WO2018185892A1 - Position detecting device and painting assisting system - Google Patents
Position detecting device and painting assisting system Download PDFInfo
- Publication number
- WO2018185892A1 WO2018185892A1 PCT/JP2017/014279 JP2017014279W WO2018185892A1 WO 2018185892 A1 WO2018185892 A1 WO 2018185892A1 JP 2017014279 W JP2017014279 W JP 2017014279W WO 2018185892 A1 WO2018185892 A1 WO 2018185892A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- painting
- information
- position information
- coating
- worker
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
Definitions
- the present invention relates to a position detection device and a painting auxiliary system.
- Patent Document 1 A technique for measuring the film thickness of a coating film by pressing a measuring element against a painted surface is known.
- the position detection device includes a first position information acquisition unit that acquires first position information including relative position information between the processing tool held by the moving body and the moving body. From the second position information acquisition unit that acquires second position information including relative position information between the moving body and the object to be processed, and the processing tool from the first position information and the second position information. And a third position information acquisition unit that acquires third position information including relative position information between the workpiece and the workpiece.
- the processing assistance system stores history information of the position of the processing tool with respect to the processing object based on the position detection device according to the first aspect and the third position information.
- FIG. 1 is a diagram for explaining a position detection apparatus according to the first embodiment.
- FIG. 2 is a figure which shows typically the mode at the time of the painting operation
- work using the position detection apparatus by 1st Embodiment. 1 and 2 show a hangar 2 in which an aircraft (airplane) 11 is stored as an example of an environment to which the position detection apparatus according to the first embodiment is applied.
- the hangar 2 is a facility where the aircraft 11 is painted and maintained.
- a gondola 3 for an operator 4 to enter and perform a painting operation, a measuring device 10 for measuring the shape of an airplane when a paint film is formed on the airplane, a marker 20, and a painting auxiliary device 1.
- a display device 100 and an operator position detection device 201 that detects the position of the worker and the posture of the coating device position detection device 212.
- the helmet worn by the worker 4 is provided with a coating device position detecting device 212 for detecting the position and posture of the coating device 5 held by the worker 4.
- a marker 211 that can be detected by the device position detection device 212 is provided.
- the helmet is provided with a marker 202 that can be detected by the worker position detection device 201.
- a plurality of the markers 202 are provided on the helmet.
- the coating device position detection device 212 functions as a first position information acquisition unit 221 that acquires first position information including a relative position between the coating device 5 and the worker 4 held by the worker 4.
- the worker position detection device 201 functions as a second position information acquisition unit 222 that acquires second position information including the relative position between the worker 4 and the aircraft 11.
- the painting auxiliary device 1 includes a third position information acquisition unit 223.
- the third position information acquisition unit 223 includes the relative position between the coating apparatus 5 and the worker 4 acquired by the first position information acquisition unit 221 and the worker 4 acquired by the second position information acquisition unit 222.
- Position information regarding the positional relationship between the painting apparatus 5 and the aircraft 11 is acquired based on the positional information regarding the positional relationship between the painting apparatus 5 and the aircraft 11 and the attitude of the painting apparatus position detection device 212.
- the marker 211 provided in the coating apparatus 5 is detected by the worker position detection apparatus 201 and position information regarding the positional relationship between the coating apparatus 5 and the aircraft 11 is acquired.
- the worker 4 or the like enters between the marker 211 and the worker position detection device 201 during the work, and occlusion occurs. Therefore, in this method, there may be a case where the positional relationship regarding the coating apparatus 5 cannot be acquired.
- a plurality of markers 202 and a coating device position detection device 212 that can be detected by the worker position detection device 201 are provided on the helmet or the like of the worker 4 so that the coating device 5 and the worker 4 Information on the relative position between the helmet 11 and the like and the relative position between the helmet 4 of the worker 4 and the aircraft 11 is acquired.
- the posture of the coating apparatus position detection device 212 can be estimated based on the relative positional relationship between the plurality of markers 202.
- the position detection device includes the relative position between the coating device 5 obtained in the same three-dimensional coordinate system and the helmet of the worker 4 and the helmet 11 of the worker 4 and the aircraft 11. Is converted into information related to the relative position between the coating apparatus 5 and the aircraft 11. For this reason, the relative position of the coating apparatus 5 with respect to the aircraft 11 can always be acquired.
- the measuring device 10 for measuring the shape of the airplane is disposed in the vicinity of the gondola 3, and the painting auxiliary device 1 and the display device 100 are disposed in the gondola 3.
- the marker 20 is arrange
- the coating device position detection apparatus 212 is arrange
- FIG. The present invention is not limited to such an arrangement relationship. Further, when the worker 4 performs the painting work without using the gondola 3, for example, when performing the painting work while standing on the ground at the work site, the position detection device can be applied.
- the gondola 3 is configured to move to a desired position by supplying power to a drive unit (not shown) by an operation by the operator 4 or the like.
- the worker 4 appropriately moves the gondola 3 so as to be positioned on the painting target surface of the aircraft 11 to be painted, and operates the painting device 5 toward the painting target surface to perform the painting work.
- one gondola 3 is shown to simplify the drawing, but a plurality of gondolas may be provided according to the size of the aircraft 11 and the like.
- the coating device 5 is, for example, a spray device (painting gun) that can be used by an operator by hand, and a nozzle that ejects paint is attached to the tip.
- the coating device 5 is connected to a paint supply device (tank or the like) (not shown) via a hose 6, and sprays the paint supplied from the paint supply device by an operator operating the trigger of the coating device 5. It can discharge (spray) from the nozzle of an apparatus.
- the nozzle can be exchanged, and the paint application pattern (paint discharge pattern) can be changed by changing to a nozzle having a different paint discharge port shape.
- other coating devices such as a roller coating device, a brush coating device, and an electrodeposition coating device may be used.
- the measuring device 10 that measures the shape of an airplane irradiates the measurement object with light and receives the light reflected from the measurement object, so that the measurement object 10 is not in contact with the measurement object and is measured from the measurement device 10 to the measurement object. Measure the distance.
- the measuring device 10 is preferably a laser radar device.
- the laser radar device performs frequency modulation on the light applied to the measurement object, and performs frequency modulation so that the modulation frequency changes with time.
- the measuring apparatus 10 irradiates the aircraft 11 with the laser light thus frequency-modulated.
- the measuring device 10 calculates the distance between the measuring device 10 and the measurement point of the aircraft 11 based on the frequency difference between the laser beam reflected from the aircraft 11 and the reference laser beam.
- the measuring apparatus 10 may calculate the distance between the measuring apparatus 10 and the measurement point based on the phase difference between the reflected laser light and the reference laser light. You may make it arrange
- the heel marker 20 is arranged at a known position in the hangar 2.
- the position of the marker 20 serves as a reference position for specifying the positions of the measuring device 10 and the aircraft 11 in the hangar 2.
- a plurality of measuring devices 10 may be installed in the hangar 2.
- the position of each measuring device 10 is obtained by each measuring device 10 measuring the position of the marker 20. At that time, the measuring device 10 obtains the relative position and angle of the measuring device 10 with respect to the marker 20. Thereby, the spatial position of the measuring apparatus 10 itself is obtained.
- FIG. 1 by setting markers 20 at a plurality of locations in the hangar 2 and using the position of each marker 20 in the hangar 2 as a reference, the positions of the measuring device 10 and measurement points are obtained over a wide range. Is possible.
- the measurement apparatus 10 includes a horizontal angle (azimuth angle) and a vertical angle (elevation angle) that are the irradiation directions of the laser light, and the measurement apparatus 10.
- the spatial position of the aircraft 11 is calculated by using its own spatial position information.
- a coordinate system for representing the spatial position an orthogonal coordinate system or a polar coordinate system is used.
- the measuring apparatus 10 measures the shape of the surface of the aircraft 11 by sequentially changing the irradiation angle of the laser light in the horizontal direction and the vertical direction. That is, the measurement apparatus 10 acquires point cloud data representing the spatial position of each point on the surface of the aircraft 11 by scanning the laser to be irradiated.
- the measuring device 10 generates shape model data representing the shape of the aircraft 11 based on the point cloud data.
- one measuring device 10 is shown to simplify the drawing, but a plurality of measuring devices 10 are arranged around the aircraft 11 in order to measure the entire surface of the aircraft 11. .
- the measuring device 10 is disposed, for example, in the vicinity of the gondola 3, a movable carriage, a fixed base, or the like.
- the measuring device 10 may be arranged above or below the aircraft 11 or on a self-propelled rail.
- the operator 4 may be made to wear the measuring device 10.
- the measuring device 10 measures the shape of the airplane 11 in each state before painting and after painting, the distance between the measuring device 10 and the measuring point, and the azimuth and elevation angles when the measuring point is irradiated with laser light. Based on the above, the three-dimensional position information of the measurement point in the hangar 2 is acquired. Then, the measuring device 10 transmits the three-dimensional position information to the painting auxiliary device 1. Therefore, the coating auxiliary device 1 obtains distance information measured before and after painting by the measuring device 10 at the same measurement point, and the thickness of the coating film is determined from the difference between the distance information after painting and the distance information before painting. Seeking.
- the measuring device 10 scans the laser beam so as to sequentially irradiate each measurement point, calculates the film thickness of the coating film at each measurement point of the aircraft 11, and film thickness distribution information regarding the film thickness distribution of the coating film Are generated three-dimensionally.
- the measuring device 10 can perform laser scanning at any time during the painting work by the worker 4 and can acquire coating thickness distribution information at any time. Thereby, the film thickness of the coating film formed by painting can be acquired appropriately during the painting operation.
- the measuring apparatus 10 transmits the generated film thickness distribution information to the painting auxiliary apparatus 1 by wireless communication or the like.
- the coating thickness distribution cannot be accurately obtained from the difference between the distance information before painting and the distance information after painting for the same measurement point measured by the measuring device 10. Therefore, in this embodiment, the coating thickness is obtained from the difference between the distance information before painting and the distance information after painting, but the ambient temperature is measured between the measurement before painting and the measurement after painting.
- the distance information obtained by the measurement after painting also includes a shape change component due to the expansion and contraction of the aircraft 11, and as described above, the coating film is obtained from the difference between the distance information before painting and the distance information after painting. An error occurs in the method of obtaining the thickness.
- the measuring apparatus 10 when calculating the film thickness of the coating film, the measuring apparatus 10 according to the present embodiment predicts the shape change of the coating target with respect to the temperature change based on the ambient temperature of the coating target, and before coating based on the prediction result.
- the distance information may be corrected, and the film thickness of the coating film may be calculated based on the corrected distance information before painting and the distance information after painting. Also, measure the distance before painting only for the most recently painted area, measure the distance of the painted area immediately after painting, and calculate the coating film thickness from the respective measurement results before and after painting. It may be.
- the measuring apparatus 10 can also be configured to include an imaging unit (not shown).
- the measuring device 10 generates image information including color information of the painting target based on the image captured by the imaging unit.
- the measurement apparatus 10 has an optical system for measuring a distance to a measurement point and an optical system for capturing a captured image, and a part of the optical axis is common, and acquires an image of the aircraft 11 via a half mirror or the like.
- the distance measurement and the imaging are performed simultaneously.
- this measuring apparatus 10 can acquire color information in association with the distance measured for each measurement point.
- the irradiation direction (azimuth angle, elevation angle) of the laser beam when the distance is acquired can be acquired.
- the measuring apparatus 10 From such information, the measuring apparatus 10 generates point cloud data to be painted and image information corresponding to the point cloud data, and stores the point cloud data and image information of each measurement region in association with each other in an internal memory or the like. Let Then, the measuring device 10 outputs the point cloud data to the painting auxiliary device 1. Instead of providing the imaging device in the measurement device 10, another imaging device may be provided and image information having color information may be acquired by the imaging device.
- the measuring device 10 measures the distance from the measuring device 10 to the plurality of markers 21 provided on the operator 4 in addition to measuring the distance to the measurement point of the aircraft 11.
- the markers 21 are provided corresponding to the positions of a plurality of joints such as the shoulder, elbow, and wrist of the worker 4.
- the measuring apparatus 10 acquires the positional information regarding the position of each joint of the worker 4 as the skeleton model information of the worker 4.
- the measuring apparatus 10 transmits the acquired skeleton model information of the worker 4 to the painting auxiliary apparatus 1 by wireless communication or the like.
- the painting auxiliary device 1 has, for example, an arithmetic processing circuit such as a CPU and a memory such as a ROM and a RAM, and realizes its function by executing a predetermined program.
- the third position information acquisition unit 223 of the painting auxiliary device 1 includes the first position information obtained from the painting device position detection device 212, the second position information obtained from the worker position detection device 201, and the painting device.
- the attitude information of the position detection device 212 is acquired.
- the third position information acquisition unit 223 is based on the first position information acquired by the respective position detection devices at the same time, the posture information of the coating device position detection device 212, and the second position information.
- the relative positional relationship between the painting apparatus 5 and the aircraft 11 can be calculated.
- the third position information acquisition unit 223 calculates the position information of the painting apparatus 5 in the work space where the aircraft 11 that is a painting target exists.
- FIG. 3 shows the position of the marker 211 mounted on the coating device 5, the coating device position detection device 212 mounted on the worker's helmet, and the marker 202 provided on the coating device position detection device 212 in the work space coordinate system. The position and the position of the worker position detection device 201 are shown.
- the second position information from the worker position detection device 201 to the marker 202 and the posture information of the coating device position detection device 212 are acquired.
- the second position information is vector (elevation angle, azimuth and distance) information from the worker position detection device 201 to the marker 202, as shown in the vector a3 shown in the figure.
- the position of the marker 211 is acquired from the coating device position detection device 212. Then, based on the posture information of the coating device position detection device 212 acquired by the worker position detection device 201 and the position information of the marker 211, the three-dimensional coordinates applied to the coordinate values acquired by the worker position detection device 201 Position information from the coating apparatus position detection device 212 to the marker 211 is calculated in the same coordinate system as the system. By this calculation, the coordinate system applied to the coordinate value output from the worker position detection device 201 and the coordinate value of the marker 211 calculated based on the measurement result output from the coating device position detection device 212 are applied.
- the coordinate system can be the same coordinate system (a coordinate system in which each coordinate axis coincides with the origin position of the coordinate system).
- the information is vector (elevation angle, azimuth angle and distance) information from the coating apparatus position detection device 212 to the marker 211, as shown in the vector a4.
- the position information of the coating device 5 with respect to the worker position detection device 201. If the installation position of the worker position detection device 201 is known, the position where the coating device 5 is located in the work space can be obtained based on the installation position. As shown in FIG. It is possible to calculate the information of the vector P1 indicating
- the worker position detection device 201 can be arranged at an arbitrary position. In such a case, it is necessary to determine at which position in the work space the worker position detection device 201 exists. Therefore, in the present embodiment, the position information of the worker position detecting device 201 can be obtained by further measuring the position of the marker 20 whose arrangement position has already been grasped by the worker position detecting device 201. For example, as shown in FIG. 3, the vector a1 indicating the position of the marker 20 with respect to the origin position in the work space is added to the position information (vector a2) of the marker 20 measured by the worker position detection device 201. (In the case shown in FIG.
- the position of the operator position detection device 201 can be obtained by subtracting the vector a2 from the vector a1). Therefore, in a situation where the operator position detection device 201 cannot grasp, it is preferable that the third position information acquisition unit 223 of the painting auxiliary device 1 includes the arithmetic processing unit as described above.
