WO2018182001A1 - Laminate body and sound-absorbing material - Google Patents

Laminate body and sound-absorbing material Download PDF

Info

Publication number
WO2018182001A1
WO2018182001A1 PCT/JP2018/013934 JP2018013934W WO2018182001A1 WO 2018182001 A1 WO2018182001 A1 WO 2018182001A1 JP 2018013934 W JP2018013934 W JP 2018013934W WO 2018182001 A1 WO2018182001 A1 WO 2018182001A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
air permeability
laminate
sec
thickness
Prior art date
Application number
PCT/JP2018/013934
Other languages
French (fr)
Japanese (ja)
Inventor
康三 飯場
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2019509418A priority Critical patent/JPWO2018182001A1/en
Publication of WO2018182001A1 publication Critical patent/WO2018182001A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches

Definitions

  • the present disclosure relates to a laminate and a sound absorbing material.
  • Polyurethane foam and polyethylene foam containing an air layer for the purpose of blocking noise from the outside and not leaking the sound from the outside in transportation environments such as living environments such as houses and offices, aircraft, vehicles, automobiles, etc. Sound absorbing materials made of fibrous materials such as foams, felts, nonwoven fabrics and the like are widely used.
  • transportation means such as automobiles are required to have a light-absorbing material that is lighter in weight and excellent in sound-absorbing performance. Therefore, as a method for improving sound-absorbing performance, two or three layers of different materials are bonded together. Have been proposed (for example, Patent Document 1 to Patent Document 5).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-69823
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-161565
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-49351
  • Patent Document 4 Japanese Patent Laid-Open No. 2014-2322281 2013-139188 gazette
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a laminate that exhibits excellent sound absorption over a wide frequency range, and a sound absorbing material including the laminate.
  • a first layer of the air permeability is less than 1 cc / cm 2 / sec or more 30cc / cm 2 / sec, and the second layer air permeability following 30 cc / cm 2 / sec or more 1000 cc / cm 2 / sec
  • ⁇ 2> The laminate according to ⁇ 1>, wherein at least one of the first layer and the third layer is a nonwoven fabric, a porous film, a woven fabric, or a foam.
  • ⁇ 3> The laminate according to ⁇ 1> or ⁇ 2>, wherein at least one of the second layer and the fourth layer is a nonwoven fabric, a woven fabric, or a foam.
  • ⁇ 4> The laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the thickness of the first layer and the thickness of the third layer are 0.1 mm or more and 2 mm or less, respectively.
  • ⁇ 5> The laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the thickness of the second layer and the thickness of the fourth layer are 10 mm or more and 50 mm or less, respectively.
  • a sound absorbing material comprising the laminate according to any one of ⁇ 1> to ⁇ 5>.
  • the present disclosure can provide a laminate exhibiting excellent sound absorption over a wide frequency range, and a sound absorbing material including the laminate.
  • FIG. 1 is a schematic partial cross-sectional view showing an example of the layer configuration of the laminate according to the present embodiment.
  • FIG. 2 is a diagram illustrating the frequency characteristics of the sound absorption coefficient in the sound absorbing materials of Example 1, Comparative Example 1, and Comparative Example 5.
  • FIG. 3 is a schematic partial sectional view showing an example of a layer structure of a conventional laminate.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the laminate according to the present embodiment has a first layer (hereinafter, also referred to as “low-breathing A layer”) having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec, and an air permeability of 30 cc / cm.
  • a second layer (hereinafter also referred to as “highly-permeable B layer”) of 2 / sec or more and 1000 cc / cm 2 / sec or less, and a third layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec.
  • a layer (hereinafter also referred to as a “low air permeability C layer”) and a fourth layer (hereinafter also referred to as a “high air permeability D layer”) having an air permeability of 30 cc / cm 2 / sec to 1000 cc / cm 2 / sec. It is the laminated body laminated
  • a layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec is also collectively referred to as a “low air permeability layer”, and the air permeability is 30 cc / cm 2 / sec or more and 1000 cc / cm 2 / sec or less.
  • These layers are also collectively referred to as “highly breathable layers”.
  • the air permeability (cc / cm 2 / sec) was measured at a pressure difference of 125 Pa in accordance with JIS L1096 (2010) A method (fragile type method) using a Frazier type tester at five locations of the sample. This is an average value obtained by measuring the air flow rate (the amount of air passing through the layer).
  • the air flow rate the amount of air passing through the layer.
  • the air permeability of each layer in a laminated body it peels from the laminated body and measures it.
  • the thickness of the layer to be measured is measured, and the air flow rate of a sample cut out in the thickness direction is measured to determine the layer thickness.
  • the air permeability of the entire layer to be measured may be obtained by converting the value into consideration.
  • FIG. 1 shows an example of the layer structure of the laminate according to this embodiment.
  • a low air permeability A layer 12 a high air permeability B layer 14, a low air permeability C layer 16, and a high air permeability D layer 18 are laminated in this order. Since the laminate 10 has the above-described configuration, it exhibits excellent sound absorption over a wide frequency range. The reason is presumed as follows.
  • FIG. 3 there is a laminated body 110 in which a low air-permeable layer 112 and a high air-permeable layer 114 are laminated to form two layers.
  • the two-layer configuration described above allows the low ventilation layer 112 to function as a sound absorption layer and the high ventilation layer 114 to function as a back air layer.
  • Higher sound absorption performance can be obtained.
  • the surface 115 of the high air permeability layer 114 opposite to the low air permeability layer 112 is a fixed end of the standing wave, a sound near the frequency where the antinode of the standing wave becomes the position of the low air permeability layer 112 (for example, the wavelength is high).
  • a high sound absorption coefficient is obtained for a sound that is four times the thickness of the ventilation layer 114.
  • the sound other than the specific frequency particularly, the sound near the frequency where the node of the standing wave is the position of the low ventilation layer 112 (for example, the wavelength is twice the thickness of the high ventilation layer 114).
  • the wavelength is twice the thickness of the high ventilation layer 114.
  • the laminated body 10 is laminated
  • the laminated body 10 has air permeability at a position corresponding to half of the thickness of the high ventilation layer 114 in the laminated body 110 in addition to the low ventilation layer A 12 at the same position as the low ventilation layer 112 in the laminated body 110.
  • a low air permeability C layer 16 having a low thickness is provided.
  • the surface 19 on the opposite side of the low air permeability C layer 16 in the high air permeability D layer 18 is a stationary wave stationary end.
  • a high sound absorption coefficient can be obtained with respect to the sound in the vicinity of the frequency where the antinode is located at the position of the low ventilation A layer 12.
  • the low-air-permeable C layer 16 also functions as a sound-absorbing layer, so that the sound near the frequency where the node of the standing wave becomes the position of the low-air-permeable A layer 12 and the anti-node of the standing wave becomes the position of the low-air-permeable C layer 16 ( In other words, a high sound absorption coefficient can be obtained even for a sound that is difficult to obtain a high sound absorption coefficient in the laminate 110.
  • the laminate 10 exhibits excellent sound absorption over a wide frequency range.
  • the thickness of the entire laminate may be limited depending on the environment in which the sound absorbing material is installed, and the frequency at which a high sound absorption coefficient is obtained depends on the thickness of the high ventilation layer 114. In some cases, it is difficult to obtain a high sound absorption coefficient for a target frequency. However, if the laminate 10 is used as a sound absorbing material, it exhibits excellent sound absorption over a wide frequency range, so that it is easy to obtain a high sound absorption coefficient for the target frequency range without changing the thickness of the entire laminate.
  • the laminated body 10 should just laminate
  • the other layers are provided between the layers (ie, between the low air permeability A layer 12 and the high air permeability B layer 14, between the high air permeability B layer 14 and the low air permeability C layer 16, and between the low air permeability C layer 16 and the high air permeability D layer 18).
  • it may be provided on the outer surface (that is, the surface on the side opposite to the high air permeability B layer 14 in the low air permeability A layer 12, the surface 19).
  • a layer having a low air permeability may be further provided on the surface 19 of the laminate 10.
  • the laminate 10 may further include a low air permeability layer and a high air permeability layer in addition to the low air permeability A layer 12, the high air permeability B layer 14, the low air permeability C layer 16, and the high air permeability D layer 18.
  • a laminated body having a six-layer structure, a laminated body having an eight-layer structure, or the like in which a combination of a low air-permeable layer and a high air-permeable layer is further added to the surface 19 side of the high-air-permeable D layer 18 can be given.
  • a low air permeability E layer a layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec is preferable like the low air permeability A layer.
  • the basis weight and thickness of the low air permeability E layer are also the same as those of the low air permeability A layer.
  • the high air permeability F layer is the same as the high air permeability B layer.
  • a layer having an air permeability of 30 cc / cm 2 / sec to 1000 cc / cm 2 / sec is preferable.
  • the basis weight and thickness of the high ventilation F layer are also the same as those of the high ventilation B layer.
  • the laminate further having a low air permeability layer and a high air permeability layer, a first layer that is a low air permeability layer, a second layer that is a high air permeability layer, and a third layer that is a low air permeability layer;
  • a laminate in which a fourth layer that is a high air permeability layer, a fifth layer that is a low air permeability layer, and a sixth layer that is a high air permeability layer is laminated in this order is preferable.
  • the low air permeability A layer 12 and the low air permeability C layer 16 are layers having the same material, the same characteristics, and the same thickness. Not limited. The materials, characteristics, and thicknesses of the low air permeability layers (that is, the low air permeability A layer 12 and the low air permeability C layer 16) may be the same or different. Moreover, in the laminated body 10, although the high ventilation B layer 14 and the high ventilation D layer 18 are the layers which have the same material, the same characteristic, and the same thickness, if the air permeability of each layer is the said range, it will be to this Not limited.
  • the materials, characteristics, and thicknesses of the high air permeability layers may be the same or different. If the air permeability of each layer is within the above range, both the low air permeability layer and the high air permeability layer may be made of the same material (for example, non-woven fabric).
  • the laminate of the present disclosure exhibits excellent sound absorption over a wide frequency range. And the sound absorption material containing the laminated body of this indication can be used suitably for a motor vehicle use. In particular, since the electric vehicle requires a wide range of sound absorption characteristics from low road noise to high motor sound, the laminate of the present disclosure having excellent sound absorption over a wide frequency range is particularly useful.
  • Air permeability of the low air A layer 12 and the low air C layer 16 are each less than 1cc / cm 2 / sec or more 30cc / cm 2 / sec, preferably not more than 3cc / cm 2 / sec or more 20cc / cm 2 / sec 5 cc / cm 2 / sec or more and 10 cc / cm 2 / sec or less is more preferable.
  • the air permeability of the low air permeability A layer 12 and the low air permeability C layer 16 is within the above range, the air permeability of the entire laminate can be suppressed lower than when the air permeability is higher than the above range, and compared with the case where the air permeability is lower than the above range. The function as a sound absorbing layer is easily exhibited.
  • the air permeability of the high air permeability B layer 14 and the high air permeability D layer 18 is 30 cc / cm 2 / sec or more and 1000 cc / cm 2 / sec or less, respectively, preferably 40 cc / cm 2 / sec or more and 700 cc / cm 2 / sec or less. 50 cc / cm 2 / sec or more and 500 cc / cm 2 / sec or less is more preferable.
  • the air permeability of the high air permeability B layer 14 and the high air permeability D layer 18 is in the above range, less sound waves are reflected in the middle of the sound absorbing material than in the case where the air permeability is lower than the above range, and the back air compared with the case where the air permeability is higher than the above range.
  • the function as a layer is easily exhibited.
  • the air permeability of the high air permeability B layer 14 is preferably not less than 2 times and not more than 100 times the air permeability of the low air permeability A layer 12, more preferably not less than 5 times and not more than 50 times, and further preferably not less than 10 times and not more than 20 times.
  • the air permeability of the low air permeability C layer 16 is preferably 0.5 times or more and 2 times or less, more preferably 0.7 times or more and 1.5 times or less, more preferably 0.9 times or more and 1 times that of the low air permeability A layer 12. More preferably, it is 1 times or less.
  • the air permeability of the high air permeability D layer 18 is preferably 2 times or more and 100 times or less, more preferably 5 times or more and 50 times or less, and further preferably 10 times or more and 20 times or less of the air permeability of the low air permeability C layer 16.
  • the ratio of the air permeability between the respective layers is in the above range, the roles of the low air permeability layer and the high air permeability layer are exhibited, and the sound absorption coefficient of the laminate is increased.
  • Air permeability of the laminate as a whole from the viewpoint of sound absorption rate improves, for example, 1cc / cm 2 / sec or more 25cc / cm 2 / sec or less and the like, is preferably from 2cc / cm 2 / sec or more 15cc / cm 2 / sec It is more preferably 3 cc / cm 2 / sec or more and 10 cc / cm 2 / sec or less.
  • the thickness of the low air permeability A layer 12 and the low air permeability C layer 16 is preferably 0.1 mm or more and 2 mm or less, more preferably 0.1 mm or more and 1 mm or less, respectively, from the viewpoint of adjusting the air permeability of the entire laminate to the above range. More preferably, it is 0.1 mm or more and 0.5 mm or less.
  • the thicknesses of the high ventilation B layer 14 and the high ventilation D layer 18 are not limited and set according to the frequency of the sound for which the sound absorption rate is desired to be increased, but for example, 10 mm or more and 50 mm or less, preferably 10 mm or more and 40 mm or less, More preferably, 10 mm or more and 30 mm or less are mentioned.
  • the ratio of the thickness of the high air permeability B layer 14 to the thickness of the high air permeability D layer 18 is not particularly limited, and the low air permeability C layer 16 may be provided at a position where the sound absorption coefficient in the target frequency region is improved.
  • the thickness of the high-breathing D layer 18 is 0.7 times or more that of the high-breathing B layer 14. It is preferably 3 times or less, and more preferably 0.9 times or more and 1.1 times or less.
  • the thickness of the entire laminate is set according to the frequency of the sound for which the sound absorption rate is desired to be increased and the environment in which the laminate is installed, but is not limited to, for example, 20 mm to 100 mm, and 25 mm to 80 mm. The following is preferable, and 30 mm or more and 60 mm or less are more preferable.
  • the material of the low air permeability layer and the high air permeability layer is not particularly limited as long as the air permeability in each layer is within the above range.
  • sheets such as nonwoven fabric, foam, porous film, paper, woven fabric, knitted fabric, felt, inorganic fiber, etc. The thing of the shape is mentioned.
  • the nonwoven fabric comprised including the organic fiber (for example, resin fiber etc.) or its mixture is mentioned,
  • a long fiber nonwoven fabric or a short fiber nonwoven fabric may be sufficient.
  • the nonwoven fabric include melt blown nonwoven fabric, spunbond nonwoven fabric, needle punched nonwoven fabric, thermal bond nonwoven fabric, chemical bond nonwoven fabric, stitch bond nonwoven fabric, and spunlace nonwoven fabric.
  • the air permeability of the nonwoven fabric can be controlled by adjusting the thickness, basis weight, fiber diameter, and the like, and can also be controlled by adjusting the porosity and the like by post-processing such as calendaring.
  • Examples of the foam include a resin material containing bubbles.
  • Examples of the foam include polyurethane foam, polyolefin foam (for example, polyethylene polypropylene foam), polystyrene foam, acrylic copolymer foam, rubber foam, and the like.
  • the air permeability of the foam can be controlled by adjusting the thickness, density, closed cell ratio, and the like, for example.
  • Examples of the porous film include a microporous film and a mesoporous film.
  • Examples of the porous film include a resin porous film such as a film made porous by stretching a resin containing a filler, an inorganic porous film such as a cement porous body film, and a film having holes formed by processing such as a needle punch. It is done.
  • the air permeability of the porous film can be controlled by adjusting the thickness, density, pore diameter and the like, for example.
  • Examples of the inorganic fiber include glass fiber and carbon fiber.
  • the material of the low air permeability layer is preferably a nonwoven fabric, a porous film, a woven fabric, or a foam. preferable.
  • the average fiber diameter of the thermoplastic resin fibers constituting the melt blown nonwoven fabric is, for example, in the range of 0.1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 10 ⁇ m.
  • melt blown nonwoven fabric will be described as an example of a material used for the low air permeability layer.
  • the melt-blown nonwoven fabric is obtained, for example, by discharging a molten thermoplastic resin composition (that is, a composition containing a thermoplastic resin) from a nozzle and blowing a gas into fibers to collect the nonwoven fabric.
  • a molten thermoplastic resin composition that is, a composition containing a thermoplastic resin
  • thermoplastic resin is not particularly limited as long as it is a thermoplastic resin capable of forming a nonwoven fabric, and various known ones can be used.
  • thermoplastic resin include a polyolefin-based polymer which is a homopolymer or copolymer of an ⁇ -olefin such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene. Coalesce is mentioned.
