a specific structure having at least any one among a chain hydrocarbon structure and a cycloaliphatic hydrocarbon structure, and R5 and R6 are each independently a hydrogen atom or a monovalent organic group having 1-6 carbon atoms.

Description

液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体、並びに化合物Liquid crystal aligning agent, liquid crystal aligning film and production method thereof, liquid crystal element, polymer, and compound 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年4月4日に出願された日本出願番号2017-74659号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-74659 filed on April 4, 2017, the contents of which are incorporated herein by reference.
 本開示は、液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体、並びに化合物に関する。 The present disclosure relates to a liquid crystal aligning agent, a liquid crystal aligning film and a manufacturing method thereof, a liquid crystal element, a polymer, and a compound.
 液晶素子は、テレビやモバイル機器、各種モニターなどに広く利用されている。また、液晶素子には、液晶セル中の液晶分子の配向を制御するために液晶配向膜が使用されている。液晶配向規制力を有する有機膜を得る方法としては、従来、有機膜をラビングする方法、酸化ケイ素を斜方蒸着する方法、長鎖アルキル基を有する単分子膜を形成する方法、感光性の有機膜に光照射する方法(光配向法)などが知られている。 Liquid crystal elements are widely used in TVs, mobile devices, various monitors, and so on. In the liquid crystal element, a liquid crystal alignment film is used to control the alignment of liquid crystal molecules in the liquid crystal cell. Conventional methods for obtaining an organic film having a liquid crystal alignment regulating force include a method of rubbing an organic film, a method of obliquely depositing silicon oxide, a method of forming a monomolecular film having a long chain alkyl group, and a photosensitive organic film. A method of irradiating a film with light (photo-alignment method) is known.
 光配向法は、静電気や埃の発生を抑えつつ、感光性の有機膜に均一な液晶配向性を付与することができ、しかも液晶配向方向の精密な制御も可能であることから、近年、種々検討が進められている(例えば、特許文献1参照)。特許文献1には、シクロブタン環構造を主鎖に有するポリアミック酸を含有する液晶配向剤を基板上に塗布、焼成して得られる膜に偏光放射線を照射して液晶配向膜を形成することが開示されている。 In recent years, the photo-alignment method can impart uniform liquid crystal alignment to a photosensitive organic film while suppressing generation of static electricity and dust, and also enables precise control of the liquid crystal alignment direction. Investigations are underway (see, for example, Patent Document 1). Patent Document 1 discloses forming a liquid crystal alignment film by irradiating a film obtained by applying and baking a liquid crystal aligning agent containing a polyamic acid having a cyclobutane ring structure in the main chain on a substrate and baking it. Has been.
国際公開第2012/176822号International Publication No. 2012/176822
 光配向処理によって液晶配向膜を得る場合、ラビング処理に比べて液晶分子の配向規制力が十分でなく、AC残像と称する焼付きが生じやすい傾向にある。AC残像は、液晶素子の長時間駆動によって初期配向の方向が液晶素子の製造当初の方向からずれてくることに起因して生じる残像である。液晶素子においてAC残像を低減させるには、液晶配向膜の配向秩序度を向上させることが一つの有効な手段である。液晶素子としては、近年の更なる高性能化の要求を満たすべく、AC残像が十分に低減されていることが望まれる。 When a liquid crystal alignment film is obtained by a photo-alignment process, the alignment regulating force of liquid crystal molecules is not sufficient as compared with a rubbing process, and image sticking called an AC afterimage tends to occur. The AC afterimage is an afterimage that is generated due to the initial alignment direction deviating from the original direction of the liquid crystal device due to the liquid crystal device being driven for a long time. In order to reduce the AC afterimage in the liquid crystal element, improving the degree of alignment of the liquid crystal alignment film is one effective means. As a liquid crystal element, it is desired that the AC afterimage is sufficiently reduced in order to satisfy the recent demand for higher performance.
 また近年では、液晶素子は大画面の液晶テレビから、スマートフォンやタブレットPC等といった小型の表示装置まで幅広い範囲のデバイスや用途に適用されている。こうした多用途化に伴い、液晶素子は、車内や屋外のように高温となり得る場所に載置又は設置されたり、あるいは従来よりも長時間駆動されたりするようになり、より過酷な温度条件で使用されることが想定される。そのため、液晶素子としては、耐熱性に対する信頼性が高いことが要求される。しかしながら、シクロブタン環構造を主鎖に有するポリイミド系重合体を含有する液晶配向剤を用いて光配向処理により液晶配向膜を得る場合、塗膜に対する光照射によって生じた分解物に起因して、得られる液晶素子を高温環境下に長時間曝した場合に微小輝点が発生しやすく、耐熱性(特に長期耐熱性)に対する信頼性が劣ることが懸念される。 In recent years, liquid crystal elements have been applied to a wide range of devices and applications from large-screen liquid crystal televisions to small display devices such as smartphones and tablet PCs. With such versatility, liquid crystal elements are placed or installed in places where they can be hot, such as in the car or outdoors, or they can be driven for a longer time than before, and are used under more severe temperature conditions. It is assumed that Therefore, the liquid crystal element is required to have high reliability with respect to heat resistance. However, when a liquid crystal alignment film is obtained by photo-alignment treatment using a liquid crystal aligning agent containing a polyimide polymer having a cyclobutane ring structure in the main chain, it can be obtained due to decomposition products generated by light irradiation on the coating film. When a liquid crystal element is exposed to a high temperature environment for a long time, a fine bright spot is likely to be generated, and there is a concern that the heat resistance (particularly long-term heat resistance) is inferior in reliability.
 本開示は、上記事情に鑑みてなされたものであり、液晶配向膜を光配向法によって得る場合に、AC残像特性及び長期耐熱性に優れた液晶素子を得ることができる液晶配向剤を提供することを一つの目的とする。 The present disclosure has been made in view of the above circumstances, and provides a liquid crystal aligning agent capable of obtaining a liquid crystal element excellent in AC afterimage characteristics and long-term heat resistance when a liquid crystal alignment film is obtained by a photo-alignment method. One purpose.
 本開示は、上記課題を解決するために以下の手段を採用した。 This disclosure employs the following means in order to solve the above problems.
<1> 下記式(1)で表される部分構造及び下記式(2)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体(P)を含有する、液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
(式(1)及び式(2)中、Xは、シクロブタン環構造を有する4価の有機基であり、シクロブタン環の環部分に少なくとも1個の置換基を有する。Xは、下記式(4)又は下記式(5)で表される2価の有機基である。R及びRは、それぞれ独立して、水素原子又は炭素数1~6の1価の有機基である。)
Figure JPOXMLDOC01-appb-C000014
(式(4)及び式(5)中、A及びAは2価の芳香環基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子、又は「-NR-」(Rは、水素原子又は1価の有機基である。)である。ただし、YとYとは互いに異なる。Bは、下記式(7)又は式(8)で表される2価の複素環基である。Yは、酸素原子、又は「-NR-」(Rは水素原子又は1価の有機基である。)である。Zは、鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基であり、Zは、単結合、又は鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基である。ただし、Y及びYのうち一方が硫黄原子であって他方が単結合である場合には、Zの炭素数は2以上である。「*」は結合手を示す。)
Figure JPOXMLDOC01-appb-C000015
(式(7)及び式(8)中、Rは置換基である。rは0~3の整数であり、mは0~(r+2)の整数である。「*」は結合手を示す。)
<2> 上記<1>の液晶配向剤を用いて形成された液晶配向膜。
<3> 上記<1>の液晶配向剤を用いて塗膜を形成し、該塗膜に光照射処理を施して液晶配向能を付与する光配向工程を含む、液晶配向膜の製造方法。
<4> 上記<2>の液晶配向膜を備える液晶素子。
<5> 上記式(1)で表される部分構造及び上記式(2)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体。
<6> 下記式(16)で表される化合物。
Figure JPOXMLDOC01-appb-C000016
(式(16)中、A及びAは、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。R13は、水素原子又は1価の有機基であり、Yは、酸素原子又は硫黄原子である。nは1~5の整数である。)
<1> A liquid crystal aligning agent containing a polymer (P) having at least one selected from the group consisting of a partial structure represented by the following formula (1) and a partial structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000013
(In the formula (1) and (2), X 1 is a tetravalent organic group having a cyclobutane ring structure, .X 2 having at least one substituent in the ring portion of the cyclobutane ring, the following formula (4) or a divalent organic group represented by the following formula (5): R 5 and R 6 are each independently a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms. )
Figure JPOXMLDOC01-appb-C000014
(In Formula (4) and Formula (5), A 1 and A 2 are divalent aromatic ring groups, which may have a substituent in the ring portion. However, A 1 and A 2 are the same. Y 1 and Y 2 are each independently a single bond, an oxygen atom, a sulfur atom, or “—NR 7 —” (R 7 is a hydrogen atom or a monovalent organic group). However, Y 1 and Y 2 are different from each other, B 1 is a divalent heterocyclic group represented by the following formula (7) or formula (8), Y 3 is an oxygen atom or “− NR 9 — ”(R 9 is a hydrogen atom or a monovalent organic group). Z 1 has 1 to 15 carbon atoms having at least one of a chain hydrocarbon structure and an alicyclic hydrocarbon structure. a divalent organic group, Z 2 is a single bond, or a linear C 1 - having at least one hydrocarbon structures and alicyclic hydrocarbon structure 5 is a divalent organic group. However, when one of Y 1 and Y 2 is a sulfur atom and the other is a single bond, the carbon number of Z 1 is 2 or more. "*" Indicates a bond.)
Figure JPOXMLDOC01-appb-C000015
(In Formula (7) and Formula (8), R 8 is a substituent, r is an integer of 0 to 3, m is an integer of 0 to (r + 2), and “*” represents a bond. .)
<2> A liquid crystal alignment film formed using the liquid crystal aligning agent of <1> above.
<3> A method for producing a liquid crystal alignment film, comprising a photo-alignment step of forming a coating film using the liquid crystal aligning agent of <1> and applying a light irradiation treatment to the coating film to impart liquid crystal alignment ability.
<4> A liquid crystal element comprising the liquid crystal alignment film of <2> above.
<5> A polymer having at least one selected from the group consisting of a partial structure represented by the above formula (1) and a partial structure represented by the above formula (2).
<6> A compound represented by the following formula (16).
Figure JPOXMLDOC01-appb-C000016
(In Formula (16), A 3 and A 4 are divalent groups in which two hydrogen atoms have been removed from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part. Provided that A 3 and A 4 are the same, R 13 is a hydrogen atom or a monovalent organic group, Y 8 is an oxygen atom or a sulfur atom, and n is 1-5. (It is an integer.)
 本開示の液晶配向剤によれば、液晶配向膜を光配向法によって得る場合に、長期耐熱性に優れ、かつAC残像が低減された液晶素子を得ることができる。 According to the liquid crystal aligning agent of the present disclosure, when a liquid crystal alignment film is obtained by a photo-alignment method, a liquid crystal element having excellent long-term heat resistance and reduced AC afterimage can be obtained.
図1は、ジアミン(DA-1)のH-NMRスペクトルである。FIG. 1 is a 1 H-NMR spectrum of diamine (DA-1). 図2は、ジアミン(DA-4)のH-NMRスペクトルである。FIG. 2 is a 1 H-NMR spectrum of diamine (DA-4). 図3は、ジアミン(DA-10)のH-NMRスペクトルである。FIG. 3 is a 1 H-NMR spectrum of diamine (DA-10).
 以下に、本開示の液晶配向剤に配合される成分、及び必要に応じて任意に配合されるその他の成分について説明する。 Hereinafter, components blended in the liquid crystal aligning agent of the present disclosure and other components arbitrarily blended as necessary will be described.
≪重合体(P)≫
 本開示の液晶配向剤は、上記式(1)で表される部分構造及び上記式(2)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体(P)を含有する。上記式(1)及び式(2)において、Xは、シクロブタン環構造を有する4価の有機基であり、シクロブタン環の環部分に少なくとも1個の置換基を有する。シクロブタン環が有する置換基としては、例えばハロゲン原子、アルキル基、ハロゲン化アルキル基、アルコキシ基、アルケニル基、アルキニル基等が挙げられる。置換基の数は特に限定されないが、1~4個が好ましい。
≪Polymer (P) ≫
The liquid crystal aligning agent of this indication contains the polymer (P) which has at least 1 type chosen from the group which consists of the partial structure represented by the said Formula (1), and the partial structure represented by the said Formula (2). In the above formulas (1) and (2), X 1 is a tetravalent organic group having a cyclobutane ring structure, and has at least one substituent in the ring portion of the cyclobutane ring. Examples of the substituent that the cyclobutane ring has include a halogen atom, an alkyl group, a halogenated alkyl group, an alkoxy group, an alkenyl group, and an alkynyl group. The number of substituents is not particularly limited, but 1 to 4 is preferable.
 Xは、下記式(3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
(式(3)中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロゲン化アルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又は「-COR20」(ただしR20は、炭素数1~6のアルキル基、フッ素含有アルキル基、アルコキシ基又はフッ素含有アルコキシ基である。)である。Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロゲン化アルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又は「-COR20」である。ただし、R~Rのうち隣接する基同士が結合して環構造を形成していてもよい。式中にR20が複数存在する場合、複数のR20は互いに同じでも異なっていてもよい。「*」は結合手を示す。)
X 1 is preferably a group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000017
(In the formula (3), R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. An alkoxy group, a thioalkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or “—COR 20 ” (where R 20 is an alkyl having 1 to 6 carbon atoms) R 4 is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or a carbon number, and a fluorine-containing alkyl group, an alkoxy group, or a fluorine-containing alkoxy group. An alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or “—COR 20 ”, provided that R 1 to R 4 Adjacent groups of Te If R 20 in may also be. Formula which form a ring structure there is a plurality, the plurality of R 20 may be the same or different from each other. "*" Indicates a bond.)
 なお、上記式(1)中のXが上記式(3)で表される基である場合、上記式(1)は、下記式(1-A)又は式(1-B)で表され、上記式(2)は、下記式(2-A)で表される。
Figure JPOXMLDOC01-appb-C000018
(式(1-A)及び式(1-B)中、X、R及びRは、それぞれ上記式(1)中のX、R及びRと同義である。R~Rは、それぞれ上記式(3)中のR~Rと同義である。)
Figure JPOXMLDOC01-appb-C000019
(式(2-A)中、Xは、上記式(1)中のXと同義である。R~Rは、それぞれ上記式(3)中のR~Rと同義である。)
When X 1 in the above formula (1) is a group represented by the above formula (3), the above formula (1) is represented by the following formula (1-A) or (1-B) The above formula (2) is represented by the following formula (2-A).
Figure JPOXMLDOC01-appb-C000018
(In the formula (1-A) and formula (1-B), X 2 , R 5 and R 6 are each synonymous with X 2, R 5 and R 6 in the formula (1) .R 1 ~ R 4 has the same meaning as R 1 to R 4 in the above formula (3).)
Figure JPOXMLDOC01-appb-C000019
(In the formula (2-A), X 2 is .R 1 ~ R 4 are the same meaning as X 2 in the formula (1) are synonymous with R 1 ~ R 4 in each of the above formula (3) is there.)
 上記式(1)及び式(2)中のXは、上記式(4)又は式(5)で表される2価の有機基である。上記式(4)及び式(5)において、A及びAは、芳香環の環部分から2個の水素原子を取り除いた基であり、環部分に置換基を有していてもよい。芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、ビフェニル環等の芳香族炭化水素環;ピリジン環、ピラジン環、ピリミジン環、ピリダジン環等の窒素含有複素環などが挙げられる。芳香環が有していてもよい置換基としては、例えば炭素数1~6のアルキル基等が挙げられる。ただし、AとAとは同一である。AとAとが同一である場合、重合体(P)を得る際に用いる単量体につき、簡便に合成が可能でありながら、AC残像の低減効果及び長期耐熱性の改善効果が高い点で好ましい。
 A、Aは、液晶配向性及びAC残像特性により優れた液晶素子を得ることができる点で、これらのうち、置換基を有していてもよいベンゼン環、ビフェニル環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた基であることが好ましい。
X 2 in the above formulas (1) and (2) is a divalent organic group represented by the above formula (4) or formula (5). In the above formulas (4) and (5), A 1 and A 2 are groups in which two hydrogen atoms have been removed from the ring portion of the aromatic ring, and the ring portion may have a substituent. Examples of the aromatic ring include aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring and biphenyl ring; nitrogen-containing heterocycles such as pyridine ring, pyrazine ring, pyrimidine ring and pyridazine ring. Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms. However, it is identical to A 1 and A 2. When A 1 and A 2 are the same, the monomer used in obtaining the polymer (P) can be easily synthesized, but has a high effect of reducing AC afterimage and improving long-term heat resistance. This is preferable.
A 1 and A 2 are benzene rings, biphenyl rings, pyridine rings or pyrimidines which may have a substituent among them because a liquid crystal element excellent in liquid crystal alignment and AC afterimage characteristics can be obtained. A group obtained by removing two hydrogen atoms from the ring portion of the ring is preferable.
 上記式(4)中のY及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子、又は「-NR-」(Rは、水素原子又は1価の有機基である。)である。ただし、YとYとは互いに異なる。重合体(P)の光に対する感度を高くでき、得られる液晶素子の液晶配向性及びAC残像特性の改善効果がより高い点で、これらのうち、酸素原子、硫黄原子、又は「-NR-」であることが好ましく、酸素原子又は「-NR-」がより好ましい。なお、YとYとが互いに異なることにより、上記式(1)中のXが非対称構造となるため、重合体の溶解性を改善でき、さらに、光分解物の結晶性が低下するため、微小輝点の発生を低減できると考えられる。
 Rの1価の有機基としては、例えば炭素数1~6のアルキル基、保護基等が挙げられる。保護基は、熱により脱離する基であることが好ましく、例えばカルバメート系保護基、アミド系保護基、イミド系保護基、スルホンアミド系保護基などが挙げられる。保護基は、これらのうち、熱による脱離性が高い点や、脱保護した部分の膜中での残存量を少なくする点で、tert-ブトキシカルボニル基が好ましい。
 Rは、水素原子、炭素数1~3のアルキル基又は保護基が好ましく、微小輝点の発生をより低減できる点、及び液晶配向膜の透過性を高くできる観点で、炭素数1~3のアルキル基がより好ましい。
 上記式(5)中のYは、酸素原子又は「-NR-」である。Rの具体例及び好ましい例については、上述した「-NR-」中のRの説明が適用される。
Y 1 and Y 2 in the formula (4) are each independently a single bond, an oxygen atom, a sulfur atom, or “—NR 7 —” (R 7 is a hydrogen atom or a monovalent organic group. .) However, Y 1 and Y 2 are different from each other. Among these, the sensitivity of the polymer (P) to light can be enhanced, and the effect of improving the liquid crystal orientation and AC afterimage characteristics of the obtained liquid crystal element is higher. Among these, an oxygen atom, a sulfur atom, or “—NR 7 — Is preferable, and an oxygen atom or “—NR 7 —” is more preferable. Since Y 1 and Y 2 are different from each other, X 2 in the above formula (1) has an asymmetric structure, so that the solubility of the polymer can be improved and the crystallinity of the photodegradation product is lowered. Therefore, it is considered that the generation of minute bright spots can be reduced.
Examples of the monovalent organic group for R 7 include an alkyl group having 1 to 6 carbon atoms and a protecting group. The protecting group is preferably a group capable of leaving by heat, and examples thereof include a carbamate protecting group, an amide protecting group, an imide protecting group, and a sulfonamide protecting group. Of these, the tert-butoxycarbonyl group is preferred because of its high ability to leave by heat and to reduce the remaining amount of the deprotected portion in the film.
R 7 is preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a protecting group. From the viewpoint that generation of fine luminescent spots can be further reduced and transparency of the liquid crystal alignment film can be increased, R 7 has 1 to 3 carbon atoms. The alkyl group is more preferable.
Y 3 in the above formula (5) is an oxygen atom or “—NR 9 —”. For the specific examples and preferred examples of R 9 , the description of R 7 in “—NR 7 —” described above applies.
 Zは、鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基であり、Zは、単結合、又は鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基である。ただし、Y及びYのうち一方が硫黄原子であり、かつ他方が単結合である場合には、Zの炭素数は2~15の整数である。ここで、本明細書において「鎖状炭化水素構造」とは、環状構造を含まず、鎖状構造のみで構成された直鎖状炭化水素構造及び分岐状炭化水素構造を意味する。ただし、鎖状炭化水素構造は、飽和でも不飽和でもよい。「脂環式炭化水素構造」とは、環構造としては脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素構造を意味する。ただし、脂環式炭化水素構造は、脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を有するものも含む。Zは、2価の鎖状炭化水素基又は当該鎖状炭化水素基の炭素-炭素結合間に、酸素原子、硫黄原子又は「-NR12-」(R12は水素原子又は1価の有機基である。)を有する基であることが好ましい。Zは、単結合、2価の鎖状炭化水素基、又は当該鎖状炭化水素基の炭素-炭素結合間に、酸素原子、硫黄原子又は「-NR12-」を有する基であることが好ましい。 Z 1 is a divalent organic group having 1 to 15 carbon atoms having at least one of a chain hydrocarbon structure and an alicyclic hydrocarbon structure, and Z 2 is a single bond or a chain hydrocarbon structure and A divalent organic group having 1 to 15 carbon atoms and having at least one of alicyclic hydrocarbon structures. However, when one of Y 1 and Y 2 is a sulfur atom and the other is a single bond, the carbon number of Z 1 is an integer of 2 to 15. Here, in the present specification, the “chain hydrocarbon structure” means a linear hydrocarbon structure and a branched hydrocarbon structure composed of only a chain structure without including a cyclic structure. However, the chain hydrocarbon structure may be saturated or unsaturated. The “alicyclic hydrocarbon structure” means a hydrocarbon structure that includes only an alicyclic hydrocarbon structure as a ring structure and does not include an aromatic ring structure. However, the alicyclic hydrocarbon structure does not need to be constituted only by the structure of the alicyclic hydrocarbon, and includes a part having a chain structure. Z 1 represents a divalent chain hydrocarbon group or a carbon-carbon bond between the chain hydrocarbon group, an oxygen atom, a sulfur atom or “—NR 12 —” (R 12 represents a hydrogen atom or a monovalent organic group). It is preferably a group having a group. Z 2 may be a single bond, a divalent chain hydrocarbon group, or a group having an oxygen atom, a sulfur atom or “—NR 12 —” between carbon-carbon bonds of the chain hydrocarbon group. preferable.
