WO2018184228A1 - 耳机及耳机的供电电路 - Google Patents

耳机及耳机的供电电路 Download PDF

Info

Publication number
WO2018184228A1
WO2018184228A1 PCT/CN2017/079780 CN2017079780W WO2018184228A1 WO 2018184228 A1 WO2018184228 A1 WO 2018184228A1 CN 2017079780 W CN2017079780 W CN 2017079780W WO 2018184228 A1 WO2018184228 A1 WO 2018184228A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power supply
circuit
voltage
button
Prior art date
Application number
PCT/CN2017/079780
Other languages
English (en)
French (fr)
Inventor
段红亮
刘畅
杨旺旺
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201780001471.6A priority Critical patent/CN107690813B/zh
Priority to PCT/CN2017/079780 priority patent/WO2018184228A1/zh
Publication of WO2018184228A1 publication Critical patent/WO2018184228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the embodiments of the present invention relate to the technical field of electronic products, and in particular, to a power supply circuit for an earphone and an earphone.
  • the inventors have found that the prior art has the following problems: the existing wired smart earphone requires an external mechanical switch to switch when the basic functions and additional functions of the earphone are implemented, and the operation is cumbersome; and no operation button is set on the earphone ( For example, the volume plus/minus button causes the wired smart headset to have no button function, which increases the inconvenience for the user's use and makes the user experience poor.
  • the operation button is set to ensure that the wired smart earphone has a button function
  • the voltage on the mic line is pulled to a very low level (generally 0 to 600 millimeters).
  • Volt the voltage of the sensor module that provides additional functions for the earphone is too low (that is, the sensor module cannot be powered when the operation button is pressed), so that the sensor module does not work properly, affecting the use of additional functions of the earphone; that is, now
  • Some wired smart headphones can not use the operation buttons after adding the sensor module with additional functions to the ordinary earphones, and the operation buttons and the sensor modules cannot coexist.
  • the purpose of the embodiments of the present application is to provide a power supply circuit for the earphone and the earphone, so that the power supply can be normally supplied to the sensor module when the operation button is pressed, thereby solving the problem that the wired smart earphone cannot supply power to the sensor module when using the operation button.
  • the sensor module and the operation button can coexist, thereby ensuring that the additional function and the button function of the earphone can be used normally, which provides convenience for the user to use.
  • an embodiment of the present application provides a power supply circuit for a headset, including: a button circuit for adjusting a voltage on a microphone line in a headset according to a trigger signal of a trigger on the earphone, and a voltage on the microphone line
  • the change of the trigger signal changes; according to the voltage on the mic line, the power supply circuit switches to select the power supply control module of the first power supply mode or the second power supply mode; and the reserve power supply, the power control module is simultaneously connected to the button circuit and the reserve power source;
  • the power supply mode is that the power control module allows the external power supply to supply at least the sensor module of the earphone;
  • the second power supply mode is that the power control module allows the reserve power to supply at least the sensor module.
  • the power supply circuit of the earphone includes a button circuit, a power control module, and a reserve power source. That is, in the power supply circuit provided by the embodiment of the present application, the power control module is simultaneously connected to the button circuit and the reserve power source; the button circuit can adjust the voltage on the mic line according to the trigger signal of the trigger on the earphone, and the power control module is based on the mic line.
  • the voltage control power supply circuit is switched from the external power supply to the sensor module of the earphone to the reserve power supply to supply power to the sensor module.
  • the earphone when the trigger member is pressed, the earphone can normally supply power to the sensor module, thereby solving the problem that the wired smart earphone cannot supply power to the sensor module when using the operation button; and the sensor module and the operation button (ie, in the present application)
  • the button circuit can coexist in the wired smart earphone, ensuring the normal use of the button function and the additional function of the earphone, thereby improving the user experience.
  • the power control module includes a first switch and a second switch; the first end of the first switch is connected to the microphone line, and the second end of the first switch is connected to the button circuit, the reserve power source, and the sensor module.
  • the control end of the first switch is connected to the second end of the first switch, the second end of the second switch is connected to the microphone module, and the control end of the second switch is connected to the microphone line.
  • the power control module controls the power supply circuit to be in the first power supply mode; when the trigger signal adjusts the voltage on the mic line to low power Normally, both the first switch and the second switch enter an open state, and the power control module controls the power supply circuit to enter the second power supply mode.
  • an implementation of a specific circuit of the power control module is provided.
  • the power control module is a diode; the anode of the diode is connected to the microphone line, the cathode of the diode is connected to at least the button circuit, the reserve power source, and the sensor module; when the voltage on the mic line is high, the diode is in a conducting state, and the power supply is controlled.
  • the module controls the power supply circuit to be in the first power supply mode; when the trigger signal adjusts the voltage on the mic line to a low level, the diode enters an off state, and the power control module controls the power supply circuit to enter the second power supply mode.
  • an implementation of another specific circuit of the power control module is provided.
  • the power control module includes a first switch tube, a second switch tube, a third switch tube, and a fourth switch tube; the gate or base of the first switch tube is connected to the microphone line, and the source or the emitter thereof is grounded.
  • the drain or the collector is connected to the MOSFET; the gate or the base of the second switch is connected to the drain or collector of the first switch, and the source or emitter is connected to the MOSFET, and the drain or collector thereof Connected to the button circuit, the reserve power source and the sensor module;
  • the gate or base of the third switch tube is connected to the microphone line, the source or the emitter thereof is grounded, and the drain or collector thereof is connected to the drain of the first switch tube;
  • the gate or the base of the fourth switching transistor is connected to the drain or collector of the third switching transistor, and the source or the emitter thereof is connected to the drain or collector of the second switching transistor, and the drain or collector thereof is connected to The microphone module of the headset.
  • another specific circuit implementation manner of the power control module is provided.
  • the power control module includes a third switch, a fourth switch, a logic control circuit, and a clock circuit; the first end of the third switch of the microphone is connected to the McMike line, and the second end of the third switch of the microphone is connected to the logic control circuit of the microphone, Mike reserve power and microphone sensor module, Mike third switch
  • the control end is connected to the microphone logic control circuit; the first end of the fourth switch of the microphone is connected to the second end of the first switch of the microphone, the second end of the fourth switch of the microphone is connected to the microphone module of the microphone earphone, and the fourth switch of the microphone
  • the control end is connected to the microphone logic control circuit; the two ends of the microphone clock circuit are respectively connected to the microphone reserve power source and the microphone logic control circuit; the microphone logic control circuit is also connected to the button circuit.
  • another specific circuit implementation manner of the power control module is provided.
  • the button circuit further includes a capacitor for controlling the duration of the trigger signal, the first voltage dividing resistor and the second voltage dividing resistor; the first end of the microphone capacitor is connected to the second end of the second button switch of the microphone; the capacitor of the microphone The second end is grounded by a second voltage dividing resistor of the microphone; the first voltage dividing resistor of the microphone is connected in parallel with the capacitor of the microphone; the second end of the capacitor is also connected to the control end of the second voltage pull-down unit.
  • the button circuit can generate a negative pulse of a certain time width, and the time width of the negative pulse Can be recognized by the terminal, and can generate negative pulses of different time widths according to different trigger keys; that is, the button circuit can control the time of pulling down the voltage on the imaginary line, so that the terminal not only has sufficient time to recognize the low power on the mic line Flat, it can also ensure that the reserve power supply is at least the normal power supply of the sensor module.
  • FIG. 1 is a schematic diagram of a power supply circuit of an earphone according to a first embodiment
  • FIG. 2 is a schematic diagram of a power supply circuit of an earphone according to a second embodiment
  • FIG. 3 is a schematic diagram of a power supply circuit of an earphone according to a third embodiment
  • FIG. 4 is a schematic diagram of a power supply circuit of an earphone according to a fourth embodiment
  • FIG. 5 is a schematic diagram of a power supply circuit of an earphone according to a fifth embodiment
  • Fig. 6 is a schematic diagram of a power supply circuit of an earphone according to a sixth embodiment.
  • a first embodiment of the present application relates to a power supply circuit for an earphone applied to a wired smart earphone including a microphone module, a sensor module, and a microphone line.
  • the power supply circuit of the earphone includes: a power control module 1, a button circuit 2, and a reserve power source 4.
  • the power control module 1 is simultaneously connected to the button circuit 2, the microphone module 3, the reserve power source 4, the sensor module 5, and the microphone line 6.
  • the button circuit 2 is configured to adjust the voltage on the microphone line 6 in the earphone according to the trigger signal of the trigger on the earphone, and the voltage on the microphone line 6 changes with the change of the trigger signal; the power control module 1 is used according to the microphone line 6
  • the voltage control power supply circuit switches to select the first power supply mode or the second power supply mode; wherein, when the button circuit 2 receives the trigger signal of the trigger component and adjusts the voltage on the microphone line 6, the power control module 1 controls the power supply circuit by the first The power mode switching is selected as the second power mode.
  • the first power supply mode is: the power control module 1 allows the external power source to supply power to at least the sensor module 5 of the earphone; and the second power supply mode: the power supply control module 1 allows the reserve power source 4 to supply at least the sensor module 5.
  • one end of the microphone line 6 is simultaneously connected to the power control module 1, and
  • the key circuit 2 and the mic module 3 (actually, the power control module 1, the button circuit 2, and the mic module 3 are formed on the circuit board), and the other end of the mic line 6 is connected to the plug of the earphone.
  • the mic line 6 is used to supply at least the sensor module 5 of the earphone through the external power source connected through the headphone plug end in the first power supply mode, and the mic line 6 is also used to transmit the audio signal generated by the mic module 3, and the mic line 6 is also used for transmission.
  • the data signal generated by the sensor module 5 (the data signal is modulated by the power control module 1 to the microphone line 6) and the signal generated by the button circuit 2 for adjusting the voltage on the mic line.
  • the power control module 1 can control the power supply circuit to switch the power supply mode according to the voltage on the mic line, and can also detect whether the trigger signal exists from the button circuit 2 to control the power supply circuit to switch the power supply mode; This is not subject to any restrictions.
  • one end of the channel line 7 of the earphone is connected to the sensor module 5, and the other end of the channel line 7 is for connection to an external power source.
  • the channel line 7 is used to transmit a command signal generated by the external power source to the sensor module 5.
  • the trigger signal is one of a pulse signal, an AC signal, or a DC signal.
  • the embodiment does not impose any limitation on the type of the trigger signal.
  • the power supply circuit of the earphone includes a button circuit, a power control module, and a reserve power source. That is, in the power supply circuit provided by the embodiment of the present application, the power control module is simultaneously connected to the button circuit and the reserve power source; the button circuit can adjust the voltage on the mic line according to the trigger signal of the trigger on the earphone, and the power control module is based on the mic line.
