WO2018186034A1 - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
WO2018186034A1
WO2018186034A1 PCT/JP2018/005606 JP2018005606W WO2018186034A1 WO 2018186034 A1 WO2018186034 A1 WO 2018186034A1 JP 2018005606 W JP2018005606 W JP 2018005606W WO 2018186034 A1 WO2018186034 A1 WO 2018186034A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
passage
control valve
discharge
Prior art date
Application number
PCT/JP2018/005606
Other languages
French (fr)
Japanese (ja)
Inventor
田口 幸彦
崇 戸井田
聖 寺内
井口 智博
淑恵 松嵜
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2018186034A1 publication Critical patent/WO2018186034A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block

Definitions

  • the present invention relates to a variable capacity compressor whose discharge capacity changes according to the pressure of a control pressure chamber such as a crank chamber.
  • a variable capacity compressor described in Patent Document 1 includes a first control valve that controls the opening of a pressure supply passage that connects a discharge chamber and a crank chamber, a crank chamber, A second control valve for controlling the opening of a pressure release passage communicating with the suction chamber; and the first control valve provided between the first control valve and the crank chamber in the pressure supply passage. And a check valve for preventing the reverse flow of the refrigerant toward the engine, and the discharge capacity is controlled by regulating the pressure in the crank chamber.
  • the second control valve is partitioned from the back pressure chamber by a back pressure chamber communicating with a region downstream of the first control valve in the pressure supply passage via a communication passage, and a partition member, A valve chamber forming a part of the pressure release passage and having a valve hole communicating with the crank chamber on a wall surface opposite to the back pressure chamber; a pressure receiving portion disposed in the back pressure chamber; And a spool having a shaft portion that extends through the partition member and connects the pressure receiving portion and the valve portion.
  • the second control valve is configured such that a force that moves the spool in a direction approaching the valve hole by the pressure applied to the pressure receiving portion when the first control valve is opened opens the spool by the pressure applied to the valve portion.
  • the valve portion When the force is greater than the force to move away from the valve hole, the valve portion abuts against the wall surface of the valve chamber to close the valve hole and minimize the opening of the pressure relief passage, and the first control
  • the force that moves the spool in the direction approaching the valve hole due to the pressure applied to the pressure receiving portion when the valve is closed is smaller than the force that moves the spool away from the valve hole due to the pressure applied to the valve portion.
  • the valve section is configured to open the valve hole away from the wall surface and maximize the opening of the pressure release passage.
  • the refrigerant in the downstream region of the pressure supply passage from the first control valve passes through the communication passage. Then, by flowing into the back pressure chamber of the second control valve, the pressure in the back pressure chamber increases. As a result, the spool moves in a direction (a direction approaching the valve hole) that minimizes the opening of the pressure release passage.
  • minute foreign matter may flow along with the refrigerant through the pressure supply passage.
  • the communication path is open to the end wall of the back pressure chamber, if foreign matter flows along with the refrigerant, the foreign matter easily flows into the back pressure chamber along with the refrigerant flow.
  • an object of the present invention is to provide a variable capacity compressor that can prevent or suppress foreign matter from entering the second control valve that controls the opening degree of the discharge passage.
  • a variable capacity compressor is provided that has a discharge capacity that changes according to the pressure in the control pressure chamber.
  • the variable capacity compressor includes a first control valve, a check valve, a second control valve, and a back pressure relief passage.
  • the first control valve is provided in a supply passage for supplying the refrigerant in the discharge chamber to the control pressure chamber, and controls the opening of the supply passage.
  • the check valve is provided in a downstream supply passage between the first control valve and the control pressure chamber in the supply passage, and prevents reverse flow of the refrigerant from the control pressure chamber toward the first control valve. Operates as follows.
  • the second control valve is provided in a discharge passage for discharging the refrigerant in the control pressure chamber to the suction chamber, and controls the opening degree of the discharge passage.
  • the back pressure relief passage communicates the suction chamber with an intermediate supply passage between the first control valve and the check valve in the downstream supply passage and has a throttle portion.
  • the second control valve includes a back pressure chamber, a valve chamber, a partition member, and a spool. The back pressure chamber communicates with the intermediate supply passage.
  • the valve chamber has a valve hole communicating with an upstream discharge passage between the second control valve and the control pressure chamber in the discharge passage, and a discharge hole communicating with the suction chamber, and the discharge passage Part of The partition member partitions the back pressure chamber and the valve chamber.
  • the spool includes a pressure receiving portion disposed in the back pressure chamber, a valve portion disposed in the valve chamber and contacting and separating from a valve seat around the valve hole, and the pressure receiving portion extending through the partition member. It has a shaft part connecting the valve part.
  • the second control valve moves the spool in accordance with the pressure in the back pressure chamber and the pressure in the upstream discharge passage to bring the valve portion into and out of contact with the valve seat.
  • the opening degree is configured to be controlled.
  • the back pressure chamber communicates with the intermediate supply passage through a communication passage connected to the back pressure chamber and the intermediate supply passage.
  • One end of the communication path is connected to a connection portion provided in the middle of the intermediate supply path.
  • the communication passage side connection portion extending from at least the connection portion of the communication passage toward the back pressure chamber side is an intermediate supply extending from the connection portion of the intermediate supply passage toward the first control valve side. It extends at an acute angle with respect to the passage-side connecting portion.
  • the check valve is provided in a downstream supply passage between the first control valve and the control pressure chamber in the supply passage, and the second The back pressure chamber of the control valve communicates with the intermediate supply passage between the first control valve and the check valve in the downstream supply passage via the communication passage.
  • the communicating path side connection site part extended toward the said back pressure chamber side at least from the said connection part of this communicating path extends toward the said 1st control valve side from the said connecting part of the said intermediate supply passages. It extends at an acute angle with respect to the intermediate supply passage side connection site.
  • variable capacity compressor in one Embodiment of this invention. It is the conceptual diagram which showed the systematic diagram of the channel
  • FIG. 1 illustrates a variable capacity clutchless compressor applied to a vehicle air conditioner system (air conditioner system).
  • FIG. 1 shows a state when the variable capacity clutchless compressor is mounted on a vehicle (that is, a compressor installed state).
  • the upper side is the upper side in the direction of gravity and the lower side is the gravity. The direction is on the lower side.
  • a variable capacity compressor 100 shown in FIG. 1 includes a cylinder block 101 having a plurality of cylinder bores 101a, a front housing 102 provided at one end of the cylinder block 101, and a valve plate 103 at the other end of the cylinder block 101. And a cylinder head 104 provided.
  • a crank chamber 140 as a control pressure chamber is formed by the cylinder block 101 and the front housing 102, and the drive shaft 110 is provided across the crank chamber 140.
  • a swash plate 111 is disposed around an intermediate portion in the extending direction of the axis O of the drive shaft 110.
  • the swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and the tilt angle with respect to the axis O can be changed.
  • the link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end pivotable to the first arm 112 a via the first connecting pin 122.
  • the through hole 111b of the swash plate 111 is formed in a shape that allows the swash plate 111 to tilt in a range between the maximum inclination angle and the minimum inclination angle, and the minimum inclination angle restricting portion that contacts the drive shaft 110 is formed in the through hole 111b. ing.
  • the minimum inclination restriction portion of the through hole 111b is formed so that the swash plate 111 can be inclined to approximately 0 deg.
  • the maximum inclination angle of the swash plate 111 is regulated by the swash plate 111 coming into contact with the rotor 112. Between the rotor 112 and the swash plate 111, an inclination reduction spring 114 that urges the swash plate 111 in a direction to reduce the inclination angle of the swash plate 111 is mounted. Further, between the swash plate 111 and the spring support member 116 provided on the drive shaft 110, an inclination increasing spring 115 that biases the swash plate 111 in a direction to increase the inclination angle of the swash plate 111 is mounted.
  • the biasing force of the tilt-increasing spring 115 at the minimum tilt angle is set larger than the biasing force of the tilt-decreasing spring 114, and when the drive shaft 110 is not rotating, the swash plate 111 is biased by the tilt-decreasing spring 114. And the urging force of the inclination increasing spring 115 are positioned at an inclination angle that balances.
  • One end of the drive shaft 110 extends through the boss portion 102a protruding outside the front housing 102 to the outside of the front housing 102, and is connected to a power transmission device (not shown).
  • a shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to shut off the crank chamber 140 and the external space.
  • a coupling body of the drive shaft 110 and the rotor 112 is supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction.
  • the power from the external drive source is transmitted to the power transmission device, and the drive shaft 110 can rotate in synchronization with the rotation of the power transmission device.
  • the gap between the portion of the drive shaft 110 with which the thrust plate 134 abuts and the thrust plate 134 is adjusted to a predetermined gap by the adjustment screw 135.
  • a piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140.
  • the swash plate 111 includes a pair of shoes 137. It is comprised so that it may interlock with piston 136 via.
  • the piston 136 reciprocates in the cylinder bore 101 a by the rotation of the swash plate 111.
  • a suction chamber 141 is formed at the center, and a discharge chamber 142 that surrounds the radially outer side of the suction chamber 141 in a ring shape is defined.
  • the suction chamber 141 and the cylinder bore 101a communicate with each other via a communication hole 103a provided in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate 150.
  • the discharge chamber 142 and the cylinder bore 101a communicate with each other via a communication hole 103b provided in the valve plate 103 and a discharge valve (not shown) formed in the discharge valve forming plate 151.
  • the front housing 102, the center gasket (not shown), the cylinder block 101, the cylinder gasket 152, the suction valve forming plate 150, the valve plate 103, the discharge valve forming plate 151, the head gasket 153, and the cylinder head 104 are sequentially arranged. Connected and fastened by a plurality of through-bolts 105 to form a compressor housing.
  • the suction chamber 141 and the discharge chamber 142 are formed in a cylinder head 104 as a housing member constituting one end portion of the compressor housing.
  • the suction chamber 141 is disposed on an extension line of the axis O of the drive shaft 110 extending from the other end portion of the compressor housing toward the one end side in the compressor housing, and the discharge chamber 142 is the suction chamber 141.
  • the extending direction of the axis O of the drive shaft 110 corresponds to the “center axis extending direction of the compressor housing” according to the present invention.
  • a muffler is provided on the upper portion of the cylinder block 101 in FIG.
  • the muffler is formed by fastening a lid member 106 where the discharge port 106a is opened and a forming wall 101b formed in the upper part of the cylinder block 101 with a bolt via a seal member (not shown).
  • a discharge check valve 200 is disposed in a muffler space 143 surrounded by the lid member 106 and the forming wall 101b.
  • the discharge check valve 200 is disposed at a connection portion between the communication path 144 that connects the discharge chamber 142 and the muffler space 143 and the muffler space 143, and is connected to the communication path 144 (upstream side) and the muffler space 143 (downstream side).
  • the discharge chamber 142 is connected to the refrigerant circuit (the high-pressure side) of the air conditioner system via the discharge passage formed by the communication passage 144, the discharge check valve 200, the muffler space 143, and the discharge port 106a.
  • a suction passage 104a is linearly extended from the outside in the radial direction of the cylinder head 104 so as to cross a part of the discharge chamber 142, and the suction chamber 141 is sucked into the air conditioning system through the suction passage 104a.
  • the refrigerant on the low pressure side of the refrigerant circuit of the air conditioning system is guided to the suction chamber 141 through the suction passage 104a.
  • the refrigerant in the suction chamber 141 is sucked into the cylinder bore 101a by the reciprocating motion of the piston 136, compressed, and discharged into the discharge chamber 142. That is, in this embodiment, the cylinder bore 101a and the piston 136 constitute a compression unit that sucks and compresses the refrigerant in the suction chamber 141.
  • a supply passage 145 is formed in the cylinder head 104.
  • a first control valve 300 and a check valve 350 are provided in the supply passage 145.
  • a discharge passage 146 is formed in the cylinder block 101 and the cylinder head 104.
  • a second control valve 400 is provided in the discharge passage 146.
  • a back pressure relief passage 147 is provided between the cylinder block 101 and the cylinder head 104.
  • FIG. 2 is a conceptual diagram showing a system diagram of a passage through which the refrigerant flows together with a cross-sectional view of the first control valve 300
  • FIG. 3 shows the variable capacity compressor 100 including the check valve 350 and the second control valve 400.
  • FIG. The supply passage 145 is a passage for supplying the refrigerant in the discharge chamber 142 to the crank chamber 140.
  • the passage between the discharge chamber 142 and the first control valve 300 in the supply passage 145 is called an upstream supply passage 145a, and the passage between the first control valve 300 and the crank chamber 140 in the supply passage 145 is downstream. This is referred to as a side supply passage 145b.
  • the supply passage 145 is opened and closed by the first control valve 300 via the first control valve 300 as will be described later.
  • the check valve 350 is provided in the downstream supply passage 145b.
  • the supply passage 145 is a second region S2 (described later) of the communication passage 104b formed in the cylinder head 104 and the accommodation hole 104c of the first control valve 300 formed in the cylinder head 104 (see FIG. 2). ), The inside of the first control valve 300 (see FIG. 2), a third region S3 (see FIG.
  • the communication passage 104b constitutes the upstream supply passage 145a, the third region S3 (see FIG. 2), the communication passage 104d, the connection portion 104e, the communication hole of the head gasket 153, and the discharge valve forming plate 151.
  • the communication hole, the communication hole 103c, the communication hole of the suction valve forming plate 150, the valve hole 152a of the cylinder gasket 152, the communication path 101e, and the path including the second path 351c2 and the first path 351c1 are connected to the downstream supply path 145b.
  • the discharge passage 146 is a passage for discharging the refrigerant in the crank chamber 140 to the suction chamber 141.
  • the discharge passage 146 is branched into two passages on the suction chamber 141 side, and one of the passages (a first discharge passage 146a described later) is the second passage. Opened and closed by the second control valve 400 via the control valve 400.
  • the discharge passage 146 passes through the end surface of the cylinder block 101 on the front housing 102 side and extends to the cylinder head 104 side.
  • the communication passage 101c is connected to the discharge passage 146, and the cylinder head of the cylinder block 101 is connected to the discharge passage 146.
  • FIG. 4 is a partially enlarged view including a part of the discharge passage 146 (second discharge passage 146b described later).
  • the discharge passage 146 branches from the space 101d into a first discharge passage 146a and a second discharge passage 146b as shown in FIGS.
  • the first discharge passage 146a has a communication hole of the cylinder gasket 152, a communication hole of the suction valve forming plate 150, a valve hole 103d which will be described later penetrating the valve plate 103, and a valve chamber 420 which will be described later of the second control valve 400.
  • And is formed to open to the suction chamber 141 via the discharge hole 431a.
  • the second discharge passage 146 b is formed from the space 101 d to the communication hole formed in the cylinder gasket 152, the groove 150 a as a fixed throttle formed in the suction valve forming plate 150, and the valve plate 103.
  • the communication hole 103e, the communication hole of the discharge valve forming plate 151, and the communication hole of the head gasket 153 are provided to bypass the second control valve 400, and the space 101d and the suction chamber 141 are always in communication with each other. Yes.
  • a passage between the second control valve 400 and the crank chamber 140 in the discharge passage 146 is referred to as an upstream discharge passage 146c (see FIG. 2).
  • the flow passage cross-sectional area of the first discharge passage 146a when opened by the second control valve 400 is set to be larger than the flow passage cross-sectional area of the groove 150a as a fixed throttle of the second discharge passage 146b.
  • the back pressure relief passage 147 communicates the suction chamber 141 with the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b.
  • This is a passage as a throttle passage having a throttle portion 147a.
  • FIG. 5 is a partially enlarged view including the back pressure relief passage 147.
  • the throttle portion 147a is composed of a groove portion formed through the discharge valve forming plate 151.
  • the groove portion opens in the connection portion 104e and opens in the communication hole of the head gasket 153.
  • the back pressure relief passage 147 is connected to the connecting portion 104e (that is, the intermediate supply passage 145b1) and the suction chamber via the communication hole of the throttle portion 147a and the head gasket 153 formed in the discharge valve forming plate 151. 141 is always in communication.
  • the intermediate supply passage 145b1 (see FIG. 2) of the downstream supply passage 145b includes a third region S3 (see FIG. 2), a communication passage 104d, a connection portion 104e, a communication hole of the head gasket 153, and a discharge valve forming plate.
  • the first control valve 300 is a valve that controls the opening area (opening degree) of the supply passage 145. Specifically, the first control valve 300 is accommodated in an accommodation hole 104 c formed in the cylinder head 104 as shown in FIGS. 1 and 2. In the present embodiment, O-rings 300a to 300c are mounted on the first control valve 300, and the O-rings 300a to 300c are connected to the suction chamber 141 through the communication passage 104f in the accommodation hole 104c.
  • a region S3 is partitioned.
  • the second region S2 and the third region S3 of the accommodation hole 104c constitute a part of the supply passage 145.
  • the first control valve 300 controls the opening degree of the supply passage 145 in response to the pressure of the suction chamber 141 introduced through the communication passage 104f and the electromagnetic force generated by the current flowing through the solenoid in response to the external signal ( And the discharge gas introduction amount (pressure supply amount) into the crank chamber 140 is controlled.
  • the check valve 350 is provided in the downstream supply passage 145b (in other words, the supply passage 145 downstream from the first control valve 300) in the supply passage 145, and prevents reverse flow of the refrigerant from the crank chamber 140 toward the first control valve 300.
  • the valve operates to allow the flow of the refrigerant from the first control valve 300 toward the crank chamber 140.
  • the check valve 350 is formed at an opening end portion on the valve plate 103 side in the communication path 101e of the cylinder block 101, and is accommodated in an accommodation hole 101g constituting a part of the communication path 101e.
  • the second control valve 400 is a valve that is provided in the discharge passage 146 (the first discharge passage 146a in the present embodiment) and controls the opening degree of the discharge passage 146.
  • the second control valve 400 is housed in a housing hole 104g formed in the cylinder head 104 and opened in the suction chamber 141, and opens and closes the first discharge passage 146a of the discharge passage 146.
  • a spool 440 is included.
  • the second control valve 400 includes a pressure in the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b (specifically, a pressure in a back pressure chamber 410 described later), a crank
  • the spool 440 is moved in accordance with the pressure in the chamber 140 (specifically, the pressure in the upstream discharge passage 146c) to control (adjust) the opening degree of the discharge passage 146, and the refrigerant from the crank chamber 140 to the suction chamber 141 is controlled. Control emissions.
  • the second control valve 400 opens the first discharge passage 146a.
  • the discharge passage 146 includes a first discharge passage 146a and a second discharge passage 146b.
  • the refrigerant in the crank chamber 140 immediately flows into the suction chamber 141, the pressure in the crank chamber 140 is equivalent to the pressure in the suction chamber 141, the inclination angle of the swash plate is maximized, and the piston stroke (discharge capacity) is maximized. It becomes.
  • the second control valve 400 closes the first discharge passage 146a.
  • the discharge passage 146 includes only the second discharge passage 146b.
  • variable capacity compressor 100 includes the suction chamber 141, the compression unit, the discharge chamber 142, and the crank chamber 140 as a control pressure chamber, and the discharge capacity changes according to the pressure of the crank chamber 140. In other words, it is a compressor whose discharge capacity is controlled by pressure regulation in the crank chamber 140.
  • first control valve 300, the check valve 350, and the second control valve 400 will be described in detail.
  • the first control valve 300 includes a valve unit and a drive unit (solenoid) that opens and closes the valve unit, and is accommodated in an accommodation hole 104 c formed in the cylinder head 104.
  • the valve unit of the first control valve 300 includes a cylindrical valve housing 301. Inside the valve housing 301, a first pressure sensing chamber 302, a valve chamber 303, and a second pressure sensing chamber 307 are arranged in the axial direction. They are arranged in order.
  • the first pressure sensing chamber 302 is connected to the crank chamber via a communication hole 301 a formed in the outer peripheral surface of the valve housing 301, a third region S 3 in the accommodation hole 104 c, and a communication passage 104 d formed in the cylinder head 104. 140.
  • the second pressure sensing chamber 307 is a suction chamber via a communication hole 301e formed in the outer peripheral surface of the valve housing 301, a first region S1 in the accommodation hole 104c, and a communication passage 104f formed in the cylinder head 104. 141.
  • the valve chamber 303 communicates with the discharge chamber 142 via a communication hole 301 b formed in the outer peripheral surface of the valve housing 301, a second region S ⁇ b> 2 of the accommodation hole 104 c, and a communication passage 104 b formed in the cylinder head 104. is doing.
  • the first pressure sensing chamber 302 and the valve chamber 303 can communicate with each other through a valve hole 301c.
  • a support hole 301 d is formed between the valve chamber 303 and the second pressure sensing chamber 307.
  • a bellows 305 is disposed in the first pressure sensing chamber 302.
  • the bellows 305 has a built-in spring and has a built-in spring.
  • the bellows 305 is disposed so as to be displaceable in the axial direction of the valve housing 301, and serves as a pressure sensing means for receiving the pressure in the first pressure sensing chamber 302, that is, the crank chamber 140. It has a function.
  • a cylindrical valve body 304 is accommodated in the valve chamber 303.
  • the valve body 304 can slide in the support hole 301 d while the outer peripheral surface is in close contact with the inner peripheral surface of the support hole 301 d, and can move in the axial direction of the valve housing 301.
  • One end of the valve body 304 can open and close the valve hole 301 c, and the other end of the valve body 304 protrudes into the second pressure sensing chamber 307.
  • One end of a rod-shaped connecting portion 306 is fixed to one end of the valve body 304.
  • the other end of the connecting portion 306 is disposed so as to be able to contact the bellows 305 and has a function of transmitting the displacement of the bellows 305 to the valve body 304.
  • the drive unit of the first control valve 300 has a cylindrical solenoid housing 312 that is coaxially connected to the end of the valve housing 301.
  • the solenoid housing 312 houses a molded coil 314 in which the electromagnetic coil is covered with resin.
  • the solenoid housing 312 houses a cylindrical fixed core 310 coaxially with the mold coil 314, and the fixed core 310 extends from the valve housing 301 to the vicinity of the center of the mold coil 314.
  • the end of the fixed core 310 on the side opposite to the valve housing 301 is surrounded by a cylindrical sleeve 313.
  • the fixed core 310 has an insertion hole 310 a in the center, and one end of the insertion hole 310 a opens into the second pressure sensing chamber 307.
  • a cylindrical movable core 308 is accommodated between the fixed core 310 and the closed end of the sleeve 313.
  • a solenoid rod 309 is inserted into the insertion hole 310a, and one end of the solenoid rod 309 is fixed to the proximal end side of the valve body 304 by press fitting.
  • the other end of the solenoid rod 309 is press-fitted into a through hole formed in the movable core 308, and the solenoid rod 309 and the movable core 308 are integrated.
  • a release spring 311 is provided between the fixed core 310 and the movable core 308 to urge the movable core 308 in a direction away from the fixed core 310 (valve opening direction).
  • the movable core 308, the fixed core 310, and the solenoid housing 312 are formed of a magnetic material and constitute a magnetic circuit.
  • the sleeve 313 is made of a nonmagnetic material such as a stainless steel material.
  • the mold coil 314 is connected to a control device provided outside the variable capacity compressor 100 via a signal line.
  • the mold coil 314 generates an electromagnetic force F (i) when the control current I is supplied from the control device.
  • the electromagnetic force F (i) of the mold coil 314 attracts the movable core 308 toward the fixed core 310 and drives the valve body 304 in the valve closing direction.
  • the valve body 304 of the first control valve 300 has a biasing force fs by the release spring 311, a force by the pressure in the valve chamber 303 (discharge chamber pressure Pd), A force due to the pressure in the pressure sensing chamber 302 (crank chamber pressure Pc), a force due to the pressure in the second pressure sensing chamber 307 (suction chamber pressure Ps), and a biasing force F due to a spring built in the bellows 305 act.
  • Equation 1 the relationship between the forces acting on the valve body 304 is expressed by Equation 1.
  • Equation 1 “+” indicates the valve closing direction of the valve body 304, and “ ⁇ ” indicates the valve opening direction.
  • the connecting body of the bellows 305, the connecting portion 306, and the valve body 304 reduces the crank chamber pressure Pc by reducing the opening of the supply passage 145 in order to increase the discharge capacity when the suction chamber pressure Ps becomes higher than the set pressure.
  • the opening of the supply passage 145 is increased to increase the crank chamber pressure Pc in order to reduce the discharge capacity. That is, the first control valve 300 autonomously controls the opening degree (opening area) of the supply passage 145 so that the suction chamber pressure Ps approaches the set pressure.
  • FIG. 6 is a diagram showing the correlation between the coil energization amount of the first control valve 300 and the set pressure.
  • the control device controls energization to the mold coil 314 by pulse width modulation (PWM control) at a predetermined frequency in the range of, for example, 400 Hz to 500 Hz, and the current value flowing through the mold coil 314 becomes a desired value.
  • PWM control pulse width modulation
  • the energization amount to the mold coil 314 is adjusted by the control device based on the air conditioning setting such as the set temperature and the external environment, and the suction chamber pressure Ps is set to the energization amount.
  • the discharge volume is controlled so that the set pressure corresponds to.
  • the control device turns off the energization to the mold coil 314.
  • the supply passage 145 is opened by the release spring 311, and the discharge capacity of the variable capacity compressor 100 is controlled to a minimum state.
  • FIG. 7 is a partially enlarged cross-sectional view including the check valve 350 of the variable capacity compressor 100.
  • FIG. 7A shows a state in which the check valve 350 is operated in a direction allowing the refrigerant flow from the first control valve 300 toward the crank chamber 140, and
  • coolant which goes to the 1st control valve 300 from the chamber 140 is shown.
  • the check valve 350 includes a valve body 351, a housing hole 101g for housing the valve body 351, and a cylinder gasket 152 as a valve seat forming member having a valve hole 152a and a valve seat 152b for closing one end of the housing hole 101g.
  • the valve body 351 includes a substantially cylindrical peripheral wall 351a and an end wall 351b connected to one end of the peripheral wall 351a.
  • the peripheral wall 351a has a large diameter portion 351a1 forming an intermediate portion in the longitudinal direction of the valve body, a connection between the large diameter portion 351a1 and the end wall 351b, a first small diameter portion 351a2 having a smaller diameter than the large diameter portion 351a1, and a large diameter.
  • a second small-diameter portion 351a3 having a smaller diameter than the large-diameter portion 351a1 extending from the end surface opposite to the first small-diameter portion 351a2 in the portion 351a1.
  • An internal passage is formed in the valve body 351.
  • the internal passage passes through the first passage 351c1 formed from the open end of the peripheral wall 351a toward the end wall 351b and the peripheral wall of the first small-diameter portion 351a2, and around the first passage 351c1 and the first small-diameter portion 351a2.
  • the second passage 351c2 communicates with the accommodation hole 101g.
  • the valve body 351 is formed of a resin material, for example, but may be formed of other materials such as a metal material.