 Z及びZの2価の有機基は、光分解物に起因する微小輝点の発生をより少なくできる点で、下記式(6)で表される2価の有機基であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
(式(6)中、R10及びR11は、それぞれ独立してアルカンジイル基であり、R10及びR11の合計の炭素数が1~15である。Yは、酸素原子、硫黄原子、又は「-NR12-」(R12は水素原子又は1価の有機基である。)である。pは0~4の整数である。pが2以上の場合、複数のR10、Yは、互いに同じでも異なっていてもよい。ただし、上記式(4)中のY及びYのうち一方が硫黄原子であって他方が単結合である場合には、R10及びR11の合計の炭素数は2以上である。)
The divalent organic group of Z 1 and Z 2 is preferably a divalent organic group represented by the following formula (6) from the viewpoint that the generation of fine bright spots caused by the photodecomposed product can be further reduced. .
Figure JPOXMLDOC01-appb-C000020
(In Formula (6), R 10 and R 11 are each independently an alkanediyl group, and the total carbon number of R 10 and R 11 is 1 to 15. Y 4 represents an oxygen atom, a sulfur atom Or “—NR 12 —” (R 12 is a hydrogen atom or a monovalent organic group.) P is an integer of 0 to 4. When p is 2 or more, a plurality of R 10 , Y 4 may be the same as or different from each other, provided that when one of Y 1 and Y 2 in the formula (4) is a sulfur atom and the other is a single bond, R 10 and R 11 The total number of carbon atoms is 2 or more.)
 上記式(6)において、R10及びR11は、直鎖状でも分岐状でもよいが、液晶素子における微小輝点の生成を抑制する効果を高くできる点で、直鎖状であることが好ましい。具体的には、上記式(6)で表される基(つまり、Z及びZ)は、アルカンジイル基、又は当該アルカンジイル基の炭素-炭素結合間に、酸素原子、硫黄原子、又は「-NR-」を有する基であることが好ましく、アルカンジイル基、又は当該アルカンジイル基の炭素-炭素結合間に酸素原子を有する基であることがより好ましく、アルカンジイル基であることがさらに好ましい。R12の具体例及び好ましい例については、上述した「-NR-」中のRの説明が適用される。pは、0~2が好ましい。 In the above formula (6), R 10 and R 11 may be linear or branched, but are preferably linear in that the effect of suppressing the formation of fine luminescent spots in the liquid crystal element can be enhanced. . Specifically, the group represented by the above formula (6) (that is, Z 1 and Z 2 ) is an alkanediyl group or an oxygen atom, a sulfur atom, or a carbon-carbon bond of the alkanediyl group. A group having “—NR 8 —” is preferable, and an alkanediyl group or a group having an oxygen atom between carbon-carbon bonds of the alkanediyl group is more preferable, and an alkanediyl group is preferable. Further preferred. The description of R 7 in “—NR 7 —” described above applies to specific examples and preferred examples of R 12 . p is preferably 0-2.
 上記式(4)中のZが上記式(6)で表される2価の基である場合、R10及びR11の合計の炭素数(pが2以上の場合には複数のR10とR11の合計の炭素数)は、液晶配向膜の製造において加熱による分子鎖の再配向を促進させる点、及び液晶素子において微小輝点の発生をより少なくできる点で、炭素数2以上であることが好ましく、炭素数3以上であることがより好ましい。Yは、酸素原子又は硫黄原子が好ましく、酸素原子がより好ましい。
 上記式(5)中のZが上記式(6)で表される2価の基である場合、AC残像の低減効果をより高くできる点で、R11はメチレン基であって、かつp=0であることが好ましい。Zは、単結合又はメチレン基が好ましい。
When Z 1 in the above formula (4) is a divalent group represented by the above formula (6), the total number of carbon atoms of R 10 and R 11 (when p is 2 or more, a plurality of R 10 And the total number of carbon atoms of R 11 ) is that the number of carbon atoms is 2 or more in terms of accelerating realignment of molecular chains by heating in the production of a liquid crystal alignment film and reducing the occurrence of minute bright spots in a liquid crystal element. Preferably, it has 3 or more carbon atoms. Y 4 is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
When Z 2 in the above formula (5) is a divalent group represented by the above formula (6), R 11 is a methylene group and p = 0 is preferred. Z 2 is preferably a single bond or a methylene group.
 上記式(5)のBは、上記式(7)又は式(8)で表される窒素含有複素環基である。上記式(7)及び式(8)において、Rの置換基としては、例えば炭素数1~6のアルキル基等が挙げられる。rは、液晶配向性の観点から、1又は2が好ましく、2であることがより好ましい。Bは、これらのうち、置換若しくは無置換のピペリジン-1,4-ジイル基、又は置換若しくは無置換のピペラジン-1,4-ジイル基であることが、液晶配向性及びAC残像特性の観点から好ましく、置換又は無置換のピペリジン-1,4-ジイル基であることが特に好ましい。 B 1 in the above formula (5) is a nitrogen-containing heterocyclic group represented by the above formula (7) or formula (8). In the above formulas (7) and (8), examples of the substituent for R 8 include an alkyl group having 1 to 6 carbon atoms. From the viewpoint of liquid crystal alignment, r is preferably 1 or 2, and more preferably 2. Among these, B 1 is a substituted or unsubstituted piperidine-1,4-diyl group, or a substituted or unsubstituted piperazine-1,4-diyl group. From the viewpoint of liquid crystal alignment and AC afterimage characteristics The substituted or unsubstituted piperidine-1,4-diyl group is particularly preferable.
 上記式(4)は、液晶配向性、AC残像特性及び長期耐熱性の改善効果が高い点で、下記式(4A)で表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000021
(式(4A)中、A及びAは、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子、又は「-NR13-」(R13は、水素原子又は1価の有機基である。)である。ただし、YとYとは互いに異なる。nは1~5の整数である。ただし、Y及びYのうち一方が硫黄原子であって他方が単結合である場合には、nは2以上である。「*」は結合手を示す。)
The above formula (4) is particularly preferably a group represented by the following formula (4A) in that the effect of improving liquid crystal orientation, AC afterimage characteristics and long-term heat resistance is high.
Figure JPOXMLDOC01-appb-C000021
(In Formula (4A), A 3 and A 4 are divalent groups obtained by removing two hydrogen atoms from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part. Provided that A 3 and A 4 are the same, Y 5 and Y 6 each independently represent a single bond, an oxygen atom, a sulfur atom, or “—NR 13 —” (R 13 is A hydrogen atom or a monovalent organic group, provided that Y 5 and Y 6 are different from each other, n is an integer of 1 to 5, provided that one of Y 5 and Y 6 is a sulfur atom. When the other is a single bond, n is 2 or more. “*” Indicates a bond.)
 A及びAが有していてもよい置換基としては、例えば炭素数1~6のアルキル基等が挙げられる。R13の1価の有機基の具体例及び好ましい例については、上述したRの説明が適用される。上記式(4A)で表される基のY及びYが、単結合、酸素原子又は硫黄原子である場合(ただし、YとYとは互いに異なる。)、光に対して高感度でありながら、ポリアミック酸エステルの合成に際し収率を高くできる点で好ましい。この場合、Xは、下記式(4C)で表される。下記式(4C)において、Y51及びY61は、一方が酸素原子であって、他方が単結合であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000022
(式(4C)中、Y51及びY61は、それぞれ独立して、単結合、酸素原子、又は硫黄原子である。ただし、Y51とY61とは互いに異なる。nは1~5の整数である。ただし、Y51及びY61のうち一方が硫黄原子であって他方が単結合である場合には、nは2以上である。A及びAは、上記式(4A)と同義である。「*」は結合手を示す。)
Examples of the substituent that A 3 and A 4 may have include an alkyl group having 1 to 6 carbon atoms. With respect to specific examples and preferred examples of the monovalent organic group of R 13 , the description of R 7 described above is applied. When Y 5 and Y 6 of the group represented by the above formula (4A) are a single bond, an oxygen atom or a sulfur atom (however, Y 5 and Y 6 are different from each other), they are highly sensitive to light. However, it is preferable in that the yield can be increased in the synthesis of the polyamic acid ester. In this case, X 2 is represented by the following formula (4C). In the following formula (4C), it is particularly preferable that one of Y 51 and Y 61 is an oxygen atom and the other is a single bond.
Figure JPOXMLDOC01-appb-C000022
(In Formula (4C), Y 51 and Y 61 are each independently a single bond, an oxygen atom, or a sulfur atom, provided that Y 51 and Y 61 are different from each other, n is an integer of 1 to 5) However, when one of Y 51 and Y 61 is a sulfur atom and the other is a single bond, n is 2 or more, and A 3 and A 4 have the same meanings as in the above formula (4A). ("*" Indicates a bond)
 液晶配向性及びAC残像特性の観点から、上記式(4A)中のY及びYにおける、A及びAのベンゼン環、ピリジン環又はピリミジン環上の結合部位は、上記式(1)及び上記式(2)中のXに結合する窒素原子に対してパラ位であることが好ましい。上記式(4A)で表される基は、下記式(4A-1)で表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000023
(式(4A-1)中、Q及びQは、それぞれ独立に「CH」又は窒素原子である。R13、Y、Y及びnは、上記式(4A)と同義である。「*」は結合手を示す。)
From the viewpoint of liquid crystal orientation and AC afterimage characteristics, the bonding site on the benzene ring, pyridine ring or pyrimidine ring of A 3 and A 4 in Y 5 and Y 6 in the above formula (4A) is the above formula (1). and is preferably para to the nitrogen atom attached to X 2 in the formula (2). The group represented by the above formula (4A) is particularly preferably a group represented by the following formula (4A-1).
Figure JPOXMLDOC01-appb-C000023
(In Formula (4A-1), Q 1 and Q 2 are each independently “CH” or a nitrogen atom. R 13 , Y 5 , Y 6 and n have the same meanings as in Formula (4A) above). “*” Indicates a bond.)
 上記式(5)は、好ましくは下記式(5A)で表される2価の有機基である。式(5)中のkは、0~3が好ましく、0又は1がより好ましい。
Figure JPOXMLDOC01-appb-C000024
(式(5A)中、A及びAは、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Bは、置換若しくは無置換のピペリジン-1,4-ジイル基、又は置換若しくは無置換のピペラジン-1,4-ジイル基である。Yは、酸素原子、又は「-NR-」(Rは水素原子又は1価の有機基である。)である。kは0~5の整数である。「*」は結合手を示す。)
The above formula (5) is preferably a divalent organic group represented by the following formula (5A). K in the formula (5) is preferably 0 to 3, more preferably 0 or 1.
Figure JPOXMLDOC01-appb-C000024
(In Formula (5A), A 5 and A 6 are divalent groups in which two hydrogen atoms have been removed from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part. However, A 5 and A 6 are the same, and B 2 is a substituted or unsubstituted piperidine-1,4-diyl group, or a substituted or unsubstituted piperazine-1,4-diyl group. Y 7 is an oxygen atom or “—NR 9 —” (R 9 is a hydrogen atom or a monovalent organic group), k is an integer of 0 to 5. “*” is a bond Showing hand.)
 重合体(P)は、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種である。重合体(P)は、環部分に少なくとも1個の置換基を有するシクロブタン環構造を有するテトラカルボン酸誘導体に由来する部分構造と、上記式(4)又は式(5)で表される2価の有機基を有するジアミン化合物に由来する部分構造と、を有する。こうした重合体(P)の合成方法は特に限定されず、有機化学の定法を適宜組み合わせることにより得ることができる。なお、本明細書において「テトラカルボン酸誘導体」は、テトラカルボン酸二無水物、テトラカルボン酸ジエステル及びテトラカルボン酸ジエステルジハロゲン化物を含む意味である。 The polymer (P) is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide. The polymer (P) has a partial structure derived from a tetracarboxylic acid derivative having a cyclobutane ring structure having at least one substituent in the ring portion, and a divalent compound represented by the above formula (4) or formula (5). And a partial structure derived from a diamine compound having an organic group. The synthesis method of such a polymer (P) is not particularly limited, and can be obtained by appropriately combining organic chemistry methods. In this specification, “tetracarboxylic acid derivative” is meant to include tetracarboxylic dianhydride, tetracarboxylic acid diester, and tetracarboxylic acid diester dihalide.
(ポリアミック酸)
 重合体(P)がポリアミック酸である場合、当該ポリアミック酸(以下、「ポリアミック酸(P)」ともいう。)は、例えば、環部分に少なくとも1個の置換基を有するシクロブタン環構造を有するテトラカルボン酸二無水物(以下、「特定酸二無水物」ともいう。)を含むテトラカルボン酸二無水物と、上記式(4)又は式(5)で表される2価の有機基を有するジアミン化合物(以下、「特定ジアミン」ともいう。)を含むジアミン化合物と、を反応させることにより得ることができる。
(Polyamic acid)
When the polymer (P) is a polyamic acid, the polyamic acid (hereinafter also referred to as “polyamic acid (P)”) is, for example, a tetrabutane having a cyclobutane ring structure having at least one substituent in the ring portion. A tetracarboxylic dianhydride including a carboxylic dianhydride (hereinafter also referred to as “specific acid dianhydride”), and a divalent organic group represented by the above formula (4) or formula (5). It can be obtained by reacting a diamine compound containing a diamine compound (hereinafter also referred to as “specific diamine”).
(特定酸二無水物)
 特定酸二無水物としては、上記式(3)で表される部分構造を有するテトラカルボン酸二無水物が挙げられる。特定酸二無水物の具体例としては、例えば下記式(TA-1-1)~式(TA-1-15)のそれぞれで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
(Specific acid dianhydride)
Specific acid dianhydrides include tetracarboxylic dianhydrides having a partial structure represented by the above formula (3). Specific examples of the specific acid dianhydride include compounds represented by the following formulas (TA-1-1) to (TA-1-15).
Figure JPOXMLDOC01-appb-C000025
 特定酸二無水物としては、これらのうち、上記式(TA-1-1)~式(TA-1-12)のそれぞれで表される化合物が好ましく、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物(上記式(TA-1-2)で表される化合物)が特に好ましい。なお、特定酸二無水物は、1種を単独で又は2種以上を組み合わせて使用することができる。 Among these, the specific acid dianhydride is preferably a compound represented by any of the above formulas (TA-1-1) to (TA-1-12), and 1,3-dimethyl-1,2, 3,4-cyclobutanetetracarboxylic dianhydride (a compound represented by the above formula (TA-1-2)) is particularly preferred. In addition, specific acid dianhydride can be used individually by 1 type or in combination of 2 or more types.
 ポリアミック酸(P)の合成に際しては、テトラカルボン酸二無水物として、特定酸二無水物とともに、特定酸二無水物以外のその他のテトラカルボン酸二無水物を使用してもよい。その他のテトラカルボン酸二無水物は、環部分に少なくとも1個の置換基を有するシクロブタン環構造を有さないものであればよく、特に限定されない。その他のテトラカルボン酸二無水物の具体例としては、脂肪族テトラカルボン酸二無水物として、例えばエチレンジアミン四酢酸二無水物などを; In the synthesis of the polyamic acid (P), other tetracarboxylic dianhydrides other than the specific acid dianhydride may be used as the tetracarboxylic dianhydride together with the specific acid dianhydride. Other tetracarboxylic dianhydrides are not particularly limited as long as they do not have a cyclobutane ring structure having at least one substituent in the ring portion. Specific examples of other tetracarboxylic dianhydrides include aliphatic tetracarboxylic dianhydrides such as ethylenediaminetetraacetic acid dianhydride;
 脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、3,5,6-トリカルボキシ-2-カルボキシメチルノルボルナン-2:3,5:6-二無水物、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物などを;芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、エチレングリコールビス(アンヒドロトリメリテート)、1,3-プロピレングリコールビス(アンヒドロトリメリテート)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物などを;それぞれ挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。 Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 5- (2,5-di Oxotetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-dioxotetrahydrofuran-3-yl) -8 -Methyl-3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1,3-dione, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3- Cyclohexene-1,2-dicarboxylic anhydride, 3,5,6-tricarboxy-2-carboxymethylnorbornane-2: 3,5: 6-dianhydride, 2,4,6,8-tetracarboxybicyclo 3.3.0] octane-2: 4,6: 8-dianhydride, cyclohexanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, etc .; as aromatic tetracarboxylic dianhydride, for example Pyromellitic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, p-phenylenebis (trimellitic acid monoester anhydride), ethylene glycol bis (anhydrotrimellitate), 1, 3-propylene glycol bis (anhydrotrimellitate), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and the like can be mentioned, respectively, as described in JP 2010-97188 A Tetracarboxylic dianhydride can be used.
 その他のテトラカルボン酸二無水物としては、微小輝点の低減効果をより高くする点で、これらのうち、エチレンジアミン四酢酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、ピロメリット酸二無水物及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物よりなる群から選ばれる少なくとも一種を共重合成分として好ましく用いることができる。なお、重合体(P)の合成に際し、その他のテトラカルボン酸二無水物としては、1種を単独で又は2種以上を組み合わせて使用することができる。 Other tetracarboxylic dianhydrides include ethylenediaminetetraacetic acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, among them, in terms of increasing the effect of reducing the fine bright spot. , 2,3,5-tricarboxycyclopentylacetic dianhydride, pyromellitic dianhydride and at least one selected from the group consisting of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride It can be preferably used as a component. In addition, in the synthesis | combination of a polymer (P), as another tetracarboxylic dianhydride, 1 type can be used individually or in combination of 2 or more types.
 ポリアミック酸(P)の合成に際し、特定酸二無水物の使用割合は、本開示の効果を十分に得る観点から、合成に使用するテトラカルボン酸二無水物の合計量に対して、30モル%以上とすることが好ましい。より好ましくは50モル%以上であり、さらに好ましくは80モル%以上である。その他のテトラカルボン酸二無水物を使用する場合、その使用割合は、合成に使用するテトラカルボン酸二無水物の合計量に対して、5~70モル%とすることが好ましく、10~50モル%とすることがより好ましい。 In the synthesis of the polyamic acid (P), the use ratio of the specific acid dianhydride is 30 mol% with respect to the total amount of tetracarboxylic dianhydrides used for the synthesis from the viewpoint of sufficiently obtaining the effects of the present disclosure. The above is preferable. More preferably, it is 50 mol% or more, More preferably, it is 80 mol% or more. When other tetracarboxylic dianhydrides are used, the proportions used are preferably 5 to 70 mol% with respect to the total amount of tetracarboxylic dianhydrides used in the synthesis, and 10 to 50 mol. % Is more preferable.
(特定ジアミン)
 特定ジアミンは、下記式(14)又は下記式(15)で表される化合物である。
Figure JPOXMLDOC01-appb-C000026
(式(14)及び式(15)中、A、A、B、Y、Y、Y、Z及びZは、上記式(4)、式(5)と同義である。)
(Specific diamine)
The specific diamine is a compound represented by the following formula (14) or the following formula (15).
Figure JPOXMLDOC01-appb-C000026
(In the formula (14) and Equation (15), A 1, A 2, B 1, Y 1, Y 2, Y 3, Z 1 and Z 1 are the above formula (4), with defined for formula (5) is there.)
 上記式(14)及び式(15)中のA、A、B、Y、Y、Y、Z及びZの説明は上記式(4)、式(5)の説明がそれぞれ適用される。これらのうち、上記式(14)で表される化合物は、下記式(4B)で表される化合物であることが好ましく、上記式(15)で表される化合物は、下記式(5B)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
(式(4B)中、A、A、Y、Y及びnは、上記式(4A)中のA、A、Y、Y及びnと同義である。)
Figure JPOXMLDOC01-appb-C000028
(式(5B)中、A、A、B、Y及びkは、上記式(5A)中のA、A、B、Y及びkと同義である。)
In the above formula (14) and formula (15), A 1 , A 2 , B 1 , Y 1 , Y 2 , Y 3 , Z 1 and Z 1 are explained in the above formula (4) and formula (5). Respectively applies. Among these, the compound represented by the above formula (14) is preferably a compound represented by the following formula (4B), and the compound represented by the above formula (15) is represented by the following formula (5B). It is preferable that it is a compound represented.
Figure JPOXMLDOC01-appb-C000027
(In the formula (4B), A 3, A 4, Y 5, Y 6 and n, A 3 in the above formula (4A), A 4, Y 5, the same meanings as Y 6 and n.)
Figure JPOXMLDOC01-appb-C000028
(In the formula (5B), A 5, A 6, B 2, Y 7 and k have the same meanings as A 5, A 6, B 2 , Y 7 and k in the formula (5A).)
 上記式(4B)及び式(5B)中の1級アミノ基は、A、A、A及びAの環(ベンゼン環、ピリジン環又はピリミジン環)に結合する他の基に対して、パラ位であることが好ましい。上記式(4B)中のA、A、Y、Y及びn、並びに上記式(5B)中のA、A、B、Y及びkの具体例及び好ましい例については上記の説明が適用される。 The primary amino group in the above formula (4B) and formula (5B) is relative to other groups bonded to the ring of A 3 , A 4 , A 5 and A 6 (benzene ring, pyridine ring or pyrimidine ring). The para position is preferred. Specific examples and preferred examples of A 3 , A 4 , Y 5 , Y 6 and n in the above formula (4B) and A 5 , A 6 , B 2 , Y 7 and k in the above formula (5B) The above description applies.
 特定ジアミンの具体例としては、例えば下記式(d-1)~式(d-54)のそれぞれで表される化合物等が挙げられる。特定ジアミンは、有機化学の定法を適宜組み合わせることによって合成することができる。なお、特定ジアミンは、1種を単独で使用してもよく、又は2種以上を組み合わせて使用してもよい。下記式中の「Boc」は、tert-ブトキシカルボニル基を表す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Specific examples of the specific diamine include, for example, compounds represented by the following formulas (d-1) to (d-54). The specific diamine can be synthesized by appropriately combining organic chemistry methods. In addition, a specific diamine may be used individually by 1 type, or may be used in combination of 2 or more type. “Boc” in the following formula represents a tert-butoxycarbonyl group.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 ポリアミック酸(P)の合成に際しては、ジアミン化合物として特定ジアミンのみを用いてもよいが、特定ジアミンと共に、特定ジアミン以外のその他のジアミンを使用してもよい。その他のジアミンは、特定ジアミンに該当しなければ特に限定されず、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン及びジアミノオルガノシロキサン等が挙げられる。これらの具体例としては、脂肪族ジアミンとして、例えばメタキシリレンジアミン、エチレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等を;脂環式ジアミンとして、例えばp-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等を; In the synthesis of polyamic acid (P), only a specific diamine may be used as the diamine compound, but other diamines other than the specific diamine may be used together with the specific diamine. Other diamines are not particularly limited as long as they do not correspond to specific diamines, and examples thereof include aliphatic diamines, alicyclic diamines, aromatic diamines, and diaminoorganosiloxanes. Specific examples thereof include aliphatic diamines such as metaxylylenediamine, ethylenediamine, 1,3-propanediamine, tetramethylenediamine, hexamethylenediamine and the like; alicyclic diamines such as p-cyclohexanediamine, 4 , 4'-methylenebis (cyclohexylamine) and the like;
