WO2018182213A1 - 상향링크 전송 파워 제어 방법 및 이를 이용한 장치 - Google Patents

상향링크 전송 파워 제어 방법 및 이를 이용한 장치 Download PDF

Info

Publication number
WO2018182213A1
WO2018182213A1 PCT/KR2018/003080 KR2018003080W WO2018182213A1 WO 2018182213 A1 WO2018182213 A1 WO 2018182213A1 KR 2018003080 W KR2018003080 W KR 2018003080W WO 2018182213 A1 WO2018182213 A1 WO 2018182213A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference value
level
value
nprach
wireless device
Prior art date
Application number
PCT/KR2018/003080
Other languages
English (en)
French (fr)
Inventor
안준기
김재형
양석철
박창환
이윤정
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/494,892 priority Critical patent/US10939385B2/en
Publication of WO2018182213A1 publication Critical patent/WO2018182213A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for controlling uplink transmission power in a wireless communication system and an apparatus using the same.
  • the Internet of Things refers to a technology in which various things including humans transmit data over a network without requiring interaction with humans.
  • the 3rd Generation Partnership Project (3GPP) is introducing narrowband (IB) -IoT standardization to provide IoT connectivity.
  • 3GPP LTE supports a minimum bandwidth of 20 MHz.
  • NB-IoT is expected to support 180 kHz or higher bandwidth.
  • NB-IoT supports three operation modes: in-band, guard band and stand-alone.
  • In-band mode operates by allocating some of the resources in the Long-Term Evolution (LTE) band to the NB-IoT.
  • Guard band mode utilizes the guard band band of LTE.
  • Stand-alone mode operates by allocating some carriers in the Global System for Mobile Communications (GSM) band.
  • GSM Global System for Mobile Communications
  • Devices that support NB-IoT can be placed indoors to experience higher path loss than other mobile devices. In order to overcome the poor propagation environment, it is required to increase the transmission power of the NB-IoT device. However, higher transmission power can cause interference to other devices.
  • the present invention provides a method of controlling uplink transmission power in a wireless communication system and an apparatus using the same.
  • a method of controlling uplink transmission power in a wireless communication system includes receiving a CE configuration for coverage enhancement (CE) by a wireless device, the CE configuration including at least one CE reference value for determining a CE level and information about a maximum transmit power applied at each CE level.
  • CE coverage enhancement
  • the wireless device acquires a measurement value based on the received downlink signal, the wireless device determines a CE level according to the measured value and the at least one CE reference value, and the wireless device determines the CE level. Transmitting an uplink channel based on the maximum transmission power according to the transmission.
  • an apparatus for controlling uplink transmission power in a wireless communication system includes a transceiver for transmitting and receiving wireless signals and a processor coupled to the transceiver.
  • the processor receives a CE configuration for coverage enhancement (CE), wherein the CE configuration includes at least one CE reference value for determining a CE level and information about a maximum transmit power applied at each CE level.
  • CE coverage enhancement
  • 1 shows a structure of an uplink slot in NB-IoT.
  • FIG. 2 is a flowchart illustrating a method of controlling UL transmit power according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • Wireless devices may be fixed or mobile, and may include user equipment (UE), mobile station (MS), mobile terminal (MT), user terminal (UT), subscriber station (SS), and personal digital assistant (PDA). ), A wireless modem, a handheld device, or other terms.
  • the wireless device may be a device that supports only data communication, such as a machine-type communication (MTC) device.
  • MTC machine-type communication
  • a base station generally refers to a fixed station that communicates with a wireless device, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point. Can be.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the present invention is applied based on 3GPP long term evolution (LTE) based on 3rd Generation Partnership Project (3GPP) Technical Specification (TS).
  • LTE long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • Narrowband-Internet of Things refers to a system that supports smaller bandwidths within the bandwidth of 3GPP LTE.
  • 3GPP LTE has a subcarrier spacing of 15 kHz and supports a bandwidth of at least 20 MHz.
  • the NB-IoT may have a subcarrier spacing of 15 kHz or 3.75 kHz or less.
  • NB-IoT can support 3 kHz or more bandwidth. This is merely an example, and the proposed embodiment may be applied to a wireless communication network supporting various bandwidths.
  • DL downlink
  • UL uplink
  • the subframe includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols, and a time taken for transmitting one subframe is called a transmission time interval (TTI).
  • TTI may be 1 ms.
  • One subframe includes 14 OFDM symbols in a normal cyclic prefix and one subframe includes 12 OFDM symbols in an extended CP.
  • the DL physical channel includes a narrowband physical broadcast channel (NPBCH), a narrowband physical downlink shared channel (NPDSCH), and a narrowband physical downlink control channel (NPDCCH).
  • the DL physical signal includes a narrowband reference signal (NRS), a narrowband primary synchronization signal (NPSS), and a narrowband secondary synchronization signal (NSSS).
  • the UL physical channel includes a narrowband physical uplink shared channel (NPUSCH) and a narrowband physical random access channel (NPRACH).
  • 1 shows a structure of an uplink slot in NB-IoT.
  • UL transmission supports two subcarrier spacings of 15 kHz and 3.75 kHz.
  • the UL transmission is based on a slot including seven orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • one radio frame includes 20 slots, and at a subcarrier spacing of 3.75 kHz, one radio frame includes 5 slots.
  • one slot has a length of 0.5 ms at a subcarrier spacing of 15 kHz, and one slot has a length of 2 ms at a subcarrier spacing of 3.75 kHz.
  • one slot includes 48 subcarriers at 15 kHz subcarrier spacing and one slot includes 12 subcarriers at 3.75 kHz subcarrier spacing.
  • the resource unit is a basic unit for NPUSCH transmission.
  • the NPUSCH is mapped to one or more resource units and transmitted.
  • Resource units are defined as Nslot slots in the time domain and Nsc subcarriers in the frequency domain.
  • NPUSCH format Subcarrier spacing Nsc Nslot One 3.75 kHz One 16 15 kHz One 16 3 8 6 4 12 2 2 3.75 kHz One 4 15 kHz One 4
  • NPUSCH format 1 carries UL user data
  • PUSCH format 1 carries UL control information (eg, HARQ ACK / NACK).
  • NPRACH is transmitted based on a single-carrier frequency-hopping symbol group.
  • Resource configuration for the NPRACH includes the number of repetitive transmissions, the NPRACH resource period, the location of the first subcarrier for the NPRACH, and when to start NPRACH transmission.
  • FIG. 2 is a flowchart illustrating a method of controlling UL transmit power according to an embodiment of the present invention.
  • step S210 the wireless device determines the UL transmit power of the UL channel.
  • step S220 the wireless device transmits a UL channel based on the UL transmission power.
  • Pcmax is the maximum UL transmit power set in slot i for serving cell c
  • P (j) and ⁇ (j) are parameters.
  • PL is a DL path loss estimate calculated by the wireless device.
  • M is ⁇ 1/4 ⁇ at 3.75 kHz subcarrier spacing and ⁇ 1, 3, 6, 12 ⁇ at 15 kHz subcarrier spacing.
  • NPRTP is a parameter provided for NPRACH transmission from the serving cell.
  • the parameter Pcmax used to determine the UL transmission power refers to the maximum transmission power set for the wireless device, and is used by the base station to adjust the maximum UL transmission power of the wireless devices in the cell to reduce interference.
  • Pcmax is given by RRC signaling after the radio resource control (RRC) connection between the radio and the base station is established.
  • RRC radio resource control
  • the base station may transmit an allowance indicator indicating whether the transmission power of the UL channel (eg, NPUSCH, NPRACH) can be determined larger than Pcmax.
  • the UL channel eg, NPUSCH, NPRACH
  • the base station may inform the wireless device of the maximum transmit power for the NPUSCH / NPRACH (this is called the second maximum transmit power) separately from Pcmax (this is called the first maximum transmit power). That is, the second maximum transmit power for the NB-IoT UL channel using the small bandwidth may be set independently of the first maximum transmit power for the LTE UL channel using the large bandwidth.
  • the narrowband power information includes at least one of the allowable indicator and the second maximum transmit power.
  • the narrowband power information is information used to determine the transmit power for a UL channel transmitted in a bandwidth smaller than 20 MHz.