  • the housing hole 101g is formed at an opening end portion on the valve plate 103 side in the communication path 101e of the cylinder block 101 and constitutes a part of the communication path 101e.
  • the housing hole 101g includes a small-diameter portion 101g1 on the crank chamber 140 side and a large-diameter portion 101g2 on the valve plate 103 side that is larger in diameter than the small-diameter portion 101g1.
  • the large diameter portion 351a1 of the valve body 351 is slidably supported by the large diameter portion 101g2, and the second small diameter portion 351a3 of the valve body 351 is slidably supported by the small diameter portion 101g1.
  • the housing hole 101g is formed so as to be orthogonal to the end face of the cylinder block 101, and the valve body 351 moves in the extending direction of the axis O of the drive shaft 110.
  • the end wall 351b of the valve body 351 abuts on the valve seat 152b, one movement of the valve body 351 is restricted, and the other end of the peripheral wall 351a abuts on the end surface 101g3 of the accommodation hole 101g so that the valve body 351 The other movement is restricted.
  • the valve hole 152a is closed, and when the end wall 351b moves away from the valve seat 152b, the valve hole 152a is opened.
  • the accommodation hole 101g communicates with the third region S3 in the accommodation hole 104c of the first control valve 300 via the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b.
  • the communication passage 101e extends through the end surface of the cylinder block 101 on the front housing 102 side and extends toward the cylinder head 104, passes through the end surface 101g3 of the accommodation hole 101g, and passes through the accommodation hole 101g to the end surface on the cylinder head 104 side. It is open.
  • the pressure Pm of the intermediate supply passage 145b1 acts on one end of the valve body 351
  • the crank chamber pressure Pc acts on the other end of the valve body 351.
  • the valve body 351 moves in the axial direction according to the upstream and downstream pressure difference (Pm ⁇ Pc) acting on the valve body 351.
  • the intermediate supply passage 145b1 communicates with the suction chamber 141 via the back pressure relief passage 147.
  • the back pressure relief passage 147 is provided with a throttle portion 147a.
  • the check valve 350 is configured to open and close the supply passage 145 in conjunction with opening and closing of the first control valve 300.
  • the check valve 350 may be configured to add a biasing means such as a compression coil spring that biases the valve body 351 toward the valve seat 152b.
  • the valve seat forming member is not limited to the cylinder gasket 152, and may be, for example, the suction valve forming plate 150 or the valve plate 103.
  • the second control valve 400 will be described with reference to FIGS. 1 to 3 and FIG. 8 which is a cross-sectional view of the second control valve 400.
  • the second control valve 400 includes a back pressure chamber 410, a valve chamber 420, a partition member 430, and a spool 440.
  • the second control valve 400 is accommodated in an accommodation hole 104g that is formed in the cylinder head 104 and opens to the suction chamber 141.
  • the accommodation hole 104 g is formed so as to open to the connection end surface 104 h side of the cylinder head 104 with the cylinder block 101 (head gasket 153).
  • the accommodation hole 104g is formed in a stepped columnar shape on a protrusion 104j protruding from the closed end wall 104i of the suction chamber forming wall of the cylinder head 104 toward the valve plate 103 side. Yes.
  • the protrusion 104 j is disposed on the extension of the axis O of the drive shaft 110 and is located in the radial center of the suction chamber 141.
  • the protrusion 104j extends from the closed end wall 104i of the cylinder head 104 to a position before the connection end surface 104h so as to have a gap with the head gasket 153.
  • the housing hole 104g has a central axis substantially coincident with the axis O of the drive shaft 110, a large diameter portion on the connection end surface 104h side of the cylinder head 104, a small diameter portion having a smaller diameter than the large diameter portion on the back side, and a large diameter portion.
  • a step portion is formed between the small-diameter portion, the small-diameter portion constitutes the first accommodating chamber 104g1, and the large-diameter portion constitutes the second accommodating chamber 104g2 that accommodates the partition member 430.
  • the back pressure chamber 410 communicates with the intermediate supply passage 145b1 through the communication passage 104k connected to the back pressure chamber 410 and the intermediate supply passage 145b1. Therefore, the pressure in the back pressure chamber 410 is equal to the pressure Pm in the intermediate supply passage 145b1.
  • the back pressure chamber 410 includes the first storage chamber 104g1 partitioned by the partition member 430.
  • the communication path 104k will be described in detail later.
  • the valve chamber 420 communicates with the valve hole 103 d communicating with the upstream discharge passage 146 c (see FIGS. 2 and 3) between the second control valve 400 and the crank chamber 140 in the discharge passage 146 and the suction chamber 141.
  • the discharge hole 431a is opened and constitutes a part of the discharge passage 146 (specifically, the first discharge passage 146a).
  • the discharge hole 431 a is formed in a peripheral wall 431 described later of the partition member 430, and the valve hole 103 d is formed in the valve plate 103.
  • the partition member 430 is a member that partitions the back pressure chamber 410 and the valve chamber 420, and includes, for example, a cylindrical peripheral wall 431 and a disk-shaped end wall 432.
  • the peripheral wall 431 is provided so as to surround a later-described valve portion 442 of the spool 440.
  • the end wall 432 is connected to one end side of the peripheral wall 431.
  • the end wall 432 has an insertion hole 432a for inserting a shaft portion 443 described later of the spool 440.
  • the first storage chamber 104g1 defined by the end wall 432 constitutes the back pressure chamber 410, and the cylindrical space inside the partition member 430 defined by the peripheral wall 431 and the end wall 432 constitutes the valve chamber 420.
  • the outer diameter of the peripheral wall 431 of the partition member 430 is set smaller than the inner diameter of the peripheral wall of the second storage chamber 104g2, and the peripheral wall 431 is slidably supported on the peripheral wall of the second storage chamber 104g2.
  • the radial outer edge of the end wall 432 of the partition member 430 on the side of the one end surface 432b and the connection end surface between the second storage chamber 104g2 and the first storage chamber 104g1 (in other words, the large size of the storage hole 104g).
  • a disc spring 450 as an urging means for urging the partition member 430 is disposed at a step portion between the diameter portion and the small diameter portion.
  • an O-ring 460 is provided between the peripheral wall 431 and the second storage chamber 104g2. It is arranged.
  • the partition member 430 is energized toward the valve plate 103 by the disc spring 450 in a state of being accommodated in the second accommodation chamber 104g2, and thereby the end wall 432 of the peripheral wall 431 and Positioning is made in the second storage chamber 104g2 so that the end surface 431b on the opposite side contacts the valve plate 103 that is the wall surface on the opposite side of the back pressure chamber 410 in the valve chamber 420.
  • the end surface 431b on the opposite side of the end wall 432 of the peripheral wall 431 protrudes toward the valve plate 103 from the protruding end surface 104j1 of the protrusion 104j.
  • the discharge hole 431a that opens to the valve chamber 420 penetrates the peripheral wall 431 at a plurality of locations spaced in the circumferential direction of the peripheral wall 431.
  • the valve chamber 420 communicates with the suction chamber 141 through the discharge hole 431a.
  • a portion of the peripheral wall 431 on the end surface 431b side protrudes toward the valve plate 103 side from the protruding end surface 104j1 of the protrusion 104j so that the discharge hole 431a opens directly to the suction chamber 141.
  • the discharge hole 431a is not limited to a hole, and may be formed as a notch.
  • a valve hole 103 d that opens into the valve chamber 420 is formed in the valve plate 103 that closes the open end of the partition member 430.
  • a portion of the valve plate 103 around the valve hole 103d constitutes a valve seat 103f with which a valve portion 442 (to be described later) of the spool 440 contacts and separates.
  • the valve chamber 420 communicates with the crank chamber 140 through the valve hole 103d, the communication hole of the suction valve forming plate 150, the communication hole of the cylinder gasket 152, the space 101d, and the communication path 101c. That is, in this embodiment, the upstream discharge passage 146c of the discharge passage 146 is configured by the communication hole of the suction valve forming plate 150, the communication hole of the cylinder gasket 152, the space 101d, and the communication passage 101c. The upstream discharge passage 146c communicates with the valve chamber 420 through the valve hole 103d.
  • the spool 440 passes through the pressure receiving portion 441 disposed in the back pressure chamber 410, the valve portion 442 disposed in the valve chamber 420 and contacting and separating from the valve seat 103f around the valve hole 103d, and the partition member 430.
  • a shaft portion 443 that connects the extending pressure receiving portion 441 and the valve portion 442 is provided.
  • the pressure receiving portion 441 is accommodated in the first accommodating chamber 104g1 and is slidably supported by the first accommodating chamber 104g1.
  • the valve portion 442 is accommodated in the valve chamber 420 and its one end surface 442a (see FIG. 8) contacts and separates from the valve seat 103f to open and close the valve hole 103d.
  • the shaft portion 443 is formed with a smaller diameter than the pressure receiving portion 441 and the valve portion 442.
  • the shaft portion 443 is formed integrally with the valve portion 442.
  • the spool 440 is configured by press-fitting the pressure receiving portion 441 into the shaft portion 443 in a state where the shaft portion 443 is inserted into the insertion hole 432a (see FIG. 8) of the partition member 430.
  • the pressure receiving portion 441 contacts the end wall 432 of the partition member 430 when the valve portion 442 contacts the valve seat 103f.
  • the one end surface 442a of the valve portion 442 contacts the valve seat 103f, at the same time, the one end surface 441a on the end wall 432 side (the partition member 430 side) of the pressure receiving portion 441 becomes the one end surface 432b of the end wall 432.
  • the press-fit position of the pressure receiving portion 441 in the axial direction with respect to the valve portion 442 and the shaft portion 443 is adjusted so as to come into contact with each other.
  • the second control valve 400 moves the spool 440 in accordance with the pressure in the back pressure chamber 410 (hereinafter referred to as back pressure) and the pressure in the upstream discharge passage 146c (that is, the crank chamber pressure Pc).
  • back pressure the pressure in the back pressure chamber 410
  • the pressure in the upstream discharge passage 146c that is, the crank chamber pressure Pc.
  • the second control valve 400 operates the spool 440 according to the back pressure (pressure in the intermediate supply passage 145b1) Pm and the crank chamber pressure Pc.
  • One end surface of the spool 440 (the other end surface 441b of the pressure receiving portion 441) receives the back pressure Pm
  • the other end surface of the spool 440 (the one end surface 442a of the valve portion 442) receives the crank chamber pressure Pc. It moves in the axial direction according to (Pm ⁇ Pc). If Pm ⁇ Pc> 0, the other end surface of the spool 440 comes into contact with the valve seat 103f, and the second control valve 400 closes the first discharge passage 146a.
  • the valve portion 442 contacts the end wall 432 of the partition member 430, and the second control valve 400 opens the first discharge passage 146a to the maximum.
  • the second control valve 400 is operated by the pressure in the valve closing direction that moves the spool 440 in the direction approaching the valve seat 103f by the pressure (back pressure Pm) acting on the pressure receiving portion 441.
  • valve portion 442 When the force in the valve opening direction that moves 440 away from the valve seat 103f is greater, the valve portion 442 comes into contact with the valve seat 103f, thereby blocking the communication between the valve hole 103d and the discharge hole 431a.
  • the opening degree of 146 When the opening degree of 146 is minimized and the force in the valve closing direction is smaller than the force in the valve opening direction, the valve portion 442 is separated from the valve seat 103f, so that the valve hole 103d and the discharge hole 431a communicate with each other.
  • the opening of the discharge passage 146 is configured to be maximized.
  • a minute gap is formed between the outermost peripheral surface 441c of the pressure receiving portion 441 that is slidably supported on the inner peripheral surface of the first storage chamber 104g1 and the inner peripheral surface of the first storage chamber 104g1. Therefore, in a state where the one end surface 441a of the pressure receiving portion 441 is slightly separated from the end wall 432, the refrigerant gas flowing into the back pressure chamber 410 (first housing chamber 104g1) from the communication path 104k is separated from the outermost peripheral surface 441c.
  • the first chamber 104g1 flows into the valve chamber 420 via a gap between the inner circumferential surface and a gap between the outer circumferential surface of the shaft portion 443 and the inner circumferential surface of the insertion hole 432a.
  • the one end surface 442a of the valve portion 442 contacts the valve seat 103f
  • the one end surface 441a of the pressure receiving portion 441 is configured to contact the one end surface 432b of the end wall 432.
  • the refrigerant flow from the back pressure chamber 410 to the valve chamber 420 via the gap between the outer peripheral surface and the inner peripheral surface of the insertion hole 432a is blocked. Therefore, the one end surface 441a of the pressure receiving portion 441 and the one end surface 432b of the end wall 432 constitute valve means.
  • the pressure receiving portion 441 contacts the end wall 432 facing the back pressure chamber 410 of the partition member 430 in a state where the valve portion 442 is in contact with the valve seat 103f, so that the shaft portion 443
  • the valve seat side of the valve portion 442 is such that communication between the back pressure chamber 410 and the valve chamber 420 through a gap between the insertion hole 432a formed in the partition member 430 for insertion and the shaft portion 443 is blocked.
  • the distance between the one end surface 442a as the end surface and the one end surface 441a as the partition member side end surface of the pressure receiving portion 441 is set.
  • the refrigerant gas in the intermediate supply passage 145b1 slightly flows into the suction chamber 141 through the back pressure relief passage 147 in a state where the valve portion 442 is in contact with the valve seat 103f.
  • the back pressure relief passage 147 opens into the suction chamber 141 via the throttle portion 147a formed in the discharge valve forming plate 151 and the communication hole of the head gasket 153.
  • the back pressure relief passage 147 is provided between the connecting portion 104e1 and the suction chamber 141 in the intermediate supply passage 145b1 and between the cylinder block 101 and the cylinder head 104 (discharge valve forming plate 151, head gasket 153).
  • the back pressure relief passage 147 is formed so as to bypass the second control valve 400 and directly communicate between the connection portion 104e and the suction chamber 141 in the intermediate supply passage 145b1.
  • the communication path 104k that communicates between the back pressure chamber 410 and the intermediate supply path 145b1 will be described in detail.
  • One end of the communication path 104k is connected to a connecting portion 104e provided in the middle of the intermediate supply path 145b1, and the other end of the communication path 104k is connected to the back pressure chamber 410.
  • the communication passage side connection portion 104k1 see FIG.
  • connection portion 104e of the communication passage 104k toward the back pressure chamber 410 side is connected to the first control valve 300 side from the connection portion 104e of the intermediate supply passage 145b1. It extends at an acute angle with respect to the communication passage 104d as the intermediate supply passage side connection portion extending toward the center.
  • the communication passage 104k as the intermediate supply passage side connection portion is folded back in the intermediate supply passage 145b1 in the direction opposite to the main flow direction of the refrigerant flow flowing from the first control valve 300 toward the check valve 350.
  • the communication passage side connection portion 104k1 is a passage portion near the connection portion 104e in the communication passage 104k.
  • the communication path 104k extends at an acute angle over the entire length of the communication path with respect to the communication path 104d as the intermediate supply path side connection portion.
  • the communication path 104k extends in one direction opposite to the flow direction of the main flow of the refrigerant flowing through the intermediate supply path 145b1 from the first control valve 300 toward the check valve 350 over the entire length of the communication path. ing. Therefore, the communication path 104k and the communication path 104d extending linearly in one direction form a V-shaped path.
  • the communication passage 104k is formed such that the back pressure chamber side opening end thereof opens to a lower part in the gravity direction on the inner wall surface of the back pressure chamber 410 when the compressor is installed.
  • the connecting portion 104e in the intermediate supply passage 145b1 is disposed so as to be located below the second control valve 400 in the gravitational direction when the compressor is installed.
  • the connecting portion 104e is disposed closer to the valve plate 103 than the back pressure chamber 410. Therefore, the communication path 104k is folded back from the connecting portion 104e and extends obliquely upward to open to the back pressure chamber 410.
  • the first control valve 300 and the second control valve 400 are mutually in the cylinder head 104 with respect to the extending direction of the axis O of the drive shaft 110 (that is, the central axis extending direction of the compressor housing). It is arranged at a position shifted in the orthogonal direction. Specifically, the first control valve 300 is disposed vertically below the second control valve 400. Therefore, the connecting portion 104e, the communication passage 104d as the intermediate supply passage side connection portion, and the second control valve 400 are collectively arranged below the second control valve 400. Further, the second control valve 400 is arranged so that the central axis thereof substantially coincides with the axis O of the drive shaft 110.
  • the first control valve 300 is arranged such that its central axis extends in the horizontal direction and its central axis is orthogonal to the axis O of the drive shaft 110.
  • the operation of the variable capacity compressor 100 will be described.
  • the first control valve 300 is opened to the maximum.
  • the back pressure Pm is increased. Therefore, when the check valve 350 closes the supply passage 145 (at the maximum discharge capacity), the check valve 350 opens the supply passage 145 and at the same time the second control valve 400 The first discharge passage 146a is closed.
  • the discharge passage 146 is only the second discharge passage 146b, the pressure in the crank chamber 140 is increased, the inclination angle of the swash plate 111 is reduced, and the discharge capacity is maintained at the minimum state.
  • the discharge check valve 200 blocks the discharge passage, and the refrigerant gas discharged with the minimum discharge capacity does not flow to the external refrigerant circuit, but the discharge chamber 142, the supply passage 145, the crank chamber 140, and the second discharge. It circulates in an internal circulation path constituted by the passage 146b, the suction chamber 141, and the cylinder bore 101a.
  • the refrigerant gas in the region of the supply passage 145 between the first control valve 300 and the check valve 350 is released from the back pressure provided around the second control valve 400. It slightly flows out into the suction chamber 141 through the passage 147.
  • the first control valve 300 is closed and the supply passage 145 is closed, and the refrigerant gas in the intermediate supply passage 145b1 passes through the back pressure relief passage 147. It flows out to the suction chamber 141.
  • the second control valve 400 opens the first discharge passage 146a. Accordingly, at this time, the discharge passage 146 is constituted by two of the first discharge passage 146a and the second discharge passage 146b.
  • the flow passage cross-sectional area in the second control valve 400 is set to be larger than the flow passage cross-sectional area of the groove 150a serving as a fixed throttle, and the refrigerant in the crank chamber 140 quickly flows out into the suction chamber 141.
  • the pressure in the discharge chamber 142 is rapidly increased, the discharge check valve 200 is opened, the refrigerant circulates through the external refrigerant circuit, and the air conditioner system is activated.
  • the air conditioner system is activated and the pressure in the suction chamber 141 decreases and reaches a set pressure set by the current flowing through the mold coil 314, the first control valve 300 is opened.
  • the check valve 350 opens the supply passage 145, and at the same time, the second control valve 400 closes the first discharge passage 146a. Accordingly, at this time, the discharge passage 146 is only the second discharge passage 146b.
  • the refrigerant in the crank chamber 140 is restricted from flowing into the suction chamber 141, and the pressure in the crank chamber 140 is easily increased.
  • the opening of the first control valve 300 is adjusted so that the discharge capacity is variably controlled so that the pressure in the suction chamber 141 maintains the set pressure.
  • the check valve 350 is provided in the downstream supply passage 145 b between the first control valve 300 and the crank chamber 140 in the supply passage 145, and
  • the back pressure chamber 410 communicates with the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b via the communication passage 104k.
  • the communication passage side connection portion 104k1 extending from at least the connection portion 104e of the communication passage 104k toward the back pressure chamber 410 side is directed from the connection portion 104e of the intermediate supply passage 145b1 to the first control valve 300 side. It extends at an acute angle with respect to the communication passage 104d as an intermediate supply passage-side connecting portion that extends.
  • the spool 440 can be operated satisfactorily even if minute foreign matter is distributed along with the refrigerant. In this way, it is possible to provide the variable capacity compressor 100 that can prevent or suppress foreign matter from entering the second control valve 400.
  • the passage between the first control valve 300 and the crank chamber 140 in the supply passage 145 is called a downstream supply passage 145b, and the first control valve 300 and the check valve 350 in the downstream supply passage 145b
  • An intermediate supply passage 145b1 between the two extends substantially linearly as shown in FIG. That is, a bent portion that is greatly bent is not formed in the middle of the intermediate supply passage 145b1.
  • the intermediate supply passage 145b1 it is possible to form a main flow of the refrigerant flow in which the refrigerant linearly flows from the first control valve 300 toward the check valve 350 side. As a result, it is possible to more reliably prevent or suppress the entry of foreign matter into the back pressure chamber 410.
  • the communication path 104k extends at an acute angle over the entire length of the communication path with respect to the communication path 104d as the intermediate supply path side connection portion.
  • a V-shaped passage is formed in cooperation with the connecting portion 104e and the communication passage 104d, and contamination of foreign matter from the connecting portion 104e to the back pressure chamber 410 can be prevented or suppressed more reliably. .
  • the communication passage 104k is formed such that the back pressure chamber side opening end thereof opens to a lower part in the gravity direction on the inner wall surface of the back pressure chamber 410 when the compressor is installed. Accordingly, when the first control valve 300 closes the supply passage 145 and the refrigerant in the intermediate supply passage 145b1 is discharged to the suction chamber 141 via the back pressure relief passage 147, the back pressure is temporarily set via the communication passage 104k. Even if foreign matter enters the chamber 410, the foreign matter is easily discharged to the connection portion 104e side by gravity through the communication path 104k.
  • the connecting portion 104e in the intermediate supply passage 145b1 is disposed so as to be located below the second control valve 400 in the gravitational direction when the compressor is installed.
  • the connecting portion 104e is positioned below the back pressure chamber 410 of the second control valve 400 in the gravitational direction, so that it is difficult for foreign matter to enter the back pressure chamber 410 via the communication path 104k. Even if it enters, the foreign matter is easily discharged.
  • the first control valve 300 and the second control valve 400 are mutually in the cylinder head 104 with respect to the extending direction of the axis O of the drive shaft 110 (that is, the central axis extending direction of the compressor housing).
  • the first control valve 300 is disposed vertically below the second control valve 400.
  • the connection portion 104e, the communication passage 104d as the connection passage, and the second control valve 400 can be arranged under the second control valve 400, so that the longitudinal direction of the variable capacity compressor 100 (drive)
  • the length in the extending direction of the axis O of the shaft 110 can be made shorter than before, and as a result, the compressor housing can be downsized.
  • the pressure receiving portion 441 contacts the end wall 432 facing the back pressure chamber 410 of the partition member 430 in a state where the valve portion 442 is in contact with the valve seat 103f, so that the shaft portion 443 is inserted.
  • the communication between the back pressure chamber 410 and the valve chamber 420 via the gap between the insertion hole 432 a formed in the partition member 430 and the shaft portion 443 is blocked.
  • the distance between the one end surface 442a and the one end surface 441a as the partition member side end surface of the pressure receiving portion 441 is set.
  • the back pressure relief passage 147 is formed so as to bypass the second control valve 400 and directly communicate between the connection portion 104e and the suction chamber 141 in the intermediate supply passage 145b1.
  • the throttle portion 147 a of the back pressure relief passage 147 is formed on the discharge valve forming plate 151. Thereby, the back pressure relief passage 147 including the throttle portion 147a can be easily formed.
  • the back pressure chamber side opening end of the communication passage 104k opens to the inner wall surface of the back pressure chamber 410.
  • the present invention is not limited to this, and the end of the first storage chamber 104g1 that constitutes the back pressure chamber 410. You may open to a wall surface (Namely, the end wall surface of the 1st storage chamber 104g1 facing the other end surface 441b of the pressure receiving part 441).
  • the open end of the partition member 430 is closed by the valve plate 103, and the valve plate 103 is used as the valve seat forming member of the second control valve 400.
  • the present invention is not limited to this.
  • a member interposed between the cylinder block 101 and the cylinder head 104 for example, the intake valve forming plate 150 or the discharge valve forming plate 151 may be used.
  • the second control valve 400 may integrally include a dedicated valve seat forming member 148. Specifically, as shown in FIG. 9, the valve seat forming member 148 is press-fitted and fixed to, for example, the opening on the end surface 431 b side of the peripheral wall 431.
  • valve seat forming member If any one of the intake valve forming plate 150, the discharge valve forming plate 151, and the valve plate 103 is used as a valve seat forming member, it is not necessary to add a dedicated valve seat forming member, and flatness accuracy is also improved. Since it is good, it is suitable as a valve seat forming member.
  • the peripheral wall 431 of the partition member 430 is slidably supported by the peripheral wall of the second storage chamber 104g2, but is not limited thereto, and is press-fitted into the second storage chamber 104g2.
  • the cylinder head 104 may be positioned. In this case, the O-ring 460 and the disc spring 450 are not necessary.
  • the back pressure relief passage 147 is formed so as to bypass the second control valve 400 and directly communicate between the connection portion 104e and the suction chamber 141 in the intermediate supply passage 145b1.
  • the back pressure relief passage 147 may pass through the communication passage 104k that communicates between the back pressure chamber 410 and the intermediate supply passage 145b1.
  • a communication hole for communicating the back pressure chamber 410 and the valve chamber 420 is formed in the end wall 432 of the partition member 430 of the second control valve 400.
  • a back pressure relief passage 147 that opens to the suction chamber 141 is formed via the hole 431a.
  • the communication hole that connects the back pressure chamber 410 and the valve chamber 420 is set so that the flow passage cross-sectional area becomes the smallest in the back pressure relief passage 147, and the back pressure relief passage 147 is throttled.
  • Part 147a is configured.
  • the discharge passage 146 is branched from the space 101d into the first discharge passage 146a and the second discharge passage 146b.
  • the first discharge passage 146a is opened and closed by the second control valve 400, and the second discharge passage 146b is opened.
  • the present invention is not limited to this.
  • a through hole is formed in the peripheral wall of the valve portion 442, or a groove is provided in one end surface 442a of the valve portion 442, thereby ensuring the minimum opening of the discharge passage 146.
  • You may comprise as follows.
  • the shaft portion 443 of the spool 440 is formed integrally with the valve portion 442, but is not limited thereto, and may be formed integrally with the pressure receiving portion 441.
  • the variable capacity compressor 100 is a swash plate type clutchless variable capacity compressor.
  • the present invention is not limited thereto, and a variable capacity compressor equipped with an electromagnetic clutch, a variable capacity compressor driven by a motor, can do.
  • Variable displacement compressor 101a Cylinder bore (compression unit) 103d ... Valve hole (valve hole of the second control valve) 103f ... Valve seat (the seat of the second control valve) 104 ... Cylinder head (housing member) 104d ... Communication passage (intermediate supply passage side connection part) 104e ... Connection part 104k ... Communication path 104k1 ... Communication path side connection part 136 ... Piston (compression part) 140 ... Crank chamber (control pressure chamber) 141 ... suction chamber 142 ... discharge chamber 145 ... supply passage 145b ... downstream supply passage 145b1 ... intermediate supply passage 146 ... discharge passage 146c ... upstream discharge passage 147 ...
  • back pressure relief passage 147a ... throttle portion 300 ... first control valve 350 ... check valve 400 ... second control valve 410 ... back pressure chamber 420 ... valve chamber 430 ... partition member 431a ... discharge hole 432 ... end wall (to the back pressure chamber of the partition member) Facing end wall) 432a ... Insertion hole 440 for inserting the shaft portion ... Spool 441 ... Pressure receiving portion 442 ... Valve portion 443 ... Shaft portion 442a ... One end surface (end surface on the valve seat side of the valve portion) 441a ... One end surface (the end surface on the partition member side of the pressure receiving portion) O ... Axis of drive shaft (center axis of compressor housing)