- the relative position between the aircraft 11 and the coating apparatus 5 can be obtained based on the positional information on the surface of the aircraft 11 to which the coating apparatus 5 is directed.
- the position information on the surface of the aircraft 11 to which the coating apparatus 5 is directed may be, for example, parking position information of the aircraft 11 and model data of the aircraft 11.
- the surface position information of the aircraft 11 in the area to be painted by the measuring device 10 may be obtained.
- the measuring device 10 calculates position information of the painting target surface of the aircraft 11 that is the painting target.
- FIG. 4 shows the position of the measuring device 10 and the position of the marker 20 mounted on the support of the gondola 3 in the work space coordinate system.
- the measurement target surface is the position of the end point of the vector P2.
- the marker 20 is fixed to the structure of the painting workshop, and the position information of the marker 20 has already been obtained. Therefore, in the following description, it is assumed that there is no measurement operation of the position of the marker 20, and the vector a1 indicating the position of the marker 20 is known.
- fourth position information from the measuring device 10 to the marker 20 is acquired.
- the information is vector (elevation angle, azimuth angle, and distance) information from the measurement apparatus 10 to the marker 20 like the illustrated vector a5.
- fifth position information from the measurement apparatus 10 to the measurement target surface is acquired.
- the information is vector (elevation angle, azimuth angle, and distance) information from the measurement apparatus 10 to the measurement target surface, as in the illustrated vector a6.
- the position information of the painting target surface with respect to the marker 20 is acquired.
- the installation position of the marker 20 is known, it can be calculated
- the position of the painting target surface with respect to the origin position is as a vector P2, which is a vector a1 indicating the position of the marker 20 with respect to the origin position of the painting target surface with respect to the marker 20. It can be obtained by adding vectors indicating position information.
- the relative positional relationship between the painting apparatus 5 and the painting object can be acquired, and the position where the painting apparatus 5 is located with respect to the painting object or a specific surface (such as the painting object surface) on the painting object. You can figure out.
- the painting auxiliary device 1 estimates the posture of the painting device 5 based on the position information of the painting device 5 and the skeleton model information of the worker 4 measured by the measuring device 10, and relates to the posture of the painting device 5. Generate information.
- the information regarding the posture of the coating apparatus 5 is information regarding the orientation of the nozzle of the coating apparatus 5, for example. As described above, the painting auxiliary device 1 can acquire information on the position and posture of the painting device 5.
- a plurality of markers may be arranged on the coating apparatus 5 and the posture of the coating apparatus 5 may be estimated from position information regarding the plurality of markers.
- an acceleration sensor is provided in the painting apparatus 5, and the position and orientation of the painting apparatus 5 are estimated based on information indicating the acceleration of the painting apparatus 5 acquired by the acceleration sensor and the skeleton model information of the worker 4. You may do it.
- the imaging unit of the measurement apparatus 10 generates image information corresponding to the amount of reflected light (for example, infrared light) from the plurality of markers 21 provided in the worker 4, and each marker 21 is based on the image information. May be calculated to acquire the skeleton model information of the worker 4.
- the coating auxiliary device 1 acquires coating thickness distribution information based on the point cloud data obtained from the measuring device 10. Further, the painting auxiliary device 1 acquires the painting device information related to the painting device 5 by an input operation or the like by the operator 4.
- the coating device information is, for example, discharge information that is information on the type of nozzle of the coating device 5, the discharge amount and discharge distribution of the paint discharged (spouted) from the nozzle, and the like.
- the coating auxiliary device 1 performs the coating on the coating target surface in the vicinity where the coating device 5 is located based on the film thickness distribution information, the coating device information, and the target film thickness information that is information on the film thickness of the coating film to be formed. Generate work information about the painting work to be performed.
- the painting assisting apparatus 1 generates image data for displaying a coating thickness distribution image that is an image representing coating thickness distribution information and a work instruction image that is an image instructing work.
- the painting auxiliary device 1 transmits the generated image data (image) to the display device 100 by wireless communication or the like.
- the coating assistance apparatus 1 when starting a coating in the area
- the display device 100 is a projector that projects and displays an image, for example, and displays an image based on the image data transmitted from the painting auxiliary device 1.
- the display device 100 projects and displays an image on the painting target surface based on the image data output from the painting assisting device 1.
- the worker 4 can perform the painting work according to the work instruction image displayed by the display device 100.
- one display device 100 is shown to simplify the drawing, but in order to project an image on the entire surface of the aircraft 11, a plurality of display devices 100 are arranged around the aircraft 11. You may arrange in.
- the display device 100 is disposed at a position near the gondola 3, a movable carriage, a fixed base, a position near the beam or column of the hangar 2, and the like. Note that the display device 100 may be provided in the measurement device 10.
- FIG. 5 is a block diagram for explaining the configuration of the position detection apparatus according to the first embodiment.
- the main body 30 includes a film thickness information acquisition unit 40, a storage unit 50, a work information generation unit 60, an image generation unit 70, a work state analysis unit 80, and a third position information acquisition unit 223.
- the first position information acquisition unit 221, the second position information acquisition unit 222, the third position information acquisition unit 223, and the work state analysis unit 80 are configured as a position detection device 200. Function.
- the film thickness information acquisition unit 40 receives the coating thickness distribution information output from the measuring apparatus 10.
- the film thickness distribution information is information regarding the film thickness distribution of the coating film formed on the object to be coated as described above.
- the film thickness information acquisition unit 40 acquires coating film thickness distribution information after the painting operation is performed on the object to be coated.
- the storage unit 50 stores the coating thickness distribution information input to the film thickness information acquisition unit 40.
- the storage unit 50 stores coating apparatus information related to the coating apparatus 5 and information (such as target film thickness information) related to the film thickness of the coating film to be formed by an input operation by the operator 4 or the like.
- the storage unit 50 stores the discharge amount and the discharge distribution for a plurality of nozzles as the coating apparatus information.
- the storage unit 50 includes a semiconductor memory such as a RAM and a storage medium such as a hard disk device.
- the work information generation unit 60 generates work information that is information related to the painting work to be performed on the painting target in accordance with the target film thickness information, the film thickness distribution information, the coating apparatus information, and the like.
- the work information is, for example, information related to the target position of the paint sprayed by the coating apparatus 5, information related to the position of the coating apparatus 5 and the direction of the nozzle, information related to the speed (speed and direction) of moving the coating apparatus 5.
- the work information generation unit 60 includes a position calculation unit 61 and a transition calculation unit 62.
- the position calculating unit 61 calculates a target position for spraying the paint by the coating apparatus 5 on the object to be coated.
- the position calculation unit 61 calculates a target position and a target posture of the coating apparatus 5 based on information regarding the discharge amount and the discharge distribution included in the coating apparatus information. More specifically, the position calculation unit 61 calculates information about the area where the coating film thickness is insufficient and the insufficient thickness of the coating film from the coating thickness distribution information after coating on the coating target surface, The spray target position for the object to be coated, and the position and orientation of the coating apparatus 5 are calculated using information on the amount and the discharge distribution. Note that the position calculation unit 61 may calculate the spray target position in the shape model data generated by the measurement apparatus 10. Further, the position calculation unit 61 may adjust the spray target position according to the shape and size of the painting target.
- the transition calculation unit 62 calculates the spray target position for each work time in a series of steps of the paint spraying operation based on, for example, the painting apparatus information. That is, the transition calculation unit 62 calculates the temporal transition of the position of the coating apparatus 5 when performing the painting work. Further, for example, the transition calculation unit 62 calculates a speed for moving the spray target position of the coating apparatus 5 based on the coating apparatus information and the like.
- the work information generating unit 60 such as the paint spraying target position and the speed at which the spraying target position is moved, according to the state of the film thickness of the coating film formed on the painting target surface by the painting work, Generate work information about the painting work to be done.
- the work information generation unit 60 may generate the work information in consideration of the ambient temperature and humidity of the object to be coated, the characteristics of the paint, the overall work time, and the like.
- the work information generated by the work information generation unit 60 is output to the image generation unit 70.
- the image generation unit 70 generates image data for displaying a film thickness distribution image and a work instruction image.
- the image generation unit 70 is an image for superimposing and displaying a film thickness distribution image and a work instruction image on a coating target surface based on, for example, film thickness distribution information, work information, and shape model data of a coating target. Generate data.
- the image data generated by the image generation unit 70 is generated based on the position and orientation of the display device 100 with respect to the painting target surface. For example, information on the position and orientation of the display device 100 is input to the image generation unit 70, and the image generation unit 70 displays a film thickness distribution image, work instruction image, and the like to be displayed based on the information on the position and orientation of the display device 100.
- Image data is generated.
- the film thickness distribution image and the work instruction image can be appropriately superimposed and displayed on the painting target.
- the image data generated by the image generation unit 70 is output to the display device 100 by wireless communication or the like. Note that only one of the film thickness distribution image and the work instruction image may be displayed without being superimposed.
- the work state analysis unit 80 includes an operation state detection unit 81, a timing control unit 82, a position information storage unit 83, and a paint estimation unit 84.
- the operation state detection unit 81 detects the operation state of the coating apparatus 5. Specifically, the operation state detection unit 81 receives a signal related to the operation state of the trigger disposed in the coating apparatus 5 from a sensor (not shown) provided in the coating apparatus 5 and detects the operation state of the coating apparatus 5. .
- the timing control unit 82 controls the operation of the first position information acquisition unit 221 and the second position information acquisition unit 222 based on the operation state of the coating apparatus 5 detected by the operation state detection unit 81.
- a signal is generated and output to the first position information acquisition unit 221 and the second position information acquisition unit 222.
- the timing control unit 82 transmits a control signal, causes the first position information acquisition unit 221 to acquire the first position information, and the second position The information acquisition unit 222 acquires the second position information.
- the timing control unit 82 acquires the point cloud data and the surface image data of the aircraft 11 by the measuring device 10 according to the operation state of the coating apparatus 5 detected by the operation state detection unit 81. At that time, according to the calculated position of the coating apparatus 5, a shape measuring range and an image data acquisition range by the measuring apparatus 10 are set, and a robot mechanism that can point the measuring apparatus 10 in the set direction is provided. It may be.
- the painting auxiliary device 1 further calculates the measurement range information of the aircraft 11 by the measuring device 10 based on the position information of the painting device 5. In particular, the measurement range information of the aircraft 11 is calculated based on the position information and attitude information of the painting apparatus 5.
- the painting auxiliary device 1 outputs it to the measuring device 10, causes the laser irradiation direction deflection mechanism (not shown) to supply the measurement range information, and changes the measurement range, so that the laser irradiation direction deflection mechanism is changed. It becomes possible to irradiate the laser beam to the measurement range calculated by the painting auxiliary device 1. In this way, it is possible to change the measurement range of the measuring device 10 in synchronization with the change in the position of the coating device 5 while tracking the position of the coating device 5.
- the painting estimation unit 84 estimates the painting state of the painting object based on the history of the position of the painting device 5. For example, the painting estimation unit 84 estimates a region where painting with respect to the aircraft 11 is completed and a region where painting is not completed based on the history of the position of the painting apparatus 5. Specifically, an area in which the stay time of the coating apparatus 5 is a predetermined time or more with respect to the painting target area of the aircraft 11 is specified as an area where painting is completed.
- the position information storage unit 83 may estimate the painting state of the painting object based on information indicating the position and orientation of the painting apparatus 5.
- the painting estimation unit 84 generates information indicating an area where painting on the aircraft 11 is completed and an area where painting is not completed, and stores the information in the position information storage unit 83.
- the painting estimation unit 84 outputs information indicating a region where painting to the aircraft 11 is completed and a region where painting is not completed to the image generation unit 70.
- the image generation unit 70 generates image data for displaying an image indicating an area where painting is completed and an area where painting is not completed, and outputs the image data to the display device 100.
- the painting assisting apparatus 1 may manage the progress of the painting work using the information obtained by the painting estimation unit 84 indicating the area where the painting is completed and the area where the painting is not completed. Good.
- the painting assisting apparatus 1 may calculate the work speed and work efficiency of the painting work for each worker by storing information relating to the progress of the painting work in a database. For example, when the next painting work is started, it is possible to estimate the number of man-hours for the painting work based on the work speed of each worker. Moreover, it becomes possible to confirm the painting skill level of each worker based on the work efficiency of the painting work for each worker.
- the display device 100 can display various images based on the image data generated by the image generation unit 70. For example, the display device 100 displays an image indicating a region where painting is completed and a region where painting is not completed. In addition, for example, the display device 100 displays a film thickness distribution image in which the film thickness of the coating film is classified stepwise and color-coded. Moreover, you may make it the coating auxiliary
- the painting auxiliary device 1 determines an optimum nozzle from replaceable nozzles based on the position and posture of the painting device 5 with respect to the aircraft 11, generates an image that guides the replacement of the nozzle of the painting device 5, and displays it. It may be displayed by the unit 100.
- FIG. 6 is a diagram illustrating an example of a display image displayed on the display device 100.
- the film thickness distribution image and the work instruction image are superimposed and displayed on the painting target surface of the aircraft 11. These images are projected and displayed in alignment with the painting target surface of the aircraft 11.
- the colors are displayed according to the film thickness of the coating film.
- Regions 101 and 102 are regions whose film thickness is within a predetermined range from the target film thickness.
- the region 102 is a region whose film thickness is thinner than the film thickness range of the region 101.
- the region 103 is a region where the film thickness is thinner than the film thickness range of the region 102 and falls below a predetermined range from the target film thickness.
- the color difference is expressed using dots and hatching.
- the pointer 90 shown in FIG. 6 is an image based on the work instruction image, and indicates a target position at which spraying is started.
- the pointer 90 indicates the spray target position to the operator 4 by moving at a predetermined speed in the direction indicated by the arrow 91.
- Various information such as a region where the film thickness of the coating film is insufficient, a spray target position of the coating apparatus 5, and a speed at which the coating apparatus 5 is moved is displayed on the coating target surface.
- the operator 4 can perform the paint work by adjusting the position and orientation of the coating apparatus 5 while confirming the spray target position.
- the operator 4 can appropriately paint the aircraft 11 by moving the painting device 5 according to the movement of the pointer 90.
- the film thickness of the coating film formed by the painting operation can be adjusted by adjusting the moving speed of the pointer 90.
- the amount of paint discharged from the coating apparatus 5 may be controlled based on information on the position and orientation of the coating apparatus 5. For example, when the coating apparatus 5 is directed toward a region where the film thickness of the coating film is thin, the amount of paint discharged from the coating apparatus 5 may be controlled to increase.
- the position detection apparatus 200 includes a first position information acquisition unit 221 that acquires first position information related to the positional relationship between the painting tool 5 held by the moving body (worker 4) and the moving body, From the second position information acquisition unit 222 that acquires the second position information related to the positional relationship between the body and the painting object, and the position of the painting tool and the painting object from the first position information and the second position information. And a third position information acquisition unit 223 that acquires third position information related to the relationship. Since it did in this way, the occlusion by an operator entering between the coating apparatus 5 and a position detection apparatus etc. can be avoided, and the position of the coating apparatus 5 can always be tracked. By detecting the position of the coating apparatus 5, it is possible to estimate a region where painting is performed and / or a region where coating is estimated to be insufficient. Further, based on the position of the coating apparatus 5, the discharge amount from the coating apparatus 5 can be controlled.