芳香族ジアミンとして、例えばドデカノキシジアミノベンゼン、ヘキサデカノキシジアミノベンゼン、オクタデカノキシジアミノベンゼン、コレスタニルオキシジアミノベンゼン、コレステリルオキシジアミノベンゼン、ジアミノ安息香酸コレスタニル、ジアミノ安息香酸コレステリル、ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、2,5-ジアミノ-N,N-ジアリルアニリン、下記式(E-1)
Figure JPOXMLDOC01-appb-C000033
(式(E-1)中、XI及びXIIは、それぞれ独立に、単結合、-O-、-COO-又は-OCO-であり、Rは炭素数1~3のアルカンジイル基であり、RIIは単結合又は炭素数1~3のアルカンジイル基であり、aは0又は1であり、bは0~2の整数であり、cは1~20の整数であり、dは0又は1である。ただし、a及びbが同時に0になることはない。)
で表される化合物等の側鎖型ジアミン:
パラフェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-エチレンジアニリン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル-4’-アミノベンゾエート、4,4’-ジアミノアゾベンゼン、3,5-ジアミノ安息香酸、1,2-ビス(4-アミノフェノキシ)エタン、1,5-ビス(4-アミノフェノキシ)ペンタン、N,N’-ジ(4-アミノフェニル)-N,N’-ジメチルエチレンジアミン、ビス[2-(4-アミノフェニル)エチル]ヘキサン二酸、ビス(4-アミノフェニル)アミン、N,N-ビス(4-アミノフェニル)メチルアミン、1,4-ビス(4-アミノフェニル)-ピペラジン、N,N’-ビス(4-アミノフェニル)-ベンジジン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-(フェニレンジイソプロピリデン)ビスアニリン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリン等の非側鎖型ジアミンを;
 ジアミノオルガノシロキサンとして、例えば、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等を;それぞれ挙げることができるほか、特開2010-97188号公報に記載のジアミン化合物を用いることができる。
Examples of aromatic diamines include dodecanoxydiaminobenzene, hexadecanoxydiaminobenzene, octadecanoxydiaminobenzene, cholestanyloxydiaminobenzene, cholesteryloxydiaminobenzene, cholesteryl diaminobenzoate, cholesteryl diaminobenzoate, and diaminobenzoic acid. Lanostanyl, 3,6-bis (4-aminobenzoyloxy) cholestane, 3,6-bis (4-aminophenoxy) cholestane, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-butyl Cyclohexane, 2,5-diamino-N, N-diallylaniline, the following formula (E-1)
Figure JPOXMLDOC01-appb-C000033
(In the formula (E-1), X I and X II are each independently a single bond, —O—, —COO— or —OCO—, and R I is an alkanediyl group having 1 to 3 carbon atoms. R II is a single bond or an alkanediyl group having 1 to 3 carbon atoms, a is 0 or 1, b is an integer of 0 to 2, c is an integer of 1 to 20, and d is 0 or 1. However, a and b are not 0 at the same time.)
Side-chain diamines such as compounds represented by:
Paraphenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-ethylenedianiline, 4,4′-diaminodiphenylamine, 4,4′-diaminodiphenyl sulfide, 4-aminophenyl-4′-aminobenzoate, 4 , 4′-diaminoazobenzene, 3,5-diaminobenzoic acid, 1,2-bis (4-aminophenoxy) ethane, 1,5-bis (4-aminophenoxy) pentane, N, N′-di (4- Aminophenyl) -N, N′-dimethylethylenediamine, bis [2- (4-aminophenyl) ethyl] hexanedioic acid, bis (4-aminophenyl) amine, N, N-bis (4-aminophenyl) methylamine 1,4-bis (4-aminophenyl) -piperazine, N, N′-bis (4-aminophenyl) -benzidine, 2,2′-dimethyl Til-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 4,4′-diaminodiphenyl ether, 2,2-bis [4- (4-amino Phenoxy) phenyl] propane, 4,4 ′-(phenylenediisopropylidene) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4- (4-aminophenoxycarbonyl) -1- (4-aminophenyl) Non-side chain diamines such as piperidine, 4,4 ′-[4,4′-propane-1,3-diylbis (piperidine-1,4-diyl)] dianiline;
As the diaminoorganosiloxane, for example, 1,3-bis (3-aminopropyl) -tetramethyldisiloxane and the like can be mentioned, respectively, and the diamine compound described in JP 2010-97188 A can be used. .
 ポリアミック酸(P)の合成に使用するその他のジアミンとしては、液晶素子で生じる微小輝点を低減する効果が高い点で、O,O’-ジ(4-アミノフェニル)-エチレングリコール、及びN,N’-ジ(4-アミノフェニル)-N,N’-ジメチルエチレンジアミンよりなる群から選ばれる少なくとも一種を含むことが好ましく、液晶配向性及びAC残像特性が良好な液晶素子が得られる点で、パラフェニレンジアミン、1,4-ビス(4-アミノフェニル)-ピペラジン、及び2,2’-ジメチル-4,4’-ジアミノビフェニルよりなる群から選ばれる少なくとも一種を含むことが好ましい。なお、ポリアミック酸(P)の合成に際し、その他のジアミンは1種を単独で又は2種以上を組み合わせて使用できる。 Other diamines used for the synthesis of the polyamic acid (P) include O, O′-di (4-aminophenyl) -ethylene glycol, and N, because they have a high effect of reducing the fine bright spots generated in the liquid crystal element. , N′-di (4-aminophenyl) -N, N′-dimethylethylenediamine is preferable, and a liquid crystal element having favorable liquid crystal alignment and AC afterimage characteristics can be obtained. In addition, it preferably contains at least one selected from the group consisting of paraphenylenediamine, 1,4-bis (4-aminophenyl) -piperazine, and 2,2′-dimethyl-4,4′-diaminobiphenyl. In the synthesis of polyamic acid (P), other diamines can be used alone or in combination of two or more.
 特定ジアミンの使用割合は、本開示の効果を十分に得る観点から、ポリアミック酸(P)の合成に際して使用するジアミン化合物の合計量に対して、20モル%以上とすることが好ましい。より好ましくは40モル%以上であり、さらに好ましくは60モル%以上である。その他のジアミンを使用する場合、その使用割合は、合成に使用するジアミン化合物の合計量に対して、5~80モル%とすることが好ましく、10~60モル%とすることがより好ましい。 The proportion of the specific diamine used is preferably 20 mol% or more based on the total amount of diamine compounds used in the synthesis of the polyamic acid (P) from the viewpoint of sufficiently obtaining the effects of the present disclosure. More preferably, it is 40 mol% or more, More preferably, it is 60 mol% or more. When other diamines are used, the proportions used are preferably 5 to 80 mol%, more preferably 10 to 60 mol%, based on the total amount of diamine compounds used in the synthesis.
(ポリアミック酸の合成)
 ポリアミック酸(P)は、上記の如きテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤(例えば、酸一無水物、モノアミン化合物、モノイソシアネート化合物等)とともに反応させることによって得ることができる。ポリアミック酸(P)の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましい。
(Synthesis of polyamic acid)
The polyamic acid (P) is obtained by reacting the tetracarboxylic dianhydride and the diamine compound as described above with a molecular weight adjusting agent (for example, acid monoanhydride, monoamine compound, monoisocyanate compound, etc.) as necessary. Obtainable. The ratio of the tetracarboxylic dianhydride and the diamine compound used in the polyamic acid (P) synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is equivalent to 1 equivalent of the amino group of the diamine compound. A ratio of 0.2 to 2 equivalents is preferred.
 ポリアミック酸(P)の合成反応は、好ましくは有機溶媒中において行われる。このときの反応温度は-20℃~150℃が好ましく、反応時間は0.1~24時間が好ましい。反応に使用する有機溶媒としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素等が挙げられる。特に好ましい有機溶媒は、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、m-クレゾール、キシレノール及びハロゲン化フェノールよりなる群から選択される1種以上を溶媒として使用するか、あるいはこれらの1種以上と、他の有機溶媒(例えばブチルセロソルブ、ジエチレングリコールジエチルエーテル等)との混合物である。有機溶媒の使用量は、テトラカルボン酸二無水物及びジアミン化合物の合計量が、反応溶液の全量に対して、0.1~50質量%になる量とすることが好ましい。ポリアミック酸(P)を溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸(P)を単離したうえで液晶配向剤の調製に供してもよい。 The synthesis reaction of polyamic acid (P) is preferably performed in an organic solvent. The reaction temperature at this time is preferably −20 ° C. to 150 ° C., and the reaction time is preferably 0.1 to 24 hours. Examples of the organic solvent used in the reaction include aprotic polar solvents, phenol solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, hydrocarbons and the like. Particularly preferred organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol. And one or more selected from the group consisting of halogenated phenols, or a mixture of one or more of these and another organic solvent (for example, butyl cellosolve, diethylene glycol diethyl ether, etc.). The amount of the organic solvent used is preferably such that the total amount of tetracarboxylic dianhydride and diamine compound is 0.1 to 50% by mass relative to the total amount of the reaction solution. The reaction solution obtained by dissolving the polyamic acid (P) may be used as it is for the preparation of the liquid crystal aligning agent, and the polyamic acid (P) contained in the reaction solution is isolated and then used for the preparation of the liquid crystal aligning agent. May be.
(ポリアミック酸エステル)
 重合体(P)としてのポリアミック酸エステルは、上記式(1)で表される部分構造において、R及びRの少なくとも一方が炭素数1~6の1価の有機基である構造単位を有する重合体である。R及びRの具体例としては、例えば炭素数1~6の直鎖状又は分岐状のアルキル基、炭素数2~6の直鎖状又は分岐状のアルケニル基、シクロヘキシル基、フェニル基等が挙げられる。当該ポリアミック酸エステルは、例えば、[I]上記で得られたポリアミック酸(P)とエステル化剤(例えばメタノールやエタノール、N,N-ジメチルホルムアミドジエチルアセタール等)とを反応させる方法、[II]上記式(3)で表される部分構造を有するテトラカルボン酸ジエステルを含むテトラカルボン酸ジエステルと、特定ジアミンを含むジアミン化合物とを、好ましくは有機溶媒中、適当な脱水触媒(例えば4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムハライド、カルボニルイミダゾール、リン系縮合剤等)の存在下で反応させる方法、[III]上記式(3)で表される部分構造を有するテトラカルボン酸ジエステルジハロゲン化物を含むテトラカルボン酸ジエステルジハロゲン化物と、特定ジアミンを含むジアミン化合物とを、好ましくは有機溶媒中、適当な塩基(例えばピリジン、トリエチルアミン等の3級アミンや、水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、ナトリウム、カリウム等のアルカリ金属類)の存在下で反応させる方法、等によって得ることができる。
(Polyamic acid ester)
The polyamic acid ester as the polymer (P) has a structural unit in which at least one of R 5 and R 6 is a monovalent organic group having 1 to 6 carbon atoms in the partial structure represented by the above formula (1). It is a polymer having. Specific examples of R 5 and R 6 include, for example, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms, a cyclohexyl group, a phenyl group, and the like. Is mentioned. The polyamic acid ester is, for example, [I] a method of reacting the polyamic acid (P) obtained above with an esterifying agent (for example, methanol, ethanol, N, N-dimethylformamide diethyl acetal, etc.), [II] A tetracarboxylic acid diester containing a tetracarboxylic acid diester having a partial structure represented by the above formula (3) and a diamine compound containing a specific diamine are preferably mixed in a suitable dehydration catalyst (for example, 4- (4 , 6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium halide, carbonylimidazole, phosphorus condensing agent, etc.], [III] the above formula (3 Tetracarboxylic acid diester dihalogen containing a tetracarboxylic acid diester dihalide having a partial structure represented by And a diamine compound containing a specific diamine, preferably in an organic solvent, a suitable base (eg, tertiary amine such as pyridine and triethylamine, sodium hydride, potassium hydride, sodium hydroxide, potassium hydroxide, sodium , Alkali metals such as potassium), and the like.
 上記[II]で使用するテトラカルボン酸ジエステルは、特定酸二無水物やその他のテトラカルボン酸二無水物をアルコール類などで開環することにより得ることができる。上記[III]で使用するテトラカルボン酸ジエステルジハロゲン化物は、上記の如くして得たテトラカルボン酸ジエステルを、塩化チオニル等の適当な塩素化剤と反応させることにより得ることができる。
 ポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。上記反応によりポリアミック酸エステルを溶液として得た場合、該溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
The tetracarboxylic acid diester used in the above [II] can be obtained by ring-opening a specific acid dianhydride or other tetracarboxylic acid dianhydride with an alcohol or the like. The tetracarboxylic acid diester dihalide used in the above [III] can be obtained by reacting the tetracarboxylic acid diester obtained as described above with an appropriate chlorinating agent such as thionyl chloride.
The polyamic acid ester may have only an amic acid ester structure, or may be a partially esterified product in which an amic acid structure and an amic acid ester structure coexist. When the polyamic acid ester is obtained as a solution by the above reaction, the solution may be used as it is for the preparation of the liquid crystal aligning agent. After the polyamic acid ester contained in the reaction solution is isolated, the liquid crystal aligning agent is prepared. May be provided.
(ポリイミド)
 重合体(P)としてのポリイミドは、上記式(2)で表される部分構造を有する重合体である。当該ポリイミドは、例えば上記の如くして合成されたポリアミック酸(P)を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸(P)が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。ポリイミドは、そのイミド化率が40~100%であることが好ましく、60~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
(Polyimide)
The polyimide as the polymer (P) is a polymer having a partial structure represented by the above formula (2). The polyimide can be obtained, for example, by dehydrating and ring-closing and imidizing the polyamic acid (P) synthesized as described above. The polyimide may be a completely imidized product obtained by dehydrating and cyclizing all of the amic acid structure of the polyamic acid (P) that is a precursor thereof, and only a part of the amic acid structure is dehydrated and cyclized. A partially imidized product in which a structure and an imide ring structure coexist may be used. The polyimide preferably has an imidation ratio of 40 to 100%, more preferably 60 to 90%. This imidation ratio represents the ratio of the number of imide ring structures to the total of the number of polyimide amic acid structures and the number of imide ring structures in percentage. Here, a part of the imide ring may be an isoimide ring.
 ポリアミック酸(P)の脱水閉環は、ポリアミック酸を有機溶媒に溶解し、この溶液中に脱水剤及び脱水閉環触媒を添加し必要に応じて加熱する方法により行うことが好ましい。脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸等の酸無水物を用いることができる。脱水剤の使用量は、ポリアミック酸のアミック酸構造の1モルに対して0.01~20モルとすることが好ましい。脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミン等の3級アミンを用いることができる。脱水閉環触媒の使用量は、使用する脱水剤1モルに対して0.01~10モルとすることが好ましい。使用する有機溶媒としては、ポリアミック酸(P)の合成に用いられるものとして例示した有機溶媒を挙げることができる。脱水閉環反応の反応温度は、好ましくは0~180℃であり、反応時間は、好ましくは1.0~120時間である。こうして得られたポリイミドを含有する反応溶液は、そのまま液晶配向剤の調製に供してもよく、ポリイミドを単離したうえで液晶配向剤の調製に供してもよい。なお、ポリイミドは、ポリアミック酸エステルの脱水閉環反応によるイミド化によって得ることもできる。 The dehydration ring closure of the polyamic acid (P) is preferably carried out by dissolving the polyamic acid in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to the solution, and heating as necessary. As the dehydrating agent, for example, acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used. The amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid. As the dehydration ring closure catalyst, for example, tertiary amines such as pyridine, collidine, lutidine, triethylamine and the like can be used. The amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 moles per mole of the dehydrating agent used. As an organic solvent to be used, the organic solvent illustrated as what is used for the synthesis | combination of a polyamic acid (P) can be mentioned. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., and the reaction time is preferably 1.0 to 120 hours. The reaction solution containing the polyimide thus obtained may be directly used for the preparation of the liquid crystal aligning agent, or may be used for the preparation of the liquid crystal aligning agent after the polyimide is isolated. In addition, a polyimide can also be obtained by imidation by the dehydration ring closure reaction of polyamic acid ester.
 重合体(P)の溶液粘度は、濃度10質量%の溶液としたときに10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、溶液粘度(mPa・s)は、重合体(P)の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドン等)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 重合体(P)のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは5,000~100,000である。Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。なお、液晶配向剤に含有させる重合体(P)は1種のみでもよく、又は2種以上を組み合わせてもよい。
The solution viscosity of the polymer (P) preferably has a solution viscosity of 10 to 800 mPa · s, and a solution viscosity of 15 to 500 mPa · s when the solution is 10% by mass. It is more preferable. The solution viscosity (mPa · s) is E for a polymer solution having a concentration of 10% by mass prepared using a good solvent for the polymer (P) (for example, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25 ° C. using a mold rotational viscometer.
The weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the polymer (P) is preferably 1,000 to 500,000, more preferably 5,000 to 100,000. It is. The molecular weight distribution (Mw / Mn) represented by the ratio between Mw and the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. In addition, the polymer (P) contained in a liquid crystal aligning agent may be only 1 type, or may combine 2 or more types.
≪その他の成分≫
 本開示の液晶配向剤は、重合体(P)以外のその他の成分を含有していてもよい。当該その他の成分としては、例えば、上記式(1)で表される部分構造及び上記式(2)で表される部分構造のいずれも有さない重合体(以下、「その他の重合体」ともいう。)、分子内に少なくとも一つのエポキシ基を有する化合物、官能性シラン化合物、酸化防止剤、金属キレート化合物、硬化促進剤、界面活性剤、充填剤、分散剤、光増感剤、酸発生剤、塩基発生剤、ラジカル発生剤などが挙げられる。これらの配合割合は、本開示の効果を損なわない範囲で、各化合物に応じて適宜選択することができる。
≪Other ingredients≫
The liquid crystal aligning agent of this indication may contain other components other than a polymer (P). Examples of the other component include a polymer having neither the partial structure represented by the above formula (1) nor the partial structure represented by the above formula (2) (hereinafter referred to as “other polymer”). ), Compounds having at least one epoxy group in the molecule, functional silane compounds, antioxidants, metal chelate compounds, curing accelerators, surfactants, fillers, dispersants, photosensitizers, acid generators Agents, base generators, radical generators and the like. These compounding ratios can be appropriately selected according to each compound within a range not impairing the effects of the present disclosure.
 液晶配向剤は、その他の重合体を含有することにより、微小輝点の生成を抑制する効果を高めることができる点で好ましい。その他の重合体の主骨格は特に限定されないが、例えば、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリオルガノシロキサン、ポリエステル、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを主骨格とする重合体が挙げられる。その他の重合体は、これらのうち、ポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種であることが、微小輝点の生成を好適に抑制できる点で好ましい。その他の重合体を液晶配向剤に配合する場合、その配合割合は、液晶配向剤中の全重合体量に対して、1~90質量%が好ましく、10~80質量%がより好ましく、20~70質量%が更に好ましい。 The liquid crystal aligning agent is preferable in that it can enhance the effect of suppressing the formation of minute bright spots by containing other polymer. The main skeleton of the other polymer is not particularly limited. For example, polyamic acid, polyimide, polyamic acid ester, polyorganosiloxane, polyester, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, poly (meta ) A polymer having an acrylate or the like as a main skeleton. Among these, it is preferable that the other polymer is at least one selected from the group consisting of polyamic acid, polyamic acid ester, and polyimide from the viewpoint that generation of fine bright spots can be suitably suppressed. When other polymers are blended in the liquid crystal aligning agent, the blending ratio is preferably 1 to 90% by weight, more preferably 10 to 80% by weight, more preferably 20 to 20% by weight based on the total amount of the polymer in the liquid crystal aligning agent. 70 mass% is still more preferable.
 本開示の液晶配向剤は、重合体(P)及び必要に応じて使用される成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物として調製される。
 使用する有機溶媒としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,2-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコール-n-ブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネート等を挙げることができる。これらは、単独で又は2種以上を混合して使用することができる。
The liquid crystal aligning agent of the present disclosure is prepared as a liquid composition in which the polymer (P) and components used as necessary are preferably dispersed or dissolved in an appropriate solvent.