  • olefin polymers examples include ethylene homopolymers such as high-pressure low-density polyethylene, linear low-density polyethylene (so-called LLDPE), and high-density polyethylene; ethylene-propylene random copolymer, ethylene / 1-butene random Ethylene polymers such as ethylene / ⁇ -olefin copolymers such as copolymers; propylene homopolymers (so-called polypropylene); propylene / ethylene random copolymers, propylene / ethylene / 1-butene random copolymers ( So-called random polypropylene), propylene-based polymers such as propylene block copolymer, propylene / 1-butene random copolymer; 1-butene homopolymer, 1-butene / ethylene copolymer, 1-butene / propylene copolymer 1-butene polymers such as polymers; poly-4-methyl-1-pen Emissions homopol
  • thermoplastic resin in addition to the above polyolefin polymer, polyester (eg, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polyamide (eg, nylon-6, nylon-66, polymetaxylene adipamide) Etc.), polyvinyl chloride, polyimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene, ionomer or a mixture thereof.
  • polyester eg, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.
  • polyamide eg, nylon-6, nylon-66, polymetaxylene adipamide
  • thermoplastic resins polyolefin polymers are preferred from the viewpoints of spinning stability during molding, and processability of nonwoven fabric, breathability, flexibility, lightness, and heat resistance.
  • a propylene polymer is more preferable from the viewpoints of heat resistance and light weight.
  • the thermoplastic resin is more preferably a propylene homopolymer or a propylene / ⁇ -olefin copolymer among propylene polymers.
  • propylene polymer suitable as the thermoplastic resin examples include a propylene homopolymer having a melting point (Tm) in the range of 125 ° C. or higher (preferably 130 to 165 ° C.), or one or two or more types of propylene.
  • Tm melting point
  • the melt flow rate (MFR: ASTM D-1238, 230 ° C., load 2160 g) is not particularly limited, but for example, 10 g / 10 min to 4000 g / 10 min, preferably 50 g / 10 min to 3000 g / 10 min, more preferably 100 g / 10 min to 2000 g / 10 min.
  • thermoplastic resin composition for forming the thermoplastic resin fiber includes an antioxidant, a weather stabilizer, a light stabilizer, an anti-blocking agent, a lubricant, a pigment, a softener, and a hydrophilic agent as long as the purpose of the present disclosure is not impaired.
  • various known additives such as an auxiliary, a water repellent, a filler, and an antibacterial agent may be contained.
  • the melt blown nonwoven fabric may be composed only of fibers formed by the melt blown method, and may contain other fibers.
  • the other fibers may be short fibers or long fibers, or may be crimped fibers or uncrimped fibers. These other fibers can be added for any purpose such as imparting mechanical properties such as imparting strength, imparting chemical properties, and increasing the amount.
  • Examples of the other fibers include polyester short fibers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • content of another fiber 20 mass% or less with respect to the whole melt blown nonwoven fabric, Preferably it is 10 mass% or less, More preferably, 5 mass% or less is mentioned.
  • the material of the high air permeability layer is preferably a nonwoven fabric or a foam, and among them, a melt blown nonwoven fabric, a spunbond nonwoven fabric, a needle punched nonwoven fabric, a glass fiber nonwoven fabric, a polyurethane foam, or a polyolefin foam is more preferable. Further, a melt blown nonwoven fabric is more preferable, and a polyurethane foam is particularly preferable.
  • the average fiber diameter of the thermoplastic resin fibers constituting the melt blown nonwoven fabric is, for example, in the range of 1 ⁇ m to 60 ⁇ m, preferably 3 ⁇ m to 20 ⁇ m.
  • the component etc. which are contained in the melt blown nonwoven fabric used for a high ventilation layer it is the same as that of the melt blown nonwoven fabric used for the above-mentioned low ventilation layer.
  • the density measured in accordance with ASTM D792 Method A (submersion method) in the foam is, for example, 9.0 kg / m 3 to 200 kg / m 3 , preferably 10 kg. / M 3 to 200 kg / m 3 , more preferably 20 kg / m 3 to 200 kg / m 3 .
  • the closed cell ratio measured in accordance with ASTM D2856 C method in the foam used for the high air-permeable layer is, for example, 0% or more and less than 60%, preferably 0 to 55%, more preferably 0 to 50%. %.
  • the foam used for the high ventilation layer has an open cell structure from the viewpoint of increasing the air permeability of the high ventilation layer and the sound absorption coefficient of the laminate.
  • an average diameter (average cell diameter) of the cell in the foam used for a high air layer 10 micrometers or more and 2000 micrometers or less, for example, Preferably they are 300 micrometers or more and 2000 micrometers or less, More preferably, they are 600 micrometers or more and 2000 micrometers or less.
  • the polyurethane foam used for the highly breathable layer can be obtained, for example, by reacting a composition containing polyisocyanate, a polyol, a foaming agent, and other components as necessary.
  • the polyisocyanate include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates, and derivatives thereof. These may be used alone or in combination of two or more. .
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 1,2-, 2,3- or 1,3-butylene diisocyanate. 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and the like.
  • alicyclic polyisocyanate examples include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), dicyclohexylmethane diisocyanate (for example, 4,4′-, 2,4′-, Or 2,2′-dicyclohexylmethane diisocyanate or mixtures thereof, H12MDI), bis (isocyanatomethyl) norbornane (eg, 2,5- or 2,6-bis (isocyanatomethyl) norbornane or mixtures thereof, NBDI), 1 , 3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate Over doors and the like.
  • IPDI isophorone diisocyan
  • aromatic polyisocyanate examples include xylylene diisocyanate (for example, 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, XDI), tetramethylxylylene diisocyanate (for example, 1,3- or 1,4).
  • TMXDI -Tetramethylxylylene diisocyanate or mixtures thereof, TMXDI
  • ⁇ , ⁇ '-diisocyanato-1,4-diethylbenzene diphenylmethane diisocyanate (eg 4,4'-, 2,4'- or 2,2'-diphenylmethane Diisocyanate or mixtures thereof, MDI)
  • tolylene diisocyanate eg, 2,4- or 2,6-tolylene diisocyanate or mixtures thereof, TDI
  • 3,3′-dimethoxybiphenyl-4,4′-diisocyanate 1, 5-na
  • Examples thereof include phthalene diisocyanate (NDI), phenylene diisocyanate (m- or p-phenylene diisocyanate or a mixture thereof), 4,4'-diphenyl diisocyanate, 4,4'-diphenyl ether diisocyanate, and the like
  • polyisocyanate derivatives include multimers of the above polyisocyanates (for example, dimers, trimers (for example, isocyanurate-modified products, iminooxadiazinedione-modified products), pentamers, and 7-mers).
  • Allophanate-modified products for example, allophanate-modified products generated from the reaction of the polyisocyanate with a low molecular weight polyol described later
  • polyol modified products for example, generated from the reaction of the polyisocyanate with a low molecular weight polyol described below
  • Polyol modified products alcohol adducts, etc.
  • biuret modified products for example, biuret modified products produced by reaction of the above polyisocyanate with water or amines
  • urea modified products for example, the above polyisocyanate and diamine
  • Modified with urea etc.
  • oxa Azinetrione-modified products for example, oxadiazinetrione produced by the reaction of the polyisocyanate and carbon dioxide
  • carbodiimide-modified products carbodiimide-modified products produced by the decarboxylation condensation reaction of the polyisocyanate
  • uretdione-modified products examples include modified ureton
  • polyol component examples include high molecular weight polyols and low molecular weight polyols, which may be used alone or in combination of two or more.
  • the high molecular weight polyol is a compound having two or more hydroxyl groups and a number average molecular weight of 1,000 or more.
  • polyether polyol, polyester polyol, polyether ester polyol, polycarbonate polyol, polyurethane polyol, epoxy polyol, vegetable oil polyol, polyolefin polyol, An acrylic polyol, a vinyl monomer modified polyol, etc. are mentioned.
  • the low molecular weight polyol is a compound having two or more hydroxyl groups and having a number average molecular weight of less than 1000.
  • blowing agent examples include water, halogen-substituted aliphatic hydrocarbon blowing agents (for example, trichlorofluoromethane, dichlorodifluoromethane, trichloroethane, trichloroethylene, tetrachloroethylene, methylene chloride, trichlorotrifluoroethane, dibromotetrafluoroethane, tetrachloride). Carbon, etc.).
  • the foaming agents can be used alone or in combination of two or more.
  • the composition for obtaining a polyurethane foam may contain a catalyst as another component, for example.
  • a catalyst include triethylamine, triethylenediamine, N-methylmorpholine, bis (2-dimethylaminoethyl) ether, tris (dimethylaminopropyl) hexahydro-S-triazine, 1,4-diazabicyclo [2.2.2.
  • Amine-based catalysts such as tertiary amines such as octane; quaternary ammonium salts such as tetraethylhydroxylammonium; imidazoles such as imidazole and 2-ethyl-4-methylimidazole;
  • an organic tin compound such as tin acetate, tin octylate, dibutyltin dilaurate, and dibutyltin chloride; an organic lead compound such as lead octylate and lead naphthenate; naphthenic acid Organometallic catalysts such as organic nickel compounds such as nickel;
  • the catalysts can be used alone or in combination of two or more.
  • compositions for obtaining the polyurethane foam include, for example, a foam stabilizer, a flame retardant, a viscosity reducer, an antiaging agent, and a pigment in addition to the above catalyst.
  • each layer may be formed separately and then laminated, or each layer may be formed sequentially while being laminated.
  • the high air permeability B layer 14 is formed on the low air permeability A layer 12, and the low air permeability C layer 16 and the high air permeability D layer 18 are similarly formed sequentially.
  • the high air permeability B layer 14 is formed on the low air permeability A layer 12
  • the low air permeability C layer 16 and the high air permeability D layer 18 are similarly formed sequentially.
  • the bonding method between the layers differs depending on the material of the layer. For example, bonding using an adhesive (for example, hot-melt adhesive, urethane-based adhesive, etc.), thermal fusion (for example, heat treatment, Heat embossing, ultrasonic fusion, etc.), mechanical entanglement (eg, needle punch, water jet, etc.) and the like.
  • an adhesive for example, hot-melt adhesive, urethane-based adhesive, etc.
  • thermal fusion for example, heat treatment, Heat embossing, ultrasonic fusion, etc.
  • mechanical entanglement eg, needle punch, water jet, etc.
  • the laminated body may be subjected to secondary processing such as printing, coating, heat treatment, and shaping as long as the object of the present disclosure is not impaired.
  • the laminated body 10 since the laminated body 10 exhibits excellent sound absorption over a wide frequency range, it is particularly suitable for use as a sound absorbing material, but is not limited thereto, and may be used for other uses such as a heat insulating material and a filter. Good.
  • the sound absorbing material according to the present embodiment includes the above-described laminate.
  • the sound-absorbing material including the laminate 10 shown in FIG. 1 may be a sound-absorbing material composed of the laminate 10, and the surface 19 side of the laminate 10 is attached to a base material or the like.
  • a sound absorbing material may be used.
  • excellent sound-absorbing properties can be obtained over a wide frequency range by installing the laminated body 10 so that the low air permeability A layer 12 side is on the sound incident side.
  • Thickness (mm) With respect to the ten samples for basis weight measurement, the thicknesses at a total of five locations at the center and at the four corners were measured, and the average value at a total of 50 locations was calculated. For the thickness measurement, a thickness gauge having a load of 7 gf / cm 2 (measuring element diameter of 50 mm ⁇ ) was used.
  • Air permeability (cc / cm 2 / sec) For a total of five locations at the center and four corners of the measurement sample (100 mm ⁇ 100 mm), the air flow rate at a pressure difference of 125 Pa was measured according to JIS L1096 using a Frazier type tester, and the average value was obtained.
  • Average fiber diameter of nonwoven fabric ( ⁇ m) About the obtained nonwoven fabric, a photograph with a magnification of 1000 times was taken using an electron microscope “S-3500N” manufactured by Hitachi, Ltd., and 100 fibers were arbitrarily selected from the taken pictures, and the width of the fibers ( Diameter) was measured, and the average fiber diameter was calculated based on the number average.
  • Example 1 ⁇ Preparation of each layer> As the highly air-permeable B layer 14 (second layer) and the highly air-permeable D layer 18 (fourth layer) of the laminate 10, a foamed urethane sheet (manufactured by INOAC, product name: ECS10, density: 22 kg / m 3 ) is used. Prepared each. The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1) in the urethane sheet (“second layer” and “fourth layer” in Table 1), The unit (cc / cm 2 / sec) and the thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
  • melt blown nonwoven fabric As the low air permeability A layer 12 (first layer) and the low air permeability C layer 16 (third layer) of the laminate 10, a melt blown nonwoven fabric (average fiber diameter: 1 ⁇ m) was produced as follows.
  • the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1) of the obtained melt blown nonwoven fabric (“first layer” and “third layer” in Table 1) “, Unit: cc / cm 2 / sec), and thickness (“ thickness ”in Table 1, unit: mm) are shown in Table 1.
  • a propylene homopolymer (melt flow rate: 1550 g / 10 min, melting point 157 ° C., hereinafter referred to as “PP”) was used as the thermoplastic resin, and the thermoplastic resin was used as it was as the thermoplastic resin composition.
  • a meltblown nonwoven fabric was obtained using a meltblown nonwoven fabric production apparatus equipped with a meltblown spinning nozzle having a nozzle hole diameter of 0.20 mm as a nozzle. Specifically, a fiber obtained by extruding a thermoplastic resin composition at 300 ° C. using the melt blown nonwoven fabric manufacturing apparatus and extruding with heated air (300 ° C., 350 Nm 3 / m / hour) blown from both sides of the spinning nozzle. The fiber was collected at a distance of 20 cm from the spinning nozzle to obtain a meltblown nonwoven fabric.
  • a spray type adhesive (manufactured by 3M, product name: spray paste 55) was used for bonding the prepared layers. Specifically, first, an adhesive was spread on the surface of the urethane sheet to be the high air permeability D layer 18 (fourth layer), and the melt blown nonwoven fabric to be the low air permeability C layer 16 (third layer) was stacked. Similarly, an adhesive was spread on the surface of the melt blown nonwoven fabric to be the low air permeability C layer 16 (third layer), and a urethane sheet to be the high air permeability B layer 14 (second layer) was stacked. Furthermore, the melt-blown nonwoven fabric used as the low air-permeation A layer 12 (1st layer) was piled up by spraying an adhesive agent on the surface of the urethane sheet used as the high air-permeation B layer 14 (second layer).
  • Example 1 As described above, a laminate of Example 1 was obtained in which four layers were laminated via an adhesive.
  • the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire laminate (“total” in Table 1) 2 / sec) and thickness ("thickness” in Table 1, unit: mm) are shown in Table 1.
  • the sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
  • the frequency dependence of the sound absorption coefficient in the laminate of Example 1 is shown in FIG.
  • shaft of the graph shown in FIG. 2 is a sound absorption rate
  • a horizontal axis is a frequency (Hz).
  • Example 2 Needle punched nonwoven fabric (average fiber diameter: 30 ⁇ m) obtained by the following method as the high air permeability B layer 14 (second layer) and high air permeability D layer 18 (fourth layer) of the laminate 10 instead of the urethane sheet A laminate was obtained in the same manner as in Example 1 except that was used.
  • the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire laminate (“total” in Table 1) 2 / sec) and thickness ("thickness” in Table 1, unit: mm) are shown in Table 1.
  • the sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
  • the said needle punch nonwoven fabric was manufactured as follows. A needle punched nonwoven fabric was obtained by forming polyethylene terephthalate fibers (hereinafter also referred to as “PET short fibers”) having an average fiber diameter of 20 ⁇ m and an average fiber length of 50 mm into a nonwoven fabric sheet using a needle punch machine.
  • PET short fibers polyethylene terephthalate fibers
  • Example 3 As the high air permeability B layer (second layer), the high air permeability D layer (fourth layer), and the high air permeability F layer (sixth layer) in the laminate having the six-layer structure, the thickness is 13 mm and the basis weight is 286 g / m 2.
  • the thickness is 0.1 mm, and the basis weight is 10 g /
  • a meltblown nonwoven fabric with m 2 and air permeability of 7 cc / cm 2 / sec was prepared.
  • This melt blown nonwoven fabric is the same as the first layer and the third layer of Example 1.
  • the first to sixth layers were laminated in this order via an adhesive to obtain a laminate consisting of all six layers.
  • the sound absorption performance of the obtained laminate of Example 3 is shown in Table 1 (“Sound Absorption Rate” in Table 1).
  • Example 1 As the highly breathable layer 114 (second layer) of the laminate 110 shown in FIG. 3, a urethane sheet (manufactured by INOAC, product name: ECS) similar to the highly breathable layer of Example 1 except for the thickness and basis weight was prepared.
  • the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm 2 ) in a urethane sheet (“second layer” in Table 1) / Sec) and thickness ("thickness" in Table 1, unit: mm) are shown in Table 1.
  • melt-blown nonwoven fabric similar to the low ventilation layer of Example 1 was produced as the low ventilation layer 112 (1st layer) of the laminated body 110 shown in FIG.
  • the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / in) in the obtained melt blown nonwoven fabric (“first layer” in Table 1) cm 1 / sec) and thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
  • Example 2 Two layers were bonded in the same manner as in Example 1.
  • the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire laminate (“total” in Table 1) 2 / sec) and thickness ("thickness” in Table 1, unit: mm) are shown in Table 1.
  • the oblique line in Table 1 indicates that the corresponding layer is not included, and so on.
  • the sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
  • the frequency dependence of the sound absorption coefficient in the laminate of Comparative Example 1 is shown in FIG.
  • the laminate of the present disclosure exhibits excellent sound absorption over a wide frequency range, it is a transport device for automobiles, trains, ships, aircraft, etc .; vacuum cleaner, washing machine, refrigerator, freezer, dryer, mixer, air conditioner, air cleaner Electric appliances such as machines; office automation equipment such as copiers, facsimiles, personal computers, and printing machines; houses such as wall materials, ceiling materials, floor materials, and the like, and can be used for applications that require sound absorbing materials.
  • the laminate of the present disclosure is particularly useful in applications where the thickness of the entire sound absorbing material is limited (for example, automobiles and the like), the sound absorption can be enhanced over a wide frequency range without changing the overall thickness, and therefore the laminate of the present disclosure is particularly useful.
  • the laminate of the present disclosure having excellent sound absorption over a wide frequency range is particularly useful.