  • the narrowband power information may be conveyed through cell-specific signaling or shared through UE-specific signaling as common system information.
  • the narrowband power information may be included in a random access response during the random access procedure.
  • the narrowband power information may be provided for each coverage enhancement (CE) level or number of repetitions or CE level groups applied to UL transmission.
  • the narrowband power information may be used to determine the transmit power of a UL channel to which a CE level higher than a specific CE level is applied.
  • the narrowband power information cannot be applied until the radio establishes an RRC connection. Therefore, the narrowband power information is not applied to the NPRACH or NPUSCH transmitted before the RRC connection is established.
  • Pcmax and the narrowband power information are discarded, and the narrowband power information is not applied until the RRC connection is made with another cell.
  • the wireless device when the wireless device establishes an RRC connection with a specific cell and the narrowband power information is set, the wireless device maintains the previous narrowband power information until the RRC connection is established again even after the RRC connection with the specific cell is lost. Applicable to UL transmission.
  • the narrowband power information may be set along with mobility configuration in a network entity (eg, a mobility management entity (MME)) that manages mobility. Therefore, even when the cell is changed, the narrowband power information of the wireless device is maintained and the narrowband power information may be applied to the UL transmission even if the RRC connection is lost.
  • MME mobility management entity
  • NPRACH / NPUSCH resources eg, subframes, subcarriers, etc.
  • the wireless device may determine the transmission power of the NPRACH / NPUSCH based on the narrowband power information.
  • Narrowband power information may be delivered dynamically.
  • Narrowband power information may be provided over a physical control channel that schedules NPRACH transmissions.
  • the wireless device may determine the transmission power of the NPRACH based on the narrowband power information.
  • the allowable indicator may determine that the transmit power of the NPUSCH / NPRACH is larger than Pcmax, or the second maximum transmit power for the NPUSCH / NPRACH is set.
  • the wireless device may apply a transmission power exceeding Pcmax when the number of repetitions of the NPRACH / NPUSCH is greater than or equal to a specific value. Basically, the UL transmission power does not exceed Pcmax so as to reduce inter-cell interference, but to exceed Pcmax when the coverage of the wireless device is insufficient.
  • the specific value may be provided to the wireless device through signaling or may be a predetermined value. The specific value may be designated as the same value as the maximum number of repetitions allowed for the wireless device or the cell.
  • the specific value be 2. If the number of repetitions indicates two or more on the physical control channel scheduling the NPRACH transmission, the NPRACH may be transmitted exceeding Pcmax. Or, if the number of repetitions of the NPRACH is less than 2, the wireless device determines the transmission power of the NPRACH based on Pcmax. If the random access response is not received after transmitting the NPRACH, and the number of repetitions is greater than 2, a transmission power exceeding P-max may be allowed.
  • the wireless device may determine the transmission power of the NPRACH as follows. In one embodiment, if the reception of the random access response for the NPRACH transmitted based on Pcmax fails, the wireless device may transmit the next NPRACH based on the set second maximum transmit power.
  • the wireless device may transmit the next NPRACH based on min (the second maximum transmission power, Pcmax + f2). Where f2 is the second power ramping coefficient.
  • the wireless device may transmit the next NPRACH based on min (the second maximum transmit power, f2).
  • the second power ramping coefficient may be equal to or greater than the first power ramping coefficient.
  • the second power ramping coefficient may be predetermined or provided to the wireless device through signaling.
  • the wireless device may transmit the NPRACH in the second repetition number as follows. In one embodiment, the wireless device transmits the NPRACH based on the second maximum transmit power at a second number of iterations. In another embodiment, the wireless device may first transmit the NPRACH based on Pcmax at the second repetition number. If the random access response is not received again, the wireless device transmits the NPRACH based on the second maximum transmit power.
  • the NPUSCH is transmitted on one or more subcarriers.
  • NPRACH is transmitted on one subcarrier.
  • the transmission power of the NPRACH may be determined based on the second maximum transmission power only for NPRACH resources associated with NPUSCH transmission using one subcarrier (this is called a single tone PUSCH transmission).
  • the NPRACH resource and the second NPRACH resource for multi-tone PUSCH transmission may be configured.
  • the single-tone PUSCH is mainly used by a transmission device that requires a large transmission power because it is far from the base station or the channel environment is bad.
  • a transmission power greater than Pcmax may be applied to the NPRACH transmission associated with the tone PUSCH transmission.
  • narrowband transmission power information may be given to each of the plurality of carriers.
  • the wireless device may preferentially transmit the NPRACH in a carrier capable of a transmission power greater than Pcmax. If the NPRACH is transmitted on a carrier for which a transmission power greater than Pcmax is not allowed and a random access response is not received, the wireless device may transfer to a carrier capable of a transmission power greater than Pcmax and retry NPRACH transmission.
  • a carrier capable of a transmission power greater than Pcmax may be a non-anchor carrier.
  • the base station may inform the wireless device of the offset value compared to Pcmax of the NPUSCH transmission power through UL scheduling information or other signaling.
  • the wireless device may apply an offset value to the last NPRACH transmit power for subsequent PUSCH transmissions.
  • the offset value may inform the base station through a random access response or other signaling to the wireless device.
  • the wireless device may be limited to a case where the following conditions are satisfied.
  • the measurement result measured by the wireless device eg, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), path loss value
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the CE level is determined based on the CE threshold given by the base station. For example, when three CE levels (eg, CE0, CE1, CE2) are supported, the base station may provide two CE reference values (eg, CEThreshold1, CEThreshold2).
  • the wireless device acquires the measured value based on the DL signal (eg, NPSS, NSSS, NPBCH, etc.).
  • the measurement value may include a reference signal received power (RSRP), a reference signal received quality (RSRQ) and / or a received signal strength indicator (RSSI).
  • CE2 is set. If the measured value is greater than CEThreshold2 and less than CEThreshold1, CE1 is set. Otherwise, CE0 is set. For each CE level, the following CE settings can be defined.
  • the wireless device can transmit the UL channel based on the maximum transmit power set at the CCE level.
  • Pcmax may be referred to as the maximum UL transmit power given to the NB IoT device. This is because a wireless device operating only in the narrow band may not receive both the first maximum transmit power given in the wide band and the second maximum transmit power given in the narrow band.
  • FIG. 3 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device 50 includes a processor 51, a memory 52, and a transceiver 53.
  • the memory 52 is connected to the processor 51 and stores various instructions executed by the processor 51.
  • the transceiver 53 is connected to the processor 51 to transmit and / or receive a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 51. When the above-described embodiment is implemented as software instructions, the instructions may be stored in the memory 52 and executed by the processor 51 to perform the above-described operations.
  • Base station 60 includes a processor 61, a memory 62, and a transceiver 63.
  • Base station 60 may operate in an unlicensed band.
  • the memory 62 is connected to the processor 61 and stores various instructions executed by the processor 61.
  • the transceiver 63 is connected to the processor 61 to transmit and / or receive a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the transceiver may include baseband circuitry for processing wireless signals.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