Abstract

Provided is a variable displacement compressor capable of preventing the intrusion of foreign matter into a second control valve. A variable displacement compressor 100 comprises: a first control valve 300 that controls the opening degree of a supply passage 145; a check valve 350; a second control valve 400 that controls the opening degree of an exhaust passage 146; and a back pressure relief passage 147 that communicates an intermediate supply passage 145b1 and an intake chamber 141. The second control valve 400 includes: a back pressure chamber 410 that communicates with the intermediate supply passage 145b1 via a communication path 104k; a valve chamber 420 where a valve hole 103d and an exhaust hole 431a are open and that constitutes a portion of the exhaust passage 146; a partition member 430 that partitions the back pressure chamber 410 and the valve chamber 420; and a spool 440. A communication path-side connection site 104k1, which extends from at least a connection section 104e of the communication path 104k to the backpressure chamber 410 side, extends out at an acute angle with respect to a communication path 104d which extends from a connection section 104e of the intermediate supply passage 145b1 to the first control valve 300 side.

Description

可変容量圧縮機Variable capacity compressor
 本発明は、クランク室などの制御圧室の圧力に応じて吐出容量が変化する可変容量圧縮機に関する。 The present invention relates to a variable capacity compressor whose discharge capacity changes according to the pressure of a control pressure chamber such as a crank chamber.
 この種の可変容量圧縮機の一例として、特許文献1に記載の可変容量圧縮機は、吐出室とクランク室とを連通する圧力供給通路の開度を制御する第1制御弁と、クランク室と吸入室とを連通する放圧通路の開度を制御する第2制御弁と、前記圧力供給通路における前記第1制御弁と前記クランク室との間に設けられ前記クランク室から前記第1制御弁に向かう冷媒の逆流を阻止する逆止弁と、を備え、前記クランク室内の調圧によって吐出容量が制御されている。
 また、前記第2制御弁は、前記圧力供給通路における前記第1制御弁よりも下流側の領域と連通路を介して連通する背圧室と、区画部材によって前記背圧室と区画され、前記放圧通路の一部を構成すると共に前記背圧室と反対側の壁面に前記クランク室に連通する弁孔が形成された弁室と、前記背圧室内に配置された受圧部、前記弁室内に配置された弁部、及び前記区画部材を貫通して延びて前記受圧部と前記弁部とを接続する軸部を有したスプールと、を有する。そして、前記第2制御弁は、前記第1制御弁が開弁して前記受圧部にかかる圧力によって前記スプールを前記弁孔に近づく方向に移動させる力が前記弁部にかかる圧力によって前記スプールを前記弁孔から離れる方向に移動させる力よりも大きくなると、前記弁部が前記弁室の前記壁面に当接して前記弁孔を閉じて前記放圧通路の開度を最小とし、前記第1制御弁が閉弁して前記受圧部にかかる圧力によって前記スプールを前記弁孔に近づく方向に移動させる力が前記弁部にかかる圧力によって前記スプールを前記弁孔から離れる方向に移動させる力よりも小さくなると、前記弁部が前記壁面から離れて前記弁孔を開いて前記放圧通路の開度を最大とするように構成されている。
As an example of this type of variable capacity compressor, a variable capacity compressor described in Patent Document 1 includes a first control valve that controls the opening of a pressure supply passage that connects a discharge chamber and a crank chamber, a crank chamber, A second control valve for controlling the opening of a pressure release passage communicating with the suction chamber; and the first control valve provided between the first control valve and the crank chamber in the pressure supply passage. And a check valve for preventing the reverse flow of the refrigerant toward the engine, and the discharge capacity is controlled by regulating the pressure in the crank chamber.
Further, the second control valve is partitioned from the back pressure chamber by a back pressure chamber communicating with a region downstream of the first control valve in the pressure supply passage via a communication passage, and a partition member, A valve chamber forming a part of the pressure release passage and having a valve hole communicating with the crank chamber on a wall surface opposite to the back pressure chamber; a pressure receiving portion disposed in the back pressure chamber; And a spool having a shaft portion that extends through the partition member and connects the pressure receiving portion and the valve portion. The second control valve is configured such that a force that moves the spool in a direction approaching the valve hole by the pressure applied to the pressure receiving portion when the first control valve is opened opens the spool by the pressure applied to the valve portion. When the force is greater than the force to move away from the valve hole, the valve portion abuts against the wall surface of the valve chamber to close the valve hole and minimize the opening of the pressure relief passage, and the first control The force that moves the spool in the direction approaching the valve hole due to the pressure applied to the pressure receiving portion when the valve is closed is smaller than the force that moves the spool away from the valve hole due to the pressure applied to the valve portion. In this case, the valve section is configured to open the valve hole away from the wall surface and maximize the opening of the pressure release passage.
特開2016−108960号公報JP, 2006-108960, A
 上記従来の可変容量圧縮機においては、前記第1制御弁が前記圧力供給通路を開放したとき、前記圧力供給通路における前記第1制御弁よりも下流側の領域内の冷媒が前記連通路を経由して前記第2制御弁の前記背圧室内に流入することにより、前記背圧室の圧力が上昇する。これにより、前記スプールが前記放圧通路の開度を最小とする方向(弁孔に近づく方向)に移動する。
 ここで、上記従来の可変容量圧縮機において、微小な異物が前記圧力供給通路等を冷媒と伴に流通するおそれがある。しかしながら、前記連通路は前記背圧室の端壁に開口しているので、異物が冷媒と伴に流通していた場合、この異物が冷媒流れと伴に前記背圧室内に流入し易い。そして、前記背圧室内に異物が流入すると、前記スプールの作動が阻害されるおそれがあり、その工夫が求められている。
 そこで、本発明は、前記排出通路の開度を制御する第2制御弁内への異物混入を防止又は抑制することができる可変容量圧縮機を提供することを目的とする。
In the conventional variable capacity compressor, when the first control valve opens the pressure supply passage, the refrigerant in the downstream region of the pressure supply passage from the first control valve passes through the communication passage. Then, by flowing into the back pressure chamber of the second control valve, the pressure in the back pressure chamber increases. As a result, the spool moves in a direction (a direction approaching the valve hole) that minimizes the opening of the pressure release passage.
Here, in the conventional variable capacity compressor, there is a possibility that minute foreign matter may flow along with the refrigerant through the pressure supply passage. However, since the communication path is open to the end wall of the back pressure chamber, if foreign matter flows along with the refrigerant, the foreign matter easily flows into the back pressure chamber along with the refrigerant flow. When foreign matter flows into the back pressure chamber, there is a risk that the operation of the spool may be hindered.
Accordingly, an object of the present invention is to provide a variable capacity compressor that can prevent or suppress foreign matter from entering the second control valve that controls the opening degree of the discharge passage.
 本発明の一側面によると、冷媒が導かれる吸入室、前記吸入室内の冷媒を吸入して圧縮する圧縮部、前記圧縮部によって圧縮された冷媒が吐出される吐出室、及び、制御圧室を有し、前記制御圧室の圧力に応じて吐出容量が変化する可変容量圧縮機が提供される。前記可変容量圧縮機は、第1制御弁と、逆止弁と、第2制御弁と、背圧逃がし通路と、を備える。前記第1制御弁は、前記吐出室内の冷媒を前記制御圧室に供給するための供給通路に設けられ、前記供給通路の開度を制御する。前記逆止弁は、前記供給通路における前記第1制御弁と前記制御圧室との間の下流側供給通路に設けられ、前記制御圧室から前記第1制御弁に向かう冷媒の逆流を阻止するように作動する。前記第2制御弁は、前記制御圧室内の冷媒を前記吸入室に排出するための排出通路に設けられ、前記排出通路の開度を制御する。前記背圧逃がし通路は、前記下流側供給通路における前記第1制御弁と前記逆止弁との間の中間供給通路と前記吸入室とを連通すると共に絞り部を有する。前記第2制御弁は、背圧室と、弁室と、区画部材と、スプールとを有する。前記背圧室は、前記中間供給通路に連通する。前記弁室は、前記排出通路における前記第2制御弁と前記制御圧室との間の上流側排出通路に連通する弁孔、及び、前記吸入室に連通する排出孔が開口され、前記排出通路の一部を構成する。前記区画部材は、前記背圧室と前記弁室とを区画する。前記スプールは、前記背圧室内に配置される受圧部、前記弁室内に配置され前記弁孔の周囲の弁座に接離する弁部、及び、前記区画部材を貫通して延び前記受圧部と前記弁部とを連結する軸部を有する。前記第2制御弁は、前記背圧室内の圧力と前記上流側排出通路内の圧力とに応じて前記スプールを移動させて前記弁部を前記弁座に接離させることにより、前記排出通路の開度を制御するように構成されている。前記背圧室は、当該背圧室と前記中間供給通路とに接続される連通路を介して前記中間供給通路に連通する。前記連通路の一端は、前記中間供給通路の途上に設けられる接続部に接続される。前記連通路のうちの少なくとも前記接続部から前記背圧室側に向って延びる連通路側接続部位は、前記中間供給通路のうちの前記接続部から前記第1制御弁側に向って延びる中間供給通路側接続部位に対して、鋭角に延伸している。 According to one aspect of the present invention, the suction chamber into which the refrigerant is guided, the compression section that sucks and compresses the refrigerant in the suction chamber, the discharge chamber into which the refrigerant compressed by the compression section is discharged, and the control pressure chamber A variable capacity compressor is provided that has a discharge capacity that changes according to the pressure in the control pressure chamber. The variable capacity compressor includes a first control valve, a check valve, a second control valve, and a back pressure relief passage. The first control valve is provided in a supply passage for supplying the refrigerant in the discharge chamber to the control pressure chamber, and controls the opening of the supply passage. The check valve is provided in a downstream supply passage between the first control valve and the control pressure chamber in the supply passage, and prevents reverse flow of the refrigerant from the control pressure chamber toward the first control valve. Operates as follows. The second control valve is provided in a discharge passage for discharging the refrigerant in the control pressure chamber to the suction chamber, and controls the opening degree of the discharge passage. The back pressure relief passage communicates the suction chamber with an intermediate supply passage between the first control valve and the check valve in the downstream supply passage and has a throttle portion. The second control valve includes a back pressure chamber, a valve chamber, a partition member, and a spool. The back pressure chamber communicates with the intermediate supply passage. The valve chamber has a valve hole communicating with an upstream discharge passage between the second control valve and the control pressure chamber in the discharge passage, and a discharge hole communicating with the suction chamber, and the discharge passage Part of The partition member partitions the back pressure chamber and the valve chamber. The spool includes a pressure receiving portion disposed in the back pressure chamber, a valve portion disposed in the valve chamber and contacting and separating from a valve seat around the valve hole, and the pressure receiving portion extending through the partition member. It has a shaft part connecting the valve part. The second control valve moves the spool in accordance with the pressure in the back pressure chamber and the pressure in the upstream discharge passage to bring the valve portion into and out of contact with the valve seat. The opening degree is configured to be controlled. The back pressure chamber communicates with the intermediate supply passage through a communication passage connected to the back pressure chamber and the intermediate supply passage. One end of the communication path is connected to a connection portion provided in the middle of the intermediate supply path. The communication passage side connection portion extending from at least the connection portion of the communication passage toward the back pressure chamber side is an intermediate supply extending from the connection portion of the intermediate supply passage toward the first control valve side. It extends at an acute angle with respect to the passage-side connecting portion.
 本発明の前記一側面による前記可変容量圧縮機によれば、前記逆止弁は前記供給通路における前記第1制御弁と前記制御圧室との間の下流側供給通路に設けられ、前記第2制御弁の前記背圧室は、この下流側供給通路における前記第1制御弁と前記逆止弁との間の中間供給通路に前記連通路を介して連通している。そして、この連通路のうちの少なくとも前記接続部から前記背圧室側に向って延びる連通路側接続部位は、前記中間供給通路のうちの前記接続部から前記第1制御弁側に向って延びる中間供給通路側接続部位に対して、鋭角に延伸している。これにより、微小な異物が前記中間供給通路を冷媒と伴に流通したとしても、前記異物の全部又は大半は前記接続部において、前記第1制御弁側から前記逆止弁側へ流れる冷媒流れの主流に沿って流れることになるため、前記背圧室への異物の混入を防止又は抑制することができる。その結果、微小な異物が冷媒と伴に流通していたとしても、前記スプールを良好に作動させることができる。このようにして、前記第2制御弁内への異物混入を防止又は抑制することができる可変容量圧縮機を提供することができる。 According to the variable capacity compressor according to the one aspect of the present invention, the check valve is provided in a downstream supply passage between the first control valve and the control pressure chamber in the supply passage, and the second The back pressure chamber of the control valve communicates with the intermediate supply passage between the first control valve and the check valve in the downstream supply passage via the communication passage. And the communicating path side connection site | part extended toward the said back pressure chamber side at least from the said connection part of this communicating path extends toward the said 1st control valve side from the said connecting part of the said intermediate supply passages. It extends at an acute angle with respect to the intermediate supply passage side connection site. Thus, even if minute foreign matter flows through the intermediate supply passage along with the refrigerant, all or most of the foreign matter flows in the connection portion from the first control valve side to the check valve side. Since the fluid flows along the main flow, it is possible to prevent or suppress foreign matter from entering the back pressure chamber. As a result, the spool can be operated satisfactorily even if minute foreign matter is distributed along with the refrigerant. In this way, it is possible to provide a variable capacity compressor capable of preventing or suppressing foreign matter from entering the second control valve.
本発明の一実施形態における可変容量圧縮機の断面図である。It is sectional drawing of the variable capacity compressor in one Embodiment of this invention. 前記可変容量圧縮機の第1制御弁の断面図と共に、冷媒が流通する通路の系統図を示した概念図である。It is the conceptual diagram which showed the systematic diagram of the channel | path which a refrigerant | coolant distribute | circulates with sectional drawing of the 1st control valve of the said variable capacity compressor. 前記可変容量圧縮機の要部拡大断面図である。It is a principal part expanded sectional view of the said variable capacity compressor. 前記可変容量圧縮機の排出通路の一部を含む部分拡大断面図である。It is a partial expanded sectional view including a part of discharge passage of the variable capacity compressor. 前記可変容量圧縮機の背圧逃がし通路を含む部分拡大断面図である。It is a partial expanded sectional view including the back pressure relief passage of the variable capacity compressor. 前記第1制御弁のコイル通電量と設定圧力との相関を示す線図である。It is a diagram which shows the correlation with the coil energization amount of a said 1st control valve, and setting pressure. 前記可変容量圧縮機の逆止弁を含む部分拡大断面図である。It is a partial expanded sectional view containing the non-return valve of the said variable capacity compressor. 前記可変容量圧縮機の第2制御弁の断面図である。It is sectional drawing of the 2nd control valve of the said variable capacity compressor. 前記第2制御弁の変形例を示す断面図である。It is sectional drawing which shows the modification of the said 2nd control valve.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。
 図1は、車両用エアコンシステム(エア・コンディショナー・システム)に適用される可変容量型クラッチレス圧縮機を例示する。なお、図1は、この可変容量型クラッチレス圧縮機が車両に搭載されたときの状態(つまり、圧縮機設置状態)を示しており、図において、上側が重力方向上側であり、下側が重力方向下側である。
 図1に示す可変容量圧縮機100は、複数のシリンダボア101aが形成されたシリンダブロック101と、シリンダブロック101の一端に設けられたフロントハウジング102と、シリンダブロック101の他端にバルブプレート103を介して設けられたシリンダヘッド104と、を備える。シリンダブロック101とフロントハウジング102とによって制御圧室としてのクランク室140が形成され、駆動軸110は、クランク室140内を横断して設けられている。
 駆動軸110の軸線Oの延伸方向の中間部分の周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定されたロータ112にリンク機構120を介して連結され、軸線Oに対する傾角は変更可能に構成される。リンク機構120は、ロータ112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端が第1連結ピン122を介して第1アーム112aに回動可能に連結され、他端が第2連結ピン123を介して第2アーム111aに回動可能に連結されたリンクアーム121と、を備える。
 斜板111の貫通孔111bは、斜板111が最大傾角と最小傾角との間の範囲で傾動可能な形状に形成され、貫通孔111bには駆動軸110と当接する最小傾角規制部が形成されている。斜板111が駆動軸110に直交するときの斜板111の傾角を0degとした場合、貫通孔111bの最小傾角規制部は、斜板111を略0degまで傾角変位が可能に形成されている。また、斜板111の最大傾角は、斜板111がロータ112に当接することにより規制される。
 ロータ112と斜板111の間には、斜板111の傾角を減少させる方向に斜板111を付勢する傾角減少バネ114が装着される。また、斜板111と駆動軸110に設けたバネ支持部材116との間には、斜板111の傾角を増大させる方向に斜板111を付勢する傾角増大バネ115が装着されている。ここで、最小傾角における傾角増大バネ115の付勢力は傾角減少バネ114の付勢力より大きく設定されており、駆動軸110が回転していないときは、斜板111は傾角減少バネ114の付勢力と傾角増大バネ115の付勢力とがバランスする傾角に位置決めされる。
 駆動軸110の一端は、フロントハウジング102の外側に突出したボス部102a内を貫通してフロントハウジング102の外側まで延在し、図示しない動力伝達装置に連結される。なお、駆動軸110とボス部102aとの間には、軸封装置130が挿入され、クランク室140と外部空間とを遮断している。
 駆動軸110とロータ112との連結体は、ラジアル方向に軸受131、132で支持され、スラスト方向に軸受133、スラストプレート134で支持されている。そして、外部駆動源からの動力が動力伝達装置に伝達され、駆動軸110は動力伝達装置の回転と同期して回転可能となっている。なお、駆動軸110のスラストプレート134が当接する部分とスラストプレート134との隙間は、調整ネジ135によって所定の隙間に調整される。
 シリンダボア101a内には、ピストン136が配置され、ピストン136のクランク室140側に突出している端部の内側空間には、斜板111の外周部が収容され、斜板111は、一対のシュー137を介してピストン136と連動するよう構成される。そして、ピストン136は、斜板111の回転によりシリンダボア101a内を往復動する。シリンダヘッド104には、中央部に吸入室141が形成されると共に、吸入室141の径方向外側を環状に取り囲む吐出室142が区画形成される。
 吸入室141とシリンダボア101aとは、バルブプレート103に設けられた連通孔103a及び吸入弁形成板150に形成された吸入弁(図示せず)を介して連通する。吐出室142とシリンダボア101aとは、バルブプレート103に設けられた連通孔103b及び吐出弁形成板151に形成された吐出弁(図示せず)を介して連通する。
 本実施形態では、フロントハウジング102、センターガスケット(図示せず)、シリンダブロック101、シリンダガスケット152、吸入弁形成板150、バルブプレート103、吐出弁形成板151、ヘッドガスケット153、シリンダヘッド104が順次接続され、複数の通しボルト105によって締結されて圧縮機ハウジングが形成される。本実施形態では、吸入室141及び吐出室142は、前記圧縮機ハウジングの一端部を構成するハウジング部材としてのシリンダヘッド104内に形成されている。詳しくは、吸入室141は、前記圧縮機ハウジング内を前記圧縮機ハウジングの他端部から一端部側に向って延びる駆動軸110の軸線Oの延長線上に配置され、吐出室142は吸入室141における前記軸線Oと直交する径方向外側において、吸入室141を囲むように環状に形成されている。なお、本実施形態において、駆動軸110の軸線Oの延伸方向が本発明に係る「前記圧縮機ハウジングの中心軸延伸方向」に相当する。
 また、シリンダブロック101の図1で上部にはマフラが設けられる。マフラは、吐出ポート106aが開口される蓋部材106とシリンダブロック101上部に区画形成された形成壁101bとが図示しないシール部材を介してボルトで締結されることによって形成される。蓋部材106と形成壁101bとで囲まれるマフラ空間143には吐出逆止弁200が配置されている。
 吐出逆止弁200は、吐出室142とマフラ空間143とを連通する連通路144とマフラ空間143との接続部に配置され、連通路144(上流側)とマフラ空間143(下流側)との圧力差に応答して動作し、圧力差が所定値より小さい場合は連通路144を遮断し、圧力差が所定値より大きい場合は連通路144を開放する。したがって、吐出室142は、連通路144、吐出逆止弁200、マフラ空間143及び吐出ポート106aで形成される吐出通路を介してエアコンシステムの冷媒回路(の高圧側)と接続される。
 シリンダヘッド104には、吸入通路104aがシリンダヘッド104の径方向外側から吐出室142の一部を横切るように直線状に延設され、この吸入通路104aを介して吸入室141はエアコンシステムの吸入側冷媒回路と接続されている。
 前記エアコンシステムの前記冷媒回路の低圧側の冷媒は、吸入通路104aを介して吸入室141に導かれる。吸入室141内の冷媒は、ピストン136の往復運動によってシリンダボア101a内に吸入され、圧縮されて吐出室142に吐出される。すなわち、本実施形態においては、シリンダボア101a及びピストン136によって吸入室141内の冷媒を吸入して圧縮する圧縮部が構成されている。そして、吐出室142に吐出された冷媒(前記圧縮部によって圧縮された冷媒)は、前記吐出通路を介して前記エアコンシステムの前記冷媒回路の高圧側へと導かれる。
 シリンダヘッド104には、供給通路145が形成されている。この供給通路145には、第1制御弁300及び逆止弁350が設けられている。そして、シリンダブロック101及びシリンダヘッド104には、排出通路146が形成されている。この排出通路146には第2制御弁400が設けられている。また、シリンダブロック101とシリンダヘッド104との間には、背圧逃がし通路147が設けられている。
[供給通路]
 図2は、第1制御弁300の断面図と共に、冷媒が流通する通路の系統図を示した概念図であり、図3は逆止弁350及び第2制御弁400を含む可変容量圧縮機100の要部断面図である。供給通路145は、吐出室142内の冷媒をクランク室140に供給するための通路である。ここで、供給通路145における吐出室142と第1制御弁300との間の通路を上流側供給通路145aと呼び、供給通路145における第1制御弁300とクランク室140との間の通路を下流側供給通路145bと呼ぶ。供給通路145は、後述するように第1制御弁300を経由し第1制御弁300によって開閉される。また、逆止弁350は下流側供給通路145bに設けられている。
 本実施形態において、供給通路145は、シリンダヘッド104に形成された連通路104b、シリンダヘッド104に形成された第1制御弁300の収容孔104cのうちの後述する第2領域S2(図2参照)、第1制御弁300の内部(図2参照)、収容孔104cのうちの後述する第3領域S3(図2参照)、シリンダヘッド104に形成された連通路104d、シリンダヘッド104におけるシリンダブロック101(ヘッドガスケット153)との接続端面104hに開口する接続部104e、ヘッドガスケット153の連通孔、吐出弁形成板151の連通孔、バルブプレート103に形成された連通孔103c、吸入弁形成板150の連通孔、シリンダガスケット152に形成される弁孔152a、シリンダブロック101を貫通する連通路101e、及び、逆止弁350の後述する第2通路351c2及び第1通路351c1(後述する図7参照)を経由して、吐出室142とクランク室140とを連通するように形成されている。したがって、本実施形態では、連通路104bが上流側供給通路145aを構成し、第3領域S3(図2参照)、連通路104d、接続部104e、ヘッドガスケット153の連通孔、吐出弁形成板151の連通孔、連通孔103c、吸入弁形成板150の連通孔、シリンダガスケット152の弁孔152a、連通路101e、及び、第2通路351c2及び第1通路351c1からなる通路が下流側供給通路145bを構成する。
[排出通路]
 排出通路146は、クランク室140内の冷媒を吸入室141に排出するための通路である。本実施形態では、排出通路146は、図1~図3に示すように、吸入室141側において二つの通路に分岐しており、その一方の通路(後述する第1排出通路146a)が第2制御弁400を経由し第2制御弁400によって開閉される。本実施形態において、排出通路146は、シリンダブロック101のフロントハウジング102側の端面を貫通してシリンダヘッド104側に延びる連通路101c、及び、連通路101cが接続されると共にシリンダブロック101のシリンダヘッド104側の端面に開口する空間101dを有する。
 図4は、排出通路146の一部(後述する第2排出通路146b)を含む部分拡大図である。
 本実施形態では、排出通路146は、図1~図3に示すように、空間101dから第1排出通路146aと第2排出通路146bに分岐している。第1排出通路146aは、空間101dから、シリンダガスケット152の連通孔、吸入弁形成板150の連通孔、バルブプレート103を貫通する後述する弁孔103d、第2制御弁400の後述する弁室420、排出孔431aを経由して吸入室141に開口するように形成されている。第2排出通路146bは、図4に示すように、空間101dから、シリンダガスケット152に形成された連通孔、吸入弁形成板150に形成された固定絞りとしての溝部150a、バルブプレート103に形成された連通孔103e、吐出弁形成板151の連通孔、ヘッドガスケット153の連通孔を経由し第2制御弁400を迂回するように設けられ、空間101dと吸入室141との間を常時連通している。また、排出通路146における第2制御弁400とクランク室140との間の通路を上流側排出通路146c(図2参照)と呼ぶ。なお、第2制御弁400によって開かれたときの第1排出通路146aの流路断面積は、第2排出通路146bの固定絞りとしての溝部150aの流路断面積より大きく設定されている。
[背圧逃がし通路(絞り通路)]
 背圧逃がし通路147は、図2及び図3に示すように、下流側供給通路145bにおける第1制御弁300と逆止弁350との間の中間供給通路145b1と吸入室141とを連通すると共に絞り部147aを有する絞り通路としての通路である。
 図5は、背圧逃がし通路147を含む部分拡大図である。
 本実施形態では、絞り部147aは、吐出弁形成板151に貫通形成された溝部からなり、この溝部が接続部104eに開口すると共にヘッドガスケット153の連通孔に開口している。本実施形態では、背圧逃がし通路147は、吐出弁形成板151に形成された絞り部147a及びヘッドガスケット153の連通孔を経由して、接続部104e(つまり、中間供給通路145b1)と吸入室141との間を常時連通している。
 また、下流側供給通路145bのうちの中間供給通路145b1(図2参照)は、第3領域S3(図2参照)、連通路104d、接続部104e、ヘッドガスケット153の連通孔、吐出弁形成板151の連通孔、連通孔103c、吸入弁形成板150の連通孔、シリンダガスケット152の弁孔152a、及び、連通路101eのうちの接続部104eと逆止弁350との間の通路により構成されている。
 第1制御弁300が閉じた場合は、中間供給通路145b1の冷媒は背圧逃がし通路147を介して吸入室141へ流出されることになる。これにより、中間供給通路145b1及び第2制御弁400の後述する背圧室410の圧力が下がる。その結果、後述するように、逆止弁350及び第2制御弁400のスプール440が移動する。
[第1制御弁の概要]
 第1制御弁300は、供給通路145の開口面積(開度)を制御する弁である。第1制御弁300は、具体的には、図1及び図2に示すように、シリンダヘッド104に形成された収容孔104c内に収容される。本実施形態において、第1制御弁300にはOリング300a~300cが装着されており、これらOリング300a~300cによって収容孔104c内には、連通路104fを介して吸入室141に連通する第1領域S1と、連通路104bを介して吐出室142に連通する第2領域S2と、連通路104d、接続部104e、連通路101e及び逆止弁350を介してクランク室140に連通する第3領域S3とが区画形成される。そして、収容孔104cの第2領域S2及び第3領域S3が供給通路145の一部を構成している。第1制御弁300は、連通路104fを介して導入された吸入室141の圧力と外部信号に応じてソレノイドに流れる電流により発生する電磁力とに応答して供給通路145の開度を制御(調整)し、クランク室140への吐出ガス導入量(圧力供給量)を制御する。
[逆止弁の概要]
 逆止弁350は、供給通路145における下流側供給通路145b(言い換えると第1制御弁300より下流の供給通路145)に設けられ、クランク室140から第1制御弁300に向かう冷媒の逆流を阻止すると共に、第1制御弁300からクランク室140に向かう冷媒の流れを許容するように作動する弁である。逆止弁350は、具体的には、シリンダブロック101の連通路101eにおけるバルブプレート103側の開口端部に形成され、連通路101eの一部を構成する収容孔101g内に収容される。
[第2制御弁の概要]
 第2制御弁400は、排出通路146(本実施形態では第1排出通路146a)に設けられ、この排出通路146の開度を制御する弁である。第2制御弁400は、具体的には、シリンダヘッド104に形成されると共に吸入室141に開口する収容孔104g内に収容され、排出通路146のうちの第1排出通路146aを開閉するためのスプール440を含んで構成される。第2制御弁400は、下流側供給通路145bにおける第1制御弁300と逆止弁350との間の中間供給通路145b1の圧力(詳しくは、後述する背圧室410内の圧力)と、クランク室140の圧力(詳しくは、上流側排出通路146c内の圧力)に応じてスプール440を移動させて排出通路146の開度を制御(調整)し、クランク室140から吸入室141への冷媒の排出量を制御する。
 第1制御弁300及び逆止弁350が閉じているときは、第2制御弁400が第1排出通路146aを開放する。この場合、排出通路146は第1排出通路146aと第2排出通路146bとで構成される。その結果、クランク室140内の冷媒は速やかに吸入室141に流れ、クランク室140の圧力が吸入室141の圧力と同等となって斜板の傾角が最大となり、ピストンストローク(吐出容量)が最大となる。
 また、第1制御弁300及び逆止弁350が開いているときは、第2制御弁400が第1排出通路146aを閉鎖する。この場合、排出通路146は第2排出通路146bのみで構成される。その結果、クランク室140内の冷媒が吸入室141に流れることが制限されてクランク室140の圧力が上昇し易くなる。そして、クランク室140の圧力が上昇することにより斜板111の傾角が最大から減少し、ピストンストロークを可変に制御することができる。
 このように、可変容量圧縮機100は、吸入室141、前記圧縮部、吐出室142、及び、制御圧室としてのクランク室140とを有し、クランク室140の圧力に応じて吐出容量が変化する圧縮機、換言すると、クランク室140内の調圧によって吐出容量が制御される圧縮機である。
 次に、第1制御弁300、逆止弁350、第2制御弁400について詳述する。
[第1制御弁]
 図2に戻って、第1制御弁300は、弁ユニットと弁ユニットを開閉作動させる駆動ユニット(ソレノイド)とから構成され、シリンダヘッド104に形成された収容孔104c内に収容されている。
 第1制御弁300の前記弁ユニットは、円筒状の弁ハウジング301を有し、弁ハウジング301の内部には、第1感圧室302、弁室303及び第2感圧室307が軸方向に順番に並んで形成されている。
 第1感圧室302は、弁ハウジング301の外周面に形成された連通孔301a、収容孔104cのうちの第3領域S3、及び、シリンダヘッド104に形成された連通路104dを介してクランク室140と連通している。
 第2感圧室307は、弁ハウジング301の外周面に形成された連通孔301e、収容孔104cのうちの第1領域S1、及び、シリンダヘッド104に形成された連通路104fを介して吸入室141と連通している。弁室303は、弁ハウジング301の外周面に形成された連通孔301b、収容孔104cのうちの第2領域S2、及び、シリンダヘッド104に形成された連通路104bを介して吐出室142と連通している。第1感圧室302と弁室303とは、弁孔301cを介して連通可能となっている。
 弁室303と第2感圧室307との間には、支持孔301dが形成されている。第1感圧室302内には、ベローズ305が配設されている。ベローズ305は、内部を真空にしてバネを内蔵し、弁ハウジング301の軸方向に変位可能に配置され、第1感圧室302内、即ちクランク室140内の圧力を受圧する感圧手段としての機能を有する。
 弁室303内には、円柱状の弁体304が収容されている。弁体304は、外周面が支持孔301dの内周面に密接しつつ支持孔301d内を摺動可能であって、弁ハウジング301の軸線方向に移動可能である。弁体304の一端は弁孔301cを開閉可能であり、弁体304の他端は第2感圧室307内に突出している。弁体304の一端には、棒状の連結部306の一端が固定されている。連結部306は、他端がベローズ305に当接可能に配置されており、ベローズ305の変位を弁体304に伝達する機能を有する。
 第1制御弁300の前記駆動ユニットは円筒状のソレノイドハウジング312を有し、ソレノイドハウジング312は弁ハウジング301の端部に同軸に連結される。ソレノイドハウジング312内には、電磁コイルを樹脂で覆ったモールドコイル314が収容される。また、ソレノイドハウジング312内には、モールドコイル314と同軸的に円筒状の固定コア310が収容され、固定コア310は弁ハウジング301からモールドコイル314の中央付近にまで延びている。弁ハウジング301とは反対側の固定コア310の端部は、筒状のスリーブ313によって囲まれている。固定コア310は、中央に挿通孔310aを有し、挿通孔310aの一端は第2感圧室307に開口している。固定コア310とスリーブ313の閉塞端との間には、円筒状の可動コア308が収容されている。
 挿通孔310aには、ソレノイドロッド309が挿通され、ソレノイドロッド309の一端は弁体304の基端側に圧入により固定される。ソレノイドロッド309の他端部は、可動コア308に形成された貫通孔に圧入され、ソレノイドロッド309と可動コア308とは一体化される。固定コア310と可動コア308との間には、可動コア308を固定コア310から離れる方向(開弁方向)に付勢する解放バネ311が備えられる。
 可動コア308、固定コア310及びソレノイドハウジング312は、磁性材料で形成されて磁気回路を構成する。スリーブ313は、ステンレス系材料などの非磁性材料で形成されている。モールドコイル314は、可変容量圧縮機100の外部に設けられた制御装置に信号線を介して接続される。モールドコイル314は、制御装置から制御電流Iが供給されると電磁力F(i)を発生する。モールドコイル314の電磁力F(i)は、可動コア308を固定コア310に向けて吸引し、弁体304を閉弁方向に駆動する。
 第1制御弁300の弁体304には、モールドコイル314による電磁力F(i)の他に、解放バネ311による付勢力fs、弁室303の圧力(吐出室圧力Pd)による力、第1感圧室302の圧力(クランク室圧力Pc)による力、第2感圧室307の圧力(吸入室圧力Ps)による力、及び、ベローズ305が内蔵するバネによる付勢力Fが作用する。
 ここで、ベローズ305の伸縮方向の有効受圧面積Sb、弁孔301c側より弁体304に作用するクランク室の圧力受圧面積Sv、弁体304の円筒外周面の断面積SrをSb=Sv=Srとしてあるので、弁体304に作用する力の関係は数式1で示される。なお、数式1において、「+」は弁体304の閉弁方向、「−」は開弁方向を示す。
Figure JPOXMLDOC01-appb-M000001
 ベローズ305、連結部306及び弁体304の連結体は、吸入室圧力Psが設定圧力よりも高くなると吐出容量を増大させるために供給通路145の開度を小さくしてクランク室圧力Pcを低下させ、吸入室圧力Psが設定圧力を下回ると吐出容量を減少させるために供給通路145の開度を大きくしてクランク室圧力Pcを上昇させる。つまり、第1制御弁300は、吸入室圧力Psが設定圧力に近づくように供給通路145の開度(開口面積)を自律制御する。
 図6は、第1制御弁300のコイル通電量と設定圧力との相関を示す線図である。弁体304には、ソレノイドロッド309を介してモールドコイル314の電磁力が閉弁方向に作用するので、モールドコイル314への通電量が増加すると供給通路145の開度を小さくする方向の力が増大し、図6に示すように設定圧力が低下方向に変化する。制御装置(駆動ユニット)は、例えば400Hz~500Hzの範囲の所定周波数でのパルス幅変調(PWM制御)によりモールドコイル314への通電を制御し、モールドコイル314を流れる電流値が所望の値となるようにパルス幅(デューティ比)を変更する。
 エアコンシステムの作動時、つまり可変容量圧縮機100の作動状態では、設定温度などの空調設定や外部環境に基づいてモールドコイル314への通電量が制御装置によって調整され、吸入室圧力Psが通電量に対応する設定圧力になるように吐出容量が制御される。また、エアコンシステムの非作動時、つまり可変容量圧縮機100の非作動状態では、制御装置はモールドコイル314への通電をOFFする。これにより、供給通路145が解放バネ311によって開放され、可変容量圧縮機100の吐出容量は最小の状態に制御される。
[逆止弁]
 次に、逆止弁350について図7を参照して説明する。図7は、可変容量圧縮機100の逆止弁350を含む部分拡大断面図である。図7(A)は、逆止弁350が第1制御弁300からクランク室140に向かう冷媒の流れを許容する方向に作動した状態を示し、図7(B)は、逆止弁350がクランク室140から第1制御弁300に向かう冷媒の逆流を阻止する方向に作動した状態を示している。
 逆止弁350は、弁体351と、弁体351を収容する収容孔101gと、収容孔101gの一端を閉塞する弁孔152a及び弁座152bを有する弁座形成部材としてのシリンダガスケット152とを備えている。つまり、シリンダガスケット152には弁孔152a及び弁座152bが形成されている。
 弁体351は、概ね円筒状の周壁351aと、周壁351aの一端に接続される端壁351bとを備えている。周壁351aは、弁体長手方向の中間部をなす大径部351a1と、大径部351a1と端壁351bとの間を連結すると共に大径部351a1より小径の第1小径部351a2と、大径部351a1における第1小径部351a2とは反対側の端面から延伸する大径部351a1より小径の第2小径部351a3と、を含む。弁体351には、内部通路が形成されている。この内部通路は、周壁351aの開放端から端壁351bに向けて形成された第1通路351c1と、第1小径部351a2の周壁を貫通して第1通路351c1と第1小径部351a2の周囲の収容孔101gとを連通する第2通路351c2とで構成される。なお、弁体351は、例えば樹脂材料で形成されるが、金属材料等他の材料で形成されても良い。
 収容孔101gは、シリンダブロック101の連通路101eにおけるバルブプレート103側の開口端部に形成され、連通路101eの一部を構成する。収容孔101gは、クランク室140側の小径部101g1と、小径部101g1より大径のバルブプレート103側の大径部101g2とで構成されている。弁体351の大径部351a1が大径部101g2に摺動支持されると共に、弁体351の第2小径部351a3が小径部101g1に摺動支持されている。
 収容孔101gは、シリンダブロック101の端面に直交するように形成されており、弁体351は駆動軸110の軸線Oの延伸方向に移動する。弁体351の端壁351bが弁座152bに当接することにより弁体351の一方の移動が規制され、また、周壁351aの他端が収容孔101gの端面101g3に当接することにより弁体351の他方の移動が規制される。端壁351bが弁座152bに当接すると、弁孔152aが閉鎖され、端壁351bが弁座152bから離れると弁孔152aが開放される。
 収容孔101gは、下流側供給通路145bにおける第1制御弁300と逆止弁350との間の中間供給通路145b1を介して、第1制御弁300の収容孔104cにおける第3領域S3に連通する。連通路101eは、シリンダブロック101のフロントハウジング102側の端面を貫通してシリンダヘッド104側に延びると共に、収容孔101gの端面101g3を貫通し、収容孔101gを経由してシリンダヘッド104側端面に開口している。
 したがって、弁体351の一端には中間供給通路145b1の圧力Pm(逆止弁350より上流の圧力)が作用し、弁体351の他端にはクランク室圧力Pc(逆止弁350より下流の圧力)が作用し、弁体351は弁体351に作用する上流と下流の圧力差(Pm−Pc)に応じて軸線方向に移動する。
 中間供給通路145b1は、背圧逃がし通路147を経由して吸入室141と連通しているが、この背圧逃がし通路147には絞り部147aが設けられている。したがって、第1制御弁300が弁孔301cを開放している状態では、吐出室142の冷媒ガスの大半が連通路104d、接続部104e、ヘッドガスケット153の連通孔、吐出弁形成板151の連通孔、連通孔103c、吸入弁形成板150の連通孔を経由して逆止弁350の弁孔152aに至る。このため、弁体351の一端に作用する中間供給通路145b1の圧力Pmが上昇し、Pm−Pc>0となる。そして、弁体351に作用する上流と下流の圧力差(Pm−Pc)によって、弁体351の端壁351bが弁座152bから離れ周壁351aの他端が収容孔101gの端面101g3に当接した状態となる。これにより、吐出室142の冷媒ガスは、弁孔152aから収容孔101gの大径部101g2、第2通路351c2、第1通路351c1及び逆止弁350より下流の連通路101eを経由してクランク室140に供給される。
 また、第1制御弁300が弁孔301cを開放している状態から弁孔301cを閉鎖した場合には、吐出室142の冷媒ガスが中間供給通路145b1に供給されず、中間供給通路145b1の冷媒ガスは、背圧逃がし通路147を経由して吸入室141に流れる。このため、弁体351の一端に作用する中間供給通路145b1の圧力Pmが低下してPm−Pc<0となる。そして、弁体351に作用する上流と下流の圧力差(Pm−Pc)によって、周壁351aの他端が収容孔101gの端面101g3から離れ弁体351の端壁351bが弁座152bに当接し、逆止弁350より下流の連通路101eと中間供給通路145b1との連通が遮断される。これにより、中間供給通路145b1の圧力Pmは、吸入室圧力Psと同等となる。このように、逆止弁350は、第1制御弁300の開閉に連動して供給通路145を開閉するように構成されている。
 なお、逆止弁350は、弁体351を弁座152bに向けて付勢する圧縮コイルバネ等の付勢手段を付加するような構成としても良い。また、弁座形成部材は、シリンダガスケット152に限定されず、例えば、吸入弁形成板150やバルブプレート103であっても良い。
[第2制御弁]
 第2制御弁400について、図1~図3及び第2制御弁400の断面図である図8を参照して説明する。
 第2制御弁400は、背圧室410と、弁室420と、区画部材430と、スプール440とを有し、シリンダヘッド104に形成されると共に吸入室141に開口する収容孔104gに収容される。
 収容孔104gは、図3に示すように、シリンダヘッド104におけるシリンダブロック101(ヘッドガスケット153)との接続端面104h側に開口するように形成されている。収容孔104gは、具体的には、シリンダヘッド104における吸入室形成壁のうちの閉塞端壁104iからバルブプレート103側に向って突設される突起部104jに、段付き円柱状に形成されている。この突起部104jは、具体的には、駆動軸110の軸線Oの延長上に配置されており、吸入室141の径方向中央部に位置している。突起部104jは、ヘッドガスケット153との間に隙間を有するように、シリンダヘッド104の閉塞端壁104iから接続端面104hの手前の位置まで延設されている。収容孔104gは、その中心軸が駆動軸110の軸線Oと略一致し、シリンダヘッド104の接続端面104h側に大径部、奥側に大径部より小径の小径部、及び大径部と小径部との間に段差部を有し、小径部が第1収容室104g1を構成し、大径部が区画部材430を収容する第2収容室104g2を構成している。
 背圧室410は、背圧室410と中間供給通路145b1とに接続される連通路104kを介して中間供給通路145b1に連通する。したがって、背圧室410内の圧力は、中間供給通路145b1の圧力Pmと同等である。本実施形態では、背圧室410は、区画部材430によって区画された第1収容室104g1からなる。なお、連通路104kについては、後に詳述する。
 弁室420は、排出通路146における第2制御弁400とクランク室140との間の上流側排出通路146c(図2及び図3参照)に連通する弁孔103d、及び、吸入室141に連通する排出孔431aが開口され、排出通路146(詳しくは第1排出通路146a)の一部を構成する。本実施形態では、排出孔431aは区画部材430の後述する周壁431に形成され、弁孔103dはバルブプレート103に形成されている。