Examples of the organic solvent used include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,2-dimethyl-2-imidazolidinone, γ-butyrolactone, γ-butyrolactam, and N, N-dimethylformamide. N, N-dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol methyl ether, Ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether (butyl cellosolve), ethylene glycol dimethyl ether, ethylene glycol ethyl ether Ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diisobutyl ketone, isoamyl propionate, isoamyl isobutyrate, diisopentyl ether, ethylene carbonate, A propylene carbonate etc. can be mentioned. These can be used alone or in admixture of two or more.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。すなわち、液晶配向剤は、後述するように基板表面に塗布され、好ましくは加熱されることにより、液晶配向膜である塗膜又は液晶配向膜となる塗膜が形成される。このとき、固形分濃度が1質量%未満である場合には、塗膜の膜厚が過小となって良好な液晶配向膜が得にくくなる。一方、固形分濃度が10質量%を超える場合には、塗膜の膜厚が過大となって良好な液晶配向膜が得にくく、また、液晶配向剤の粘性が増大して塗布性が低下する傾向にある。 The solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. That is, the liquid crystal aligning agent is applied to the substrate surface as will be described later, and preferably heated to form a coating film that is a liquid crystal alignment film or a coating film that becomes a liquid crystal alignment film. At this time, when the solid content concentration is less than 1% by mass, the film thickness of the coating film is too small to obtain a good liquid crystal alignment film. On the other hand, when the solid content concentration exceeds 10% by mass, it is difficult to obtain a good liquid crystal alignment film because the film thickness is excessive, and the viscosity of the liquid crystal aligning agent increases and the applicability decreases. There is a tendency.
 液晶配向剤中の重合体(P)の含有割合は、液晶配向剤中の固形成分(溶媒以外の成分)の合計100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは30質量部以上である。 The content ratio of the polymer (P) in the liquid crystal aligning agent is preferably 10 parts by mass or more, more preferably 20 parts by mass with respect to a total of 100 parts by mass of the solid components (components other than the solvent) in the liquid crystal aligning agent. As mentioned above, More preferably, it is 30 mass parts or more.
≪液晶配向膜及び液晶素子≫
 本開示の液晶配向膜は、上記のように調製された液晶配向剤により形成される。特に、本開示の液晶配向膜は、上記液晶配向剤を用いて塗膜を形成し、該塗膜に光照射処理を施して液晶配向能を付与する光配向工程を含む方法により製造することが好ましい。
 また、本開示の液晶素子は、上記で説明した液晶配向剤を用いて形成された液晶配向膜を具備する。液晶素子における液晶の動作モードは特に限定されず、例えばTN(Twisted Nematic)型、STN(Super Twisted Nematic)型、VA(Vertical Alignment)型(VA-MVA型、VA-PVA型などを含む。)、IPS(In-Plane Switching)型、FFS(Fringe Field Switching)型、OCB(Optically Compensated Bend)型など種々のモードに適用することができる。液晶素子は、例えば以下の工程1~工程3を含む方法により製造することができる。工程1は、所望の動作モードによって使用基板が異なる。工程2及び工程3は各動作モード共通である。
≪Liquid crystal alignment film and liquid crystal element≫
The liquid crystal alignment film of the present disclosure is formed by the liquid crystal aligning agent prepared as described above. In particular, the liquid crystal alignment film of the present disclosure can be manufactured by a method including a photo-alignment step of forming a coating film using the liquid crystal aligning agent and applying a light irradiation treatment to the coating film to impart liquid crystal alignment ability. preferable.
Moreover, the liquid crystal element of this indication comprises the liquid crystal aligning film formed using the liquid crystal aligning agent demonstrated above. The operation mode of the liquid crystal in the liquid crystal element is not particularly limited, and includes, for example, a TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical Alignment) type (VA-MVA type, VA-PVA type, etc.). It can be applied to various modes such as an IPS (In-Plane Switching) type, an FFS (Fringe Field Switching) type, and an OCB (Optically Compensated Bend) type. The liquid crystal element can be manufactured, for example, by a method including the following steps 1 to 3. In step 1, the substrate to be used varies depending on the desired operation mode. Step 2 and step 3 are common to each operation mode.
(工程1:塗膜の形成)
 先ず、基板上に液晶配向剤を塗布し、好ましくは塗布面を加熱することにより基板上に塗膜を形成する。基板としては、例えばフロートガラス、ソーダガラスなどのガラス;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリ(脂環式オレフィン)などのプラスチックからなる透明基板を用いることができる。基板の一方の面に設けられる透明導電膜としては、酸化スズ(SnO)からなるNESA膜(米国PPG社登録商標)、酸化インジウム-酸化スズ(In-SnO)からなるITO膜などを用いることができる。TN型、STN型又はVA型の液晶素子を製造する場合には、パターニングされた透明導電膜が設けられている基板二枚を用いる。一方、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。金属膜としては、例えばクロムなどの金属からなる膜を使用することができる。基板への液晶配向剤の塗布は、電極形成面上に、好ましくはオフセット印刷法、フレキソ印刷法、スピンコート法、ロールコーター法又はインクジェット法により行う。
(Step 1: Formation of coating film)
First, a liquid crystal aligning agent is apply | coated on a board | substrate, Preferably a coating surface is formed on a board | substrate by heating an application surface. As the substrate, for example, glass such as float glass or soda glass; a transparent substrate made of plastic such as polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, poly (cycloaliphatic olefin) can be used. As the transparent conductive film provided on one surface of the substrate, an NESA film (registered trademark of PPG, USA) made of tin oxide (SnO 2 ), an ITO film made of indium oxide-tin oxide (In 2 O 3 -SnO 2 ) Etc. can be used. In the case of manufacturing a TN type, STN type, or VA type liquid crystal element, two substrates provided with a patterned transparent conductive film are used. On the other hand, when manufacturing an IPS type or FFS type liquid crystal element, a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and a counter substrate provided with no electrode Is used. As the metal film, for example, a film made of a metal such as chromium can be used. Application of the liquid crystal aligning agent to the substrate is preferably performed on the electrode forming surface by an offset printing method, a flexographic printing method, a spin coating method, a roll coater method or an ink jet method.
 液晶配向剤を塗布した後、塗布した液晶配向剤の液垂れ防止などの目的で、好ましくは予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、プレベーク時間は、好ましくは0.25~10分である。その後、溶剤を完全に除去し、必要に応じて、重合体に存在するアミック酸構造を熱イミド化することを目的として焼成(ポストベーク)工程が実施される。このときの焼成温度(ポストベーク温度)は、好ましくは80~300℃であり、ポストベーク時間は、好ましくは5~200分である。このようにして形成される膜の膜厚は、好ましくは0.001~1μmである。基板上に液晶配向剤を塗布した後、有機溶媒を除去することによって、液晶配向膜、又は液晶配向膜となる塗膜が形成される。 After applying the liquid crystal aligning agent, preheating (pre-baking) is preferably performed for the purpose of preventing dripping of the applied liquid crystal aligning agent. The pre-bake temperature is preferably 30 to 200 ° C., and the pre-bake time is preferably 0.25 to 10 minutes. Thereafter, the solvent is completely removed, and if necessary, a baking (post-baking) step is performed for the purpose of thermally imidizing the amic acid structure present in the polymer. The firing temperature (post-bake temperature) at this time is preferably 80 to 300 ° C., and the post-bake time is preferably 5 to 200 minutes. The thickness of the film thus formed is preferably 0.001 to 1 μm. After applying the liquid crystal aligning agent on the substrate, the organic solvent is removed to form a liquid crystal aligning film or a coating film that becomes the liquid crystal aligning film.
(工程2:配向処理)
 TN型、STN型、IPS型又はFFS型の液晶素子を製造する場合、上記工程1で形成した塗膜に液晶配向能を付与する処理(配向処理)を実施する。これにより、液晶分子の配向能が塗膜に付与されて液晶配向膜となる。配向処理としては、布を巻き付けたロールで一定方向に擦るラビング処理を用いてもよいが、重合体(P)は光感度が高く、少ない露光量でも塗膜に異方性を発現させることができる点で、基板上に形成した塗膜に光照射を行って塗膜に液晶配向能を付与する光配向処理を好ましく用いることができる。一方、垂直配向型の液晶素子を製造する場合には、上記工程1で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向処理を施してもよい。
(Step 2: Orientation treatment)
When manufacturing a TN-type, STN-type, IPS-type, or FFS-type liquid crystal element, a treatment (orientation treatment) for imparting liquid crystal alignment ability to the coating film formed in Step 1 is performed. Thereby, the orientation ability of a liquid crystal molecule is provided to a coating film, and it becomes a liquid crystal aligning film. As the alignment treatment, a rubbing treatment in which a roll wound with a cloth is rubbed in a certain direction may be used. However, the polymer (P) has high photosensitivity, and can develop anisotropy in the coating film even with a small exposure amount. In view of this, a photo-alignment treatment in which the coating film formed on the substrate is irradiated with light to impart liquid crystal alignment ability to the coating film can be preferably used. On the other hand, when manufacturing a vertical alignment type liquid crystal element, the coating film formed in the above step 1 can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment treatment.
 光配向処理における光照射は、ポストベーク工程後の塗膜に対して照射する方法、プレベーク工程後であってポストベーク工程前の塗膜に対して照射する方法、プレベーク工程及びポストベーク工程の少なくともいずれかにおいて塗膜の加熱中に塗膜に対して照射する方法、等により行うことができる。光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。好ましくは、200~400nmの波長の光を含む紫外線である。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。 The light irradiation in the photo-alignment treatment is a method of irradiating the coating film after the post-baking process, a method of irradiating the coating film after the pre-baking process and before the post-baking process, at least the pre-baking process and the post-baking process. In any case, it can be performed by a method of irradiating the coating film while the coating film is heated. In the photo-alignment treatment, ultraviolet rays and visible rays including light having a wavelength of 150 to 800 nm can be used as radiation applied to the coating film, for example. Preferably, it is an ultraviolet ray containing light having a wavelength of 200 to 400 nm. When the radiation is polarized light, it may be linearly polarized light or partially polarized light. When the radiation used is linearly polarized light or partially polarized light, irradiation may be performed from a direction perpendicular to the substrate surface, an oblique direction, or a combination thereof. When non-polarized radiation is irradiated, the irradiation direction is an oblique direction.
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。放射線の照射量は、好ましくは400~20,000J/mであり、より好ましくは1,000~5,000J/mである。塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。 As a light source to be used, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, or the like can be used. The radiation dose is preferably 400 to 20,000 J / m 2 , more preferably 1,000 to 5,000 J / m 2 . You may perform light irradiation with respect to a coating film, heating a coating film, in order to improve the reactivity.
 液晶配向膜の製造に際し、光照射処理が施された塗膜を、水、水溶性有機溶媒、又は水と水溶性有機溶媒との混合溶媒に接触させる接触工程をさらに含んでいてもよい。こうした接触工程を行うことにより、光配向処理によって生成した分解物を膜中から除去することができ、得られる液晶素子において微小輝点の発生をさらに抑制できる点で好適である。ここで、水溶性有機溶媒としては、例えばメタノール、エタノール、1-プロパノール、イソプロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノンが挙げられる。接触工程で用いる溶媒は、これらのうち、好ましくは水、イソプロパノール及びこれらの混合物である。 In the production of the liquid crystal alignment film, it may further include a contact step of bringing the coating film that has been subjected to the light irradiation treatment into contact with water, a water-soluble organic solvent, or a mixed solvent of water and a water-soluble organic solvent. By performing such a contact step, the decomposition product generated by the photo-alignment treatment can be removed from the film, which is preferable in that generation of minute bright spots can be further suppressed in the obtained liquid crystal element. Here, examples of the water-soluble organic solvent include methanol, ethanol, 1-propanol, isopropanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone. Of these, the solvent used in the contacting step is preferably water, isopropanol, or a mixture thereof.
 塗膜と溶媒との接触方法としては、例えば噴霧(スプレー)処理、シャワー処理、浸漬処理、液盛り処理等が挙げられるが、これらに限定されるものではない。塗膜と溶媒との接触時間は特に限定されないが、例えば5秒~15分である。 Examples of the contact method between the coating film and the solvent include, but are not limited to, spraying, showering, dipping, and liquid filling. The contact time between the coating film and the solvent is not particularly limited, but is, for example, 5 seconds to 15 minutes.
 液晶配向膜の製造に際しては、光照射処理が施された塗膜を、上記の接触工程の前及び接触工程の後の少なくとも一方において、120℃以上280℃以下の温度範囲内で加熱する加熱工程をさらに行ってもよい。こうした加熱工程を行うことにより、液晶配向性がさらに改善され、AC残像がより低減された液晶素子が得られる点で好ましい。
 加熱工程において、加熱温度は、加熱による分子鎖の再配向を促進させる観点から、140℃以上とすることが好ましく、150℃~250℃とすることがより好ましい。加熱時間は、好ましくは5分~200分、より好ましくは10分~60分である。
In the production of the liquid crystal alignment film, a heating step of heating the coating film subjected to the light irradiation treatment within a temperature range of 120 ° C. or higher and 280 ° C. or lower before at least one of the contact step and after the contact step. May be further performed. By performing such a heating step, it is preferable in that a liquid crystal element in which the liquid crystal orientation is further improved and the AC afterimage is further reduced can be obtained.
In the heating step, the heating temperature is preferably 140 ° C. or higher, and more preferably 150 ° C. to 250 ° C., from the viewpoint of promoting reorientation of molecular chains by heating. The heating time is preferably 5 minutes to 200 minutes, more preferably 10 minutes to 60 minutes.
(工程3:液晶セルの構築)
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置することにより液晶セルを製造する。液晶セルを製造するには、例えば、(1)液晶配向膜が対向するように間隙(スペーサー)を介して2枚の基板を対向配置し、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶を注入充填した後、注入孔を封止する方法、(2)液晶配向膜を形成した一方の基板上の所定の場所にシール剤を塗布し、さらに液晶配向膜面上の所定の数箇所に液晶を滴下した後、液晶配向膜が対向するように他方の基板を貼り合わせるとともに液晶を基板の全面に押し広げる方法(ODF方式)等が挙げられる。製造した液晶セルにつき、さらに、用いた液晶が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
(Process 3: Construction of liquid crystal cell)
Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and a liquid crystal cell is manufactured by disposing a liquid crystal between the two substrates disposed to face each other. In order to manufacture a liquid crystal cell, for example, (1) two substrates are arranged to face each other with a gap (spacer) so that the liquid crystal alignment films are opposed to each other, and a peripheral part of the two substrates is used with a sealant. A method of sealing the injection hole after injecting and filling liquid crystal into the cell gap defined by bonding, the substrate surface and the sealing agent, and (2) sealing at a predetermined place on one substrate on which the liquid crystal alignment film is formed A method of applying an agent and dropping liquid crystal to a predetermined number of locations on the surface of the liquid crystal alignment film, and then bonding the other substrate so that the liquid crystal alignment film faces each other and spreading the liquid crystal over the entire surface of the substrate (ODF method) ) And the like. The manufactured liquid crystal cell is preferably heated to a temperature at which the used liquid crystal takes an isotropic phase, and then slowly cooled to room temperature to remove the flow alignment at the time of filling the liquid crystal.
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂などを用いることができる。スペーサーとしては、フォトスペーサー、ビーズスペーサー等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、例えばシッフベース系液晶、アゾキシ系液晶、ビフェニル系液晶、フェニルシクロヘキサン系液晶、エステル系液晶、ターフェニル系液晶、ビフェニルシクロヘキサン系液晶、ピリミジン系液晶、ジオキサン系液晶、ビシクロオクタン系液晶、キュバン系液晶などを用いることができる。また、これらの液晶に、例えばコレステリック液晶、カイラル剤、強誘電性液晶などを添加して使用してもよい。 As the sealant, for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used. As the spacer, a photo spacer, a bead spacer, or the like can be used. Examples of the liquid crystal include nematic liquid crystal and smectic liquid crystal. Among them, nematic liquid crystal is preferable. For example, Schiff base liquid crystal, azoxy liquid crystal, biphenyl liquid crystal, phenylcyclohexane liquid crystal, ester liquid crystal, terphenyl liquid crystal, biphenyl. Cyclohexane liquid crystals, pyrimidine liquid crystals, dioxane liquid crystals, bicyclooctane liquid crystals, cubane liquid crystals, and the like can be used. Further, for example, a cholesteric liquid crystal, a chiral agent, or a ferroelectric liquid crystal may be added to these liquid crystals.
 続いて、必要に応じて液晶セルの外側表面に偏光板を貼り合わせる。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板が挙げられる。これにより液晶素子が得られる。 Subsequently, a polarizing plate is bonded to the outer surface of the liquid crystal cell as necessary. Examples of the polarizing plate include a polarizing plate comprising a polarizing film called an “H film” in which iodine is absorbed while stretching and orientation of polyvinyl alcohol is sandwiched between cellulose acetate protective films, or a polarizing plate made of the H film itself. Thereby, a liquid crystal element is obtained.
 なお、重合体(P)を含有する液晶配向剤によればAC残像特性及び長期耐熱性に優れた液晶素子が得られる理由は定かではないが、次のようなことが考えられる。重合体(P)は、ジアミンに由来する構造単位として非対称の構造を有する構成単位を有している。このため、重合体(P)を含有する塗膜に光照射した場合に生じる光分解物の結晶性が低く、微小輝点の生成が抑制されたことが推測される。また、Xが有する鎖状炭化水素構造、脂環式炭化水素構造によって光分解物の結晶性が低くなったことも、微小輝点の発生が少ない液晶素子が得られた一つの理由であると推測される。さらに、ジアミンに由来する構造部分は、重合結合基(アミノ基)及び電子供与性基により、ジアミン骨格から置換シクロブタン環への光誘起電子移動(電子移動増感反応)が促進され、これによって、シクロブタン環のレトロ[2+2]反応による光分解が促進された結果、液晶の配向秩序度が向上し、AC残像の低減を図ることができたことが推測される。 The reason why the liquid crystal alignment agent containing the polymer (P) can provide a liquid crystal element excellent in AC afterimage characteristics and long-term heat resistance is not clear, but the following may be considered. The polymer (P) has a structural unit having an asymmetric structure as a structural unit derived from diamine. For this reason, it is surmised that the crystallinity of the photodegradation product generated when the coating film containing the polymer (P) is irradiated with light is low, and the generation of fine bright spots is suppressed. In addition, the crystallinity of the photodegradation product is lowered due to the chain hydrocarbon structure and alicyclic hydrocarbon structure of X 2 , which is one reason why a liquid crystal element with few generation of fine bright spots was obtained. It is guessed. Furthermore, in the structural portion derived from diamine, photo-induced electron transfer (electron transfer sensitization reaction) from the diamine skeleton to the substituted cyclobutane ring is promoted by the polymerization bond group (amino group) and the electron donating group, It is presumed that the degree of alignment order of the liquid crystal was improved and the AC afterimage could be reduced as a result of the promotion of the photolysis by the retro [2 + 2] reaction of the cyclobutane ring.
 本開示の液晶素子は種々の用途に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置や、調光フィルム等に用いることができる。また、本開示の液晶配向剤を用いて形成された液晶素子は位相差フィルムに適用することもできる。 The liquid crystal element of the present disclosure can be effectively applied to various applications, for example, watches, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, various monitors. It can be used for various display devices such as liquid crystal televisions and information displays, and light control films. Moreover, the liquid crystal element formed using the liquid crystal aligning agent of this indication can also be applied to retardation film.
 以下、本開示を実施例により更に具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically by way of examples. However, the present disclosure is not limited to these examples.
 以下の例で使用した主な化合物の構造と略号は以下の通りである。
(テトラカルボン酸誘導体)
TA-1;(1R,2R,3S,4S)-1,3-ジメチルシクロブタン-1,2,3,4-テトラカルボン酸二無水物
TB-2;1,2,3,4-シクロブタンテトラカルボン酸二無水物
TB-3;2,3,5-トリカルボキシシクロペンチル酢酸二無水物
TC-4;ジメタリル (2r,4r)-2,4-ビス(クロロカルボニル)-2,4-ジメチルシクロブタン-1,3-ジカルボキシレート
Figure JPOXMLDOC01-appb-C000034
The structures and abbreviations of main compounds used in the following examples are as follows.
(Tetracarboxylic acid derivative)
TA-1; (1R, 2R, 3S, 4S) -1,3-dimethylcyclobutane-1,2,3,4-tetracarboxylic dianhydride TB-2; 1,2,3,4-cyclobutanetetracarboxylic Acid dianhydride TB-3; 2,3,5-tricarboxycyclopentyl acetic acid dianhydride TC-4; dimethallyl (2r, 4r) -2,4-bis (chlorocarbonyl) -2,4-dimethylcyclobutane-1 , 3-Dicarboxylate
Figure JPOXMLDOC01-appb-C000034
(特定ジアミン)
DA-1;N,O-ジ(4-アミノフェニル)-N-メチルエタノールアミン
DA-2;N,O-ジ(4-アミノフェニル)-N-tert-ブトキシカルボニルエタノールアミン
DA-3;N,O-ジ(4-アミノフェニル)-エタノールアミン
DA-4;N,O-ジ(4-アミノフェニル)-4-ヒドロキシピペリジン
DA-5;N,O-ジ(4-アミノフェニル)-4-ピペリジンメタノール
DA-6;N,N’-ジ(4-アミノフェニル)-N-メチル-4-アミノピペリジン
DA-7;N,S-ジ(4-アミノフェニル)-2-アミノエタンチオール
DA-8;N,O-ジ(5-アミノ-2-ピリジル)-N-メチルエタノールアミン
DA-9;N,O-ジ(5-アミノ-2-ピリジル)-4-ヒドロキシピペリジン
DA-10;4,4’-ジアミノベンジルフェニルエーテル
(Specific diamine)