상향링크 전송 파워를 제어하는 방법 및 이를 이용한 장치가 제공된다. 상기 장치는 CE(coverage enhancement) 레벨에 따라 최대 전송 파워를 결정하고, 상기 최대 전송 파워를 기반으로 상향링크 채널을 전송한다.

Description

상향링크 전송 파워 제어 방법 및 이를 이용한 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 방법 및 이를 이용한 장치에 관한 것이다.
IoT(internet of things)은 인간을 포함한 각종 사물이 인간과의 상호작용(interaction)을 요구하지 않고 네트워크 상으로 데이터를 전송하는 기술을 말한다.
3GPP(3rd Generation Partnership Project)는 IoT 연결성을 제공하기 위해 NB(narrowband)-IoT 표준화를 소개하고 있다. 3GPP LTE는 최소 20 MHz의 대역폭을 지원한다. NB-IoT는 180 kHz 또는 그 이상의 대역폭을 지원할 것으로 기대한다.
NB-IoT는 in-band, guard band, stand-alone의 세가지 운영 모드(operation mode)를 지원한다. In-band 모드는 LTE(Long-Term Evolution) 대역내 자원 중 일부를 NB-IoT에 할당하여 운용한다. Guard band 모드는 LTE의 가드 밴드 대역을 활용한다. Stand-alone 모드는 GSM(Global System for Mobile Communications) 대역 내 일부 캐리어를 할당하여 운영한다.
NB-IoT를 지원하는 기기는 실내에 배치되어 다른 모바일 기기에 비해 더 높은 경로 손실을 경험할 수 있다. 열악한 전파 환경을 극복하기 위해 NB-IoT 기기의 전송 파워를 더 크게 하는 것이 요구된다. 하지만, 더 높은 전송 파워는 타 기기에 대한 간섭을 야기할 수 있다.
본 발명은 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 방법 및 이를 이용한 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 방법이 제공된다. 상기 방법은 무선기기가 CE(coverage enhancement)를 위한 CE 설정을 수신하되, 상기 CE 설정은 CE 레벨을 결정하기 위한 적어도 하나의 CE 기준값과 각 CE 레벨에서 적용되는 최대 전송 파워에 관한 정보를 포함하고, 상기 무선기기가 수신되는 하향링크 신호를 기반으로 측정값을 획득하고, 상기 무선기기가 상기 측정값과 상기 적어도 하나의 CE 기준값에 따라 CE 레벨을 결정하고, 상기 무선기기가 상기 결정된 CE 레벨에 따른 최대 전송 파워를 기반으로 상향링크 채널을 전송하는 것을 포함한다.
다른 양태에서, 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 장치는 무선 신호를 송신 및 수신하는 송수신기와 상기 송수신기에 연결되는 프로세서를 포함한다. 상기 프로세서는 CE(coverage enhancement)를 위한 CE 설정을 수신하되, 상기 CE 설정은 CE 레벨을 결정하기 위한 적어도 하나의 CE 기준값과 각 CE 레벨에서 적용되는 최대 전송 파워에 관한 정보를 포함하고, 수신되는 하향링크 신호를 기반으로 측정값을 획득하고, 상기 측정값과 상기 적어도 하나의 CE 기준값에 따라 CE 레벨을 결정하고, 상기 결정된 CE 레벨에 따른 최대 전송 파워를 기반으로 상향링크 채널을 전송한다.
상향링크 전송에서 무선기기들간 간섭을 줄일 수 있다.
도 1은 NB-IoT에서 상향링크 슬롯의 구조를 보여준다.
도 2는 본 발명의 일 실시예에 따른 UL 전송 파워를 제어하는 방법을 나타낸 흐름도이다.
도 3은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(wireless device)는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또는, 무선기기는 MTC(Machine-Type Communication) 기기와 같이 데이터 통신만을 지원하는 기기일 수 있다.
기지국(base station, BS)은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) TS(Technical Specification)을 기반으로 하는 3GPP LTE(long term evolution)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다.
NB-IoT(narrowband-Internet of Things)는 3GPP LTE의 대역폭내에서 더 작은 대역폭을 지원하는 시스템을 말한다. 3GPP LTE는 15 kHz 의 부반송파 간격(subcarrier spacing)을 가지며, 최소 20 MHz의 대역폭을 지원한다. NB-IoT는 15 kHz 또는 3.75 kHz 또는 그보다 더 작은 부반송파 간격을 가질 수 있다. NB-IoT는 3 kHz 또는 그 이상의 대역폭을 지원할 수 있다. 이는 예시에 불과하고, 제안되는 실시예는 다양한 대역폭을 지원하는 무선 통신 네트워크에 적용될 수 있다.
3GPP LTE에서 DL(downlink)/UL(uplink) 스케줄링은 서브프레임(subframe) 단위로 이루어진다. 서브프레임은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 1 TTI는 1ms 일 수 있다. 정규(normal) CP(Cyclic Prefix)에서 1 서브프레임은 14 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 12 OFDM 심벌을 포함한다.