Abstract

A laminate body in which are laminated, in the stated order: a first layer having air permeability of no more than 1 cc/cm2/sec, and less than 30 cc/cm2/sec; a second layer having air permeability of 30 cc/cm2/sec to 1000 cc/cm2/sec; a third layer having air permeability of no more than 1 cc/cm2/sec and less than 30 cc/cm2/sec; and a fourth layer having air permeability of 30 cc/cm2/sec to 1000 cc/cm2/sec.

Description

積層体及び吸音材Laminate and sound absorbing material
 本開示は、積層体及び吸音材に関する。 The present disclosure relates to a laminate and a sound absorbing material.
 住宅、オフィス等の住環境、航空機、車両、自動車等の輸送手段においては、外部からの騒音の遮断、内部からの音響を外部に漏らさない等の目的で、空気層を含むポリウレタンフォーム、ポリエチレンフォーム等の発泡体、フェルト、不織布等の繊維状物からなる吸音材が広く用いられている。 Polyurethane foam and polyethylene foam containing an air layer for the purpose of blocking noise from the outside and not leaking the sound from the outside in transportation environments such as living environments such as houses and offices, aircraft, vehicles, automobiles, etc. Sound absorbing materials made of fibrous materials such as foams, felts, nonwoven fabrics and the like are widely used.
 特に、自動車等の輸送手段は、より軽量で且つ吸音性能に優れる吸音材が求められることから、吸音性能を改良する方法として、材質の異なる層をはり合わせて2層又は3層にして用いることが提案されている(例えば、特許文献1~特許文献5等)。 In particular, transportation means such as automobiles are required to have a light-absorbing material that is lighter in weight and excellent in sound-absorbing performance. Therefore, as a method for improving sound-absorbing performance, two or three layers of different materials are bonded together. Have been proposed (for example, Patent Document 1 to Patent Document 5).
  特許文献1:特開2002-69823号公報
  特許文献2:特開2002-161565号公報
  特許文献3:特開2003-49351号公報
  特許文献4:特開2014-232281号公報
  特許文献5:特開2013-139188号公報
Patent Document 1: Japanese Patent Laid-Open No. 2002-69823 Patent Document 2: Japanese Patent Laid-Open No. 2002-161565 Patent Document 3: Japanese Patent Laid-Open No. 2003-49351 Patent Document 4: Japanese Patent Laid-Open No. 2014-2322281 2013-139188 gazette
 しかし、特許文献1~4で提案されている積層体のように、材質の異なる層をはり合わせて2層にした積層体は、特定の周波数領域において優れた吸音率を示すものの、当該周波数領域以外における吸音率が低下するという問題がある。
 また、特許文献5で提案されている積層体は、広い周波数領域において吸音性が示されているものの、いまだ充分とは言えないのが現状である。
However, as in the laminates proposed in Patent Documents 1 to 4, a laminate in which layers of different materials are laminated to form two layers exhibits an excellent sound absorption coefficient in a specific frequency region, but the frequency region There is a problem in that the sound absorption rate is reduced.
Moreover, although the laminated body proposed in Patent Document 5 shows sound absorption in a wide frequency range, it is still not sufficient.
 本開示は、前記問題点に鑑みてなされたものであって、広い周波数領域にわたって優れた吸音性を示す積層体、及びこの積層体を含む吸音材を提供することを目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a laminate that exhibits excellent sound absorption over a wide frequency range, and a sound absorbing material including the laminate.
 前記課題を解決するための具体的手段は以下のとおりである。
<1> 通気度が1cc/cm/sec以上30cc/cm/sec未満の第1の層と、通気度が30cc/cm/sec以上1000cc/cm/sec以下の第2の層と、通気度が1cc/cm/sec以上30cc/cm/sec未満の第3の層と、通気度が30cc/cm/sec以上1000cc/cm/sec以下の第4の層と、がこの順に積層した積層体。
<2> 前記第1の層及び前記第3の層の少なくとも1層は、不織布、多孔フィルム、織布、又は発泡体である<1>に記載の積層体。
<3> 前記第2の層及び前記第4の層の少なくとも1層は、不織布、織布、又は発泡体である<1>又は<2>に記載の積層体。
<4> 前記第1の層の厚み及び前記第3の層の厚みは、それぞれ0.1mm以上2mm以下である<1>~<3>のいずれか1つに記載の積層体。
<5> 前記第2の層の厚み及び前記第4の層の厚みは、それぞれ10mm以上50mm以下である<1>~<4>のいずれか1つに記載の積層体。
Specific means for solving the above-described problems are as follows.
<1> a first layer of the air permeability is less than 1 cc / cm 2 / sec or more 30cc / cm 2 / sec, and the second layer air permeability following 30 cc / cm 2 / sec or more 1000 cc / cm 2 / sec A third layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec, and a fourth layer having an air permeability of 30 cc / cm 2 / sec or more and 1000 cc / cm 2 / sec or less. Laminated body laminated in this order.
<2> The laminate according to <1>, wherein at least one of the first layer and the third layer is a nonwoven fabric, a porous film, a woven fabric, or a foam.
<3> The laminate according to <1> or <2>, wherein at least one of the second layer and the fourth layer is a nonwoven fabric, a woven fabric, or a foam.
<4> The laminate according to any one of <1> to <3>, wherein the thickness of the first layer and the thickness of the third layer are 0.1 mm or more and 2 mm or less, respectively.
<5> The laminate according to any one of <1> to <4>, wherein the thickness of the second layer and the thickness of the fourth layer are 10 mm or more and 50 mm or less, respectively.
<6> <1>~<5>のいずれか1つに記載の積層体を含む吸音材。 <6> A sound absorbing material comprising the laminate according to any one of <1> to <5>.
 本開示は、広い周波数領域にわたって優れた吸音性を示す積層体、及びこの積層体を含む吸音材を提供することができる。 The present disclosure can provide a laminate exhibiting excellent sound absorption over a wide frequency range, and a sound absorbing material including the laminate.
図1は、本実施形態に係る積層体の層構成の一例を示す概略部分断面図である。FIG. 1 is a schematic partial cross-sectional view showing an example of the layer configuration of the laminate according to the present embodiment. 図2は、実施例1、比較例1、及び比較例5の吸音材における吸音率の周波数特性を示す図である。FIG. 2 is a diagram illustrating the frequency characteristics of the sound absorption coefficient in the sound absorbing materials of Example 1, Comparative Example 1, and Comparative Example 5. 図3は、従来における積層体の層構成の一例を示す概略部分断面図である。FIG. 3 is a schematic partial sectional view showing an example of a layer structure of a conventional laminate.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
〔積層体〕
 以下、本開示に係る積層体の一実施形態について説明する。
 本実施形態に係る積層体は、通気度が1cc/cm/sec以上30cc/cm/sec未満の第1の層(以下「低通気A層」ともいう)と、通気度が30cc/cm/sec以上1000cc/cm/sec以下の第2の層(以下「高通気B層」ともいう)と、通気度が1cc/cm/sec以上30cc/cm/sec未満の第3の層(以下「低通気C層」ともいう)と、通気度が30cc/cm/sec以上1000cc/cm/sec以下の第4の層(以下「高通気D層」ともいう)と、がこの順に積層した積層体である。
 なお、通気度が1cc/cm/sec以上30cc/cm/sec未満の層を総称して「低通気層」ともいい、通気度が30cc/cm/sec以上1000cc/cm/sec以下の層を総称して「高通気層」ともいう。
[Laminate]
Hereinafter, an embodiment of a laminate according to the present disclosure will be described.
The laminate according to the present embodiment has a first layer (hereinafter, also referred to as “low-breathing A layer”) having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec, and an air permeability of 30 cc / cm. A second layer (hereinafter also referred to as “highly-permeable B layer”) of 2 / sec or more and 1000 cc / cm 2 / sec or less, and a third layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec. A layer (hereinafter also referred to as a “low air permeability C layer”) and a fourth layer (hereinafter also referred to as a “high air permeability D layer”) having an air permeability of 30 cc / cm 2 / sec to 1000 cc / cm 2 / sec. It is the laminated body laminated | stacked in this order.
A layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec is also collectively referred to as a “low air permeability layer”, and the air permeability is 30 cc / cm 2 / sec or more and 1000 cc / cm 2 / sec or less. These layers are also collectively referred to as “highly breathable layers”.
 ここで、通気度(cc/cm/sec)は、サンプルの5箇所について、フラジール形試験機を用い、JIS L1096(2010)のA法(フラジール形法)に準拠して圧力差125Paでの通気量(層を通過する空気量)を測定し、平均した値である。
 なお、積層体における各層の通気度を測定する場合は、測定対象の層を積層体から剥離して測定する。ただし、測定対象の層全体を積層体から剥離することが困難な場合は、測定対象の層の厚みを測定した上で、厚み方向の一部を切り出した試料の通気量を測定し、層厚みを考慮した値に換算することで、測定対象の層全体の通気度を求めてもよい。
Here, the air permeability (cc / cm 2 / sec) was measured at a pressure difference of 125 Pa in accordance with JIS L1096 (2010) A method (fragile type method) using a Frazier type tester at five locations of the sample. This is an average value obtained by measuring the air flow rate (the amount of air passing through the layer).
In addition, when measuring the air permeability of each layer in a laminated body, it peels from the laminated body and measures it. However, if it is difficult to peel the entire layer to be measured from the laminate, the thickness of the layer to be measured is measured, and the air flow rate of a sample cut out in the thickness direction is measured to determine the layer thickness. The air permeability of the entire layer to be measured may be obtained by converting the value into consideration.
 図1に、本実施形態に係る積層体の層構成の一例を示す。
 図1に示す積層体10は、低通気A層12と、高通気B層14と、低通気C層16と、高通気D層18と、がこの順に積層されている。
 積層体10は、上記構成であることにより、広い周波数領域にわたって優れた吸音性を示す。その理由は、以下のように推測される。
FIG. 1 shows an example of the layer structure of the laminate according to this embodiment.
In the laminate 10 shown in FIG. 1, a low air permeability A layer 12, a high air permeability B layer 14, a low air permeability C layer 16, and a high air permeability D layer 18 are laminated in this order.
Since the laminate 10 has the above-described configuration, it exhibits excellent sound absorption over a wide frequency range. The reason is presumed as follows.
 従来における吸音材としては、例えば図3に示すように、低通気層112と、高通気層114と、をはり合わせて2層にした積層体110が挙げられる。積層体110では、上記2層構成とすることで、低通気層112が吸音層として機能し、高通気層114が背後空気層として機能するため、特定の周波数において、1層構成の吸音材に比べて高い吸音性能が得られる。具体的には、高通気層114における低通気層112と反対の面115を定常波の固定端としたとき、定常波の腹が低通気層112の位置となる周波数近辺の音(例えば、波長が高通気層114の厚みの4倍である音)に対して、高い吸音率が得られる。
 しかしながら、積層体110では、前記特定の周波数以外の音、その中でも特に、定常波の節が低通気層112の位置となる周波数近辺の音(例えば、波長が高通気層114の厚みの2倍である音)に対しては、高い吸音率が得られにくい。
As a conventional sound-absorbing material, for example, as shown in FIG. 3, there is a laminated body 110 in which a low air-permeable layer 112 and a high air-permeable layer 114 are laminated to form two layers. In the laminate 110, the two-layer configuration described above allows the low ventilation layer 112 to function as a sound absorption layer and the high ventilation layer 114 to function as a back air layer. Higher sound absorption performance can be obtained. Specifically, when the surface 115 of the high air permeability layer 114 opposite to the low air permeability layer 112 is a fixed end of the standing wave, a sound near the frequency where the antinode of the standing wave becomes the position of the low air permeability layer 112 (for example, the wavelength is high). A high sound absorption coefficient is obtained for a sound that is four times the thickness of the ventilation layer 114.
However, in the laminate 110, the sound other than the specific frequency, particularly, the sound near the frequency where the node of the standing wave is the position of the low ventilation layer 112 (for example, the wavelength is twice the thickness of the high ventilation layer 114). For a certain sound, it is difficult to obtain a high sound absorption coefficient.
 これに対して積層体10は、低通気A層12、高通気B層14、低通気C層16、及び高通気D層18の順に積層されている。つまり、積層体10は、積層体110における低通気層112と同じ位置にある低通気A層12のほかに、積層体110における高通気層114の厚みの半分に相当する位置にも、通気度の低い低通気C層16が設けられている。
 そして、積層体110と同様に、低通気A層12が吸音層として機能することで、高通気D層18における低通気C層16と反対側の面19を定常波の固定端としたとき、定常波の腹が低通気A層12の位置となる周波数近辺の音に対して高い吸音率が得られる。加えて、低通気C層16も吸音層として機能することで、定常波の節が低通気A層12の位置となり、かつ、定常波の腹が低通気C層16の位置となる周波数近辺の音(つまり、積層体110では高い吸音率が得られにくい音)に対しても、高い吸音率が得られる。
 このようにして、積層体10では、広い周波数領域にわたって優れた吸音性を示す。
On the other hand, the laminated body 10 is laminated | stacked in order of the low ventilation A layer 12, the high ventilation B layer 14, the low ventilation C layer 16, and the high ventilation D layer 18. In FIG. That is, the laminated body 10 has air permeability at a position corresponding to half of the thickness of the high ventilation layer 114 in the laminated body 110 in addition to the low ventilation layer A 12 at the same position as the low ventilation layer 112 in the laminated body 110. A low air permeability C layer 16 having a low thickness is provided.
As in the case of the laminate 110, when the low air permeability A layer 12 functions as a sound absorbing layer, the surface 19 on the opposite side of the low air permeability C layer 16 in the high air permeability D layer 18 is a stationary wave stationary end. A high sound absorption coefficient can be obtained with respect to the sound in the vicinity of the frequency where the antinode is located at the position of the low ventilation A layer 12. In addition, the low-air-permeable C layer 16 also functions as a sound-absorbing layer, so that the sound near the frequency where the node of the standing wave becomes the position of the low-air-permeable A layer 12 and the anti-node of the standing wave becomes the position of the low-air-permeable C layer 16 ( In other words, a high sound absorption coefficient can be obtained even for a sound that is difficult to obtain a high sound absorption coefficient in the laminate 110.
Thus, the laminate 10 exhibits excellent sound absorption over a wide frequency range.
 また、積層体110を吸音材として用いる場合、吸音材を設置する環境によって積層体全体の厚みが制限されることがあり、高い吸音率が得られる周波数は高通気層114の厚みに依存するため、目的とする周波数に対して高い吸音率を得るのが難しい場合がある。しかし、積層体10を吸音材として用いれば、広い周波数領域にわたって優れた吸音性を示すため、積層体全体の厚みを変えずに、目的の周波数領域に対して高い吸音率を得やすくなる。 When the laminate 110 is used as a sound absorbing material, the thickness of the entire laminate may be limited depending on the environment in which the sound absorbing material is installed, and the frequency at which a high sound absorption coefficient is obtained depends on the thickness of the high ventilation layer 114. In some cases, it is difficult to obtain a high sound absorption coefficient for a target frequency. However, if the laminate 10 is used as a sound absorbing material, it exhibits excellent sound absorption over a wide frequency range, so that it is easy to obtain a high sound absorption coefficient for the target frequency range without changing the thickness of the entire laminate.
 なお、積層体10は、低通気A層12、高通気B層14、低通気C層16、及び高通気D層18がこの順に積層されていればよく、これらの層のほかに、その他の層(例えば補強層、接着層等)をさらに有してもよい。
 その他の層は、層間(すなわち低通気A層12-高通気B層14間、高通気B層14-低通気C層16間、低通気C層16-高通気D層18間)に有してもよく、外側の面(すなわち低通気A層12における高通気B層14と反対側の面、面19)に有してもよい。
 また、吸音率の入射方向依存性をなくすため、積層体10の面19に、通気度の低い層をさらに設けてもよい。
 さらに、積層体10は、低通気A層12、高通気B層14、低通気C層16、及び高通気D層18の他に、低通気層及び高通気層をさらに有してもよい。具体的には、例えば、高通気D層18の面19側に、さらに低通気層と高通気層との組み合わせを追加した6層構成の積層体、8層構成の積層体等が挙げられる。これらの中でも、特に、低通気A層、高通気B層、低通気C層、高通気D層、低通気E層、及び高通気F層がこの順に積層した6層構成の積層体(不図示)が好ましい。
 なお、低通気E層としては、低通気A層同様に、通気度が1cc/cm/sec以上30cc/cm/sec未満の層が好ましい。低通気E層の目付及び厚みについても低通気A層に準ずる。また、高通気F層としては、高通気B層同様に。通気度が30cc/cm/sec以上1000cc/cm/sec以下の層が好ましい。高通気F層の目付及び厚みについても高通気B層に準ずる。
 すなわち、低通気層及び高通気層をさらに有する積層体の中でも、低通気層である第1の層と、高通気層である第2の層と、低通気層である第3の層と、高通気層である第4の層と、低通気層である第5の層と、高通気層である第6の層と、がこの順に積層した積層体が好ましい。
In addition, the laminated body 10 should just laminate | stack the low ventilation A layer 12, the high ventilation B layer 14, the low ventilation C layer 16, and the high ventilation D layer 18 in this order. You may further have a layer (for example, a reinforcement layer, an adhesive layer, etc.).
The other layers are provided between the layers (ie, between the low air permeability A layer 12 and the high air permeability B layer 14, between the high air permeability B layer 14 and the low air permeability C layer 16, and between the low air permeability C layer 16 and the high air permeability D layer 18). Alternatively, it may be provided on the outer surface (that is, the surface on the side opposite to the high air permeability B layer 14 in the low air permeability A layer 12, the surface 19).
Further, in order to eliminate the dependency of the sound absorption rate on the incident direction, a layer having a low air permeability may be further provided on the surface 19 of the laminate 10.
Furthermore, the laminate 10 may further include a low air permeability layer and a high air permeability layer in addition to the low air permeability A layer 12, the high air permeability B layer 14, the low air permeability C layer 16, and the high air permeability D layer 18. Specifically, for example, a laminated body having a six-layer structure, a laminated body having an eight-layer structure, or the like in which a combination of a low air-permeable layer and a high air-permeable layer is further added to the surface 19 side of the high-air-permeable D layer 18 can be given. Among these, in particular, a laminate having a six-layer structure in which a low air permeability A layer, a high air permeability B layer, a low air permeability C layer, a high air permeability D layer, a low air permeability E layer, and a high air permeability F layer are laminated in this order (not shown). ) Is preferred.
As the low air permeability E layer, a layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec is preferable like the low air permeability A layer. The basis weight and thickness of the low air permeability E layer are also the same as those of the low air permeability A layer. In addition, the high air permeability F layer is the same as the high air permeability B layer. A layer having an air permeability of 30 cc / cm 2 / sec to 1000 cc / cm 2 / sec is preferable. The basis weight and thickness of the high ventilation F layer are also the same as those of the high ventilation B layer.
That is, among the laminate further having a low air permeability layer and a high air permeability layer, a first layer that is a low air permeability layer, a second layer that is a high air permeability layer, and a third layer that is a low air permeability layer; A laminate in which a fourth layer that is a high air permeability layer, a fifth layer that is a low air permeability layer, and a sixth layer that is a high air permeability layer is laminated in this order is preferable.