  • the voltage control power supply circuit is switched from the external power supply to the sensor module of the earphone to the reserve power supply to supply power to the sensor module.
  • the earphone when the trigger member is pressed, the earphone can normally supply power to the sensor module with additional functions, thereby solving the problem that the wired smart earphone cannot supply power to the sensor module when using the operation button; and the operation of the embodiment is simple.
  • the embodiment makes the sensor module and the operation button (ie, the button in the present application)
  • the circuit can coexist in the wired smart earphone, ensuring the normal function of the key function and additional functions of the earphone Use, thereby improving the user experience.
  • each module involved in this embodiment is a logic module.
  • a logical unit may be a physical unit, a part of a physical unit, or multiple physical entities. A combination of units is implemented.
  • the present embodiment does not introduce a unit that is not closely related to solving the technical problem proposed by the present application, but this does not indicate that there are no other units in the present embodiment.
  • a second embodiment of the present application relates to a power supply circuit for an earphone.
  • the second embodiment is refined on the basis of the first embodiment, and the main refinement is that, in the second embodiment of the present application, as shown in FIG. 2, the realization of the specific circuit of each module in the power supply circuit is provided. the way.
  • the power control module 1 includes a first switch 11 and a second switch 12; wherein the first switch 11 and the second switch 12 may be electronic switches, but the actual switch is not limited thereto.
  • the first end D 1 of the first switch 11 is connected to the mic line 6, and the second end S 1 of the first switch 11 is connected to the button circuit 2, the reserve power source 4, and the sensor module 5, and the control of the first switch 11
  • the terminal IN 1 is connected to the microphone line 6.
  • the second end S 1 of the first switch 11 is connected to the reserve power source 4 through the first resistor 71.
  • the second terminal of the first switch 12 is connected to the second end of the D 2 S 1 of the first switch 11, second switch S 2 of a second end 12 connected to the microphone module 3, the control terminal of the second switch 12 IN 2 is connected to the microphone line 6.
  • the second end S 2 is connected to the mic module 3 through the second resistor 72.
  • the power control module 1 also allows an external power source to charge the reserve power source 4.
  • the power supply terminal V 1 of the first switch 11, a second supply terminal V 12 of the switch 2 are connected to the power reserve 4; when the power supply to the control power supply module 1 in a second mode through power reserve of at least 4 sensor Module 5 is powered.
  • the first switch 11 and the second switch 12 are both in an on state (ie, an initial state of the first switch 11 and the second switch 12), and the power control module 1 Control the power supply circuit in the first power supply mode.
  • the trigger signal will be the voltage on the microphone line 6
  • both the first switch 11 and the second switch 12 enter an off state, and the power control module 1 controls the power supply circuit to be in the second power supply mode.
  • the conduction state of the first switch 11 is that the first end D 1 of the first switch 11 is electrically connected to the second end S 1 ; the conductive state of the second switch 12 is the first of the first switch 11
  • the terminal D 2 is electrically connected to the second terminal S 2 .
  • the disconnected state of the first switch 11 means that the first end D 1 of the first switch 11 is disconnected from the second end S 1 ; the off state of the second switch 12 is: the first end D of the first switch 11 2 is disconnected from the second end S 2 .
  • the first switch 11 and the second switch 12 are integrated switches.
  • the first switch 11 and the second switch 12 can be analog switches.
  • the present embodiment is not limited thereto.
  • the reserve power source 4 includes at least one storage capacitor 41.
  • the anode of the storage capacitor 41 is simultaneously connected to the button circuit 2, the first switch 11, the second switch 12, and the sensor module 5; the cathode is grounded.
  • the storage capacitor 41 is allowed to discharge to supply at least the sensor module.
  • the actual storage power supply 4 may also include other electrical energy storage components, for example, the electrical energy storage component is a lithium battery.
  • the button circuit 2 includes at least one button sub-circuit.
  • a button sub-circuit is taken as an example for description.
  • the button sub-circuit includes a second button switch 21-1 and a second voltage pull-down unit 22, the first end of the second button switch 21-1 is connected to the reserve power source 4, and the second button switch 21-1 is second.
  • the terminal is connected to the control terminal of the second voltage pull-down unit 22; the pull-down terminal of the second voltage pull-down unit 22 is connected to the microphone line 6.
  • the second voltage pull-down unit 22 when the second button switch receives the trigger signal, the second voltage pull-down unit 22 is turned on to pull the voltage on the microphone line 6 low (ie, the voltage of the microphone line 6 is changed from the high level to the high level. Low level).
  • the second voltage pull-down unit 22 includes a first pull-down resistor 221-1 and a fifth switch tube 222.
  • the gate or base of the fifth switch 222 forms a control end of the second voltage pull-down unit 22,
  • the drain of the fifth switch 222 is connected to the first end of the pull-down resistor 221, and the source of the fifth switch 222 is grounded.
  • the second end of the first pull-down resistor 221-1 forms a pull-down end of the second voltage pull-down unit 22 connected to the mic line 6.
  • the fifth switch tube 222 is turned on to pull the voltage on the microphone line 6 low.
  • the fifth switch tube 222 can be an NMOS tube.
  • the fifth switch tube 222 can also be a triode in this embodiment.
  • the button circuit 2 further includes a capacitor 232 for controlling the duration of the trigger signal, a first voltage dividing resistor 231, and a second voltage dividing resistor 233.
  • the first end of the capacitor 232 is connected to the second end of the second button switch 21-1; the second end of the capacitor 232 is grounded through the second voltage dividing resistor 233; the first voltage dividing resistor 231 is connected in parallel with the capacitor 232; The second end of the capacitor 232 is also coupled to the control terminal of the second voltage pull-down unit 22.
  • the button circuit can generate a negative pulse of a certain time width.
  • the time width of the negative pulse can be recognized by the external power source, and the minimum voltage value of the generated negative pulse can be different according to different trigger members.
  • the button circuit can control the duration of pulling down the voltage on the microphone line 6 (the maximum value of the pull-down duration of the preset voltage can be the pull-down limit duration), and when the second button switch 21-1 receives the trigger signal for a longer period than the pull-down limit duration, Then, the voltage pull-down time of the second voltage pull-down unit 22 to the microphone line 6 is equal to the pull-down limit duration; when the second button switch 21-1 is pressed for less than the pull-down limit duration, the second voltage pull-down unit 22 is opposite to the pull-down limit
  • the voltage pull-down duration is equal to the duration of the second button switch 21-1 receiving the trigger signal; thus, the external power source not only has sufficient time to recognize the low level on the microphone line 6, but also ensures that the reserve power source 4 is at least the normal power supply of the sensor module 5. (In practice, the reserve power supply 4 is small and the stored power is limited).
  • the first pull-down resistor 221-1 in the different button sub-circuits may be set to different resistance values, so that different button sub-circuits are not implemented.
  • the same function For example, the number of the button sub-circuits is three, and the functions of volume addition, volume reduction, and answering keys can be separately set; however, this is merely an exemplary description, and the actual is not limited thereto.
  • the sensor module 5 includes at least one biodetector 51.
  • Biological power supply terminal 51 is connected to a detector energy storage module anode 4, an output terminal of the biosensor 51 is connected to the second end 11 S 1 of the first switch.
  • the biodetector 51 may be, for example, a heart rate detector, a pedometer, a blood oxygen detector, or the like, which is not limited in this embodiment.
  • the biodetector 51 when the power control module 1 controls the power supply circuit to select the first power supply mode, the biodetector 51 can transmit the biometric data to the external power source through the MIC line 6.
  • the biodetector 51 can be a heart rate detector, a pedometer, and a blood oxygen detector.
  • the specific type of the biodetector 51 is not limited in this embodiment.
  • the power terminal of the mic module 3 is connected to the second end S 2 of the second switch 12, and the output end of the mic module 3 is connected to the mic line 6.
  • the power terminal of the mic module 3 is grounded through the filter capacitor 73.
  • the filter capacitor 73 provides filtering for the power supply terminal of the microphone module 3 to ensure that the microphone module 3 has a stable power supply.
  • the output of the mic module 3 is coupled to the mic line 6 via a coupling capacitor 74 to couple the electrical signal converted by the acoustic signal to the mic line 6 via the coupling capacitor 74.
  • the microphone line 6 outputs a high level, and the voltages of the control ends of the first switch 11 and the second switch 12 rise.
  • the power control module 1 enters a first power supply mode, that is, the external power source supplies power to at least the sensor module of the earphone through the microphone line 6.
  • the current outputted by the mic line 6 flows through the first switch 11 and is divided into two; the first current flows through the first resistor 71 to charge the reserve power source 4, when the voltage in the reserve power source 4 reaches a preset threshold
  • the sensor module 5 and the power control module 1 operate normally.
  • the second current flows through the second switch 12 and the second resistor 72 to power the microphone module 3.
  • the fifth switch tube 222 in the button circuit is not turned on, and has no effect on the microphone line 6.
  • the reserve power source 4 outputs a high level to the control end of the second voltage pull-down unit 22, and the second voltage pull-down unit
  • the voltage of the control terminal of 22 is instantaneously raised to a high level, the second voltage pull-down unit 22 is turned on (the fifth switch transistor 222 is turned on), and the voltage on the microphone line 6 is pulled low, and the first switch 11 and the second switch 12 are turned off.
  • the control terminal is lowered to a low level, the first switch 11 and the second switch 12 are in an off state, and the power control module 1 controls the power supply circuit to switch from the first power supply mode to the second power supply mode, and the reserve power source 4 supplies at least the sensor module. To maintain normal work.
  • the microphone line 6 is used to transmit the trigger signal; therefore, the microphone module 3 temporarily does not work, and the power of the microphone module 3 can be cut off by the second switch 12. To reduce system power consumption.
  • the power control module 1 controls the power supply circuit to be switched from the second power supply mode to the first power supply mode, and the microphone line 6 is at least Power is supplied to the sensor module 5.
  • the charge stored on the capacitor 232 can be discharged through the first voltage dividing resistor 231 to When the next second key switch 21-1 is continuously pressed, there is sufficient capacity to store the electric charge.
  • the embodiment of the present application provides the electronic components included in each module in the power supply circuit and the specific implementation manner of each module, which ensures the feasibility of the present application.
  • a third embodiment of the present application relates to a power supply circuit for an earphone.
  • the third embodiment is substantially the same as the second embodiment, and the main difference is that in the second embodiment of the present application, the power supply control
  • the module 1 includes two switches (a first switch 11 and a second switch 12).
  • the power supply control module 1 includes a diode 13.
  • the anode end of the diode 13 is connected to the mic line 6, and the cathode end of the diode 13 is connected to at least the button circuit 2, the reserve power source 4, the sensor module 5, and the mic module 3.
  • the diode 13 when the voltage on the mic line 6 is at a high level, the diode 13 is in an on state, and the power supply control module 1 controls the power supply circuit to be in the first power supply mode.
  • the trigger signal adjusts the voltage on the mic line to a low level, the diode 13 is in an off state, and the power control module 1 controls the power supply circuit to switch to the second power supply mode.
  • this embodiment may also be a refinement of the power control module 1 based on the first embodiment.
  • Embodiments of the present application provide another specific circuit implementation of the power control module relative to the first embodiment.
  • a fourth embodiment of the present application relates to a power supply circuit for an earphone.
  • the fourth embodiment is substantially the same as the third embodiment.
  • the second voltage pull-down unit 22 includes a first pull-down resistor 221-1 and a fifth switch tube 222.
  • the second voltage pull-down unit 22 includes a second pull-down resistor 221-2, a comparator 223, a third voltage dividing resistor 234, and a fourth voltage dividing resistor 235.