3GPP 기반의 NB-IoT에서 DL 물리 채널은 NPBCH(narrowband physical broadcast channel), NPDSCH(narrowband physical downlink shared channel), NPDCCH(narrowband physical downlink control channel)을 포함한다. DL 물리 신호는 NRS(narrowband reference signal), NPSS(narrowband primary synchronization signal), NSSS(narrowband secondary synchronization signal)를 포함한다. UL 물리 채널은 NPUSCH(narrowband physical uplink shared channel)과 NPRACH(narrowband physical random access channel)을 포함한다.
도 1은 NB-IoT에서 상향링크 슬롯의 구조를 보여준다.
NB-IoT에서 UL 전송은 15 kHz와 3.75 kHz의 2개 부반송파 간격(subcarrier spacing)을 지원한다. UL 전송은 7개의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하는 슬롯(slot)에 기반한다. 15 kHz의 부반송파 간격에서, 하나의 무선 프레임(radio frame)은 20개의 슬롯을 포함하고, 3.75 kHz의 부반송파 간격에서, 하나의 무선 프레임은 5개의 슬롯을 포함한다. 시간 영역에서 15 kHz의 부반송파 간격에서 하나의 슬롯은 0.5 ms의 길이를 가지고, 3.75 kHz의 부반송파 간격에서 하나의 슬롯은 2 ms의 길이를 갖는다. 주파수 영역에서, 15 kHz의 부반송파 간격에서 하나의 슬롯은 48 부반송파를 포함하고, 3.75 kHz의 부반송파 간격에서 하나의 슬롯은 12 부반송파를 포함한다.
자원 유닛(resource unit)은 NPUSCH 전송을 위한 기본 단위이다. NPUSCH는 하나 또는 그 이상의 자원 유닛에 맵핑되어 전송된다. 자원 유닛은 시간 영역에서 Nslot 개의 슬롯과 주파수 영역에서 Nsc 개의 부반송파로써 정의된다.
NPUSCH 포맷 부반송파 간격 Nsc Nslot
1 3.75 kHz 1 16
15 kHz 1 16
3 8
6 4
12 2
2 3.75 kHz 1 4
15 kHz 1 4
NPUSCH 포맷 1은 UL 사용자 데이터를 나르고, PUSCH 포맷 1은 UL 제어 정보(예, HARQ ACK/NACK)를 나른다.
NPRACH는 싱글-부반송파 주파수-호핑 심벌 그룹을 기반으로 전송된다. NPRACH를 위한 자원 설정은 반복 전송의 수, NPRACH 자원 주기, NPRACH를 위한 첫번째 부반송파의 위치, NPRACH 전송 시작 시점을 포함한다.
도 2는 본 발명의 일 실시예에 따른 UL 전송 파워를 제어하는 방법을 나타낸 흐름도이다.
단계 S210에서, 무선기기는 UL 채널의 UL 전송 파워를 결정한다. 단계 S220에서, 무선기기는 상기 UL 전송 파워를 기반으로 UL 채널을 전송한다.
서빙셀 c에 대해 슬롯 i에서 NPUSCH를 위한 UL 전송 파워 PNPUSCH는 PNPUSCH=min{Pcmax, 10log10M+P(j)+α(j)PL} 과 같이 결정될 수 있다. 여기서, Pcmax는 서빙셀 c에 대해 슬롯 i에서 설정된 최대 UL 전송 파워, P(j)와 α(j)는 파라미터이다. PL은 무선기기에 의해 계산된 DL 경로 손실 추정(path loss estimate)이다. M은 3.75 kHz 부반송파 간격에서 {1/4} 이고, 15 kHz 부반송파 간격에서 {1, 3, 6, 12}이다.
NPRACH를 위한 UL 전송 파워 PNPRACH는 PNPRACH=min{Pcmax, NPRTP+PL} 과 같이 결정될 수 있다. NPRTP는 서빙셀로부터 NPRACH 전송을 위해 제공되는 파라미터이다.
UL 전송 파워를 결정하는 데 사용되는 파라미터 Pcmax는 무선 기기에게 설정된 최대 전송 파워를 말하며, 기지국이 셀 내 무선기기들의 최대 UL 전송 파워를 조정하여 간섭을 줄이기 위해 사용된다. Pcmax는 무선기기와 기지국간 RRC(radio resource control) 연결이 확립된 후 RRC 시그널링에 의해 주어진다. 하지만, NB-IoT 기기와 같이 실내에 배치되는 기기의 UL 전송도 Pcmax에 의해 제한되면, 열악한 전파 환경으로 인해 UL 전송의 오류가 발생할 수 있다.
UL 전송의 오류를 방지하기 위해, 기지국은 무선기기에게 UL 채널(예, NPUSCH, NPRACH)의 전송 파워를 Pcmax 보다 크게 결정할 수 있는지 여부를 나타내는 허용 지시자를 전달할 수 있다.
또는, 기지국은 Pcmax (이를 제1 최대 전송 파워라 함)와 별도로 NPUSCH/NPRACH를 위한 최대 전송 파워(이를 제2 최대 전송 파워라 함)를 무선기기에게 알려줄 수 있다. 즉, 큰 대역폭을 사용하는 LTE UL 채널을 위한 제1 최대 전송 파워와 독립적으로 작은 대역폭을 사용하는 NB-IoT UL 채널을 위한 제2 최대 전송 파워를 설정할 수 있다.
협대역 파워 정보는 상기 허용 지시자 및 상기 제2 최대 전송 파워 중 적어도 어느 하나를 포함한다. 상기 협대역 파워 정보는 20 MHz 보다 더 작은 대역폭에서 전송되는 UL 채널을 위한 전송 파워를 결정하는데 사용되는 정보이다.