- the position and orientation of the coating apparatus 5 are constantly tracked, so that an area where painting is not performed is estimated and presented to the operator, or the paint is applied based on the position and orientation of the coating apparatus 5.
- the discharge amount can be controlled.
- the operator can quickly complete the painting operation, and as a result, the operating efficiency of the aircraft can be improved.
- the worker position detection device 201 is provided as the second position information acquisition unit.
- the measurement device 10 may be used as the second position information acquisition unit.
- the measuring device 10 measures the distance from the measuring device 10 to the helmet of the operator 4 in addition to measuring the distance to each measurement point of the aircraft 11. Thereby, information related to the position and posture of the worker 4 can be acquired.
- the measuring apparatus 10 transmits the acquired information regarding the position and posture of the worker 4 to the painting assisting apparatus 1 by wireless communication or the like.
- Modification 2 In the embodiment and the modification described above, an example in which an aircraft is used as a painting target has been described.
- the painting target may be an automobile or a ship, and is not particularly limited.
- the present invention can be applied to the analysis of the coating state of various coating objects.
- the worker position detection device 201, the coating device position detection device 212, and the measurement device 10 all irradiate the position detection target with laser light and detect the return light, thereby obtaining the distance information of the position detection target.
- a position detection device that obtains a position from information on the direction of laser light irradiation was used, the present invention is not limited to this, and the light emitted from transmitters arranged at a plurality of different positions, such as i-GPS, is used.
- the working position and the position of the coating apparatus may be obtained by a method of obtaining the position of the receiver based on the timing at which the receiver detects each.
- each of the transmitters arranged at different positions is a laser transmitter, for example, and emits fan beam (fan-shaped beam) lights B1 and B2.
- the irradiation direction of the fan beam is time-controlled so that it can be grasped at which time and in which direction it is emitted.
- the angle of the light beam propagation surface (fan surface) of the fan beam light B1 with respect to the horizontal plane is different from the angle of the light beam propagation surface of the fan beam light B2.
- the irradiation surface of the fan beam light B1 is perpendicular to the horizontal plane, and the light propagation surface of the fan beam light B2 forms an angle of 70 ° with respect to the horizontal plane.
- Each transmitter also has an LED light-emitting unit that emits infrared pulses, and periodically emits infrared pulse light while rotating.
- the receiver is placed on the object whose position is to be measured.
- a receiver is arranged in the worker's helmet as the worker position detecting device.
- a receiver is arrange
- the fan beam B1, the fan beam B2, and the infrared pulse light emitted from a plurality of transmitters are received (received).
- the receiver performs signal processing for converting the received fan beam B1, fan beam B2, and infrared pulse light into electrical signals.
- the emission directions of the fan beam B1 and the fan beam B2 emitted from the transmitter are shifted by a predetermined angle, and the irradiation surface of the fan beam B1 is different from the irradiation surface of the fan beam B2.
- the difference between the timing (time) at which the fan beam B1 is received and the timing at which the fan beam B2 is received is due to the difference in the position of the receiver. Therefore, the receiver calculates the position of the receiver based on the difference between the timing at which the fan beam B1 is received and the timing at which the fan beam B2 is received.
- a receiver transmits the positional infomation on a receiver to the painting auxiliary
- the receiver converts the fan beam B1, the fan beam B2, and the infrared pulsed light emitted from the plurality of transmitters into electrical signals, and transmits the converted electrical signals to the painting assisting device 1 for painting assistance.
- Information regarding the position of the receiver may be generated by the apparatus 1.
- the electrical signal is transmitted from the transmitter to the receiver, and the position information of the receiver is obtained based on the difference between the timing at which the signal is transmitted from the transmitter and the timing at which the receiver receives the signal. You may make it produce
- the receiver provided in the painting apparatus 5 includes a fan beam light B1, a fan beam light B2, and a red light from a transmitter provided in the helmet or the like of the worker 4 and at least one other transmitter provided in the painting work place, respectively.
- the external pulse light is received, and the position information of the coating apparatus 5 with respect to the operator is calculated from the timing of receiving each light.
- Information regarding the position of the receiver is transmitted to the painting auxiliary apparatus 1 by wireless communication or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spray Control Apparatus (AREA)
Abstract
A position detecting device according to the present invention includes: a first position-information obtaining unit that obtains first position information relating to a positional relationship between a painting tool held by a mobile body and the mobile body; a second position-information obtaining unit that obtains second position information relating to a positional relationship between the mobile body and an object to be painted; and a third position-information obtaining unit that obtains third position information relating to the position of the painting tool from the first position information and the second position information.
Description
本発明は、位置検出装置、および塗装補助システムに関する。
The present invention relates to a position detection device and a painting auxiliary system.
測定子を塗装面に押接させて塗膜の膜厚を測定する技術が知られている(特許文献1)。
A technique for measuring the film thickness of a coating film by pressing a measuring element against a painted surface is known (Patent Document 1).
本発明の第1の態様によると、位置検出装置は、移動体により保持される加工器具と前記移動体との相対位置情報を含む第1の位置情報を取得する第1の位置情報取得部と、前記移動体と加工対象物との相対位置情報を含む第2の位置情報を取得する第2の位置情報取得部と、前記第1の位置情報および前記第2の位置情報から、前記加工器具と前記加工対象物との相対位置情報を含む第3の位置情報を取得する第3の位置情報取得部と、を備える。
本発明の第2の態様によると、加工補助システムは、第1の態様による位置検出装置と、前記第3の位置情報に基づき、前記加工対象物に対する前記加工器具の位置の履歴情報を記憶する記憶部と、前記履歴情報に基づき、前記加工対象物の加工状態を推定する加工推定部と、を備える。 According to the first aspect of the present invention, the position detection device includes a first position information acquisition unit that acquires first position information including relative position information between the processing tool held by the moving body and the moving body. From the second position information acquisition unit that acquires second position information including relative position information between the moving body and the object to be processed, and the processing tool from the first position information and the second position information. And a third position information acquisition unit that acquires third position information including relative position information between the workpiece and the workpiece.
According to the second aspect of the present invention, the processing assistance system stores history information of the position of the processing tool with respect to the processing object based on the position detection device according to the first aspect and the third position information. A storage unit; and a processing estimation unit that estimates a processing state of the processing object based on the history information.
本発明の第2の態様によると、加工補助システムは、第1の態様による位置検出装置と、前記第3の位置情報に基づき、前記加工対象物に対する前記加工器具の位置の履歴情報を記憶する記憶部と、前記履歴情報に基づき、前記加工対象物の加工状態を推定する加工推定部と、を備える。 According to the first aspect of the present invention, the position detection device includes a first position information acquisition unit that acquires first position information including relative position information between the processing tool held by the moving body and the moving body. From the second position information acquisition unit that acquires second position information including relative position information between the moving body and the object to be processed, and the processing tool from the first position information and the second position information. And a third position information acquisition unit that acquires third position information including relative position information between the workpiece and the workpiece.
According to the second aspect of the present invention, the processing assistance system stores history information of the position of the processing tool with respect to the processing object based on the position detection device according to the first aspect and the third position information. A storage unit; and a processing estimation unit that estimates a processing state of the processing object based on the history information.
以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。また、図面においては、実施形態を説明するため、一部分を大きくまたは強調して記載するなど適宜縮尺を変更して表現している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. Further, in the drawings, in order to describe the embodiment, the scale is appropriately changed and expressed, for example, partly enlarged or emphasized.
-第1の実施の形態-
図面を参照しながら、第1の実施の形態による位置検出装置について、位置検出装置を用いて航空機に対する塗装作業を行う場合を例に挙げて説明する。なお、第1の実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特に指定の無い限り、本発明を限定するものではない。 -First embodiment-
The position detection apparatus according to the first embodiment will be described with reference to the drawings, taking as an example a case where a painting operation is performed on an aircraft using the position detection apparatus. The first embodiment is specifically described for the purpose of understanding the gist of the invention, and does not limit the present invention unless otherwise specified.
図面を参照しながら、第1の実施の形態による位置検出装置について、位置検出装置を用いて航空機に対する塗装作業を行う場合を例に挙げて説明する。なお、第1の実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特に指定の無い限り、本発明を限定するものではない。 -First embodiment-
The position detection apparatus according to the first embodiment will be described with reference to the drawings, taking as an example a case where a painting operation is performed on an aircraft using the position detection apparatus. The first embodiment is specifically described for the purpose of understanding the gist of the invention, and does not limit the present invention unless otherwise specified.
図1は、第1の実施の形態による位置検出装置を説明するための図である。また、図2は、第1の実施の形態による位置検出装置を用いた塗装作業時の様子を模式的に示す図である。図1および図2では、第1の実施の形態による位置検出装置が適用される環境の例として、航空機(飛行機)11が格納される格納庫(ハンガー)2を示している。格納庫2は、航空機11の塗装や整備等が行われる設備である。
FIG. 1 is a diagram for explaining a position detection apparatus according to the first embodiment. Moreover, FIG. 2 is a figure which shows typically the mode at the time of the painting operation | work using the position detection apparatus by 1st Embodiment. 1 and 2 show a hangar 2 in which an aircraft (airplane) 11 is stored as an example of an environment to which the position detection apparatus according to the first embodiment is applied. The hangar 2 is a facility where the aircraft 11 is painted and maintained.
格納庫2には、作業者4が乗り込んで塗装作業を行うためのゴンドラ3と、飛行機に塗膜が形成されたときの飛行機の形状を測定する測定装置10と、マーカ20と、塗装補助装置1と、表示装置100と、作業者の位置と塗装装置位置検出装置212の姿勢を検出する作業者位置検出装置201とが設けられる。さらに、図2に示すように、作業者4が着用するヘルメットには作業者4が保持する塗装装置5の位置及び姿勢を検出する塗装装置位置検出装置212が設けられ、塗装装置5には塗装装置位置検出装置212により検出可能なマーカ211が設けられる。なお、ヘルメットには、作業者位置検出装置201により検出可能なマーカ202が設けられている。このマーカ202はヘルメット上に複数個設けられている。
In the hangar 2, a gondola 3 for an operator 4 to enter and perform a painting operation, a measuring device 10 for measuring the shape of an airplane when a paint film is formed on the airplane, a marker 20, and a painting auxiliary device 1. And a display device 100 and an operator position detection device 201 that detects the position of the worker and the posture of the coating device position detection device 212. Further, as shown in FIG. 2, the helmet worn by the worker 4 is provided with a coating device position detecting device 212 for detecting the position and posture of the coating device 5 held by the worker 4. A marker 211 that can be detected by the device position detection device 212 is provided. The helmet is provided with a marker 202 that can be detected by the worker position detection device 201. A plurality of the markers 202 are provided on the helmet.
なお、塗装装置位置検出装置212は、作業者4により保持される塗装装置5と作業者4との相対位置を含む第1の位置情報を取得する第1の位置情報取得部221として機能する。また、作業者位置検出装置201は、作業者4と航空機11との相対位置を含む第2の位置情報を取得する第2の位置情報取得部222として機能する。塗装補助装置1は、第3の位置情報取得部223を有する。第3の位置情報取得部223は、第1の位置情報取得部221により取得された塗装装置5と作業者4との相対位置と、第2の位置情報取得部222により取得された作業者4と航空機11との位置関係に関する位置情報及び塗装装置位置検出装置212の姿勢とに基づいて、塗装装置5と航空機11との位置関係に関する位置情報を取得する。
The coating device position detection device 212 functions as a first position information acquisition unit 221 that acquires first position information including a relative position between the coating device 5 and the worker 4 held by the worker 4. In addition, the worker position detection device 201 functions as a second position information acquisition unit 222 that acquires second position information including the relative position between the worker 4 and the aircraft 11. The painting auxiliary device 1 includes a third position information acquisition unit 223. The third position information acquisition unit 223 includes the relative position between the coating apparatus 5 and the worker 4 acquired by the first position information acquisition unit 221 and the worker 4 acquired by the second position information acquisition unit 222. Position information regarding the positional relationship between the painting apparatus 5 and the aircraft 11 is acquired based on the positional information regarding the positional relationship between the painting apparatus 5 and the aircraft 11 and the attitude of the painting apparatus position detection device 212.
通常、塗装装置5に設けられるマーカ211を作業者位置検出装置201により検出し、塗装装置5と航空機11との位置関係に関する位置情報を取得する方法が考えられる。しかし、作業中にマーカ211と作業者位置検出装置201との間に作業者4等が入り込んでオクルージョンが生じる可能性がある。そのため、この方法では、塗装装置5に関する位置関係を取得できない場合が生じる。
Usually, a method is conceivable in which the marker 211 provided in the coating apparatus 5 is detected by the worker position detection apparatus 201 and position information regarding the positional relationship between the coating apparatus 5 and the aircraft 11 is acquired. However, there is a possibility that the worker 4 or the like enters between the marker 211 and the worker position detection device 201 during the work, and occlusion occurs. Therefore, in this method, there may be a case where the positional relationship regarding the coating apparatus 5 cannot be acquired.
本実施の形態による位置検出装置では、作業者4のヘルメット等に作業者位置検出装置201で検出可能な複数のマーカ202および塗装装置位置検出装置212を設けて、塗装装置5と作業者4のヘルメット等との相対位置、および作業者4のヘルメット等と航空機11との相対位置に関する情報を取得する。なお、塗装装置位置検出装置212の姿勢は、複数のマーカ202の相対位置関係を基に、推定することができる。そして、作業者位置検出装置201により出力される座標値に適用される三次元座標系と塗装装置位置検出装置212により出力される測定結果から得られるマーカ211の座標値に適用される三次元座標系を同じ座標系(各々の座標軸と座標系の原点位置が一致した座標系)にすることができる。このようにして、本実施の形態における位置検出装置は、同じ三次元座標系で得られた塗装装置5と作業者4のヘルメット等との相対位置、および作業者4のヘルメット等と航空機11との相対位置に関する情報を、塗装装置5と航空機11との相対位置に関する情報に換算する。このため、航空機11に対する塗装装置5の相対位置を常時取得することができる。
In the position detection device according to the present embodiment, a plurality of markers 202 and a coating device position detection device 212 that can be detected by the worker position detection device 201 are provided on the helmet or the like of the worker 4 so that the coating device 5 and the worker 4 Information on the relative position between the helmet 11 and the like and the relative position between the helmet 4 of the worker 4 and the aircraft 11 is acquired. Note that the posture of the coating apparatus position detection device 212 can be estimated based on the relative positional relationship between the plurality of markers 202. And the three-dimensional coordinate system applied to the coordinate value of the marker 211 obtained from the three-dimensional coordinate system applied to the coordinate value output by the worker position detection device 201 and the measurement result output from the coating device position detection device 212 The system can be the same coordinate system (coordinate system in which each coordinate axis coincides with the origin position of the coordinate system). In this way, the position detection device according to the present embodiment includes the relative position between the coating device 5 obtained in the same three-dimensional coordinate system and the helmet of the worker 4 and the helmet 11 of the worker 4 and the aircraft 11. Is converted into information related to the relative position between the coating apparatus 5 and the aircraft 11. For this reason, the relative position of the coating apparatus 5 with respect to the aircraft 11 can always be acquired.