 区画部材430は、背圧室410と弁室420とを区画する部材であり、例えば、円筒状の周壁431と、円盤状の端壁432とを有する。周壁431は、スプール440の後述する弁部442を囲むように設けられている。端壁432は、周壁431の一端側に接続される。端壁432は、スプール440の後述する軸部443の挿通用の挿通孔432aを有する。端壁432で区画された第1収容室104g1が背圧室410を構成し、周壁431と端壁432とで区画された区画部材430の内側の円筒空間は弁室420を構成する。
 本実施形態では、区画部材430の周壁431の外径は第2収容室104g2の周壁の内径より小さく設定され、周壁431が第2収容室104g2の周壁に摺動可能に支持されている。また、本実施形態では、区画部材430の端壁432の一端面432b側の径方向外縁部と、第2収容室104g2と第1収容室104g1との接続端面(換言すると、収容孔104gの大径部と小径部との間の段差部)には、区画部材430を付勢する付勢手段としての皿バネ450が配設されている。そして、第1収容室104g1から流入した冷媒が周壁431の外側の隙間を経由して吸入室141に流出するのを防止するため、周壁431と第2収容室104g2との間にOリング460を配置している。
 また、本実施形態では、区画部材430は、第2収容室104g2内に収容された状態で、皿バネ450によりバルブプレート103側に向けて付勢されることにより、周壁431の端壁432と反対側の端面431bが弁室420における背圧室410と反対側の壁面となっているバルブプレート103に当接するように、第2収容室104g2内で位置決めされている。この状態で、区画部材430は、周壁431の端壁432と反対側の端面431bが突起部104jの突設端面104j1よりバルブプレート103側に突出している。
 弁室420に開口する排出孔431aは、周壁431の周方向に離間した複数の箇所において、周壁431を貫通している。排出孔431aを介して、弁室420は吸入室141と連通している。具体的には、周壁431の端面431b側の部位は、排出孔431aが吸入室141に直接開口するように、突起部104jの突設端面104j1よりバルブプレート103側に突出している。なお、排出孔431aは孔に限らず、切り欠きとして形成されても良い。
 弁室420に開口する弁孔103dは、区画部材430の開放端を閉塞するバルブプレート103に形成されている。そして、バルブプレート103における弁孔103dの周囲の部位がスプール440の後述する弁部442が接離する弁座103fを構成する。弁室420は、弁孔103d、吸入弁形成板150の連通孔、シリンダガスケット152の連通孔、空間101d、連通路101cを介してクランク室140と連通している。つまり、本実施形態では、吸入弁形成板150の連通孔、シリンダガスケット152の連通孔、空間101d、連通路101cによって、排出通路146の上流側排出通路146cが構成される。この上流側排出通路146cは弁孔103dを介して弁室420に連通している。
 スプール440は、背圧室410内に配置される受圧部441、弁室420内に配置され弁孔103dの周囲の弁座103fに接離する弁部442、及び、区画部材430を貫通して延び受圧部441と弁部442とを連結する軸部443を有する。
 本実施形態では、受圧部441は、第1収容室104g1に収容されて、第1収容室104g1に摺動支持されている。また、弁部442は、弁室420に収容されてその一端面442a(図8参照)が弁座103fに接離して弁孔103dを開閉する。そして、軸部443は、受圧部441と弁部442より小径に形成されている。
 本実施形態では、軸部443は弁部442と一体に形成されている。軸部443を区画部材430の挿通孔432a(図8参照)に挿通させた状態で、受圧部441を軸部443に圧入することにより、スプール440が構成される。なお、弁部442が弁座103fに当接したときに、受圧部441が区画部材430の端壁432に当接する。具体的には、弁部442の一端面442aが弁座103fに当接したとき、同時に受圧部441の端壁432側(区画部材430側)の一端面441aが端壁432の一端面432bに当接するように、弁部442及び軸部443に対する受圧部441の軸線方向の圧入位置が調整されている。
 次に、第2制御弁400におけるスプール440の動作について説明する。
 第2制御弁400は、背圧室410内の圧力(以下において、背圧という)と上流側排出通路146c内の圧力(つまり、クランク室圧力Pc)とに応じてスプール440を移動させて弁部442を弁座103fに接離させることにより、排出通路146の開度を制御するように構成されている。前述したように、背圧室410は、中間供給通路145b1に連通路104kを介して連通しているため、背圧室410内の圧力(背圧)は、中間供給通路145b1の圧力Pmと同等である。また、上流側排出通路146c内の圧力は、クランク室圧力Pcと同等である。したがって、第2制御弁400は、背圧(中間供給通路145b1の圧力)Pmとクランク室圧力Pcとに応じてスプール440を作動させている。
 スプール440の一端面(受圧部441の他端面441b)は背圧Pmを受け、スプール440の他端面(弁部442の一端面442a)はクランク室圧力Pcを受けるので、スプール440は圧力差(Pm−Pc)に応じて軸線方向に移動する。Pm−Pc>0となれば、スプール440の他端面が弁座103fに当接し、第2制御弁400が第1排出通路146aを閉鎖する。Pm−Pc<0となれば、弁部442が区画部材430の端壁432に当接し、第2制御弁400が第1排出通路146aを最大に開放する。背圧Pmを受ける軸線方向のスプール440の受圧面積A1及びクランク室圧力Pcを受けるスプール440の受圧面積A2は、例えばA1=A2に設定されるが、スプール440の動作を調整するためA1>A2又はA1<A2としても良い。
 詳しくは、第2制御弁400は、受圧部441に作用する圧力(背圧Pm)によってスプール440を弁座103fに近づく方向に移動させる閉弁方向の力が弁部442に作用する圧力によってスプール440を弁座103fから離れる方向に移動させる開弁方向の力よりも大きくなると、弁部442が弁座103fに当接することにより、弁孔103dと排出孔431aとの連通を遮断して排出通路146の開度を最小とし、前記閉弁方向の力が前記開弁方向の力よりも小さくなると、弁部442が弁座103fから離れることにより、弁孔103dと排出孔431aとを連通して排出通路146の開度を最大とするように構成されている。
 なお、第1収容室104g1の内周面に摺動支持される受圧部441の最外周面441cと第1収容室104g1の内周面との間には微小な隙間が形成されている。このため、受圧部441の一端面441aが端壁432から僅かに離れた状態では、連通路104kから背圧室410(第1収容室104g1)に流入した冷媒ガスは、最外周面441cと第1収容室104g1の内周面との間の隙間及び軸部443の外周面と挿通孔432aの内周面との間の隙間を経由して弁室420に流れるようになっている。一方、弁部442の一端面442aが弁座103fに当接したときは、受圧部441の一端面441aが端壁432の一端面432bに当接するように構成されているので、軸部443の外周面と挿通孔432aの内周面との間の隙間を経由する背圧室410から弁室420への冷媒の流れは遮断される。したがって、受圧部441の一端面441aと端壁432の一端面432bとは弁手段を構成している。
 換言すると、本実施形態では、弁部442が弁座103fに当接した状態で、受圧部441が区画部材430の背圧室410に面する端壁432に当接することにより、軸部443の挿通用に区画部材430に形成される挿通孔432aと軸部443との間の隙間を経由する背圧室410と弁室420との連通が遮断されるように、弁部442の弁座側端面としての一端面442aと受圧部441の区画部材側端面としての一端面441aとの間の距離が設定されている。
 なお、弁部442が弁座103fに当接した状態で、中間供給通路145b1内の冷媒ガスは、背圧逃がし通路147を介して吸入室141に僅かに流れるようになっている。本実施形態では、背圧逃がし通路147は、図5に示すように、吐出弁形成板151に形成された絞り部147a及びヘッドガスケット153の連通孔を経由して吸入室141に開口している。詳しくは、背圧逃がし通路147は、中間供給通路145b1における接続部104e1と吸入室141との間を、シリンダブロック101とシリンダヘッド104との間の介在物(吐出弁形成板151、ヘッドガスケット153)に形成された通路を介して連通するように構成されている。このように、本実施形態では、背圧逃がし通路147は、第2制御弁400を迂回して、中間供給通路145b1における接続部104eと吸入室141との間を直接的に連通するように形成されている。
[連通路]
 次に、背圧室410と中間供給通路145b1との間を連通する連通路104kについて詳述する。
 連通路104kの一端は中間供給通路145b1の途上に設けられる接続部104eに接続され、連通路104kの他端は背圧室410に接続される。連通路104kのうちの少なくとも接続部104eから背圧室410側に向って延びる連通路側接続部位104k1(図3参照)は、中間供給通路145b1のうちの接続部104eから第1制御弁300側に向って延びる中間供給通路側接続部位としての連通路104dに対して、鋭角に延伸している。つまり、中間供給通路側接続部位としての連通路104kは、中間供給通路145b1を第1制御弁300から逆止弁350に向かって流れる冷媒流れの主流の流れ方向に対して逆向きに折り返すように、中間供給通路145b1における接続部104eから分岐している。連通路側接続部位104k1とは、連通路104kにおける接続部104e近傍の通路部位である。
 本実施形態では、連通路104kは、連通路全長に亘って、中間供給通路側接続部位としての連通路104dに対して鋭角に延伸している。つまり、連通路104kは、連通路全長に亘って、中間供給通路145b1を第1制御弁300から逆止弁350に向かって流れる冷媒の主流の流れ方向に対して逆向きの一方向に延伸している。したがって、連通路104kと直線的に一方向に延伸している連通路104dとにより、V字状の通路をなしている。
 本実施形態では、連通路104kは、その背圧室側開口端が圧縮機設置状態において背圧室410の内壁面における重力方向下側部位に開口するように形成されている。
 本実施形態では、中間供給通路145b1における接続部104eは、圧縮機設置状態において第2制御弁400よりも重力方向下側に位置するように配置されている。そして、接続部104eは、背圧室410よりもバルブプレート103側に配置されている。したがって、連通路104kは、接続部104eから折り返して斜め上方に延伸して背圧室410に開口している。
 本実施形態では、第1制御弁300及び第2制御弁400は、シリンダヘッド104内において、互いに駆動軸110の軸線Oの延伸方向(つまり、前記圧縮機ハウジングの中心軸延伸方向)に対して直交する方向にずらした位置に配置されている。具体的には、第1制御弁300は、第2制御弁400に対して鉛直方向下方に配置されている。したがって、接続部104e、中間供給通路側接続部位としての連通路104d及び第2制御弁400は、第2制御弁400の下方に集約して配置されている。また、第2制御弁400は、その中心軸が駆動軸110の軸線Oと略一致するように配置されている。一方、第1制御弁300は、その中心軸が水平方向に延び、且つ、その中心軸が駆動軸110の軸線Oと直交するように配置されている。
[可変容量圧縮機の動作]
 ここで、可変容量圧縮機100の動作について説明する。
 可変容量圧縮機100が運転されている状態で第1制御弁300のモールドコイル314への通電を遮断すると、第1制御弁300が最大に開放される。これによって背圧Pmが昇圧するので、逆止弁350が供給通路145を閉じている場合は(最大吐出容量時)、逆止弁350が供給通路145を開放し、同時に第2制御弁400が第1排出通路146aを閉鎖する。このため、排出通路146は第2排出通路146bのみとなり、クランク室140の圧力が昇圧して斜板111の傾角が減少し、吐出容量が最小の状態に維持される。
 これとほぼ同時に吐出逆止弁200が吐出通路を遮断し、最小の吐出容量で吐出された冷媒ガスは外部冷媒回路へは流れず、吐出室142、供給通路145、クランク室140、第2排出通路146b、吸入室141、シリンダボア101aで構成される内部循環路を循環する。この状態では、第1制御弁300と逆止弁350との間の供給通路145の領域、つまり、中間供給通路145b1における冷媒ガスは、第2制御弁400を迂回して設けられた背圧逃がし通路147を介して吸入室141に僅かに流出している。
 この状態から第1制御弁300のモールドコイル314へ通電すると、第1制御弁300が閉弁して供給通路145が閉鎖され、中間供給通路145b1における冷媒ガスは、背圧逃がし通路147を介して吸入室141に流出する。そして、中間供給通路145b1の圧力(背圧Pm)が低下して逆止弁350が供給通路145を閉鎖し、逆止弁350より上流の供給通路145に冷媒ガスが逆流することが阻止される。同時に第2制御弁400が第1排出通路146aを開放する。
 したがって、このとき、排出通路146は、第1排出通路146aと第2排出通路146bとの2つで構成される。
 第2制御弁400内の流路断面積は、固定絞りとしての溝部150aの流路断面積より大きく設定されており、クランク室140内の冷媒が速やかに吸入室141に流出してクランク室140の圧力が低下し、吐出容量が最小の状態から速やかに最大吐出容量に増大する。これにより、吐出室142の圧力が急激に昇圧して吐出逆止弁200が開弁し、冷媒が外部冷媒回路を循環してエアコンシステムが作動状態となる。
 エアコンシステムが作動して吸入室141の圧力が低下し、モールドコイル314に流れる電流で設定される設定圧力に到達すると第1制御弁300が開弁する。これにより、背圧Pmが昇圧することによって、逆止弁350が供給通路145を開放し、同時に第2制御弁400が第1排出通路146aを閉鎖する。したがって、このとき、排出通路146は第2排出通路146bのみとなる。このため、クランク室140の冷媒が吸入室141に流れることが制限されてクランク室140の圧力が昇圧し易くなる。そして、吸入室141の圧力が設定圧力を維持するように、第1制御弁300の開度が調整されて吐出容量が可変制御される。
 本実施形態による前記可変容量圧縮機によれば、逆止弁350は供給通路145における第1制御弁300とクランク室140との間の下流側供給通路145bに設けられ、第2制御弁400の背圧室410は、この下流側供給通路145bにおける第1制御弁300と逆止弁350との間の中間供給通路145b1に連通路104kを介して連通している。そして、この連通路104kのうちの少なくとも接続部104eから背圧室410側に向って延びる連通路側接続部位104k1は、中間供給通路145b1のうちの接続部104eから第1制御弁300側に向って延びる中間供給通路側接続部位としての連通路104dに対して、鋭角に延伸している。これにより、微小な異物が中間供給通路145b1を冷媒と伴に流通したとしても、前記異物の全部又は大半は接続部104eにおいて第1制御弁300から逆止弁350側へ流れる冷媒流れの主流に沿って流れることになるため、背圧室410への異物の混入を防止又は抑制することができる。その結果、微小な異物が冷媒と伴に流通していたとしても、スプール440を良好に作動させることができる。このようにして、第2制御弁400内への異物混入を防止又は抑制することができる可変容量圧縮機100を提供することができる。
 本実施形態では、供給通路145における第1制御弁300とクランク室140との間の通路を下流側供給通路145bと呼び、この下流側供給通路145bにおける第1制御弁300と逆止弁350との間の中間供給通路145b1が、図3に示すように、概ね直線的に延伸している。つまり、中間供給通路145b1の途上に大きく屈曲した屈曲部が形成されていない。これにより、中間供給通路145b1において、冷媒が第1制御弁300から逆止弁350側に向って直線的に流れる冷媒流れの主流を形成することができる。その結果、背圧室410への異物の混入をより確実に防止又は抑制することができる。
 本実施形態では、連通路104kは、連通路全長に亘って、中間供給通路側接続部位としての連通路104dに対して鋭角に延伸している。これにより、接続部104e及び連通路104dと協働して、V字状の通路が形成され、さらに確実に、接続部104eから背圧室410への異物の混入を防止又は抑制することができる。
 本実施形態では、連通路104kは、その背圧室側開口端が圧縮機設置状態において背圧室410の内壁面における重力方向下側部位に開口するように形成されている。これにより、第1制御弁300が供給通路145を閉じ、背圧逃がし通路147を介して中間供給通路145b1の冷媒が吸入室141に排出される際に、仮に、連通路104kを介して背圧室410に異物が進入したとしても、その異物が連通路104kを介して重力により接続部104e側に排出され易くなる。
 本実施形態では、中間供給通路145b1における接続部104eは、圧縮機設置状態において第2制御弁400よりも重力方向下側に位置するように配置されている。これにより、接続部104eが第2制御弁400の背圧室410より重力方向下側に位置することになるため、連通路104kを介して背圧室410へ異物が進入し難く、且つ、仮に進入したとしても、その異物が排出され易くなる。
 本実施形態では、第1制御弁300及び第2制御弁400は、シリンダヘッド104内において、互いに駆動軸110の軸線Oの延伸方向(つまり、前記圧縮機ハウジングの中心軸延伸方向)に対して直交する方向にずらした位置に配置されている。具体的には、第1制御弁300は、第2制御弁400に対して鉛直方向下方に配置されている。これにより、接続部104e、接続通路としての連通路104d及び第2制御弁400を、第2制御弁400の下方に集約して配置することができるため、可変容量圧縮機100の長手方向(駆動軸110の軸線Oの延伸方向の長さを従来よりも短くすることができ、その結果、前記圧縮機ハウジングの小型化を図ることができる。
 本実施形態では、弁部442が弁座103fに当接した状態で、受圧部441が区画部材430の背圧室410に面する端壁432に当接することにより、軸部443の挿通用に区画部材430に形成される挿通孔432aと軸部443との間の隙間を経由する背圧室410と弁室420との連通が遮断されるように、弁部442の弁座側端面としての一端面442aと受圧部441の区画部材側端面としての一端面441aとの間の距離が設定されている。そして、背圧逃がし通路147は、第2制御弁400を迂回して、中間供給通路145b1における接続部104eと吸入室141との間を直接的に連通するように形成されている。これにより、第1制御弁300が開弁しているときに、背圧室410において冷媒の定常的な流れが無く又は略無く、背圧室410に異物が進入することをさらに抑制することができる。
 本実施形態では、背圧逃がし通路147の絞り部147aは、吐出弁形成板151に形成されるものとした。これにより、絞り部147aを含む背圧逃がし通路147を容易に形成することができる。
[変形例]
 本実施形態では、連通路104kの背圧室側開口端が背圧室410の内壁面に開口するものとしたが、これに限らず、背圧室410を構成する第1収容室104g1の端壁面(つまり、受圧部441の他端面441bに対向する第1収容室104g1の端壁面)に開口してもよい。
 本実施形態では、区画部材430の開放端をバルブプレート103により閉塞し、バルブプレート103を第2制御弁400の弁座形成部材として用いたが、これに限らない。第2制御弁400の弁座形成部材として、シリンダブロック101とシリンダヘッド104との間に介在する部材、例えば、吸入弁形成板150又は吐出弁形成板151を用いてもよい。また、第2制御弁400は、図9に示すように、専用の弁座形成部材148を一体に備えてもよい。具体的には、図9に示すように、弁座形成部材148を、例えば、周壁431の端面431b側の開口部に圧入固定する。なお、吸入弁形成板150、吐出弁形成板151及びバルブプレート103のいずれか一つを弁座形成部材として用いれば、専用の弁座形成部材を付加する必要が無く、また平面度の精度も良いので弁座形成部材として好適である。
 本実施形態では、区画部材430の周壁431は、第2収容室104g2の周壁に摺動可能に支持されるものとしたが、これに限らず、第2収容室104g2に圧入嵌合されて、シリンダヘッド104に位置決めされてもよい。この場合、Oリング460や皿バネ450は不要である。
 本実施形態では、背圧逃がし通路147は、第2制御弁400を迂回して、中間供給通路145b1における接続部104eと吸入室141との間を直接的に連通するように形成されるものとしたが、これに限らない。背圧逃がし通路147は、背圧室410と中間供給通路145b1との間を連通する連通路104kを経由してもよい。この変形例の場合、第2制御弁400の区画部材430の端壁432に、背圧室410と弁室420とを連通する連通孔を形成する。その結果、連通路104k、背圧室410、受圧部441の最外周面441cと第1収容室104g1の内周面との間、端壁432に形成される前記連通孔、弁室420、排出孔431aを経由して、吸入室141に開口する背圧逃がし通路147が構成される。なお、この変形例の場合、背圧室410と弁室420とを連通する前記連通孔が背圧逃がし通路147において最も流路断面積が小さくなるように設定され、背圧逃がし通路147の絞り部147aを構成する。
 本実施形態では、排出通路146は空間101dから第1排出通路146aと第2排出通路146bに分岐するものとし、第1排出通路146aが第2制御弁400により開閉され、第2排出通路146bが常時開放させる構成とすることにより、第2制御弁400の閉弁時における排出通路146の最小開度を確保するものとしたが、これに限らない。例えば、第2排出通路146bの替りに、弁部442の周壁に貫通孔を形成したり、弁部442の一端面442aに溝を設けたりすることにより、排出通路146の最小開度を確保するように構成してもよい。
 本実施形態では、スプール440の軸部443は、弁部442と一体に形成されるものとしたが、これに限らず、受圧部441と一体に形成してもよい。
 本実施形態では、可変容量圧縮機100を斜板式のクラッチレス可変容量圧縮機としたが、これに限らず、電磁クラッチを装着した可変容量圧縮機や、モータで駆動される可変容量圧縮機とすることができる。
 以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様をさらに採り得ることは自明である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 illustrates a variable capacity clutchless compressor applied to a vehicle air conditioner system (air conditioner system). FIG. 1 shows a state when the variable capacity clutchless compressor is mounted on a vehicle (that is, a compressor installed state). In the drawing, the upper side is the upper side in the direction of gravity and the lower side is the gravity. The direction is on the lower side.
A variable capacity compressor 100 shown in FIG. 1 includes a cylinder block 101 having a plurality of cylinder bores 101a, a front housing 102 provided at one end of the cylinder block 101, and a valve plate 103 at the other end of the cylinder block 101. And a cylinder head 104 provided. A crank chamber 140 as a control pressure chamber is formed by the cylinder block 101 and the front housing 102, and the drive shaft 110 is provided across the crank chamber 140.
A swash plate 111 is disposed around an intermediate portion in the extending direction of the axis O of the drive shaft 110. The swash plate 111 is connected to a rotor 112 fixed to the drive shaft 110 via a link mechanism 120, and the tilt angle with respect to the axis O can be changed. The link mechanism 120 includes a first arm 112 a projecting from the rotor 112, a second arm 111 a projecting from the swash plate 111, and one end pivotable to the first arm 112 a via the first connecting pin 122. And a link arm 121 having the other end rotatably connected to the second arm 111a via a second connection pin 123.
The through hole 111b of the swash plate 111 is formed in a shape that allows the swash plate 111 to tilt in a range between the maximum inclination angle and the minimum inclination angle, and the minimum inclination angle restricting portion that contacts the drive shaft 110 is formed in the through hole 111b. ing. When the inclination angle of the swash plate 111 when the swash plate 111 is orthogonal to the drive shaft 110 is set to 0 deg, the minimum inclination restriction portion of the through hole 111b is formed so that the swash plate 111 can be inclined to approximately 0 deg. Further, the maximum inclination angle of the swash plate 111 is regulated by the swash plate 111 coming into contact with the rotor 112.
Between the rotor 112 and the swash plate 111, an inclination reduction spring 114 that urges the swash plate 111 in a direction to reduce the inclination angle of the swash plate 111 is mounted. Further, between the swash plate 111 and the spring support member 116 provided on the drive shaft 110, an inclination increasing spring 115 that biases the swash plate 111 in a direction to increase the inclination angle of the swash plate 111 is mounted. Here, the biasing force of the tilt-increasing spring 115 at the minimum tilt angle is set larger than the biasing force of the tilt-decreasing spring 114, and when the drive shaft 110 is not rotating, the swash plate 111 is biased by the tilt-decreasing spring 114. And the urging force of the inclination increasing spring 115 are positioned at an inclination angle that balances.
One end of the drive shaft 110 extends through the boss portion 102a protruding outside the front housing 102 to the outside of the front housing 102, and is connected to a power transmission device (not shown). A shaft seal device 130 is inserted between the drive shaft 110 and the boss portion 102a to shut off the crank chamber 140 and the external space.
A coupling body of the drive shaft 110 and the rotor 112 is supported by bearings 131 and 132 in the radial direction, and supported by a bearing 133 and a thrust plate 134 in the thrust direction. The power from the external drive source is transmitted to the power transmission device, and the drive shaft 110 can rotate in synchronization with the rotation of the power transmission device. The gap between the portion of the drive shaft 110 with which the thrust plate 134 abuts and the thrust plate 134 is adjusted to a predetermined gap by the adjustment screw 135.
A piston 136 is disposed in the cylinder bore 101a, and an outer peripheral portion of the swash plate 111 is accommodated in an inner space of an end portion of the piston 136 that protrudes toward the crank chamber 140. The swash plate 111 includes a pair of shoes 137. It is comprised so that it may interlock with piston 136 via. The piston 136 reciprocates in the cylinder bore 101 a by the rotation of the swash plate 111. In the cylinder head 104, a suction chamber 141 is formed at the center, and a discharge chamber 142 that surrounds the radially outer side of the suction chamber 141 in a ring shape is defined.
The suction chamber 141 and the cylinder bore 101a communicate with each other via a communication hole 103a provided in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate 150. The discharge chamber 142 and the cylinder bore 101a communicate with each other via a communication hole 103b provided in the valve plate 103 and a discharge valve (not shown) formed in the discharge valve forming plate 151.
In this embodiment, the front housing 102, the center gasket (not shown), the cylinder block 101, the cylinder gasket 152, the suction valve forming plate 150, the valve plate 103, the discharge valve forming plate 151, the head gasket 153, and the cylinder head 104 are sequentially arranged. Connected and fastened by a plurality of through-bolts 105 to form a compressor housing. In the present embodiment, the suction chamber 141 and the discharge chamber 142 are formed in a cylinder head 104 as a housing member constituting one end portion of the compressor housing. Specifically, the suction chamber 141 is disposed on an extension line of the axis O of the drive shaft 110 extending from the other end portion of the compressor housing toward the one end side in the compressor housing, and the discharge chamber 142 is the suction chamber 141. Is formed in an annular shape so as to surround the suction chamber 141 on the radially outer side perpendicular to the axis O. In the present embodiment, the extending direction of the axis O of the drive shaft 110 corresponds to the “center axis extending direction of the compressor housing” according to the present invention.
Further, a muffler is provided on the upper portion of the cylinder block 101 in FIG. The muffler is formed by fastening a lid member 106 where the discharge port 106a is opened and a forming wall 101b formed in the upper part of the cylinder block 101 with a bolt via a seal member (not shown). A discharge check valve 200 is disposed in a muffler space 143 surrounded by the lid member 106 and the forming wall 101b.
The discharge check valve 200 is disposed at a connection portion between the communication path 144 that connects the discharge chamber 142 and the muffler space 143 and the muffler space 143, and is connected to the communication path 144 (upstream side) and the muffler space 143 (downstream side). It operates in response to the pressure difference. When the pressure difference is smaller than the predetermined value, the communication path 144 is shut off, and when the pressure difference is larger than the predetermined value, the communication path 144 is opened. Accordingly, the discharge chamber 142 is connected to the refrigerant circuit (the high-pressure side) of the air conditioner system via the discharge passage formed by the communication passage 144, the discharge check valve 200, the muffler space 143, and the discharge port 106a.
In the cylinder head 104, a suction passage 104a is linearly extended from the outside in the radial direction of the cylinder head 104 so as to cross a part of the discharge chamber 142, and the suction chamber 141 is sucked into the air conditioning system through the suction passage 104a. It is connected to the side refrigerant circuit.
The refrigerant on the low pressure side of the refrigerant circuit of the air conditioning system is guided to the suction chamber 141 through the suction passage 104a. The refrigerant in the suction chamber 141 is sucked into the cylinder bore 101a by the reciprocating motion of the piston 136, compressed, and discharged into the discharge chamber 142. That is, in this embodiment, the cylinder bore 101a and the piston 136 constitute a compression unit that sucks and compresses the refrigerant in the suction chamber 141. Then, the refrigerant discharged to the discharge chamber 142 (refrigerant compressed by the compression unit) is guided to the high-pressure side of the refrigerant circuit of the air conditioner system through the discharge passage.
A supply passage 145 is formed in the cylinder head 104. A first control valve 300 and a check valve 350 are provided in the supply passage 145. A discharge passage 146 is formed in the cylinder block 101 and the cylinder head 104. A second control valve 400 is provided in the discharge passage 146. Further, a back pressure relief passage 147 is provided between the cylinder block 101 and the cylinder head 104.
[Supply passage]
FIG. 2 is a conceptual diagram showing a system diagram of a passage through which the refrigerant flows together with a cross-sectional view of the first control valve 300, and FIG. 3 shows the variable capacity compressor 100 including the check valve 350 and the second control valve 400. FIG. The supply passage 145 is a passage for supplying the refrigerant in the discharge chamber 142 to the crank chamber 140. Here, the passage between the discharge chamber 142 and the first control valve 300 in the supply passage 145 is called an upstream supply passage 145a, and the passage between the first control valve 300 and the crank chamber 140 in the supply passage 145 is downstream. This is referred to as a side supply passage 145b. The supply passage 145 is opened and closed by the first control valve 300 via the first control valve 300 as will be described later. The check valve 350 is provided in the downstream supply passage 145b.
In the present embodiment, the supply passage 145 is a second region S2 (described later) of the communication passage 104b formed in the cylinder head 104 and the accommodation hole 104c of the first control valve 300 formed in the cylinder head 104 (see FIG. 2). ), The inside of the first control valve 300 (see FIG. 2), a third region S3 (see FIG. 2) to be described later in the accommodation hole 104c, a communication path 104d formed in the cylinder head 104, and a cylinder block in the cylinder head 104 101 (head gasket 153), a connecting portion 104e that opens to the connecting end surface 104h, a communication hole of the head gasket 153, a communication hole of the discharge valve forming plate 151, a communication hole 103c formed in the valve plate 103, and a suction valve forming plate 150. Through the valve hole 152a formed in the cylinder gasket 152 and the cylinder block 101. The discharge chamber 142 and the crank chamber 140 are communicated with each other via a communication passage 101e and a second passage 351c2 and a first passage 351c1 (see FIG. 7 described later) of the check valve 350. ing. Therefore, in the present embodiment, the communication passage 104b constitutes the upstream supply passage 145a, the third region S3 (see FIG. 2), the communication passage 104d, the connection portion 104e, the communication hole of the head gasket 153, and the discharge valve forming plate 151. The communication hole, the communication hole 103c, the communication hole of the suction valve forming plate 150, the valve hole 152a of the cylinder gasket 152, the communication path 101e, and the path including the second path 351c2 and the first path 351c1 are connected to the downstream supply path 145b. Constitute.
[Discharge passage]
The discharge passage 146 is a passage for discharging the refrigerant in the crank chamber 140 to the suction chamber 141. In the present embodiment, as shown in FIGS. 1 to 3, the discharge passage 146 is branched into two passages on the suction chamber 141 side, and one of the passages (a first discharge passage 146a described later) is the second passage. Opened and closed by the second control valve 400 via the control valve 400. In the present embodiment, the discharge passage 146 passes through the end surface of the cylinder block 101 on the front housing 102 side and extends to the cylinder head 104 side. The communication passage 101c is connected to the discharge passage 146, and the cylinder head of the cylinder block 101 is connected to the discharge passage 146. There is a space 101d opened at the end face on the 104 side.
FIG. 4 is a partially enlarged view including a part of the discharge passage 146 (second discharge passage 146b described later).
In the present embodiment, the discharge passage 146 branches from the space 101d into a first discharge passage 146a and a second discharge passage 146b as shown in FIGS. From the space 101d, the first discharge passage 146a has a communication hole of the cylinder gasket 152, a communication hole of the suction valve forming plate 150, a valve hole 103d which will be described later penetrating the valve plate 103, and a valve chamber 420 which will be described later of the second control valve 400. , And is formed to open to the suction chamber 141 via the discharge hole 431a. As shown in FIG. 4, the second discharge passage 146 b is formed from the space 101 d to the communication hole formed in the cylinder gasket 152, the groove 150 a as a fixed throttle formed in the suction valve forming plate 150, and the valve plate 103. The communication hole 103e, the communication hole of the discharge valve forming plate 151, and the communication hole of the head gasket 153 are provided to bypass the second control valve 400, and the space 101d and the suction chamber 141 are always in communication with each other. Yes. Further, a passage between the second control valve 400 and the crank chamber 140 in the discharge passage 146 is referred to as an upstream discharge passage 146c (see FIG. 2). The flow passage cross-sectional area of the first discharge passage 146a when opened by the second control valve 400 is set to be larger than the flow passage cross-sectional area of the groove 150a as a fixed throttle of the second discharge passage 146b.
[Back pressure relief passage (throttle passage)]
As shown in FIGS. 2 and 3, the back pressure relief passage 147 communicates the suction chamber 141 with the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b. This is a passage as a throttle passage having a throttle portion 147a.
FIG. 5 is a partially enlarged view including the back pressure relief passage 147.
In the present embodiment, the throttle portion 147a is composed of a groove portion formed through the discharge valve forming plate 151. The groove portion opens in the connection portion 104e and opens in the communication hole of the head gasket 153. In the present embodiment, the back pressure relief passage 147 is connected to the connecting portion 104e (that is, the intermediate supply passage 145b1) and the suction chamber via the communication hole of the throttle portion 147a and the head gasket 153 formed in the discharge valve forming plate 151. 141 is always in communication.
The intermediate supply passage 145b1 (see FIG. 2) of the downstream supply passage 145b includes a third region S3 (see FIG. 2), a communication passage 104d, a connection portion 104e, a communication hole of the head gasket 153, and a discharge valve forming plate. 151, the communication hole 103c, the communication hole of the suction valve forming plate 150, the valve hole 152a of the cylinder gasket 152, and the passage between the connecting portion 104e and the check valve 350 of the communication passage 101e. ing.
When the first control valve 300 is closed, the refrigerant in the intermediate supply passage 145b1 flows out to the suction chamber 141 through the back pressure relief passage 147. As a result, the pressure in the back pressure chamber 410 (described later) of the intermediate supply passage 145b1 and the second control valve 400 decreases. As a result, as will be described later, the check valve 350 and the spool 440 of the second control valve 400 move.
[Outline of the first control valve]
The first control valve 300 is a valve that controls the opening area (opening degree) of the supply passage 145. Specifically, the first control valve 300 is accommodated in an accommodation hole 104 c formed in the cylinder head 104 as shown in FIGS. 1 and 2. In the present embodiment, O-rings 300a to 300c are mounted on the first control valve 300, and the O-rings 300a to 300c are connected to the suction chamber 141 through the communication passage 104f in the accommodation hole 104c. A first region S1, a second region S2 communicating with the discharge chamber 142 via the communication passage 104b, and a third region communicating with the crank chamber 140 via the communication passage 104d, the connecting portion 104e, the communication passage 101e, and the check valve 350. A region S3 is partitioned. The second region S2 and the third region S3 of the accommodation hole 104c constitute a part of the supply passage 145. The first control valve 300 controls the opening degree of the supply passage 145 in response to the pressure of the suction chamber 141 introduced through the communication passage 104f and the electromagnetic force generated by the current flowing through the solenoid in response to the external signal ( And the discharge gas introduction amount (pressure supply amount) into the crank chamber 140 is controlled.