상기 협대역 파워 정보는 공용 시스템 정보로써 셀-특정적 시그널링을 통해 전달되거나, UE-특정적 시그널링을 통해 전달될 수 있다. 상기 협대역 파워 정보는 랜덤 액세스 과정 동안 랜덤 액세스 응답에 포함될 수 있다.
상기 협대역 파워 정보는 UL 전송에 적용되는 CE(coverage enhancement) 레벨 또는 반복 횟수 또는 CE 레벨 그룹 별로 제공될 수 있다. 또는 상기 협대역 파워 정보는 특정 CE 레벨보다 높은 CE 레벨이 적용되는 UL 채널의 전송 파워를 결정하는 데에 사용될 수 있다.
Pcmax 나 상기 협대역 파워 정보는 무선기기가 RRC 연결을 확립하기 이전에는 적용될 수 없다. 따라서, RRC 연결이 확립되기 전에 전송되는 NPRACH 나 NPUSCH에는 상기 협대역 파워 정보가 적용되지 못한다. 또한, 무선기기가 현재 셀과 RRC 연결을 끊으면, Pcmax와 상기 협대역 파워 정보는 폐기되고, 다른 셀과 RRC 연결을 맺기 전까지는 상기 협대역 파워 정보가 적용되지 못한다. 일 실시예에서, 무선기기는 특정 셀과 RRC 연결을 맺고 상기 협대역 파워 정보가 설정되면, 상기 특정 셀과의 RRC 연결이 끊어진뒤에도 다시 RRC 연결을 확립할때까지 이전 협대역 파워 정보를 유지하고 UL 전송에 적용할 수 있다. 다른 실시예에서, 상기 협대역 파워 정보는 이동성을 관장하는 네트워크 엔티티(예, MME(Mobility Management Entity))에 이동성 설정과 함께 설정될 수 있다. 따라서, 셀이 변경되더라도 무선기기의 협대역 파워 정보는 계속 유지되고, RRC 연결이 끊기더라도 협대역 파워 정보가 UL 전송에 적용될 수 있다.
협대역 파워 정보가 적용될 수 있는 NPRACH/NPUSCH 자원(예, 서브프레임, 부반송파 등)이 추가적으로 지정될 수 있다. NPRACH/NPUSCH 전송이 협대역 파워 정보가 적용될 수 있는 자원에 할당되면, 무선기기는 협대역 파워 정보를 기반으로 NPRACH/NPUSCH의 전송 파워를 결정할 수 있다.
협대역 파워 정보는 동적으로 전달될 수 있다. NPRACH 전송을 스케줄링하는 물리 제어채널을 통해 협대역 파워 정보가 제공될 수 있다. 상기 물리 제어채널 상으로 NPRACH 스케줄링과 협대역 파워 정보가 제공되면, 무선기기는 협대역 파워 정보를 기반으로 NPRACH의 전송 파워를 결정할 수 있다.
NPRACH/NPUSCH를 위한 전송 파워가 Pcmax를 초과할 수 있도록 설정된다고 하자. 허용지시자가 NPUSCH/NPRACH의 전송 파워를 Pcmax 보다 크게 결정할 수 있다고 하거나, NPUSCH/NPRACH를 위한 제2 최대 전송 파워가 설정되는 경우이다. 무선기기는 NPRACH/NPUSCH의 반복 횟수가 특정값 이상일때 Pcmax를 초과한 전송 파워를 적용할 수 있다. 기본적으로 UL 전송 파워가 Pcmax를 넘지 않도록 하여 셀간 간섭을 줄이지만, 무선기기의 커버리지가 부족한 경우에 Pcmax를 초과할 수 있도록 하기 위함이다. 상기 특정값은 무선기기에게 시그널링을 통해 제공되거나 미리 정해진 값일 수 있다. 상기 특정값은 무선기기 또는 셀에게 허용되는 최대 반복 횟수와 동일한 값으로 지정될 수 있다.
보다 구체적으로, 상기 특정값이 2 라고 하자. NPRACH 전송을 스케줄링하는 물리 제어채널 상으로 반복 횟수가 2 이상을 지시하면, Pcmax를 초과하여 NPRACH를 전송할 수 있다. 또는, 무선기기는 NPRACH의 반복 횟수가 2 보다 작으면, Pcmax를 기반으로 NPRACH의 전송 파워를 결정한다. NPRACH를 전송한 후 랜덤 액세스 응답을 수신하지 못하고, 반복 횟수가 2보다 크면 P-max를 초과한 전송 파워가 허용될 수 있다.
일반적으로, NPRACH는 랜덤 액세스 응답의 수신에 실패하면 파워 램핑(ramping) 계수(이를 제1 파워 램핑 계수라 함) 만큼 전송 파워를 증가시키면서 NPRACH를 재전송한다. NPRACH의 반복 횟수가 특정값 이상이고, 랜덤 액세스 응답의 수신에 실패하면, 무선기기는 다음과 같이 NPRACH의 전송 파워를 결정할 수 있다. 일 실시예에서, Pcmax를 기반으로 전송한 NPRACH에 대한 랜덤 액세스 응답의 수신에 실패하면, 무선기기는 다음 NPRACH은 설정된 제2 최대 전송 파워를 기반으로 전송할 수 있다. 다른 실시예에서, Pcmax를 기반으로 전송한 NPRACH에 대한 랜덤 액세스 응답의 수신에 실패하면, 무선기기는 다음 NPRACH은 min(설정된 제2 최대 전송 파워, Pcmax+f2)를 기반으로 전송할 수 있다. 여기서, f2는 제2 파워 램핑 계수이다. 또 다른 실시예에서, Pcmax를 기반으로 전송한 NPRACH에 대한 랜덤 액세스 응답의 수신에 실패하면, 무선기기는 다음 NPRACH은 min(설정된 제2 최대 전송 파워, f2)를 기반으로 전송할 수 있다. 상기 제2 파워 램핑 계수는 상기 제1 파워 램핑 계수와 동일하거나 더 클 수 있다. 상기 제2 파워 램핑 계수는 미리 지정되거나, 시그널링을 통해 무선기기에게 제공될 수 있다.
제1 반복 횟수에서 Pcmax를 초과한 최대 전송 파워로 NPRACH를 전송하고도 랜덤 액세스 응답을 수신하지 못하면, 무선기기는 제2 반복 횟수에서의 NPRACH를 다음과 같이 전송할 수 있다. 일 실시예에서, 무선기기는 제2 반복 횟수에서 제2 최대 전송 파워를 기반으로 NPRACH를 전송한다. 다른 실시예에서, 무선기기는 제2 반복 횟수에서 먼저 Pcmax를 기반으로 NPRACH를 전송할 수 있다. 다시 랜덤 액세스 응답을 수신하지 못하면, 무선기기는 제2 최대 전송 파워를 기반으로 NPRACH를 전송한다.