  • the first end of the third voltage dividing resistor 234 is connected to the reserve power source 4, and the second end of the third voltage dividing resistor 234 is grounded through the fourth voltage dividing resistor 235.
  • the non-inverting input of the comparator 223 is connected to the second end of the third voltage dividing resistor 234, the inverting input of the comparator 223 forms the control end of the second voltage pull-down unit 22, and the output of the comparator 223 is connected to the second pull-down.
  • the first end of the resistor 221-2; the second end of the second pull-down resistor 221-2 forms a pull-down end of the comparator 223.
  • the third voltage dividing resistor 234 and the fourth voltage dividing resistor 235 function as a voltage division voltage on the reserve power source 4.
  • the inverting input terminal of the comparator 223 is connected to the second end of the second button switch 21-1 through the first voltage dividing resistor 231 and the capacitor 232 connected in parallel, and the comparator 223 is inverted.
  • the input terminal is grounded through a second voltage dividing resistor 233.
  • the button circuit can generate a negative pulse of a certain time width.
  • the time width of the negative pulse can be recognized by the external power source, and can generate negative pulses of different time widths according to different triggering members; that is, the button circuit can control the length of the voltage on the lower wire line 6 (the voltage can be preset to be pulled down)
  • the maximum value is the pull-down limit duration.
  • the voltage pull-down time of the second voltage pull-down unit 22 to the microphone line 6 is equal to the pull-down limit duration, when the second When the duration of the pressing of the button switch 21-1 is less than the duration of the pull-down limit, the voltage pull-down time of the second voltage pull-down unit 22 to the microphone line 6 is equal to the length of time the second button switch 21-1 is pressed, so that the external power source is not only sufficient.
  • the time identifies the low level on the mic line 6, and can also save the charge of the reserve power source 4 to ensure that the reserve power source 4 is at least the normal power supply of the sensor module 5, ( Inter in small power reserve 4, limited energy stored).
  • the voltage of the inverting input terminal of the comparator 223 rises to a high level, and the voltage of the non-inverting input terminal of the comparator 223 does not change, and maintains a high level.
  • the output of the comparator 223 outputs a low level to pull the voltage on the mic line 6 low.
  • this embodiment can also be substantially the same as the second embodiment.
  • the comparator in the second voltage pull-down unit replaces the fifth switch tube in the third embodiment, and provides another specific circuit implementation of the button circuit 2. .
  • a fifth embodiment of the present application relates to a power supply circuit.
  • the fifth embodiment is substantially the same as the second embodiment, and the main difference is that in the second embodiment of the present application, the power supply control module 1 includes two integrated switches (the first switch 11 and the second switch 12).
  • the power control module 1 includes four discrete switch tubes.
  • the power control module 1 includes a first switch tube 141, a second switch tube 151, a third switch tube 142, and a fourth switch tube 152.
  • the gate or the base of the first switch tube 141 is connected to the mic line 6, the source or the emitter of the first switch 141 is grounded, and the drain or collector of the first switch 141 is connected to the mic line 6. .
  • the gate or the base of the second switch 151 is connected to the drain or collector of the first switch 141, and the source or emitter of the second switch 151 is connected to the MOSFET 6 and the drain of the second switch 151. Or the collector is connected to the button circuit 2, the reserve power source 4, and the sensor module 5.
  • the drain of the first switch 141 is connected to the mic line 6 through the third resistor 75, the gate of the first switch 141 is also grounded through the fourth resistor 77, and the second switch 151 is The source stage is connected to the mic line 6 through a third resistor 75.
  • the gate or base of the third switch 142 is connected to the mic line 6, the source or emitter of the third switch 142 is grounded, and the drain or collector of the third switch 142 is connected to the first switch.
  • the gate or the base of the fourth switch 152 is connected to the drain or collector of the third switch 142, and the source or emitter of the fourth switch 152 is connected to the drain or collector of the second switch 151.
  • the drain or collector of the fourth switch 152 is connected to the mic module 3.
  • the drain of the third switch 142 is connected to the drain of the second switch 151 through the fifth resistor 76, and the gate of the third switch 142 is grounded through the sixth resistor 78.
  • the power control module controls the power supply circuit to be in the first power supply mode.
  • the gate of the second switch tube 151 receives the trigger signal through the first switch tube 141, and the gate of the fourth switch tube 152 passes the third switch.
  • the tube 142 receives the trigger signal; the gate voltages of the first switch tube 141 and the third switch tube 142 are low, the first switch tube 141 is turned off; and the second switch tube 151 and the fourth switch tube 152 are
  • the source voltage is the same as the gate voltage, and the second switch 151 is turned off; that is, the first switch 141, the second switch 151, the third switch 142, and the fourth switch 152 are all turned off, and the power control module
  • the control power supply circuit is in the second power supply mode.
  • the first to fourth switch tubes may be discrete components, for example, the first switch tube 141 and the third switch tube 142 are NMOS tubes, and the second switch tube 151 and the fourth switch tube 152 are PMOS tubes; However, the first switch tube 141 and the third switch tube 142 are PNP tubes, and the second switch tube 151 and the fourth switch tube 152 are NPN tubes.
  • the present embodiment may be a refinement of the power supply control module 1 in addition to the first embodiment, or may be substantially the same as the third or fourth embodiment.
  • Embodiments of the present application provide an implementation of yet another specific circuit of the power control module relative to the second embodiment.
  • a sixth embodiment of the present application relates to a power supply circuit for an earphone.
  • the sixth embodiment is substantially the same as the second embodiment, and the main difference is that in the second embodiment of the present application, the power control module 1 includes two switches (the first switch 11 and the second switch 12); In the sixth embodiment, as shown in FIG. 6, the power supply control module 1 includes a third switch 161, a fourth switch 162, a logic control circuit 17, and a clock circuit 18.
  • the first end of the third switch 161 is connected to the mic line 6, and the second end of the third switch 161 is connected to the logic control circuit 17, the reserve power source 4, and the sensor module 5.
  • the control end of the third switch 161 is connected.
  • the second end of the third switch 161 is connected to the logic control circuit 17, the reserve power source 4, and the sensor module 5 through the seventh resistor 80.
  • the first end of the fourth switch 162 is connected to the second end of the third switch 161, the second end of the fourth switch 162 is connected to the microphone module 3 of the earphone, and the control end of the fourth switch 162 is connected to the logic.
  • the control circuit 17; the two ends of the clock circuit 18 are respectively connected to the reserve power source 4 and the logic control circuit 17; the logic control circuit 17 is also connected to the button circuit 2.
  • the logic control circuit 17 controls the third switch 161 and the fourth switch 162 to be in an on state, and the power control module 1 controls the power supply circuit to be in the first power supply mode;
  • the logic control circuit 17 controls the first end and the second end of the third switch 161 to be in an off state, and the power control module 1 controls the power supply circuit to be in the second power supply mode.
  • the conduction state of the third switch 161 is: the first end of the third switch 161 is electrically connected to the second end; and the conduction state of the fourth switch 162 is: the first end and the second end of the fourth switch 162
  • the open state of the third switch 161 is: the first end of the third switch 161 is disconnected from the second end; the open state of the fourth switch 162 is: the first end and the second end of the fourth switch 162 are off open.
  • the power supply terminals of the third switch 161 and the fourth switch 162 are respectively connected to the reserve power source 4; to obtain power from the reserve power source 4 when the power supply control module 1 controls the power supply circuit to be in the second power supply mode.
  • the button circuit 2 includes a plurality of first button switches and a plurality of first voltage pull-down units.
  • the plurality of first voltage pull-down units respectively correspond to the plurality of first button switches.
  • One end of the plurality of first button switches is connected to the logic control circuit 17, and the other ends of the plurality of first button switches are respectively grounded; the control ends of the plurality of first voltage pull-down units are connected to the logic control circuit 17, a plurality of first The pull-down terminals of the voltage pull-down unit are all connected to the microphone line 6.
  • the button circuit 2 includes three first button switches 21-2, 21-3, 21-4 and three first voltage pull-down units 224, 225, 226.
  • the first voltage pull-down unit 224 includes a pull-down resistor 2241 and a switch 2242.
  • the first voltage pull-down unit 225 includes a pull-down resistor 2251 and a switch 2252.
  • the first voltage pull-down unit 226 includes a switch 2261. The resistance of each pull-down resistor is different. It can characterize the different functions of each button switch.
  • the first button switch 21-2 is connected to the logic control circuit 17 through the eighth resistor 261, and the first button switch 21-3 is connected to the logic control circuit 17 through the ninth resistor 262, and the first button switch 21-4 passes
  • the tenth resistor 263 is connected to the logic control circuit And the eighth resistor 261, the ninth resistor 262, and the tenth resistor 263 are connected to the logic control circuit 17 through the total resistor 79.
  • the logic control circuit 17 controls the voltage pull-down unit corresponding to the first button switch to be turned on to pull the voltage on the microphone line 6 low, and the clock circuit 18 is used to control the voltage.
  • the power supply control module 1, the sensor module 5, and the plurality of voltage pull-down units in the key circuit 2 can be integrated into one chip.
  • the present embodiment is not limited thereto, and the present embodiment does not impose any limitation on this, for example,
  • the power control module 1, the sensor module 5, and the plurality of voltage pull-down units in the button circuit 2 are respectively applied to the earphones using independent components.
  • this embodiment may also be a refinement of the power control module 1 and the button circuit 2 based on the first embodiment, or may be substantially the same as the third, fourth or fifth embodiment. Program.
  • the present embodiment provides another implementation of a specific circuit of the power control circuit, and provides a button circuit including a plurality of button switches and a plurality of voltage pull-down units.
  • a seventh embodiment of the present application relates to an earphone including a trigger member, a sensor module, a microphone module, a microphone wire, and a power supply circuit of the earphone of the first embodiment.
  • the microphone line is connected to the button circuit and the power control module in the microphone module and the power supply circuit;
  • the triggering member is connected to the button circuit in the power supply circuit for providing a trigger signal for the button circuit; and the sensor module and the microphone module are respectively connected A power control module in the power supply circuit.
  • the sensor module includes at least a biometric detection sub-module
  • the biometric detection sub-module is, for example, a biodetector, a heart rate detector, a pedometer, a blood oxygen detector, etc., but the embodiment does not impose any limitation.
  • the earphone includes the earphone of the embodiment of the present application.
  • Power supply circuit That is, in the earphone provided by the embodiment of the present application, the microphone line is connected to the button circuit and the power control module in the microphone module and the power supply circuit; so that the earphone can be normally powered to the sensor module with additional functions, thereby solving the problem that the wired smart earphone is in use.
  • the problem that the sensor module cannot be powered when the button is operated; and the earphone of the embodiment is simple to operate, and the earphone needs to be manually switched as in the prior art to manually implement the basic function and the additional function of the earphone for the user's use.
  • the earphone in this embodiment enables the sensor module and the button circuit to coexist in the wired smart earphone, ensuring the normal use of the button function and the additional function of the earphone, thereby improving the user experience.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种耳机及耳机的供电电路,涉及电子产品技术领域,耳机的供电电路包括:根据耳机上的触发件的触发信号调整耳机中的麦克线(6)上的电压的按键电路(2),根据麦克线(6)上的电压控制供电电路切换选择第一供电模式或第二供电模式的电源控制模块(1);及储备电源(4),电源控制模块(1)同时连接于按键电路(2)及储备电源(4);第二供电模式为电源控制模块(1)允许储备电源(4)至少为传感器模块(5)供电,使得操作按键被按压时能够正常供电给传感器模块(5),解决了有线智能耳机在使用操作按键时无法为传感器模块(5)供电的问题,使得传感器模块(5)与操作按键能够共存,从而保证耳机的附加功能与按键功能能够正常使用,为用户的使用提供了方便。