[Outline of check valve]
The check valve 350 is provided in the downstream supply passage 145b (in other words, the supply passage 145 downstream from the first control valve 300) in the supply passage 145, and prevents reverse flow of the refrigerant from the crank chamber 140 toward the first control valve 300. In addition, the valve operates to allow the flow of the refrigerant from the first control valve 300 toward the crank chamber 140. Specifically, the check valve 350 is formed at an opening end portion on the valve plate 103 side in the communication path 101e of the cylinder block 101, and is accommodated in an accommodation hole 101g constituting a part of the communication path 101e.
[Outline of the second control valve]
The second control valve 400 is a valve that is provided in the discharge passage 146 (the first discharge passage 146a in the present embodiment) and controls the opening degree of the discharge passage 146. Specifically, the second control valve 400 is housed in a housing hole 104g formed in the cylinder head 104 and opened in the suction chamber 141, and opens and closes the first discharge passage 146a of the discharge passage 146. A spool 440 is included. The second control valve 400 includes a pressure in the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b (specifically, a pressure in a back pressure chamber 410 described later), a crank The spool 440 is moved in accordance with the pressure in the chamber 140 (specifically, the pressure in the upstream discharge passage 146c) to control (adjust) the opening degree of the discharge passage 146, and the refrigerant from the crank chamber 140 to the suction chamber 141 is controlled. Control emissions.
When the first control valve 300 and the check valve 350 are closed, the second control valve 400 opens the first discharge passage 146a. In this case, the discharge passage 146 includes a first discharge passage 146a and a second discharge passage 146b. As a result, the refrigerant in the crank chamber 140 immediately flows into the suction chamber 141, the pressure in the crank chamber 140 is equivalent to the pressure in the suction chamber 141, the inclination angle of the swash plate is maximized, and the piston stroke (discharge capacity) is maximized. It becomes.
In addition, when the first control valve 300 and the check valve 350 are open, the second control valve 400 closes the first discharge passage 146a. In this case, the discharge passage 146 includes only the second discharge passage 146b. As a result, the refrigerant in the crank chamber 140 is restricted from flowing into the suction chamber 141 and the pressure in the crank chamber 140 is likely to increase. As the pressure in the crank chamber 140 increases, the inclination angle of the swash plate 111 decreases from the maximum, and the piston stroke can be variably controlled.
As described above, the variable capacity compressor 100 includes the suction chamber 141, the compression unit, the discharge chamber 142, and the crank chamber 140 as a control pressure chamber, and the discharge capacity changes according to the pressure of the crank chamber 140. In other words, it is a compressor whose discharge capacity is controlled by pressure regulation in the crank chamber 140.
Next, the first control valve 300, the check valve 350, and the second control valve 400 will be described in detail.
[First control valve]
Returning to FIG. 2, the first control valve 300 includes a valve unit and a drive unit (solenoid) that opens and closes the valve unit, and is accommodated in an accommodation hole 104 c formed in the cylinder head 104.
The valve unit of the first control valve 300 includes a cylindrical valve housing 301. Inside the valve housing 301, a first pressure sensing chamber 302, a valve chamber 303, and a second pressure sensing chamber 307 are arranged in the axial direction. They are arranged in order.
The first pressure sensing chamber 302 is connected to the crank chamber via a communication hole 301 a formed in the outer peripheral surface of the valve housing 301, a third region S 3 in the accommodation hole 104 c, and a communication passage 104 d formed in the cylinder head 104. 140.
The second pressure sensing chamber 307 is a suction chamber via a communication hole 301e formed in the outer peripheral surface of the valve housing 301, a first region S1 in the accommodation hole 104c, and a communication passage 104f formed in the cylinder head 104. 141. The valve chamber 303 communicates with the discharge chamber 142 via a communication hole 301 b formed in the outer peripheral surface of the valve housing 301, a second region S <b> 2 of the accommodation hole 104 c, and a communication passage 104 b formed in the cylinder head 104. is doing. The first pressure sensing chamber 302 and the valve chamber 303 can communicate with each other through a valve hole 301c.
A support hole 301 d is formed between the valve chamber 303 and the second pressure sensing chamber 307. A bellows 305 is disposed in the first pressure sensing chamber 302. The bellows 305 has a built-in spring and has a built-in spring. The bellows 305 is disposed so as to be displaceable in the axial direction of the valve housing 301, and serves as a pressure sensing means for receiving the pressure in the first pressure sensing chamber 302, that is, the crank chamber 140. It has a function.
A cylindrical valve body 304 is accommodated in the valve chamber 303. The valve body 304 can slide in the support hole 301 d while the outer peripheral surface is in close contact with the inner peripheral surface of the support hole 301 d, and can move in the axial direction of the valve housing 301. One end of the valve body 304 can open and close the valve hole 301 c, and the other end of the valve body 304 protrudes into the second pressure sensing chamber 307. One end of a rod-shaped connecting portion 306 is fixed to one end of the valve body 304. The other end of the connecting portion 306 is disposed so as to be able to contact the bellows 305 and has a function of transmitting the displacement of the bellows 305 to the valve body 304.
The drive unit of the first control valve 300 has a cylindrical solenoid housing 312 that is coaxially connected to the end of the valve housing 301. The solenoid housing 312 houses a molded coil 314 in which the electromagnetic coil is covered with resin. The solenoid housing 312 houses a cylindrical fixed core 310 coaxially with the mold coil 314, and the fixed core 310 extends from the valve housing 301 to the vicinity of the center of the mold coil 314. The end of the fixed core 310 on the side opposite to the valve housing 301 is surrounded by a cylindrical sleeve 313. The fixed core 310 has an insertion hole 310 a in the center, and one end of the insertion hole 310 a opens into the second pressure sensing chamber 307. A cylindrical movable core 308 is accommodated between the fixed core 310 and the closed end of the sleeve 313.
A solenoid rod 309 is inserted into the insertion hole 310a, and one end of the solenoid rod 309 is fixed to the proximal end side of the valve body 304 by press fitting. The other end of the solenoid rod 309 is press-fitted into a through hole formed in the movable core 308, and the solenoid rod 309 and the movable core 308 are integrated. A release spring 311 is provided between the fixed core 310 and the movable core 308 to urge the movable core 308 in a direction away from the fixed core 310 (valve opening direction).
The movable core 308, the fixed core 310, and the solenoid housing 312 are formed of a magnetic material and constitute a magnetic circuit. The sleeve 313 is made of a nonmagnetic material such as a stainless steel material. The mold coil 314 is connected to a control device provided outside the variable capacity compressor 100 via a signal line. The mold coil 314 generates an electromagnetic force F (i) when the control current I is supplied from the control device. The electromagnetic force F (i) of the mold coil 314 attracts the movable core 308 toward the fixed core 310 and drives the valve body 304 in the valve closing direction.
In addition to the electromagnetic force F (i) by the mold coil 314, the valve body 304 of the first control valve 300 has a biasing force fs by the release spring 311, a force by the pressure in the valve chamber 303 (discharge chamber pressure Pd), A force due to the pressure in the pressure sensing chamber 302 (crank chamber pressure Pc), a force due to the pressure in the second pressure sensing chamber 307 (suction chamber pressure Ps), and a biasing force F due to a spring built in the bellows 305 act.
Here, the effective pressure receiving area Sb in the expansion / contraction direction of the bellows 305, the pressure receiving area Sv of the crank chamber acting on the valve body 304 from the valve hole 301c side, and the cross-sectional area Sr of the cylindrical outer peripheral surface of the valve body 304 are Sb = Sv = Sr. Therefore, the relationship between the forces acting on the valve body 304 is expressed by Equation 1. In Equation 1, “+” indicates the valve closing direction of the valve body 304, and “−” indicates the valve opening direction.
Figure JPOXMLDOC01-appb-M000001
The connecting body of the bellows 305, the connecting portion 306, and the valve body 304 reduces the crank chamber pressure Pc by reducing the opening of the supply passage 145 in order to increase the discharge capacity when the suction chamber pressure Ps becomes higher than the set pressure. When the suction chamber pressure Ps falls below the set pressure, the opening of the supply passage 145 is increased to increase the crank chamber pressure Pc in order to reduce the discharge capacity. That is, the first control valve 300 autonomously controls the opening degree (opening area) of the supply passage 145 so that the suction chamber pressure Ps approaches the set pressure.
FIG. 6 is a diagram showing the correlation between the coil energization amount of the first control valve 300 and the set pressure. Since the electromagnetic force of the mold coil 314 acts on the valve body 304 via the solenoid rod 309 in the valve closing direction, when the energization amount to the mold coil 314 increases, a force in the direction of decreasing the opening of the supply passage 145 is applied. As shown in FIG. 6, the set pressure changes in the decreasing direction. The control device (drive unit) controls energization to the mold coil 314 by pulse width modulation (PWM control) at a predetermined frequency in the range of, for example, 400 Hz to 500 Hz, and the current value flowing through the mold coil 314 becomes a desired value. The pulse width (duty ratio) is changed as follows.
When the air conditioning system is in operation, that is, in the operating state of the variable capacity compressor 100, the energization amount to the mold coil 314 is adjusted by the control device based on the air conditioning setting such as the set temperature and the external environment, and the suction chamber pressure Ps is set to the energization amount. The discharge volume is controlled so that the set pressure corresponds to. Further, when the air conditioner system is not operated, that is, when the variable capacity compressor 100 is not operated, the control device turns off the energization to the mold coil 314. As a result, the supply passage 145 is opened by the release spring 311, and the discharge capacity of the variable capacity compressor 100 is controlled to a minimum state.
[Check valve]
Next, the check valve 350 will be described with reference to FIG. FIG. 7 is a partially enlarged cross-sectional view including the check valve 350 of the variable capacity compressor 100. FIG. 7A shows a state in which the check valve 350 is operated in a direction allowing the refrigerant flow from the first control valve 300 toward the crank chamber 140, and FIG. 7B shows that the check valve 350 is cranked. The state which act | operated in the direction which blocks | prevents the backflow of the refrigerant | coolant which goes to the 1st control valve 300 from the chamber 140 is shown.
The check valve 350 includes a valve body 351, a housing hole 101g for housing the valve body 351, and a cylinder gasket 152 as a valve seat forming member having a valve hole 152a and a valve seat 152b for closing one end of the housing hole 101g. I have. That is, the cylinder gasket 152 is formed with a valve hole 152a and a valve seat 152b.
The valve body 351 includes a substantially cylindrical peripheral wall 351a and an end wall 351b connected to one end of the peripheral wall 351a. The peripheral wall 351a has a large diameter portion 351a1 forming an intermediate portion in the longitudinal direction of the valve body, a connection between the large diameter portion 351a1 and the end wall 351b, a first small diameter portion 351a2 having a smaller diameter than the large diameter portion 351a1, and a large diameter. A second small-diameter portion 351a3 having a smaller diameter than the large-diameter portion 351a1 extending from the end surface opposite to the first small-diameter portion 351a2 in the portion 351a1. An internal passage is formed in the valve body 351. The internal passage passes through the first passage 351c1 formed from the open end of the peripheral wall 351a toward the end wall 351b and the peripheral wall of the first small-diameter portion 351a2, and around the first passage 351c1 and the first small-diameter portion 351a2. The second passage 351c2 communicates with the accommodation hole 101g. The valve body 351 is formed of a resin material, for example, but may be formed of other materials such as a metal material.
The housing hole 101g is formed at an opening end portion on the valve plate 103 side in the communication path 101e of the cylinder block 101 and constitutes a part of the communication path 101e. The housing hole 101g includes a small-diameter portion 101g1 on the crank chamber 140 side and a large-diameter portion 101g2 on the valve plate 103 side that is larger in diameter than the small-diameter portion 101g1. The large diameter portion 351a1 of the valve body 351 is slidably supported by the large diameter portion 101g2, and the second small diameter portion 351a3 of the valve body 351 is slidably supported by the small diameter portion 101g1.
The housing hole 101g is formed so as to be orthogonal to the end face of the cylinder block 101, and the valve body 351 moves in the extending direction of the axis O of the drive shaft 110. When the end wall 351b of the valve body 351 abuts on the valve seat 152b, one movement of the valve body 351 is restricted, and the other end of the peripheral wall 351a abuts on the end surface 101g3 of the accommodation hole 101g so that the valve body 351 The other movement is restricted. When the end wall 351b contacts the valve seat 152b, the valve hole 152a is closed, and when the end wall 351b moves away from the valve seat 152b, the valve hole 152a is opened.
The accommodation hole 101g communicates with the third region S3 in the accommodation hole 104c of the first control valve 300 via the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b. . The communication passage 101e extends through the end surface of the cylinder block 101 on the front housing 102 side and extends toward the cylinder head 104, passes through the end surface 101g3 of the accommodation hole 101g, and passes through the accommodation hole 101g to the end surface on the cylinder head 104 side. It is open.
Accordingly, the pressure Pm of the intermediate supply passage 145b1 (pressure upstream of the check valve 350) acts on one end of the valve body 351, and the crank chamber pressure Pc (downstream of the check valve 350) acts on the other end of the valve body 351. The valve body 351 moves in the axial direction according to the upstream and downstream pressure difference (Pm−Pc) acting on the valve body 351.
The intermediate supply passage 145b1 communicates with the suction chamber 141 via the back pressure relief passage 147. The back pressure relief passage 147 is provided with a throttle portion 147a. Therefore, in the state where the first control valve 300 opens the valve hole 301c, most of the refrigerant gas in the discharge chamber 142 is communicated with the communication passage 104d, the connection portion 104e, the communication hole of the head gasket 153, and the communication of the discharge valve forming plate 151. It reaches the valve hole 152a of the check valve 350 via the hole, the communication hole 103c, and the communication hole of the suction valve forming plate 150. For this reason, the pressure Pm of the intermediate supply passage 145b1 acting on one end of the valve body 351 increases, and Pm−Pc> 0. Then, due to the pressure difference (Pm−Pc) between the upstream and downstream acting on the valve body 351, the end wall 351b of the valve body 351 is separated from the valve seat 152b, and the other end of the peripheral wall 351a is in contact with the end surface 101g3 of the accommodation hole 101g. It becomes a state. As a result, the refrigerant gas in the discharge chamber 142 passes from the valve hole 152a to the large-diameter portion 101g2 of the accommodation hole 101g, the second passage 351c2, the first passage 351c1, and the communication passage 101e downstream from the check valve 350, and the crank chamber. 140.
When the first control valve 300 closes the valve hole 301c from the state in which the valve hole 301c is opened, the refrigerant gas in the discharge chamber 142 is not supplied to the intermediate supply passage 145b1, and the refrigerant in the intermediate supply passage 145b1. The gas flows into the suction chamber 141 via the back pressure relief passage 147. For this reason, the pressure Pm of the intermediate supply passage 145b1 acting on one end of the valve body 351 is reduced to satisfy Pm−Pc <0. Then, due to the upstream and downstream pressure difference (Pm−Pc) acting on the valve body 351, the other end of the peripheral wall 351a is separated from the end surface 101g3 of the housing hole 101g, and the end wall 351b of the valve body 351 contacts the valve seat 152b. The communication between the communication passage 101e downstream of the check valve 350 and the intermediate supply passage 145b1 is blocked. As a result, the pressure Pm in the intermediate supply passage 145b1 becomes equal to the suction chamber pressure Ps. Thus, the check valve 350 is configured to open and close the supply passage 145 in conjunction with opening and closing of the first control valve 300.
The check valve 350 may be configured to add a biasing means such as a compression coil spring that biases the valve body 351 toward the valve seat 152b. Further, the valve seat forming member is not limited to the cylinder gasket 152, and may be, for example, the suction valve forming plate 150 or the valve plate 103.
[Second control valve]
The second control valve 400 will be described with reference to FIGS. 1 to 3 and FIG. 8 which is a cross-sectional view of the second control valve 400.
The second control valve 400 includes a back pressure chamber 410, a valve chamber 420, a partition member 430, and a spool 440. The second control valve 400 is accommodated in an accommodation hole 104g that is formed in the cylinder head 104 and opens to the suction chamber 141. The
As shown in FIG. 3, the accommodation hole 104 g is formed so as to open to the connection end surface 104 h side of the cylinder head 104 with the cylinder block 101 (head gasket 153). Specifically, the accommodation hole 104g is formed in a stepped columnar shape on a protrusion 104j protruding from the closed end wall 104i of the suction chamber forming wall of the cylinder head 104 toward the valve plate 103 side. Yes. Specifically, the protrusion 104 j is disposed on the extension of the axis O of the drive shaft 110 and is located in the radial center of the suction chamber 141. The protrusion 104j extends from the closed end wall 104i of the cylinder head 104 to a position before the connection end surface 104h so as to have a gap with the head gasket 153. The housing hole 104g has a central axis substantially coincident with the axis O of the drive shaft 110, a large diameter portion on the connection end surface 104h side of the cylinder head 104, a small diameter portion having a smaller diameter than the large diameter portion on the back side, and a large diameter portion. A step portion is formed between the small-diameter portion, the small-diameter portion constitutes the first accommodating chamber 104g1, and the large-diameter portion constitutes the second accommodating chamber 104g2 that accommodates the partition member 430.
The back pressure chamber 410 communicates with the intermediate supply passage 145b1 through the communication passage 104k connected to the back pressure chamber 410 and the intermediate supply passage 145b1. Therefore, the pressure in the back pressure chamber 410 is equal to the pressure Pm in the intermediate supply passage 145b1. In the present embodiment, the back pressure chamber 410 includes the first storage chamber 104g1 partitioned by the partition member 430. The communication path 104k will be described in detail later.
The valve chamber 420 communicates with the valve hole 103 d communicating with the upstream discharge passage 146 c (see FIGS. 2 and 3) between the second control valve 400 and the crank chamber 140 in the discharge passage 146 and the suction chamber 141. The discharge hole 431a is opened and constitutes a part of the discharge passage 146 (specifically, the first discharge passage 146a). In the present embodiment, the discharge hole 431 a is formed in a peripheral wall 431 described later of the partition member 430, and the valve hole 103 d is formed in the valve plate 103.
The partition member 430 is a member that partitions the back pressure chamber 410 and the valve chamber 420, and includes, for example, a cylindrical peripheral wall 431 and a disk-shaped end wall 432. The peripheral wall 431 is provided so as to surround a later-described valve portion 442 of the spool 440. The end wall 432 is connected to one end side of the peripheral wall 431. The end wall 432 has an insertion hole 432a for inserting a shaft portion 443 described later of the spool 440. The first storage chamber 104g1 defined by the end wall 432 constitutes the back pressure chamber 410, and the cylindrical space inside the partition member 430 defined by the peripheral wall 431 and the end wall 432 constitutes the valve chamber 420.
In the present embodiment, the outer diameter of the peripheral wall 431 of the partition member 430 is set smaller than the inner diameter of the peripheral wall of the second storage chamber 104g2, and the peripheral wall 431 is slidably supported on the peripheral wall of the second storage chamber 104g2. In the present embodiment, the radial outer edge of the end wall 432 of the partition member 430 on the side of the one end surface 432b and the connection end surface between the second storage chamber 104g2 and the first storage chamber 104g1 (in other words, the large size of the storage hole 104g). A disc spring 450 as an urging means for urging the partition member 430 is disposed at a step portion between the diameter portion and the small diameter portion. In order to prevent the refrigerant flowing in from the first storage chamber 104g1 from flowing out into the suction chamber 141 through the gap outside the peripheral wall 431, an O-ring 460 is provided between the peripheral wall 431 and the second storage chamber 104g2. It is arranged.
In the present embodiment, the partition member 430 is energized toward the valve plate 103 by the disc spring 450 in a state of being accommodated in the second accommodation chamber 104g2, and thereby the end wall 432 of the peripheral wall 431 and Positioning is made in the second storage chamber 104g2 so that the end surface 431b on the opposite side contacts the valve plate 103 that is the wall surface on the opposite side of the back pressure chamber 410 in the valve chamber 420. In this state, in the partition member 430, the end surface 431b on the opposite side of the end wall 432 of the peripheral wall 431 protrudes toward the valve plate 103 from the protruding end surface 104j1 of the protrusion 104j.
The discharge hole 431a that opens to the valve chamber 420 penetrates the peripheral wall 431 at a plurality of locations spaced in the circumferential direction of the peripheral wall 431. The valve chamber 420 communicates with the suction chamber 141 through the discharge hole 431a. Specifically, a portion of the peripheral wall 431 on the end surface 431b side protrudes toward the valve plate 103 side from the protruding end surface 104j1 of the protrusion 104j so that the discharge hole 431a opens directly to the suction chamber 141. The discharge hole 431a is not limited to a hole, and may be formed as a notch.
A valve hole 103 d that opens into the valve chamber 420 is formed in the valve plate 103 that closes the open end of the partition member 430. A portion of the valve plate 103 around the valve hole 103d constitutes a valve seat 103f with which a valve portion 442 (to be described later) of the spool 440 contacts and separates. The valve chamber 420 communicates with the crank chamber 140 through the valve hole 103d, the communication hole of the suction valve forming plate 150, the communication hole of the cylinder gasket 152, the space 101d, and the communication path 101c. That is, in this embodiment, the upstream discharge passage 146c of the discharge passage 146 is configured by the communication hole of the suction valve forming plate 150, the communication hole of the cylinder gasket 152, the space 101d, and the communication passage 101c. The upstream discharge passage 146c communicates with the valve chamber 420 through the valve hole 103d.
The spool 440 passes through the pressure receiving portion 441 disposed in the back pressure chamber 410, the valve portion 442 disposed in the valve chamber 420 and contacting and separating from the valve seat 103f around the valve hole 103d, and the partition member 430. A shaft portion 443 that connects the extending pressure receiving portion 441 and the valve portion 442 is provided.
In the present embodiment, the pressure receiving portion 441 is accommodated in the first accommodating chamber 104g1 and is slidably supported by the first accommodating chamber 104g1. The valve portion 442 is accommodated in the valve chamber 420 and its one end surface 442a (see FIG. 8) contacts and separates from the valve seat 103f to open and close the valve hole 103d. The shaft portion 443 is formed with a smaller diameter than the pressure receiving portion 441 and the valve portion 442.
In the present embodiment, the shaft portion 443 is formed integrally with the valve portion 442. The spool 440 is configured by press-fitting the pressure receiving portion 441 into the shaft portion 443 in a state where the shaft portion 443 is inserted into the insertion hole 432a (see FIG. 8) of the partition member 430. The pressure receiving portion 441 contacts the end wall 432 of the partition member 430 when the valve portion 442 contacts the valve seat 103f. Specifically, when the one end surface 442a of the valve portion 442 contacts the valve seat 103f, at the same time, the one end surface 441a on the end wall 432 side (the partition member 430 side) of the pressure receiving portion 441 becomes the one end surface 432b of the end wall 432. The press-fit position of the pressure receiving portion 441 in the axial direction with respect to the valve portion 442 and the shaft portion 443 is adjusted so as to come into contact with each other.