표 1에 나타난 바와 같이, NPUSCH는 하나 또는 그 이상의 부반송파를 통해 전송된다. 하지만, NPRACH는 하나의 부반송파를 통해 전송된다. 하나의 부반송파를 이용한 NPUSCH 전송(이를 싱글 톤(single tone PUSCH 전송이라 함)과 연관된 NPRACH 자원에 대해서만 제2 최대 전송 파워를 기반으로 NPRACH의 전송 파워가 결정될 수 있다. 싱글 톤 PUSCH 전송을 위한 제1 NPRACH 자원과 멀티 톤 PUSCH 전송을 위한 제2 NPRACH 자원이 설정될 수 있다. 싱글 톤 PUSCH는 주로 기지국과 멀리 떨어지거나 채널 환경이 나빠, 큰 전송 파워가 요구되는 전송기기에 의해 사용된다. 따라서, 싱글 톤 PUSCH 전송과 연관되는 NPRACH 전송에 Pcmax 보다 큰 전송 파워가 적용될 수 있다.
무선기기에게 복수의 캐리어(또는 복수의 서빙셀)가 설정된 경우, 복수의 캐리어 각각에게 협대역 전송 파워 정보가 주어질 수 있다. 무선기기는 Pcmax 보다 큰 전송 파워가 가능한 캐리어에서 우선적으로 NPRACH를 전송할 수 있다. Pcmax 보다 큰 전송 파워가 허용되지 않는 캐리어에서 NPRACH를 전송하고 랜덤 액세스 응답을 수신하지 못하면, 무선기기는 Pcmax 보다 큰 전송 파워가 가능한 캐리어로 옮겨 NPRACH 전송을 재시도할 수 있다. Pcmax 보다 큰 전송 파워가 가능한 캐리어는 non-anchor 캐리어일 수 있다.
Pcmax 보다 큰 전송 파워를 NPUSCH에 적용하기 위해 다음과 같은 방식이 제안된다. 일 실시예에서, 기지국은 NPUSCH 전송 파워의 Pcmax 대비 오프셋 값을 UL 스케줄링 정보나 다른 시그널링을 통해 무선기기에게 알려줄 수 있다. 다른 실시예에서, 마지막 NPRACH 전송 파워가 Pcmax보다 크면, 무선기기는 후속하는 PUSCH 전송에 마지막 NPRACH 전송 파워에 오프셋 값을 적용할 수 있다. 상기 오프셋 값은 기지국이 무선기기에게 랜덤 액세스 응답 또는 다른 시그널링을 통해 알려줄 수 있다.
무선기기가 NPRACH/NPUSCH 전송에 Pcmax보다 큰 전송 파워를 적용하기 위해서는 다음과 같은 조건을 만족하는 경우로 제한할 수 있다. 첫째, 무선기기에 의해 측정된 측정결과(예, RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality), 경로 손실값)가 일정 수준 이하. 둘째, 제2 최대 전송 파워가 Pcmax 보다 특정 오프셋 보다 큰 경우.
(coverage enhancement)는 다양한 IoT/MTC 기기들의 설치 환경을 고려하여 매우 큰 경로 손실을 겪는 기기를 지원하는데 사용된다. CE 레벨은 기지국에 의해 주어기는 CE 기준값(threshold)를 기반으로 정해진다. 예를 들어, 3개의 CE 레벨(예, CE0, CE1, CE2)이 지원된다고 할 때, 기지국은 2개의 CE 기준값(예, CEThreshold1, CEThreshold2)을 제공할 수 있다. 무선기기는 DL 신호(예, NPSS, NSSS, NPBCH 등)를 기반으로 측정값을 획득한다. 측정값은 RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality) 및/또는 RSSI(Received Signal Strength Indicator)을 포함할 수 있다. 만약 측정값이 CEThreshold2 보다 작으면 CE2이 설정되고, 만약 측정값이 CEThreshold2 이상이고 CEThreshold1 보다 작으면 CE1이 설정된다. 그렇지 않으면 CE0이 설정된다. 각 CE 레벨마다 다음 표와 같은 CE 설정이 정의될 수 있다.
명칭 설명
최대 전송 파워 해당 CCE 레벨에서 적용되는 최대 UL 전송 파워
NPRACH 반복(repetition) 해당 CE 레벨에서 NPRACH가 반복 전송되는 횟수
무선기기는 CCE 레벨에 설정된 최대 전송 파워를 기반으로 UL 채널을 전송할 수 있다.
전술한 실시예에서, Pcmax는 NB IoT 기기에게 주어지는 최대 UL 전송 파워라 할 수 있다. 협대역에서만 동작하는 무선기기는 광대역에서 주어지는 제1 최대 전송 파워와 협대역에서 주어지는 제2 최대 전송 파워 모두를 수신하지 못할 수 있기 때문이다.
도 3은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 송수신기(transceiver, 53)를 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)에 의해 실행되는 다양한 명령어(instructions)를 저장한다. 송수신기(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기의 동작은 프로세서(51)에 의해 구현될 수 있다. 전술한 실시예가 소프트웨어 명령어로 구현될 때, 명령어는 메모리(52)에 저장되고, 프로세서(51)에 의해 실행되어 전술한 동작이 수행될 수 있다.
기지국(60)는 프로세서(61), 메모리(62) 및 송수신기(63)를 포함한다. 기지국(60)은 비면허 대역에서 운용될 수 있다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)에 의해 실행되는 다양한 명령어를 저장한다. 송수신기(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신기는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 방법에 있어서,