Description

耳机及耳机的供电电路 技术领域
本申请实施例涉及电子产品技术领域,特别涉及一种耳机及耳机的供电电路。
背景技术
随着手机、平板电脑等电子设备普遍应用于人们的日常生活中,电子配件(例如耳机)也成为了人们的常用设备;其中,有线智能耳机的出现受到了人们的欢迎,当有线智能耳机与电子设备连接时,不仅能够为人们提供耳机的基本功能,还能够提供一些附加功能(例如心率检测功能、计步功能、血压检测功能等),为人们的生活提供了方便。
然而,发明人发现现有技术中存在如下问题:现有的有线智能耳机,在实现耳机的基本功能与附加功能时,需要外置机械开关进行切换,操作繁琐;且耳机上没有设置操作按键(例如音量加/减键),导致有线智能耳机没有按键功能,为用户的使用增加了不便,使得用户体验不佳。
另外,在现有的有线智能耳机上,若设置操作按键以保证有线智能耳机具有按键功能,则当操作按键按下时,会将麦克线上的电压拉至很低(一般在0~600毫伏),导致为耳机提供附加功能的传感器模块的电压过低(即操作按键按下时无法为传感器模块供电),从而使得传感器模块无法正常工作,影响了耳机的附加功能的使用;即,现有的有线智能耳机在普通耳机的基础上添加了具有附加功能的传感器模块之后,就不能使用操作按键,操作按键与传感器模块无法共存。
发明内容
本申请实施例实施方式的目的在于提供一种耳机及耳机的供电电路,使得操作按键被按压时能够正常供电给传感器模块,解决了有线智能耳机在使用操作按键时无法为传感器模块供电的问题,使得传感器模块与操作按键能够共存,从而保证耳机的附加功能与按键功能能够正常使用,为用户的使用提供了方便。
为解决上述技术问题,本申请的实施例提供了一种耳机的供电电路,包括:根据耳机上的触发件的触发信号调整耳机中的麦克线上的电压的按键电路,麦克线上的电压随触发信号的变化而变化;根据麦克线上的电压控制供电电路切换选择第一供电模式或第二供电模式的电源控制模块;以及储备电源,电源控制模块同时连接于按键电路及储备电源;第一供电模式为电源控制模块允许外部电源至少为耳机的传感器模块供电;第二供电模式为电源控制模块允许储备电源至少为传感器模块供电。
本申请的实施例相对于现有技术而言,耳机的供电电路包括按键电路、电源控制模块以及储备电源。即,本申请实施例提供的供电电路中,电源控制模块同时连接于按键电路及储备电源;按键电路能够根据耳机上的触发件的触发信号调整麦克线上的电压,电源控制模块根据麦克线上的电压控制供电电路由外部电源为耳机的传感器模块供电切换为储备电源为传感器模块供电。即,本实施例使得触发件被按压时,耳机能够正常供电给传感器模块,从而解决了有线智能耳机在使用操作按键时无法为传感器模块供电的问题;使得传感器模块与操作按键(即本申请中的按键电路)在有线智能耳机中能够共存,保证了的耳机的按键功能和附加功能的正常使用,从而提高了用户体验。
另外,电源控制模块包括第一开关与第二开关;第一开关的第一端连接于麦克线,第一开关的第二端连接于按键电路、储备电源以及传感器模块, 第一开关的控制端连接于麦克线;第二开关的第一端连接于第一开关的第二端,第二开关的第二端连接于麦克模块,第二开关的控制端连接于麦克线;当麦克线上的电压为高电平时,第一开关与第二开关均处于导通状态,电源控制模块控制供电电路处于第一供电模式;当触发信号将麦克线上的电压调整为低电平时,第一开关与第二开关均进入断开状态,电源控制模块控制供电电路进入第二供电模式。本实施例中,提供了电源控制模块的一种具体电路的实现方式。
另外,电源控制模块为二极管;二极管的阳极连接于麦克线,二极管的阴极至少连接至按键电路、储备电源以及传感器模块;当麦克线上的电压为高电平时,二极管处于导通状态,电源控制模块控制供电电路处于第一供电模式;当触发信号将麦克线上的电压调整为低电平时,二极管进入截止状态,电源控制模块控制供电电路进入第二供电模式。本实施例中,提供了电源控制模块的另一种具体电路的实现方式。
另外,电源控制模块包括第一开关管、第二开关管、第三开关管和第四开关管;第一开关管的栅极或基极连接于麦克线,其源极或发射极接地,其漏极或集电极连接于麦克线;第二开关管的栅极或基极连接于第一开关管的漏极或集电极,其源极或发射极连接于麦克线,其漏极或集电极连接到按键电路、储备电源及传感器模块;第三开关管的栅极或基极连接于麦克线,其源极或发射极接地,其漏极或集电极连接于第一开关管的漏极;第四开关管的栅极或基极连接于第三开关管的漏极或集电极,其源极或发射极连接于第二开关管的漏极或集电极,其漏极或集电极连接于耳机的麦克模块。本实施例中,提供了电源控制模块的又一种具体电路实现方式。
另外,电源控制模块包括第三开关、第四开关、逻辑控制电路以及时钟电路;麦克第三开关的第一端连接于麦克麦克线,麦克第三开关的第二端连接于麦克逻辑控制电路、麦克储备电源以及麦克传感器模块,麦克第三开关 的控制端连接于麦克逻辑控制电路;麦克第四开关的第一端连接于麦克第一开关的第二端,麦克第四开关的第二端连接于麦克耳机的麦克模块,麦克第四开关的控制端连接于麦克逻辑控制电路;麦克时钟电路的两端分别连接于麦克储备电源与麦克逻辑控制电路;麦克逻辑控制电路还连接于按键电路。本实施例中,提供了电源控制模块的又一种具体电路实现方式。
另外,按键电路还包括用于控制触发信号的持续时长的电容、第一分压电阻以及第二分压电阻;麦克电容的第一端连接于麦克第二按键开关的第二端;麦克电容的第二端通过麦克第二分压电阻接地;麦克第一分压电阻与麦克电容并联连接;麦克电容的第二端还连接于第二电压下拉单元的控制端。本实施例中,由于电容、第一分压电阻以及第二分压电阻的存在,当第二按键开关接收到触发信号时,按键电路能够产生一定时间宽度的负脉冲,该负脉冲的时间宽度能够被终端识别,并且能够根据不同的触发键,产生不同时间宽度的负脉冲;即,按键电路可以控制拉低麦克线上电压的时间,使得终端不仅有充足的时间识别麦克线上的低电平,还能保证储备电源至少为传感器模块的正常供电。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据第一实施方式的耳机的供电电路的示意图;
图2是根据第二实施方式的耳机的供电电路的示意图;
图3是根据第三实施方式的耳机的供电电路的示意图;
图4是根据第四实施方式的耳机的供电电路的示意图;
图5是根据第五实施方式的耳机的供电电路的示意图;
图6是根据第六实施方式的耳机的供电电路的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的第一实施方式涉及一种耳机的供电电路,应用于包括麦克模块、传感器模块以及麦克线的有线智能耳机。如图1所示,耳机的供电电路包括:电源控制模块1、按键电路2以及储备电源4。
本实施方式中,电源控制模块1同时连接于按键电路2、麦克模块3储备电源4、传感器模块5及麦克线6。按键电路2用于根据耳机上的触发件的触发信号调整耳机中的麦克线6上的电压,且麦克线6上的电压随触发信号的变化而变化;电源控制模块1用于根据麦克线6上的电压控制供电电路切换选择第一供电模式或第二供电模式;其中,按键电路2接收到触发件的触发信号并调整麦克线6上的电压时,电源控制模块1控制供电电路由第一供电模式切换选择为第二供电模式。
本实施方式中,第一供电模式为:电源控制模块1允许外部电源至少为耳机的传感器模块5供电;第二供电模式为:电源控制模块1允许储备电源4至少为传感器模块5供电。
实际上,本实施例中,麦克线6的一端同时连接于电源控制模块1、按 键电路2以及麦克模块3(实际中电源控制模块1、按键电路2以及麦克模块3做在电路板上),麦克线6的另一端连接至耳机的插头。麦克线6用于在第一供电模式中通过耳机插头端连接的外部电源至少为耳机的传感器模块5供电,麦克线6还用于传输麦克模块3产生的音频信号,麦克线6还用于传输传感器模块5产生的数据信号(数据信号通过电源控制模块1调制到麦克线6)以及按键电路2产生的用于调整麦克线上的电压的信号。
本实施方式中,电源控制模块1可以根据麦克线上的电压控制所述供电电路切换供电模式,也可以从按键电路2检测是否存在触发信号而控制所述供电电路切换供电模式;本实施例对此不作任何限制。
实际中,耳机的声道线7的一端连接于传感器模块5,声道线7的另一端用于连接至外部电源。声道线7用于将外部电源的产生的指令信号传输至传感器模块5。
本实施例中,触发信号为脉冲信号、交流信号或者直流信号中的一种,然本实施例对触发信号的类型不作任何限制。
本申请的实施例相对于现有技术而言,耳机的供电电路包括按键电路、电源控制模块以及储备电源。即,本申请实施例提供的供电电路中,电源控制模块同时连接于按键电路及储备电源;按键电路能够根据耳机上的触发件的触发信号调整麦克线上的电压,电源控制模块根据麦克线上的电压控制供电电路由外部电源为耳机的传感器模块供电切换为储备电源为传感器模块供电。即,本实施例使得触发件被按压时,耳机能够正常供电给具有附加功能的传感器模块,从而解决了有线智能耳机在使用操作按键时无法为传感器模块供电的问题;并且本实施例操作简单,无需如现有技术中需要手动切换外置机械开关以分别实现耳机的基本功能与附加功能,为用户的使用提供了方便;同时,本实施例使得传感器模块与操作按键(即本申请中的按键电路)在有线智能耳机中能够共存,保证了的耳机的按键功能和附加功能的正常使 用,从而提高了用户体验。
值得一提的是,本实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请的第二实施方式涉及一种耳机的供电电路。第二实施方式在第一实施方式的基础上进行细化,主要细化之处在于:在本申请第二实施方式中,如图2所示,提供了供电电路中各个模块的具体电路的实现方式。
本实施方式中,电源控制模块1包括第一开关11与第二开关12;其中,第一开关11和第二开关12可以为电子开关,然实际中不限于此。