 なお、積層体10においては、低通気A層12と低通気C層16とが、同じ材質、同じ特性、及び同じ厚みを有する層であるが、各層の通気度が前記範囲であればこれに限られない。低通気層同士(すなわち、低通気A層12及び低通気C層16)における材質、特性、及び厚みは、それぞれ同じでもよく、異なっていてもよい。
 また、積層体10においては、高通気B層14と高通気D層18とが、同じ材質、同じ特性、及び同じ厚みを有する層であるが、各層の通気度が前記範囲であればこれに限られない。高通気層同士(すなわち、高通気B層14及び高通気D層18)における材質、特性、及び厚みは、それぞれ同じでもよく、異なっていてもよい。
 また、各層の通気度が前記範囲であれば、低通気層及び高通気層の両方を同じ材質(例えば不織布等)としてもよい。
 以上のように、本開示の積層体は、広い周波数領域にわたって優れた吸音性を示す。そして、本開示の積層体を含む吸音材は、自動車用途に好適に用いることができる。特に、電気自動車では低音のロードノイズから高音のモーター音まで広い範囲の吸音特性が要求されるため、広い周波数領域にわたって優れた吸音性を有する本開示の積層体は特に有用である。
In the laminated body 10, the low air permeability A layer 12 and the low air permeability C layer 16 are layers having the same material, the same characteristics, and the same thickness. Not limited. The materials, characteristics, and thicknesses of the low air permeability layers (that is, the low air permeability A layer 12 and the low air permeability C layer 16) may be the same or different.
Moreover, in the laminated body 10, although the high ventilation B layer 14 and the high ventilation D layer 18 are the layers which have the same material, the same characteristic, and the same thickness, if the air permeability of each layer is the said range, it will be to this Not limited. The materials, characteristics, and thicknesses of the high air permeability layers (that is, the high air permeability B layer 14 and the high air permeability D layer 18) may be the same or different.
If the air permeability of each layer is within the above range, both the low air permeability layer and the high air permeability layer may be made of the same material (for example, non-woven fabric).
As described above, the laminate of the present disclosure exhibits excellent sound absorption over a wide frequency range. And the sound absorption material containing the laminated body of this indication can be used suitably for a motor vehicle use. In particular, since the electric vehicle requires a wide range of sound absorption characteristics from low road noise to high motor sound, the laminate of the present disclosure having excellent sound absorption over a wide frequency range is particularly useful.
<通気度>
 低通気A層12及び低通気C層16の通気度は、それぞれ1cc/cm/sec以上30cc/cm/sec未満であり、3cc/cm/sec以上20cc/cm/sec以下が好ましく、5cc/cm/sec以上10cc/cm/sec以下がより好ましい。
 低通気A層12及び低通気C層16の通気度が上記範囲であることにより、上記範囲より高い場合に比べ積層体全体の通気度を低く抑えることができ、上記範囲よりも低い場合に比べ吸音層としての機能が発揮されやすくなる。
<Air permeability>
Air permeability of the low air A layer 12 and the low air C layer 16 are each less than 1cc / cm 2 / sec or more 30cc / cm 2 / sec, preferably not more than 3cc / cm 2 / sec or more 20cc / cm 2 / sec 5 cc / cm 2 / sec or more and 10 cc / cm 2 / sec or less is more preferable.
When the air permeability of the low air permeability A layer 12 and the low air permeability C layer 16 is within the above range, the air permeability of the entire laminate can be suppressed lower than when the air permeability is higher than the above range, and compared with the case where the air permeability is lower than the above range. The function as a sound absorbing layer is easily exhibited.
 高通気B層14及び高通気D層18の通気度は、それぞれ30cc/cm/sec以上1000cc/cm/sec以下であり、40cc/cm/sec以上700cc/cm/sec以下が好ましく、50cc/cm/sec以上500cc/cm/sec以下がより好ましい。
 高通気B層14及び高通気D層18の通気度が上記範囲であることにより、上記範囲より低い場合に比べ吸音材の途中で反射する音波が少なくなり上記範囲よりも高い場合に比べ背後空気層としての機能が発揮されやすくなる。
The air permeability of the high air permeability B layer 14 and the high air permeability D layer 18 is 30 cc / cm 2 / sec or more and 1000 cc / cm 2 / sec or less, respectively, preferably 40 cc / cm 2 / sec or more and 700 cc / cm 2 / sec or less. 50 cc / cm 2 / sec or more and 500 cc / cm 2 / sec or less is more preferable.
Since the air permeability of the high air permeability B layer 14 and the high air permeability D layer 18 is in the above range, less sound waves are reflected in the middle of the sound absorbing material than in the case where the air permeability is lower than the above range, and the back air compared with the case where the air permeability is higher than the above range. The function as a layer is easily exhibited.
 高通気B層14の通気度は、低通気A層12の通気度の2倍以上100倍以下が好ましく、5倍以上50倍以下がより好ましく、10倍以上20倍以下がさらに好ましい。
 低通気C層16の通気度は、低通気A層12の通気度の0.5倍以上2倍以下が好ましく、0.7倍以上1.5倍以下がより好ましく、0.9倍以上1.1倍以下がさらに好ましい。
 高通気D層18の通気度は、低通気C層16の通気度の2倍以上100倍以下が好ましく、5倍以上50倍以下がより好ましく、10倍以上20倍以下がさらに好ましい。
 各層間における通気度の比が上記範囲であることにより、低通気層及び高通気層それぞれの役割が発揮され、積層体の吸音率が高くなる。
The air permeability of the high air permeability B layer 14 is preferably not less than 2 times and not more than 100 times the air permeability of the low air permeability A layer 12, more preferably not less than 5 times and not more than 50 times, and further preferably not less than 10 times and not more than 20 times.
The air permeability of the low air permeability C layer 16 is preferably 0.5 times or more and 2 times or less, more preferably 0.7 times or more and 1.5 times or less, more preferably 0.9 times or more and 1 times that of the low air permeability A layer 12. More preferably, it is 1 times or less.
The air permeability of the high air permeability D layer 18 is preferably 2 times or more and 100 times or less, more preferably 5 times or more and 50 times or less, and further preferably 10 times or more and 20 times or less of the air permeability of the low air permeability C layer 16.
When the ratio of the air permeability between the respective layers is in the above range, the roles of the low air permeability layer and the high air permeability layer are exhibited, and the sound absorption coefficient of the laminate is increased.
 積層体全体の通気度は、吸音率向上の観点から、例えば1cc/cm/sec以上25cc/cm/sec以下が挙げられ、2cc/cm/sec以上15cc/cm/sec以下が好ましく、3cc/cm/sec以上10cc/cm/sec以下がより好ましい。 Air permeability of the laminate as a whole, from the viewpoint of sound absorption rate improves, for example, 1cc / cm 2 / sec or more 25cc / cm 2 / sec or less and the like, is preferably from 2cc / cm 2 / sec or more 15cc / cm 2 / sec It is more preferably 3 cc / cm 2 / sec or more and 10 cc / cm 2 / sec or less.
<厚み>
 低通気A層12及び低通気C層16の厚みは、積層体全体の通気度を前記範囲に調整する観点から、それぞれ0.1mm以上2mm以下が好ましく、0.1mm以上1mm以下がより好ましく、0.1mm以上0.5mm以下がさらに好ましい。
 高通気B層14及び高通気D層18の厚みは、吸音率を高めたい音の周波数に応じて設定され限定されるものではないが、例えばそれぞれ10mm以上50mm以下、好ましくは10mm以上40mm以下、より好ましくは10mm以上30mm以下が挙げられる。
 高通気B層14の厚みと高通気D層18の厚みとの比は特に限定されず、目的の周波数領域における吸音率が向上する位置に低通気C層16を設ければよい。なお、低通気A層が吸音しにくい周波数の音を低通気C層で吸音させやすくする観点からは、高通気D層18の厚みが高通気B層14の厚みの0.7倍以上1.3倍以下であることが好ましく、0.9倍以上1.1倍以下であることがより好ましい。
 積層体全体の厚みは、吸音率を高めたい音の周波数及び積層体を設置する環境等に応じて設定され、限定されるものではないが、例えば、20mm以上100mm以下が挙げられ、25mm以上80mm以下が好ましく、30mm以上60mm以下がより好ましい。
<Thickness>
The thickness of the low air permeability A layer 12 and the low air permeability C layer 16 is preferably 0.1 mm or more and 2 mm or less, more preferably 0.1 mm or more and 1 mm or less, respectively, from the viewpoint of adjusting the air permeability of the entire laminate to the above range. More preferably, it is 0.1 mm or more and 0.5 mm or less.
The thicknesses of the high ventilation B layer 14 and the high ventilation D layer 18 are not limited and set according to the frequency of the sound for which the sound absorption rate is desired to be increased, but for example, 10 mm or more and 50 mm or less, preferably 10 mm or more and 40 mm or less, More preferably, 10 mm or more and 30 mm or less are mentioned.
The ratio of the thickness of the high air permeability B layer 14 to the thickness of the high air permeability D layer 18 is not particularly limited, and the low air permeability C layer 16 may be provided at a position where the sound absorption coefficient in the target frequency region is improved. From the viewpoint of facilitating the sound absorption of the low-breathing A layer at a frequency that is difficult for the low-breathing A layer to absorb sound, the thickness of the high-breathing D layer 18 is 0.7 times or more that of the high-breathing B layer 14. It is preferably 3 times or less, and more preferably 0.9 times or more and 1.1 times or less.
The thickness of the entire laminate is set according to the frequency of the sound for which the sound absorption rate is desired to be increased and the environment in which the laminate is installed, but is not limited to, for example, 20 mm to 100 mm, and 25 mm to 80 mm. The following is preferable, and 30 mm or more and 60 mm or less are more preferable.
<材質>
 低通気層及び高通気層の材質は、各層における通気度が前記範囲内であれば特に限定されず、例えば、不織布、発泡体、多孔フィルム、紙、織物、編物、フェルト、無機繊維等のシート状のものが挙げられる。
<Material>
The material of the low air permeability layer and the high air permeability layer is not particularly limited as long as the air permeability in each layer is within the above range. For example, sheets such as nonwoven fabric, foam, porous film, paper, woven fabric, knitted fabric, felt, inorganic fiber, etc. The thing of the shape is mentioned.
 不織布としては、有機繊維(例えば樹脂繊維等)又はその混合物を含んで構成された不織布が挙げられ、長繊維不織布でも短繊維不織布でもよい。不織布としては、例えば、メルトブローン不織布、スパンボンド不織布、ニードルパンチ不織布、サーマルボンド不織布、ケミカルボンド不織布、ステッチボンド不織布、スパンレース不織布等が挙げられる。
 なお、不織布の通気度は、例えば、厚み、目付、繊維径等を調整することでも制御でき、またカレンダー加工等の後加工により空隙率等を調整することでも制御できる。
As a nonwoven fabric, the nonwoven fabric comprised including the organic fiber (for example, resin fiber etc.) or its mixture is mentioned, A long fiber nonwoven fabric or a short fiber nonwoven fabric may be sufficient. Examples of the nonwoven fabric include melt blown nonwoven fabric, spunbond nonwoven fabric, needle punched nonwoven fabric, thermal bond nonwoven fabric, chemical bond nonwoven fabric, stitch bond nonwoven fabric, and spunlace nonwoven fabric.
The air permeability of the nonwoven fabric can be controlled by adjusting the thickness, basis weight, fiber diameter, and the like, and can also be controlled by adjusting the porosity and the like by post-processing such as calendaring.
 発泡体としては、気泡を含んだ樹脂材料が挙げられる。発泡体としては、例えば、ポリウレタン発泡体、ポリオレフィン発泡体(例えばポリエチレンポリプロピレン発泡体等)、ポリスチレン発泡体、アクリル系共重合体の発泡体、ゴムの発泡体等が挙げられる。
 なお、発泡体の通気度は、例えば、厚み、密度、独立気泡率等を調整することで制御できる。
Examples of the foam include a resin material containing bubbles. Examples of the foam include polyurethane foam, polyolefin foam (for example, polyethylene polypropylene foam), polystyrene foam, acrylic copolymer foam, rubber foam, and the like.
The air permeability of the foam can be controlled by adjusting the thickness, density, closed cell ratio, and the like, for example.
 多孔フィルムとしては、微多孔膜、メソポーラス膜等が挙げられる。多孔フィルムとしては、例えば、充填剤を含む樹脂の延伸により多孔化したフィルム等の樹脂多孔フィルム、セメント多孔体フィルム等の無機多孔フィルム、ニードルパンチ等の加工により孔の開けられたフィルム等が挙げられる。
 なお、多孔フィルムの通気度は、例えば、厚み、密度、孔径等を調整することで制御できる。
 無機繊維としては、例えばガラス繊維、カーボンファイバー等が挙げられる。
Examples of the porous film include a microporous film and a mesoporous film. Examples of the porous film include a resin porous film such as a film made porous by stretching a resin containing a filler, an inorganic porous film such as a cement porous body film, and a film having holes formed by processing such as a needle punch. It is done.
The air permeability of the porous film can be controlled by adjusting the thickness, density, pore diameter and the like, for example.
Examples of the inorganic fiber include glass fiber and carbon fiber.
-低通気層の材質-
 低通気層の材質は、これらの中でも、不織布、多孔フィルム、織布、又は発泡体が好ましく、その中でも、メルトブローン不織布、スパンボンド不織布、ガラス繊維不織布、微多孔膜がより好ましく、メルトブローン不織布が特に好ましい。
-Material of low ventilation layer-
Among these, the material of the low air permeability layer is preferably a nonwoven fabric, a porous film, a woven fabric, or a foam. preferable.
 低通気層としてメルトブローン不織布を用いる場合、メルトブローン不織布を構成する熱可塑性樹脂繊維の平均繊維径としては、例えば0.1μm~10μm、好ましくは1μm~10μmの範囲が挙げられる。 When a melt blown nonwoven fabric is used as the low air permeability layer, the average fiber diameter of the thermoplastic resin fibers constituting the melt blown nonwoven fabric is, for example, in the range of 0.1 μm to 10 μm, preferably 1 μm to 10 μm.
 以下、低通気層に用いられる材料の一例として、メルトブローン不織布について説明する。
 メルトブローン不織布は、例えば、溶融した熱可塑性樹脂組成物(すなわち、熱可塑性樹脂を含む組成物)をノズルより吐出するとともにガスを吹き付けて繊維化し、捕集して得られる。
Hereinafter, a melt blown nonwoven fabric will be described as an example of a material used for the low air permeability layer.
The melt-blown nonwoven fabric is obtained, for example, by discharging a molten thermoplastic resin composition (that is, a composition containing a thermoplastic resin) from a nozzle and blowing a gas into fibers to collect the nonwoven fabric.
 熱可塑性樹脂は、不織布を形成し得る熱可塑性樹脂であれば、特に限定はされず、種々    公知のものを用いることができる。
 熱可塑性樹脂としては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、及び1-オクテン等のα-オレフィンの単独重合体若しくは共重合体であるポリオレフィン系重合体が挙げられる。
The thermoplastic resin is not particularly limited as long as it is a thermoplastic resin capable of forming a nonwoven fabric, and various known ones can be used.
Examples of the thermoplastic resin include a polyolefin-based polymer which is a homopolymer or copolymer of an α-olefin such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene. Coalesce is mentioned.
 オレフィン系重合体としては、例えば、高圧法低密度ポリエチレン、線状低密度ポリエチレン(所謂LLDPE)、高密度ポリエチレン等のエチレンの単独重合体;エチレン・プロピレンランダム共重合体、エチレン・1-ブテンランダム共重合体等のエチレン・α-オレフィン共重合体等のエチレン系重合体;プロピレンの単独重合体(所謂ポリプロピレン);プロピレン・エチレンランダム共重合体、プロピレン・エチレン・1-ブテンランダム共重合体(所謂ランダムポリプロピレン)、プロピレンブロック共重合体、プロピレン・1-ブテンランダム共重合体等のプロピレン系重合体;1-ブテン単独重合体、1-ブテン・エチレン共重合体、1-ブテン・プロピレン共重合体等の1-ブテン系重合体;ポリ4-メチル-1-ペンテン単独重合体、4-メチル-1-ペンテン・プロピレン共重合体、4-メチル-1-ペンテン・α-オレフィン共重合体等の4-メチル-1-ペンテン系重合体;等が挙げられる。 Examples of olefin polymers include ethylene homopolymers such as high-pressure low-density polyethylene, linear low-density polyethylene (so-called LLDPE), and high-density polyethylene; ethylene-propylene random copolymer, ethylene / 1-butene random Ethylene polymers such as ethylene / α-olefin copolymers such as copolymers; propylene homopolymers (so-called polypropylene); propylene / ethylene random copolymers, propylene / ethylene / 1-butene random copolymers ( So-called random polypropylene), propylene-based polymers such as propylene block copolymer, propylene / 1-butene random copolymer; 1-butene homopolymer, 1-butene / ethylene copolymer, 1-butene / propylene copolymer 1-butene polymers such as polymers; poly-4-methyl-1-pen Emissions homopolymer, 4-methyl-1-pentene-propylene copolymer, 4-methyl-1-pentene polymer and 4-methyl-1-pentene-alpha-olefin copolymer; and the like.
 また、熱可塑性樹脂として、上記ポリオレフィン系重合体のほか、ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(例えば、ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマー又はこれらの混合物等も例示することができる。 As the thermoplastic resin, in addition to the above polyolefin polymer, polyester (eg, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polyamide (eg, nylon-6, nylon-66, polymetaxylene adipamide) Etc.), polyvinyl chloride, polyimide, ethylene / vinyl acetate copolymer, polyacrylonitrile, polycarbonate, polystyrene, ionomer or a mixture thereof.
 これら熱可塑性樹脂の中でも、成形時の紡糸安定性と、不織布の加工性、通気性、柔軟性、軽量性、及び耐熱性と、の観点から、ポリオレフィン系重合体が好ましく、ポリオレフィン系重合体の中でも、耐熱性、軽量性の面から、プロピレン系重合体がより好ましい。また、熱可塑性樹脂としては、プロピレン系重合体の中でも、プロピレン単独重合体又はプロピレン・α-オレフィン共重合体がさらに好ましい。 Among these thermoplastic resins, polyolefin polymers are preferred from the viewpoints of spinning stability during molding, and processability of nonwoven fabric, breathability, flexibility, lightness, and heat resistance. Among these, a propylene polymer is more preferable from the viewpoints of heat resistance and light weight. The thermoplastic resin is more preferably a propylene homopolymer or a propylene / α-olefin copolymer among propylene polymers.
 熱可塑性樹脂として好適なプロピレン系重合体としては、例えば、融点(Tm)が125℃以上(好ましくは130~165℃)の範囲にあるプロピレンの単独重合体、又はプロピレンと1種若しくは2種以上の炭素数2以上(好ましくは炭素数2~8)のα-オレフィン(例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等、但しプロピレンを除く)との共重合体が好ましい。 Examples of the propylene polymer suitable as the thermoplastic resin include a propylene homopolymer having a melting point (Tm) in the range of 125 ° C. or higher (preferably 130 to 165 ° C.), or one or two or more types of propylene. Α-olefins having 2 or more carbon atoms (preferably 2 to 8 carbon atoms), such as ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, etc., but propylene Are preferred.
 プロピレン系重合体は、溶融紡糸し得る限り、メルトフローレート(MFR:ASTM D-1238、230℃、荷重2160g)は特に限定はされないが、例えば、10g/10分~4000g/10分、好ましくは、50g/10分~3000g/10分、さらに好ましくは100g/10分~2000g/10分の範囲が挙げられる。 As long as the propylene-based polymer can be melt-spun, the melt flow rate (MFR: ASTM D-1238, 230 ° C., load 2160 g) is not particularly limited, but for example, 10 g / 10 min to 4000 g / 10 min, preferably 50 g / 10 min to 3000 g / 10 min, more preferably 100 g / 10 min to 2000 g / 10 min.
 熱可塑性樹脂繊維を形成する熱可塑性樹脂組成物には、本開示の目的を損なわない範囲で、酸化防止剤、耐候安定剤、耐光安定剤、ブロッキング防止剤、滑剤、顔料、柔軟剤、親水剤、助剤、撥水剤、フィラー、抗菌剤等の種々公知の添加剤が含まれていてもよい。 The thermoplastic resin composition for forming the thermoplastic resin fiber includes an antioxidant, a weather stabilizer, a light stabilizer, an anti-blocking agent, a lubricant, a pigment, a softener, and a hydrophilic agent as long as the purpose of the present disclosure is not impaired. In addition, various known additives such as an auxiliary, a water repellent, a filler, and an antibacterial agent may be contained.
 なお、メルトブローン不織布は、メルトブローン法で形成された繊維のみからなるものでもよく、その他の繊維を含んでいてもよい。その他の繊維は、短繊維であっても長繊維であってもよく、また、捲縮した繊維であっても捲縮していない繊維であってもよい。これらのその他の繊維は、強度の付与などの機械的特性の付与、化学的特性の付与、増量など、任意の目的で添加することができる。
 その他の繊維としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル製の短繊維が挙げられる。
 なお、その他の繊維の含量としては、例えば、メルトブローン不織布全体に対し、20質量%以下、好ましくは10質量%以下、さらに好ましくは5質量%以下が挙げられる。