    무선기기가 CE(coverage enhancement)를 위한 CE 설정을 수신하되, 상기 CE 설정은 CE 레벨을 결정하기 위한 적어도 하나의 CE 기준값과 각 CE 레벨에서 적용되는 최대 전송 파워에 관한 정보를 포함하고,
    상기 무선기기가 수신되는 하향링크 신호를 기반으로 측정값을 획득하고;
    상기 무선기기가 상기 측정값과 상기 적어도 하나의 CE 기준값에 따라 CE 레벨을 결정하고;
    상기 무선기기가 상기 결정된 CE 레벨에 따른 최대 전송 파워를 기반으로 상향링크 채널을 전송하는 것을 포함하는 방법.
  2. 제 1 항에 있어서,
    상기 상향링크 채널은 NPUSCH(narrowband physical uplink shared channel)과 NPRACH(narrowband physical random access channel) 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 상향링크 채널은 12 부반송파를 포함하는 하나의 자원블록에서 전송되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 상향링크 채널은 복수의 슬롯에 걸쳐 반복적으로 전송되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    적어도 하나의 CE 기준값은 제1 CE 기준값과 제2 CE 기준값을 포함하고,
    상기 측정값이 상기 제2 CE 기준값보다 작으면 제3 CE 레벨로 결정되고,
    상기 측정값이 상기 제2 CE 기준값이상이고 상기 제1 CE 기준값보다 작으면 제2 CE 레벨로 결정되고,
    상기 측정된 RSRP가 상기 제1 CE 기준값 이상이면 제1 CE 레벨로 결정되는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 측정값은 RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality) 및 RSSI(Received Signal Strength Indicator) 중 어느 하나를 포함하는 것을 특징으로 하는 방법.
  7. 무선 통신 시스템에서 상향링크 전송 파워를 제어하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 송수신기와
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는
    CE(coverage enhancement)를 위한 CE 설정을 수신하되, 상기 CE 설정은 CE 레벨을 결정하기 위한 적어도 하나의 CE 기준값과 각 CE 레벨에서 적용되는 최대 전송 파워에 관한 정보를 포함하고,
    수신되는 하향링크 신호를 기반으로 측정값을 획득하고;
    상기 측정값과 상기 적어도 하나의 CE 기준값에 따라 CE 레벨을 결정하고;
    상기 결정된 CE 레벨에 따른 최대 전송 파워를 기반으로 상향링크 채널을 전송하는 장치.
  8. 제 7 항에 있어서,
    상기 상향링크 채널은 NPUSCH(narrowband physical uplink shared channel)과 NPRACH(narrowband physical random access channel) 중 적어도 하나를 포함하는 것을 특징으로 하는 장치.
  9. 제 7 항에 있어서,
    상기 상향링크 채널은 12 부반송파를 포함하는 하나의 자원블록에서 전송되는 것을 특징으로 하는 장치.
  10. 제 7 항에 있어서,
    상기 상향링크 채널은 12 부반송파를 포함하는 하나의 자원블록에서 전송되는 것을 특징으로 하는 장치.
  11. 제 7 항에 있어서,
    적어도 하나의 CE 기준값은 제1 CE 기준값과 제2 CE 기준값을 포함하고,
    상기 측정값이 상기 제2 CE 기준값보다 작으면 제3 CE 레벨로 결정되고,
    상기 측정값이 상기 제2 CE 기준값이상이고 상기 제1 CE 기준값보다 작으면 제2 CE 레벨로 결정되고,
    상기 측정된 RSRP가 상기 제1 CE 기준값 이상이면 제1 CE 레벨로 결정되는 것을 특징으로 하는 장치.
  12. 제 7 항에 있어서,
    상기 측정값은 RSRP(Reference Signal Received Power), RSRQ(Reference Signal Received Quality) 및 RSSI(Received Signal Strength Indicator) 중 어느 하나를 포함하는 것을 특징으로 하는 장치.
PCT/KR2018/003080 2017-03-30 2018-03-16 상향링크 전송 파워 제어 방법 및 이를 이용한 장치 WO2018182213A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,892 US10939385B2 (en) 2017-03-30 2018-03-16 Uplink transmission power control method and device using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762479300P 2017-03-30 2017-03-30
US62/479,300 2017-03-30
US201762501045P 2017-05-03 2017-05-03
US62/501,045 2017-05-03
US201762522104P 2017-06-20 2017-06-20
US62/522,104 2017-06-20