DA-1, N, O-di (4-aminophenyl) -N-methylethanolamine DA-2; N, O-di (4-aminophenyl) -N-tert-butoxycarbonylethanolamine DA-3; N , O-di (4-aminophenyl) -ethanolamine DA-4; N, O-di (4-aminophenyl) -4-hydroxypiperidine DA-5; N, O-di (4-aminophenyl) -4 -Piperidinemethanol DA-6; N, N'-di (4-aminophenyl) -N-methyl-4-aminopiperidine DA-7; N, S-di (4-aminophenyl) -2-aminoethanethiol DA -8; N, O-di (5-amino-2-pyridyl) -N-methylethanolamine DA-9; N, O-di (5-amino-2-pyridyl) -4-hydroxypiperidine DA-10; 4 , 4'-Diaminobenzyl phenyl ether
(その他のジアミン)
DB-1;O,O’-ジ(4-アミノフェニル)-エチレングリコール
DB-2;N,N’-ジ(4-アミノフェニル)-N,N’-ジメチルエチレンジアミン
DB-3;4,4’-エチレンジアニリン
DB-4;N,N’-ジ(4-アミノフェニル)-ピペラジン
DB-5;N,N’-ジ(5-アミノ-2-ピリジル)-ピペラジン
DB-6;パラフェニレンジアミン
DB-7;2,2’-ジメチル-4,4’-ジアミノビフェニル
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(Other diamines)
DB-1, O, O′-di (4-aminophenyl) -ethylene glycol DB-2; N, N′-di (4-aminophenyl) -N, N′-dimethylethylenediamine DB-3; '-Ethylenedianiline DB-4; N, N'-di (4-aminophenyl) -piperazine DB-5; N, N'-di (5-amino-2-pyridyl) -piperazine DB-6; paraphenylene Diamine DB-7; 2,2'-dimethyl-4,4'-diaminobiphenyl
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
(溶剤)
NMP;N-メチル-2-ピロリドン
γBL;γ-ブチロラクトン
BC;ブチルセロソルブ
(solvent)
NMP; N-methyl-2-pyrrolidone γBL; γ-butyrolactone BC; butyl cellosolve
<化合物の合成1>
[合成例1]
 還流管及び窒素導入管を備えた3つ口フラスコに、炭酸カリウム(34.55g,0.25mol)を入れて窒素置換し、N-メチルエタノールアミン(7.51g,0.10mol)、NMP(150mL)を入れた。反応溶液を窒素下で撹拌しながら、4-フルオロニトロベンゼン(28.22g,0.20mol)を滴下した。反応溶液を150℃で6時間撹拌して反応を完結させた。冷却後、反応溶液を水300mLに注いで撹拌し、生成物を凝固させた。この水凝固分散液にヘキサン:酢酸エチル=4:1(体積比)の混合溶媒150mLを加えて室温で1時間撹拌した。得られた分散液をろ過し、水及び酢酸エチルによりそれぞれかけ洗いした。得られた析出物を酢酸エチル150mL中で加熱撹拌することで洗浄し、冷却後、ろ過して真空乾燥することにより、黄色粉末のニトロ体中間生成物(29.51g,収率93%)を得た。
 続いて、還流管及び窒素導入管を備えた3つ口フラスコに、パラジウムカーボンを2.4g入れ、窒素置換した。そこへ窒素バブリングにより脱気したテトラヒドロフラン120mL、エタノール30mLを入れ、ニトロ体中間生成物(9.41g,0.03mol)を添加後、撹拌して懸濁溶液とした。反応溶液へヒドラジン一水和物10mLを室温でゆっくりと滴下した。滴下後、60℃まで徐々に昇温し、4時間攪拌した。反応溶液に酢酸エチル200mLを加えて希釈し、セライト濾過した後に、水200mLによる分液洗浄を3回繰り返した。得られた有機層を濃縮して真空乾燥することにより、淡褐色液体のジアミン(DA-1)(4.94g,収率64%)を得た。図1に、ジアミン(DA-1)のH-NMRスペクトル(DMSO-d,400MHz)の測定結果を示す。
Figure JPOXMLDOC01-appb-C000037
<Compound Synthesis 1>
[Synthesis Example 1]
A three-necked flask equipped with a reflux tube and a nitrogen introduction tube was charged with potassium carbonate (34.55 g, 0.25 mol) and purged with nitrogen, and N-methylethanolamine (7.51 g, 0.10 mol), NMP ( 150 mL). While the reaction solution was stirred under nitrogen, 4-fluoronitrobenzene (28.22 g, 0.20 mol) was added dropwise. The reaction solution was stirred at 150 ° C. for 6 hours to complete the reaction. After cooling, the reaction solution was poured into 300 mL of water and stirred to solidify the product. 150 mL of a mixed solvent of hexane: ethyl acetate = 4: 1 (volume ratio) was added to this water coagulation dispersion, and the mixture was stirred at room temperature for 1 hour. The resulting dispersion was filtered and washed with water and ethyl acetate, respectively. The obtained precipitate was washed by heating and stirring in 150 mL of ethyl acetate, cooled, filtered and dried under vacuum to obtain a yellow powder nitro intermediate product (29.51 g, yield 93%). Obtained.
Subsequently, 2.4 g of palladium carbon was put into a three-necked flask equipped with a reflux tube and a nitrogen introduction tube, and the atmosphere was replaced with nitrogen. Thereto were added 120 mL of tetrahydrofuran degassed by nitrogen bubbling and 30 mL of ethanol, and after adding a nitro intermediate product (9.41 g, 0.03 mol), the mixture was stirred to obtain a suspension solution. To the reaction solution, 10 mL of hydrazine monohydrate was slowly added dropwise at room temperature. After the dropping, the temperature was gradually raised to 60 ° C. and stirred for 4 hours. The reaction solution was diluted with 200 mL of ethyl acetate, filtered through Celite, and then separated and washed with 200 mL of water three times. The obtained organic layer was concentrated and vacuum-dried to obtain a light brown liquid diamine (DA-1) (4.94 g, yield 64%). FIG. 1 shows the measurement result of 1 H-NMR spectrum (DMSO-d 6 , 400 MHz) of diamine (DA-1).
Figure JPOXMLDOC01-appb-C000037
[合成例2]
 N-メチルエタノールアミンをエタノールアミンに変更した以外は合成例1と同様にしてニトロ体中間生成物を得た。
 続いて、還流管及び窒素導入管を備えた3つ口フラスコに、ニトロ体中間生成物(3.03g,0.010mol)、N,N-ジメチル-4-アミノピリジン(0.24g,0.002mol)を入れて窒素置換し、テトラヒドロフラン(60mL)を入れた。反応溶液を50℃に加熱し、二炭酸ジ-tert-ブチル(5.24g,0.024mol)とテトラヒドロフラン(5mL)の混合溶液を滴下し、24時間反応させた。反応溶液を減圧濃縮した後、得られた析出物をトルエンにより再結晶して真空乾燥することにより、黄色粉末のBoc保護ニトロ体中間生成物(3.43g,収率85%)を得た。得られたBoc保護ニトロ体中間生成物を合成例1と同様にして還元反応を行い、淡褐色粉末のジアミン(DA-2)を得た。
[合成例3]
 N-メチルエタノールアミンをエタノールアミンに変更した以外は合成例1と同様にしてジアミン(DA-3)を得た。
[Synthesis Example 2]
A nitro intermediate product was obtained in the same manner as in Synthesis Example 1 except that N-methylethanolamine was changed to ethanolamine.
Subsequently, a nitro intermediate product (3.03 g, 0.010 mol), N, N-dimethyl-4-aminopyridine (0.24 g, 0.03 mol) was added to a three-necked flask equipped with a reflux tube and a nitrogen introduction tube. 002 mol) was substituted with nitrogen, and tetrahydrofuran (60 mL) was added. The reaction solution was heated to 50 ° C., and a mixed solution of di-tert-butyl dicarbonate (5.24 g, 0.024 mol) and tetrahydrofuran (5 mL) was added dropwise and reacted for 24 hours. The reaction solution was concentrated under reduced pressure, and the resulting precipitate was recrystallized from toluene and vacuum dried to obtain a Boc protected nitro intermediate product (3.43 g, yield 85%) as a yellow powder. The obtained Boc-protected nitro intermediate product was subjected to a reduction reaction in the same manner as in Synthesis Example 1 to obtain a light brown powdered diamine (DA-2).
[Synthesis Example 3]
A diamine (DA-3) was obtained in the same manner as in Synthesis Example 1 except that N-methylethanolamine was changed to ethanolamine.
[合成例4]
 還流管及び窒素導入管を備えた3つ口フラスコに、炭酸カリウム(34.55g,0.25mol)を入れて窒素置換し、4-ヒドロキシピペリジン(10.12g,0.10mol)、NMP(150mL)を入れた。反応溶液を窒素下で撹拌しながら、4-フルオロニトロベンゼン(28.22g,0.20mol)を滴下した。反応溶液を150℃で6時間撹拌して反応を完結させた。冷却後、反応溶液を水300mLに注いで撹拌し、生成物を凝固させた。この水凝固分散液にヘキサン:酢酸エチル=4:1(体積比)の混合溶媒150mLを加えて室温で1時間撹拌した。得られた分散液をろ過し、水及び酢酸エチルによりそれぞれかけ洗いした。得られた析出物を酢酸エチル150mL中で加熱撹拌することで洗浄し、冷却後、ろ過して真空乾燥することにより、黄土色粉末のニトロ体中間生成物(29.87g,収率87%)を得た。
 続いて、還流管及び窒素導入管を備えた3つ口フラスコに、パラジウムカーボンを2.4g入れ、窒素置換した。そこへ窒素バブリングにより脱気したテトラヒドロフラン120mL、エタノール30mLを入れ、ニトロ体中間生成物(10.30g,0.03mol)を添加後、撹拌して懸濁溶液とした。反応溶液へヒドラジン一水和物10mLを室温でゆっくりと滴下した。滴下後、60℃まで徐々に昇温し、4時間攪拌した。反応溶液に酢酸エチル200mLを加えて希釈し、セライト濾過した後に、水200mLによる分液洗浄を3回繰り返した。得られた有機層を濃縮して酢酸エチル100mLにより再結晶を行った。得られた固体をろ過して真空乾燥することにより、淡桃色固体のジアミン(DA-4)(5.19g,収率61%)を得た。図2に、ジアミン(DA-4)のH-NMRスペクトル(DMSO-d,400MHz)の測定結果を示す。
Figure JPOXMLDOC01-appb-C000038
[Synthesis Example 4]
A three-necked flask equipped with a reflux tube and a nitrogen introduction tube was charged with potassium carbonate (34.55 g, 0.25 mol) and purged with nitrogen, and 4-hydroxypiperidine (10.12 g, 0.10 mol), NMP (150 mL) ) While the reaction solution was stirred under nitrogen, 4-fluoronitrobenzene (28.22 g, 0.20 mol) was added dropwise. The reaction solution was stirred at 150 ° C. for 6 hours to complete the reaction. After cooling, the reaction solution was poured into 300 mL of water and stirred to solidify the product. 150 mL of a mixed solvent of hexane: ethyl acetate = 4: 1 (volume ratio) was added to this water coagulation dispersion, and the mixture was stirred at room temperature for 1 hour. The resulting dispersion was filtered and washed with water and ethyl acetate, respectively. The obtained precipitate was washed by heating and stirring in 150 mL of ethyl acetate, cooled, filtered and dried in vacuo to give a nitro intermediate product of ocherous powder (29.87 g, yield 87%). Got.
Subsequently, 2.4 g of palladium carbon was put into a three-necked flask equipped with a reflux tube and a nitrogen introduction tube, and the atmosphere was replaced with nitrogen. Thereto were added 120 mL of tetrahydrofuran degassed by nitrogen bubbling and 30 mL of ethanol, and after adding a nitro intermediate product (10.30 g, 0.03 mol), the mixture was stirred to obtain a suspension solution. To the reaction solution, 10 mL of hydrazine monohydrate was slowly added dropwise at room temperature. After the dropping, the temperature was gradually raised to 60 ° C. and stirred for 4 hours. The reaction solution was diluted with 200 mL of ethyl acetate, filtered through Celite, and then separated and washed with 200 mL of water three times. The obtained organic layer was concentrated and recrystallized with 100 mL of ethyl acetate. The obtained solid was filtered and vacuum-dried to obtain a light pink solid diamine (DA-4) (5.19 g, yield 61%). FIG. 2 shows the measurement result of 1 H-NMR spectrum (DMSO-d 6 , 400 MHz) of diamine (DA-4).
Figure JPOXMLDOC01-appb-C000038
[合成例5]
 4-ヒドロキシピペリジンを4-ピペリジンメタノールに変更した以外は合成例4と同様にして合成を行い、ジアミン(DA-5)を得た。
[合成例6]
 4-ヒドロキシピペリジンを4-アミノピペリジンに変更した以外は合成例4と同様にしてニトロ体中間生成物を得た。
 続いて、還流管及び窒素導入管を備えた3つ口フラスコに、ニトロ体中間生成物(3.42g,0.010mol)、カリウム-tert-ブトキシド(1.68g,0.015mol)を入れて窒素置換し、テトラヒドロフラン(100mL)を入れた。反応溶液を窒素下で撹拌しながら、ヨウ化メチル(2.84g,0.020mol)を滴下した。反応溶液を40℃で24時間撹拌して反応を完結させた。冷却後、反応溶液を水300mLに注いで撹拌し、生成物を凝固させた。得られた分散液をろ過し、水によりかけ洗いした。得られた析出物をテトラヒドロフランにより再結晶して真空乾燥することにより、黄色粉末のN-メチル化ニトロ体中間生成物(3.10g,収率87%)を得た。得られたN-メチル化ニトロ体中間生成物を合成例4と同様にして還元反応を行い、桃色粉末のジアミン(DA-6)を得た。
[Synthesis Example 5]
Synthesis was performed in the same manner as in Synthesis Example 4 except that 4-hydroxypiperidine was changed to 4-piperidinemethanol to obtain diamine (DA-5).
[Synthesis Example 6]
A nitro intermediate product was obtained in the same manner as in Synthesis Example 4 except that 4-hydroxypiperidine was changed to 4-aminopiperidine.
Subsequently, a nitro compound intermediate product (3.42 g, 0.010 mol) and potassium-tert-butoxide (1.68 g, 0.015 mol) were placed in a three-necked flask equipped with a reflux tube and a nitrogen introduction tube. The atmosphere was replaced with nitrogen, and tetrahydrofuran (100 mL) was added. Methyl iodide (2.84 g, 0.020 mol) was added dropwise while stirring the reaction solution under nitrogen. The reaction solution was stirred at 40 ° C. for 24 hours to complete the reaction. After cooling, the reaction solution was poured into 300 mL of water and stirred to solidify the product. The resulting dispersion was filtered and washed with water. The resulting precipitate was recrystallized from tetrahydrofuran and vacuum-dried to obtain a yellow powder N-methylated nitro intermediate product (3.10 g, yield 87%). The obtained N-methylated nitro intermediate product was subjected to a reduction reaction in the same manner as in Synthesis Example 4 to obtain a pink powder of diamine (DA-6).
[合成例7]
 N-メチルエタノールアミンを2-アミノエタンチオールに変更した以外は合成例1と同様にしてジアミン(DA-7)を得た。
[合成例8]
 4-フルオロニトロベンゼンを2-フルオロ-5-ニトロピリジンに変更した以外は合成例1と同様にしてジアミン(DA-8)を得た。
[合成例9]
 4-フルオロニトロベンゼンを2-フルオロ-5-ニトロピリジンに変更した以外は合成例4と同様にしてジアミン(DA-9)を得た。
[Synthesis Example 7]
A diamine (DA-7) was obtained in the same manner as in Synthesis Example 1 except that N-methylethanolamine was changed to 2-aminoethanethiol.
[Synthesis Example 8]
A diamine (DA-8) was obtained in the same manner as in Synthesis Example 1 except that 4-fluoronitrobenzene was changed to 2-fluoro-5-nitropyridine.
[Synthesis Example 9]
A diamine (DA-9) was obtained in the same manner as in Synthesis Example 4 except that 4-fluoronitrobenzene was changed to 2-fluoro-5-nitropyridine.
<重合体の合成1>
[合成例10]
 ジアミン(DA-1)をNMPに溶解し、0.95当量のテトラカルボン酸二無水物(TA-1)を加え、室温で6時間反応を行い、下記式(PA-1)で表される構造単位を有するポリアミック酸(PA-1)の15質量%溶液を得た。
Figure JPOXMLDOC01-appb-C000039
<Synthesis of polymer 1>
[Synthesis Example 10]
Diamine (DA-1) is dissolved in NMP, 0.95 equivalent of tetracarboxylic dianhydride (TA-1) is added, and the reaction is performed at room temperature for 6 hours. The diamine (DA-1) is represented by the following formula (PA-1). A 15% by mass solution of polyamic acid (PA-1) having a structural unit was obtained.
Figure JPOXMLDOC01-appb-C000039
[合成例11~26]
 テトラカルボン酸二無水物及びジアミン化合物の種類とモル比をそれぞれ下記表1に記載の通りに変更した以外は合成例10と同様にしてポリアミック酸(PA-2~PA-17)をそれぞれ得た。なお、表1中の数値は、テトラカルボン酸二無水物については、合成に使用したテトラカルボン酸二無水物の合計量100モル部に対する各化合物の使用割合(モル部)を表し、ジアミン化合物については、合成に使用したジアミン化合物の合計量100モル部に対する各化合物の使用割合(モル部)を表す(表3についても同じ)。
[Synthesis Examples 11 to 26]
Polyamic acids (PA-2 to PA-17) were obtained in the same manner as in Synthesis Example 10 except that the types and molar ratios of tetracarboxylic dianhydride and diamine compound were changed as shown in Table 1 below. . In addition, the numerical value of Table 1 represents the usage rate (mole part) of each compound with respect to 100 mol part of total amount of the tetracarboxylic dianhydride used for the synthesis about tetracarboxylic dianhydride. Represents the use ratio (mole part) of each compound with respect to 100 mol parts of the total amount of diamine compounds used in the synthesis (the same applies to Table 3).
[合成例27]
 合成例10で得られたポリアミック酸(PA-1)の15質量%溶液をNMPにより10質量%に希釈し、0.8当量の1-メチルピペリジン及び無水酢酸を加え、60℃で3時間、撹拌しながら加熱した。得られた溶液に対して、減圧濃縮とNMPによる希釈を繰り返して、下記式(PI-1)で表される構造単位を有するポリイミド(PI-1)の15質量%溶液を得た。ポリイミド(PI-1)のH-NMRスペクトル(DMSO-d,400MHz)を測定し、芳香族プロトン(δ6.0~9.0ppm)と主鎖アミドプロトン(δ9.8~10.3ppm)、アセチル末端アミドプロトン(δ9.6~9.8ppm)の積分比よりイミド化率を計算したところ、イミド化率は78%であった。
Figure JPOXMLDOC01-appb-C000040
[Synthesis Example 27]
A 15% by mass solution of polyamic acid (PA-1) obtained in Synthesis Example 10 was diluted to 10% by mass with NMP, 0.8 equivalents of 1-methylpiperidine and acetic anhydride were added, and the mixture was heated at 60 ° C. for 3 hours. Heat with stirring. The obtained solution was repeatedly concentrated under reduced pressure and diluted with NMP to obtain a 15% by mass solution of polyimide (PI-1) having a structural unit represented by the following formula (PI-1). A 1 H-NMR spectrum (DMSO-d 6 , 400 MHz) of polyimide (PI-1) was measured, and aromatic protons (δ 6.0 to 9.0 ppm) and main chain amide protons (δ 9.8 to 10.3 ppm) When the imidization rate was calculated from the integral ratio of acetyl-terminated amide protons (δ 9.6 to 9.8 ppm), the imidation rate was 78%.
Figure JPOXMLDOC01-appb-C000040
[合成例28]
 ポリアミック酸(PA-1)をポリアミック酸(PA-10)に変更した以外は合成例27と同様にしてポリイミド(PI-2)を得た。
[Synthesis Example 28]
A polyimide (PI-2) was obtained in the same manner as in Synthesis Example 27 except that the polyamic acid (PA-1) was changed to the polyamic acid (PA-10).
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
[実施例1:光配向FFS型液晶表示素子]
(1)液晶配向剤の調製
 合成例10で得たポリアミック酸(PA-1)の溶液を用いて、NMP及びBCにより希釈して、固形分濃度が4.0質量%、溶剤組成比がNMP:BC=80:20(質量比)となる溶液を得た。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤(R-1)を調製した。
[Example 1: Photo-alignment FFS type liquid crystal display element]
(1) Preparation of liquid crystal aligning agent The solution of polyamic acid (PA-1) obtained in Synthesis Example 10 was diluted with NMP and BC, and the solid content concentration was 4.0% by mass, and the solvent composition ratio was NMP. : A solution with BC = 80: 20 (mass ratio) was obtained. A liquid crystal aligning agent (R-1) was prepared by filtering this solution through a filter having a pore diameter of 0.2 μm.
(2)光配向法による液晶配向膜の形成
 平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記(1)で調製した液晶配向剤(R-1)をスピンナーを用いて塗布し、80℃のホットプレートで1分間の加熱(プレベーク)後、庫内を窒素置換した230℃のオーブンで30分間乾燥(ポストベーク)を行い、平均膜厚0.1μmの塗膜を形成した。この塗膜表面に、Hg-Xeランプを用いて、直線偏光された254nmの輝線を含む紫外線3,000J/mを基板法線方向から照射して光配向処理を行った。光配向処理が施された塗膜を、230℃のクリーンオーブンで30分加熱して熱処理を行い、液晶配向膜を形成した。
(2) Formation of liquid crystal alignment film by photo-alignment method On each surface of a glass substrate in which a flat plate electrode, an insulating layer and a comb-like electrode are laminated in this order on one side, and a counter glass substrate on which no electrode is provided Then, the liquid crystal aligning agent (R-1) prepared in the above (1) was applied using a spinner, heated for 1 minute on a hot plate at 80 ° C. (prebaked), and then the oven at 230 ° C. in which the inside of the chamber was replaced with nitrogen Were dried (post-baked) for 30 minutes to form a coating film having an average film thickness of 0.1 μm. Using a Hg—Xe lamp, the surface of the coating film was irradiated with ultraviolet rays of 3,000 J / m 2 containing a linearly polarized 254 nm emission line from the normal direction of the substrate to perform photo-alignment treatment. The coating film that had been subjected to the photo-alignment treatment was heated in a clean oven at 230 ° C. for 30 minutes for heat treatment to form a liquid crystal alignment film.
(3)液晶表示素子の製造
 上記(2)で作製した液晶配向膜を有する一対の基板について、液晶配向膜を形成した面の縁に液晶注入口を残して直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤をスクリーン印刷塗布した後、光照射時の偏光軸の基板面への投影方向が逆平行となるように基板を重ね合わせて圧着し、150℃で1時間かけて接着剤を熱硬化させた。次いで、一対の基板間に液晶注入口よりネマチック液晶(メルク社製、MLC-7028)を充填した後、エポキシ系接着剤で液晶注入口を封止した。さらに、液晶注入時の流動配向を除くために、これを120℃で加熱してから室温まで徐冷した。次に、基板の外側両面に偏光板を貼り合わせてFFS型液晶表示素子を製造した。
(3) Manufacture of liquid crystal display element About the pair of substrates having the liquid crystal alignment film prepared in (2) above, containing aluminum oxide spheres having a diameter of 5.5 μm leaving the liquid crystal injection port at the edge of the surface on which the liquid crystal alignment film is formed After the epoxy resin adhesive is screen-printed and applied, the substrates are stacked and pressure-bonded so that the projection direction of the polarization axis on the substrate surface during light irradiation is antiparallel, and the adhesive is heated at 150 ° C. for 1 hour. Cured. Next, a nematic liquid crystal (MLC-7028, manufactured by Merck & Co., Inc.) was filled between the pair of substrates through the liquid crystal injection port, and then the liquid crystal injection port was sealed with an epoxy adhesive. Furthermore, in order to remove the flow alignment during liquid crystal injection, this was heated at 120 ° C. and then gradually cooled to room temperature. Next, a polarizing plate was bonded to both sides of the substrate to manufacture an FFS type liquid crystal display element.
(4)液晶配向性の評価
 上記(3)で製造した液晶表示素子につき、5Vの電圧をON・OFF(印加・解除)したときの明暗の変化における異常ドメインの有無を顕微鏡によって倍率50倍で観察した。評価は、異常ドメインが観察されなかった場合を液晶配向性「良好」とし、異常ドメインが観察された場合を「不良」とした。その結果、この実施例では「良好」の評価であった。
(4) Evaluation of liquid crystal orientation In the liquid crystal display device manufactured in (3) above, the presence or absence of an abnormal domain in the change in brightness when a voltage of 5 V is turned ON / OFF (applied / released) is observed at a magnification of 50 times using a microscope. Observed. In the evaluation, when the abnormal domain was not observed, the liquid crystal orientation was “good”, and when the abnormal domain was observed, “bad”. As a result, in this example, the evaluation was “good”.
(5)AC残像特性の評価
 基板の外側両面に偏光板を貼り合わせなかった点以外は上記(3)と同様の操作を行い、FFS型液晶セルを作製した。このFFS型液晶セルにつき、交流電圧10Vで30時間駆動した後に、光源と光量検出器の間に偏光子と検光子を配置した装置を使用して、下記数式(2)で表される最小相対透過率(%)を測定した。
 最小相対透過率(%)=((β-B)/(B100-B))×100  …(2)
(数式(2)中、Bは、ブランクでクロスニコル下の光の透過量である。B100は、ブランクでパラニコル下の光の透過量である。βは、クロスニコル下で偏光子と検光子の間に液晶セルを挟み最小となる光透過量である。)
 暗状態の黒レベルは液晶セルの最小相対透過率で表され、FFS型液晶セルでは暗状態での黒レベルが小さいほどコントラストが優れる。最小相対透過率が0.2%未満のものを「優良」、0.2%以上0.5%未満のものを「良好」、0.5%以上1.0%未満のものを「可」、1.0%以上のものを「不良」とした。その結果、この実施例では「優良」の評価であった。
(5) Evaluation of AC afterimage characteristics An FFS type liquid crystal cell was prepared by performing the same operation as in the above (3) except that the polarizing plate was not bonded to both the outer surfaces of the substrate. About this FFS type liquid crystal cell, after driving for 30 hours at an AC voltage of 10 V, using a device in which a polarizer and an analyzer are arranged between a light source and a light quantity detector, the minimum relative value expressed by the following formula (2) is used. The transmittance (%) was measured.
Minimum relative transmittance (%) = ((β−B 0 ) / (B 100 −B 0 )) × 100 (2)