The melt blown nonwoven fabric may be composed only of fibers formed by the melt blown method, and may contain other fibers. The other fibers may be short fibers or long fibers, or may be crimped fibers or uncrimped fibers. These other fibers can be added for any purpose such as imparting mechanical properties such as imparting strength, imparting chemical properties, and increasing the amount.
Examples of the other fibers include polyester short fibers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
In addition, as content of another fiber, 20 mass% or less with respect to the whole melt blown nonwoven fabric, Preferably it is 10 mass% or less, More preferably, 5 mass% or less is mentioned.
-高通気層の材質-
 高通気層の材質は、これらの中でも、不織布、発泡体が好ましく、その中でも、メルトブローン不織布、スパンボンド不織布、ニードルパンチ不織布、ガラス繊維不織布、ポリウレタン発泡体、ポリオレフィン発泡体がより好ましく、ポリウレタン発泡体、メルトブローン不織布がさらに好ましく、ポリウレタン発泡体が特に好ましい。
-Material of high ventilation layer-
Among these, the material of the high air permeability layer is preferably a nonwoven fabric or a foam, and among them, a melt blown nonwoven fabric, a spunbond nonwoven fabric, a needle punched nonwoven fabric, a glass fiber nonwoven fabric, a polyurethane foam, or a polyolefin foam is more preferable. Further, a melt blown nonwoven fabric is more preferable, and a polyurethane foam is particularly preferable.
 高通気層としてメルトブローン不織布を用いる場合、メルトブローン不織布を構成する熱可塑性樹脂繊維の平均繊維径としては、例えば1μm~60μm、好ましくは3μm~20μmの範囲が挙げられる。
 なお、高通気層に用いられるメルトブローン不織布に含まれる成分等については、前述の低通気層に用いられるメルトブローン不織布と同様である。
When a melt blown nonwoven fabric is used as the high air permeability layer, the average fiber diameter of the thermoplastic resin fibers constituting the melt blown nonwoven fabric is, for example, in the range of 1 μm to 60 μm, preferably 3 μm to 20 μm.
In addition, about the component etc. which are contained in the melt blown nonwoven fabric used for a high ventilation layer, it is the same as that of the melt blown nonwoven fabric used for the above-mentioned low ventilation layer.
 高通気層として発泡体を用いる場合、発泡体におけるASTM D792のA法(水中置換法)に準拠して測定される密度としては、例えば9.0kg/m~200kg/m、好ましくは10kg/m~200kg/m、より好ましくは20kg/m~200kg/mが挙げられる。
 また、高通気層に用いられる発泡体におけるASTM D2856のC法に準拠して測定される独立気泡率としては、例えば0%以上60%未満、好ましくは0~55%、より好ましくは0~50%が挙げられる。つまり、高通気層に用いられる発泡体は、連続気泡構造を有することが、高通気層の通気度を高める観点及び積層体の吸音率を高める観点で、好ましい。
 また、高空気層に用いられる発泡体におけるセルの平均直径(平均セル径)としては、例えば10μm以上2000μm以下、好ましくは300μm以上2000μm以下、より好ましくは600μm以上2000μm以下が挙げられる。
When a foam is used as the high ventilation layer, the density measured in accordance with ASTM D792 Method A (submersion method) in the foam is, for example, 9.0 kg / m 3 to 200 kg / m 3 , preferably 10 kg. / M 3 to 200 kg / m 3 , more preferably 20 kg / m 3 to 200 kg / m 3 .
Further, the closed cell ratio measured in accordance with ASTM D2856 C method in the foam used for the high air-permeable layer is, for example, 0% or more and less than 60%, preferably 0 to 55%, more preferably 0 to 50%. %. That is, it is preferable that the foam used for the high ventilation layer has an open cell structure from the viewpoint of increasing the air permeability of the high ventilation layer and the sound absorption coefficient of the laminate.
Moreover, as an average diameter (average cell diameter) of the cell in the foam used for a high air layer, 10 micrometers or more and 2000 micrometers or less, for example, Preferably they are 300 micrometers or more and 2000 micrometers or less, More preferably, they are 600 micrometers or more and 2000 micrometers or less.
 以下、高通気層に用いられるポリウレタン発泡体について説明する。
 ポリウレタン発泡体は、例えば、ポリイソシアネートと、ポリオールと、発泡剤と、必要に応じてその他の成分と、を含む組成物を反応させることで得られる。
 ポリイソシアネートとしては、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、これらの誘導体等が挙げられ、1種単独で使用してもよく、2種以上を併用してもよい。
Hereinafter, the polyurethane foam used for the highly breathable layer will be described.
The polyurethane foam can be obtained, for example, by reacting a composition containing polyisocyanate, a polyol, a foaming agent, and other components as necessary.
Examples of the polyisocyanate include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates, and derivatives thereof. These may be used alone or in combination of two or more. .
 脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート(TMDI)、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)、1,2-、2,3-又は1,3-ブチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート等が挙げられる。 Examples of the aliphatic polyisocyanate include trimethylene diisocyanate, tetramethylene diisocyanate (TMDI), pentamethylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), 1,2-, 2,3- or 1,3-butylene diisocyanate. 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate and the like.
 脂環族ポリイソシアネートとしては、例えば、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、ジシクロヘキシルメタンジイソシアネート(例えば、4,4’-、2,4’-、若しくは2,2’-ジシクロヘキシルメタンジイソシアネート又はその混合物、H12MDI)、ビス(イソシアナトメチル)ノルボルナン(例えば、2,5-若しくは2,6-ビス(イソシアナトメチル)ノルボルナン又はその混合物、NBDI)、1,3-シクロペンタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられる。 Examples of the alicyclic polyisocyanate include 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate, IPDI), dicyclohexylmethane diisocyanate (for example, 4,4′-, 2,4′-, Or 2,2′-dicyclohexylmethane diisocyanate or mixtures thereof, H12MDI), bis (isocyanatomethyl) norbornane (eg, 2,5- or 2,6-bis (isocyanatomethyl) norbornane or mixtures thereof, NBDI), 1 , 3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate Over doors and the like.
 芳香族ポリイソシアネートとしては、例えば、キシリレンジイソシアネート(例えば、1,3-若しくは1,4-キシリレンジイソシアネート又はその混合物、XDI)、テトラメチルキシリレンジイソシアネート(例えば、1,3-若しくは1,4-テトラメチルキシリレンジイソシアネート又はその混合物、TMXDI)、ω,ω’-ジイソシアナト-1,4-ジエチルベンゼン、ジフェニルメタンジイソシアネート(例えば、4,4’-、2,4’-、若しくは2,2’-ジフェニルメタンジイソシアネート又はその混合物、MDI)、トリレンジイソシアネート(例えば、2,4-若しくは2,6-トリレンジイソシアネート又はその混合物、TDI)、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、フェニレンジイソシアネート(m-若しくはp-フェニレンジイソシアネート又はその混合物)、4,4’-ジフェニルジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート等が挙げられる。 Examples of the aromatic polyisocyanate include xylylene diisocyanate (for example, 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, XDI), tetramethylxylylene diisocyanate (for example, 1,3- or 1,4). -Tetramethylxylylene diisocyanate or mixtures thereof, TMXDI), ω, ω'-diisocyanato-1,4-diethylbenzene, diphenylmethane diisocyanate (eg 4,4'-, 2,4'- or 2,2'-diphenylmethane Diisocyanate or mixtures thereof, MDI), tolylene diisocyanate (eg, 2,4- or 2,6-tolylene diisocyanate or mixtures thereof, TDI), 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, 1, 5-na Examples thereof include phthalene diisocyanate (NDI), phenylene diisocyanate (m- or p-phenylene diisocyanate or a mixture thereof), 4,4'-diphenyl diisocyanate, 4,4'-diphenyl ether diisocyanate, and the like.
 ポリイソシアネートの誘導体としては、例えば、上記ポリイソシアネートの多量体(例えば、2量体、3量体(例えば、イソシアヌレート変性体、イミノオキサジアジンジオン変性体)、5量体、7量体等)、アロファネート変性体(例えば、上記ポリイソシアネートと、後述する低分子量ポリオールとの反応より生成するアロファネート変性体等)、ポリオール変性体(例えば、上記ポリイソシアネートと後述する低分子量ポリオールとの反応より生成するポリオール変性体(アルコール付加体)等)、ビウレット変性体(例えば、上記ポリイソシアネートと、水又はアミン類との反応により生成するビウレット変性体等)、ウレア変性体(例えば、上記ポリイソシアネートとジアミンとの反応により生成するウレア変性体等)、オキサジアジントリオン変性体(例えば、上記ポリイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオン等)、カルボジイミド変性体(上記ポリイソシアネートの脱炭酸縮合反応により生成するカルボジイミド変性体等)、ウレトジオン変性体、ウレトンイミン変性体、ポリメチレンポリフェニルポリイソシアネート(例えば、クルードMDI、ポリメリックMDI)等が挙げられる。 Examples of polyisocyanate derivatives include multimers of the above polyisocyanates (for example, dimers, trimers (for example, isocyanurate-modified products, iminooxadiazinedione-modified products), pentamers, and 7-mers). ), Allophanate-modified products (for example, allophanate-modified products generated from the reaction of the polyisocyanate with a low molecular weight polyol described later), polyol modified products (for example, generated from the reaction of the polyisocyanate with a low molecular weight polyol described below) Polyol modified products (alcohol adducts, etc.), biuret modified products (for example, biuret modified products produced by reaction of the above polyisocyanate with water or amines), urea modified products (for example, the above polyisocyanate and diamine) Modified with urea, etc.), oxa Azinetrione-modified products (for example, oxadiazinetrione produced by the reaction of the polyisocyanate and carbon dioxide), carbodiimide-modified products (carbodiimide-modified products produced by the decarboxylation condensation reaction of the polyisocyanate), uretdione-modified products, Examples include modified uretonimine, polymethylene polyphenyl polyisocyanate (for example, crude MDI, polymeric MDI) and the like.
 ポリオール成分としては、高分子量ポリオール、低分子量ポリオールが挙げられ、1種単独で使用してもよく、2種以上を併用してもよい。
 高分子量ポリオールは、水酸基を2つ以上有する数平均分子量1000以上の化合物であり、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、及びビニルモノマー変性ポリオール等が挙げられる。
Examples of the polyol component include high molecular weight polyols and low molecular weight polyols, which may be used alone or in combination of two or more.
The high molecular weight polyol is a compound having two or more hydroxyl groups and a number average molecular weight of 1,000 or more. For example, polyether polyol, polyester polyol, polyether ester polyol, polycarbonate polyol, polyurethane polyol, epoxy polyol, vegetable oil polyol, polyolefin polyol, An acrylic polyol, a vinyl monomer modified polyol, etc. are mentioned.
 低分子量ポリオールは、水酸基を2つ以上有する数平均分子量1000未満の化合物であり、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,2-トリメチルペンタンジオール、3,3-ジメチロールヘプタン、アルカン(C7~20)ジオール、シクロヘキサンジメタノール(例えば、1,3-若しくは1,4-シクロヘキサンジメタノール又はそれらの混合物)、水素化ビスフェノールA、1,4-ジヒドロキシ-2-ブテン、2,6-ジメチル-1-オクテン-3,8-ジオール、ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等の2価アルコール;グリセリン、トリメチロールプロパン、トリイソプロパノールアミン等の3価アルコール;テトラメチロールメタン(ペンタエリスリトール)、ジグリセリン等の4価アルコール;キシリトール等の5価アルコール;ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトール等の6価アルコール;ペルセイトール等の7価アルコール;ショ糖等の8価アルコール;等の多価アルコールが挙げられる。
 また、低分子量ポリオールとしては、例えば、低分子量(数平均分子量1000未満)のポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール等も挙げられる。
The low molecular weight polyol is a compound having two or more hydroxyl groups and having a number average molecular weight of less than 1000. For example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol, 1,5-pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,2-trimethylpentanediol, 3,3- Dimethylol heptane, alkane (C7-20) diol, cyclohexanedimethanol (eg, 1,3- or 1,4-cyclohexanedimethanol or mixtures thereof), hydrogenated bisphenol A, 1,4-dihydroxy-2-butene 2,6-dimethyl-1-octene-3,8- Dihydric alcohols such as all, bisphenol A, diethylene glycol, triethylene glycol and dipropylene glycol; trihydric alcohols such as glycerin, trimethylolpropane and triisopropanolamine; A pentahydric alcohol such as xylitol; a hexahydric alcohol such as sorbitol, mannitol, allitol, iditol, alditol, altritol, inositol, dipentaerythritol; a seven-valent alcohol such as perseitol; an octahydric alcohol such as sucrose; And monohydric alcohols.
Examples of the low molecular weight polyol include polyether polyols, polyester polyols, and polyether ester polyols having low molecular weight (number average molecular weight of less than 1000).
 発泡剤としては、例えば、水、ハロゲン置換脂肪族炭化水素系発泡剤(例えば、トリクロロフルオロメタン、ジクロロジフルオロメタン、トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、塩化メチレン、トリクロロトリフルオロエタン、ジブロモテトラフルオロエタン、四塩化炭素等)等が挙げられる。
 発泡剤は、単独使用又は2種以上併用することができる。
Examples of the blowing agent include water, halogen-substituted aliphatic hydrocarbon blowing agents (for example, trichlorofluoromethane, dichlorodifluoromethane, trichloroethane, trichloroethylene, tetrachloroethylene, methylene chloride, trichlorotrifluoroethane, dibromotetrafluoroethane, tetrachloride). Carbon, etc.).
The foaming agents can be used alone or in combination of two or more.
 ポリウレタン発泡体を得るための組成物は、その他の成分として、例えば触媒を含んでもよい。
 触媒としては、例えば、トリエチルアミン、トリエチレンジアミン、N-メチルモルホリン、ビス(2-ジメチルアミノエチル)エーテル、トリス(ジメチルアミノプロピル)ヘキサハイドロ-S-トリアジン、1,4-ジアザビシクロ[2.2.2]オクタン等の3級アミン類;テトラエチルヒドロキシルアンモニウム等の4級アンモニウム塩;イミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類;等のアミン系触媒が挙げられる。また、触媒として、上記アミン系触媒のほかに、例えば、酢酸スズ、オクチル酸スズ、ジブチルスズジラウレート、ジブチルスズクロライド等の有機スズ系化合物;オクチル酸鉛、ナフテン酸鉛等の有機鉛系化合物;ナフテン酸ニッケル等の有機ニッケル系化合物;等の有機金属系触媒も挙げられる。
 触媒は、単独使用又は2種以上併用することができる。
The composition for obtaining a polyurethane foam may contain a catalyst as another component, for example.
Examples of the catalyst include triethylamine, triethylenediamine, N-methylmorpholine, bis (2-dimethylaminoethyl) ether, tris (dimethylaminopropyl) hexahydro-S-triazine, 1,4-diazabicyclo [2.2.2. Amine-based catalysts such as tertiary amines such as octane; quaternary ammonium salts such as tetraethylhydroxylammonium; imidazoles such as imidazole and 2-ethyl-4-methylimidazole; Further, as the catalyst, in addition to the above-described amine catalyst, for example, an organic tin compound such as tin acetate, tin octylate, dibutyltin dilaurate, and dibutyltin chloride; an organic lead compound such as lead octylate and lead naphthenate; naphthenic acid Organometallic catalysts such as organic nickel compounds such as nickel;
The catalysts can be used alone or in combination of two or more.
 ポリウレタン発泡体を得るための組成物に含まれるその他の成分は、上記触媒のほかに、例えば、整泡剤、難燃剤、減粘剤、老化防止剤、顔料等が挙げられる。 Other components contained in the composition for obtaining the polyurethane foam include, for example, a foam stabilizer, a flame retardant, a viscosity reducer, an antiaging agent, and a pigment in addition to the above catalyst.
<積層体の製造方法>
 積層体の製造は、各層を別々に形成してから積層してもよく、積層しながら順次各層を形成してもよい。
 例えば積層体10を製造する場合、低通気A層12、高通気B層14、低通気C層16、及び高通気D層18をそれぞれ形成した後に、得られた各層を積層してもよい。また、例えば、低通気A層12を形成した後、低通気A層12上において高通気B層14の形成を行い、同様に低通気C層16及び高通気D層18を順次形成してもよい。
<Method for producing laminate>
In the production of the laminate, each layer may be formed separately and then laminated, or each layer may be formed sequentially while being laminated.
For example, when manufacturing the laminated body 10, you may laminate | stack each obtained layer after forming the low ventilation A layer 12, the high ventilation B layer 14, the low ventilation C layer 16, and the high ventilation D layer 18, respectively. Further, for example, after the formation of the low air permeability A layer 12, the high air permeability B layer 14 is formed on the low air permeability A layer 12, and the low air permeability C layer 16 and the high air permeability D layer 18 are similarly formed sequentially. Good.
 層と層との間における接着方法は、層の材質によっても異なるが、例えば、接着剤(例えば、ホットメルト接着剤、ウレタン系接着剤等)を用いた接着、熱融着(例えば、熱処理、熱エンボス加工、超音波融着等)、機械的交絡(例えば、ニードルパンチ、ウォータージェット等)等が挙げられる。
 また、積層体は、本開示の目的を損なわない範囲で、例えば、印刷、塗布、熱処理、賦型加工等の二次加工を施してもよい。
The bonding method between the layers differs depending on the material of the layer. For example, bonding using an adhesive (for example, hot-melt adhesive, urethane-based adhesive, etc.), thermal fusion (for example, heat treatment, Heat embossing, ultrasonic fusion, etc.), mechanical entanglement (eg, needle punch, water jet, etc.) and the like.
In addition, the laminated body may be subjected to secondary processing such as printing, coating, heat treatment, and shaping as long as the object of the present disclosure is not impaired.
<積層体の用途>
 積層体10は、前述したように、広い周波数領域にわたって優れた吸音性を示すため、特に吸音材用途に適しているが、これに限られず、断熱材、フィルター等の他の用途に用いてもよい。
<Use of laminate>
As described above, since the laminated body 10 exhibits excellent sound absorption over a wide frequency range, it is particularly suitable for use as a sound absorbing material, but is not limited thereto, and may be used for other uses such as a heat insulating material and a filter. Good.
〔吸音材〕
 本実施形態に係る吸音材は、上述した積層体を含む。具体的には、例えば、図1に示す積層体10を含む吸音材は、積層体10から構成された吸音材であってもよく、基材等に積層体10の面19側を貼り付けた吸音材であってもよい。積層体10を含む吸音材では、積層体10の低通気A層12側が音の入射側に来るように設置することで、広い周波数領域にわたってすぐれた吸音性が得られる。
[Sound absorbing material]
The sound absorbing material according to the present embodiment includes the above-described laminate. Specifically, for example, the sound-absorbing material including the laminate 10 shown in FIG. 1 may be a sound-absorbing material composed of the laminate 10, and the surface 19 side of the laminate 10 is attached to a base material or the like. A sound absorbing material may be used. In the sound-absorbing material including the laminated body 10, excellent sound-absorbing properties can be obtained over a wide frequency range by installing the laminated body 10 so that the low air permeability A layer 12 side is on the sound incident side.
 以下、実施例に基づいて本開示をさらに具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically based on examples, but the present disclosure is not limited to these examples.
 実施例、参考例及び比較例における物性値等は、以下の方法により測定した。
(1)目付(g/m
 機械方向(MD)100mm×横方向(CD)100mmの目付測定用試料を10枚切り出し、これら10枚の目付測定用試料から平均値を算出した。
The physical property values and the like in Examples, Reference Examples and Comparative Examples were measured by the following methods.
(1) Weight per unit area (g / m 2 )
Ten samples for basis weight measurement with a machine direction (MD) of 100 mm × lateral direction (CD) of 100 mm were cut out, and an average value was calculated from these 10 samples for basis weight measurement.
(2)厚み(mm)
 上記10枚の目付測定用試料について、中央及び四隅の計5箇所の厚みをそれぞれ測定し、計50箇所の平均値を算出した。厚みの測定には、荷重が7gf/cm(測定子直径50mmφ)の厚み計を使用した。
(2) Thickness (mm)
With respect to the ten samples for basis weight measurement, the thicknesses at a total of five locations at the center and at the four corners were measured, and the average value at a total of 50 locations was calculated. For the thickness measurement, a thickness gauge having a load of 7 gf / cm 2 (measuring element diameter of 50 mmφ) was used.