具体而言,第一开关11的第一端D1连接于麦克线6,第一开关11的第二端S1连接于按键电路2、储备电源4以及传感器模块5,第一开关11的控制端IN1连接于麦克线6。较佳的,第一开关11的第二端S1通过第一电阻71连接于储备电源4。
具体而言,第二开关12的第一端D2连接于第一开关11的第二端S1,第二开关12的第二端S2连接于麦克模块3,第二开关12的控制端IN2连接于麦克线6。较佳的,第二端S2通过第二电阻72连接于麦克模块3。
较佳的,本实施中,第一供电模式中,电源控制模块1还允许外部电源为储备电源4充电。实际上,第一开关11的供电端V1、第二开关12的供电端V2分别连接于储备电源4;以在电源控制模块1处于第二供电模式时,能够通过储备电源4至少为传感器模块5供电。
本实施例中,当麦克线6上的电压为高电平时,第一开关11与第二开关12均处于导通状态(即第一开关11与第二开关12的初始状态),电源控制模块1控制供电电路处于第一供电模式。当触发信号将麦克线6上的电压 调整为低电平时,第一开关11与第二开关12均进入断开状态,电源控制模块1控制供电电路处于第二供电模式。
其中,第一开关11的导通状态是指:第一开关11的第一端D1与第二端S1导通;第二开关12的导通状态是指:第一开关11的第一端D2与第二端S2导通。第一开关11的断开状态是指:第一开关11的第一端D1与第二端S1断开;第二开关12的断开状态是指:第一开关11的第一端D2与第二端S2断开。
本实施例中,第一开关11与第二开关12为集成开关,例如第一开关11与第二开关12均可以为模拟开关,然实际中不限于此,本实施例对此不作任何限制。
本实施方式中,储备电源4包括至少一储能电容41。储能电容41的阳极同时连接于按键电路2、第一开关11、第二开关12以及传感器模块5;阴极接地。当电源控制模块1切换为第二供电模式时,允许储能电容41放电以至少为传感器模块供电。然实际中不限于此,储备电源4还可以包括其他电能储存元件,例如电能储存元件为锂电池。
本实施方式中,按键电路2包括至少一按键子电路。图2中以一个按键子电路为例进行说明。具体而言,按键子电路包括第二按键开关21-1与第二电压下拉单元22,第二按键开关21-1的第一端连接于储备电源4,第二按键开关21-1的第二端连接于第二电压下拉单元22的控制端;第二电压下拉单元22的下拉端连接于麦克线6。
本实施例中,当第二按键开关接收到触发信号时,第二电压下拉单元22导通,以将麦克线6上的电压拉低(即,将麦克线6的电压由高电平转为低电平)。
本实施方式中,第二电压下拉单元22包括第一下拉电阻221-1与第五开关管222。第五开关管222的栅极或基极形成第二电压下拉单元22的控制端, 第五开关管222的漏极连接于下拉电阻221的第一端,第五开关管222的源极接地。第一下拉电阻221-1的第二端形成第二电压下拉单元22的下拉端连接于麦克线6。本实施例中,当第二按键开关21-1接收到触发信号时,第五开关管222导通,以将麦克线6上的电压拉低。
本实施例中,第五开关管222可以为NMOS管;然不限于此,本实施例对第五开关管222还可以为三极管。
较佳的,本实施例中,按键电路2还包括用于控制触发信号的持续时长的电容232、第一分压电阻231以及第二分压电阻233。具体的,电容232的第一端连接于第二按键开关21-1的第二端;电容232的第二端通过第二分压电阻233接地;第一分压电阻231与电容232并联连接;电容232的第二端还连接于第二电压下拉单元22的控制端。
本实施例中,由于电容232、第一分压电阻231以及第二分压电阻233的设置,当第二按键开关21-1接收到触发信号时,按键电路能够产生一定时间宽度的负脉冲,该负脉冲的时间宽度能够被外部电源识别,并且能够根据不同的触发件,产生的负脉冲的最低电压值不同。即,按键电路可以控制拉低麦克线6上电压的时长(可以预设电压下拉时长的最大值为下拉极限时长),当第二按键开关21-1接收触发信号的时长大于下拉极限时长时,则第二电压下拉单元22对麦克线6的电压下拉时长等于下拉极限时长;当第二按键开关21-1被按压的时长小于下拉极限时长时,则第二电压下拉单元22对麦克线6的电压下拉时长等于第二按键开关21-1接收触发信号的时长;从而使得外部电源不仅有充足的时长识别麦克线6上的低电平,还能保证储备电源4至少为传感器模块5的正常供电(实际中储备电源4较小,储存的电能有限)。
本实施例中,当按键子电路的数目可以为多个时,不同按键子电路中的第一下拉电阻221-1可以设置为不同的阻值,以使得不同按键子电路实现不 同的功能。例如,按键子电路的数目为三个,可以分别设置音量加、音量减以及接听键的功能;然这里只是示例性说明,实际中不限于此。
本实施方式中,传感器模块5包括至少一个生物检测器51。生物检测器51的电源端连接于电能储存模块4的阳极,生物检测器51的输出端连接于第一开关的11的第二端S1。生物检测器51例如可以是心率检测器、计步器、血氧检测器等,本实施例对此不作任何限制。
本实施例中,当电源控制模块1控制供电电路选择第一供电模式时,生物检测器51可以将生物检测数据通过MIC线6传输至外部电源。其中,生物检测器51可以为心率检测器、计步器以及血氧检测器,本实施例对生物检测器51的具体类型不作任何限制。
本实施方式中,麦克模块3的电源端连接于第二开关12的第二端S2,麦克模块3的输出端连接于麦克线6。较佳的,麦克模块3的电源端通过滤波电容73接地。滤波电容73为麦克模块3的电源端提供滤波,以保证麦克模块3具有稳定的电源。实际上的,麦克模块3的输出端通过耦合电容74连接于麦克线6,以将由声音信号转换的电信号通过耦合电容74耦合到麦克线6上。
本实施方式中,供电电路与外部电源连接后,当第二按键开关21-1未接收到触发信号时,麦克线6输出高电平,第一开关11与第二开关12的控制端的电压升为高电平,第一开关11与第二开关12为导通状态,电源控制模块1进入第一供电模式,即外部电源通过麦克线6至少为耳机的传感器模块供电。实际上,麦克线6输出的电流流经第一开关11后,分为两股;第一股电流流经第一电阻71为储备电源4充电,当储备电源4中的电压达到预设阈值时,传感器模块5与电源控制模块1正常工作。第二股电流流经第二开关12与第二电阻72为麦克模块3供电。按键电路中的第五开关管222不导通,对麦克线6无影响。
本实施方式中,供电电路与外部电源连接后,当第二按键开关21-1接收到触发信号时,储备电源4输出高电平至第二电压下拉单元22的控制端,第二电压下拉单元22的控制端的电压瞬间升高为高电平,第二电压下拉单元22导通(第五开关管222导通),将麦克线6上的电压拉低,第一开关11与第二开关12的控制端降为低电平,第一开关11与第二开关12为断开状态,电源控制模块1控制供电电路由第一供电模式切换为第二供电模式,储备电源4至少为传感器模块供电以维持正常工作。
本实施例中,当第二按键开关21-1接收到触发信号时,麦克线6用于传输触发信号;因此,麦克模块3暂时不工作,可以通过第二开关12切断麦克模块3的电源,以减少系统功耗。
本实施方式中,供电电路与外部电源连接后,当第二按键开关21-1持续接收到触发信号时;储备电源4输出的电流流入电容232,第二电压下拉单元22的控制端的电压会逐渐降低(即第五开关管222的栅极电压降低),直至低于导通电压,第二电压下拉单元22断开;麦克线6的电压逐渐升高为高电平,第一开关11以及第二开关12的控制端的电压也升为高电平,第一开关11与第二开关12为闭合状态,电源控制模块1控制供电电路由第二供电模式切换为第一供电模式,麦克线6至少为传感器模块5供电。
本实施方式中,供电电路与外部电源连接后,当第二按键开关21-1由接收触发信号恢复原始状态后,可以通过第一分压电阻231将电容232上储存的电荷泄放掉,以使下次第二按键开关21-1被持续按下时,有足够容量可以储存电荷。
本申请的实施例相对于第一实施方式而言,提供了供电电路中各个模块包括的电子元件以及各模块的具体实现方式,保证了本申请的可行性。
本申请的第三实施方式涉及一种耳机的供电电路。第三实施方式与第二实施方式大致相同,主要不同之处在于:在本申请第二实施方式中,电源控 制模块1包括两个开关(第一开关11与第二开关12)。而在本申请第三实施方式中,如图3所示,电源控制模块1包括一个二极管13。
本实施方式中,在电源控制模块1中,二极管13的阳极端连接于麦克线6,二极管13的阴极端至少连接至按键电路2、储备电源4、传感器模块5及麦克模块3。
本实施方式中,当麦克线6上的电压为高电平时,二极管13处于导通状态,电源控制模块1控制供电电路为第一供电模式。当触发信号将麦克线上的电压调整为低电平时,二极管13处于截止状态,电源控制模块1控制供电电路切换选择为第二供电模式。
于实际上,本实施例也可以为在第一实施方式的基础上对电源控制模块1的细化的方案。
本申请的实施例相对于第一实施方式而言,提供了电源控制模块的另一种具体的电路实现方式。
本申请的第四实施方式涉及一种耳机的供电电路。第四实施方式与第三实施方式大致相同,主要不同之处在于:在本申请第三实施方式中,第二电压下拉单元22包括第一下拉电阻221-1与第五开关管222。而在本申请第四实施方式中,如图4所示,第二电压下拉单元22包括第二下拉电阻221-2、比较器223、第三分压电阻234及第四分压电阻235。
本实施方式中,第三分压电阻234的第一端连接于储备电源4,第三分压电阻234的第二端通过第四分压电阻235接地。比较器223的同相输入端连接于第三分压电阻234的第二端,比较器223的反相输入端形成第二电压下拉单元22的控制端,比较器223的输出端连接于第二下拉电阻221-2的第一端;第二下拉电阻221-2的第二端形成比较器223的下拉端。本实施例中,第三分压电阻234与第四分压电阻235起到对储备电源4上的电压分压的作用。