(In Formula (2), B 0 is the transmission amount of light under a blank and crossed Nicols. B 100 is the transmission amount of light under a blank and paranicols. Β is a polarizer under crossed Nicols. (This is the minimum light transmission amount with the liquid crystal cell sandwiched between the analyzers.)
The black level in the dark state is represented by the minimum relative transmittance of the liquid crystal cell. In the FFS type liquid crystal cell, the smaller the black level in the dark state, the better the contrast. “Excellent” if the minimum relative transmittance is less than 0.2%, “Good” if the minimum relative transmittance is 0.2% or more and less than 0.5%, 1.0% or more was regarded as “bad”. As a result, this example was evaluated as “excellent”.
(6)長期耐熱性(微小輝点不良)の評価
 微小輝点の評価は、基板の外側両面に偏光板を貼り合わせなかった点以外は上記(3)と同様の操作を行い製造した液晶セルを100℃の恒温槽に21日間保管した後、液晶セル中の微小輝点の有無を顕微鏡にて観察することにより行った。光配向処理のための光照射によって生成した分解物が膜中に残ったままの場合、液晶表示素子を高温環境下に長時間曝すことによって分解物が膜表面にブリードアウトし、液晶中で徐々に結晶化し、微小輝点として観察されることが分かっている。なお、観察領域は680μm×680μm、顕微鏡倍率は100倍にて行った。評価は、微小輝点が観察されない場合を「優良」とし、微小輝点の数が1点以上5点以下であった場合を「良好」とし、微小輝点の数が6点以上10点以下であった場合を「可」とし、微小輝点が11点以上であった場合を「不良」とした。その結果、この実施例では「良好」の評価であった。
(6) Evaluation of long-term heat resistance (defect of fine luminescent spot) The liquid crystal cell manufactured by performing the same operation as in (3) above except that the polarizing plate was not bonded to both outer surfaces of the substrate. Was stored in a constant temperature bath at 100 ° C. for 21 days, and then the presence or absence of minute bright spots in the liquid crystal cell was observed with a microscope. When decomposition products generated by light irradiation for photo-alignment treatment remain in the film, the decomposition products bleed out to the film surface by exposing the liquid crystal display element to a high temperature environment for a long time, and gradually in the liquid crystal. It is known that it is crystallized and observed as a fine bright spot. The observation area was 680 μm × 680 μm, and the microscope magnification was 100 times. The evaluation is “excellent” when no fine luminescent spots are observed, “good” when the number of fine luminescent spots is 1 or more and 5 or less, and the number of fine luminescent spots is 6 or more and 10 or less. The case was “OK”, and the case where the number of fine luminescent spots was 11 points or more was “bad”. As a result, in this example, the evaluation was “good”.
[実施例2~12、比較例1~6]
 上記実施例1において、液晶配向剤に含有させる重合体を下記表2に示す通りに変更した以外は実施例1と同様にして、液晶配向剤を調製して液晶配向膜を形成するとともに、FFS型の液晶表示素子及び液晶セルを製造して各種評価を行った。評価結果は下記表2に示した。なお、実施例11及び12では、2種類の重合体(重合体1及び重合体2)を重合体1:重合体2=40:60(固形分換算質量比)の配合比率で液晶配向剤に含有させた。
[Examples 2 to 12, Comparative Examples 1 to 6]
In Example 1 above, except that the polymer contained in the liquid crystal aligning agent was changed as shown in Table 2 below, a liquid crystal aligning agent was prepared to form a liquid crystal aligning film in the same manner as in Example 1, and FFS A liquid crystal display element and a liquid crystal cell were manufactured and various evaluations were performed. The evaluation results are shown in Table 2 below. In Examples 11 and 12, two types of polymers (Polymer 1 and Polymer 2) were mixed into a liquid crystal aligning agent at a blending ratio of Polymer 1: Polymer 2 = 40: 60 (solid content equivalent mass ratio). Contained.
[実施例13]
 上記実施例1において、「(1)液晶配向剤の調製」及び「(2)光配向法による液晶配向膜の形成」を下記(1a)及び(2a)の通りに変更した以外は実施例1と同様にして、FFS型の液晶表示素子及び液晶セルを製造して各種評価を行った。評価結果は下記表2に示した。
[Example 13]
Example 1 in Example 1 except that “(1) Preparation of liquid crystal aligning agent” and “(2) Formation of liquid crystal alignment film by photo-alignment method” were changed as described in (1a) and (2a) below. In the same manner as described above, an FFS type liquid crystal display element and a liquid crystal cell were manufactured and various evaluations were performed. The evaluation results are shown in Table 2 below.
(1a)液晶配向剤の調製
 重合体として合成例27で得たポリイミド(PI-1)の溶液を用いて、NMP及びBCにより希釈して、固形分濃度が4.0質量%、溶剤組成比がNMP:BC=80:20(質量比)となる溶液を得た。この溶液を孔径0.2μmのフィルターで濾過することにより液晶配向剤(R-13)を調製した。
(1a) Preparation of liquid crystal aligning agent Using the polyimide (PI-1) solution obtained in Synthesis Example 27 as a polymer, it was diluted with NMP and BC, and the solid content concentration was 4.0% by mass. Was obtained as NMP: BC = 80: 20 (mass ratio). A liquid crystal aligning agent (R-13) was prepared by filtering this solution through a filter having a pore size of 0.2 μm.
(2a)光配向法による液晶配向膜の形成
 平板電極、絶縁層及び櫛歯状電極がこの順で片面に積層されたガラス基板と、電極が設けられていない対向ガラス基板とのそれぞれの面上に、上記(1a)で調製した液晶配向剤(R-13)を膜厚が0.1μmになるようにスピンナーを用いて塗布し、80℃のホットプレートで1分乾燥(プレベーク)して塗膜を形成した。この塗膜表面に、Hg-Xeランプを用いて、直線偏光された254nmの輝線を含む紫外線3,000J/mを基板法線方向から照射して光配向処理を行った。上記光配向処理が施された塗膜を、庫内を窒素置換した230℃のオーブンで30分加熱して熱処理(ポストベーク)を行い、液晶配向膜を形成した。
(2a) Formation of liquid crystal alignment film by photo-alignment method On each surface of a glass substrate in which a flat plate electrode, an insulating layer and a comb-like electrode are laminated in this order on one side and a counter glass substrate on which no electrode is provided Then, apply the liquid crystal aligning agent (R-13) prepared in (1a) above using a spinner so that the film thickness becomes 0.1 μm, and dry (pre-bake) for 1 minute on an 80 ° C. hot plate. A film was formed. Using a Hg—Xe lamp, the surface of the coating film was irradiated with ultraviolet rays of 3,000 J / m 2 containing a linearly polarized 254 nm emission line from the normal direction of the substrate to perform photo-alignment treatment. The coating film subjected to the photo-alignment treatment was heated for 30 minutes in an oven at 230 ° C. in which the inside of the chamber was replaced with nitrogen to perform heat treatment (post-bake), thereby forming a liquid crystal alignment film.
[実施例14~16]
 上記実施例13において、液晶配向剤に含有させる重合体を下記表2に示す通りに変更した以外は実施例13と同様にして液晶配向剤を調製して液晶配向膜を形成するとともに、FFS型の液晶表示素子及び液晶セルを製造して各種評価を行った。評価結果は下記表2に示した。なお、実施例15及び16では、2種類の重合体(重合体1及び重合体2)を重合体1:重合体2=40:60(固形分換算質量比)の配合比率で液晶配向剤に含有させた。
[Examples 14 to 16]
In Example 13, except that the polymer contained in the liquid crystal aligning agent was changed as shown in Table 2 below, a liquid crystal aligning agent was prepared in the same manner as in Example 13 to form a liquid crystal aligning film, and the FFS type A liquid crystal display element and a liquid crystal cell were manufactured and subjected to various evaluations. The evaluation results are shown in Table 2 below. In Examples 15 and 16, two types of polymers (Polymer 1 and Polymer 2) were mixed into a liquid crystal aligning agent at a blending ratio of Polymer 1: Polymer 2 = 40: 60 (solid content equivalent mass ratio). Contained.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 液晶配向性は、実施例1~16ではいずれも「良好」であった。また、AC残像特性は、実施例1~16ではいずれも「優良」又は「良好」であった。これらは、液晶配向膜の光反応性が改善されたことに起因するものと考えられる。すなわち、実施例1~16の液晶配向剤は、置換シクロブタンテトラカルボン酸二無水物とジアミンによる重合体を含有している。また、重合体の合成に用いたジアミンは、重合結合基(-NH)が結合している芳香環が、アルキルアミノ基やピペリジンジイル基、オキシアルキレン基(-C2n-O-)等の電子供与性基で置換されている。光に対する高感度化のメカニズムは定かではないが、電子供与性基によるジアミン骨格から置換シクロブタン環への光誘起電子移動(電子移動増感反応)により、置換シクロブタン環のレトロ[2+2]反応による光分解が促進されたと推測される。 The liquid crystal alignment was “good” in Examples 1 to 16. Further, the AC afterimage characteristics were “excellent” or “good” in Examples 1 to 16. These are considered due to the improvement of the photoreactivity of the liquid crystal alignment film. That is, the liquid crystal aligning agents of Examples 1 to 16 contain a polymer of substituted cyclobutanetetracarboxylic dianhydride and diamine. In addition, the diamine used for the synthesis of the polymer has an aromatic ring to which a polymerization bond group (—NH 2 ) is bonded, an alkylamino group, a piperidinediyl group, an oxyalkylene group (—C n H 2n —O—). Substituted with an electron donating group such as Although the mechanism for increasing the sensitivity to light is not clear, the photoinduced electron transfer (electron transfer sensitization reaction) from the diamine skeleton to the substituted cyclobutane ring by the electron donating group causes the light from the retro [2 + 2] reaction of the substituted cyclobutane ring. It is presumed that decomposition was promoted.
 また、長期耐熱性(微小輝点不良の低減)については、実施例1~16ではいずれも「優良」又は「良好」であった。実施例1~16の液晶配向剤は、重合体成分として、非対称構造を有するジアミンに由来する構造単位を有する重合体を含有している。長期耐熱性改良のメカニズムは定かではないが、非対称構造を有するジアミンでは、光配向処理工程によって生じる光分解物が非対称構造となることによって光分解物の結晶性が低くなり、微小輝点の生成が抑制されたと推測される。 In addition, regarding long-term heat resistance (reduction of fine bright spot defects), all of Examples 1 to 16 were “excellent” or “good”. The liquid crystal aligning agents of Examples 1 to 16 contain a polymer having a structural unit derived from a diamine having an asymmetric structure as a polymer component. The mechanism of long-term heat resistance improvement is not clear, but in the case of diamines having an asymmetric structure, the photolysis product generated by the photo-alignment treatment process becomes an asymmetric structure, which lowers the crystallinity of the photolysis product and generates fine bright spots. Is presumed to be suppressed.
 また、実施例8~10,14,16の液晶配向剤に含有される重合体(P)は、酸二無水物成分又はジアミン成分が複数種の化合物からなる。そのため、光分解物が多様な化学構造を含み、光分解物の結晶化を阻害し、微小輝点の生成が抑制されたと推測される。さらに、実施例11,12,15,16(ブレンド系)では、光分解する重合体(重合体1)の含有比率が小さいため、発生する光分解物の量が少なく、これにより微小輝点の生成が抑制されたものと推測される。 In addition, the polymer (P) contained in the liquid crystal aligning agents of Examples 8 to 10, 14, and 16 is composed of a compound of plural kinds of acid dianhydride components or diamine components. Therefore, it is presumed that the photodegradation product has various chemical structures, inhibits crystallization of the photodegradation product, and suppresses the generation of fine bright spots. Furthermore, in Examples 11, 12, 15, and 16 (blend system), since the content ratio of the polymer (polymer 1) that undergoes photodegradation is small, the amount of photodegradation product that is generated is small. It is presumed that generation was suppressed.
 一方、置換シクロブタン環及び特定ジアミンに由来する部分構造を有さない重合体を用いた比較例1~5では、液晶セルの長期耐熱性が「不良」であった。これら比較例1~5の液晶配向剤は、ジアミン成分として対称構造を有するジアミンのみを用いた重合体を含有している。この場合、光配向処理によって生じる光分解物が対称構造となり、光分解物の結晶性が高くなることで微小輝点が生成しやすくなったと推測される。また、比較例6では、液晶セルの液晶配向性及びAC残像特性が「不良」であった。長期耐熱性については、液晶セルの液晶配向性が「不良」であったため評価できなかった。 On the other hand, in Comparative Examples 1 to 5 using polymers having no partial structure derived from a substituted cyclobutane ring and a specific diamine, the long-term heat resistance of the liquid crystal cell was “poor”. These liquid crystal aligning agents of Comparative Examples 1 to 5 contain a polymer using only a diamine having a symmetric structure as a diamine component. In this case, it is presumed that the photolysis product generated by the photo-alignment treatment has a symmetric structure, and the crystallinity of the photolysis product becomes high, so that fine bright spots are easily generated. In Comparative Example 6, the liquid crystal orientation and AC afterimage characteristics of the liquid crystal cell were “bad”. The long-term heat resistance could not be evaluated because the liquid crystal alignment of the liquid crystal cell was “bad”.
<化合物の合成2>
[合成例29]
 還流管及び窒素導入管を備えた3つ口フラスコに、4-ニトロフェノール(13.91g,0.10mol)、4-ニトロベンジルブロミド(21.60g,0.10mol)、炭酸カリウム(16.59g,0.12mol)を入れて窒素置換し、アセトン(200mL)を入れた。反応溶液を窒素下60℃で8時間撹拌して反応を完結させた。冷却後、反応溶液を水300mLに注いで撹拌し、生成物を凝固させた。この生成物をろ過し、水によりかけ洗いした後、真空乾燥することにより、無色結晶のニトロ体中間生成物(26.70g,0.097mol)を得た。
 続いて、還流管及び窒素導入管を備えた3つ口フラスコに、ニトロ体中間生成物(8.22g,0.030mol)、亜鉛(39.2g,0.60mol)、塩化アンモニウム(32.09g,0.60mol)を入れて窒素置換した。そこへ窒素バブリングにより脱気したテトラヒドロフラン120mL、エタノール40mLを加えて撹拌しながら、氷水バスにより5~10℃に冷却した。反応溶液へ水16mLをゆっくりと滴下した後、室温で8時間撹拌して反応を完結させた。反応溶液に水100mL加えて希釈し、セライトろ過により不溶分を取り除き、さらにセライトを酢酸エチル200mLで抽出・洗浄した。得られたろ液を分液し、有機層を水により5回洗浄した。得られた有機層を濃縮して酢酸エチル/エタノール=1/10の混合溶媒30mLにより再結晶を行った。得られた固体をろ過して真空乾燥することにより、淡黄色固体のジアミン(DA-10)(4.50g,収率70%)を得た。図3に、ジアミン(DA-10)のH-NMRスペクトル(DMSO-d,400MHz)の測定結果を示す。
Figure JPOXMLDOC01-appb-C000043
<Compound Synthesis 2>
[Synthesis Example 29]
To a three-necked flask equipped with a reflux tube and a nitrogen introduction tube, 4-nitrophenol (13.91 g, 0.10 mol), 4-nitrobenzyl bromide (21.60 g, 0.10 mol), potassium carbonate (16.59 g) , 0.12 mol) and nitrogen substitution, and acetone (200 mL) was added. The reaction solution was stirred at 60 ° C. under nitrogen for 8 hours to complete the reaction. After cooling, the reaction solution was poured into 300 mL of water and stirred to solidify the product. The product was filtered, washed with water, and then vacuum-dried to obtain a colorless crystalline nitro intermediate product (26.70 g, 0.097 mol).
Subsequently, a nitro compound intermediate product (8.22 g, 0.030 mol), zinc (39.2 g, 0.60 mol), ammonium chloride (32.09 g) was added to a three-necked flask equipped with a reflux tube and a nitrogen introduction tube. , 0.60 mol) and nitrogen substitution. Tetrahydrofuran (120 mL) and ethanol (40 mL) deaerated by nitrogen bubbling were added thereto, and the mixture was stirred and cooled to 5 to 10 ° C. with an ice-water bath. After slowly dropping 16 mL of water into the reaction solution, the mixture was stirred at room temperature for 8 hours to complete the reaction. The reaction solution was diluted with 100 mL of water, insolubles were removed by Celite filtration, and Celite was further extracted and washed with 200 mL of ethyl acetate. The obtained filtrate was separated, and the organic layer was washed 5 times with water. The obtained organic layer was concentrated and recrystallized with 30 mL of a mixed solvent of ethyl acetate / ethanol = 1/10. The obtained solid was filtered and vacuum-dried to obtain a light yellow solid diamine (DA-10) (4.50 g, yield 70%). FIG. 3 shows the measurement result of 1 H-NMR spectrum (DMSO-d 6 , 400 MHz) of diamine (DA-10).
Figure JPOXMLDOC01-appb-C000043
<重合体の合成2>
[合成例30]
 ジアミン(DA-10)をNMPに溶解し、0.95当量のテトラカルボン酸二無水物(TA-1)を加え、室温で6時間反応を行い、下記式(PA-18)で表される構造単位を有するポリアミック酸(PA-18)の15質量%溶液を得た。
Figure JPOXMLDOC01-appb-C000044
[合成例31~34]
 テトラカルボン酸二無水物及びジアミン化合物の種類とモル比をそれぞれ下記表3に記載の通りに変更した以外は合成例30と同様にしてポリアミック酸(PA-19~PA-22)をそれぞれ得た。なお、表3中の数値は、テトラカルボン酸二無水物については、合成に使用したテトラカルボン酸二無水物の合計量100モル部に対する各化合物の使用割合(モル部)を表し、ジアミン化合物については、合成に使用したジアミン化合物の合計量100モル部に対する各化合物の使用割合(モル部)を表す。
<Polymer synthesis 2>
[Synthesis Example 30]
Diamine (DA-10) is dissolved in NMP, 0.95 equivalent of tetracarboxylic dianhydride (TA-1) is added, and the reaction is carried out at room temperature for 6 hours, which is represented by the following formula (PA-18). A 15% by mass solution of polyamic acid (PA-18) having a structural unit was obtained.
Figure JPOXMLDOC01-appb-C000044
[Synthesis Examples 31 to 34]
Polyamic acids (PA-19 to PA-22) were obtained in the same manner as in Synthesis Example 30, except that the types and molar ratios of tetracarboxylic dianhydride and diamine compound were changed as shown in Table 3 below. . In addition, the numerical value in Table 3 represents the usage rate (mole part) of each compound with respect to 100 mol part of total amount of the tetracarboxylic dianhydride used for the synthesis about tetracarboxylic dianhydride. Represents the use ratio (mole parts) of each compound with respect to 100 mol parts of the total amount of diamine compounds used in the synthesis.
[合成例35]
 窒素導入管及び温度計を備えた50mL三口フラスコに、テトラカルボン酸誘導体(TC-4)(8.11g,20.0mmol)、ピリジン(3.80g,48.0mmol)、γBL20.4g、及びNMP13.6gを入れ、約10℃に冷却し、酸塩化物溶液を調製した。ここに、ジアミン(DA-10)(3.86g,18.0mmol)をγBL20.4gに予め溶解させて調製したジアミン溶液を加え、窒素気流下10℃で4時間反応させた。得られた重合溶液をメタノール70gにより希釈し、水/イソプロパノール=1/1の混合溶媒中に撹拌しながらゆっくり注ぎ凝固させた。沈殿した固体を回収し、水及びイソプロパノール中で撹拌洗浄を行い、60℃で真空乾燥することにより白色粉末を得た。得られた粉末をγBLに溶解し、下記式(PAE-1)で表される構造単位を有するポリアミック酸エステル(PAE-1)の15質量%溶液を得た。
Figure JPOXMLDOC01-appb-C000045
[Synthesis Example 35]
In a 50 mL three-necked flask equipped with a nitrogen inlet tube and a thermometer, a tetracarboxylic acid derivative (TC-4) (8.11 g, 20.0 mmol), pyridine (3.80 g, 48.0 mmol), γBL 20.4 g, and NMP13 .6 g was added and cooled to about 10 ° C. to prepare an acid chloride solution. To this was added a diamine solution prepared by previously dissolving diamine (DA-10) (3.86 g, 18.0 mmol) in 20.4 g of γBL, and allowed to react at 10 ° C. for 4 hours under a nitrogen stream. The obtained polymerization solution was diluted with 70 g of methanol, and slowly poured into a mixed solvent of water / isopropanol = 1/1 with stirring to solidify. The precipitated solid was collected, washed with stirring in water and isopropanol, and vacuum dried at 60 ° C. to obtain a white powder. The obtained powder was dissolved in γBL to obtain a 15% by mass solution of polyamic acid ester (PAE-1) having a structural unit represented by the following formula (PAE-1).
Figure JPOXMLDOC01-appb-C000045
[合成例36~37]
 ジアミン化合物の種類とモル比をそれぞれ下記表3に記載の通りに変更した以外は合成例35と同様にしてポリアミック酸エステル(PAE-2~PAE-3)をそれぞれ得た。
[Synthesis Examples 36 to 37]
Polyamic acid esters (PAE-2 to PAE-3) were obtained in the same manner as in Synthesis Example 35 except that the type and molar ratio of the diamine compound were changed as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
[実施例17~24、比較例7]
 上記実施例1において、光配向処理の偏光紫外線露光量を3,000J/mから5,000J/mに変更し、液晶配向剤に含有させる重合体を下記表4に示す通りに変更した以外は実施例1と同様にして、液晶配向剤を調製して液晶配向膜を形成するとともに、FFS型の液晶表示素子及び液晶セルを製造して各種評価を行った。評価結果は下記表4に示した。なお、実施例20及び24では、2種類の重合体(重合体1及び重合体2)を重合体1:重合体2=40:60(固形分換算質量比)の配合比率で液晶配向剤に含有させた。
[Examples 17 to 24, Comparative Example 7]
In Example 1 above, the polarized UV light exposure amount of the photo-alignment treatment was changed from 3,000 J / m 2 to 5,000 J / m 2 , and the polymer contained in the liquid crystal aligning agent was changed as shown in Table 4 below. In the same manner as in Example 1, a liquid crystal aligning agent was prepared to form a liquid crystal alignment film, and an FFS type liquid crystal display element and a liquid crystal cell were manufactured and various evaluations were performed. The evaluation results are shown in Table 4 below. In Examples 20 and 24, two types of polymers (Polymer 1 and Polymer 2) were mixed into a liquid crystal aligning agent at a blending ratio of Polymer 1: Polymer 2 = 40: 60 (solid content equivalent mass ratio). Contained.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 液晶配向性及びAC残像特性は、実施例17~24ではいずれも「優良」又は「良好」であった。これらの結果は、実施例1~16と同様に、重合結合基(-NH)が結合する芳香環が電子供与性基(ジアミン(DA-10)の「-O-CH-」)によって置換されたジアミンに由来する構造単位を有する重合体を含有させたことにより、液晶配向膜の光反応性が改善されたことに起因するものと考えられる。また、長期耐熱性(微小輝点不良の低減)について、実施例17~24ではいずれも「優良」であった。これらの結果についても実施例1~16と同じく、光配向処理工程によって生じた光分解物が非対称構造であるため結晶性が低くなり、微小輝点の生成が抑制されたことに起因するものと考えられる。 The liquid crystal orientation and AC afterimage characteristics were “excellent” or “good” in Examples 17 to 24. These results indicate that, as in Examples 1 to 16, the aromatic ring to which the polymerization bonding group (—NH 2 ) is bonded is formed by the electron donating group (“—O—CH 2 —” of the diamine (DA-10)). It is considered that the photoreactivity of the liquid crystal alignment film was improved by including a polymer having a structural unit derived from a substituted diamine. Further, in terms of long-term heat resistance (reduction of fine bright spot defects), all of Examples 17 to 24 were “excellent”. These results are also caused by the fact that the photolysis product generated by the photo-alignment treatment step has an asymmetric structure, so that the crystallinity is lowered and the generation of minute bright spots is suppressed, as in Examples 1 to 16. Conceivable.
 本開示は、実施形態に準拠して記述されたが、本開示は上記実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the above-described embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (13)