なお、本実施の形態では、飛行機の形状を測定する測定装置10をゴンドラ3の近傍位置に配置し、塗装補助装置1および表示装置100をゴンドラ3内に配置している。そして、マーカ20を格納庫2の梁に配置し、塗装装置位置検出装置212を作業者4のヘルメットに配置している。なお、本発明は、このような配置関係には限定されない。また、作業者4がゴンドラ3を使用せずに塗装作業を行う場合、例えば作業現場における地面に立って塗装作業を行う場合についても、この位置検出装置を適用することができる。
In the present embodiment, the measuring device 10 for measuring the shape of the airplane is disposed in the vicinity of the gondola 3, and the painting auxiliary device 1 and the display device 100 are disposed in the gondola 3. And the marker 20 is arrange | positioned at the beam of the hangar 2, and the coating device position detection apparatus 212 is arrange | positioned at the helmet of the operator 4. FIG. The present invention is not limited to such an arrangement relationship. Further, when the worker 4 performs the painting work without using the gondola 3, for example, when performing the painting work while standing on the ground at the work site, the position detection device can be applied.
ゴンドラ3は、作業者4による操作等によって不図示の駆動部に動力を供給することにより、所望の位置へ移動できるように構成されている。作業者4は、ゴンドラ3を塗装対象となる航空機11の塗装対象面に位置決めされるように適宜移動させて、塗装対象面に向けて塗装装置5を操作して塗装作業を行う。図1に示す例では、図を簡略化するために1つのゴンドラ3が示されているが、航空機11の大きさ等に応じて複数のゴンドラを設けてもよい。
The gondola 3 is configured to move to a desired position by supplying power to a drive unit (not shown) by an operation by the operator 4 or the like. The worker 4 appropriately moves the gondola 3 so as to be positioned on the painting target surface of the aircraft 11 to be painted, and operates the painting device 5 toward the painting target surface to perform the painting work. In the example shown in FIG. 1, one gondola 3 is shown to simplify the drawing, but a plurality of gondolas may be provided according to the size of the aircraft 11 and the like.
塗装装置5は、例えば作業者が手持ちで使用できるスプレー装置(塗装ガン)であり、先端には塗料が噴出するノズルが取り付けられている。塗装装置5は、ホース6を介して不図示の塗料供給装置(タンク等)に接続されており、塗装装置5のトリガを作業者が操作することで、塗料供給装置から供給される塗料をスプレー装置のノズルから吐出(吹き付け)させることができる。ノズルは交換することが可能であり、塗料の吐出口の形状が異なるノズルに交換することにより、塗料の塗布パターン(塗料の吐出パターン)を変更することができる。なお、塗装装置5として、ローラー塗装装置、刷毛塗り装置、電着塗装装置など、他の塗装装置を用いるようにしてもよい。
The coating device 5 is, for example, a spray device (painting gun) that can be used by an operator by hand, and a nozzle that ejects paint is attached to the tip. The coating device 5 is connected to a paint supply device (tank or the like) (not shown) via a hose 6, and sprays the paint supplied from the paint supply device by an operator operating the trigger of the coating device 5. It can discharge (spray) from the nozzle of an apparatus. The nozzle can be exchanged, and the paint application pattern (paint discharge pattern) can be changed by changing to a nozzle having a different paint discharge port shape. As the coating device 5, other coating devices such as a roller coating device, a brush coating device, and an electrodeposition coating device may be used.
飛行機の形状を測定する測定装置10は、測定対象物に光を照射し測定対象物から反射した光を受光することにより、測定対象物に対して非接触で、測定装置10から測定対象物までの距離を測定する。例えば、測定装置10は、レーザレーダ装置が好ましい。レーザレーダ装置は、測定対象物に照射する光に対して周波数変調を行い、かつその変調周波数が時間とともに変化するように周波数変調を行う。測定装置10は、そのように周波数変調されたレーザ光を航空機11に対して照射する。測定装置10は、航空機11から反射したレーザ光と参照レーザ光との周波数差に基づいて、測定装置10と航空機11の測定点との間の距離を算出する。なお、測定装置10は、反射レーザ光と参照レーザ光との位相差に基づいて、測定装置10と測定点との間の距離を算出するようにしてもよい。エレベータ等にミラーを配置して、測定装置10からのレーザ光を、ミラーを介して測定対象物に照射するようにしてもよい。
The measuring device 10 that measures the shape of an airplane irradiates the measurement object with light and receives the light reflected from the measurement object, so that the measurement object 10 is not in contact with the measurement object and is measured from the measurement device 10 to the measurement object. Measure the distance. For example, the measuring device 10 is preferably a laser radar device. The laser radar device performs frequency modulation on the light applied to the measurement object, and performs frequency modulation so that the modulation frequency changes with time. The measuring apparatus 10 irradiates the aircraft 11 with the laser light thus frequency-modulated. The measuring device 10 calculates the distance between the measuring device 10 and the measurement point of the aircraft 11 based on the frequency difference between the laser beam reflected from the aircraft 11 and the reference laser beam. The measuring apparatus 10 may calculate the distance between the measuring apparatus 10 and the measurement point based on the phase difference between the reflected laser light and the reference laser light. You may make it arrange | position a mirror in an elevator etc. and irradiate a measuring object with the laser beam from the measuring apparatus 10 via a mirror.
マーカ20は、格納庫2内の既知の位置に配置される。マーカ20の位置は、格納庫2内における測定装置10および航空機11の位置を特定するための基準位置となる。また、格納庫2内には複数の測定装置10が設置されていてもよい。各々の測定装置10の位置は、各々の測定装置10がマーカ20の位置を測定することにより、求められる。その際、測定装置10は、マーカ20に対する測定装置10の相対的な位置および角度を求める。これにより、測定装置10自体の空間的位置が求まる。図1に示すように、格納庫2内の複数個所にマーカ20を設置して、格納庫2内の各マーカ20の位置を基準にすることにより、広範囲で測定装置10および測定点の位置を求めることが可能となる。
The heel marker 20 is arranged at a known position in the hangar 2. The position of the marker 20 serves as a reference position for specifying the positions of the measuring device 10 and the aircraft 11 in the hangar 2. In addition, a plurality of measuring devices 10 may be installed in the hangar 2. The position of each measuring device 10 is obtained by each measuring device 10 measuring the position of the marker 20. At that time, the measuring device 10 obtains the relative position and angle of the measuring device 10 with respect to the marker 20. Thereby, the spatial position of the measuring apparatus 10 itself is obtained. As shown in FIG. 1, by setting markers 20 at a plurality of locations in the hangar 2 and using the position of each marker 20 in the hangar 2 as a reference, the positions of the measuring device 10 and measurement points are obtained over a wide range. Is possible.
測定装置10は、測定装置10と測定対象物との間の距離に加えて、レーザ光の照射方向である水平方向の角度(方位角)と垂直方向の角度(仰俯角)、および測定装置10自体の空間的位置情報を用いることにより、航空機11の空間的位置を算出する。この空間的位置を表すための座標系としては、直交座標系や極座標系が用いられる。測定装置10は、水平方向および垂直方向におけるレーザ光の照射角度を順次変化させて、航空機11の表面の形状測定を行う。すなわち、測定装置10は、照射するレーザをスキャン(走査)することにより、航空機11の表面上の各点の空間的位置を表す点群データを取得する。測定装置10は、点群データに基づいて、航空機11の形状を表す形状モデルデータを生成する。図1に示す例では、図を簡略化するために1つの測定装置10が示されているが、航空機11の全面を測定するために、複数の測定装置10が航空機11の周囲に配置される。測定装置10は、例えば、ゴンドラ3の近傍位置、移動可能な台車、固定的に設けられる台座などにそれぞれ配置される。測定装置10を、航空機の11の上方や下方、自走式のレールの上に配置するようにしてもよい。作業者4に測定装置10を装着させるようにしてもよい。
In addition to the distance between the measurement apparatus 10 and the measurement object, the measurement apparatus 10 includes a horizontal angle (azimuth angle) and a vertical angle (elevation angle) that are the irradiation directions of the laser light, and the measurement apparatus 10. The spatial position of the aircraft 11 is calculated by using its own spatial position information. As a coordinate system for representing the spatial position, an orthogonal coordinate system or a polar coordinate system is used. The measuring apparatus 10 measures the shape of the surface of the aircraft 11 by sequentially changing the irradiation angle of the laser light in the horizontal direction and the vertical direction. That is, the measurement apparatus 10 acquires point cloud data representing the spatial position of each point on the surface of the aircraft 11 by scanning the laser to be irradiated. The measuring device 10 generates shape model data representing the shape of the aircraft 11 based on the point cloud data. In the example shown in FIG. 1, one measuring device 10 is shown to simplify the drawing, but a plurality of measuring devices 10 are arranged around the aircraft 11 in order to measure the entire surface of the aircraft 11. . The measuring device 10 is disposed, for example, in the vicinity of the gondola 3, a movable carriage, a fixed base, or the like. The measuring device 10 may be arranged above or below the aircraft 11 or on a self-propelled rail. The operator 4 may be made to wear the measuring device 10.
測定装置10は、塗装前および塗装後のそれぞれの状態において飛行機11の形状測定を行い、測定装置10と測定点との間の距離と測定点へレーザ光を照射したときの方位角及び仰俯角に基づき、格納庫2内における測定点の3次元位置情報を取得する。そして、測定装置10は、3次元位置情報を塗装補助装置1に送信する。そこで、塗装補助装置1では、同じ測定点について、測定装置10により塗装前と塗装後で測定した距離情報を取得し、塗装後の距離情報と塗装前の距離情報の差から塗膜の厚さを求めている。測定装置10は、レーザ光を各々の測定点に順次照射するようにスキャンして、航空機11の各測定点の塗膜の膜厚を算出して、塗膜の膜厚分布に関する膜厚分布情報を3次元的に生成する。測定装置10は、作業者4による塗装作業中に随時レーザスキャンを行って、塗膜厚の分布情報を随時取得することができる。これにより、塗装により形成された塗膜の膜厚を塗装作業中に適宜取得することができる。測定装置10は、生成した膜厚分布情報を無線通信等により塗装補助装置1に送信する。
The measuring device 10 measures the shape of the airplane 11 in each state before painting and after painting, the distance between the measuring device 10 and the measuring point, and the azimuth and elevation angles when the measuring point is irradiated with laser light. Based on the above, the three-dimensional position information of the measurement point in the hangar 2 is acquired. Then, the measuring device 10 transmits the three-dimensional position information to the painting auxiliary device 1. Therefore, the coating auxiliary device 1 obtains distance information measured before and after painting by the measuring device 10 at the same measurement point, and the thickness of the coating film is determined from the difference between the distance information after painting and the distance information before painting. Seeking. The measuring device 10 scans the laser beam so as to sequentially irradiate each measurement point, calculates the film thickness of the coating film at each measurement point of the aircraft 11, and film thickness distribution information regarding the film thickness distribution of the coating film Are generated three-dimensionally. The measuring device 10 can perform laser scanning at any time during the painting work by the worker 4 and can acquire coating thickness distribution information at any time. Thereby, the film thickness of the coating film formed by painting can be acquired appropriately during the painting operation. The measuring apparatus 10 transmits the generated film thickness distribution information to the painting auxiliary apparatus 1 by wireless communication or the like.
なお、塗装作業中に航空機11の周囲の温度が変化するような場合、航空機11の形状が塗装作業中に変化することがある。測定装置10で測定された同じ測定点に対する塗装前の距離情報と塗装後の距離情報の差から塗膜厚の分布を正確に求めることが出来なくなる。そこで、本実施の形態では、塗装前の距離情報と塗装後の距離情報の差から塗膜厚を求めているが、塗装前の測定時から塗装後の測定時までの間に、周囲の温度変化が生じると、塗装後の測定による距離情報には航空機11の膨張収縮による形状変化成分も含まれているので、上述のように塗装前の距離情報と塗装後の距離情報の差から塗膜厚を求める方法では誤差が生ずる。そこで、本実施形態における測定装置10は、塗膜の膜厚を算出する場合に、塗装対象の周囲温度に基づいて温度変化に対する塗装対象の形状変化を予測し、予測結果に基づいて塗装前の距離情報を補正し、補正した塗装前の距離情報と塗装後の距離情報とに基づいて、塗膜の膜厚を算出するようにしてもよい。また、塗装前における距離測定は直近に塗装する範囲のみについて行い、塗装後に直ちに塗装した範囲の距離測定を行って、塗装前および塗装後におけるそれぞれの測定結果から塗膜の膜厚を算出するようにしてもよい。
If the temperature around the aircraft 11 changes during the painting operation, the shape of the aircraft 11 may change during the painting operation. The coating thickness distribution cannot be accurately obtained from the difference between the distance information before painting and the distance information after painting for the same measurement point measured by the measuring device 10. Therefore, in this embodiment, the coating thickness is obtained from the difference between the distance information before painting and the distance information after painting, but the ambient temperature is measured between the measurement before painting and the measurement after painting. When the change occurs, the distance information obtained by the measurement after painting also includes a shape change component due to the expansion and contraction of the aircraft 11, and as described above, the coating film is obtained from the difference between the distance information before painting and the distance information after painting. An error occurs in the method of obtaining the thickness. Therefore, when calculating the film thickness of the coating film, the measuring apparatus 10 according to the present embodiment predicts the shape change of the coating target with respect to the temperature change based on the ambient temperature of the coating target, and before coating based on the prediction result. The distance information may be corrected, and the film thickness of the coating film may be calculated based on the corrected distance information before painting and the distance information after painting. Also, measure the distance before painting only for the most recently painted area, measure the distance of the painted area immediately after painting, and calculate the coating film thickness from the respective measurement results before and after painting. It may be.
測定装置10は、撮像部(不図示)を含んで構成することもできる。測定装置10は、撮像部による撮像画像に基づいて、塗装対象の色情報を含む画像情報を生成する。測定装置10は、例えば、測定点までの距離を測定するための光学系と撮像画像を撮像する光学系の一部の光軸が共通で、途中ハーフミラー等を介して航空機11の像を取得する撮像素子を設けるような構成とし、距離測定と撮像を同時に行う。それにより、本測定装置10は、測定点毎に測定された距離に対応付けて色情報を取得することができる。また、距離を取得した時のレーザ光の照射方向(方位角、仰俯角)を取得することができる。このような情報から、測定装置10は、塗装対象の点群データと点群データに対応する画像情報とを生成し、内部のメモリ等に各測定領域の点群データおよび画像情報を関連付けて記憶させる。そして、測定装置10は、点群データを塗装補助装置1に出力する。なお、撮像装置を測定装置10に設ける代わりに、別の撮像装置を設けて、その撮像装置により色情報を有する画像情報を取得するようにしてもよい。
The measuring apparatus 10 can also be configured to include an imaging unit (not shown). The measuring device 10 generates image information including color information of the painting target based on the image captured by the imaging unit. For example, the measurement apparatus 10 has an optical system for measuring a distance to a measurement point and an optical system for capturing a captured image, and a part of the optical axis is common, and acquires an image of the aircraft 11 via a half mirror or the like. In this configuration, the distance measurement and the imaging are performed simultaneously. Thereby, this measuring apparatus 10 can acquire color information in association with the distance measured for each measurement point. Moreover, the irradiation direction (azimuth angle, elevation angle) of the laser beam when the distance is acquired can be acquired. From such information, the measuring apparatus 10 generates point cloud data to be painted and image information corresponding to the point cloud data, and stores the point cloud data and image information of each measurement region in association with each other in an internal memory or the like. Let Then, the measuring device 10 outputs the point cloud data to the painting auxiliary device 1. Instead of providing the imaging device in the measurement device 10, another imaging device may be provided and image information having color information may be acquired by the imaging device.