Next, the operation of the spool 440 in the second control valve 400 will be described.
The second control valve 400 moves the spool 440 in accordance with the pressure in the back pressure chamber 410 (hereinafter referred to as back pressure) and the pressure in the upstream discharge passage 146c (that is, the crank chamber pressure Pc). The opening degree of the discharge passage 146 is controlled by bringing the portion 442 into and out of contact with the valve seat 103f. As described above, since the back pressure chamber 410 communicates with the intermediate supply passage 145b1 via the communication passage 104k, the pressure (back pressure) in the back pressure chamber 410 is equal to the pressure Pm of the intermediate supply passage 145b1. It is. Further, the pressure in the upstream discharge passage 146c is equal to the crank chamber pressure Pc. Therefore, the second control valve 400 operates the spool 440 according to the back pressure (pressure in the intermediate supply passage 145b1) Pm and the crank chamber pressure Pc.
One end surface of the spool 440 (the other end surface 441b of the pressure receiving portion 441) receives the back pressure Pm, and the other end surface of the spool 440 (the one end surface 442a of the valve portion 442) receives the crank chamber pressure Pc. It moves in the axial direction according to (Pm−Pc). If Pm−Pc> 0, the other end surface of the spool 440 comes into contact with the valve seat 103f, and the second control valve 400 closes the first discharge passage 146a. If Pm−Pc <0, the valve portion 442 contacts the end wall 432 of the partition member 430, and the second control valve 400 opens the first discharge passage 146a to the maximum. The pressure receiving area A1 of the spool 440 in the axial direction for receiving the back pressure Pm and the pressure receiving area A2 of the spool 440 for receiving the crank chamber pressure Pc are set to A1 = A2, for example, but in order to adjust the operation of the spool 440, A1> A2 Or it is good also as A1 <A2.
Specifically, the second control valve 400 is operated by the pressure in the valve closing direction that moves the spool 440 in the direction approaching the valve seat 103f by the pressure (back pressure Pm) acting on the pressure receiving portion 441. When the force in the valve opening direction that moves 440 away from the valve seat 103f is greater, the valve portion 442 comes into contact with the valve seat 103f, thereby blocking the communication between the valve hole 103d and the discharge hole 431a. When the opening degree of 146 is minimized and the force in the valve closing direction is smaller than the force in the valve opening direction, the valve portion 442 is separated from the valve seat 103f, so that the valve hole 103d and the discharge hole 431a communicate with each other. The opening of the discharge passage 146 is configured to be maximized.
Note that a minute gap is formed between the outermost peripheral surface 441c of the pressure receiving portion 441 that is slidably supported on the inner peripheral surface of the first storage chamber 104g1 and the inner peripheral surface of the first storage chamber 104g1. Therefore, in a state where the one end surface 441a of the pressure receiving portion 441 is slightly separated from the end wall 432, the refrigerant gas flowing into the back pressure chamber 410 (first housing chamber 104g1) from the communication path 104k is separated from the outermost peripheral surface 441c. The first chamber 104g1 flows into the valve chamber 420 via a gap between the inner circumferential surface and a gap between the outer circumferential surface of the shaft portion 443 and the inner circumferential surface of the insertion hole 432a. On the other hand, when the one end surface 442a of the valve portion 442 contacts the valve seat 103f, the one end surface 441a of the pressure receiving portion 441 is configured to contact the one end surface 432b of the end wall 432. The refrigerant flow from the back pressure chamber 410 to the valve chamber 420 via the gap between the outer peripheral surface and the inner peripheral surface of the insertion hole 432a is blocked. Therefore, the one end surface 441a of the pressure receiving portion 441 and the one end surface 432b of the end wall 432 constitute valve means.
In other words, in the present embodiment, the pressure receiving portion 441 contacts the end wall 432 facing the back pressure chamber 410 of the partition member 430 in a state where the valve portion 442 is in contact with the valve seat 103f, so that the shaft portion 443 The valve seat side of the valve portion 442 is such that communication between the back pressure chamber 410 and the valve chamber 420 through a gap between the insertion hole 432a formed in the partition member 430 for insertion and the shaft portion 443 is blocked. The distance between the one end surface 442a as the end surface and the one end surface 441a as the partition member side end surface of the pressure receiving portion 441 is set.
Note that the refrigerant gas in the intermediate supply passage 145b1 slightly flows into the suction chamber 141 through the back pressure relief passage 147 in a state where the valve portion 442 is in contact with the valve seat 103f. In the present embodiment, as shown in FIG. 5, the back pressure relief passage 147 opens into the suction chamber 141 via the throttle portion 147a formed in the discharge valve forming plate 151 and the communication hole of the head gasket 153. . Specifically, the back pressure relief passage 147 is provided between the connecting portion 104e1 and the suction chamber 141 in the intermediate supply passage 145b1 and between the cylinder block 101 and the cylinder head 104 (discharge valve forming plate 151, head gasket 153). ) To communicate with each other via a passage formed in (1). Thus, in the present embodiment, the back pressure relief passage 147 is formed so as to bypass the second control valve 400 and directly communicate between the connection portion 104e and the suction chamber 141 in the intermediate supply passage 145b1. Has been.
[Communication passage]
Next, the communication path 104k that communicates between the back pressure chamber 410 and the intermediate supply path 145b1 will be described in detail.
One end of the communication path 104k is connected to a connecting portion 104e provided in the middle of the intermediate supply path 145b1, and the other end of the communication path 104k is connected to the back pressure chamber 410. The communication passage side connection portion 104k1 (see FIG. 3) extending from at least the connection portion 104e of the communication passage 104k toward the back pressure chamber 410 side is connected to the first control valve 300 side from the connection portion 104e of the intermediate supply passage 145b1. It extends at an acute angle with respect to the communication passage 104d as the intermediate supply passage side connection portion extending toward the center. In other words, the communication passage 104k as the intermediate supply passage side connection portion is folded back in the intermediate supply passage 145b1 in the direction opposite to the main flow direction of the refrigerant flow flowing from the first control valve 300 toward the check valve 350. , Branched from the connecting portion 104e in the intermediate supply passage 145b1. The communication passage side connection portion 104k1 is a passage portion near the connection portion 104e in the communication passage 104k.
In the present embodiment, the communication path 104k extends at an acute angle over the entire length of the communication path with respect to the communication path 104d as the intermediate supply path side connection portion. In other words, the communication path 104k extends in one direction opposite to the flow direction of the main flow of the refrigerant flowing through the intermediate supply path 145b1 from the first control valve 300 toward the check valve 350 over the entire length of the communication path. ing. Therefore, the communication path 104k and the communication path 104d extending linearly in one direction form a V-shaped path.
In the present embodiment, the communication passage 104k is formed such that the back pressure chamber side opening end thereof opens to a lower part in the gravity direction on the inner wall surface of the back pressure chamber 410 when the compressor is installed.
In the present embodiment, the connecting portion 104e in the intermediate supply passage 145b1 is disposed so as to be located below the second control valve 400 in the gravitational direction when the compressor is installed. The connecting portion 104e is disposed closer to the valve plate 103 than the back pressure chamber 410. Therefore, the communication path 104k is folded back from the connecting portion 104e and extends obliquely upward to open to the back pressure chamber 410.
In the present embodiment, the first control valve 300 and the second control valve 400 are mutually in the cylinder head 104 with respect to the extending direction of the axis O of the drive shaft 110 (that is, the central axis extending direction of the compressor housing). It is arranged at a position shifted in the orthogonal direction. Specifically, the first control valve 300 is disposed vertically below the second control valve 400. Therefore, the connecting portion 104e, the communication passage 104d as the intermediate supply passage side connection portion, and the second control valve 400 are collectively arranged below the second control valve 400. Further, the second control valve 400 is arranged so that the central axis thereof substantially coincides with the axis O of the drive shaft 110. On the other hand, the first control valve 300 is arranged such that its central axis extends in the horizontal direction and its central axis is orthogonal to the axis O of the drive shaft 110.
[Operation of variable capacity compressor]
Here, the operation of the variable capacity compressor 100 will be described.
When the energization to the mold coil 314 of the first control valve 300 is cut off while the variable capacity compressor 100 is in operation, the first control valve 300 is opened to the maximum. As a result, the back pressure Pm is increased. Therefore, when the check valve 350 closes the supply passage 145 (at the maximum discharge capacity), the check valve 350 opens the supply passage 145 and at the same time the second control valve 400 The first discharge passage 146a is closed. Therefore, the discharge passage 146 is only the second discharge passage 146b, the pressure in the crank chamber 140 is increased, the inclination angle of the swash plate 111 is reduced, and the discharge capacity is maintained at the minimum state.
At substantially the same time, the discharge check valve 200 blocks the discharge passage, and the refrigerant gas discharged with the minimum discharge capacity does not flow to the external refrigerant circuit, but the discharge chamber 142, the supply passage 145, the crank chamber 140, and the second discharge. It circulates in an internal circulation path constituted by the passage 146b, the suction chamber 141, and the cylinder bore 101a. In this state, the refrigerant gas in the region of the supply passage 145 between the first control valve 300 and the check valve 350, that is, the intermediate supply passage 145b1, is released from the back pressure provided around the second control valve 400. It slightly flows out into the suction chamber 141 through the passage 147.
When energizing the mold coil 314 of the first control valve 300 from this state, the first control valve 300 is closed and the supply passage 145 is closed, and the refrigerant gas in the intermediate supply passage 145b1 passes through the back pressure relief passage 147. It flows out to the suction chamber 141. Then, the pressure (back pressure Pm) in the intermediate supply passage 145b1 decreases, the check valve 350 closes the supply passage 145, and the refrigerant gas is prevented from flowing back into the supply passage 145 upstream of the check valve 350. . At the same time, the second control valve 400 opens the first discharge passage 146a.
Accordingly, at this time, the discharge passage 146 is constituted by two of the first discharge passage 146a and the second discharge passage 146b.
The flow passage cross-sectional area in the second control valve 400 is set to be larger than the flow passage cross-sectional area of the groove 150a serving as a fixed throttle, and the refrigerant in the crank chamber 140 quickly flows out into the suction chamber 141. The pressure decreases, and the discharge capacity quickly increases from the minimum state to the maximum discharge capacity. As a result, the pressure in the discharge chamber 142 is rapidly increased, the discharge check valve 200 is opened, the refrigerant circulates through the external refrigerant circuit, and the air conditioner system is activated.
When the air conditioner system is activated and the pressure in the suction chamber 141 decreases and reaches a set pressure set by the current flowing through the mold coil 314, the first control valve 300 is opened. Thereby, when the back pressure Pm is increased, the check valve 350 opens the supply passage 145, and at the same time, the second control valve 400 closes the first discharge passage 146a. Accordingly, at this time, the discharge passage 146 is only the second discharge passage 146b. For this reason, the refrigerant in the crank chamber 140 is restricted from flowing into the suction chamber 141, and the pressure in the crank chamber 140 is easily increased. The opening of the first control valve 300 is adjusted so that the discharge capacity is variably controlled so that the pressure in the suction chamber 141 maintains the set pressure.
According to the variable displacement compressor according to the present embodiment, the check valve 350 is provided in the downstream supply passage 145 b between the first control valve 300 and the crank chamber 140 in the supply passage 145, and The back pressure chamber 410 communicates with the intermediate supply passage 145b1 between the first control valve 300 and the check valve 350 in the downstream supply passage 145b via the communication passage 104k. The communication passage side connection portion 104k1 extending from at least the connection portion 104e of the communication passage 104k toward the back pressure chamber 410 side is directed from the connection portion 104e of the intermediate supply passage 145b1 to the first control valve 300 side. It extends at an acute angle with respect to the communication passage 104d as an intermediate supply passage-side connecting portion that extends. Thereby, even if minute foreign matter flows through the intermediate supply passage 145b1 along with the refrigerant, all or most of the foreign matter becomes the main flow of the refrigerant flowing from the first control valve 300 to the check valve 350 side at the connecting portion 104e. Accordingly, foreign matter can be prevented or suppressed from entering the back pressure chamber 410. As a result, the spool 440 can be operated satisfactorily even if minute foreign matter is distributed along with the refrigerant. In this way, it is possible to provide the variable capacity compressor 100 that can prevent or suppress foreign matter from entering the second control valve 400.
In the present embodiment, the passage between the first control valve 300 and the crank chamber 140 in the supply passage 145 is called a downstream supply passage 145b, and the first control valve 300 and the check valve 350 in the downstream supply passage 145b An intermediate supply passage 145b1 between the two extends substantially linearly as shown in FIG. That is, a bent portion that is greatly bent is not formed in the middle of the intermediate supply passage 145b1. Thereby, in the intermediate supply passage 145b1, it is possible to form a main flow of the refrigerant flow in which the refrigerant linearly flows from the first control valve 300 toward the check valve 350 side. As a result, it is possible to more reliably prevent or suppress the entry of foreign matter into the back pressure chamber 410.
In the present embodiment, the communication path 104k extends at an acute angle over the entire length of the communication path with respect to the communication path 104d as the intermediate supply path side connection portion. As a result, a V-shaped passage is formed in cooperation with the connecting portion 104e and the communication passage 104d, and contamination of foreign matter from the connecting portion 104e to the back pressure chamber 410 can be prevented or suppressed more reliably. .
In the present embodiment, the communication passage 104k is formed such that the back pressure chamber side opening end thereof opens to a lower part in the gravity direction on the inner wall surface of the back pressure chamber 410 when the compressor is installed. Accordingly, when the first control valve 300 closes the supply passage 145 and the refrigerant in the intermediate supply passage 145b1 is discharged to the suction chamber 141 via the back pressure relief passage 147, the back pressure is temporarily set via the communication passage 104k. Even if foreign matter enters the chamber 410, the foreign matter is easily discharged to the connection portion 104e side by gravity through the communication path 104k.
In the present embodiment, the connecting portion 104e in the intermediate supply passage 145b1 is disposed so as to be located below the second control valve 400 in the gravitational direction when the compressor is installed. As a result, the connecting portion 104e is positioned below the back pressure chamber 410 of the second control valve 400 in the gravitational direction, so that it is difficult for foreign matter to enter the back pressure chamber 410 via the communication path 104k. Even if it enters, the foreign matter is easily discharged.
In the present embodiment, the first control valve 300 and the second control valve 400 are mutually in the cylinder head 104 with respect to the extending direction of the axis O of the drive shaft 110 (that is, the central axis extending direction of the compressor housing). It is arranged at a position shifted in the orthogonal direction. Specifically, the first control valve 300 is disposed vertically below the second control valve 400. As a result, the connection portion 104e, the communication passage 104d as the connection passage, and the second control valve 400 can be arranged under the second control valve 400, so that the longitudinal direction of the variable capacity compressor 100 (drive) The length in the extending direction of the axis O of the shaft 110 can be made shorter than before, and as a result, the compressor housing can be downsized.
In the present embodiment, the pressure receiving portion 441 contacts the end wall 432 facing the back pressure chamber 410 of the partition member 430 in a state where the valve portion 442 is in contact with the valve seat 103f, so that the shaft portion 443 is inserted. As a valve seat side end surface of the valve portion 442, the communication between the back pressure chamber 410 and the valve chamber 420 via the gap between the insertion hole 432 a formed in the partition member 430 and the shaft portion 443 is blocked. The distance between the one end surface 442a and the one end surface 441a as the partition member side end surface of the pressure receiving portion 441 is set. The back pressure relief passage 147 is formed so as to bypass the second control valve 400 and directly communicate between the connection portion 104e and the suction chamber 141 in the intermediate supply passage 145b1. Thereby, when the first control valve 300 is opened, there is no or substantially no steady flow of the refrigerant in the back pressure chamber 410, and it is possible to further suppress foreign matter from entering the back pressure chamber 410. it can.
In the present embodiment, the throttle portion 147 a of the back pressure relief passage 147 is formed on the discharge valve forming plate 151. Thereby, the back pressure relief passage 147 including the throttle portion 147a can be easily formed.
[Modification]
In the present embodiment, the back pressure chamber side opening end of the communication passage 104k opens to the inner wall surface of the back pressure chamber 410. However, the present invention is not limited to this, and the end of the first storage chamber 104g1 that constitutes the back pressure chamber 410. You may open to a wall surface (Namely, the end wall surface of the 1st storage chamber 104g1 facing the other end surface 441b of the pressure receiving part 441).
In the present embodiment, the open end of the partition member 430 is closed by the valve plate 103, and the valve plate 103 is used as the valve seat forming member of the second control valve 400. However, the present invention is not limited to this. As the valve seat forming member of the second control valve 400, a member interposed between the cylinder block 101 and the cylinder head 104, for example, the intake valve forming plate 150 or the discharge valve forming plate 151 may be used. Further, as shown in FIG. 9, the second control valve 400 may integrally include a dedicated valve seat forming member 148. Specifically, as shown in FIG. 9, the valve seat forming member 148 is press-fitted and fixed to, for example, the opening on the end surface 431 b side of the peripheral wall 431. If any one of the intake valve forming plate 150, the discharge valve forming plate 151, and the valve plate 103 is used as a valve seat forming member, it is not necessary to add a dedicated valve seat forming member, and flatness accuracy is also improved. Since it is good, it is suitable as a valve seat forming member.
In the present embodiment, the peripheral wall 431 of the partition member 430 is slidably supported by the peripheral wall of the second storage chamber 104g2, but is not limited thereto, and is press-fitted into the second storage chamber 104g2. The cylinder head 104 may be positioned. In this case, the O-ring 460 and the disc spring 450 are not necessary.
In the present embodiment, the back pressure relief passage 147 is formed so as to bypass the second control valve 400 and directly communicate between the connection portion 104e and the suction chamber 141 in the intermediate supply passage 145b1. However, it is not limited to this. The back pressure relief passage 147 may pass through the communication passage 104k that communicates between the back pressure chamber 410 and the intermediate supply passage 145b1. In the case of this modification, a communication hole for communicating the back pressure chamber 410 and the valve chamber 420 is formed in the end wall 432 of the partition member 430 of the second control valve 400. As a result, the communication hole formed in the end wall 432, the valve chamber 420, and the discharge between the communication passage 104k, the back pressure chamber 410, the outermost peripheral surface 441c of the pressure receiving portion 441 and the inner peripheral surface of the first storage chamber 104g1. A back pressure relief passage 147 that opens to the suction chamber 141 is formed via the hole 431a. In the case of this modification, the communication hole that connects the back pressure chamber 410 and the valve chamber 420 is set so that the flow passage cross-sectional area becomes the smallest in the back pressure relief passage 147, and the back pressure relief passage 147 is throttled. Part 147a is configured.
In the present embodiment, the discharge passage 146 is branched from the space 101d into the first discharge passage 146a and the second discharge passage 146b. The first discharge passage 146a is opened and closed by the second control valve 400, and the second discharge passage 146b is opened. Although the minimum opening degree of the discharge passage 146 is ensured when the second control valve 400 is closed by adopting a configuration in which the second control valve 400 is always opened, the present invention is not limited to this. For example, instead of the second discharge passage 146b, a through hole is formed in the peripheral wall of the valve portion 442, or a groove is provided in one end surface 442a of the valve portion 442, thereby ensuring the minimum opening of the discharge passage 146. You may comprise as follows.
In the present embodiment, the shaft portion 443 of the spool 440 is formed integrally with the valve portion 442, but is not limited thereto, and may be formed integrally with the pressure receiving portion 441.
In the present embodiment, the variable capacity compressor 100 is a swash plate type clutchless variable capacity compressor. However, the present invention is not limited thereto, and a variable capacity compressor equipped with an electromagnetic clutch, a variable capacity compressor driven by a motor, can do.
Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, those skilled in the art can further adopt various modifications based on the basic technical idea and teachings of the present invention. It is self-explanatory.
100…可変容量圧縮機
101a…シリンダボア(圧縮部)
103d…弁孔(第2制御弁の弁孔)
103f…弁座(第2制御弁の弁座)
104…シリンダヘッド(ハウジング部材)
104d…連通路(中間供給通路側接続部位)
104e…接続部
104k…連通路
104k1…連通路側接続部位
136…ピストン(圧縮部)
140…クランク室(制御圧室)
141…吸入室
142…吐出室
145…供給通路
145b…下流側供給通路
145b1…中間供給通路
146…排出通路
146c…上流側排出通路
147…背圧逃がし通路(絞り通路)
147a…絞り部
300…第1制御弁
350…逆止弁
400…第2制御弁
410…背圧室
420…弁室
430…区画部材
431a…排出孔
432…端壁(区画部材の背圧室に面する端壁)
432a…軸部の挿通用の挿通孔
440…スプール
441…受圧部
442…弁部
443…軸部
442a…一端面(弁部の弁座側端面)
441a…一端面(受圧部の区画部材側端面)
O…駆動軸の軸線(圧縮機ハウジングの中心軸)
100 ... Variable displacement compressor 101a ... Cylinder bore (compression unit)
103d ... Valve hole (valve hole of the second control valve)
103f ... Valve seat (the seat of the second control valve)
104 ... Cylinder head (housing member)
104d ... Communication passage (intermediate supply passage side connection part)
104e ... Connection part 104k ... Communication path 104k1 ... Communication path side connection part 136 ... Piston (compression part)
140 ... Crank chamber (control pressure chamber)
141 ... suction chamber 142 ... discharge chamber 145 ... supply passage 145b ... downstream supply passage 145b1 ... intermediate supply passage 146 ... discharge passage 146c ... upstream discharge passage 147 ... back pressure relief passage (throttle passage)
147a ... throttle portion 300 ... first control valve 350 ... check valve 400 ... second control valve 410 ... back pressure chamber 420 ... valve chamber 430 ... partition member 431a ... discharge hole 432 ... end wall (to the back pressure chamber of the partition member) Facing end wall)
432a ... Insertion hole 440 for inserting the shaft portion ... Spool 441 ... Pressure receiving portion 442 ... Valve portion 443 ... Shaft portion 442a ... One end surface (end surface on the valve seat side of the valve portion)
441a ... One end surface (the end surface on the partition member side of the pressure receiving portion)
O ... Axis of drive shaft (center axis of compressor housing)