  1.  下記式(1)で表される部分構造及び下記式(2)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体(P)を含有する、液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)及び式(2)中、Xは、シクロブタン環構造を有する4価の有機基であり、シクロブタン環の環部分に少なくとも1個の置換基を有する。Xは、下記式(4)又は下記式(5)で表される2価の有機基である。R及びRは、それぞれ独立して、水素原子又は炭素数1~6の1価の有機基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(4)及び式(5)中、A及びAは2価の芳香環基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子、又は「-NR-」(Rは、水素原子又は1価の有機基である。)である。ただし、YとYとは互いに異なる。Bは、下記式(7)又は式(8)で表される2価の複素環基である。Yは、酸素原子、又は「-NR-」(Rは水素原子又は1価の有機基である。)である。Zは、鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基であり、Zは、単結合、又は鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基である。ただし、Y及びYのうち一方が硫黄原子であって他方が単結合である場合には、Zの炭素数は2以上である。「*」は結合手を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(7)及び式(8)中、Rは置換基である。rは0~3の整数であり、mは0~(r+2)の整数である。「*」は結合手を示す。)
    The liquid crystal aligning agent containing the polymer (P) which has at least 1 type chosen from the group which consists of the partial structure represented by following formula (1), and the partial structure represented by following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1) and (2), X 1 is a tetravalent organic group having a cyclobutane ring structure, .X 2 having at least one substituent in the ring portion of the cyclobutane ring, the following formula (4) or a divalent organic group represented by the following formula (5): R 5 and R 6 are each independently a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms. )
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (4) and Formula (5), A 1 and A 2 are divalent aromatic ring groups, which may have a substituent in the ring portion. However, A 1 and A 2 are the same. Y 1 and Y 2 are each independently a single bond, an oxygen atom, a sulfur atom, or “—NR 7 —” (R 7 is a hydrogen atom or a monovalent organic group). However, Y 1 and Y 2 are different from each other, B 1 is a divalent heterocyclic group represented by the following formula (7) or formula (8), Y 3 is an oxygen atom or “− NR 9 — ”(R 9 is a hydrogen atom or a monovalent organic group). Z 1 has 1 to 15 carbon atoms having at least one of a chain hydrocarbon structure and an alicyclic hydrocarbon structure. a divalent organic group, Z 2 is a single bond, or a linear C 1 - having at least one hydrocarbon structures and alicyclic hydrocarbon structure 5 is a divalent organic group. However, when one of Y 1 and Y 2 is a sulfur atom and the other is a single bond, the carbon number of Z 1 is 2 or more. "*" Indicates a bond.)
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (7) and Formula (8), R 8 is a substituent, r is an integer of 0 to 3, m is an integer of 0 to (r + 2), and “*” represents a bond. .)
  2.  前記Zは、下記式(6)で表される2価の有機基であり、
     前記Zは、単結合、又は下記式(6)で表される2価の有機基である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(6)中、R10及びR11は、それぞれ独立してアルカンジイル基であり、R10及びR11の合計の炭素数が1~15である。Yは、酸素原子、硫黄原子、又は「-NR12-」(R12は水素原子又は1価の有機基である。)である。pは0~4の整数である。pが2以上の場合、複数のR10、Yは、互いに同じでも異なっていてもよい。ただし、上記式(4)中のY及びYのうち一方が硫黄原子であって他方が単結合である場合には、R10及びR11の合計の炭素数は2以上である。)
    Z 1 is a divalent organic group represented by the following formula (6),
    2. The liquid crystal aligning agent according to claim 1, wherein Z 2 is a single bond or a divalent organic group represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (6), R 10 and R 11 are each independently an alkanediyl group, and the total carbon number of R 10 and R 11 is 1 to 15. Y 4 represents an oxygen atom, a sulfur atom Or “—NR 12 —” (R 12 is a hydrogen atom or a monovalent organic group.) P is an integer of 0 to 4. When p is 2 or more, a plurality of R 10 , Y 4 may be the same as or different from each other, provided that when one of Y 1 and Y 2 in the formula (4) is a sulfur atom and the other is a single bond, R 10 and R 11 The total number of carbon atoms is 2 or more.)
  3.  前記Xは、下記式(3)で表される4価の有機基である、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (式(3)中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロゲン化アルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又は「-COR20」(R20は、炭素数1~6のアルキル基、フッ素含有アルキル基、アルコキシ基又はフッ素含有アルコキシ基である。)である。Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロゲン化アルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又は「-COR20」である。ただし、R~Rのうち隣接する基同士が結合して環構造を形成していてもよい。式中にR20が複数存在する場合、複数のR20は互いに同じでも異なっていてもよい。「*」は結合手を示す。)
    The liquid crystal aligning agent according to claim 1, wherein X 1 is a tetravalent organic group represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (3), R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. An alkoxy group, a thioalkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or “—COR 20 ” (R 20 is an alkyl group having 1 to 6 carbon atoms) R 4 is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or 1 carbon atom. An alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or “—COR 20 ”, provided that R 1 to R 4 Adjacent groups are bonded together to form a ring If R 20 in concrete and may form. Formula there are a plurality, the plurality of R 20 may be the same or different from each other. "*" Indicates a bond.)
  4.  上記式(4)で表される2価の有機基は、下記式(4A)で表される、請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (式(4A)中、A及びAは、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子、又は「-NR13-」(R13は、水素原子又は1価の有機基である。)である。ただし、YとYとは互いに異なる。nは1~5の整数である。ただし、Y及びYのうち一方が硫黄原子であって他方が単結合である場合には、nは2以上である。「*」は結合手を示す。)
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the divalent organic group represented by the formula (4) is represented by the following formula (4A).
    Figure JPOXMLDOC01-appb-C000006
    (In Formula (4A), A 3 and A 4 are divalent groups obtained by removing two hydrogen atoms from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part. Provided that A 3 and A 4 are the same, Y 5 and Y 6 each independently represent a single bond, an oxygen atom, a sulfur atom, or “—NR 13 —” (R 13 is A hydrogen atom or a monovalent organic group, provided that Y 5 and Y 6 are different from each other, n is an integer of 1 to 5, provided that one of Y 5 and Y 6 is a sulfur atom. When the other is a single bond, n is 2 or more. “*” Indicates a bond.)
  5.  上記式(5)で表される2価の有機基は、下記式(5A)で表される、請求項1~4のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    (式(5A)中、A及びAは、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Bは、置換若しくは無置換のピペリジン-1,4-ジイル基、又は置換若しくは無置換のピペラジン-1,4-ジイル基である。Yは、酸素原子、又は「-NR-」(Rは水素原子又は1価の有機基である。)である。kは0~5の整数である。「*」は結合手を示す。)
    The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the divalent organic group represented by the formula (5) is represented by the following formula (5A).
    Figure JPOXMLDOC01-appb-C000007
    (In Formula (5A), A 5 and A 6 are divalent groups in which two hydrogen atoms have been removed from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part. However, A 5 and A 6 are the same, and B 2 is a substituted or unsubstituted piperidine-1,4-diyl group, or a substituted or unsubstituted piperazine-1,4-diyl group. Y 7 is an oxygen atom or “—NR 9 —” (R 9 is a hydrogen atom or a monovalent organic group), k is an integer of 0 to 5. “*” is a bond Showing hand.)
  6.  前記R及びRは、それぞれ独立して、炭素数1~6の1価の有機基であり、
     前記Xは、下記式(4C)で表される2価の有機基である、請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (式(4C)中、A及びAは、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Y51及びY61は、それぞれ独立して、単結合、酸素原子、又は硫黄原子である。ただし、Y51とY61とは互いに異なる。nは1~5の整数である。ただし、Y51及びY61のうち一方が硫黄原子であって他方が単結合である場合には、nは2以上である。「*」は結合手を示す。)
    R 5 and R 6 are each independently a monovalent organic group having 1 to 6 carbon atoms;
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein X 2 is a divalent organic group represented by the following formula (4C).
    Figure JPOXMLDOC01-appb-C000008
    (In Formula (4C), A 3 and A 4 are divalent groups obtained by removing two hydrogen atoms from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part. However, A 3 and A 4 are the same, Y 51 and Y 61 are each independently a single bond, an oxygen atom, or a sulfur atom, provided that Y 51 and Y 61 are N is an integer of 1 to 5. However, when one of Y 51 and Y 61 is a sulfur atom and the other is a single bond, n is 2 or more. (Shows the bond.)
  7.  請求項1~6のいずれか一項に記載の液晶配向剤を用いて形成された液晶配向膜。 A liquid crystal alignment film formed using the liquid crystal aligning agent according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか一項に記載の液晶配向剤を用いて塗膜を形成し、該塗膜に光照射処理を施して液晶配向能を付与する光配向工程を含む、液晶配向膜の製造方法。 A liquid crystal alignment film comprising a photo-alignment step of forming a coating film using the liquid crystal aligning agent according to any one of claims 1 to 6 and subjecting the coating film to light irradiation treatment to impart liquid crystal alignment ability. Manufacturing method.
  9.  前記光照射処理が施された塗膜を、水、水溶性有機溶媒、又は水と水溶性有機溶媒との混合溶媒に接触させる接触工程をさらに含む、請求項8に記載の液晶配向膜の製造方法。 The liquid crystal alignment film according to claim 8, further comprising a contact step of bringing the coating film subjected to the light irradiation treatment into contact with water, a water-soluble organic solvent, or a mixed solvent of water and a water-soluble organic solvent. Method.
  10.  前記光照射処理が施された塗膜を、前記接触工程の前及び前記接触工程の後の少なくとも一方で、120℃以上280℃以下の温度範囲内で加熱する加熱工程をさらに含む、請求項9に記載の液晶配向膜の製造方法。 The heating process which heats the coating film in which the above-mentioned light irradiation treatment was performed within the temperature range of 120 ° C or more and 280 ° C or less at least one before the contact process and after the contact process is further included. The manufacturing method of the liquid crystal aligning film as described in 2.
  11.  請求項7に記載の液晶配向膜を備える液晶素子。 A liquid crystal element comprising the liquid crystal alignment film according to claim 7.
  12.  下記式(1)で表される部分構造及び下記式(2)で表される部分構造よりなる群から選ばれる少なくとも一種を有する重合体。
    Figure JPOXMLDOC01-appb-C000009
    (式(1)及び式(2)中、Xは、シクロブタン環構造を有する4価の有機基であり、シクロブタン環の環部分に少なくとも1個の置換基を有する。Xは、下記式(4)又は下記式(5)で表される2価の有機基である。R及びRは、それぞれ独立して、水素原子又は炭素数1~6の1価の有機基である。)
    Figure JPOXMLDOC01-appb-C000010
    (式(4)及び式(5)中、A及びAは2価の芳香環基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。Y及びYは、それぞれ独立して、単結合、酸素原子、硫黄原子、又は「-NR-」(Rは、水素原子又は1価の有機基である。)である。ただし、YとYとは互いに異なる。Bは、下記式(7)又は式(8)で表される2価の複素環基である。Yは、酸素原子、又は「-NR-」(Rは水素原子又は1価の有機基である。)である。Zは、鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基であり、Zは、単結合、又は鎖状炭化水素構造及び脂環式炭化水素構造の少なくともいずれかを有する炭素数1~15の2価の有機基である。ただし、Y及びYのうち一方が硫黄原子であって他方が単結合である場合には、Zの炭素数は2以上である。「*」は結合手を示す。)
    Figure JPOXMLDOC01-appb-C000011
    (式(7)及び式(8)中、Rは置換基である。rは0~3の整数であり、mは0~(r+2)の整数である。「*」は結合手を示す。)
    A polymer having at least one selected from the group consisting of a partial structure represented by the following formula (1) and a partial structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000009
    (In the formula (1) and (2), X 1 is a tetravalent organic group having a cyclobutane ring structure, .X 2 having at least one substituent in the ring portion of the cyclobutane ring, the following formula (4) or a divalent organic group represented by the following formula (5): R 5 and R 6 are each independently a hydrogen atom or a monovalent organic group having 1 to 6 carbon atoms. )
    Figure JPOXMLDOC01-appb-C000010
    (In Formula (4) and Formula (5), A 1 and A 2 are divalent aromatic ring groups, which may have a substituent in the ring portion. However, A 1 and A 2 are the same. Y 1 and Y 2 are each independently a single bond, an oxygen atom, a sulfur atom, or “—NR 7 —” (R 7 is a hydrogen atom or a monovalent organic group). However, Y 1 and Y 2 are different from each other, B 1 is a divalent heterocyclic group represented by the following formula (7) or formula (8), Y 3 is an oxygen atom or “− NR 9 — ”(R 9 is a hydrogen atom or a monovalent organic group). Z 1 has 1 to 15 carbon atoms having at least one of a chain hydrocarbon structure and an alicyclic hydrocarbon structure. a divalent organic group, Z 2 is a single bond, or a linear C 1 - having at least one hydrocarbon structures and alicyclic hydrocarbon structure 5 is a divalent organic group. However, when one of Y 1 and Y 2 is a sulfur atom and the other is a single bond, the carbon number of Z 1 is 2 or more. "*" Indicates a bond.)
    Figure JPOXMLDOC01-appb-C000011
    (In Formula (7) and Formula (8), R 8 is a substituent, r is an integer of 0 to 3, m is an integer of 0 to (r + 2), and “*” represents a bond. .)
  13.  下記式(16)で表される化合物。
    Figure JPOXMLDOC01-appb-C000012
    (式(16)中、A及びAは、ベンゼン環、ピリジン環又はピリミジン環の環部分から2個の水素原子を取り除いた2価の基であり、環部分に置換基を有していてもよい。ただし、AとAとは同一である。R13は、水素原子又は1価の有機基であり、Yは、酸素原子又は硫黄原子である。nは1~5の整数である。)
    The compound represented by following formula (16).
    Figure JPOXMLDOC01-appb-C000012
    (In Formula (16), A 3 and A 4 are divalent groups in which two hydrogen atoms have been removed from the ring part of the benzene ring, pyridine ring or pyrimidine ring, and have a substituent in the ring part. Provided that A 3 and A 4 are the same, R 13 is a hydrogen atom or a monovalent organic group, Y 8 is an oxygen atom or a sulfur atom, and n is 1-5. (It is an integer.)
PCT/JP2018/007185 2017-04-04 2018-02-27 Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing same, liquid crystal element, polymer and compound WO2018186055A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880015630.2A CN110383156B (en) 2017-04-04 2018-02-27 Liquid crystal aligning agent, application thereof, liquid crystal element and polymer
JP2019511094A JP7028241B2 (en) 2017-04-04 2018-02-27 Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element
KR1020197023941A KR102269265B1 (en) 2017-04-04 2018-02-27 Liquid crystal aligning agent, liquid crystal aligning film and manufacturing method thereof, liquid crystal element, and polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-074659 2017-04-04
JP2017074659 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018186055A1 true WO2018186055A1 (en) 2018-10-11