Publications (1)

Publication Number Publication Date
WO2018182213A1 true WO2018182213A1 (ko) 2018-10-04

Family

ID=63677468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003080 WO2018182213A1 (ko) 2017-03-30 2018-03-16 상향링크 전송 파워 제어 방법 및 이를 이용한 장치

Country Status (2)

Country Link
US (1) US10939385B2 (ko)
WO (1) WO2018182213A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11102733B2 (en) * 2017-05-05 2021-08-24 Apple Inc. Absolute power control tolerance for NB-IoT/MTC

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242206A1 (en) * 2015-02-12 2016-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Selective distribution of system information for mtc
WO2016163734A1 (ko) * 2015-04-07 2016-10-13 엘지전자 주식회사 커버리지 확장 레벨을 기반으로 값을 적용하는 방법 및 장치
WO2016166937A1 (en) * 2015-04-17 2016-10-20 Panasonic Intellectual Property Corporation Of America Converage enhancement level signaling and efficient packing of mtc system information
WO2016183025A1 (en) * 2015-05-13 2016-11-17 Qualcomm Incorporated Cell selection procedures for machine type communication devices supporting coverage enhancement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391121B1 (ko) * 2014-01-29 2022-04-27 인터디지탈 패튼 홀딩스, 인크 커버리지 향상 무선 송신을 위한 액세스 및 링크 적응 방법
KR102056683B1 (ko) * 2015-08-14 2019-12-17 텔레폰악티에볼라겟엘엠에릭슨(펍) Mtc 동작을 위한 랜덤 액세스 절차
US10009856B2 (en) * 2016-02-08 2018-06-26 Motorola Mobility Llc Method and apparatus for transmitting PUCCH with a lower A-MPR
US10555297B2 (en) * 2016-03-31 2020-02-04 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission timing control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160242206A1 (en) * 2015-02-12 2016-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Selective distribution of system information for mtc
WO2016163734A1 (ko) * 2015-04-07 2016-10-13 엘지전자 주식회사 커버리지 확장 레벨을 기반으로 값을 적용하는 방법 및 장치
WO2016166937A1 (en) * 2015-04-17 2016-10-20 Panasonic Intellectual Property Corporation Of America Converage enhancement level signaling and efficient packing of mtc system information
WO2016183025A1 (en) * 2015-05-13 2016-11-17 Qualcomm Incorporated Cell selection procedures for machine type communication devices supporting coverage enhancement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "MIB Contents for Low Cost UEs", RL-151595, 3GPP TSG RAN WG1 #80BIS, vol. RAN WG1, 10 April 2015 (2015-04-10), Belgrade, Serbia, XP050949546 *

Also Published As

Publication number Publication date
US20200037261A1 (en) 2020-01-30
US10939385B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2017078458A1 (en) Method and apparatus for handling frequency retuning for machine-type communication user equipment in wireless communication system
EP3614759B1 (en) Method and device for configuring time-frequency resource transmission direction
KR101839632B1 (ko) 무선 통신 시스템, 이동국 장치, 무선 통신 방법 및 집적 회로
WO2017039372A1 (en) Method and apparatus for performing cell search in wireless communication system
WO2015160198A1 (en) Method and apparatus for processing aperiodic channel state information in wireless communication system
WO2014148875A1 (en) Method and apparatus for performing interference coordination in wireless communication system
WO2014051333A1 (en) Method and apparatus for supporting a control plane and a user plane in a wireless communication system
WO2016006984A1 (en) Method and apparatus for transmitting wi-fi signals in unlicensed spectrum in wireless communication system
WO2014051334A1 (en) Method and apparatus for using a plurality of cells in communication system
WO2016068653A1 (en) Method and apparatus for handling user equipment measurements in case of absence of discovery signals in wireless communication system
WO2012057579A2 (ko) 사운딩 참조 신호의 전송 파워 조절 방법 및 장치
EP3278488A1 (en) Method and apparatus for designing downlink control information in wireless communication system
WO2015002516A1 (ko) 무선 통신 시스템에서 제어정보 획득 방법 및 장치
JPWO2016072257A1 (ja) ユーザ端末、無線基地局及び無線通信方法
KR20160009534A (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2016126033A1 (ko) 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치
WO2016129959A1 (en) Method and apparatus for supporting frequency hopping for low cost user equipment in wireless communication system
JPWO2017026513A1 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
JPWO2016163508A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016068642A1 (en) Method and apparatus for performing rrm measurements in unlicensed band in wireless communication system
WO2018016808A1 (ko) 랜덤 액세스 프리앰블 전송 방법 및 기기
WO2016032306A1 (en) Method and apparatus for selecting antenna for dual connectivity in wireless communication system
WO2017026514A1 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
WO2016171420A1 (en) Method for transmitting a buffer status reporting for lte-wlan aggregation system and a device therefor
WO2011055870A1 (ko) 중계기, 기지국의 동작방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774761

Country of ref document: EP

Kind code of ref document: A1