(3)通気度(cc/cm/sec)
 測定用試料(100mm×100mm)の中央及び四隅の計5箇所について、フラジール形試験機を用い、JIS L1096に準拠して圧力差125Paでの通気量を測定し、平均値を求めた。
(3) Air permeability (cc / cm 2 / sec)
For a total of five locations at the center and four corners of the measurement sample (100 mm × 100 mm), the air flow rate at a pressure difference of 125 Pa was measured according to JIS L1096 using a Frazier type tester, and the average value was obtained.
(4)吸音率(吸音性能)
 得られた積層体から29mmφの円形の試験片を採取し、垂直入射吸音率測定装置〔ブリュエル&ケアー社製TYPE4206〕を用い、ASTM E 1050に準拠して、周波数1000~6400Hzにおける試験片に平面音波が垂直に入射するときの垂直入射吸音率を測定した。得られた1000~6400Hzの吸音率カーブから、1000Hz及び5000Hzの吸音率を求めた。なお、表1に示す吸音率は、入射した音がすべて吸音された場合を「1」とした値である。
(4) Sound absorption rate (sound absorption performance)
A 29 mmφ circular test piece was taken from the obtained laminate, and a plane incident test piece at a frequency of 1000 to 6400 Hz was used in accordance with ASTM E 1050 using a normal incidence sound absorption measuring device (TYPE 4206 manufactured by Brüel & Care). The normal incident sound absorption coefficient when the sound wave was incident vertically was measured. The sound absorption coefficient at 1000 Hz and 5000 Hz was determined from the obtained sound absorption coefficient curve at 1000 to 6400 Hz. In addition, the sound absorption rate shown in Table 1 is a value where “1” is set when all incident sounds are absorbed.
(5)不織布の平均繊維径(μm)
 得られた不織布について、(株)日立製作所製電子顕微鏡「S-3500N」を用いて、倍率1000倍の写真を撮影し、撮影された写真から任意に繊維100本を選び、その繊維の幅(直径)を測定し、数平均に基づき平均繊維径を算出した。
(5) Average fiber diameter of nonwoven fabric (μm)
About the obtained nonwoven fabric, a photograph with a magnification of 1000 times was taken using an electron microscope “S-3500N” manufactured by Hitachi, Ltd., and 100 fibers were arbitrarily selected from the taken pictures, and the width of the fibers ( Diameter) was measured, and the average fiber diameter was calculated based on the number average.
(6)発泡体の密度(kg/m
 発泡体の密度は、ASTM D792のA法(水中置換法)に準拠して測定した。
(6) Density of foam (kg / m 3 )
The density of the foam was measured in accordance with ASTM D792 Method A (submersion method).
[実施例1]
<各層の準備>
 積層体10の高通気B層14(第2層)及び高通気D層18(第4層)として、発泡成形されたウレタン製シート(イノアック製、品名:ECS10、密度:22kg/m)をそれぞれ準備した。ウレタン製シート(表1中の「第2層」及び「第4層」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 積層体10の低通気A層12(第1層)及び低通気C層16(第3層)として、以下のようにしてメルトブローン不織布(平均繊維径:1μm)を作製した。得られたメルトブローン不織布(表1中の「第1層」及び「第3層」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
[Example 1]
<Preparation of each layer>
As the highly air-permeable B layer 14 (second layer) and the highly air-permeable D layer 18 (fourth layer) of the laminate 10, a foamed urethane sheet (manufactured by INOAC, product name: ECS10, density: 22 kg / m 3 ) is used. Prepared each. The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1) in the urethane sheet (“second layer” and “fourth layer” in Table 1), The unit (cc / cm 2 / sec) and the thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
As the low air permeability A layer 12 (first layer) and the low air permeability C layer 16 (third layer) of the laminate 10, a melt blown nonwoven fabric (average fiber diameter: 1 μm) was produced as follows. The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1) of the obtained melt blown nonwoven fabric (“first layer” and “third layer” in Table 1) “, Unit: cc / cm 2 / sec), and thickness (“ thickness ”in Table 1, unit: mm) are shown in Table 1.
 熱可塑性樹脂としてプロピレン単独重合体(メルトフローレート:1550g/10分、融点157℃、以下「PP」と表記する〕を用い、上記熱可塑性樹脂をそのまま熱可塑性樹脂組成物として用いた。
 ノズルとしてノズル孔径0.20mmであるメルトブローン用紡糸ノズルを装着したメルトブローン不織布製造装置を用いてメルトブローン不織布を得た。具体的には、このメルトブローン不織布製造装置を用いて、300℃で熱可塑性樹脂組成物を押出し、紡糸ノズルの両側から吹き出す加熱エアー(300℃、350Nm/m/時)で押出しにより得た繊維を細化及び固化した後、この繊維を紡糸ノズルからの距離20cmで捕集して、メルトブローン不織布を得た。
A propylene homopolymer (melt flow rate: 1550 g / 10 min, melting point 157 ° C., hereinafter referred to as “PP”) was used as the thermoplastic resin, and the thermoplastic resin was used as it was as the thermoplastic resin composition.
A meltblown nonwoven fabric was obtained using a meltblown nonwoven fabric production apparatus equipped with a meltblown spinning nozzle having a nozzle hole diameter of 0.20 mm as a nozzle. Specifically, a fiber obtained by extruding a thermoplastic resin composition at 300 ° C. using the melt blown nonwoven fabric manufacturing apparatus and extruding with heated air (300 ° C., 350 Nm 3 / m / hour) blown from both sides of the spinning nozzle. The fiber was collected at a distance of 20 cm from the spinning nozzle to obtain a meltblown nonwoven fabric.
<積層体の製造>
 準備した各層の接着にはスプレー型接着剤(3M社製、品名:スプレーのり55)を用いた。
 具体的には、まず、高通気D層18(第4層)となるウレタン製シートの表面に接着剤を散布して低通気C層16(第3層)となるメルトブローン不織布を重ねた。同様に、低通気C層16(第3層)となるメルトブローン不織布の表面に接着剤を散布して高通気B層14(第2層)となるウレタン製シートを重ねた。さらに、高通気B層14(第2層)となるウレタン製シートの表面に接着剤を散布して低通気A層12(第1層)となるメルトブローン不織布を重ねた。
<Manufacture of laminates>
A spray type adhesive (manufactured by 3M, product name: spray paste 55) was used for bonding the prepared layers.
Specifically, first, an adhesive was spread on the surface of the urethane sheet to be the high air permeability D layer 18 (fourth layer), and the melt blown nonwoven fabric to be the low air permeability C layer 16 (third layer) was stacked. Similarly, an adhesive was spread on the surface of the melt blown nonwoven fabric to be the low air permeability C layer 16 (third layer), and a urethane sheet to be the high air permeability B layer 14 (second layer) was stacked. Furthermore, the melt-blown nonwoven fabric used as the low air-permeation A layer 12 (1st layer) was piled up by spraying an adhesive agent on the surface of the urethane sheet used as the high air-permeation B layer 14 (second layer).
 以上のようにして、接着剤を介して4層積層した実施例1の積層体を得た。
 得られた積層体全体(表1中の「合計」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 また、得られた積層体における吸音性能を表1(表1中の「吸音率」)に示す。
 さらに、実施例1の積層体における吸音率の周波数依存性を図2に示す。なお、図2に示すグラフの縦軸は吸音率、横軸は周波数(Hz)である。
As described above, a laminate of Example 1 was obtained in which four layers were laminated via an adhesive.
The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire laminate (“total” in Table 1) 2 / sec) and thickness ("thickness" in Table 1, unit: mm) are shown in Table 1.
The sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
Furthermore, the frequency dependence of the sound absorption coefficient in the laminate of Example 1 is shown in FIG. In addition, the vertical axis | shaft of the graph shown in FIG. 2 is a sound absorption rate, and a horizontal axis is a frequency (Hz).
[実施例2]
 積層体10の高通気B層14(第2層)及び高通気D層18(第4層)として、ウレタン製シートの代わりに、下記方法により得られたニードルパンチ不織布(平均繊維径:30μm)を用いた以外は、実施例1と同様にして積層体を得た。得られたニードルパンチ不織布(表1中の「第2層」及び「第4層」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 得られた積層体全体(表1中の「合計」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 また、得られた積層体における吸音性能を表1(表1中の「吸音率」)に示す。
 なお、上記ニードルパンチ不織布は、以下のようにして製造した。
 平均繊維径20μm、平均繊維長50mmのポリエチレンテレフタレート繊維(以下「PET短繊維」ともいう)を、ニードルパンチ機にて不織布シート状にすることで、ニードルパンチ不織布を得た。
[Example 2]
Needle punched nonwoven fabric (average fiber diameter: 30 μm) obtained by the following method as the high air permeability B layer 14 (second layer) and high air permeability D layer 18 (fourth layer) of the laminate 10 instead of the urethane sheet A laminate was obtained in the same manner as in Example 1 except that was used. The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“in the“ second layer ”and“ fourth layer ”in Table 1), air permeability (“ Table 1 shows “aeration”, unit: cc / cm 2 / sec), and thickness (“thickness” in Table 1, unit: mm).
The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire laminate (“total” in Table 1) 2 / sec) and thickness ("thickness" in Table 1, unit: mm) are shown in Table 1.
The sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
In addition, the said needle punch nonwoven fabric was manufactured as follows.
A needle punched nonwoven fabric was obtained by forming polyethylene terephthalate fibers (hereinafter also referred to as “PET short fibers”) having an average fiber diameter of 20 μm and an average fiber length of 50 mm into a nonwoven fabric sheet using a needle punch machine.
[実施例3]
 前記6層構成の積層体における高通気B層(第2層)、高通気D層(第4層)、及び高通気F層(第6層)として、厚みを13mm、目付けを286g/m、通気度を166cc/cm/secとしたウレタン製シート(イノアック製、品名:ECS)をそれぞれ準備した。
 前記6層構成の積層体における低通気A層(第1層)、低通気C層(第3層)、及び低通気E層(第5層)として、厚みを0.1mm、目付けを10g/m、通気度を7cc/cm/secとしたメルトブローン不織布を準備した。このメルトブローン不織布は、実施例1の第1層及び第3層と同じ物である。
 実施例1と同様にして、第1層~第6層の順に接着剤を介して積層し、全6層からなる積層体を得た。得られた実施例3の積層体における吸音性能を表1(表1中の「吸音率」)に示す。
[Example 3]
As the high air permeability B layer (second layer), the high air permeability D layer (fourth layer), and the high air permeability F layer (sixth layer) in the laminate having the six-layer structure, the thickness is 13 mm and the basis weight is 286 g / m 2. A urethane sheet (Inoac, product name: ECS) having an air permeability of 166 cc / cm 2 / sec was prepared.
As the low air permeability A layer (first layer), the low air permeability C layer (third layer), and the low air permeability E layer (fifth layer) in the laminate of 6 layers, the thickness is 0.1 mm, and the basis weight is 10 g / A meltblown nonwoven fabric with m 2 and air permeability of 7 cc / cm 2 / sec was prepared. This melt blown nonwoven fabric is the same as the first layer and the third layer of Example 1.
In the same manner as in Example 1, the first to sixth layers were laminated in this order via an adhesive to obtain a laminate consisting of all six layers. The sound absorption performance of the obtained laminate of Example 3 is shown in Table 1 (“Sound Absorption Rate” in Table 1).
[比較例1]
 図3に示す積層体110の高通気層114(第2層)として、厚み及び目付以外は実施例1の高通気層と同様のウレタン製シート(イノアック製、品名:ECS)を準備した。ウレタン製シート(表1中の「第2層」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 また、図3に示す積層体110の低通気層112(第1層)として、実施例1の低通気層と同様のメルトブローン不織布を作製した。得られたメルトブローン不織布(表1中の「第1層」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
[Comparative Example 1]
As the highly breathable layer 114 (second layer) of the laminate 110 shown in FIG. 3, a urethane sheet (manufactured by INOAC, product name: ECS) similar to the highly breathable layer of Example 1 except for the thickness and basis weight was prepared. The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm 2 ) in a urethane sheet (“second layer” in Table 1) / Sec) and thickness ("thickness" in Table 1, unit: mm) are shown in Table 1.
Moreover, the melt-blown nonwoven fabric similar to the low ventilation layer of Example 1 was produced as the low ventilation layer 112 (1st layer) of the laminated body 110 shown in FIG. The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / in) in the obtained melt blown nonwoven fabric (“first layer” in Table 1) cm 1 / sec) and thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
 実施例1と同様にして2層の接着を行った。
 得られた積層体全体(表1中の「合計」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。なお、表1中の斜線は、該当する層を有していないことを示し、以下同様である。
 また、得られた積層体における吸音性能を表1(表1中の「吸音率」)に示す。
 さらに、比較例1の積層体における吸音率の周波数依存性を図2に示す。
Two layers were bonded in the same manner as in Example 1.
The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire laminate (“total” in Table 1) 2 / sec) and thickness ("thickness" in Table 1, unit: mm) are shown in Table 1. In addition, the oblique line in Table 1 indicates that the corresponding layer is not included, and so on.
The sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
Furthermore, the frequency dependence of the sound absorption coefficient in the laminate of Comparative Example 1 is shown in FIG.
[比較例2]
 図3に示す積層体110の低通気層112(第1層)として、厚み及び目付以外は実施例1の低通気層と同様のメルトブローン不織布を作製した以外は、比較例1と同様にして積層体を得た。
 得られたメルトブローン不織布(表1中の「第1層」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 また、得られた積層体全体(表1中の「合計」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 さらに、得られた積層体における吸音性能を表1(表1中の「吸音率」)に示す。
[Comparative Example 2]
As the low ventilation layer 112 (first layer) of the laminate 110 shown in FIG. 3, lamination was performed in the same manner as in Comparative Example 1 except that a melt blown nonwoven fabric similar to the low ventilation layer of Example 1 was prepared except for thickness and basis weight. Got the body.
The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / in) in the obtained melt blown nonwoven fabric (“first layer” in Table 1) cm 1 / sec) and thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
In addition, the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc) in the entire obtained laminate (“total” in Table 1) / Cm 2 / sec) and thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
Furthermore, the sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
[比較例3]
 図3に示す積層体110の高通気層114(第2層)として、厚み及び目付以外は実施例2の高通気層と同様のニードルパンチ不織布を作製した以外は、比較例1と同様にして積層体を得た。
 得られたニードルパンチ不織布(表1中の「第2層」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 また、得られた積層体全体(表1中の「合計」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 さらに、得られた積層体における吸音性能を表1(表1中の「吸音率」)に示す。
[Comparative Example 3]
As the high air permeability layer 114 (second layer) of the laminate 110 shown in FIG. 3, except that a needle punched nonwoven fabric similar to the high air permeability layer of Example 2 was prepared except for thickness and basis weight, it was the same as in Comparative Example 1. A laminate was obtained.
The basis weight (“weight per unit” in Table 1, unit: g / m 2 ), air permeability (“aeration” in Table 1, unit: cc) in the obtained needle punched nonwoven fabric (“second layer” in Table 1) / Cm 2 / sec) and thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
In addition, the basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc) in the entire obtained laminate (“total” in Table 1) / Cm 2 / sec) and thickness (“thickness” in Table 1, unit: mm) are shown in Table 1.
Furthermore, the sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
[比較例4]
 単層不織布吸音材(3M製、品名:TAI4027)を単層で用いた。
 単層不織布吸音材全体(表1中の「合計」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 さらに、得られた積層体における吸音性能を表1(表1中の「吸音率」)に示す。
[Comparative Example 4]
A single-layer nonwoven fabric sound absorbing material (manufactured by 3M, product name: TAI4027) was used as a single layer.
The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire single-layer nonwoven fabric sound absorbing material (“total” in Table 1) 2 / sec) and thickness ("thickness" in Table 1, unit: mm) are shown in Table 1.
Furthermore, the sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
[比較例5]
 単層不織布吸音材(3M製、品名:TAI4027)を2層用い、実施例1と同様にして2層の接着を行って、積層体を得た。
 得られた積層体全体(表1中の「合計」)における目付(表1中の「目付」、単位:g/m)、通気度(表1中の「通気」、単位:cc/cm/sec)、及び厚み(表1中の「厚み」、単位:mm)を表1に示す。
 また、得られた積層体における吸音性能を表1(表1中の「吸音率」)に示す。
 さらに、比較例5の積層体における吸音率の周波数依存性を図2に示す。
[Comparative Example 5]
Two layers of single-layer nonwoven fabric sound-absorbing material (manufactured by 3M, product name: TAI4027) were used, and two layers were bonded in the same manner as in Example 1 to obtain a laminate.
The basis weight (“weight per unit” in Table 1, unit: g / m 2 ) and air permeability (“aeration” in Table 1, unit: cc / cm) in the entire laminate (“total” in Table 1) 2 / sec) and thickness ("thickness" in Table 1, unit: mm) are shown in Table 1.
The sound absorption performance of the obtained laminate is shown in Table 1 (“Sound Absorption Rate” in Table 1).
Furthermore, the frequency dependence of the sound absorption coefficient in the laminate of Comparative Example 5 is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図2に示すように、実施例では、比較例に比べ、広い周波数領域にわたって優れた吸音性を示すことがわかる。 As shown in Table 1 and FIG. 2, it can be seen that the example shows excellent sound absorption over a wide frequency range as compared with the comparative example.
 本開示の積層体は、広い周波数領域にわたって優れた吸音性を示すため、自動車、電車、船舶、航空機等の輸送機;掃除機、洗濯機、冷蔵庫、冷凍庫、乾燥機、ミキサー、エアコン、空気清浄機等の電化製品;複写機、ファクシミリ、パソコン、印刷機等のOA機器;壁材、天井材、床材等の家屋等を始め、吸音材を必要とする用途に用い得る。中でも、吸音材全体の厚みに制限のある用途(例えば、自動車等)では、全体の厚みを変えずに広い周波数領域にわたって吸音性を高めることができるため、本開示の積層体が特に有用である。また、電気自動車用途では、低音のロードノイズから高音のモーター音まで広い範囲の吸音特性が要求されるため、広い周波数領域にわたって優れた吸音性を有する本開示の積層体が特に有用である。 Since the laminate of the present disclosure exhibits excellent sound absorption over a wide frequency range, it is a transport device for automobiles, trains, ships, aircraft, etc .; vacuum cleaner, washing machine, refrigerator, freezer, dryer, mixer, air conditioner, air cleaner Electric appliances such as machines; office automation equipment such as copiers, facsimiles, personal computers, and printing machines; houses such as wall materials, ceiling materials, floor materials, and the like, and can be used for applications that require sound absorbing materials. Among these, in applications where the thickness of the entire sound absorbing material is limited (for example, automobiles and the like), the sound absorption can be enhanced over a wide frequency range without changing the overall thickness, and therefore the laminate of the present disclosure is particularly useful. . In addition, in electric vehicle applications, since a wide range of sound absorption characteristics is required from low road noise to high motor sound, the laminate of the present disclosure having excellent sound absorption over a wide frequency range is particularly useful.
 2017年3月31日に出願された日本国特許出願2017-072285号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-072285 filed on March 31, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (6)