Claims (6)

  1.  冷媒が導かれる吸入室、前記吸入室内の冷媒を吸入して圧縮する圧縮部、前記圧縮部によって圧縮された冷媒が吐出される吐出室、及び、制御圧室を有し、前記制御圧室の圧力に応じて吐出容量が変化する可変容量圧縮機において、
     前記吐出室内の冷媒を前記制御圧室に供給するための供給通路に設けられ、前記供給通路の開度を制御する第1制御弁と、
     前記供給通路における前記第1制御弁と前記制御圧室との間の下流側供給通路に設けられ、前記制御圧室から前記第1制御弁に向かう冷媒の逆流を阻止する逆止弁と、
     前記制御圧室内の冷媒を前記吸入室に排出するための排出通路に設けられ、前記排出通路の開度を制御する第2制御弁と、
     前記下流側供給通路における前記第1制御弁と前記逆止弁との間の中間供給通路と前記吸入室とを連通すると共に絞り部を有する絞り通路と、
     を備え、
     前記第2制御弁は、
     前記中間供給通路に連通する背圧室と、
     前記排出通路における前記第2制御弁と前記制御圧室との間の上流側排出通路に連通する弁孔、及び、前記吸入室に連通する排出孔が開口され、前記排出通路の一部を構成する弁室と、
     前記背圧室と前記弁室とを区画する区画部材と、
     前記背圧室内に配置される受圧部、前記弁室内に配置され前記弁孔の周囲の弁座に接離する弁部、及び、前記区画部材を貫通して延び前記受圧部と前記弁部とを連結する軸部を有するスプールと、
     を有し、前記背圧室内の圧力と前記上流側排出通路内の圧力とに応じて前記スプールを移動させて前記弁部を前記弁座に接離させることにより、前記排出通路の開度を制御するように構成されており、
     前記背圧室は、当該背圧室と前記中間供給通路とに接続される連通路を介して前記中間供給通路に連通し、
     前記連通路の一端は、前記中間供給通路の途上に設けられる接続部に接続され、
     前記連通路のうちの少なくとも前記接続部から前記背圧室側に向って延びる連通路側接続部位は、前記中間供給通路のうちの前記接続部から前記第1制御弁側に向って延びる中間供給通路側接続部位に対して、鋭角に延伸している、可変容量圧縮機。
    A suction chamber into which the refrigerant is guided; a compression unit that sucks and compresses the refrigerant in the suction chamber; a discharge chamber into which the refrigerant compressed by the compression unit is discharged; and a control pressure chamber; In variable capacity compressors that change discharge capacity according to pressure,
    A first control valve that is provided in a supply passage for supplying the refrigerant in the discharge chamber to the control pressure chamber, and controls the opening of the supply passage;
    A check valve that is provided in a downstream supply passage between the first control valve and the control pressure chamber in the supply passage and prevents a reverse flow of refrigerant from the control pressure chamber toward the first control valve;
    A second control valve that is provided in a discharge passage for discharging the refrigerant in the control pressure chamber to the suction chamber, and controls the opening degree of the discharge passage;
    A throttle passage communicating the intermediate supply passage between the first control valve and the check valve in the downstream supply passage and the suction chamber and having a throttle portion;
    With
    The second control valve is
    A back pressure chamber communicating with the intermediate supply passage;
    A valve hole communicating with the upstream discharge passage between the second control valve and the control pressure chamber in the discharge passage and a discharge hole communicating with the suction chamber are opened, and constitutes a part of the discharge passage A valve chamber,
    A partition member that partitions the back pressure chamber and the valve chamber;
    A pressure receiving portion disposed in the back pressure chamber, a valve portion disposed in the valve chamber and contacting and separating from a valve seat around the valve hole, and the pressure receiving portion and the valve portion extending through the partition member; A spool having a shaft portion for connecting,
    And moving the spool in accordance with the pressure in the back pressure chamber and the pressure in the upstream discharge passage to bring the valve portion into contact with and away from the valve seat, thereby opening the opening of the discharge passage. Configured to control,
    The back pressure chamber communicates with the intermediate supply passage through a communication passage connected to the back pressure chamber and the intermediate supply passage.
    One end of the communication path is connected to a connection portion provided in the middle of the intermediate supply path,
    The communication passage side connection portion extending from at least the connection portion of the communication passage toward the back pressure chamber side is an intermediate supply extending from the connection portion of the intermediate supply passage toward the first control valve side. A variable capacity compressor extending at an acute angle with respect to the passage-side connecting portion.
  2.  前記連通路は、連通路全長に亘って、前記中間供給通路側接続部位に対して鋭角に延伸している、請求項1に記載の可変容量圧縮機。 The variable capacity compressor according to claim 1, wherein the communication path extends at an acute angle with respect to the connection portion on the intermediate supply path side over the entire length of the communication path.
  3.  前記吸入室及び前記吐出室は、圧縮機ハウジングの一端部を構成するハウジング部材内に形成され、
     前記第1制御弁及び前記第2制御弁は、前記ハウジング部材内において、互いに前記圧縮機ハウジングの中心軸延伸方向に対して直交する方向にずらした位置に配置される、請求項1又は2に記載の可変容量圧縮機。
    The suction chamber and the discharge chamber are formed in a housing member constituting one end portion of the compressor housing,
    The said 1st control valve and the said 2nd control valve are arrange | positioned in the position which mutually shifted in the direction orthogonal to the center axis | shaft extending | stretching direction of the said compressor housing in the said housing member. The variable capacity compressor described.
  4.  前記連通路は、その背圧室側開口端が圧縮機設置状態において前記背圧室の内壁面における重力方向下側部位に開口するように形成されている、請求項1~3のいずれか一つに記載の可変容量圧縮機。 4. The communication passage is formed so that an opening end of the back pressure chamber side opens to a lower portion in the gravity direction on the inner wall surface of the back pressure chamber when the compressor is installed. The variable capacity compressor described in 1.
  5.  前記中間供給通路における前記接続部は、圧縮機設置状態において前記第2制御弁よりも重力方向下側に位置するように配置されている、請求項1~4のいずれか一つに記載の可変容量圧縮機。 The variable connection according to any one of claims 1 to 4, wherein the connection portion in the intermediate supply passage is arranged to be located below the second control valve in the gravity direction in a compressor installed state. Capacity compressor.
  6.  前記弁部が前記弁座に当接した状態で、前記受圧部が前記区画部材の前記背圧室に面する端壁に当接することにより、前記軸部の挿通用に前記区画部材に形成される挿通孔と前記軸部との間の隙間を経由する前記背圧室と前記弁室との連通が遮断されるように、前記弁部の弁座側端面と前記受圧部の区画部材側端面との間の距離が設定され、
     前記絞り通路は、前記第2制御弁を迂回して、前記中間供給通路における前記接続部と前記吸入室との間を直接的に連通するように形成されている、請求項1~5のいずれか一つに記載の可変容量圧縮機。
    In the state where the valve portion is in contact with the valve seat, the pressure receiving portion is formed on the partition member for insertion of the shaft portion by contacting the end wall facing the back pressure chamber of the partition member. The valve seat side end surface of the valve portion and the partition member side end surface of the pressure receiving portion so that communication between the back pressure chamber and the valve chamber via a gap between the insertion hole and the shaft portion is blocked. Set the distance between
    6. The throttle passage according to claim 1, wherein the throttle passage is formed so as to bypass the second control valve and directly communicate between the connection portion and the suction chamber in the intermediate supply passage. The variable capacity compressor as described in any one.
PCT/JP2018/005606 2017-04-06 2018-02-09 Variable displacement compressor WO2018186034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076183A JP6830397B2 (en) 2017-04-06 2017-04-06 Variable capacitance compressor
JP2017-076183 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186034A1 true WO2018186034A1 (en) 2018-10-11