较佳的,本实施例中,比较器223的反相输入端通过并联的第一分压电阻231与电容232连接到第二按键开关21-1的第二端,且比较器223的反相输入端通过第二分压电阻233接地。本实施例中,由于电容232、第一分压电阻231以及第二分压电阻233的设置,当第二按键开关21-1接收到触发信号时,按键电路能够产生一定时间宽度的负脉冲,该负脉冲的时间宽度能够被外部电源识别,并且能够根据不同的触发件,产生不同时间宽度的负脉冲;即,按键电路可以控制拉低麦克线6上电压的时长(可以预设电压下拉时长的最大值为下拉极限时长),当第二按键开关21-1被按压的时长大于下拉极限时长时,则第二电压下拉单元22对麦克线6的电压下拉时长等于下拉极限时长,当第二按键开关21-1被按压的时长小于下拉极限时长时,则第二电压下拉单元22对麦克线6的电压下拉时长等于第二按键开关21-1被按压的时长,使得外部电源不仅有充足的时间识别麦克线6上的低电平,还能节省储备电源4的电荷,以保证储备电源4至少为传感器模块5的正常供电,(实际中储备电源4较小,储存的电能有限)。
本实施例中,当第二按键开关21-1接收到触发信号时,比较器223的反相输入端的电压升为高电平,比较器223的同相输入端的电压不变,保持高电平,比较器223的输出端输出低电平,以将麦克线6上的电压拉低。
于实际上,本实施例也可以为与第二实施方式大致相同的方案。
本申请的实施例相对于第三实施方式而言,第二电压下拉单元中的比较器代替了第三实施方式中的第五开关管,提供了按键电路2的另外一种具体电路的实现方式。
本申请的第五实施方式涉及一种供电电路。第五实施方式与第二实施方式大致相同,主要不同之处在于:在本申请第二实施方式中,电源控制模块1包括两个集成开关(第一开关11与第二开关12)。而在本申请第三实施方式中,如图5所示,电源控制模块1包括四个分立的开关管。
本实施方式中,电源控制模块1包括第一开关管141、第二开关管151、第三开关管142和第四开关管152。
具体而言,第一开关管141的栅极或基极连接于麦克线6,第一开关管141的源极或发射极接地,第一开关管141的漏极或集电极连接于麦克线6。第二开关管151的栅极或基极连接于第一开关管141的漏极或集电极,第二开关管151的源极或发射极连接于麦克线6,第二开关管151的漏极或集电极连接到按键电路2、储备电源4及传感器模块5。较佳的,本实施例中,第一开关管141的漏极通过第三电阻75连接于麦克线6,第一开关管141的栅极还通过第四电阻77接地,第二开关管151的源级通过第三电阻75连接于麦克线6。
具体而言,第三开关管142的栅极或基极连接于麦克线6,第三开关管142的源极或发射极接地,第三开关管142的漏极或集电极连接于第一开关管的漏极。第四开关管152的栅极或基极连接于第三开关管142的漏极或集电极,第四开关管152的源极或发射极连接于第二开关管151的漏级或集电极,第四开关管152的漏极或集电极连接于麦克模块3。较佳的,本实施例中,第三开关管142的漏极通过第五电阻76连接于第二开关管151的漏极,第三开关管142的栅极通过第六电阻78接地。
本实施方式中,麦克线6上的电压为高电平时;第一开关管141与第三开关管142的栅极电压为高,第二开关管151与第四开关管152的栅极电压为零,低于源级电压,第一开关管、第一开关管、第二开关管及第二开关管均处于导通状态,电源控制模块控制供电电路处于第一供电模式。
本实施方式中,触发信号将麦克线上的电压调整为低电平时,第二开关管151的栅极通过第一开关管141接收到触发信号,第四开关管152的栅极通过第三开关管142接收到触发信号;第一开关管141与第三开关管142的栅极电压为低,第一开关管141截止;第二开关管151与第四开关管152的 源级电压与栅极电压相同,第二开关管151截止;即,第一开关管141、第二开关管151、第三开关管142及第四开关管152均进入断开状态,电源控制模块控制供电电路处于第二供电模式。
本实施例中,第一开关管至第四开关管可以为分立元件,例如第一开关管141与第三开关管142为NMOS管、第二开关管151与第四开关管152为PMOS管;然实际中不限于此,例如第一开关管141与第三开关管142为PNP管,第二开关管151与第四开关管152为NPN管。
于实际上,本实施例也可以为在第一实施方式的基础上对电源控制模块1细化的方案,也可以为与第三或第四实施方式大致相同的方案。
本申请的实施例相对于第二实施方式而言,提供了电源控制模块的又一种具体电路的实现方式。
本申请的第六实施方式涉及一种耳机的供电电路。第六实施方式与第二实施方式大致相同,主要不同之处在于:在本申请第二实施方式中,电源控制模块1包括两个开关(第一开关11与第二开关12);在本申请第六实施方式中,如图6所示,电源控制模块1包括第三开关161、第四开关162、逻辑控制电路17以及时钟电路18。
本实施方式中,第三开关161的第一端连接于麦克线6,第三开关161的第二端连接于逻辑控制电路17、储备电源4以及传感器模块5,第三开关161的控制端连接于逻辑控制电路17。较佳的,本实施例中,第三开关161的第二端通过第七电阻80连接于逻辑控制电路17、储备电源4以及传感器模块5。
本实施方式中,第四开关162的第一端连接于第三开关161的第二端,第四开关162的第二端连接于耳机的麦克模块3,第四开关162的控制端连接于逻辑控制电路17;时钟电路18的两端分别连接于储备电源4与逻辑控制电路17;逻辑控制电路17还连接于按键电路2。
本实施方式中,麦克线上的电压为高电平时时,逻辑控制电路17控制第三开关161与第四开关162处于导通状态,电源控制模块1控制供电电路处于第一供电模式;当触发信号将麦克线上的电压调整为低电平时,逻辑控制电路17控制第三开关161的第一端与第二端处于断开状态,电源控制模块1控制供电电路处于第二供电模式。
其中,第三开关161的导通状态为:第三开关161的第一端与第二端导通;第四开关162的导通状态为:第四开关162的第一端与第二端导通;第三开关161的断开状态为:第三开关161的第一端与第二端断开;第四开关162的断开状态为:第四开关162的第一端与第二端断开。
实际上,第三开关161与第四开关162的供电端分别连接于储备电源4;以在电源控制模块1控制供电电路处于第二供电模式时,从储备电源4获取电源。
本实施方式中,按键电路2包括若干个第一按键开关与若干个第一电压下拉单元。具体而言,按键电路2中,若干个第一电压下拉单元分别对应于若干个第一按键开关。若干个第一按键开关的一端均连接于逻辑控制电路17,若干个第一按键开关的另一端分别接地;若干个第一电压下拉单元的控制端均连接于逻辑控制电路17,若干个第一电压下拉单元的下拉端均连接于麦克线6。
如图6所示,按键电路2包括三个第一按键开关21-2、21-3、21-4和三个第一电压下拉单元224、225、226。其中,第一电压下拉单元224包括下拉电阻2241与开关2242,第一电压下拉单元225包括下拉电阻2251与开关2252,第一电压下拉单元226包括与开关2261;其中各下拉电阻的阻值不同,可以表征各按键开关不同的功能。较佳的,第一按键开关21-2通过第八电阻261连接于逻辑控制电路17,第一按键开关21-3通过第九电阻262连接于逻辑控制电路17,第一按键开关21-4通过第十电阻263连接于逻辑控制电路 17;且第八电阻261、第九电阻262以及第十电阻263通过总电阻79连接于逻辑控制电路17。
其中,当其中一个第一按键开关接收到触发信号时,逻辑控制电路17控制第一按键开关对应的电压下拉单元导通,以将麦克线6上的电压拉低,时钟电路18用于控制电压下拉单元对麦克线6的电压下拉时间。
本实施方式中,电源控制模块1、传感器模块5以及按键电路2中的多个电压下拉单元可以集成在一个芯片中;然实际中不限于此,本实施例对此不作任何限制,例如还可以将电源控制模块1、传感器模块5以及按键电路2中的多个电压下拉单元分别采用独立的元件应用在耳机中。
于实际上,本实施例也可以为在第一实施方式的基础上对电源控制模块1以及按键电路2的细化的方案,也可以为与第三、第四或第五实施方式大致相同的方案。
本实施方式相对于第二实施方式而言,提供了电源控制电路的又一种具体电路的实现方式,提供了一种包括多个按键开关与多个电压下拉单元的按键电路。
本申请的第七实施方式涉及一种耳机,包括触发件、传感器模块、麦克模块、麦克线以及第一实施方式的耳机的供电电路。
本实施方式中,麦克线连接于麦克模块、供电电路中的按键电路与电源控制模块;触发件连接于供电电路中的按键电路,用于为按键电路提供触发信号;传感器模块与麦克模块分别连接于供电电路中的电源控制模块。
本实施例中,传感器模块至少包括生物特征检测子模块,生物特征检测子模块例如为生物检测器、心率检测器、计步器、血氧检测器等,然本实施例对此不作任何限制。
本申请的实施例相对于现有技术而言,耳机包括本申请实施例的耳机的 供电电路。即,本申请实施例提供的耳机中,麦克线连接于麦克模块、供电电路中的按键电路与电源控制模块;使得耳机能够正常供电给具有附加功能的传感器模块,从而解决了有线智能耳机在使用操作按键时无法为传感器模块供电的问题;并且本实施例的耳机操作简单,无需如现有技术中的耳机需要手动切换外置机械开关以分别实现耳机的基本功能与附加功能,为用户的使用提供了方便;同时,本实施例中的耳机使得传感器模块与按键电路在有线智能耳机中能够共存,保证了的耳机的按键功能和附加功能的正常使用,从而提高了用户体验。
本领域技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (18)