  1.  通気度が1cc/cm/sec以上30cc/cm/sec未満の第1の層と、
     通気度が30cc/cm/sec以上1000cc/cm/sec以下の第2の層と、
     通気度が1cc/cm/sec以上30cc/cm/sec未満の第3の層と、
     通気度が30cc/cm/sec以上1000cc/cm/sec以下の第4の層と、
     がこの順に積層した積層体。
    A first layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec;
    A second layer having an air permeability of 30 cc / cm 2 / sec to 1000 cc / cm 2 / sec,
    A third layer having an air permeability of 1 cc / cm 2 / sec or more and less than 30 cc / cm 2 / sec;
    A fourth layer having an air permeability of 30 cc / cm 2 / sec to 1000 cc / cm 2 / sec,
    Are stacked in this order.
  2.  前記第1の層及び前記第3の層の少なくとも1層は、不織布、多孔フィルム、織布、又は発泡体である請求項1に記載の積層体。 The laminate according to claim 1, wherein at least one of the first layer and the third layer is a nonwoven fabric, a porous film, a woven fabric, or a foam.
  3.  前記第2の層及び前記第4の層の少なくとも1層は、不織布、織布、又は発泡体である請求項1又は請求項2に記載の積層体。 The laminate according to claim 1 or 2, wherein at least one of the second layer and the fourth layer is a nonwoven fabric, a woven fabric, or a foam.
  4.  前記第1の層の厚み及び前記第3の層の厚みは、それぞれ0.1mm以上2mm以下である請求項1~請求項3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein a thickness of the first layer and a thickness of the third layer are 0.1 mm or more and 2 mm or less, respectively.
  5.  前記第2の層の厚み及び前記第4の層の厚みは、それぞれ10mm以上50mm以下である請求項1~請求項4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein a thickness of the second layer and a thickness of the fourth layer are 10 mm or more and 50 mm or less, respectively.
  6.  請求項1~請求項5のいずれか1項に記載の積層体を含む吸音材。 A sound-absorbing material comprising the laminate according to any one of claims 1 to 5.
PCT/JP2018/013934 2017-03-31 2018-03-30 Laminate body and sound-absorbing material WO2018182001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509418A JPWO2018182001A1 (en) 2017-03-31 2018-03-30 Laminate and sound absorbing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072285 2017-03-31
JP2017072285 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018182001A1 true WO2018182001A1 (en) 2018-10-04