Family

ID=63712418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005606 WO2018186034A1 (en) 2017-04-06 2018-02-09 Variable displacement compressor

Country Status (2)

Country Link
JP (1) JP6830397B2 (en)
WO (1) WO2018186034A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189604A1 (en) * 2019-03-20 2020-09-24 サンデン・オートモーティブコンポーネント株式会社 Variable capacity compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228957A (en) * 1996-02-26 1997-09-02 Toyota Autom Loom Works Ltd Clutchless variable displacement compressor
WO2016088735A1 (en) * 2014-12-02 2016-06-09 サンデンホールディングス株式会社 Variable capacity compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228957A (en) * 1996-02-26 1997-09-02 Toyota Autom Loom Works Ltd Clutchless variable displacement compressor
WO2016088735A1 (en) * 2014-12-02 2016-06-09 サンデンホールディングス株式会社 Variable capacity compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189604A1 (en) * 2019-03-20 2020-09-24 サンデン・オートモーティブコンポーネント株式会社 Variable capacity compressor
JP2020153287A (en) * 2019-03-20 2020-09-24 サンデン・オートモーティブコンポーネント株式会社 Variable capacity compressor
JP7185568B2 (en) 2019-03-20 2022-12-07 サンデン株式会社 variable capacity compressor
US11841010B2 (en) 2019-03-20 2023-12-12 Sanden Corporation Variable displacement compressor

Also Published As

Publication number Publication date
JP2018178792A (en) 2018-11-15
JP6830397B2 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP6495634B2 (en) Variable capacity compressor
CN110582641B (en) Solenoid control valve and variable capacity compressor including the same
JP6402426B2 (en) Variable capacity compressor
JPWO2019146674A1 (en) Capacity control valve
EP2963292B1 (en) Control valve for variable displacement compressor
WO2016088736A1 (en) Variable capacity compressor
JPWO2019159998A1 (en) Capacity control valve
WO2018186034A1 (en) Variable displacement compressor
WO2017208835A1 (en) Variable capacity compressor
WO2018186033A1 (en) Variable displacement compressor
JP6910871B2 (en) Variable capacitance compressor
US11149722B2 (en) Variable displacement refrigerant compressor having a control valve adapted to adjust an opening degree of a pressure supply passage and a switching valve in the pressure supply passage closer to a controlled pressure chamber than the control valve and switching between a first state and a second state
WO2018123633A1 (en) Variable displacement compressor
JP7185568B2 (en) variable capacity compressor
WO2020026699A1 (en) Variable capacity compressor
JP2019056353A (en) Variable capacity compressor
WO2018135602A1 (en) Variable displacement compressor
JP2019031935A (en) Variable capacity compressor
JP2022126942A (en) Variable displacement compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781623

Country of ref document: EP

Kind code of ref document: A1