測定装置10は、航空機11の測定点までの距離を測定することに加えて、測定装置10から作業者4に設けられた複数のマーカ21までの距離を測定する。マーカ21は、作業者4の肩、ひじ、手首等の複数の関節の位置に対応して設けられる。これにより、測定装置10は、作業者4の各関節の位置に関する位置情報を、作業者4の骨格モデル情報として取得する。測定装置10は、取得した作業者4の骨格モデル情報を、無線通信等により塗装補助装置1に送信する。
The measuring device 10 measures the distance from the measuring device 10 to the plurality of markers 21 provided on the operator 4 in addition to measuring the distance to the measurement point of the aircraft 11. The markers 21 are provided corresponding to the positions of a plurality of joints such as the shoulder, elbow, and wrist of the worker 4. Thereby, the measuring apparatus 10 acquires the positional information regarding the position of each joint of the worker 4 as the skeleton model information of the worker 4. The measuring apparatus 10 transmits the acquired skeleton model information of the worker 4 to the painting auxiliary apparatus 1 by wireless communication or the like.
塗装補助装置1は、例えばCPU等の演算処理回路、ROMやRAM等のメモリを有し、所定のプログラムを実行してその機能を実現する。塗装補助装置1の第3の位置情報取得部223は、塗装装置位置検出装置212から得られた第1の位置情報と、作業者位置検出装置201から得られた第2の位置情報及び塗装装置位置検出装置212の姿勢情報を取得する。そして、第3の位置情報取得部223は、同時点でそれぞれの位置検出装置により取得された第1の位置情報及び塗装装置位置検出装置212の姿勢情報と第2の位置情報とに基づいて、塗装装置5と航空機11との相対的な位置関係を算出することができる。
The painting auxiliary device 1 has, for example, an arithmetic processing circuit such as a CPU and a memory such as a ROM and a RAM, and realizes its function by executing a predetermined program. The third position information acquisition unit 223 of the painting auxiliary device 1 includes the first position information obtained from the painting device position detection device 212, the second position information obtained from the worker position detection device 201, and the painting device. The attitude information of the position detection device 212 is acquired. Then, the third position information acquisition unit 223 is based on the first position information acquired by the respective position detection devices at the same time, the posture information of the coating device position detection device 212, and the second position information. The relative positional relationship between the painting apparatus 5 and the aircraft 11 can be calculated.
塗装補助装置1の第3の位置情報取得部223での、塗装装置5と航空機11との相対的な位置関係を算出する方法について、図3を用いて説明する。まず、第3の位置情報取得部223は、塗装対象である航空機11が存在する作業空間内における塗装装置5の位置情報を算出する。図3は、作業空間座標系において、塗装装置5に装着されたマーカ211の位置、作業者のヘルメットに装着された塗装装置位置検出装置212及び塗装装置位置検出装置212に設けられたマーカ202の位置、作業者位置検出装置201の位置を示す。
A method of calculating the relative positional relationship between the painting apparatus 5 and the aircraft 11 in the third position information acquisition unit 223 of the painting auxiliary apparatus 1 will be described with reference to FIG. First, the third position information acquisition unit 223 calculates the position information of the painting apparatus 5 in the work space where the aircraft 11 that is a painting target exists. FIG. 3 shows the position of the marker 211 mounted on the coating device 5, the coating device position detection device 212 mounted on the worker's helmet, and the marker 202 provided on the coating device position detection device 212 in the work space coordinate system. The position and the position of the worker position detection device 201 are shown.
まず、作業者位置検出装置201からマーカ202までの第2の位置情報及び塗装装置位置検出装置212の姿勢情報を取得する。その第2の位置情報は、図示したベクトルa3の様に、作業者位置検出装置201からマーカ202までのベクトル(仰角、方位角及び距離)情報となる。
First, the second position information from the worker position detection device 201 to the marker 202 and the posture information of the coating device position detection device 212 are acquired. The second position information is vector (elevation angle, azimuth and distance) information from the worker position detection device 201 to the marker 202, as shown in the vector a3 shown in the figure.
次に、塗装装置位置検出装置212からマーカ211の位置を取得する。そして、作業者位置検出装置201により取得された塗装装置位置検出装置212の姿勢情報とマーカ211の位置情報を基に、作業者位置検出装置201で取得された座標値に適用される三次元座標系と同じ座標系で塗装装置位置検出装置212からマーカ211までの位置情報を算出する。この算出により、作業者位置検出装置201から出力される座標値に適用される座標系と、塗装装置位置検出装置212から出力される測定結果に基づき算出されるマーカ211の座標値に適用される座標系とは、同一の座標系(各々の座標軸と座標系の原点位置が一致した座標系)とすることができる。その情報は、図示したベクトルa4の様に、塗装装置位置検出装置212からマーカ211までのベクトル(仰角、方位角及び距離)情報となる。
Next, the position of the marker 211 is acquired from the coating device position detection device 212. Then, based on the posture information of the coating device position detection device 212 acquired by the worker position detection device 201 and the position information of the marker 211, the three-dimensional coordinates applied to the coordinate values acquired by the worker position detection device 201 Position information from the coating apparatus position detection device 212 to the marker 211 is calculated in the same coordinate system as the system. By this calculation, the coordinate system applied to the coordinate value output from the worker position detection device 201 and the coordinate value of the marker 211 calculated based on the measurement result output from the coating device position detection device 212 are applied. The coordinate system can be the same coordinate system (a coordinate system in which each coordinate axis coincides with the origin position of the coordinate system). The information is vector (elevation angle, azimuth angle and distance) information from the coating apparatus position detection device 212 to the marker 211, as shown in the vector a4.
そして、ベクトルa3とベクトルa4を足し合わせるようにすることで、作業者位置検出装置201に対する塗装装置5の位置情報を取得することが可能となる。なお、作業者位置検出装置201の設置位置が分かれば、それを基に作業空間内で塗装装置5がどの位置に位置されているかを求めることができ、図3に示すように塗装装置の位置を示すベクトルP1の情報を算出することができる。
Then, by adding the vector a3 and the vector a4, it becomes possible to acquire the position information of the coating device 5 with respect to the worker position detection device 201. If the installation position of the worker position detection device 201 is known, the position where the coating device 5 is located in the work space can be obtained based on the installation position. As shown in FIG. It is possible to calculate the information of the vector P1 indicating
なお、本実施の形態では、作業者位置検出装置201を任意の位置に配置できるようにしている。そのような場合、作業者位置検出装置201が作業空間内のどの位置に存在しているかを求める必要がある。そこで、本実施の形態では、更に作業者位置検出装置201により配置位置が既に把握されているマーカ20の位置を測定することで、作業者位置検出装置201の位置情報を求めることができる。
例えば、図3に示すように、作業空間内での原点位置に対するマーカ20の位置を示すベクトルa1と、作業者位置検出装置201により測定されたマーカ20の位置情報(ベクトルa2)とを足し合わせ(なお、図3に示す場合は、ベクトルa1からベクトルa2を減算処理)ることで、作業者位置検出装置201の位置を求めることが出来る。したがって、作業者位置検出装置201が把握できない状況であれば、塗装補助装置1の第3の位置情報取得部223で上述のような演算処理ユニットを具備することが好ましい。 In the present embodiment, the workerposition detection device 201 can be arranged at an arbitrary position. In such a case, it is necessary to determine at which position in the work space the worker position detection device 201 exists. Therefore, in the present embodiment, the position information of the worker position detecting device 201 can be obtained by further measuring the position of the marker 20 whose arrangement position has already been grasped by the worker position detecting device 201.
For example, as shown in FIG. 3, the vector a1 indicating the position of themarker 20 with respect to the origin position in the work space is added to the position information (vector a2) of the marker 20 measured by the worker position detection device 201. (In the case shown in FIG. 3, the position of the operator position detection device 201 can be obtained by subtracting the vector a2 from the vector a1). Therefore, in a situation where the operator position detection device 201 cannot grasp, it is preferable that the third position information acquisition unit 223 of the painting auxiliary device 1 includes the arithmetic processing unit as described above.
例えば、図3に示すように、作業空間内での原点位置に対するマーカ20の位置を示すベクトルa1と、作業者位置検出装置201により測定されたマーカ20の位置情報(ベクトルa2)とを足し合わせ(なお、図3に示す場合は、ベクトルa1からベクトルa2を減算処理)ることで、作業者位置検出装置201の位置を求めることが出来る。したがって、作業者位置検出装置201が把握できない状況であれば、塗装補助装置1の第3の位置情報取得部223で上述のような演算処理ユニットを具備することが好ましい。 In the present embodiment, the worker
For example, as shown in FIG. 3, the vector a1 indicating the position of the
このように塗装装置5の作業空間内での三次元位置が求まるので、塗装装置5が向けられた航空機11の表面の位置情報を基に、航空機11と塗装装置5の相対位置を求めることが可能である。塗装装置5が向けられた航空機11の表面の位置情報は、例えば、航空機11の駐機位置情報と航空機11のモデルデータがあれば良い。なお、より精密な位置関係を求める必要がある場合には、例えば測定装置10により塗装作業となる領域の航空機11の表面位置情報を求めるようにすればよい。
Thus, since the three-dimensional position in the work space of the coating apparatus 5 is obtained, the relative position between the aircraft 11 and the coating apparatus 5 can be obtained based on the positional information on the surface of the aircraft 11 to which the coating apparatus 5 is directed. Is possible. The position information on the surface of the aircraft 11 to which the coating apparatus 5 is directed may be, for example, parking position information of the aircraft 11 and model data of the aircraft 11. In addition, when it is necessary to obtain a more precise positional relationship, for example, the surface position information of the aircraft 11 in the area to be painted by the measuring device 10 may be obtained.
なお、測定装置10により航空機11の表面位置情報を求める方法については、図4を用いて説明する。まず、測定装置10は、塗装対象である航空機11の塗装対象面の位置情報を算出する。図4は、作業空間座標系において、ゴンドラ3の支柱に装着された測定装置10の位置、マーカ20の位置を示す。なお、測定対象面はベクトルP2の終点の位置とする。また、マーカ20は、塗装作業場の構造物に固定されており、マーカ20の位置情報は既に得られている。したがって、以降の説明では、マーカ20の位置の測定作業は無く、マーカ20の位置を示すベクトルa1は知られているものとする。
Note that a method for obtaining the surface position information of the aircraft 11 by the measuring apparatus 10 will be described with reference to FIG. First, the measuring device 10 calculates position information of the painting target surface of the aircraft 11 that is the painting target. FIG. 4 shows the position of the measuring device 10 and the position of the marker 20 mounted on the support of the gondola 3 in the work space coordinate system. Note that the measurement target surface is the position of the end point of the vector P2. Further, the marker 20 is fixed to the structure of the painting workshop, and the position information of the marker 20 has already been obtained. Therefore, in the following description, it is assumed that there is no measurement operation of the position of the marker 20, and the vector a1 indicating the position of the marker 20 is known.
まず、測定装置10からマーカ20までの第4の位置情報を取得する。その情報は、図示したベクトルa5の様に、測定装置10からマーカ20までのベクトル(仰角、方位角及び距離)情報となる。
次に、測定装置10から測定対象面までの第5の位置情報を取得する。その情報は、図示したベクトルa6の様に、測定装置10から測定対象面までのベクトル(仰角、方位角及び距離)情報となる。 First, fourth position information from the measuringdevice 10 to the marker 20 is acquired. The information is vector (elevation angle, azimuth angle, and distance) information from the measurement apparatus 10 to the marker 20 like the illustrated vector a5.
Next, fifth position information from themeasurement apparatus 10 to the measurement target surface is acquired. The information is vector (elevation angle, azimuth angle, and distance) information from the measurement apparatus 10 to the measurement target surface, as in the illustrated vector a6.
次に、測定装置10から測定対象面までの第5の位置情報を取得する。その情報は、図示したベクトルa6の様に、測定装置10から測定対象面までのベクトル(仰角、方位角及び距離)情報となる。 First, fourth position information from the measuring
Next, fifth position information from the
そして、ベクトルa5とベクトルa6を足し合わせる(図4の場合は、ベクトルa6とベクトルa5から減算処理)ようにすることで、マーカ20に対する塗装対象面の位置情報を取得することが可能となる。なお、マーカ20の設置位置が分かれば、それを基に塗装対象面が作業空間内のどの位置に位置されているかを求めることができる。もし、作業空間内で原点位置を設定した場合は、原点位置に対する塗装対象面の位置はベクトルP2のようになり、それは原点位置に対するマーカ20の位置を示すベクトルa1にマーカ20に対する塗装対象面の位置情報を示すベクトルの足し合わせで求めることが可能となる。
Then, by adding the vector a5 and the vector a6 (subtraction processing from the vector a6 and the vector a5 in the case of FIG. 4), it is possible to acquire the position information of the painting target surface with respect to the marker 20. In addition, if the installation position of the marker 20 is known, it can be calculated | required in which position in the work space the coating object surface is located based on it. If the origin position is set in the work space, the position of the painting target surface with respect to the origin position is as a vector P2, which is a vector a1 indicating the position of the marker 20 with respect to the origin position of the painting target surface with respect to the marker 20. It can be obtained by adding vectors indicating position information.
その上で、図3で示すベクトルP1とベクトルP2との差を取得することで。塗装装置5と塗装対象物との相対位置関係を取得することができ、塗装装置5が塗装対象物又は塗装対象物上のある特定の面(塗装対象面など)に対して、どの位置にあるのかが把握することができる。
Then, by obtaining the difference between the vector P1 and the vector P2 shown in FIG. The relative positional relationship between the painting apparatus 5 and the painting object can be acquired, and the position where the painting apparatus 5 is located with respect to the painting object or a specific surface (such as the painting object surface) on the painting object. You can figure out.
また、塗装補助装置1は、塗装装置5の位置情報と、測定装置10により測定した作業者4の骨格モデル情報とに基づいて、塗装装置5の姿勢を推定して、塗装装置5の姿勢に関する情報を生成する。塗装装置5の姿勢に関する情報は、例えば、塗装装置5のノズルの向きに関する情報である。上記のように、塗装補助装置1は、塗装装置5の位置および姿勢に関する情報を取得することができる。
Further, the painting auxiliary device 1 estimates the posture of the painting device 5 based on the position information of the painting device 5 and the skeleton model information of the worker 4 measured by the measuring device 10, and relates to the posture of the painting device 5. Generate information. The information regarding the posture of the coating apparatus 5 is information regarding the orientation of the nozzle of the coating apparatus 5, for example. As described above, the painting auxiliary device 1 can acquire information on the position and posture of the painting device 5.
なお、塗装装置5に複数のマーカを配置して、この複数のマーカに関する位置情報から、塗装装置5の姿勢を推定するようにしてもよい。また、塗装装置5に加速度センサを設けて、加速度センサにより取得される塗装装置5の加速度を示す情報と、作業者4の骨格モデル情報とに基づいて、塗装装置5の位置および姿勢を推定するようにしてもよい。また、測定装置10の撮像部が、作業者4に設けられた複数のマーカ21からの反射光(例えば赤外光)の光量に応じた画像情報を生成し、画像情報に基づいて各マーカ21の位置を算出して、作業者4の骨格モデル情報を取得するようにしてもよい。
It should be noted that a plurality of markers may be arranged on the coating apparatus 5 and the posture of the coating apparatus 5 may be estimated from position information regarding the plurality of markers. Further, an acceleration sensor is provided in the painting apparatus 5, and the position and orientation of the painting apparatus 5 are estimated based on information indicating the acceleration of the painting apparatus 5 acquired by the acceleration sensor and the skeleton model information of the worker 4. You may do it. In addition, the imaging unit of the measurement apparatus 10 generates image information corresponding to the amount of reflected light (for example, infrared light) from the plurality of markers 21 provided in the worker 4, and each marker 21 is based on the image information. May be calculated to acquire the skeleton model information of the worker 4.