Family

ID=63713057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007185 WO2018186055A1 (en) 2017-04-04 2018-02-27 Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing same, liquid crystal element, polymer and compound

Country Status (5)

Country Link
JP (1) JP7028241B2 (en)
KR (1) KR102269265B1 (en)
CN (1) CN110383156B (en)
TW (1) TWI805573B (en)
WO (1) WO2018186055A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717889B (en) * 2019-11-05 2021-02-01 達興材料股份有限公司 Alignment agent, diamine compound, alignment film and liquid crystal display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076009A (en) * 2009-10-01 2011-04-14 Hitachi Displays Ltd Liquid crystal display device
JP2012098715A (en) * 2010-10-06 2012-05-24 Hitachi Displays Ltd Alignment layer, composition for forming alignment layer, and liquid crystal display device
JP2012193167A (en) * 2011-03-02 2012-10-11 Jnc Corp Diamine, liquid crystal alignment agent using the same, liquid crystal display element, and method of forming liquid crystal alignment film
WO2017047596A1 (en) * 2015-09-16 2017-03-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2017072729A (en) * 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2017200991A (en) * 2016-04-28 2017-11-09 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and method for producing the same, liquid crystal element, polymer and compound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464308B1 (en) * 2007-05-10 2014-11-21 주식회사 동진쎄미켐 Aligment material for liquid crystal display device and a preparing method of same
KR101848962B1 (en) 2011-06-21 2018-04-13 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal orientation agent for photo-orientation treatment method and liquid crystal orientation film using same
JP6056187B2 (en) * 2012-05-09 2017-01-11 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film for forming liquid crystal alignment film for photo-alignment, and liquid crystal display element using the same
JP6287577B2 (en) * 2014-05-23 2018-03-07 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, manufacturing method thereof, and liquid crystal display element
JP6805475B2 (en) * 2014-09-09 2020-12-23 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6669161B2 (en) * 2015-03-24 2020-03-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
WO2017061575A1 (en) * 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7114856B2 (en) * 2016-02-15 2022-08-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076009A (en) * 2009-10-01 2011-04-14 Hitachi Displays Ltd Liquid crystal display device
JP2012098715A (en) * 2010-10-06 2012-05-24 Hitachi Displays Ltd Alignment layer, composition for forming alignment layer, and liquid crystal display device
JP2012193167A (en) * 2011-03-02 2012-10-11 Jnc Corp Diamine, liquid crystal alignment agent using the same, liquid crystal display element, and method of forming liquid crystal alignment film
WO2017047596A1 (en) * 2015-09-16 2017-03-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2017072729A (en) * 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2017200991A (en) * 2016-04-28 2017-11-09 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and method for producing the same, liquid crystal element, polymer and compound

Also Published As

Publication number Publication date
JP7028241B2 (en) 2022-03-02
KR102269265B1 (en) 2021-06-24
CN110383156B (en) 2022-09-13
TWI805573B (en) 2023-06-21
CN110383156A (en) 2019-10-25
JPWO2018186055A1 (en) 2019-11-07
TW201837085A (en) 2018-10-16
KR20190103397A (en) 2019-09-04

Similar Documents

Publication Publication Date Title
KR102225386B1 (en) Liquid crystal aligning agent, liquid crystal aligning film and its manufacturing method, liquid crystal element, and polymer
JP6558068B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2015222387A (en) Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal display element, polymer and compound
JP2011158835A (en) Liquid crystal aligning agent
CN108929705B (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing same, liquid crystal element, polymer, and diamine
JP6507937B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing the same, liquid crystal display device, retardation film and method for manufacturing the same
JP6477039B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7396177B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP6682965B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal element, and method for producing liquid crystal aligning film
WO2018186055A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing same, liquid crystal element, polymer and compound
JP6610333B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, manufacturing method thereof, and liquid crystal element
JP6551040B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP6593021B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP2017173454A (en) Liquid crystal aligning agent, liquid crystal alignment film and production method of the same, liquid crystal element, polymer and compound
JP2017156436A (en) Liquid crystal alignment agent, liquid crystal alignment film and method for manufacturing the same, and liquid crystal device
JP2023131106A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element
JP2024064027A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and compound
JP2015206918A (en) Liquid crystal aligning agent, production method of liquid crystal alignment film, liquid crystal display element, polymer, and compound
JP2017090529A (en) Liquid crystal alignment agent, liquid crystal alignment film, manufacturing method of liquid crystal alignment film, and liquid crystal device
JP2017156437A (en) Liquid crystal alignment agent, liquid crystal alignment film, and method for manufacturing the same, liquid crystal device, polymer, and compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511094

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023941

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781411

Country of ref document: EP

Kind code of ref document: A1