  1. 一种耳机的供电电路,其特征在于,包括:
    根据耳机上的触发件的触发信号调整耳机中的麦克线上的电压的按键电路,所述麦克线上的电压随所述触发信号的变化而变化;
    根据所述麦克线上的电压控制所述供电电路切换选择第一供电模式或第二供电模式的电源控制模块;
    以及储备电源,所述电源控制模块同时连接于所述按键电路及所述储备电源;
    所述第一供电模式为所述电源控制模块允许外部电源至少为所述耳机的传感器模块供电;所述第二供电模式为所述电源控制模块允许所述储备电源至少为所述传感器模块供电。
  2. 根据权利要求1所述的耳机的供电电路,其特征在于,所述电源控制模块包括第一开关与第二开关;
    所述第一开关的第一端连接于所述麦克线,所述第一开关的第二端连接于所述按键电路、所述储备电源以及所述传感器模块,所述第一开关的控制端连接于所述麦克线;
    所述第二开关的第一端连接于所述第一开关的第二端,所述第二开关的第二端连接于所述麦克模块,所述第二开关的控制端连接于所述麦克线;
    当所述麦克线上的电压为高电平时,所述第一开关与所述第二开关均处于导通状态,所述电源控制模块控制所述供电电路处于所述第一供电模式;
    当所述触发信号将所述麦克线上的电压调整为低电平时,所述第一开关与所述第二开关均进入断开状态,所述电源控制模块控制所述供电电路进入所述第二供电模式。
  3. 根据权利要求1所述的耳机的供电电路,其特征在于,所述电源控制模块为二极管;
    所述二极管的阳极连接于所述麦克线,所述二极管的阴极至少连接至所述按键电路、所述储备电源以及所述传感器模块;
    当所述麦克线上的电压为高电平时,所述二极管处于导通状态,所述电源控制模块控制所述供电电路处于所述第一供电模式;
    当所述触发信号将所述麦克线上的电压调整为低电平时,所述二极管进入截止状态,所述电源控制模块控制所述供电电路进入所述第二供电模式。
  4. 根据权利要求1所述的耳机的供电电路,其特征在于,所述电源控制模块包括第一开关管、第二开关管、第三开关管和第四开关管;
    所述第一开关管的栅极或基极连接于所述麦克线,其源极或发射极接地,其漏极或集电极连接于所述麦克线;
    所述第二开关管的栅极或基极连接于所述第一开关管的漏极或集电极,其源极或发射极连接于所述麦克线,其漏极或集电极连接到所述按键电路、所述储备电源及所述传感器模块;
    所述第三开关管的栅极或基极连接于所述麦克线,其源极或发射极接地,其漏极或集电极连接于第一开关管的漏极;
    所述第四开关管的栅极或基极连接于所述第三开关管的漏极或集电极,其源极或发射极连接于所述第二开关管的漏极或集电极,其漏极或集电极连接于所述耳机的麦克模块。
  5. 根据权利要求4所述的耳机的供电电路,其特征在于,
    所述麦克线上的电压为高电平时,所述第一开关管、所述第二开关管、所述第三开关管及所述第四开关管均处于导通状态,所述电源控制模块控制所述供电电路处于所述第一供电模式;
    所述触发信号将所述麦克线上的电压调整为低电平时,所述第一开关管、所述第二开关管、所述第三开关管及所述第四开关管均进入断开状态,所述电源控制模块控制所述耳机的供电电路进入所述第二供电模式。
  6. 根据权利要求1所述的耳机的供电电路,其特征在于,所述电源控制模块包括第三开关、第四开关、逻辑控制电路以及时钟电路;
    所述第三开关的第一端连接于所述麦克线,所述第三开关的第二端连接于所述逻辑控制电路、所述储备电源以及所述传感器模块,所述第三开关的控制端连接于所述逻辑控制电路;
    所述第四开关的第一端连接于所述第一开关的第二端,所述第四开关的第二端连接于所述耳机的麦克模块,所述第四开关的控制端连接于所述逻辑控制电路;所述时钟电路的两端分别连接于所述储备电源与所述逻辑控制电路;所述逻辑控制电路还连接于所述按键电路。
  7. 根据权利要求6所述的耳机的供电电路,其特征在于,
    所述麦克线上的电压为高电平时,所述逻辑控制电路控制所述第三开关与所述第四开关均处于导通状态,所述电源控制模块控制所述供电电路处于所述第一供电模式;
    所述触发信号将所述麦克线上的电压调整为低电平时,所述逻辑控制电路控制所述第三开关进入断开状态,所述电源控制模块控制所述供电电路进入所述第二供电模式。
  8. 根据权利要求6所述的耳机的供电电路,其特征在于,所述按键电路包括若干个第一按键开关与若干个第一电压下拉单元;所述若干个第一电压下拉单元分别对应于所述若干个第一按键开关;
    所述若干个第一按键开关的一端均连接于所述逻辑控制电路,所述若干个第一按键开关的另一端均接地;
    所述若干个第一电压下拉单元的控制端均连接于所述逻辑控制电路,所述若干个第一电压下拉单元的下拉端均连接于所述麦克线;
    当其中一个第一按键开关接收到所述触发信号时,所述逻辑控制电路控制被按压的所述第一按键开关对应的第一电压下拉单元导通,以将所述麦克线上的电压拉低。
  9. 根据权利要求8所述的耳机的供电电路,其特征在于,所述电源控制模块与所述若干个第一电压下拉单元集成在一个芯片中。
  10. 根据权利要求1至4中任一项所述的耳机的供电电路,其特征在于,所述按键电路包括至少一按键子电路;
    所述按键子电路包括第二按键开关与第二电压下拉单元,所述第二按键开关的第一端连接于所述储备电源,所述第二按键开关的第二端连接于所述第二电压下拉单元的控制端,所述第二电压下拉单元的下拉端连接于所述麦克线;
    当所述第二按键开关接收到所述触发信号时,所述第二电压下拉单元导通,以将所述麦克线上的电压拉低。
  11. 根据权利要求10所述的耳机的供电电路,其特征在于,所述按键电路还包括用于控制所述触发信号的持续时长的电容、第一分压电阻以及第二分压电阻;
    所述电容的第一端连接于所述第二按键开关的第二端;所述电容的第二端通过所述第二分压电阻接地;所述第一分压电阻与所述电容并联连接;
    所述电容的第二端还连接于所述第二电压下拉单元的控制端。
  12. 根据权利要求10或11所述的耳机的供电电路,其特征在于,所述第二电压下拉单元包括第一下拉电阻与第五开关管;
    所述第五开关管的栅极或基极形成所述第二电压下拉单元的控制端,所 述第五开关管的漏极连接于所述第一下拉电阻的第一端,所述第五开关管的源极接地;
    所述第一下拉电阻的第二端形成所述第二电压下拉单元的下拉端。
  13. 根据权利要求10或11所述的耳机的供电电路,其特征在于,所述第二电压下拉单元包括第二下拉电阻、比较器、第三分压电阻及第四分压电阻;
    所述第三分压电阻的第一端连接于所述储备电源,所述第三分压电阻的第二端通过所述第四分压电阻接地;
    所述比较器的同向输入端连接于所述第三分压电阻的第二端;
    所述比较器的反向输入端形成所述第二电压下拉单元的控制端,所述比较器的输出端连接于所述第二下拉电阻的第一端;
    所述第二下拉电阻的第二端形成所述比较器的下拉端。
  14. 根据权利要求1至13中任一项所述的耳机的供电电路,其特征在于,所述储备电源包括至少一储能电容。
  15. 根据权利要求1至14中任一项所述的耳机的供电电路,所述第一供电模式中,所述电源控制模块还允许所述外部电源为所述储备电源充电。
  16. 根据权利要求1至15中任一项所述的耳机的供电电路,其特征在于,所述触发信号为脉冲信号、交流信号或者直流信号中的一种。
  17. 一种耳机,其特征在于,包括触发件、传感器模块、麦克模块、麦克线以及权利要求1至16中任一项所述的耳机的供电电路;
    所述麦克线连接于所述麦克模块、所述供电电路中的所述按键电路与所述电源控制模块;
    所述触发件连接于所述供电电路中的所述按键电路,用于为所述按键电 路提供触发信号;
    所述传感器模块与所述麦克模块分别连接于所述供电电路中的所述电源控制模块。
  18. 根据权利要求17所述的耳机,其特征在于,所述传感器模块至少包括生物特征检测子模块。
PCT/CN2017/079780 2017-04-07 2017-04-07 耳机及耳机的供电电路 WO2018184228A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780001471.6A CN107690813B (zh) 2017-04-07 2017-04-07 耳机及耳机的供电电路
PCT/CN2017/079780 WO2018184228A1 (zh) 2017-04-07 2017-04-07 耳机及耳机的供电电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079780 WO2018184228A1 (zh) 2017-04-07 2017-04-07 耳机及耳机的供电电路