塗装補助装置1は、測定装置10から得られた点群データを基に、塗膜厚分布情報を取得する。また、塗装補助装置1は、作業者4による入力操作等により、塗装装置5に関する塗装装置情報を取得する。塗装装置情報とは、例えば、塗装装置5のノズルの種類や、そのノズルから吐出(噴出)される塗料の吐出量および吐出分布に関する情報等である吐出情報などである。塗装補助装置1は、膜厚分布情報、塗装装置情報、および形成すべき塗膜の膜厚に関する情報である目標膜厚情報に基づいて、塗装装置5が位置する近辺にある塗装対象面へ行うべき塗装作業に関する作業情報を生成する。また、塗装補助装置1は、塗膜厚分布情報を表す画像である塗膜厚分布画像や作業を指示する画像である作業指示画像を表示させるための画像データを生成する。塗装補助装置1は、生成した画像データ(画像)を無線通信等により表示装置100に送信する。なお、塗膜が形成されていない領域に塗装を開始する場合は、塗装補助装置1は、塗装装置情報および目標膜厚情報に基づいて作業情報を生成するようにしてもよい。
The coating auxiliary device 1 acquires coating thickness distribution information based on the point cloud data obtained from the measuring device 10. Further, the painting auxiliary device 1 acquires the painting device information related to the painting device 5 by an input operation or the like by the operator 4. The coating device information is, for example, discharge information that is information on the type of nozzle of the coating device 5, the discharge amount and discharge distribution of the paint discharged (spouted) from the nozzle, and the like. The coating auxiliary device 1 performs the coating on the coating target surface in the vicinity where the coating device 5 is located based on the film thickness distribution information, the coating device information, and the target film thickness information that is information on the film thickness of the coating film to be formed. Generate work information about the painting work to be performed. Further, the painting assisting apparatus 1 generates image data for displaying a coating thickness distribution image that is an image representing coating thickness distribution information and a work instruction image that is an image instructing work. The painting auxiliary device 1 transmits the generated image data (image) to the display device 100 by wireless communication or the like. In addition, when starting a coating in the area | region in which the coating film is not formed, you may make it the coating assistance apparatus 1 produce | generate work information based on coating apparatus information and target film thickness information.
表示装置100は、例えば画像を投影表示するプロジェクタであり、塗装補助装置1から送信された画像データに基づいて画像を表示する。表示装置100は、塗装補助装置1により出力される画像データに基づいて、塗装対象面に画像を投影して表示させる。作業者4は、表示装置100により表示された作業指示画像に従って塗装作業を行うことが可能となる。図2に示す例では、図を簡略化するために1つの表示装置100が示されているが、航空機11の全面に画像を投影可能とするために、複数の表示装置100を航空機11の周囲に配置してもよい。この場合、表示装置100は、例えば、ゴンドラ3の近傍位置、移動可能な台車、固定的に設けられる台座、格納庫2の梁や柱の近傍位置などにそれぞれ配置される。なお、表示装置100を測定装置10に設けるようにしてもよい。
The display device 100 is a projector that projects and displays an image, for example, and displays an image based on the image data transmitted from the painting auxiliary device 1. The display device 100 projects and displays an image on the painting target surface based on the image data output from the painting assisting device 1. The worker 4 can perform the painting work according to the work instruction image displayed by the display device 100. In the example shown in FIG. 2, one display device 100 is shown to simplify the drawing, but in order to project an image on the entire surface of the aircraft 11, a plurality of display devices 100 are arranged around the aircraft 11. You may arrange in. In this case, for example, the display device 100 is disposed at a position near the gondola 3, a movable carriage, a fixed base, a position near the beam or column of the hangar 2, and the like. Note that the display device 100 may be provided in the measurement device 10.
図5は、第1の実施の形態による位置検出装置の構成を説明するためのブロック図である。図5においては説明の都合上、位置検出装置の構成に加えて、塗装補助装置1の本体部30および表示装置100も併せて示している。本体部30は、膜厚情報取得部40と、記憶部50と、作業情報生成部60と、画像生成部70と、作業状態解析部80と、第3の位置情報取得部223とを有する。図5に示すように、第1の位置情報取得部221と、第2の位置情報取得部222と、第3の位置情報取得部223と、作業状態解析部80とは、位置検出装置200として機能する。
FIG. 5 is a block diagram for explaining the configuration of the position detection apparatus according to the first embodiment. In FIG. 5, for convenience of explanation, in addition to the configuration of the position detection device, the main body 30 and the display device 100 of the painting auxiliary device 1 are also shown. The main body 30 includes a film thickness information acquisition unit 40, a storage unit 50, a work information generation unit 60, an image generation unit 70, a work state analysis unit 80, and a third position information acquisition unit 223. As illustrated in FIG. 5, the first position information acquisition unit 221, the second position information acquisition unit 222, the third position information acquisition unit 223, and the work state analysis unit 80 are configured as a position detection device 200. Function.
膜厚情報取得部40には、測定装置10から出力される塗膜厚分布情報が入力される。膜厚分布情報は、上記の通り塗装対象に形成された塗膜の膜厚分布に関する情報である。膜厚情報取得部40は、塗装対象に対して塗装作業が行われた後に塗膜厚分布情報を取得する。
The film thickness information acquisition unit 40 receives the coating thickness distribution information output from the measuring apparatus 10. The film thickness distribution information is information regarding the film thickness distribution of the coating film formed on the object to be coated as described above. The film thickness information acquisition unit 40 acquires coating film thickness distribution information after the painting operation is performed on the object to be coated.
記憶部50は、膜厚情報取得部40に入力される塗膜厚分布情報を記憶する。また、記憶部50は、作業者4による入力操作等により、塗装装置5に関する塗装装置情報、および形成すべき塗膜の膜厚に関する情報(目標膜厚情報など)を記憶する。例えば、記憶部50は、塗装装置情報として、複数のノズルについての、吐出量とその吐出分布が記憶される。記憶部50は、RAM等の半導体メモリやハードディスク装置等の記憶媒体を含んで構成される。
The storage unit 50 stores the coating thickness distribution information input to the film thickness information acquisition unit 40. In addition, the storage unit 50 stores coating apparatus information related to the coating apparatus 5 and information (such as target film thickness information) related to the film thickness of the coating film to be formed by an input operation by the operator 4 or the like. For example, the storage unit 50 stores the discharge amount and the discharge distribution for a plurality of nozzles as the coating apparatus information. The storage unit 50 includes a semiconductor memory such as a RAM and a storage medium such as a hard disk device.
作業情報生成部60は、目標膜厚情報、膜厚分布情報および塗装装置情報等に応じて、塗装対象に対して行うべき塗装作業に関する情報である作業情報を生成する。作業情報は、例えば、塗装装置5による塗料の吹き付け目標位置に関する情報、塗装装置5の位置およびノズルの向きに関する情報、塗装装置5を動かす速度(速さと方向)に関する情報等である。作業情報生成部60は、位置算出部61と、推移算出部62とを有する。
The work information generation unit 60 generates work information that is information related to the painting work to be performed on the painting target in accordance with the target film thickness information, the film thickness distribution information, the coating apparatus information, and the like. The work information is, for example, information related to the target position of the paint sprayed by the coating apparatus 5, information related to the position of the coating apparatus 5 and the direction of the nozzle, information related to the speed (speed and direction) of moving the coating apparatus 5. The work information generation unit 60 includes a position calculation unit 61 and a transition calculation unit 62.
位置算出部61は、塗装対象における塗装装置5による塗料の吹き付け目標位置を算出する。位置算出部61は、塗装装置情報に含まれる吐出量および吐出分布に関する情報に基づいて、塗装装置5の目標位置および目標姿勢を算出する。より具体的には、位置算出部61は、塗装対象面における塗装後の膜厚分布情報から塗膜の膜厚が不足している領域と塗膜の不足厚さについての情報を算出し、吐出量および吐出分布の情報等を用いて、塗装対象に対する吹き付け目標位置、塗装装置5の位置および姿勢を算出する。なお、位置算出部61は、測定装置10により生成される形状モデルデータにおける吹き付け目標位置を算出するようにしてもよい。また、位置算出部61は、塗装対象の形状および大きさに応じて、吹き付け目標位置を調整するようにしてもよい。
The position calculating unit 61 calculates a target position for spraying the paint by the coating apparatus 5 on the object to be coated. The position calculation unit 61 calculates a target position and a target posture of the coating apparatus 5 based on information regarding the discharge amount and the discharge distribution included in the coating apparatus information. More specifically, the position calculation unit 61 calculates information about the area where the coating film thickness is insufficient and the insufficient thickness of the coating film from the coating thickness distribution information after coating on the coating target surface, The spray target position for the object to be coated, and the position and orientation of the coating apparatus 5 are calculated using information on the amount and the discharge distribution. Note that the position calculation unit 61 may calculate the spray target position in the shape model data generated by the measurement apparatus 10. Further, the position calculation unit 61 may adjust the spray target position according to the shape and size of the painting target.
推移算出部62は、例えば、塗装装置情報等に基づいて、塗料の吹き付け作業の一連の工程において、作業時間ごとの吹き付け目標位置を算出する。すなわち、推移算出部62は、塗装作業を行う際の塗装装置5の位置の時間的推移を算出する。また、例えば、推移算出部62は、塗装装置情報等に基づいて、塗装装置5の吹き付け目標位置を動かす速度を算出する。
The transition calculation unit 62 calculates the spray target position for each work time in a series of steps of the paint spraying operation based on, for example, the painting apparatus information. That is, the transition calculation unit 62 calculates the temporal transition of the position of the coating apparatus 5 when performing the painting work. Further, for example, the transition calculation unit 62 calculates a speed for moving the spray target position of the coating apparatus 5 based on the coating apparatus information and the like.
上記説明のように、作業情報生成部60は、塗装作業により塗装対象面に形成された塗膜の膜厚の状態に応じて、塗料の吹き付け目標位置やその吹き付け目標位置を動かす速度等の、行うべき塗装作業に関する作業情報を生成する。なお、作業情報生成部60は、塗装対象の周囲温度および湿度、塗料の特性、全体の作業時間等を考慮して、作業情報を生成するようにしてもよい。作業情報生成部60により生成された作業情報は、画像生成部70に出力される。
As described above, the work information generating unit 60, such as the paint spraying target position and the speed at which the spraying target position is moved, according to the state of the film thickness of the coating film formed on the painting target surface by the painting work, Generate work information about the painting work to be done. The work information generation unit 60 may generate the work information in consideration of the ambient temperature and humidity of the object to be coated, the characteristics of the paint, the overall work time, and the like. The work information generated by the work information generation unit 60 is output to the image generation unit 70.
画像生成部70は、膜厚分布画像や作業指示画像を表示するための画像データを生成する。画像生成部70は、例えば、膜厚分布情報、作業情報、および塗装対象の形状モデルデータに基づいて、膜厚分布画像と作業指示画像とを塗装対象面上に重畳して表示するための画像データを生成する。画像生成部70により生成される画像データは、塗装対象面に対する表示装置100の位置および姿勢に基づいて生成される。例えば、表示装置100の位置および姿勢に関する情報を画像生成部70に入力し、画像生成部70は、表示装置100の位置および姿勢に関する情報に基づいて、表示する膜厚分布画像や作業指示画像等の画像データを生成する。これにより、膜厚分布画像と作業指示画像とを塗装対象上に適切に重畳して表示させることが可能となる。画像生成部70により生成された画像データは、無線通信等により表示装置100に出力される。なお、膜厚分布画像と作業指示画像とを重畳して表示させずに、いずれか一方のみを表示させるようにしてもよい。
The image generation unit 70 generates image data for displaying a film thickness distribution image and a work instruction image. The image generation unit 70 is an image for superimposing and displaying a film thickness distribution image and a work instruction image on a coating target surface based on, for example, film thickness distribution information, work information, and shape model data of a coating target. Generate data. The image data generated by the image generation unit 70 is generated based on the position and orientation of the display device 100 with respect to the painting target surface. For example, information on the position and orientation of the display device 100 is input to the image generation unit 70, and the image generation unit 70 displays a film thickness distribution image, work instruction image, and the like to be displayed based on the information on the position and orientation of the display device 100. Image data is generated. As a result, the film thickness distribution image and the work instruction image can be appropriately superimposed and displayed on the painting target. The image data generated by the image generation unit 70 is output to the display device 100 by wireless communication or the like. Note that only one of the film thickness distribution image and the work instruction image may be displayed without being superimposed.
作業状態解析部80は、操作状態検出部81と、タイミング制御部82と、位置情報記憶部83と、塗装推定部84とを有する。操作状態検出部81は、塗装装置5の操作状態を検出する。具体的には、操作状態検出部81は、塗装装置5に配置されたトリガの操作状態に関する信号を塗装装置5に設けられる不図示のセンサから受信して、塗装装置5の操作状態を検出する。
The work state analysis unit 80 includes an operation state detection unit 81, a timing control unit 82, a position information storage unit 83, and a paint estimation unit 84. The operation state detection unit 81 detects the operation state of the coating apparatus 5. Specifically, the operation state detection unit 81 receives a signal related to the operation state of the trigger disposed in the coating apparatus 5 from a sensor (not shown) provided in the coating apparatus 5 and detects the operation state of the coating apparatus 5. .
タイミング制御部82は、操作状態検出部81により検出された塗装装置5の操作状態に基づいて、第1の位置情報取得部221および第2の位置情報取得部222の動作を制御するための制御信号を生成して、第1の位置情報取得部221および第2の位置情報取得部222に出力する。例えば、タイミング制御部82は、塗装装置5のトリガがオンされている場合に、制御信号を送信して、第1の位置情報取得部221により第1の位置情報を取得させ、第2の位置情報取得部222により第2の位置情報を取得させる。これにより、作業者4により塗装装置5のトリガがオンされている場合、すなわち塗装装置5から塗料を吐出させて塗装作業を行っている場合の塗装装置5の位置を追跡することが可能となる。
The timing control unit 82 controls the operation of the first position information acquisition unit 221 and the second position information acquisition unit 222 based on the operation state of the coating apparatus 5 detected by the operation state detection unit 81. A signal is generated and output to the first position information acquisition unit 221 and the second position information acquisition unit 222. For example, when the trigger of the coating apparatus 5 is turned on, the timing control unit 82 transmits a control signal, causes the first position information acquisition unit 221 to acquire the first position information, and the second position The information acquisition unit 222 acquires the second position information. Thereby, when the trigger of the coating apparatus 5 is turned on by the operator 4, that is, the position of the coating apparatus 5 when the coating operation is performed by discharging the coating material from the coating apparatus 5 can be tracked. .