Family

ID=63678033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013934 WO2018182001A1 (en) 2017-03-31 2018-03-30 Laminate body and sound-absorbing material

Country Status (2)

Country Link
JP (2) JPWO2018182001A1 (en)
WO (1) WO2018182001A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124186A1 (en) * 2017-12-22 2019-06-27 Jnc株式会社 Multilayer sound absorbing material
JP2020134765A (en) * 2019-02-21 2020-08-31 株式会社イノアック技術研究所 Laminated sound absorbing material
JP2020179642A (en) * 2019-04-26 2020-11-05 株式会社イノアックコーポレーション Acoustic material
EP3854840A1 (en) * 2020-01-27 2021-07-28 Toyo Quality One Corporation Sound absorbing urethane foam
WO2023106609A1 (en) * 2021-12-07 2023-06-15 주식회사 에스엔티 Sound absorbing material for reducing noise in audible frequency band of single layer in which melt-blown fibers and nanofibers are randomly mixed, apparatus and method for manufacturing same, and sound absorbing material manufactured thereby
KR102658315B1 (en) 2023-11-21 2024-04-18 주식회사 에스엔티 Method for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190398A1 (en) * 2022-03-31 2023-10-05 三井化学株式会社 Sound-absorbing material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152890A (en) * 1994-11-29 1996-06-11 Nissan Motor Co Ltd Sound absorbing material for low frequency

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033899A (en) 2005-07-27 2007-02-08 Swcc Showa Device Technology Co Ltd Acoustic material
JP5715163B2 (en) * 2011-01-26 2015-05-07 ニチアス株式会社 Soundproof material and method for producing the same, soundproof molded body and soundproofing method
JP2013119169A (en) 2011-12-06 2013-06-17 Nagoya Oil Chem Co Ltd Sound absorbing material
EP2889407B1 (en) 2012-08-23 2018-11-14 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152890A (en) * 1994-11-29 1996-06-11 Nissan Motor Co Ltd Sound absorbing material for low frequency

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124186A1 (en) * 2017-12-22 2019-06-27 Jnc株式会社 Multilayer sound absorbing material
JP2019111714A (en) * 2017-12-22 2019-07-11 Jnc株式会社 Laminate sound absorber
CN111479680A (en) * 2017-12-22 2020-07-31 捷恩智株式会社 Laminated sound absorbing material
JP2020134765A (en) * 2019-02-21 2020-08-31 株式会社イノアック技術研究所 Laminated sound absorbing material
JP2020179642A (en) * 2019-04-26 2020-11-05 株式会社イノアックコーポレーション Acoustic material
JP7227682B2 (en) 2019-04-26 2023-02-22 株式会社イノアックコーポレーション sound absorbing material
EP3854840A1 (en) * 2020-01-27 2021-07-28 Toyo Quality One Corporation Sound absorbing urethane foam
WO2023106609A1 (en) * 2021-12-07 2023-06-15 주식회사 에스엔티 Sound absorbing material for reducing noise in audible frequency band of single layer in which melt-blown fibers and nanofibers are randomly mixed, apparatus and method for manufacturing same, and sound absorbing material manufactured thereby
KR102658315B1 (en) 2023-11-21 2024-04-18 주식회사 에스엔티 Method for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same
KR102658323B1 (en) 2023-11-21 2024-04-18 주식회사 에스엔티 Apparatus for manufacturing of single layer sound adsorbing material having hybrid pad randomly mixed with meltblown fiber and nano fiber for reducing noise in audio frequency band and sound adsorbing material manufactured using the same

Also Published As

Publication number Publication date
JPWO2018182001A1 (en) 2019-11-07
JP7206564B2 (en) 2023-01-18
JP2021192983A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
JP7206564B2 (en) Laminate and sound absorbing material
EP2889407B1 (en) Melt-blown nonwoven fabric and use thereof
JP4709609B2 (en) Flame-retardant sound insulation material and method for producing the same
KR101402783B1 (en) Synthetic leather and preparing method thereof
JP2006513057A (en) Acoustic web
KR102271926B1 (en) Resin expanded particles, resin expanded molded article, and laminate
KR101137527B1 (en) Fabrication method of inner material for automobile by compression molding
JP5731086B1 (en) Synthetic leather
JP2020013007A (en) Sound absorbing and insulating material and its manufacturing method
JPWO2019065758A1 (en) Synthetic resin skin material composite and method for producing synthetic resin skin material composite
JP6646267B1 (en) Laminated sound absorbing material
JP2023088930A (en) Soundproof material and production method thereof
KR101637764B1 (en) A dash isolation pad comprising a sound insulation material having variable thickness, and a method for producing thereof
CN110461588B (en) Functional laminate and method for producing same
JP7328353B2 (en) Multi-layer sound absorbing material
US20220410525A1 (en) Layered sound-absorbing material
JP6642811B2 (en) Laminated sound absorbing material
KR101992442B1 (en) Leak-proof Adhesive Nonwoven Fabric And Automobile Interior Material Using The Same
KR102328692B1 (en) Automobile floor carpet using low weight thermoplastic polyethylene sound insulation coating and method for manufacturing the same
KR102202007B1 (en) Leak-proof Adhesive Nonwoven Fabric And Automobile Interior Material Using The Same
JP6642810B2 (en) Laminated sound absorbing material
WO2023171183A1 (en) Soundproofing material, soundproofing structure, and method for producing soundproofing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509418

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778178

Country of ref document: EP

Kind code of ref document: A1