Publications (1)

Publication Number Publication Date
WO2018184228A1 true WO2018184228A1 (zh) 2018-10-11

Family

ID=61154876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079780 WO2018184228A1 (zh) 2017-04-07 2017-04-07 耳机及耳机的供电电路

Country Status (2)

Country Link
CN (1) CN107690813B (zh)
WO (1) WO2018184228A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737920A (zh) * 2018-03-30 2018-11-02 广东思派康电子科技有限公司 一种基于3.5mm接口的耳机内部配件的供电电路
CN108521872B (zh) * 2018-04-12 2021-03-19 深圳市汇顶科技股份有限公司 耳机的控制装置和有线耳机
CN110770997A (zh) * 2018-08-16 2020-02-07 深圳市大疆创新科技有限公司 一种供电方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006528A (zh) * 2009-08-31 2011-04-06 幻音科技(深圳)有限公司 耳机装置
CN203761120U (zh) * 2013-12-20 2014-08-06 青岛歌尔声学科技有限公司 一种不间断供电电路及电子产品
CN105451115A (zh) * 2016-01-05 2016-03-30 深圳市汇顶科技股份有限公司 一种具有生物特征检测功能的耳机、交互系统及方法
CN105491473A (zh) * 2016-02-02 2016-04-13 深圳威武智能科技有限公司 一种持续供电的蓝牙耳机
US20170019025A1 (en) * 2015-07-17 2017-01-19 Bose Corporation Adaptive Fail-Save Power-On Control Circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165355B2 (en) * 2013-12-28 2018-12-25 Intel Corporation System and method for data transmission and power supply capability over an audio jack for mobile devices
CN103997552B (zh) * 2014-05-22 2017-04-19 广东欧珀移动通信有限公司 一种手机移动终端及其控制方法
US20160150311A1 (en) * 2014-11-21 2016-05-26 Peak Audio Llc Methods and systems for processing sound waves
CN105187631A (zh) * 2015-07-31 2015-12-23 是联(北京)科技有限公司 基于耳机接口的智能终端按键设备及其控制方法
CN205160628U (zh) * 2015-07-31 2016-04-13 是联(北京)科技有限公司 基于耳机接口的智能终端按键设备
CN105554617A (zh) * 2016-03-01 2016-05-04 敲敲科技(北京)有限公司 一种耳机系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006528A (zh) * 2009-08-31 2011-04-06 幻音科技(深圳)有限公司 耳机装置
CN203761120U (zh) * 2013-12-20 2014-08-06 青岛歌尔声学科技有限公司 一种不间断供电电路及电子产品
US20170019025A1 (en) * 2015-07-17 2017-01-19 Bose Corporation Adaptive Fail-Save Power-On Control Circuit
CN105451115A (zh) * 2016-01-05 2016-03-30 深圳市汇顶科技股份有限公司 一种具有生物特征检测功能的耳机、交互系统及方法
CN105491473A (zh) * 2016-02-02 2016-04-13 深圳威武智能科技有限公司 一种持续供电的蓝牙耳机

Also Published As

Publication number Publication date
CN107690813B (zh) 2019-08-23
CN107690813A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
EP1961261B1 (en) Control circuitry for providing an interface between connectable terminal and peripheral device circuitry
US8290171B1 (en) Headset with microphone and wired remote control
CN106060690B (zh) 设备可适配的音频头戴耳麦
US8396509B2 (en) Signal transmission path selection circuit and method, and electronic device employing the circuit
WO2018184228A1 (zh) 耳机及耳机的供电电路
CN103607676B (zh) 一种用于耳机的线控装置及耳机
CN108631401A (zh) 充电电路、方法、电子设备和存储介质
CN102945010B (zh) 音源自动切换实现方法及装置
KR101599203B1 (ko) 이어폰 및 이어폰 자동 식별 스위칭 제어를 구현하는 방법
CN101739374A (zh) 信号传输路径选择电路及应用该电路的电子装置
CN204810498U (zh) 多功能耳机及使用该耳机的电子装置
CN108513218B (zh) 音频通路控制方法及电子设备
CN210579146U (zh) 一种低功耗电路及tws蓝牙耳机
CN110518673B (zh) 无线耳机充电电路、无线耳机和无线耳机充电方法
US9338548B2 (en) Mobile device and corresponding noise-canceling earphone
CN203608336U (zh) 一种用于耳机的线控装置及耳机
CN107996027B (zh) 耳机的控制装置和有线耳机
CN201479354U (zh) 功放静音电路
CN203912163U (zh) 一种智能控制型无线蓝牙音响系统
CN204465472U (zh) 耳机输出音量调整装置
CN203434657U (zh) 有源手麦及配置有所述有源手麦的移动终端
CN205726260U (zh) 耳机
CN214481233U (zh) 音频电路组件和电子设备
CN113242483A (zh) 充电控制方法、电子设备、充电盒和电子系统
CN205142462U (zh) 一种带nfc延时电路的蓝牙耳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904391

Country of ref document: EP

Kind code of ref document: A1