また、タイミング制御部82は、操作状態検出部81により検出された塗装装置5の操作状態に応じて、測定装置10による点群データ及び航空機11の表面画像データの取得を行う。その際、塗装装置5の算出された位置に応じて、測定装置10による形状測定範囲及び画像データ取得範囲を設定し、設定されたその方向に測定装置10を向けることができるロボット機構を設けるようにしてもよい。なお、塗装補助装置1は、さらに、塗装装置5の位置情報を基に、測定装置10による航空機11の測定範囲情報を算出している。特に、塗装装置5の位置情報と姿勢情報を基に、航空機11の測定範囲情報を算出する。塗装補助装置1は、それを測定装置10へ出力し、測定装置10では図示していないレーザ照射方向偏向機構に測定範囲情報を供給させ、測定範囲を変更させることで、レーザ照射方向偏向機構が塗装補助装置1で算出した測定範囲にレーザ光を照射することが可能となる。なお、このようにして、塗装装置5の位置を追跡しつつ、測定装置10の測定範囲も塗装装置5の位置の変化に同期して変更することが可能となる。
Further, the timing control unit 82 acquires the point cloud data and the surface image data of the aircraft 11 by the measuring device 10 according to the operation state of the coating apparatus 5 detected by the operation state detection unit 81. At that time, according to the calculated position of the coating apparatus 5, a shape measuring range and an image data acquisition range by the measuring apparatus 10 are set, and a robot mechanism that can point the measuring apparatus 10 in the set direction is provided. It may be. The painting auxiliary device 1 further calculates the measurement range information of the aircraft 11 by the measuring device 10 based on the position information of the painting device 5. In particular, the measurement range information of the aircraft 11 is calculated based on the position information and attitude information of the painting apparatus 5. The painting auxiliary device 1 outputs it to the measuring device 10, causes the laser irradiation direction deflection mechanism (not shown) to supply the measurement range information, and changes the measurement range, so that the laser irradiation direction deflection mechanism is changed. It becomes possible to irradiate the laser beam to the measurement range calculated by the painting auxiliary device 1. In this way, it is possible to change the measurement range of the measuring device 10 in synchronization with the change in the position of the coating device 5 while tracking the position of the coating device 5.
位置情報記憶部83には、第3の位置情報取得部223により算出された塗装装置5の位置に関する情報が順次記憶される。塗装推定部84は、塗装装置5の位置の履歴に基づいて、塗装対象物の塗装状態を推定する。例えば、塗装推定部84は、塗装装置5の位置の履歴に基づいて、航空機11に対する塗装が完了している領域および塗装が完了していない領域を推定する。具体的には、航空機11の塗装対象領域に対して、塗装装置5の滞在時間が所定時間以上の領域を、塗装が完了している領域として特定する。なお、位置情報記憶部83は、塗装装置5の位置および姿勢を示す情報に基づいて、塗装対象物の塗装状態を推定するようにしてもよい。
In the position information storage unit 83, information on the position of the coating apparatus 5 calculated by the third position information acquisition unit 223 is sequentially stored. The painting estimation unit 84 estimates the painting state of the painting object based on the history of the position of the painting device 5. For example, the painting estimation unit 84 estimates a region where painting with respect to the aircraft 11 is completed and a region where painting is not completed based on the history of the position of the painting apparatus 5. Specifically, an area in which the stay time of the coating apparatus 5 is a predetermined time or more with respect to the painting target area of the aircraft 11 is specified as an area where painting is completed. The position information storage unit 83 may estimate the painting state of the painting object based on information indicating the position and orientation of the painting apparatus 5.
塗装推定部84は、航空機11に対する塗装が完了している領域および塗装が完了していない領域を示す情報を生成して、位置情報記憶部83に記憶させる。塗装推定部84は、航空機11に対する塗装が完了している領域および塗装が完了していない領域を示す情報を画像生成部70に出力する。画像生成部70は、塗装が完了している領域および塗装が完了していない領域を示す画像を表示するための画像データを生成して、表示装置100に出力する。なお、塗装補助装置1は、塗装推定部84により取得された塗装が完了している領域および塗装が完了していない領域を示す情報を用いて、塗装作業の進行状況を管理するようにしてもよい。また、塗装補助装置1は、塗装作業の進行状況に関連する情報をデータベース化して保持することにより、作業者ごとの塗装作業の作業スピードや作業効率を算出するようにしてもよい。例えば、次回の塗装作業を開始する場合に、各作業者の塗装作業の作業スピードに基づいて、塗装作業の工数見積もりを行うことが可能となる。また、作業者ごとの塗装作業の作業効率に基づいて、各作業者の塗装スキルレベルを確認することが可能となる。
The painting estimation unit 84 generates information indicating an area where painting on the aircraft 11 is completed and an area where painting is not completed, and stores the information in the position information storage unit 83. The painting estimation unit 84 outputs information indicating a region where painting to the aircraft 11 is completed and a region where painting is not completed to the image generation unit 70. The image generation unit 70 generates image data for displaying an image indicating an area where painting is completed and an area where painting is not completed, and outputs the image data to the display device 100. The painting assisting apparatus 1 may manage the progress of the painting work using the information obtained by the painting estimation unit 84 indicating the area where the painting is completed and the area where the painting is not completed. Good. In addition, the painting assisting apparatus 1 may calculate the work speed and work efficiency of the painting work for each worker by storing information relating to the progress of the painting work in a database. For example, when the next painting work is started, it is possible to estimate the number of man-hours for the painting work based on the work speed of each worker. Moreover, it becomes possible to confirm the painting skill level of each worker based on the work efficiency of the painting work for each worker.
表示装置100は、画像生成部70により生成される画像データによって、種々の画像を表示することができる。例えば、表示装置100は、塗装が完了している領域および塗装が完了していない領域を示す画像を表示する。また、例えば、表示装置100は、塗膜の膜厚を段階的に分類して色分けした膜厚分布画像を表示する。また、塗装補助装置1は、表示装置100により場所ごとの塗膜の膜厚値を表示するようにしてもよい。塗装補助装置1は、航空機11に対する塗装装置5の位置および姿勢に基づいて、交換可能なノズルから最適なノズルを決定して、塗装装置5のノズルの交換を案内する画像を生成して、表示部100により表示させるようにしてもよい。
The display device 100 can display various images based on the image data generated by the image generation unit 70. For example, the display device 100 displays an image indicating a region where painting is completed and a region where painting is not completed. In addition, for example, the display device 100 displays a film thickness distribution image in which the film thickness of the coating film is classified stepwise and color-coded. Moreover, you may make it the coating auxiliary | assistance apparatus 1 display the film thickness value of the coating film for every place with the display apparatus 100. FIG. The painting auxiliary device 1 determines an optimum nozzle from replaceable nozzles based on the position and posture of the painting device 5 with respect to the aircraft 11, generates an image that guides the replacement of the nozzle of the painting device 5, and displays it. It may be displayed by the unit 100.
図6は、表示装置100による表示画像の一例を示す図である。図6に示す例では、航空機11の塗装対象面上に、膜厚分布画像と作業指示画像とを重畳して表示している。これらの画像は、航空機11の塗装対象面に位置合わせされて投影表示される。図6に示す膜厚分布画像においては、塗膜の膜厚に応じて色分けして表示されている。領域101および領域102は、膜厚が目標膜厚から所定の範囲内である領域である。領域102は、膜厚が領域101の膜厚範囲よりも薄い領域である。領域103は、膜厚が領域102の膜厚範囲よりもさらに薄く、目標膜厚から所定の範囲を下回る領域である。なお、図6においては、色の違いをドットおよびハッチングを用いて表現している。
FIG. 6 is a diagram illustrating an example of a display image displayed on the display device 100. In the example shown in FIG. 6, the film thickness distribution image and the work instruction image are superimposed and displayed on the painting target surface of the aircraft 11. These images are projected and displayed in alignment with the painting target surface of the aircraft 11. In the film thickness distribution image shown in FIG. 6, the colors are displayed according to the film thickness of the coating film. Regions 101 and 102 are regions whose film thickness is within a predetermined range from the target film thickness. The region 102 is a region whose film thickness is thinner than the film thickness range of the region 101. The region 103 is a region where the film thickness is thinner than the film thickness range of the region 102 and falls below a predetermined range from the target film thickness. In FIG. 6, the color difference is expressed using dots and hatching.
図6に示すポインタ90は、作業指示画像に基づく画像であり、吹き付けを開始する目標位置を示している。ポインタ90は、矢印91で示す方向に所定の速度で移動することにより、作業者4に対して吹き付け目標位置を指示する。塗装対象面には、塗膜の膜厚が不足している領域、塗装装置5の吹き付け目標位置、塗装装置5を動かす速度などの種々の情報が表示される。作業者4は、吹き付け目標位置を確認しながら塗装装置5の位置及び向きを調整して塗料作業を行うことができる。作業者4は、このポインタ90の移動に従って塗装装置5を移動させることにより、航空機11に対して適切に塗装を行うことが可能となる。
The pointer 90 shown in FIG. 6 is an image based on the work instruction image, and indicates a target position at which spraying is started. The pointer 90 indicates the spray target position to the operator 4 by moving at a predetermined speed in the direction indicated by the arrow 91. Various information such as a region where the film thickness of the coating film is insufficient, a spray target position of the coating apparatus 5, and a speed at which the coating apparatus 5 is moved is displayed on the coating target surface. The operator 4 can perform the paint work by adjusting the position and orientation of the coating apparatus 5 while confirming the spray target position. The operator 4 can appropriately paint the aircraft 11 by moving the painting device 5 according to the movement of the pointer 90.
例えば、塗装装置5から吐出される塗料の吐出量が一定の場合は、ポインタ90の移動する速度を調整することで、塗装作業により形成される塗膜の膜厚を調整することが可能となる。また、塗装装置5の位置および姿勢に関する情報に基づいて、塗装装置5からの塗料の吐出量を制御するようにしてもよい。例えば、塗装装置5が塗膜の膜厚が薄い領域の方に向いている場合に、塗装装置5からの塗料の吐出量が増加するように制御してもよい。
For example, when the discharge amount of the paint discharged from the coating apparatus 5 is constant, the film thickness of the coating film formed by the painting operation can be adjusted by adjusting the moving speed of the pointer 90. . Further, the amount of paint discharged from the coating apparatus 5 may be controlled based on information on the position and orientation of the coating apparatus 5. For example, when the coating apparatus 5 is directed toward a region where the film thickness of the coating film is thin, the amount of paint discharged from the coating apparatus 5 may be controlled to increase.
上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)位置検出装置200は、移動体(作業者4)により保持される塗装器具5と移動体との位置関係に関する第1の位置情報を取得する第1の位置情報取得部221と、移動体と塗装対象物との位置関係に関する第2の位置情報を取得する第2の位置情報取得部222と、第1の位置情報および第2の位置情報から、塗装器具と塗装対象物との位置関係に関する第3の位置情報を取得する第3の位置情報取得部223と、を備える。このようにしたので、塗装装置5と位置検出装置の間に作業者が入り込むこと等によるオクルージョンを回避することができ、塗装装置5の位置を常時追跡することができる。塗装装置5の位置を検出することにより、塗装を行った領域および/または塗装が不十分と推定される領域を推定することができる。また、塗装装置5の位置に基づいて、塗装装置5からの吐出量などを制御することが可能となる。 According to the first embodiment described above, the following operational effects are obtained.
(1) Theposition detection apparatus 200 includes a first position information acquisition unit 221 that acquires first position information related to the positional relationship between the painting tool 5 held by the moving body (worker 4) and the moving body, From the second position information acquisition unit 222 that acquires the second position information related to the positional relationship between the body and the painting object, and the position of the painting tool and the painting object from the first position information and the second position information. And a third position information acquisition unit 223 that acquires third position information related to the relationship. Since it did in this way, the occlusion by an operator entering between the coating apparatus 5 and a position detection apparatus etc. can be avoided, and the position of the coating apparatus 5 can always be tracked. By detecting the position of the coating apparatus 5, it is possible to estimate a region where painting is performed and / or a region where coating is estimated to be insufficient. Further, based on the position of the coating apparatus 5, the discharge amount from the coating apparatus 5 can be controlled.
(1)位置検出装置200は、移動体(作業者4)により保持される塗装器具5と移動体との位置関係に関する第1の位置情報を取得する第1の位置情報取得部221と、移動体と塗装対象物との位置関係に関する第2の位置情報を取得する第2の位置情報取得部222と、第1の位置情報および第2の位置情報から、塗装器具と塗装対象物との位置関係に関する第3の位置情報を取得する第3の位置情報取得部223と、を備える。このようにしたので、塗装装置5と位置検出装置の間に作業者が入り込むこと等によるオクルージョンを回避することができ、塗装装置5の位置を常時追跡することができる。塗装装置5の位置を検出することにより、塗装を行った領域および/または塗装が不十分と推定される領域を推定することができる。また、塗装装置5の位置に基づいて、塗装装置5からの吐出量などを制御することが可能となる。 According to the first embodiment described above, the following operational effects are obtained.
(1) The
(2)一般的に、航空機のコスト等を考慮して航空機の運休期間を短くする必要があるため、限られた時間内に塗装作業を行う必要がある。また、航空機の需要は増大すると考えられている。そこで、本実施の形態では、塗装装置5の位置および姿勢を常時追跡することで、塗装を行っていない領域を推定して作業者に提示したり、塗装装置5の位置および姿勢に基づき塗料の吐出量を制御したりすることができる。これにより、作業者は塗装作業を速やかに完了させることができ、その結果、航空機の稼動効率を向上させることができる。また、過剰な膜厚による航空機の燃費の悪化、膜厚の不足による防水性や防錆性の低下、および膜厚の不足による機体表面の温度上昇等が生じることを防止することができる。
(2) Generally, since it is necessary to shorten the aircraft suspension period in consideration of the cost of the aircraft, it is necessary to perform the painting work within a limited time. Aircraft demand is also expected to increase. Therefore, in the present embodiment, the position and orientation of the coating apparatus 5 are constantly tracked, so that an area where painting is not performed is estimated and presented to the operator, or the paint is applied based on the position and orientation of the coating apparatus 5. The discharge amount can be controlled. As a result, the operator can quickly complete the painting operation, and as a result, the operating efficiency of the aircraft can be improved. Further, it is possible to prevent the deterioration of aircraft fuel consumption due to the excessive film thickness, the decrease in waterproofness and rust prevention due to the insufficient film thickness, and the temperature rise of the body surface due to the insufficient film thickness.
次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形
態と組み合わせることも可能である。 The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
態と組み合わせることも可能である。 The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(変形例1)
上述した実施の形態では、第2の位置情報取得部として作業者位置検出装置201を設けることを説明したが、変形例では、第2の位置情報取得部として測定装置10を利用することでも良い。測定装置10は、航空機11の各測定点までの距離を測定することに加えて、測定装置10から作業者4のヘルメット等までの距離を測定する。これにより、作業者4の位置および姿勢に関連する情報を取得することができる。測定装置10は、取得した作業者4の位置および姿勢に関する情報を、無線通信等により塗装補助装置1に送信する。 (Modification 1)
In the above-described embodiment, it has been described that the workerposition detection device 201 is provided as the second position information acquisition unit. However, in the modification, the measurement device 10 may be used as the second position information acquisition unit. . The measuring device 10 measures the distance from the measuring device 10 to the helmet of the operator 4 in addition to measuring the distance to each measurement point of the aircraft 11. Thereby, information related to the position and posture of the worker 4 can be acquired. The measuring apparatus 10 transmits the acquired information regarding the position and posture of the worker 4 to the painting assisting apparatus 1 by wireless communication or the like.
上述した実施の形態では、第2の位置情報取得部として作業者位置検出装置201を設けることを説明したが、変形例では、第2の位置情報取得部として測定装置10を利用することでも良い。測定装置10は、航空機11の各測定点までの距離を測定することに加えて、測定装置10から作業者4のヘルメット等までの距離を測定する。これにより、作業者4の位置および姿勢に関連する情報を取得することができる。測定装置10は、取得した作業者4の位置および姿勢に関する情報を、無線通信等により塗装補助装置1に送信する。 (Modification 1)
In the above-described embodiment, it has been described that the worker
(変形例2)
上述した実施の形態および変形例では、塗装対象として航空機を用いる例について説明したが、塗装対象は自動車であってもよいし、船舶であってもよく、特に限定されない。本発明は、種々の塗装対象の塗膜状態の解析に適用することができる。 (Modification 2)
In the embodiment and the modification described above, an example in which an aircraft is used as a painting target has been described. However, the painting target may be an automobile or a ship, and is not particularly limited. The present invention can be applied to the analysis of the coating state of various coating objects.
上述した実施の形態および変形例では、塗装対象として航空機を用いる例について説明したが、塗装対象は自動車であってもよいし、船舶であってもよく、特に限定されない。本発明は、種々の塗装対象の塗膜状態の解析に適用することができる。 (Modification 2)
In the embodiment and the modification described above, an example in which an aircraft is used as a painting target has been described. However, the painting target may be an automobile or a ship, and is not particularly limited. The present invention can be applied to the analysis of the coating state of various coating objects.
(変形例3)
作業者位置検出装置201と塗装装置位置検出装置212と測定装置10は、いずれもレーザ光を位置検出対象へ照射し、その戻り光を検出することで、位置検出対象の距離情報を取得し、レーザ光を照射した方向の情報から位置を求める位置検出装置を用いたが、本願発明はこれだけに限られず、i-GPSのような、複数の異なる位置に配置された送信機が発光する光の各々をレシーバーが検出するタイミングに基づいて、受信器の位置を求める方法で、作業位置と塗装装置の位置とを求めることでも良い。 (Modification 3)
The workerposition detection device 201, the coating device position detection device 212, and the measurement device 10 all irradiate the position detection target with laser light and detect the return light, thereby obtaining the distance information of the position detection target. Although a position detection device that obtains a position from information on the direction of laser light irradiation was used, the present invention is not limited to this, and the light emitted from transmitters arranged at a plurality of different positions, such as i-GPS, is used. The working position and the position of the coating apparatus may be obtained by a method of obtaining the position of the receiver based on the timing at which the receiver detects each.
作業者位置検出装置201と塗装装置位置検出装置212と測定装置10は、いずれもレーザ光を位置検出対象へ照射し、その戻り光を検出することで、位置検出対象の距離情報を取得し、レーザ光を照射した方向の情報から位置を求める位置検出装置を用いたが、本願発明はこれだけに限られず、i-GPSのような、複数の異なる位置に配置された送信機が発光する光の各々をレシーバーが検出するタイミングに基づいて、受信器の位置を求める方法で、作業位置と塗装装置の位置とを求めることでも良い。 (Modification 3)
The worker
例えば、異なる位置に配置された送信機の各々は、例えばレーザ発信機であり、ファンビーム(扇状のビーム)光B1、B2を射出する。このファンビームの照射方向は、時間管理されており、どの時間にどの方向に向けて発するかが把握できるようになっている。また、水平面に対するファンビーム光B1の光線伝搬面(ファンの面)の角度とファンビーム光B2の光線伝搬面の角度とは異なる。例えば、ファンビーム光B1の照射面は水平面に垂直であり、ファンビーム光B2の光線伝搬面は水平面に対して70°の角度をなす。送信機が回転しながらファンビーム光B1およびファンビーム光B2の照射方向を変えるので、受信機は、ファンビーム光B1およびファンビーム光B2を、それぞれ間欠的に受信する。また、各々の送信機は、赤外線をパルス発光するLED発光部等も有しており、それぞれが回転しながら赤外パルス光を周期的に発光する。
For example, each of the transmitters arranged at different positions is a laser transmitter, for example, and emits fan beam (fan-shaped beam) lights B1 and B2. The irradiation direction of the fan beam is time-controlled so that it can be grasped at which time and in which direction it is emitted. Further, the angle of the light beam propagation surface (fan surface) of the fan beam light B1 with respect to the horizontal plane is different from the angle of the light beam propagation surface of the fan beam light B2. For example, the irradiation surface of the fan beam light B1 is perpendicular to the horizontal plane, and the light propagation surface of the fan beam light B2 forms an angle of 70 ° with respect to the horizontal plane. Since the irradiation direction of the fan beam light B1 and the fan beam light B2 is changed while the transmitter rotates, the receiver receives the fan beam light B1 and the fan beam light B2 intermittently. Each transmitter also has an LED light-emitting unit that emits infrared pulses, and periodically emits infrared pulse light while rotating.
受信機は、位置を測定する対象物に配置される。本実施の形態では、作業者位置検出装置としては作業者のヘルメットに受信器が配置される。また、塗装装置位置検出装置としては塗装装置に受信器が配置される。複数の送信機から射出されたファンビームB1とファンビームB2と赤外パルス光とを受信(受光)する。受信機は、受信したファンビームB1とファンビームB2と赤外パルス光とをそれぞれ電気信号に変換する信号処理を行う。上記の通り、送信機から射出されるファンビームB1とファンビームB2とはそれぞれの出射方向が所定の角度ずれており、また、ファンビームB1の照射面とファンビームB2の照射面とは異なるので、ファンビームB1を受信するタイミング(時刻)とファンビームB2を受信するタイミングとの差は、受信機の位置の違いに起因する。そこで、受信機は、ファンビームB1を受信したタイミングとファンビームB2を受信したタイミングとの差に基づいて、受信機の位置を算出する。
The receiver is placed on the object whose position is to be measured. In the present embodiment, a receiver is arranged in the worker's helmet as the worker position detecting device. Moreover, a receiver is arrange | positioned at a coating device as a coating device position detection apparatus. The fan beam B1, the fan beam B2, and the infrared pulse light emitted from a plurality of transmitters are received (received). The receiver performs signal processing for converting the received fan beam B1, fan beam B2, and infrared pulse light into electrical signals. As described above, the emission directions of the fan beam B1 and the fan beam B2 emitted from the transmitter are shifted by a predetermined angle, and the irradiation surface of the fan beam B1 is different from the irradiation surface of the fan beam B2. The difference between the timing (time) at which the fan beam B1 is received and the timing at which the fan beam B2 is received is due to the difference in the position of the receiver. Therefore, the receiver calculates the position of the receiver based on the difference between the timing at which the fan beam B1 is received and the timing at which the fan beam B2 is received.
そして、受信機は、受信機の位置情報を、無線通信等により塗装補助装置1に送信する。なお、受信機は、複数の送信機により射出されたファンビームB1とファンビームB2と赤外パルス光とを電気信号に変換し、変換した電気信号を塗装補助装置1に送信して、塗装補助装置1により受信機の位置に関する情報を生成するようにしてもよい。
また、送信機から受信機に対して電気信号を送信させて、送信機から信号が送信されたタイミングと、受信機がその信号を受信したタイミングとの差に基づいて、受信機の位置情報を生成するようにしてもよい。 And a receiver transmits the positional infomation on a receiver to the painting auxiliary |assistance apparatus 1 by radio | wireless communication etc. The receiver converts the fan beam B1, the fan beam B2, and the infrared pulsed light emitted from the plurality of transmitters into electrical signals, and transmits the converted electrical signals to the painting assisting device 1 for painting assistance. Information regarding the position of the receiver may be generated by the apparatus 1.
In addition, the electrical signal is transmitted from the transmitter to the receiver, and the position information of the receiver is obtained based on the difference between the timing at which the signal is transmitted from the transmitter and the timing at which the receiver receives the signal. You may make it produce | generate.
また、送信機から受信機に対して電気信号を送信させて、送信機から信号が送信されたタイミングと、受信機がその信号を受信したタイミングとの差に基づいて、受信機の位置情報を生成するようにしてもよい。 And a receiver transmits the positional infomation on a receiver to the painting auxiliary |
In addition, the electrical signal is transmitted from the transmitter to the receiver, and the position information of the receiver is obtained based on the difference between the timing at which the signal is transmitted from the transmitter and the timing at which the receiver receives the signal. You may make it produce | generate.
塗装装置5に設けられる受信機は、作業者4のヘルメット等に設けられる送信機と塗装作業場に設けられた少なくとも1つの他の送信機とから、それぞれファンビーム光B1とファンビーム光B2と赤外パルス光とを受信し、各々の光を受信したタイミングから作業者に対する塗装装置5の位置情報を算出する。この受信機の位置に関する情報は、無線通信等により塗装補助装置1に送信される。
The receiver provided in the painting apparatus 5 includes a fan beam light B1, a fan beam light B2, and a red light from a transmitter provided in the helmet or the like of the worker 4 and at least one other transmitter provided in the painting work place, respectively. The external pulse light is received, and the position information of the coating apparatus 5 with respect to the operator is calculated from the timing of receiving each light. Information regarding the position of the receiver is transmitted to the painting auxiliary apparatus 1 by wireless communication or the like.
なお、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した検出装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
Note that the requirements of the above-described embodiments can be combined as appropriate. Some components may not be used. In addition, as long as it is permitted by law, the disclosure of all published publications and US patents related to the detection devices and the like cited in the above embodiments and modifications are incorporated herein by reference.
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
5…塗装装置、200…位置検出装置、221…第1の位置情報取得部、222…第2の位置情報取得部、223…第3の位置情報取得部
DESCRIPTION OF SYMBOLS 5 ... Coating apparatus, 200 ... Position detection apparatus, 221 ... 1st position information acquisition part, 222 ... 2nd position information acquisition part, 223 ... 3rd position information acquisition part
Claims (5)
- 移動体により保持される塗装器具と前記移動体との位置関係に関する第1の位置情報を取得する第1の位置情報取得部と、
前記移動体と塗装対象物との位置関係に関する第2の位置情報を取得する第2の位置情報取得部と、
前記第1の位置情報および前記第2の位置情報から、前記塗装器具の位置に関する第3の位置情報を取得する第3の位置情報取得部と、
を備える位置検出装置。 A first position information acquisition unit that acquires first position information related to a positional relationship between the painting tool held by the moving body and the moving body;
A second position information acquisition unit that acquires second position information related to a positional relationship between the moving body and the painting object;
From the first position information and the second position information, a third position information acquisition unit that acquires third position information related to the position of the coating instrument;
A position detection device comprising: - 請求項1に記載の位置検出装置において、
前記移動体は、塗装作業者であり、
前記第1の位置情報取得部は、前記塗装作業者の骨格モデル情報に基づいて、前記塗装器具と前記塗装作業者との位置関係に関する前記第1の位置情報を取得する位置検出装置。 The position detection device according to claim 1,
The moving body is a painting worker,
The first position information acquisition unit is a position detection device that acquires the first position information related to a positional relationship between the painting tool and the painting worker based on the skeleton model information of the painting worker. - 請求項1または請求項2に記載の位置検出装置において、
前記塗装器具の操作状態を検出する操作状態検出部と、
前記操作状態に基づき、前記第1の位置情報取得部が前記第1の位置情報を取得するタイミングと、前記第2の位置情報取得部が前記第2の位置情報を取得するタイミングとを制御するタイミング制御部と、
を更に備える位置検出装置。 In the position detection device according to claim 1 or 2,
An operation state detection unit for detecting an operation state of the painting tool;
Based on the operation state, the timing at which the first position information acquisition unit acquires the first position information and the timing at which the second position information acquisition unit acquires the second position information are controlled. A timing control unit;
A position detecting device further comprising: - 請求項1から請求項3までのいずれか一項に記載の位置検出装置と、
前記第3の位置情報に基づき、前記塗装対象物に対する前記塗装器具の滞在位置の履歴情報を記憶する記憶部と、
前記履歴情報に基づき、前記塗装対象物の塗装状態を推定する塗装推定部と、
を備える塗装補助システム。 The position detection device according to any one of claims 1 to 3,
Based on the third position information, a storage unit that stores history information of a stay position of the painting tool with respect to the painting object;
Based on the history information, a paint estimation unit for estimating the paint state of the paint object,
Painting assistance system with. - 請求項1に記載の位置検出装置において、
前記第3の位置情報に基づき、前記塗装器具と前記塗装対象物との相対的な位置情報を備える位置検出装置。 The position detection device according to claim 1,
A position detection device comprising relative position information between the painting tool and the painting object based on the third position information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/014279 WO2018185892A1 (en) | 2017-04-05 | 2017-04-05 | Position detecting device and painting assisting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/014279 WO2018185892A1 (en) | 2017-04-05 | 2017-04-05 | Position detecting device and painting assisting system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018185892A1 true WO2018185892A1 (en) | 2018-10-11 |
Family
ID=63712094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014279 WO2018185892A1 (en) | 2017-04-05 | 2017-04-05 | Position detecting device and painting assisting system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018185892A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7567121B2 (en) | 2020-09-02 | 2024-10-16 | 若築建設株式会社 | Compaction Work Management System |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04504469A (en) * | 1989-04-06 | 1992-08-06 | イェウトロニクス アクティエボラーグ | Device for forming or defining the location of measurement points |
EP2641661A1 (en) * | 2012-03-20 | 2013-09-25 | Hexagon Technology Center GmbH | Graphical application system |
-
2017
- 2017-04-05 WO PCT/JP2017/014279 patent/WO2018185892A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04504469A (en) * | 1989-04-06 | 1992-08-06 | イェウトロニクス アクティエボラーグ | Device for forming or defining the location of measurement points |
EP2641661A1 (en) * | 2012-03-20 | 2013-09-25 | Hexagon Technology Center GmbH | Graphical application system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7567121B2 (en) | 2020-09-02 | 2024-10-16 | 若築建設株式会社 | Compaction Work Management System |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101572917B1 (en) | Graphical application system | |
US20170138732A1 (en) | Surveying by mobile vehicles | |
KR101521168B1 (en) | Surface spattering device | |
US9758239B2 (en) | System and method for controlling an unmanned air vehicle | |
AU2012241780B2 (en) | System and method for controlling an unmanned air vehicle | |
JP5832629B2 (en) | Measuring system for determining 3D coordinates of the surface of an object | |
US11571911B2 (en) | Robotic livery printing system | |
JP2017009574A (en) | Radar axis deviation-amount calculation device and radar axis deviation-amount calculation method | |
WO2018185891A1 (en) | Coating film state analysis device and film thickness measurement device | |
US20220187071A1 (en) | System and method for controlling a light projector in a construction site | |
WO2018185892A1 (en) | Position detecting device and painting assisting system | |
WO2018185890A1 (en) | Coating assistance device, coating device, coating work assistance method, production method for coated article, and coating assistance program | |
WO2018185893A1 (en) | Unmeasured area extraction device, work guidance device, and work guidance method | |
CN114147723B (en) | Automatic lofting robot system and operation method thereof | |
KR101291105B1 (en) | Coating apparatus applied to the surface of hull and control method thereof | |
WO2021033185A2 (en) | System and method for positioning of a laser projection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17904813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |