WO2018181909A1 - Splittable conjugate fibers and fiber structure using same - Google Patents

Splittable conjugate fibers and fiber structure using same Download PDF

Info

Publication number
WO2018181909A1
WO2018181909A1 PCT/JP2018/013648 JP2018013648W WO2018181909A1 WO 2018181909 A1 WO2018181909 A1 WO 2018181909A1 JP 2018013648 W JP2018013648 W JP 2018013648W WO 2018181909 A1 WO2018181909 A1 WO 2018181909A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
melting peak
split
component
segment
Prior art date
Application number
PCT/JP2018/013648
Other languages
French (fr)
Japanese (ja)
Inventor
洋志 岡屋
惠介 内海
昂史 杉山
Original Assignee
ダイワボウホールディングス株式会社
ダイワボウポリテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイワボウホールディングス株式会社, ダイワボウポリテック株式会社 filed Critical ダイワボウホールディングス株式会社
Priority to JP2019510255A priority Critical patent/JP7364829B2/en
Publication of WO2018181909A1 publication Critical patent/WO2018181909A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a split type composite fiber and a fiber structure using the same.
  • a plurality of thermoplastic resins are used, and when the fiber cross section is observed, the cross section is composed of two or more resin segments (hereinafter simply referred to as segments).
  • a method using a split type composite fiber is known.
  • an ultrafine fiber can be easily obtained by dividing the fiber into segments.
  • the division process is insufficient, a part that is not divided, that is, a part that remains with the segments stuck together (generally referred to as undivided fibers) remains. It has been.
  • the segment constituting the split-type conjugate fiber is generally a single resin component (even if a resin component is a mixture of a plurality of types of thermoplastic resins) Component), the fine fibers can be obtained when the splitting process is sufficiently performed.
  • a heat-bonding fiber having a fiber diameter larger than that of the ultrafine fibers for example, the surface is the ultrafine fiber. It is necessary to mix a core-sheath type composite fiber composed of a thermoplastic resin having a melting point lower than that of the thermoplastic resin constituting the fiber. As a result, it is known that the denseness of fiber structures obtained by bonding ultrafine fibers using heat-bonded fibers having a fiber diameter larger than that of the ultrafine fibers decreases.
  • thermoplastic resins constituting adjacent segments polyolefin resins such as polypropylene and polyethylene, and polyester resins such as polyethylene terephthalate and copolyester are used.
  • polyolefin resins such as polypropylene and polyethylene
  • polyester resins such as polyethylene terephthalate and copolyester
  • split type composite fibers examples include split type composite fibers obtained by combining polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and copolyester.
  • polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and copolyester.
  • the resulting fiber structure is composed only of ultrafine fibers.
  • the ultrafine fibers are bonded to each other by melting the surface of some of the ultrafine fibers, resulting in tensile strength and puncture strength.
  • one of the two or more segments constituting the split-type composite fiber remains as a single component segment (single-type segment), and the other segment.
  • the cross-sectional shape of the core is made into a core-sheath type cross-sectional shape (a core-sheath type segment) or the like (for example, see Patent Documents 1 to 4).
  • Patent Document 1 is composed of a single component segment (single-type segment) and an ⁇ -olefin polymer component having the same melting point as the core component of the core-sheath segment, and the sheath component of the core-sheath segment has a low melting point.
  • a split-type composite that is excellent in splitting properties because the low-melting ⁇ -olefin polymer component and the high-melting ⁇ -olefin polymer component both have a Rockwell hardness R of 60 or more. Report fiber.
  • Patent Document 2 reports a split-type composite fiber that is excellent in splittability by making the cross-section of the core-sheath segment into a specific shape.
  • Patent Documents 3 and 4 show that the single-type segment includes a polypropylene resin having a specific z-average molecular weight (Mz) and a specific weight-average molecular weight (Mw) as a main component. Report fiber.
  • Mz z-average molecular weight
  • Mw weight-average molecular weight
  • various secondary batteries that use the fiber structure as a separator between electrodes; filter materials for various liquid and gas filters that require higher filtration accuracy ( Filter materials): Various membranes used as a support for various filtration membranes such as reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), ultrafiltration membranes (UF membranes), and microfiltration membranes (MF membranes) Fiber structure for support; Interpersonal and objective wiping materials that are required to irritate the wiped part and reduce scratches; Cosmetic-impregnated skin-covering sheets that require a soft texture when in contact with the skin (generally Are also referred to as face masks); and in applications such as sheets for absorbent articles, further improvements in the performance of split composite fibers are required.
  • RO membranes reverse osmosis membranes
  • NF membranes nanofiltration membranes
  • UF membranes ultrafiltration membranes
  • MF membranes microfiltration membranes
  • the overall performance, particularly the productivity at the time of fiber production is easy, and melt spinning is performed. Further, it is demanded that thread breakage is less likely to occur during the stretching process, and that the splitting property is further improved.
  • the inventors of the present invention are split type composite fibers composed of a first segment and a second segment, wherein the first segment is a resin segment composed of the first component, and a cross section of the second segment.
  • the first segment has a Q value after spinning (weight average molecular weight (Mw )
  • the number average molecular weight (Mn) which is expressed as Mw / Mn)
  • DSC differential scanning calorimetry
  • the endothermic peak generated by melting of the polypropylene resin (polypropylene resin melting peak) has a specific shape. It has been found that by using a resin component containing a propylene resin, productivity at the time of fiber production, splitting property of the obtained split composite fiber, and the like are further improved.
  • the nonwoven fabric (fiber structure) manufactured using the obtained split composite fiber in such split composite fiber is a core obtained by splitting the split composite fiber. It has been found that fibers (for example, ultrafine fibers) constituting the nonwoven fabric can be bonded together by melting the sheath portion of the sheath type resin segment.
  • Such a non-woven fabric is composed of ultrafine fibers as the main fibers, so that not only the internal structure is dense, but the ultrafine fibers are bonded together by the sheath component constituting the ultrafine core-sheath composite fiber, The inventors have found that the fiber structure is excellent in mechanical properties such as tensile strength and puncture strength, and have completed the present invention.
  • a split-type composite fiber including a first segment and a second segment;
  • the first segment is a resin segment composed of a first component
  • the second segment is a core-sheath resin segment whose cross-sectional structure has a first component as a core component and a second component as a sheath component
  • the first component is a resin component containing 50% by mass or more of polypropylene resin
  • the second component is a resin component containing 50% by mass or more of a polyethylene resin
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polypropylene resin measured after spinning is 6 or less, JIS K 7121 (1987) after spinning
  • the split type in which the shape of the melting peak of the polypropylene resin in the DSC curve of differential scanning calorimetry (DSC) measured based on the plastic transition temperature measurement method is a double peak shape Provide composite fiber.
  • the present invention has the features as described above, at least one of the problems such as productivity and splitting at the time of fiber production is improved. Furthermore, the nonwoven fabric (fiber structure) manufactured using such a split type composite fiber has a fine structure of the fiber structure and appropriate air permeability. Further, the second component (that is, polyethylene resin) constituting the sheath component of the core-sheath segment in which the cross-sectional structure of the second segment is a core-sheath resin segment is melted so that the ultrafine fibers are bonded to each other, and mechanical characteristics are obtained. Excellent non-woven fabric (fiber structure). In the present specification, the symbol “ ⁇ ” is used to include both end points.
  • FIG. 1 schematically shows a cross section of a split-type conjugate fiber according to an embodiment of the present invention.
  • FIG. 2 schematically shows a cross section of another split-type composite fiber according to the present invention.
  • FIG. 3 schematically shows a cross section of the split type composite fiber used in the reference example.
  • FIG. 4 schematically shows that in the endothermic peak of the polypropylene resin, after the first melting peak (a 1 ) clearly appears on the low temperature side, the second melting peak (a 2 ) appears on the high temperature side.
  • FIG. 5 schematically shows the elongation of the second melting peak (a 2 ) on the high temperature side in the endothermic peak of the polypropylene resin.
  • FIG. 6 schematically shows the first melting peak area (S 1 ) in the endothermic peak of the polypropylene resin.
  • FIG. 7 schematically shows the second melting peak area (S 2 ) in the endothermic peak of the polypropylene resin.
  • FIG. 8 schematically shows that in the endothermic peak of polypropylene resin, the first melting peak (a 1 ) appears as a shoulder peak on the low temperature side, and then the second melting peak (a 2 ) appears on the high temperature side. .
  • FIG. 9 schematically shows the elongation of the second melting peak on the high temperature side in the endothermic peak of the polypropylene resin.
  • FIG. 10 schematically shows the first melting peak area (S 1 ) at the endothermic peak of the polypropylene resin.
  • FIG. 11 schematically shows the second melting peak area (S 2 ) in the endothermic peak of the polypropylene resin.
  • FIG. 12 schematically shows that one melting peak clearly appears in the endothermic peak of the polypropylene resin.
  • FIG. 13 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split-type conjugate fiber of Example 1.
  • FIG. 14 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split conjugate fiber of Example 7.
  • FIG. 15 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split type conjugate fiber of Comparative Example 1.
  • FIG. 16 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split composite fiber of Comparative Example 3.
  • FIG. 17 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split composite fiber of Comparative Example 5.
  • FIG. 18 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed
  • FIG. 1 and 2 schematically show a cross section of a split type composite fiber (10, 20) according to an embodiment of the present invention.
  • Each includes a first segment (1) and a second segment (2).
  • the first segment (1) is a single-structure segment, but the second segment (2) is a core-sheathed segment (FIG. 1).
  • FIG. 2 The core-sheath type segment can have a core component (4, 14) and a sheath component (6, 16).
  • the split-type conjugate fiber may have a hollow (8) (FIG. 1).
  • the first segment is a resin segment made of the first component.
  • the first segment forms the ultrafine fiber 1 by splitting the split type composite fiber.
  • the first segment is a single-type segment that is composed of the first component and has a single structure in cross section.
  • the first component is a resin component containing 50% by mass or more of polypropylene resin.
  • the first component preferably contains 75% by mass or more of polypropylene resin, more preferably 80% by mass or more.
  • the first component consists essentially of a polypropylene resin.
  • the term “substantially” means that a polypropylene resin provided as a product usually contains an additive such as a stabilizer and / or various additives are added during fiber production. Considering that it is not possible to obtain a fiber composed of only a polypropylene resin and containing no other components.
  • the first component can contain up to 15% by weight of additives.
  • the ratio (Mw / Mn) (hereinafter also referred to as “Q value”) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene resin measured after spinning is 6 or less, 2 to 6, more preferably 2.2 to 5.6, particularly preferably 2.3 to 5.2, and most preferably 2.4 to 5.0.
  • the lower limit of the above range of Mw / Mn may be 2 or more, or may be 2.4 or more. For example, it may be 2 or more, 2.5 or more and 6 or less, 2.8 or more and 6 or less, or 3.4 or more and less than 6.
  • the polypropylene resin after spinning has the same size (the length of the polypropylene molecular chain) of the polypropylene molecules contained therein, and the distribution range is narrower.
  • the behavior of is easy to align.
  • the split type composite fiber not only the cross-sectional shape of the fiber and the cross-sectional shape of each segment are easily adjusted, but also a highly productive fiber that is less likely to break during spinning and drawing. Since the productivity of the fiber is good, various physical properties of the obtained split composite fiber and the fiber structure using the same are further improved.
  • the weight average molecular weight (Mw) of the polypropylene resin measured after spinning is preferably from 150,000 to 700,000, more preferably from 200,000 to 500,000, and particularly preferably from 230,000 to 400,000.
  • the number average molecular weight (Mn) of the polypropylene resin measured after spinning is preferably 43,000 to 150,000, more preferably 48,000 to 120,000, and particularly preferably 55,000 to 100,000.
  • the measuring method of the weight average molecular weight (Mw) and number average molecular weight (Mn) of a polypropylene resin was described in the Example.
  • the polypropylene resin may be a homopolymer of propylene (a homopolymer having propylene as a monomer) or a copolymer containing propylene as a monomer (hereinafter referred to as a polypropylene resin).
  • the polypropylene resin is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained.
  • a random copolymer, a block copolymer, a graft copolymer or a mixture thereof containing propylene as a monomer can be used.
  • Examples of the random copolymer, block copolymer and graft copolymer include a copolymer with at least one ⁇ -olefin selected from the group consisting of ethylene and an ⁇ -olefin having 4 or more carbon atoms.
  • the ⁇ -olefin having 4 or more carbon atoms is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained.
  • 1-butene, 1-pentene, 3, 3 Examples include -dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like.
  • the propylene content in the copolymer is preferably more than 50% by mass.
  • a homopolymer of propylene or the above-mentioned polypropylene resin can be used, but a propylene homopolymer is particularly preferable in consideration of easiness of production and economy (manufacturing cost). These may be used alone or in combination of two or more.
  • the polypropylene resin has a melt flow rate (hereinafter also referred to as “MFR230” according to JIS K7210; measurement temperature 230 ° C., load 2.16 kgf (21.18 N)) of 8 g / 10 min or more and 60 g / 10 min or less. It is preferably 15 g / 10 min to 60 g / 10 min, more preferably 20 g / 10 min to 45 g / 10 min, particularly 25 g / 10 min to 40 g / 10 min. Most preferred.
  • MFR230 melt flow rate
  • the first segment can contain a known split accelerator.
  • a known partition accelerator for example, a silicon compound-based partition accelerator, an unsaturated carboxylic acid-based partition accelerator, a (meth) acrylic acid-based compound partition accelerator, and the like can be used.
  • (Meth) acrylic acid compound splitting accelerators are preferred, and (meth) acrylic acid metal salts are more preferred.
  • the first segment contains a (meth) acrylic acid metal salt as a splitting accelerator, 1 to 10% by mass of the (meth) acrylic acid metal salt may be contained in the first segment.
  • the split type composite fiber of the present invention includes a second segment.
  • the second segment preferably forms the ultrafine fiber 2 derived from the second segment by splitting the split-type composite fiber.
  • the second segment is a core-sheath type resin segment whose cross-sectional structure has a first component as a core component and a second component as a sheath component.
  • the second component is a resin component containing 50% by mass or more of polyethylene resin.
  • the second component is a resin component containing 75% by mass or more of polyethylene resin, and more preferably 80% by mass or more of polyethylene resin. It is particularly preferred that the second component consists essentially of a polyethylene resin.
  • the term “substantially” usually means that polyethylene resins provided as products contain additives such as stabilizers and / or various additives are added during the production of fibers. Considering that it is not possible to obtain a fiber composed of only a polyethylene resin and containing no other components. Usually, the second component can contain up to 15% by weight of additives.
  • Polyethylene resin has good compatibility with polypropylene resin, and split type composite fibers combining these are generally low in splittability.
  • the combination is a polypropylene resin and a polyethylene resin, excellent splitting properties can be obtained.
  • the polyethylene resin is a homopolymer of ethylene (a homopolymer having ethylene as a monomer, and there are high density polyethylene, medium density polyethylene, low density polyethylene, and linear low density polyethylene due to differences in density and molecular structure). It may be a copolymer containing ethylene as a monomer (hereinafter referred to as polyethylene resin).
  • the polyethylene resin is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained.
  • As the polyethylene resin a random copolymer, a block copolymer, a graft copolymer or a mixture thereof containing ethylene as a monomer can be used.
  • Examples of the random copolymer, block copolymer and graft copolymer include a copolymer with at least one ⁇ -olefin selected from the group consisting of ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • the ⁇ -olefin having 3 or more carbon atoms is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained.
  • the split type composite fiber intended by the present invention can be obtained.
  • the ethylene content in the copolymer is preferably 50% by mass or more.
  • an ethylene homopolymer or the polyethylene-based resin can be used, but an ethylene homopolymer is particularly preferable in view of ease of manufacture and economy (manufacturing cost). These may be used alone or in combination of two or more.
  • the polyethylene resin has a melt flow rate (hereinafter also referred to as “MFR190” according to JIS K7210; measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) of 5 g / 10 min or more and less than 30 g / 10 min. It is preferably 8 g / 10 min or more and less than 28 g / 10 min, more preferably 10 g / 10 min or more and less than 25 g / 10 min.
  • MFR190 of the polyethylene resin is in the range of 5 g / 10 min or more and less than 30 g / 10 min, the productivity of the split composite fibers is further improved.
  • the second segment can contain a known split accelerator.
  • a known partition accelerator for example, a silicon compound-based partition accelerator, an unsaturated carboxylic acid-based partition accelerator, a (meth) acrylic acid-based compound partition accelerator, and the like can be used.
  • (Meth) acrylic acid compound splitting accelerators are preferred, and (meth) acrylic acid metal salts are more preferred.
  • the second segment contains a (meth) acrylic acid metal salt as a splitting accelerator, 1 to 10% by mass of the (meth) acrylic acid metal salt may be contained in the entire second segment.
  • the second segment is a core-sheath type resin segment whose cross-sectional structure has a first component as a core component and a second component as a sheath component.
  • the split type composite fiber is split to form an ultrafine fiber having a fiber-sheathed core-sheath type composite fiber.
  • the ultrafine fibers formed by splitting the split type composite fiber are thermally bonded to each other. be able to. And the fiber structure which is more excellent in mechanical characteristics, such as puncture strength and tensile strength, can be obtained.
  • the split-type conjugate fiber is composed of two types of resin components, which makes nozzle design and composite spinning easier. .
  • the second segment is a core-sheath type resin segment, and the cross-sectional shape of the core component of the second segment is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained.
  • the cross section of the core component may have, for example, an elliptical shape or a perfect circular shape. Further, the core component may be located at the center of the second segment, or may not be located at the center and may be eccentric.
  • the second component (which can constitute the sheath component) preferably has a melting point lower than the melting point of the first component (which can constitute the core component).
  • the melting point of the second component is preferably 10 ° C. or more lower than the melting point of the first component, more preferably 20 ° C. or more.
  • the split type composite fiber according to the present invention includes the first segment and the second segment, but may further include another resin segment, for example, a third segment.
  • Other resin segments are not particularly limited as long as the split type composite fiber intended by the present invention can be obtained.
  • the resin component constituting the other segment for example, polybutene-1, polymethylpentene, ethylene vinyl alcohol copolymer, ethylene propylene copolymer, polyethylene terephthalate, polybutylene terephthalate, nylon 6 or nylon 66 alone or Two or more types may be used in combination.
  • the other segment may be one type or two or more types.
  • the segments of the split type composite fiber are arranged mutually.
  • it may be a radial shape, a multilayer shape, a cross shape, or the like.
  • the arrangement of the segments of the split-type conjugate fiber is preferably radial.
  • the number of splits may be determined according to the fineness of the split composite fiber, the fineness of the ultrafine fiber to be obtained, and the like.
  • the number of divisions is preferably 4 to 30, for example, more preferably 6 to 24, most preferably 8 to 18, and most preferably 8 to 16.
  • the productivity of the fibers can be moderate, and the division properties can be kept moderate even though spinning is easier.
  • the split-type composite fiber preferably has a hollow portion at the center of the fiber as viewed from the fiber cross section.
  • the puncture strength of a fiber structure can be made higher compared with the split type composite fiber which does not have a hollow part in a fiber center part. This is presumably because the fiber cross section of the ultrafine fiber formed by splitting the split-type composite fiber has a more circular shape. Furthermore, yarn breakage during spinning of the split composite fiber can be suppressed.
  • the hollow ratio can be determined according to the split ratio and the cross-sectional shape of the ultrafine fiber.
  • the hollow ratio is the ratio of the area of the hollow portion in the fiber cross section.
  • the hollowness is preferably about 1% to 50%, and preferably about 5% to 40%. More specifically, when the number of divisions is 6 to 10, the hollow ratio is preferably 5% to 20%, and when the number of divisions is 12 to 20, the hollow ratio is 15% to 40%. It is preferable.
  • the hollowness is about 1% to 50%, it is preferable that the split type composite fiber is difficult to split in the manufacturing process, although the effect of providing the hollow portion is easy to obtain.
  • the first segment preferably occupies 20% to 80% in area, and more preferably occupies 40% to 60% in area.
  • the splitability of the split-type composite fiber is not easily lowered, and the ultrafine fiber 1 derived from the first segment can be formed easily.
  • the volume ratio between the first segment and the second segment constituting the split-type composite fiber is not particularly limited as long as the target split-type composite fiber can be obtained.
  • the volume of the first segment and the volume of the second segment since the cross-sectional structure of the second segment is a core-sheath resin segment having the first component as the core component and the second component as the sheath component
  • the ratio of the total volume of the core component and the sheath component is preferably 2/8 to 8/2 (volume of the first segment / volume of the second segment), and is 4/6 to 6/4. More preferably.
  • a volume ratio of 2/8 to 8/2 is preferred because the spinnability and splitting property are further improved.
  • the second segment is a core-sheath type resin segment, and the volume ratio of [first segment + second segment core component] / [sheath component of the second segment] in the fiber cross section is 2/8 to 8/2 Is preferably 4/6 to 6/4.
  • a volume ratio of 2/8 to 8/2 is preferred because the spinnability and splitting property are further improved.
  • the volume ratio of [first segment + core component of second segment] / [sheath component of second segment] is 5/5, the volume of the first segment is larger than the volume of the entire second segment. Note that also becomes smaller.
  • the volume ratio of the first component to the second component is not particularly limited as long as the split type composite fiber targeted by the present invention can be obtained.
  • the ratio of the volume of the first component to the volume of the second component is 8/2 to 3/7 (volume of the first component / volume of the second component).
  • the ratio is 75/25 to 35/65, more preferably 70/30 to 40/60.
  • a volume ratio of 8/2 to 3/7 is preferred because the spinnability and splitting properties are further improved.
  • the fineness before splitting of the split-type composite fiber is not particularly limited as long as the target split-type composite fiber of the present invention can be obtained, but is preferably 0.5 dtex to 4.8 dtex, More preferably, it is 0.8 dtex to 3.6 dtex, more preferably 1.1 dtex to 2.4 dtex, and most preferably 1.1 dtex to 2.0 dtex.
  • the fineness before splitting of the split-type composite fiber is 0.5 dtex to 4.8 dtex, it is preferable because spinning is easier and productivity is further improved.
  • the single fiber strength of the split type composite fiber before splitting is preferably 2.5 to 7.0 cN / dtex, more preferably 2.7 to 6.5 cN / dtex, and more preferably 2.8 to 6.c. It is even more preferably 0 cN / dtex, and particularly preferably 3.0 to 5.8 cN / dtex.
  • the single fiber strength is measured by the method described in the examples.
  • the elongation before splitting of the split-type fiber is preferably 10 to 120%, more preferably 15 to 80%, still more preferably 20 to 60%, and further preferably 20 to 55%. It is particularly preferred.
  • the elongation is measured by the method described in the examples.
  • the DSC curve by DSC of the entire split type composite fiber is the melting point, molecular weight distribution, crystal state, crystallinity, and amount contained in the split type composite fiber of each of the polypropylene resin and polyethylene resin contained in the split type composite fiber, Moreover, it may change with the kind of other thermoplastic resin contained in a split type composite fiber, quantity, and those crystal
  • the split composite fiber of the present invention is subjected to DSC, and the physical properties of the split composite fiber, particularly the split properties of the split composite fiber, are affected by the shape of the melting peak of the polypropylene resin in the obtained DSC curve.
  • the shape of the melting peak of the polypropylene resin indicated by the DSC curve obtained by performing DSC on the split composite fiber of the present invention will be described.
  • the melting peak of the polypropylene resin appears as a peak having the shape shown in FIGS. 4 to 11 in the DSC curve.
  • a Melting peak of polypropylene resin contained in split type composite fiber
  • a 1 First melting peak of polypropylene resin (first melting peak)
  • a 2 Second melting peak of polypropylene resin (second melting peak)
  • a 3 valley in melting peak of polypropylene resin (valley in melting peak)
  • T 1 First melting peak temperature of polypropylene resin (° C.) (Hereinafter also simply referred to as the first melting peak temperature)
  • T 2 second melting peak temperature of polypropylene resin (° C.) (Hereinafter, also simply referred to as the second melting peak temperature)
  • W 2 heat flux (mW) at the second melting peak of polypropylene resin
  • W 3 heat flux (mW) in a valley (a 3 ) existing between the first melting peak and the second melting peak of the polypropylene resin
  • S 1 area of the first endothermic peak of the polypropylene resin (first melting peak area)
  • S 2 area of the second endothermic peak of the polypropylene resin
  • FIGS. 4 to 11 A straight line extending toward the low temperature side end of the high temperature side base line (the left end of the BL HT )
  • the vertical axis is the heat flux (usually the unit is mW: milliwatt) and absorbs heat. It corresponds to energy, and the horizontal axis indicates time (usually the unit is seconds or minutes).
  • the split composite fiber of the present invention is characterized in that the shape of the melting peak of the polypropylene resin is a double peak shape in the DSC curve.
  • the fact that the shape of the melting peak of the polypropylene resin is a double peak shape means that the shape corresponds to one of the following (1) or (2).
  • the first melting peak appears on the low temperature side, but the first melting peak and the second melting peak do not appear as two vertices that can be clearly separated (in other words, the polypropylene resin A valley (a 3 ) in the melting peak does not appear clearly), and a shoulder-like shape (shoulder-like peak) appears as shown in FIGS.
  • the melting peak shape of the polypropylene resin that satisfies the condition (1) will be described. Schematic diagrams of melting peak shapes satisfying the condition (1) are shown in FIGS.
  • the melting peak satisfying the condition (1) the melting of the polypropylene resin is started from around 145 ° C. in the DSC, and the first melting peak (a 1 ) is observed in the sample temperature range of about 157 to 165 ° C. It is measured.
  • the valley (a 3 ) in the melting peak of the polypropylene resin clearly appears, the second melting peak (a 2 ) is observed when the sample temperature is in the range of about 165 to 175 ° C. ) Appears, and when the sample temperature reaches 180 ° C., the melting of the polypropylene resin is completed.
  • the melting peak shape of the polypropylene resin that satisfies the condition (2) will be described. Schematic diagrams of melting peak shapes satisfying the condition (2) are shown in FIGS.
  • the melting peak satisfying the condition (2) the melting of the polypropylene resin starts from a sample temperature of around 145 ° C. in DSC, but the first melting peak that is the minimum value is not measured, and the shoulder-like peak is measured.
  • the second melting peak (a 2 ) appears as the temperature of the sample rises, and when the sample temperature reaches 180 ° C., the melting of the polypropylene resin is completed.
  • Such a shape of the melting peak is measured when the temperatures of the first melting peak and the second melting peak are close.
  • the melting peak shape of the polypropylene resin is a double peak is a double peak shape if one of the above conditions (1) to (2) is satisfied, and none of them is satisfied.
  • the single peak shape can be determined by examining a DDSC curve obtained by differentiating the DSC curve.
  • the DDSC curve is a curve obtained by first differentiating the DSC curve with respect to time, and indicates the slope of the DSC curve. Therefore, when the slope of the DSC curve becomes zero, it becomes zero, and therefore the value of the DDSC curve becomes zero at the maximum value and the minimum value in the DSC curve.
  • the shape of the melting peak (a) of the polypropylene resin is a double peak shape, more specifically, if any one of the conditions (1) to (2) is satisfied. However, it is particularly preferable that the condition (1) is satisfied.
  • the shape of the endothermic peak resulting from the melting of the polypropylene resin in the DSC curve satisfies the above condition (1), in other words, there are two melting peaks that are minimal in the DSC curve.
  • the polypropylene resin contained in the split-type composite fiber is not only in a high crystallinity state, but also melts at a lower temperature.
  • the polypropylene resin when the shape of the melting peak of the polypropylene resin satisfies the condition (1) in the DSC curve of the split-type composite fiber, the polypropylene resin has a region that melts at a lower temperature and a region that melts at a higher temperature. It is thought that it has been crystallized separately.
  • the region that melts at a lower temperature is an amorphous phase, a crystalline phase that melts at a lower temperature, a crystallized phase that has a low molecular weight, or is crystallized. It is presumed that the same level is included.
  • the split type composite fiber of the present invention As the polypropylene resin constituting the resin segment, a resin having a narrower molecular weight distribution width, that is, a Q value that is a ratio of the weight average molecular weight to the number average molecular weight after spinning is 6 or less. Of polypropylene resin.
  • Polypropylene resin having a Q value of greater than 6 after spinning has a larger molecular weight range of the polypropylene molecule, that is, the molecular weight is too large (the molecule is too long) and / or the molecular weight is too small (molecular
  • the former is crystallized in the spinning process and becomes difficult to stretch in the stretching process, the process of the stretching process may be deteriorated. Since it is difficult to crystallize, it remains as a soft region in the resin segment, which may cause a decrease in the splitting property in the split composite fiber.
  • the differential scanning calorimetry (DSC) of the split-type composite fibers is measured based on the plastic transition temperature measurement method of JIS K 7121 (1987).
  • the split type composite fiber according to the embodiment of the present invention satisfies at least one of the following (A) and (B).
  • DSC differential scanning calorimetry
  • the melting peak of the polypropylene resin is divided into a low temperature side region and a high temperature side region, and the area of each region is defined as a first melting peak area and a second melting peak.
  • the ratio of the second melting peak area to the first melting peak area is 0.85 or more and 3.5 or less, preferably 0.9 or more and 3 .2 or less, more preferably 0.95 or more and 3.0 or less, and even more preferably 1.0 or more and 2.5 or less.
  • the elongation of the second peak obtained from the values of W 2 and W 3 obtained by the method described later is obtained for the melting peak in the DSC curve of the polypropylene resin.
  • the elongation of the second peak which is 0.6 or more, is preferably 0.7 or more, more preferably 0.8 or more, and even more preferably 0.85 or more.
  • the condition (A) which is a preferable condition in the split type composite fiber of the present invention, will be described.
  • the shape of the measured melting peak of the polypropylene resin in the DSC of the split-type composite fiber is a melting peak satisfying the condition (1), it passes through the valley (a 3 ) in the melting peak of the polypropylene resin, A straight line perpendicular to the horizontal axis is drawn, and the straight line is used as a boundary line to divide the melting peak of polypropylene into a low temperature region and a high temperature region.
  • the area of each region surrounded by is referred to as a first melting peak area and a second melting peak area. More specifically, in FIG. 6, a region S 1 which is filled with oblique lines is a first melting peak area, the area S 2 which is filled with oblique lines is a second melting peak area in FIG.
  • the condition (A) which is a preferable condition for the split-type conjugate fiber of the present invention, will be further described.
  • the shape of the melting peak of the polypropylene resin measured in the DSC of the split type composite fiber is a melting peak satisfying the condition (2) above, the shoulder peak measured in the melting peak (a) of polypropylene, T 1 and T as the absolute value of the first derivative of the DSC curve points becomes minimum between 2, a straight line is drawn which intersects perpendicularly to the horizontal axis of the graph, the straight line as a boundary line, melting peak of polypropylene Are divided into a low temperature region and a high temperature region.
  • the low temperature side baseline (BL LT ) is a straight line (BL E ) extending from the high temperature side end portion toward the high temperature side base line (BL HT ).
  • the area of each enclosed region is referred to as a first melting peak area and a second melting peak area. More specifically, in FIG. 10, region S 1 which is filled with oblique lines is a first melting peak area, the area S 2 which is filled with oblique lines is a second melting peak area in FIG. 11.
  • the condition (B), which is a preferable condition for the split conjugate fiber of the present invention, will be described.
  • (B): In the differential scanning calorimetry (DSC), the melting peak of the double peak-shaped polypropylene resin is divided into a first melting peak and a second melting peak, The value of the DSC curve when the second melting peak temperature is reached is W 2 (mW), The value of the DSC curve that minimizes the absolute value of the first derivative of the DSC curve between the first melting peak and the second melting peak is W 3 (mW), Elongation of second melting peak (Absolute value of W 2 ) ⁇ (Absolute value of W 3 ) The elongation of the second peak defined by is 0.6 or more. More specifically, as shown in FIG.
  • condition (B) which is a preferable condition in the split type composite fiber of the present invention.
  • the shape of the melting peak of the polypropylene resin measured in the DSC of the split composite fiber satisfies the condition (2), the elongation of the second melting peak is defined as follows.
  • (B): In the differential scanning calorimetry (DSC), the melting peak of the double peak-shaped polypropylene resin is divided into a first melting peak and a second melting peak, The value of the DSC curve when the second melting peak temperature is reached is W 2 (mW), The value of the DSC curve that minimizes the absolute value of the first derivative of the DSC curve between the first melting peak and the second melting peak is W 3 (mW), Elongation of second melting peak (Absolute value of W 2 ) ⁇ (Absolute value of W 3 ) The elongation of the second peak defined by is 0.6 or more. More specifically, as shown in FIG.
  • FIGS. 4 to 11 are merely examples.
  • the shape of these DSC curves that is, the melting peak shape of polypropylene resin is such that the melting peak on the low temperature side (first melting peak) is smaller than the melting peak on the high temperature side (second melting peak).
  • the melting peak on the high temperature side (second melting peak) is larger than the melting peak on the low temperature side (first melting peak), but such a shape is not necessarily obtained.
  • the present invention includes split type composite fibers that satisfy the requirements.
  • the split-type conjugate fiber is split to form an ultrafine fiber 1 derived from the first segment, and an ultrafine fiber 2 derived from the second segment.
  • an ultrafine fiber 1 derived from the first segment and an ultrafine fiber 2 derived from the second segment.
  • other ultrafine fibers derived from the other segments are formed.
  • the fiber cross-sectional structure of the split-type composite fiber is preferably a fiber cross-sectional structure in which the segments are arranged alternately in a radial pattern. Furthermore, in the split type composite fiber, it is also preferable to have a fiber cross-sectional structure having a hollow part at the fiber center part.
  • the ultrafine fiber 1 and / or the ultrafine fiber 2 preferably has a fineness of less than 0.6 dtex, and more preferably less than 0.4 dtex. When the fineness of the ultrafine fiber is less than 0.6 dtex, a thin fiber structure can be obtained more easily.
  • the fineness of the ultrafine fibers 1 and 2 may be the same or different from each other, and the lower limit of the fineness is preferably 0.006 dtex for any of the ultrafine fibers.
  • the ultrafine fiber 2 is a core-sheath type
  • the fineness of the ultrafine fiber 2 is preferably less than 0.4 dtex.
  • the core-sheath type composite fiber is included in the fiber structure, the smaller the fineness of the composite fiber, the larger the surface area of the composite fiber, so that the thermal bonding area increases, and the mechanical strength of the fiber structure after thermal bonding Becomes higher.
  • the ultrafine fiber 2 is a core-sheath type ultrafine composite fiber, it is particularly preferable to have a smaller fineness.
  • the present invention provides a method for producing a new split-type composite fiber, In a fiber cross section, a split-type conjugate fiber including a first segment and a second segment,
  • the first segment is a resin segment composed of a first component
  • the second segment is a melt spinning machine equipped with a split type composite nozzle that is a split type composite fiber that is a core-sheath type resin segment whose cross-sectional structure is the core component of the first component and the sheath component of the second component.
  • melt spinning with a melt spinning machine Producing spinning filaments This is a method for producing a split-type conjugate fiber, comprising drawing a spun filament at a drawing temperature of 60 ° C. or more and 125 ° C. or less and a draw ratio of 1.1 times or more to obtain a split-type conjugate fiber.
  • the split-type conjugate fiber according to the embodiment of the present invention can obtain the target split-type conjugate fiber
  • its production method is not particularly limited, but the above-described split-type conjugate fiber production method is used.
  • the manufacturing method of a split type composite fiber is demonstrated in detail.
  • the split type composite fiber can be composite-spun using a conventional melt-spinning machine using an appropriate composite spinning nozzle so that a desired fiber cross-sectional structure can be obtained.
  • the spinning temperature (nozzle temperature) is selected according to the resin component used, and may be, for example, 200 ° C. or higher and 360 ° C. or lower.
  • a split type composite nozzle that obtains a predetermined fiber cross section is attached to the melt spinning machine, and the spinning temperature is set so that the first segment and the second segment are adjacent to each other in the fiber cross section and are divided from each other.
  • the polypropylene resin constituting the first segment and the polyethylene resin constituting the second segment can be extruded and melt-spun at 200 to 360 ° C. to obtain a spun filament (unstretched fiber bundle).
  • the fineness of the spun filament may be in the range of 1 dtex to 30 dtex.
  • the fineness of the spinning filament is 1 dtex or more and 30 dtex or less, spinning can be facilitated.
  • the fineness of the spinning filament is preferably 2.0 to 15 dtex, more preferably 2.5 to 12 dtex, and 3 to 10 dtex. More preferably, it is 4.0 to 8.0 dtex, particularly preferably 4.5 to 7.5 dtex.
  • the drawn filament can be obtained by drawing the spinning filament using a known drawing processor.
  • the stretching treatment is preferably carried out by setting the stretching temperature to a temperature within the range of 60 ° C. to 125 ° C., and more preferably at a temperature within the range of 80 ° C. to 120 ° C.
  • the draw ratio is preferably 1.1 times or more, more preferably 1.5 times or more, further preferably 2 to 8 times, particularly preferably 3 to 6 times. Most preferably, the ratio is from 5 to 5.5 times. When the draw ratio is 1.1 times or more, the molecules constituting the fiber are oriented in the length direction of the fiber, so that the splitting property is improved.
  • the stretching method may be a wet stretching method performed in warm water or hot water, hot air spraying, a dry stretching method performed in a high temperature atmosphere, or in a liquid heat medium other than water such as silicone oil.
  • a dry stretching method it is preferable to carry out by a dry stretching method, a wet stretching method, or a steam stretching method because the thermal efficiency is good and the productivity is excellent.
  • the drawing method can be selected in consideration of the intended use of the resulting split conjugate fiber. That is, when the split composite fiber of the present invention is used for splitting at a high ratio without being exposed to a high-pressure water stream, or for applications where high single fiber strength is required, the stretching method is a dry process that can be stretched at a higher temperature.
  • the stretching temperature may be in the range of 60 ° C. or higher and 98 ° C. or lower, may be in the range of 60 ° C. or higher and 95 ° C. or lower, may be in the range of 70 ° C. or higher and 95 ° C. or lower, and is 80 ° C. or higher.
  • the stretching temperature may be in the range of 80 ° C. or more and 125 ° C. or less, may be in the range of 90 ° C. or more and 125 ° C. or less, may be in the range of 100 ° C. or more and 125 ° C. or less, It is good also in the range below 120 degreeC.
  • Vmax maximum draw ratio
  • the spinning filament is stretched at a high draw ratio. Since the crystallization of the polypropylene molecules contained in the polypropylene resin that constitutes the spinning filament and the polyethylene molecules that constitute the polyethylene resin are advanced by the stretching treatment, and the orientation of the molecular arrangement is advanced, the resulting division is obtained. There exists an advantageous effect that a type
  • the maximum draw ratio is determined by the method described in the examples.
  • a predetermined amount of fiber treatment agent is adhered to the obtained drawn filament as necessary, and further, mechanical crimping is given by a crimper (crimping device) as necessary.
  • the fiber treatment agent facilitates dispersion of fibers in water or the like when a nonwoven fabric is produced by a wet papermaking method.
  • the external force is a force applied when crimping is applied by a crimper, for example
  • the fiber treatment agent is soaked into the fiber, water is further added.
  • the dispersibility to etc. improves.
  • the cocoon filament is dried at a temperature within the range of 80 ° C. to 110 ° C. for several seconds to about 30 minutes, Allow the fibers to dry. The drying process may be omitted depending on circumstances. Thereafter, the filament is preferably cut so that the fiber length is 1 mm to 100 mm, more preferably 2 mm to 70 mm. As will be described later, when the nonwoven fabric is produced by the wet papermaking method, the fiber length is more preferably 3 mm to 20 mm. When manufacturing a nonwoven fabric by the wet papermaking method, the division
  • the fiber structure of the present invention will be described. Although it does not specifically limit as a form of a fiber structure, For example, a woven fabric, a knitted fabric, a nonwoven fabric etc. are mentioned. Moreover, the fiber web form of the nonwoven fabric is not particularly limited, and examples thereof include a card web formed by a card method, an air lay web formed by an air lay method, and a wet paper making web formed by a wet paper making method.
  • the fiber structure includes 5% by mass or more of ultrafine fibers formed by dividing the split composite fiber. That is, the fiber structure may include the ultrafine fiber 1 and the ultrafine fiber 2 in a proportion of 5% by mass or more.
  • the fiber structure preferably contains ultrafine fibers in a proportion of 10% by mass or more, more preferably in a proportion of 20% by mass or more, and most preferably in a proportion of 25% by mass or more.
  • a preferable upper limit is 100 mass%.
  • RO membrane reverse osmosis membrane
  • the content of the split type composite fiber in the entire fiber structure is 90 mass% or less, 80 mass% or less, or 75 mass% or less.
  • mold composite fiber contained in a fiber structure may be 10 mass% or more, may be 20 mass% or more, and may be 25 mass% or more.
  • the ratio of the above-mentioned split-type composite fibers contained in the fiber structure such as dry nonwoven fabric and wet nonwoven fabric is 90% by mass or less
  • the ratio of the ultrafine fibers generated from the split-type composite fibers in the obtained fiber structure is Depending on the use of the fiber structure, the structure is preferably a suitably dense non-woven fabric.
  • the fiber structure more preferably contains the ultrafine fiber 2 in a proportion of 10% by mass or more, more preferably contains the ultrafine fiber 1 in a proportion of 20% by mass or more, and the ultrafine fiber 2 in a proportion of 35% by mass or more.
  • the inclusion is most preferred.
  • a preferable upper limit is 50 mass%.
  • the fiber structure may contain other fibers other than the ultrafine fiber formed from the split composite fiber in an amount of 95% by mass or less.
  • Other fibers may be natural fibers or regenerated fibers, or may be single fibers and composite fibers made of synthetic resin.
  • the other fiber may include an ultrafine fiber formed from another split type composite fiber.
  • the other fiber may be an ultrafine fiber having a fineness of less than 0.6 dtex manufactured by a single spinning method, rather than an ultrafine fiber formed from a split composite fiber.
  • the fiber structure is generated only because of the fibers derived from the split type composite fibers (the ultrafine fiber 1 derived from the first segment, the ultrafine fiber 2 derived from the second segment, and the division did not proceed completely) Or a fiber having a branching in one fiber, or the like, or may be composed only of ultrafine fibers formed from the split type composite fibers.
  • the fiber structure preferably has a total amount of fibers having a small fineness (less than 0.6 dtex) in the fiber structure, preferably 10% by mass or more, more preferably 20% by mass or more, and 50% by mass. % Or more is even more preferable, and 70% by mass or more is most preferable. In addition, a preferable upper limit is 100 mass%.
  • a preferable upper limit is 100 mass%.
  • the fibers having a small fineness (less than 0.6 dtex) in the fiber structure may be only the ultrafine fibers 1 or only the ultrafine fibers 1 and 2 or may be composed of these and other ultrafine fibers. .
  • the split composite fiber of the present invention can be split by applying a physical impact.
  • a physical impact for example, it can be carried out by hydroentanglement treatment (injecting a high-pressure water flow), or when a nonwoven fabric is produced by a wet papermaking method, it can be carried out by using the impact received during the disaggregation treatment during papermaking. .
  • a columnar water flow with a water pressure of 3 to 20 MPa is sprayed at least once on the front and back of the nonwoven fabric from a nozzle in which orifices having a hole diameter of 0.05 to 0.5 mm are provided at intervals of 0.5 to 1.5 mm. It is preferable.
  • the split type composite fiber of the present invention is used, the conventional split type composite fiber having a water pressure of 10 MPa or less in which the formation of the fiber web is not disturbed and the opening due to the high-pressure water flow is less likely to be sufficiently split.
  • it is possible to divide and further, it is possible to divide even when the water pressure is 8 MPa or less, and it is possible to divide even when the water pressure is 6 MPa or less.
  • a method for manufacturing a fiber structure will be described taking a nonwoven fabric as an example.
  • the non-woven fabric is produced by producing a fiber web according to a known method and then subjecting the fibers to heat treatment by heat treatment as necessary. Moreover, you may attach
  • the fiber web is divided by a dry method such as a card method or an air array method using a split type composite fiber having a fiber length in a range of 10 mm to 80 mm, or a fiber length in a range of 2 mm to 20 mm. It is produced by wet papermaking using a mold composite fiber.
  • nonwoven fabrics produced by dry methods such as the card method or air array method are preferred. This is because the nonwoven fabric produced by the dry method has a soft texture and an appropriate density. Moreover, when using in field
  • the fiber web may be subjected to a thermal bonding treatment.
  • a core-sheath type composite fiber may be added in addition to the split type composite fiber, and the fibers may be bonded together by the sheath component of the core-sheath type composite fiber.
  • the ultrafine fibers 2 are included and the ultrafine fibers 2 are core-sheath type ultrafine composite fibers, the fibers may be bonded to each other by the sheath component of the core-sheath type ultrafine composite fibers.
  • the conditions for the thermal bonding treatment are appropriately selected according to the basis weight of the fiber web, the cross-sectional shape of the core-sheath ultrafine composite fiber, the type of resin constituting the fiber contained in the nonwoven fabric, and the like.
  • a cylinder dryer a yankee dryer
  • a hot air spraying machine a hot roll processing machine, a hot embossing machine, or the like
  • a cylinder dryer Yankee dryer
  • the heat treatment temperature of the cylinder dryer is, for example, preferably 80 to 160 ° C. when the ethylene vinyl alcohol copolymer is a sheath component, and preferably 100 to 160 ° C. when polyethylene is the sheath component.
  • the thermal bonding treatment is preferably performed before the hydroentanglement treatment when the fiber web is subjected to the hydroentanglement treatment.
  • the thermal bonding treatment may be performed after the fibers are entangled. That is, the order of the thermal bonding treatment and the hydroentanglement treatment is not particularly limited as long as a desired nonwoven fabric is obtained.
  • the fibers may be entangled.
  • a process for entanglement of fibers a water entanglement process for entanglement of fibers by the action of a high-pressure water flow is preferably used.
  • the fibers can be strongly entangled without impairing the density of the entire nonwoven fabric.
  • the entanglement between the ultrafine fibers generated by the splitting and splitting of the split-type composite fibers can be advanced simultaneously with the entanglement of the fibers by the hydroentanglement process.
  • the conditions for the hydroentanglement treatment are appropriately selected according to the type and basis weight of the fiber web to be used and the type and ratio of the fibers contained in the fiber web. For example, when a wet papermaking web having a basis weight of 10 to 100 g / m 2 is subjected to hydroentanglement treatment, the fiber web is placed on a support having a plain weave structure of about 70 to 100 mesh and a pore diameter of 0.05 to 0.3 mm. A columnar water flow having a water pressure of 1 to 15 MPa, more preferably 2 to 10 MPa, may be sprayed 1 to 10 times each on one or both sides of the fiber web from a nozzle provided with an orifice of 0.5 to 1.5 mm. . The fiber web after the hydroentanglement treatment is subjected to a drying treatment as necessary.
  • the fiber structure may be subjected to a hydrophilization treatment as necessary.
  • the hydrophilization treatment may be performed using any method such as a fluorine gas treatment, a vinyl monomer graft polymerization treatment, a sulfonation treatment, a discharge treatment, a surfactant treatment, or a hydrophilic resin application treatment.
  • Fiber structure preferably has a 2 g / m 2 or more 100 g / m 2 or less of the mass per unit area, more preferably has a 10 g / m 2 or more 100 g / m 2 or less of the mass per unit area, more preferably 20 g / m 2 or more It has a basis weight of 80 g / m 2 or less, and particularly preferably has a basis weight of 30 g / m 2 or more and 60 g / m 2 or less.
  • the basis weight of the fiber web is 2 g / m 2 or more, the resulting fiber web and the fiber structure are well formed, and the fiber structure tends to have high strength and high puncture strength.
  • the basis weight of the fiber web is 100 g / m 2 or less, the air permeability of the fiber structure is not lowered, and the split type composite fiber of the present invention contained in the fiber web is divided into each component by hydroentanglement treatment described later. When this is done, the high-pressure water stream tends to act uniformly on the entire fiber web, and it becomes easy to sufficiently divide the split composite fibers.
  • the present invention can bond ultrafine fibers to each other by the sheath component of the core-sheath type ultrafine composite fiber formed from the second segment, it forms a fiber structure in which the fibers are bonded only by the ultrafine fibers. Can do.
  • a fiber structure is preferably in the form of a non-woven fabric, for example, and can be used as a battery separator, various filter media, and various membrane supports.
  • the basis weight of the fiber structure preferably has a basis weight of 5 g / m 2 to 80 g / m 2 , more preferably 5 g / m 2 to 60 g / m 2 , Preferably, it has a basis weight of 5 g / m 2 or more and 50 g / m 2 or less, and most preferably has a basis weight of 10 g / m 2 or more and 30 g / m 2 or less.
  • the splitting ratio of the split-type composite fiber is preferably 90% or more, more preferably 92% or more, still more preferably 95% or more, 97 % Or more is particularly preferable.
  • the fiber structure in the form of the present invention preferably has an air permeability of 5 to 24 cm 3 / cm 2 ⁇ second, more preferably 8 to 22 cm 3 / cm 2 ⁇ second, and 10 to 20 cm 3 / second. preferably more than that cm is 2 ⁇ sec, particularly preferably 12 ⁇ 18cm 3 / cm 2 ⁇ sec.
  • the air permeability is measured by the method described in the examples.
  • the fiber structure in the form of the present invention preferably has an average pore size of 1 to 16 ⁇ m, more preferably 2 to 15 ⁇ m, particularly preferably 3 to 12 ⁇ m, most preferably 5 to 10 ⁇ m. preferable.
  • the average pore size of the fiber structure is 1 to 16 ⁇ m, it is considered that the pores present in the fiber structure are sufficiently small and the entire fiber structure has a dense structure.
  • the fiber structure for the filter layer which comprises various filters; It becomes a fiber structure especially suitable for the fiber structure for various membrane supports used as a support body of various filter membranes.
  • the fiber structure of the present invention preferably has a maximum pore size of 5 to 30 ⁇ m, more preferably 8 to 24 ⁇ m, particularly preferably 10 to 20 ⁇ m, and 12 to 18 ⁇ m. Is most preferred. If the maximum pore size of the fiber structure is 5 to 30 ⁇ m, it can be said that the diameter of the largest pore among the pores existing in the fiber structure is sufficiently small.
  • the fiber structure is particularly suitable for a separator fiber structure, a filtration layer fiber structure, and a membrane support fiber structure that are required to be blocked.
  • the fiber structure in the form of the present invention preferably has a minimum pore size of 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, particularly preferably 2.5 to 6 ⁇ m, and 3 to 5 ⁇ m. Is most preferred.
  • the fiber structure of the present invention preferably has a most porous diameter of 1 to 15 ⁇ m, more preferably 2 to 12 ⁇ m, particularly preferably 2.5 to 10 ⁇ m, and 3 to 8 ⁇ m. Most preferably it is. If the minimum pore size of the fiber structure is 1 to 10 ⁇ m or the maximum pore diameter of the fiber structure is 1 to 15 ⁇ m, the pores existing in the fiber structure are sufficiently small and the structure is dense.
  • the fiber structure can permeate or hold substances other than foreign matters such as water and gas, it is particularly suitable for a separator fiber structure, a filter layer fiber structure, and a membrane support fiber structure. It becomes a suitable fiber structure.
  • the pore distribution such as the average pore size, the maximum pore size, the minimum pore size, and the maximum pore size is measured by the method described in Examples.
  • the fiber structure in the form of the present invention preferably has a puncture strength of 6N or more, more preferably 8N or more, particularly preferably 10N or more, and most preferably 12N or more.
  • a puncture strength of the fiber structure is large, breakage or tear due to contact with the foreign matter and penetration of the foreign matter are difficult to occur.
  • a fiber structure with high piercing strength is used as a separator material, a short circuit (short) caused by foreign matter, such as metal burrs, or needle-like crystals (dendrites) that occur when secondary batteries are used repeatedly ) Is less likely to occur.
  • the upper limit of the puncture strength of the fiber structure in the form of the present invention is not particularly limited, but is preferably 30 N or less, more preferably 27 N or less, considering the productivity and handleability of the fiber structure, 25 N It is particularly preferred that The puncture strength is measured by the method described in the examples.
  • the puncture strength depends on the basis weight of the fiber structure. That is, the fiber structure having a larger basis weight tends to have higher puncture strength.
  • the fiber structure in the form of the present invention includes split-type composite fibers that can be easily divided, and preferably includes ultrafine fibers having a core-sheath cross-sectional structure, so that the resulting fiber structure has a small basis weight. Products with high puncture strength are easily obtained.
  • the fiber structure in the form of the present invention preferably has a puncture strength (N) per unit basis weight (g / m 2 ) of 0.15 N or more, more preferably 0.2 N or more, and 0.25 N or more.
  • the upper limit of the puncture strength (N) per unit basis weight (g / m 2 ) of the fiber structure in the form of the present invention is not particularly limited, but is 0.8 N or less in consideration of the productivity and handleability of the fiber structure. Preferably, it is 0.7N or less, more preferably 0.65N or less.
  • Unit basis weight (g / m 2) per puncture strength (N) is dividing the puncture strength was measured by the method described in Example (N), in basis weight of the sample used for the measurement (g / m 2) Is required.
  • the split type composite fiber of the present invention has excellent splitting properties as described above, and can produce a fiber structure such as a dense and well-woven nonwoven fabric.
  • the fiber structure containing the split composite fiber of the present invention includes, for example, various secondary batteries such as lithium ion batteries and nickel metal hydride batteries, separators used for various power storage devices such as various capacitors and various capacitors, liquids and gases, etc.
  • Filtration materials used as a support for various filtration membranes such as microfiltration membranes (MF membranes), fiber structures for various membrane supports, various wiping sheets such as interpersonal and / or objective wipers, and cosmetic-impregnated skin coatings such as face masks Sheet, infant paper diaper, nursing paper diaper, surface sheet constituting a absorbent article such as sanitary napkin, second sheet, and the like It is useful as an absorbent article sheet such as Kkushito.
  • PE Polyethylene
  • MFR (g / 10min) 20 HE490 (trade name) manufactured by Nippon Polyethylene Corporation
  • the obtained sample solution for measurement was injected into the gel permeation chromatograph apparatus under the conditions of a flow rate of 1.0 mL / min and an injection amount of 0.2 mL (200 ⁇ L), and a number average molecular weight (Mn) and a weight average molecular weight. (Mw), z average molecular weight (Mz) was measured.
  • TCB containing 0.1% BHT was used as a measurement solvent
  • one Shodex HT-G and two Showa Denko HT-806M were used as columns, and the temperature of the column thermostat was 145. Measured as ° C.
  • melt flow rate (MFR)> The melt flow rate of the polypropylene resin was measured at 230 ° C. and a load load of 21.18 N according to JIS K 7210. The melt flow rate of the polyethylene resin was measured according to JIS K 7210 at 190 ° C. and a load load of 21.18 N.
  • the production of the split type composite fiber of Example 1 was performed under the following spinning conditions and stretching conditions. Using a split type composite nozzle that has 205 nozzle holes and the cross-sectional structure of the extruded molten resin is the cross section shown in FIG. 1, homopolypropylene resin (PP1) and high-density polyethylene (PE1) are put into separate extruders. Fully melted.
  • PP1 homopolypropylene resin
  • PE1 high-density polyethylene
  • the discharge amount per nozzle hole is 0.51 g / min
  • the molten resin is drawn under the conditions of a take-up speed of 840 m / min and cooled, the fineness A 6.0 dtex spun filament was obtained.
  • the spinning filament was dry-drawn at a draw ratio of 4.2 times at 105 ° C. to obtain a drawn filament having a fineness of 1.60 dtex.
  • the maximum draw ratio (Vmax) was measured by the following method.
  • the obtained spinning filament is set in a stretching apparatus that matches a predetermined stretching temperature.
  • the feeding speed (V 1 ) of the roll for feeding the spinning filament is set to 5 m / second, and the winding speed (V 2 ) of the metal roll on the winding side is gradually increased from 5 m / second.
  • the winding speed of the metal roll on the winding side when the spinning filament breaks is the maximum drawing speed, and the ratio between the maximum drawing speed and the feed speed of the roll that feeds the unstretched fiber bundle (V 2 / V 1 ).
  • the obtained speed ratio is taken as the maximum draw ratio (Vmax).
  • a maximum draw ratio of 3 or more is preferable because a stretchable treatment can be performed at a high draw ratio, and a split-type composite fiber having a small fineness can be easily obtained. Even if the maximum draw ratio is less than 3, it does not affect the drawing treatment, but since the maximum draw ratio is low, there is a possibility that it is difficult to obtain a split type composite fiber having a desired fineness.
  • the spinning filament of Comparative Example 5 After applying the same fiber treating agent as that of the split type composite fiber of Example 1 to the drawn filament, it was cut into a fiber length of 3 mm to obtain the split type composite fiber of Comparative Example 5 in the form of short fibers.
  • the spinning filament of Comparative Example 5 has a maximum draw ratio of 5.9 times.
  • the differential scanning calorimetry (DSC) of the split-type composite fiber is based on JIS K 7121 (1987), a plastic transition temperature measurement method, and a differential scanning calorimeter (trade name “EXSTAR6000 / DSC6200” manufactured by Seiko Instruments Inc.). ).
  • a fiber web was produced by the wet papermaking method using the split type composite fiber of Example 1. Specifically, the slurry is prepared so that the fiber concentration becomes 0.01% by mass, and stirred with a pulper at a rotation speed of 2000 rpm for 5 minutes to dissociate the fibers and split the split-type composite fibers. Thus, the ultrafine fiber 1 of the first segment and the ultrafine fiber 2 of the second segment were formed.
  • Wet paper making was carried out using a circular net type wet paper machine to obtain a web having a basis weight of 80 g / m 2 . Using a cylinder dryer heated to 140 ° C.
  • Example 1 The nonwoven fabric of Example 1 was obtained by bonding.
  • the nonwoven fabrics of Examples 2 to 8 and Comparative Examples 1 to 6 were used in the same manner as described in Example 1 except that the split type composite fibers of Examples 2 to 8 and Comparative Examples 1 to 6 were used.
  • Division ratio (%) [number of ultrafine fibers 1 + number of ultrafine fibers 2] / [number of ultrafine fibers 1 + number of ultrafine fibers 2 + total number of undivided fibers] ⁇ 100 The division ratios are shown in Tables 1 to 3.
  • the air permeability of the nonwoven fabric was evaluated by measuring the air permeability.
  • the air permeability was measured according to JIS L 1096 (2010) 8.26A (Fragile method).
  • the nonwoven fabrics of Examples 1 to 8 are all obtained using the split-type composite fibers of Examples 1 to 8, and the Mw / Mn of the polypropylene resin is 6 or less, and the melting peak of the polypropylene resin indicated by the DSC curve Since the shape is a double peak shape, at least one of the problems such as productivity and splitability during fiber production is improved.
  • the (A) second melting peak area / first melting peak area is 0.85 or more and 3.5 or less; and (B) the second peak elongation is 0. Since it satisfies at least one of 6 or more, it is further excellent in both splitting property and air permeability.
  • the Mw / Mn of the polypropylene resin is not 6 or less, or the shape of the melting peak of the polypropylene resin indicated by the DSC curve is not the double peak shape. None of the problems such as separability improve. Further, the split composite fibers of Comparative Example 5 and Comparative Example 6 use the same polypropylene resin and polyethylene resin as the split composite fiber of Example 5, but the split ratio of the obtained split composite fibers was low. .
  • the second segment is not a core-sheath cross section, so that the cooling process during melt spinning, the crystallization state of the thermoplastic resin generated during the cooling process, the fiber interior during melt spinning and stretching It is estimated that because the strain state generated in the resin is different, the resin segments are firmly adhered to each other, or when the force is applied to the split composite fiber, the effect of absorbing the impact is increased, so that it is difficult to break. Is done.
  • a slurry was prepared at the same slurry concentration and rotation speed as the above production conditions, and the split type composite fiber was split to obtain the first segment of ultrafine fibers 1 and Two segments of ultrafine fibers 2 were formed.
  • wet paper was made to obtain a web having a basis weight of about 40 g / m 2 .
  • a cylinder dryer heated to 140 ° C. by transporting the web with a support for transportation, the web is heated for 45 seconds to dry the web, and at the same time, the fibers are separated from each other by the sheath component of the ultrafine fibers 2. It was made to adhere and it was set as the heat bonding nonwoven fabric.
  • Thickness processing using a heat roll was performed on the obtained heat-bonded nonwoven fabric under conditions of a temperature of 80 ° C. and a linear pressure of about 760 N / cm, and the thickness of the heat-bonded nonwoven fabric was adjusted to about 120 ⁇ m. A heat bonded nonwoven fabric was obtained.
  • the obtained heat bonded nonwoven fabric of Example 9 was evaluated by the following method.
  • the thickness of the obtained heat-bonded nonwoven fabric is 175 kPa so that the load is 175 kPa at 10 different points of each of the three samples according to JIS B 7502. Then, the thickness was measured, and the average value of a total of 30 locations was obtained to obtain the thickness of the sample.
  • test piece [Tear strength] JIS L 1085 5.5.
  • A-1 method single tongue method
  • measurement was performed using a tensile testing machine (A & D Co., Ltd., Tensilon (registered trademark) UCT-1 (trade name)).
  • a tensile testing machine A & D Co., Ltd., Tensilon (registered trademark) UCT-1 (trade name)
  • UCT-1 trademark
  • As the test piece a rectangular piece cut into a width of 5 cm and a length of 15 cm was cut in the center of the short side with a cut of 8 cm perpendicular to the side to create two tongues. The maximum load when tearing at / min was measured.
  • the puncture strength refers to the stress (maximum penetration force F) at the penetration point by needle penetration force measurement, and was measured by the following method.
  • a nonwoven fabric cut to a size of 30 mm in length and 100 mm in width was prepared as a sample. This sample was placed on a support having a cylindrical through hole (diameter 11 mm) of a handy compression tester (KES-G5 manufactured by Kato Tech Co., Ltd.).
  • a pressing plate made of an aluminum plate having a length of 46 mm, a width of 86 mm, and a thickness of 7 mm and having a hole of 11 mm in diameter at the center is placed on the sample placed on the support.
  • the load when a needle of a conical shape with a height of 18.7 mm, a bottom diameter of 2.2 mm, and a tip shape of 1 mm is vertically stabbed into the center of the holding plate at a speed of 2 mm / second, and the above
  • the sample is pushed by the conical needle and the length of the deformation is measured.
  • the stress at the penetration point where the conical needle penetrates the sample is the maximum penetration force F (N), that is, the puncture strength. It was.
  • the puncture strength was obtained by taking four samples from one non-woven fabric (battery separator), measuring each sample at five different locations, and taking the average of the values measured at a total of 20 locations.
  • the puncture strength (N) per unit basis weight (g / m 2 ) was determined by dividing this value by the basis weight of the sample.
  • the nonwoven fabric of Example 9 constitutes the resulting non-woven fabric because the split-type conjugate fibers used were sufficiently split by the stirring treatment performed when preparing the slurry before papermaking. Most of the fibers became ultrafine fibers, and it was thought that the heat-bonding and thickness processing resulted in a dense nonwoven fabric.
  • the nonwoven fabric of Example 9 has all of the measured average pore diameter, minimum pore diameter, maximum pore diameter, and maximum pore diameter being small. It is considered that not only the void portion formed inside the nonwoven fabric was reduced, but also the pores formed in the nonwoven fabric were small and uniform.
  • the nonwoven fabric of Example 9 is thin, but the tear strength and tensile strength are high. This is because the nonwoven fabric of Example 9 is a nonwoven fabric obtained from a split type composite fiber in which one resin segment has a core-sheath cross section. This is thought to be because the ultrafine fibers were bonded to each other by heat, and the resulting fiber web was heat-bonded to each other by heat treatment.
  • a split-type composite fiber including a first segment and a second segment;
  • the first segment is a resin segment composed of a first component
  • the second segment is a core-sheath resin segment whose cross-sectional structure has the first component as a core component and the second component as a sheath component
  • the first component is a resin component containing 50% by mass or more of polypropylene resin
  • the second component is a resin component containing 50% by mass or more of a polyethylene resin
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polypropylene resin measured after spinning is 6 or less, After spinning, JIS K 7121 (1987) Split type composite in which the shape of the melting peak of the polypropylene resin indicated by the DSC curve obtained by differential scanning calorimetry (DSC) based on the plastic transition temperature measurement method is a double peak shape fiber.
  • DSC differential scanning calorimetry
  • the split type composite fiber according to 1 above which satisfies at least one of the following (A) and (B).
  • the melting peak of the double peak-shaped polypropylene resin is divided into a first melting peak and a second melting peak,
  • the value of the DSC curve when the second melting peak temperature is reached is W 2 (mW)
  • the value of the DSC curve that minimizes the absolute value of the first derivative of the DSC curve between the first melting peak and the second melting peak is W 3 (mW)
  • Elongation of second melting peak (Absolute value of W 2 ) ⁇ (Absolute value of W 3 )
  • the elongation of the second peak defined by is 0.6 or more. 3.
  • the ratio of the first component to the second component (first component / second component) contained in the split composite fiber is any one of the above items 1 to 3, wherein the ratio is 8/2 to 3/7 (volume ratio)
  • the fiber structure according to 5 above wherein the air permeability measured according to JIS L 1096 is 8 cm 3 / cm 2 ⁇ sec or more and 22 cm 3 / cm 2 ⁇ sec or less using a Frazier type tester. 7).
  • a filtration material comprising the fiber structure according to 5 or 6 above. 9.
  • a split-type conjugate fiber including a first segment and a second segment
  • the first segment is a resin segment composed of a first component
  • the second segment is a melt spinning machine equipped with a split type composite nozzle that is a split type composite fiber that is a core-sheath type resin segment whose cross-sectional structure is the core component of the first component and the sheath component of the second component.
  • 14 14 A split type composite fiber produced by the production method according to any one of 9 to 13 above.
  • 15. 15 A fiber structure containing 10% by mass or more of the split type composite fiber described in 14 above.
  • the split composite fiber of the present invention has high productivity and excellent splitability. Furthermore, by setting one resin segment as a core-sheath type resin segment, it becomes a split type composite fiber that can bond ultrafine fibers by heating.
  • the split composite fiber of the present invention is used in applications where a dense fiber structure and a fiber structure having a small fiber diameter are required, for example, various secondary batteries such as lithium ion batteries and nickel metal hydride batteries, various capacitors, and various capacitors.
  • Fiber structures for separators used in various power storage devices such as, fiber structures for filtration layers constituting various filters such as cartridge filters and laminated filters that capture and / or remove foreign substances from fluids such as liquids and gases, Fibers for various membrane supports used as supports for various filtration membranes such as reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), ultrafiltration membranes (UF membranes), and microfiltration membranes (MF membranes) Structures, fiber structures for various wiping sheets such as interpersonal and / or objective wipers, fiber structures for cosmetic-impregnated skin-covering sheets such as face masks, To be used for absorbent fabrics such as infant paper diapers, nursing care diapers, sanitary napkins, etc. Can do.
  • RO membranes reverse osmosis membranes
  • NF membranes nanofiltration membranes
  • UF membranes ultrafiltration membranes
  • MF membranes microfiltration membranes

Abstract

Disclosed are splittable conjugate fibers each comprising a first segment and a second segment, wherein the first segment contains at least 50% by mass of a polypropylene resin, the second segment contains at least 50% by mass of a polyethylene resin, the ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene resin measured after spinning is not more than 6, and the shape of melting peaks of the polypropylene resin indicated by a differential scanning calorimetry (DSC) curve obtained through DSC performed according to the plastic transition temperature measurement method defined in JIS K 7121 (1987) after spinning is a double-peak shape. The splittable conjugate fibers can be used in applications where compactness is required in the fiber structure, and, in particular, further improves productivity, splittability, and the like during fiber production.

Description

分割型複合繊維及びこれを用いた繊維構造物Split type composite fiber and fiber structure using the same
 本発明は、分割型複合繊維及びこれを用いた繊維構造物に関する。 The present invention relates to a split type composite fiber and a fiber structure using the same.
 極細繊維及び極細繊維を含む繊維構造物を得るために、複数の熱可塑性樹脂を使用し、繊維断面を観察したときに、断面が2個以上の樹脂セグメント(以下、単にセグメントと称す)で構成される分割型複合繊維を用いる方法が知られている。分割型複合繊維を用いると、繊維を各セグメントに分割することで、極細繊維を容易に得ることができる。しかし、分割処理が不十分であると、分割されていない部分、すなわち、セグメント同士が膠着したままの状態で残っている部分(一般的には未分割繊維とも称される)が残ることが知られている。 To obtain ultrafine fibers and fiber structures containing ultrafine fibers, a plurality of thermoplastic resins are used, and when the fiber cross section is observed, the cross section is composed of two or more resin segments (hereinafter simply referred to as segments). A method using a split type composite fiber is known. When a split type composite fiber is used, an ultrafine fiber can be easily obtained by dividing the fiber into segments. However, it is known that if the division process is insufficient, a part that is not divided, that is, a part that remains with the segments stuck together (generally referred to as undivided fibers) remains. It has been.
 また、分割型複合繊維を構成するセグメントは、一般的に単一の樹脂成分(複数種類の熱可塑性樹脂を混合した樹脂成分であっても、セグメント内ではそれらが均一に混ざった単一の樹脂成分)で構成されているため、分割処理を十分に行うと極細繊維を得られるが、それらの極細繊維間を接着させる場合、極細繊維よりも繊維径の大きな熱接着繊維、例えば表面が前記極細繊維を構成する熱可塑性樹脂よりも低融点の熱可塑性樹脂で構成された芯鞘型複合繊維を混合することが必要となる。その結果、極細繊維間を当該極細繊維よりも繊維径の大きい熱接着繊維を用いて接着させて得られる繊維構造物は、その緻密性が低下することが知られている。 In addition, the segment constituting the split-type conjugate fiber is generally a single resin component (even if a resin component is a mixture of a plurality of types of thermoplastic resins) Component), the fine fibers can be obtained when the splitting process is sufficiently performed. However, when bonding these ultrafine fibers, a heat-bonding fiber having a fiber diameter larger than that of the ultrafine fibers, for example, the surface is the ultrafine fiber. It is necessary to mix a core-sheath type composite fiber composed of a thermoplastic resin having a melting point lower than that of the thermoplastic resin constituting the fiber. As a result, it is known that the denseness of fiber structures obtained by bonding ultrafine fibers using heat-bonded fibers having a fiber diameter larger than that of the ultrafine fibers decreases.
 また、分割型複合繊維を構成する2個以上のセグメントについて、隣接するセグメントを構成する熱可塑性樹脂として、ポリプロピレンとポリエチレンといった、ポリオレフィン系樹脂同士、またポリエチレンテレフタレートと共重合ポリエステルといったポリエステル系樹脂同士といった、相溶性の高い樹脂を組み合わせた分割型複合繊維の場合、隣接するセグメント間の膠着が強くなりやすく、得られる繊維構造物において未分割部分(未分割繊維)が残存しやすくなる。 In addition, for two or more segments constituting the split-type conjugate fiber, as thermoplastic resins constituting adjacent segments, polyolefin resins such as polypropylene and polyethylene, and polyester resins such as polyethylene terephthalate and copolyester are used. In the case of a split type composite fiber in which highly compatible resins are combined, sticking between adjacent segments tends to be strong, and an unsplit portion (unsplit fiber) tends to remain in the resulting fiber structure.
 例えば、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリメチルペンテン、エチレン-プロピレン共重合体、プロピレン-エチレン-1-ブテン三元共重合体等のポリオレフィン樹脂同士を組み合わせた分割型複合繊維;ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステル等のポリエステル樹脂同士を組みあわせた分割型複合繊維を例示できる。そのような分割型複合繊維は未分割部分を残さないようにするため、繊維構造物の製造段階において繊維同士を混合する際に強く撹拌する、得られた繊維構造物に高圧水流を噴射する、得られた繊維構造物を2本の金属ロールで挟み、プレスする、といった強い衝撃を与える分割処理を行う必要がある。 For example, a combination of polyolefin resins such as polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polymethylpentene, ethylene-propylene copolymer, propylene-ethylene-1-butene terpolymer. Split type composite fibers; examples include split type composite fibers obtained by combining polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and copolyester. In order to prevent such a split type composite fiber from leaving an undivided part, it is vigorously stirred when mixing the fibers in the manufacturing stage of the fiber structure, and a high-pressure water stream is injected into the obtained fiber structure. It is necessary to perform a splitting process that gives a strong impact such as sandwiching and pressing the obtained fiber structure between two metal rolls.
 分割性を向上し、得られる繊維構造物が極細繊維のみで構成され、前記極細繊維のうち一部の極細繊維について極細繊維表面を融解させることで極細繊維間が接着し、引張強力や突刺強度といった機械的特性に優れる繊維構造物を得るために、分割型複合繊維を構成する2個以上のセグメントの中で、一方は単一成分のセグメント(単一型セグメント)のままで、他方のセグメントの断面形状を、芯鞘型断面形状にすること(芯鞘型セグメントにすること)等が検討されている(例えば、特許文献1~4参照)。 Splitting is improved, and the resulting fiber structure is composed only of ultrafine fibers. The ultrafine fibers are bonded to each other by melting the surface of some of the ultrafine fibers, resulting in tensile strength and puncture strength. In order to obtain a fiber structure having excellent mechanical properties, one of the two or more segments constituting the split-type composite fiber remains as a single component segment (single-type segment), and the other segment. The cross-sectional shape of the core is made into a core-sheath type cross-sectional shape (a core-sheath type segment) or the like (for example, see Patent Documents 1 to 4).
 特許文献1は、単一成分のセグメント(単一型セグメント)と、芯鞘型セグメントの芯成分が同じ高融点のα-オレフィン重合体成分からなり、芯鞘型セグメントの鞘成分は、低融点のα-オレフィン重合体成分で構成され、低融点のα-オレフィン重合体成分及び高融点のα-オレフィン重合体成分のロックウェル硬度Rが共に60以上であることで分割性に優れる分割型複合繊維を報告する。 Patent Document 1 is composed of a single component segment (single-type segment) and an α-olefin polymer component having the same melting point as the core component of the core-sheath segment, and the sheath component of the core-sheath segment has a low melting point. A split-type composite that is excellent in splitting properties because the low-melting α-olefin polymer component and the high-melting α-olefin polymer component both have a Rockwell hardness R of 60 or more. Report fiber.
 特許文献2は、芯鞘型セグメントの断面を特定の形状にすることで分割性に優れる分割型複合繊維を報告する。また、特許文献3及び4は、単一型セグメントが特定のz平均分子量(Mz)及び特定の重量平均分子量(Mw)を有するポリプロピレン樹脂を主成分として含むことで、分割性に優れる分割型複合繊維を報告する。 Patent Document 2 reports a split-type composite fiber that is excellent in splittability by making the cross-section of the core-sheath segment into a specific shape. Patent Documents 3 and 4 show that the single-type segment includes a polypropylene resin having a specific z-average molecular weight (Mz) and a specific weight-average molecular weight (Mw) as a main component. Report fiber.
 特許文献1~4に記載の分割型複合繊維は、高圧水流による分割処理を行わなくても、セグメントとセグメントの界面が剥がれセグメント毎に分割することで極細繊維が発生する。加えて芯鞘型セグメントを有するので、これらの分割型複合繊維のみで構成された繊維構造物であっても繊維間を熱接着することが可能である。 In the split-type composite fibers described in Patent Documents 1 to 4, even if the splitting process is not performed by a high-pressure water stream, the interface between the segments is peeled off, and ultrafine fibers are generated by splitting into segments. In addition, since it has a core-sheath type segment, even if it is a fiber structure comprised only of these split type composite fibers, it is possible to heat-bond between the fibers.
特開平4-163315号公報JP-A-4-163315 特開2011-9150号公報JP 2011-9150 A 特開2012-142235号公報JP 2012-142235 A 特開2012-140734号公報JP 2012-140734 A
 しかし、繊維構造物の緻密性が求められる用途、例えば、繊維構造物を電極間のセパレータとして使用する各種二次電池;より高いろ過精度が求められる、液体、気体用の各種フィルターのろ過材(フィルター材);逆浸透膜(RO膜)やナノろ過膜(NF膜)、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)といった各種ろ過膜の支持体として使用される、各種膜支持体用の繊維構造物;拭き取る部分への刺激、傷付きの低下を求められる対人及び対物ワイピング材;肌に接触したときに柔らかい風合いが必要とされる化粧料含浸皮膚被覆シート(一般的にはフェイスマスクとも称される);及び吸収性物品用シート等の用途では分割型複合繊維の更なる性能の向上が要求されている。特許文献1~4の分割型複合繊維についても、全体的な性能、特に繊維製造時の生産性(例えば、繊維製造時に分割型複合繊維を構成する各セグメントの形状及び配置が整いやすく、溶融紡糸及び延伸工程時に糸切れが発生しにくいこと等)及び分割性等を更に向上させることが求められている。 However, in applications where the denseness of the fiber structure is required, for example, various secondary batteries that use the fiber structure as a separator between electrodes; filter materials for various liquid and gas filters that require higher filtration accuracy ( Filter materials): Various membranes used as a support for various filtration membranes such as reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), ultrafiltration membranes (UF membranes), and microfiltration membranes (MF membranes) Fiber structure for support; Interpersonal and objective wiping materials that are required to irritate the wiped part and reduce scratches; Cosmetic-impregnated skin-covering sheets that require a soft texture when in contact with the skin (generally Are also referred to as face masks); and in applications such as sheets for absorbent articles, further improvements in the performance of split composite fibers are required. Also for the split type composite fibers of Patent Documents 1 to 4, the overall performance, particularly the productivity at the time of fiber production (for example, the shape and arrangement of each segment constituting the split type composite fiber at the time of fiber manufacture is easy, and melt spinning is performed. Further, it is demanded that thread breakage is less likely to occur during the stretching process, and that the splitting property is further improved.
 本発明者等は、驚くべきことに、第1セグメントと第2セグメントで構成される分割型複合繊維であって、第1セグメントは、第1成分からなる樹脂セグメントであり、第2セグメントの断面構造が前記第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントとなっている分割型複合繊維において、第1セグメントが、紡糸後のQ値(重量平均分子量(Mw)と数平均分子量(Mn)の比であり、Mw/Mnと表される)が特定の範囲を満たすポリプロピレン樹脂を含み、得られた分割型複合繊維について、示差走査熱量測定(以下、単にDSCとも称す)を行うことで得られるDSC曲線において、ポリプロピレン樹脂の融解によって発生する吸熱ピーク(ポリプロピレン樹脂の融解ピーク)の形状が特定の形状を示すポリプロピレン樹脂を含む樹脂成分を用いることで、繊維製造時の生産性及び得られた分割型複合繊維の分割性等が更に向上することをみいだした。 Surprisingly, the inventors of the present invention are split type composite fibers composed of a first segment and a second segment, wherein the first segment is a resin segment composed of the first component, and a cross section of the second segment. In a split type composite fiber having a core-sheath type resin segment in which the first component is a core component and the second component is a sheath component, the first segment has a Q value after spinning (weight average molecular weight (Mw ) And the number average molecular weight (Mn), which is expressed as Mw / Mn), includes a polypropylene resin that satisfies a specific range, and the obtained split type composite fiber was subjected to differential scanning calorimetry (hereinafter simply referred to as DSC). In the DSC curve obtained by performing the process, the endothermic peak generated by melting of the polypropylene resin (polypropylene resin melting peak) has a specific shape. It has been found that by using a resin component containing a propylene resin, productivity at the time of fiber production, splitting property of the obtained split composite fiber, and the like are further improved.
 さらに、本発明者等は、そのような分割型複合繊維において、得られる分割型複合繊維を使用して製造される不織布(繊維構造物)は、分割型複合繊維を分割して得られた芯鞘型樹脂セグメントの鞘部分を溶融させることで前記不織布を構成する繊維同士(例えば極細繊維同士)を接着できることを見いだした。このような不織布は、極細繊維を主な繊維として構成されるので内部の構造が緻密であるだけでなく、極細の芯鞘型複合繊維を構成する鞘成分によって極細繊維間が接着しており、引張強度及び突刺強度等の機械的特性に優れる繊維構造物となることを見いだして、本発明を完成させるに至った。 Furthermore, the inventors of the present invention have found that the nonwoven fabric (fiber structure) manufactured using the obtained split composite fiber in such split composite fiber is a core obtained by splitting the split composite fiber. It has been found that fibers (for example, ultrafine fibers) constituting the nonwoven fabric can be bonded together by melting the sheath portion of the sheath type resin segment. Such a non-woven fabric is composed of ultrafine fibers as the main fibers, so that not only the internal structure is dense, but the ultrafine fibers are bonded together by the sheath component constituting the ultrafine core-sheath composite fiber, The inventors have found that the fiber structure is excellent in mechanical properties such as tensile strength and puncture strength, and have completed the present invention.
 即ち、本発明は一の要旨において、
 第1セグメントと第2セグメントを含む分割型複合繊維であり、
 前記第1セグメントは、第1成分からなる樹脂セグメントであり、
 前記第2セグメントは、断面構造が第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントであり、
 前記第1成分は、ポリプロピレン樹脂を50質量%以上含む樹脂成分であり、
 前記第2成分は、ポリエチレン樹脂を50質量%以上含む樹脂成分であり、
 紡糸後に測定される、前記ポリプロピレン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、6以下であり、
 紡糸後にJIS K 7121(1987年) プラスチックの転移温度測定方法に基づいて測定される、示差走査熱量測定(DSC)のDSC曲線における前記ポリプロピレン樹脂の融解ピークの形状がダブルピーク形状である、分割型複合繊維を提供する。
That is, the present invention in one aspect,
A split-type composite fiber including a first segment and a second segment;
The first segment is a resin segment composed of a first component,
The second segment is a core-sheath resin segment whose cross-sectional structure has a first component as a core component and a second component as a sheath component,
The first component is a resin component containing 50% by mass or more of polypropylene resin,
The second component is a resin component containing 50% by mass or more of a polyethylene resin,
The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polypropylene resin measured after spinning is 6 or less,
JIS K 7121 (1987) after spinning The split type in which the shape of the melting peak of the polypropylene resin in the DSC curve of differential scanning calorimetry (DSC) measured based on the plastic transition temperature measurement method is a double peak shape Provide composite fiber.
 本願発明は、上述のような特徴を有するので、繊維製造時の生産性及び分割性等の問題の少なくとも一つが向上する。更に、そのような分割型複合繊維を使用して製造される不織布(繊維構造物)は、繊維構造物の構造が緻密であり、かつ適度な通気性を有する。更に前記第2セグメントの断面構造が芯鞘型樹脂セグメントである当該芯鞘型セグメントの鞘成分を構成する第2成分(即ちポリエチレン樹脂)を溶融させることで極細繊維間が接着し、機械的特性の優れた不織布(繊維構造物)となる。
 なお、本明細書において、「~」の記号は、両端点を含む意味で用いるものとする。
Since the present invention has the features as described above, at least one of the problems such as productivity and splitting at the time of fiber production is improved. Furthermore, the nonwoven fabric (fiber structure) manufactured using such a split type composite fiber has a fine structure of the fiber structure and appropriate air permeability. Further, the second component (that is, polyethylene resin) constituting the sheath component of the core-sheath segment in which the cross-sectional structure of the second segment is a core-sheath resin segment is melted so that the ultrafine fibers are bonded to each other, and mechanical characteristics are obtained. Excellent non-woven fabric (fiber structure).
In the present specification, the symbol “˜” is used to include both end points.
図1は、本発明の形態の分割型複合繊維の断面を模式的に示す。FIG. 1 schematically shows a cross section of a split-type conjugate fiber according to an embodiment of the present invention. 図2は、本発明の他の形態の分割型複合繊維の断面を模式的に示す。FIG. 2 schematically shows a cross section of another split-type composite fiber according to the present invention. 図3は、参考例で用いた分割型複合繊維の断面を模式的に示す。FIG. 3 schematically shows a cross section of the split type composite fiber used in the reference example. 図4は、ポリプロピレン樹脂の吸熱ピークにおいて、低温側に第1融解ピーク(a)が明確に現れた後、高温側に第2融解ピーク(a)が現れることを模式的に示す。FIG. 4 schematically shows that in the endothermic peak of the polypropylene resin, after the first melting peak (a 1 ) clearly appears on the low temperature side, the second melting peak (a 2 ) appears on the high temperature side. 図5は、ポリプロピレン樹脂の吸熱ピークにおいて、高温側の第2融解ピーク(a)の伸びを模式的に示す。FIG. 5 schematically shows the elongation of the second melting peak (a 2 ) on the high temperature side in the endothermic peak of the polypropylene resin. 図6は、ポリプロピレン樹脂の吸熱ピークにおいて、第1融解ピーク面積(S)を模式的に示す。FIG. 6 schematically shows the first melting peak area (S 1 ) in the endothermic peak of the polypropylene resin. 図7は、ポリプロピレン樹脂の吸熱ピークにおいて、第2融解ピーク面積(S)を模式的に示す。FIG. 7 schematically shows the second melting peak area (S 2 ) in the endothermic peak of the polypropylene resin. 図8は、ポリプロピレン樹脂の吸熱ピークにおいて、低温側に第1融解ピーク(a)が肩のピークとして現れた後、高温側に第2融解ピーク(a)が現れることを模式的に示す。FIG. 8 schematically shows that in the endothermic peak of polypropylene resin, the first melting peak (a 1 ) appears as a shoulder peak on the low temperature side, and then the second melting peak (a 2 ) appears on the high temperature side. . 図9は、ポリプロピレン樹脂の吸熱ピークにおいて、高温側の第2融解ピークの伸びを模式的に示す。FIG. 9 schematically shows the elongation of the second melting peak on the high temperature side in the endothermic peak of the polypropylene resin. 図10は、ポリプロピレン樹脂の吸熱ピークにおいて、第1融解ピーク面積(S)を模式的に示す。FIG. 10 schematically shows the first melting peak area (S 1 ) at the endothermic peak of the polypropylene resin. 図11は、ポリプロピレン樹脂の吸熱ピークにおいて、第2融解ピーク面積(S)を模式的に示す。FIG. 11 schematically shows the second melting peak area (S 2 ) in the endothermic peak of the polypropylene resin. 図12は、ポリプロピレン樹脂の吸熱ピークにおいて、1つの融解ピークが明確に現れることを模式的に示す。FIG. 12 schematically shows that one melting peak clearly appears in the endothermic peak of the polypropylene resin. 図13は、実施例1の分割型複合繊維について行った示差走査熱量測定(DSC)により得られたDSC曲線を示す。FIG. 13 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split-type conjugate fiber of Example 1. 図14は、実施例7の分割型複合繊維について行った示差走査熱量測定(DSC)により得られたDSC曲線を示す。FIG. 14 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split conjugate fiber of Example 7. 図15は、比較例1の分割型複合繊維について行った示差走査熱量測定(DSC)により得られたDSC曲線を示す。FIG. 15 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split type conjugate fiber of Comparative Example 1. 図16は、比較例3の分割型複合繊維について行った示差走査熱量測定(DSC)により得られたDSC曲線を示す。FIG. 16 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split composite fiber of Comparative Example 3. 図17は、比較例5の分割型複合繊維について行った示差走査熱量測定(DSC)により得られたDSC曲線を示す。FIG. 17 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split composite fiber of Comparative Example 5. 図18は、比較例6の分割型複合繊維について行った示差走査熱量測定(DSC)により得られたDSC曲線を示す。FIG. 18 shows a DSC curve obtained by differential scanning calorimetry (DSC) performed on the split composite fiber of Comparative Example 6.
 図1~2に本発明の形態の分割型複合繊維(10、20)の断面を模式的に示す。いずれも第1セグメント(1)及び第2セグメント(2)を含み、第1セグメント(1)は、単一構造のセグメントであるが、第2セグメント(2)は、芯鞘型セグメント(図1及び図2)である。芯鞘型セグメントは、芯成分(4、14)と鞘成分(6、16)を有することができる。更に、分割型複合繊維は、中空(8)を有してよい(図1)。 1 and 2 schematically show a cross section of a split type composite fiber (10, 20) according to an embodiment of the present invention. Each includes a first segment (1) and a second segment (2). The first segment (1) is a single-structure segment, but the second segment (2) is a core-sheathed segment (FIG. 1). And FIG. 2). The core-sheath type segment can have a core component (4, 14) and a sheath component (6, 16). Furthermore, the split-type conjugate fiber may have a hollow (8) (FIG. 1).
 <第1セグメント>
 第1セグメントは、第1成分からなる樹脂セグメントである。第1セグメントは、分割型複合繊維の割繊により極細繊維1を形成する。言い換えるならば、第1セグメントは、第1成分から構成されており、断面が単一構造の単一型セグメントである。前記第1成分は、ポリプロピレン樹脂を50質量%以上含む樹脂成分である。前記第1成分は、ポリプロピレン樹脂を75質量%以上含むことが好ましく、80質量%以上含むことがより好ましい。
<First segment>
The first segment is a resin segment made of the first component. The first segment forms the ultrafine fiber 1 by splitting the split type composite fiber. In other words, the first segment is a single-type segment that is composed of the first component and has a single structure in cross section. The first component is a resin component containing 50% by mass or more of polypropylene resin. The first component preferably contains 75% by mass or more of polypropylene resin, more preferably 80% by mass or more.
 第1成分は、ポリプロピレン樹脂から実質的に成ることが特に好ましい。ここで、「実質的に」という用語は、通常、製品として提供されるポリプロピレン樹脂は安定剤等の添加剤を含むため、及び/又は繊維の製造の際に、各種添加剤が添加されるため、ポリプロピレン樹脂のみから成り、他の成分を全く含まない形態の繊維を得られないことを考慮している。通常、第1成分は、添加剤を最大で15質量%含むことができる。 It is particularly preferable that the first component consists essentially of a polypropylene resin. Here, the term “substantially” means that a polypropylene resin provided as a product usually contains an additive such as a stabilizer and / or various additives are added during fiber production. Considering that it is not possible to obtain a fiber composed of only a polypropylene resin and containing no other components. Usually, the first component can contain up to 15% by weight of additives.
 本発明において、紡糸後に測定した、ポリプロピレン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)(以下「Q値」ともいう)は、6以下であり、2~6であることが好ましく、2.2~5.6であることがより好ましく、2.3~5.2であることが特に好ましく、2.4~5.0が最も好ましい。上述のMw/Mnの範囲の下限は、いずれも2以上であってもよく、2.4以上であってもよい。例えば、2以上6であってよく、2.5以上6以下であってよく、2.8以上6以下であってよく、3.4以上6未満であってよい。Q値が6以下であることで、紡糸後のポリプロピレン樹脂は、その中に含まれるポリプロピレン分子の大きさ(ポリプロピレン分子鎖の長さ)が揃っていて、その分布の幅がより狭いためポリプロピレン分子の挙動が揃いやすい。その結果、分割型複合繊維において繊維の断面形状、各セグメントの断面形状が整いやすいだけでなく、紡糸及び延伸時の糸切れが発生しにくい、生産性の高い繊維が得られやすくなる。繊維の生産性が良好であるため、得られた分割型複合繊維、及びそれを用いた繊維構造物の諸物性がより向上する。 In the present invention, the ratio (Mw / Mn) (hereinafter also referred to as “Q value”) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene resin measured after spinning is 6 or less, 2 to 6, more preferably 2.2 to 5.6, particularly preferably 2.3 to 5.2, and most preferably 2.4 to 5.0. The lower limit of the above range of Mw / Mn may be 2 or more, or may be 2.4 or more. For example, it may be 2 or more, 2.5 or more and 6 or less, 2.8 or more and 6 or less, or 3.4 or more and less than 6. When the Q value is 6 or less, the polypropylene resin after spinning has the same size (the length of the polypropylene molecular chain) of the polypropylene molecules contained therein, and the distribution range is narrower. The behavior of is easy to align. As a result, in the split type composite fiber, not only the cross-sectional shape of the fiber and the cross-sectional shape of each segment are easily adjusted, but also a highly productive fiber that is less likely to break during spinning and drawing. Since the productivity of the fiber is good, various physical properties of the obtained split composite fiber and the fiber structure using the same are further improved.
 紡糸後に測定した、ポリプロピレン樹脂の重量平均分子量(Mw)は、150000~700000であることが好ましく、200000~500000であることがより好ましく、230000~400000であることが特に好ましい。また、紡糸後に測定した、ポリプロピレン樹脂の数平均分子量(Mn)は、43000~150000であることが好ましく、48000~120000であることがより好ましく、55000~100000であることが特に好ましい。ポリプロピレン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の測定方法は、実施例に記載した。 The weight average molecular weight (Mw) of the polypropylene resin measured after spinning is preferably from 150,000 to 700,000, more preferably from 200,000 to 500,000, and particularly preferably from 230,000 to 400,000. The number average molecular weight (Mn) of the polypropylene resin measured after spinning is preferably 43,000 to 150,000, more preferably 48,000 to 120,000, and particularly preferably 55,000 to 100,000. The measuring method of the weight average molecular weight (Mw) and number average molecular weight (Mn) of a polypropylene resin was described in the Example.
 ポリプロピレン樹脂は、プロピレンのホモポリマー(プロピレンをモノマーとする単独重合体)であってもよいし、プロピレンをモノマーとして含む共重合体(以下、ポリプロピレン系樹脂と称す)であってもよい。ポリプロピレン樹脂は本発明が目的とする分割型複合繊維を得ることができる限り、特に限定されることはない。ポリプロピレン系樹脂としてはプロピレンをモノマーとして含むランダム共重合体、ブロック共重合体、グラフト共重合体又はそれらの混合物を用いることができる。上記ランダム共重合体、ブロック共重合体及びグラフト共重合体として、例えば、エチレン及び炭素数4以上のα-オレフィンからなる群から選ばれる少なくとも一種のα-オレフィンとの共重合体を例示できる。 The polypropylene resin may be a homopolymer of propylene (a homopolymer having propylene as a monomer) or a copolymer containing propylene as a monomer (hereinafter referred to as a polypropylene resin). The polypropylene resin is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained. As the polypropylene resin, a random copolymer, a block copolymer, a graft copolymer or a mixture thereof containing propylene as a monomer can be used. Examples of the random copolymer, block copolymer and graft copolymer include a copolymer with at least one α-olefin selected from the group consisting of ethylene and an α-olefin having 4 or more carbon atoms.
 上記炭素数4以上のα-オレフィンは、本発明が目的とする分割型複合繊維を得ることができる限り、特に限定されることはないが、例えば、1-ブテン、1-ペンテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセンなどを例示できる。上記共重合体におけるプロピレンの含有量は、50質量%より多いことが好ましい。第一成分としては、プロピレンのホモポリマーや上記ポリプロピレン系樹脂が使用できるが、製造し易さ及び経済性(製造コスト)等を考慮すると、プロピレンのホモポリマーが特に好ましい。これらは、単独で用いてもよく、二種以上を組合せて用いてもよい。 The α-olefin having 4 or more carbon atoms is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained. For example, 1-butene, 1-pentene, 3, 3 Examples include -dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like. The propylene content in the copolymer is preferably more than 50% by mass. As the first component, a homopolymer of propylene or the above-mentioned polypropylene resin can be used, but a propylene homopolymer is particularly preferable in consideration of easiness of production and economy (manufacturing cost). These may be used alone or in combination of two or more.
 ポリプロピレン樹脂は、JIS K 7210に準ずるメルトフローレート(以下、「MFR230」ともいう;測定温度230℃、荷重2.16kgf(21.18N))は、8g/10分以上60g/10分以下であることが好ましく、15g/10分以上60g/10分以下であることがより好ましく、20g/10分以上45g/10分以下であることが特に好ましく、25g/10分以上40g/10分以下であることが最も好ましい。 The polypropylene resin has a melt flow rate (hereinafter also referred to as “MFR230” according to JIS K7210; measurement temperature 230 ° C., load 2.16 kgf (21.18 N)) of 8 g / 10 min or more and 60 g / 10 min or less. It is preferably 15 g / 10 min to 60 g / 10 min, more preferably 20 g / 10 min to 45 g / 10 min, particularly 25 g / 10 min to 40 g / 10 min. Most preferred.
 本発明が目的とする分割型複合繊維を得ることができる限り、第1セグメントは、公知の分割促進剤を含むことができる。公知の分割促進剤として、例えば、シリコン化合物系分割促進剤、不飽和カルボン酸系分割促進剤、(メタ)アクリル酸系化合物分割促進剤などを使用できるが、この中でも分割性を向上させる観点から、(メタ)アクリル酸系化合物の分割促進剤が好ましく、(メタ)アクリル酸金属塩がより好ましい。分割促進剤として第1セグメントに(メタ)アクリル酸金属塩を含有させる場合、第1セグメント全体に対して、(メタ)アクリル酸金属塩を、1~10質量%含有させてよい。 As long as the split type composite fiber targeted by the present invention can be obtained, the first segment can contain a known split accelerator. As a known partition accelerator, for example, a silicon compound-based partition accelerator, an unsaturated carboxylic acid-based partition accelerator, a (meth) acrylic acid-based compound partition accelerator, and the like can be used. Among these, from the viewpoint of improving partitionability. , (Meth) acrylic acid compound splitting accelerators are preferred, and (meth) acrylic acid metal salts are more preferred. When the first segment contains a (meth) acrylic acid metal salt as a splitting accelerator, 1 to 10% by mass of the (meth) acrylic acid metal salt may be contained in the first segment.
 <第2セグメント>
 本発明の分割型複合繊維は、第2セグメントを含む。第2セグメントは、分割型複合繊維の割繊により第2セグメントに由来する極細繊維2を形成することが好ましい。第2セグメントは、断面構造が第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントである。
<Second segment>
The split type composite fiber of the present invention includes a second segment. The second segment preferably forms the ultrafine fiber 2 derived from the second segment by splitting the split-type composite fiber. The second segment is a core-sheath type resin segment whose cross-sectional structure has a first component as a core component and a second component as a sheath component.
 第2成分は、ポリエチレン樹脂を50質量%以上含む樹脂成分である。好ましくは、上記第2成分は、ポリエチレン樹脂を75質量%以上含む樹脂成分であり、ポリエチレン樹脂を80質量%以上含むことがより好ましい。第2成分は、ポリエチレン樹脂から実質的に成ることが特に好ましい。ここで、「実質的に」という用語は、通常、製品として提供されるポリエチレン樹脂は安定剤等の添加剤を含むため、及び/又は繊維の製造の際に、各種添加剤が添加されるため、ポリエチレン樹脂のみから成り、他の成分を全く含まない形態の繊維を得られないことを考慮している。通常、第2成分は、添加剤を最大で15質量%含むことができる。 The second component is a resin component containing 50% by mass or more of polyethylene resin. Preferably, the second component is a resin component containing 75% by mass or more of polyethylene resin, and more preferably 80% by mass or more of polyethylene resin. It is particularly preferred that the second component consists essentially of a polyethylene resin. Here, the term “substantially” usually means that polyethylene resins provided as products contain additives such as stabilizers and / or various additives are added during the production of fibers. Considering that it is not possible to obtain a fiber composed of only a polyethylene resin and containing no other components. Usually, the second component can contain up to 15% by weight of additives.
 ポリエチレン樹脂は、ポリプロピレン樹脂との相溶性がよく、これらを組み合わせた分割型複合繊維は一般的に分割性が低い。本発明では、ポリプロピレン樹脂とポリエチレン樹脂との組み合わせであっても、優れた分割性を得ることができる。 Polyethylene resin has good compatibility with polypropylene resin, and split type composite fibers combining these are generally low in splittability. In the present invention, even if the combination is a polypropylene resin and a polyethylene resin, excellent splitting properties can be obtained.
 ポリエチレン樹脂は、エチレンのホモポリマー(エチレンをモノマーとする単独重合体であり、密度、分子構造の違いから高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレンがある)であってもよいし、エチレンをモノマーとして含む共重合体(以下、ポリエチレン系樹脂と称す)であってもよい。ポリエチレン樹脂は本発明が目的とする分割型複合繊維を得ることができる限り、特に限定されることはない。ポリエチレン系樹脂としてはエチレンをモノマーとして含むランダム共重合体、ブロック共重合体、グラフト共重合体又はそれらの混合物を用いることができる。上記ランダム共重合体、ブロック共重合体及びグラフト共重合体として、例えば、エチレン及び炭素数3以上のα-オレフィンからなる群から選ばれる少なくとも一種のα-オレフィンとの共重合体を例示できる。 The polyethylene resin is a homopolymer of ethylene (a homopolymer having ethylene as a monomer, and there are high density polyethylene, medium density polyethylene, low density polyethylene, and linear low density polyethylene due to differences in density and molecular structure). It may be a copolymer containing ethylene as a monomer (hereinafter referred to as polyethylene resin). The polyethylene resin is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained. As the polyethylene resin, a random copolymer, a block copolymer, a graft copolymer or a mixture thereof containing ethylene as a monomer can be used. Examples of the random copolymer, block copolymer and graft copolymer include a copolymer with at least one α-olefin selected from the group consisting of ethylene and an α-olefin having 3 or more carbon atoms.
 上記炭素数3以上のα-オレフィンは、本発明が目的とする分割型複合繊維を得ることができる限り、特に限定されることはないが、例えば、プロピレン、1-ブテン、1-ペンテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセンなどを例示できる。上記共重合体におけるエチレンの含有量は、50質量%以上であることが好ましい。第二成分としては、エチレンのホモポリマーや上記ポリエチレン系樹脂が使用できるが、製造し易さ及び経済性(製造コスト)を考慮すると、エチレンのホモポリマーが特に好ましい。これらは、単独で用いてもよく、二種以上を組合せて用いてもよい。 The α-olefin having 3 or more carbon atoms is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained. For example, propylene, 1-butene, 1-pentene, 3 , 3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like. The ethylene content in the copolymer is preferably 50% by mass or more. As the second component, an ethylene homopolymer or the polyethylene-based resin can be used, but an ethylene homopolymer is particularly preferable in view of ease of manufacture and economy (manufacturing cost). These may be used alone or in combination of two or more.
 ポリエチレン樹脂は、JIS K 7210に準ずるメルトフローレート(以下、「MFR190」ともいう;測定温度190℃、荷重2.16kgf(21.18N))は、5g/10分以上30g/10分未満であることが好ましく、8g/10分以上28g/10分未満であることがより好ましく、10g/10分以上25g/10分未満であることが特に好ましい。ポリエチレン樹脂のMFR190が、5g/10分以上30g/10分未満の範囲にある場合、分割型複合繊維の生産性がより向上する。 The polyethylene resin has a melt flow rate (hereinafter also referred to as “MFR190” according to JIS K7210; measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) of 5 g / 10 min or more and less than 30 g / 10 min. It is preferably 8 g / 10 min or more and less than 28 g / 10 min, more preferably 10 g / 10 min or more and less than 25 g / 10 min. When the MFR 190 of the polyethylene resin is in the range of 5 g / 10 min or more and less than 30 g / 10 min, the productivity of the split composite fibers is further improved.
 本発明が目的とする分割型複合繊維を得ることができる限り、第2セグメントは、公知の分割促進剤を含むことができる。公知の分割促進剤として、例えば、シリコン化合物系分割促進剤、不飽和カルボン酸系分割促進剤、(メタ)アクリル酸系化合物分割促進剤などを使用できるが、この中でも分割性を向上させる観点から、(メタ)アクリル酸系化合物の分割促進剤が好ましく、(メタ)アクリル酸金属塩がより好ましい。分割促進剤として第2セグメントに(メタ)アクリル酸金属塩を含有させる場合、第2セグメント全体に対して、(メタ)アクリル酸金属塩を、1~10質量%含有させてよい。 As long as the split type composite fiber targeted by the present invention can be obtained, the second segment can contain a known split accelerator. As a known partition accelerator, for example, a silicon compound-based partition accelerator, an unsaturated carboxylic acid-based partition accelerator, a (meth) acrylic acid-based compound partition accelerator, and the like can be used. Among these, from the viewpoint of improving partitionability. , (Meth) acrylic acid compound splitting accelerators are preferred, and (meth) acrylic acid metal salts are more preferred. When the second segment contains a (meth) acrylic acid metal salt as a splitting accelerator, 1 to 10% by mass of the (meth) acrylic acid metal salt may be contained in the entire second segment.
 第2セグメントは、断面構造が第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントである。第2セグメントが、芯鞘型樹脂セグメントであることで、分割型複合繊維を割繊させることにより、繊維断面が芯鞘型の複合繊維となっている極細繊維が形成される。その芯鞘型極細複合繊維の鞘成分である第2成分(ポリエチレン樹脂を50重量%以上含む)のみを溶融させることにより、分割型複合繊維の割繊により形成された極細繊維同士を熱接着させることができる。そして、突刺強度及び引張強度等の機械的特性のより優れる繊維構造物を得ることができる。 The second segment is a core-sheath type resin segment whose cross-sectional structure has a first component as a core component and a second component as a sheath component. When the second segment is a core-sheath type resin segment, the split type composite fiber is split to form an ultrafine fiber having a fiber-sheathed core-sheath type composite fiber. By melting only the second component (containing 50% by weight or more of polyethylene resin) which is the sheath component of the core-sheath type ultrafine composite fiber, the ultrafine fibers formed by splitting the split type composite fiber are thermally bonded to each other. be able to. And the fiber structure which is more excellent in mechanical characteristics, such as puncture strength and tensile strength, can be obtained.
 第2セグメントは芯鞘型樹脂セグメントであり、芯成分は第1成分であるので、分割型複合繊維が2種の樹脂成分で構成されることになり、ノズル設計および複合紡糸がより容易となる。 Since the second segment is a core-sheath resin segment and the core component is the first component, the split-type conjugate fiber is composed of two types of resin components, which makes nozzle design and composite spinning easier. .
 第2セグメントは芯鞘型樹脂セグメントであり、第2セグメントの芯成分の断面形状は、本発明が目的とする分割型複合繊維を得ることができる限り、特に限定されることはない。芯成分の断面は、例えば、楕円形状を有してよく、あるいは真円形状を有してよい。また、芯成分は、第2セグメントの中心に位置してよく、あるいは中心に位置せず、偏心していてよい。 The second segment is a core-sheath type resin segment, and the cross-sectional shape of the core component of the second segment is not particularly limited as long as the split type composite fiber intended by the present invention can be obtained. The cross section of the core component may have, for example, an elliptical shape or a perfect circular shape. Further, the core component may be located at the center of the second segment, or may not be located at the center and may be eccentric.
 第2成分(鞘成分を構成し得る)は、第1成分(芯成分を構成し得る)の融点より、低い融点を有することが好ましい。第2成分の融点は、第1成分の融点より、10℃以上低いことが好ましく、20℃以上低いことがより好ましい。 The second component (which can constitute the sheath component) preferably has a melting point lower than the melting point of the first component (which can constitute the core component). The melting point of the second component is preferably 10 ° C. or more lower than the melting point of the first component, more preferably 20 ° C. or more.
 <分割型複合繊維>
 本発明の形態の分割型複合繊維は、第1セグメントと第2セグメントを含むが、更に、他の樹脂セグメント、例えば第3のセグメントを含んでもよい。本発明が目的とする分割型複合繊維を得ることができる限り、他の樹脂セグメントは特に制限されることはない。他のセグメントを構成する樹脂成分として、例えば、ポリブテン-1、ポリメチルペンテン、エチレンビニルアルコール共重合体、エチレンプロピレン共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、又はナイロン66等を単独又は、二種以上を組み合せて用いてよい。他のセグメントは、1種又は2種以上であってよい。
<Split type composite fiber>
The split type composite fiber according to the present invention includes the first segment and the second segment, but may further include another resin segment, for example, a third segment. Other resin segments are not particularly limited as long as the split type composite fiber intended by the present invention can be obtained. As the resin component constituting the other segment, for example, polybutene-1, polymethylpentene, ethylene vinyl alcohol copolymer, ethylene propylene copolymer, polyethylene terephthalate, polybutylene terephthalate, nylon 6 or nylon 66 alone or Two or more types may be used in combination. The other segment may be one type or two or more types.
 分割型複合繊維は、各セグメントが相互に配置されていることが好ましい。例えば、放射状、多層状、十字状などであってよい。中でも、分割型複合繊維の分割性をさらに向上させる観点から、分割型複合繊維の各セグメントの配列は放射状であることが好ましい。 It is preferable that the segments of the split type composite fiber are arranged mutually. For example, it may be a radial shape, a multilayer shape, a cross shape, or the like. Among these, from the viewpoint of further improving the splitting property of the split-type conjugate fiber, the arrangement of the segments of the split-type conjugate fiber is preferably radial.
 分割型複合繊維において、分割数(セグメント総数)は、分割型複合繊維の繊度、得ようとする極細繊維の繊度などに応じて決定されてよい。分割数は、例えば、4~30であることが好ましく、6~24であることがより好ましく、8~18であることが最も好ましく、8~16であることが更に最も好ましい。分割数が4~30である場合、繊維の生産性が適度で有り得、より紡糸し易いにもかかわらず、分割性も適度に保たれ得る。 In the split composite fiber, the number of splits (total number of segments) may be determined according to the fineness of the split composite fiber, the fineness of the ultrafine fiber to be obtained, and the like. The number of divisions is preferably 4 to 30, for example, more preferably 6 to 24, most preferably 8 to 18, and most preferably 8 to 16. When the number of divisions is 4 to 30, the productivity of the fibers can be moderate, and the division properties can be kept moderate even though spinning is easier.
 分割型複合繊維は、繊維断面からみて繊維中心部に中空部を有することが好ましい。繊維中心部に中空部を有する場合、繊維中心部に中空部を有しない分割型複合繊維と比較して、繊維構造物の突刺強度をより高くすることができる。これは、分割型複合繊維の割繊により形成される極細繊維の繊維断面がより円形に近い形状となるためであると予想される。更に、分割型複合繊維の紡糸時の糸切れを抑制することができる。 The split-type composite fiber preferably has a hollow portion at the center of the fiber as viewed from the fiber cross section. When it has a hollow part in a fiber center part, the puncture strength of a fiber structure can be made higher compared with the split type composite fiber which does not have a hollow part in a fiber center part. This is presumably because the fiber cross section of the ultrafine fiber formed by splitting the split-type composite fiber has a more circular shape. Furthermore, yarn breakage during spinning of the split composite fiber can be suppressed.
 分割型複合繊維が中空部を有する場合、その中空率は、分割率および極細繊維の断面形状などに応じて決定することができる。中空率は、繊維断面に占める中空部の面積の割合である。例えば、中空率は、1%~50%程度であることが好ましく、5%~40%程度であることが好ましい。より具体的には、分割数が6~10である場合、中空率は5%~20%であることが好ましく、分割数が12~20である場合、中空率は15%~40%であることが好ましい。中空率は、1%~50%程度である場合、中空部を設けることによる効果を得やすいにもかかわらず、製造工程で分割型複合繊維が分割し難いので、取り扱い易く好ましい。 When the split-type composite fiber has a hollow portion, the hollow ratio can be determined according to the split ratio and the cross-sectional shape of the ultrafine fiber. The hollow ratio is the ratio of the area of the hollow portion in the fiber cross section. For example, the hollowness is preferably about 1% to 50%, and preferably about 5% to 40%. More specifically, when the number of divisions is 6 to 10, the hollow ratio is preferably 5% to 20%, and when the number of divisions is 12 to 20, the hollow ratio is 15% to 40%. It is preferable. When the hollowness is about 1% to 50%, it is preferable that the split type composite fiber is difficult to split in the manufacturing process, although the effect of providing the hollow portion is easy to obtain.
 分割型複合繊維の繊維断面において、第1セグメントは、面積で20%~80%を占めることが好ましく、面積で40%~60%を占めることがより好ましい。分割型複合繊維の第1セグメントが面積で20%~80%を占める場合、分割型複合繊維の分割性が低下し難く、容易に分割して、第1セグメントに由来する極細繊維1を形成できる。 In the fiber cross section of the split type composite fiber, the first segment preferably occupies 20% to 80% in area, and more preferably occupies 40% to 60% in area. When the first segment of the split-type composite fiber occupies 20% to 80% in area, the splitability of the split-type composite fiber is not easily lowered, and the ultrafine fiber 1 derived from the first segment can be formed easily. .
 本発明が目的とする分割型複合繊維を得ることができる限り、分割型複合繊維を構成する第1セグメントと第2セグメントとの容積比は、特に限定されることはない。例えば、第1セグメントの容積と第2セグメントの容積(第2セグメントの断面構造が、第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントであるため、第2セグメントの芯成分と鞘成分とを合わせた容積)の比は、2/8~8/2(第1セグメントの容積/第2セグメントの容積)であることが好ましく、4/6~6/4であることがより好ましい。容積比が2/8~8/2である場合、紡糸性及び分割性がより向上し好ましい。 The volume ratio between the first segment and the second segment constituting the split-type composite fiber is not particularly limited as long as the target split-type composite fiber can be obtained. For example, the volume of the first segment and the volume of the second segment (since the cross-sectional structure of the second segment is a core-sheath resin segment having the first component as the core component and the second component as the sheath component, The ratio of the total volume of the core component and the sheath component is preferably 2/8 to 8/2 (volume of the first segment / volume of the second segment), and is 4/6 to 6/4. More preferably. A volume ratio of 2/8 to 8/2 is preferred because the spinnability and splitting property are further improved.
 第2セグメントは芯鞘型樹脂セグメントであり、繊維断面の[第1セグメント+第2セグメント芯成分]/[第2セグメントの鞘成分]の容積比は、2/8~8/2であることが好ましく、4/6~6/4であることがより好ましい。容積比が2/8~8/2である場合、紡糸性及び分割性がより向上し好ましい。尚、例えば、[第1セグメント+第2セグメントの芯成分]/[第2セグメントの鞘成分]の容積比が5/5である場合、第1セグメントの容積は、第2セグメント全体の容積よりも小さくなることに留意すべきである。 The second segment is a core-sheath type resin segment, and the volume ratio of [first segment + second segment core component] / [sheath component of the second segment] in the fiber cross section is 2/8 to 8/2 Is preferably 4/6 to 6/4. A volume ratio of 2/8 to 8/2 is preferred because the spinnability and splitting property are further improved. For example, when the volume ratio of [first segment + core component of second segment] / [sheath component of second segment] is 5/5, the volume of the first segment is larger than the volume of the entire second segment. Note that also becomes smaller.
 本発明が目的とする分割型複合繊維を得ることができる限り、第1成分と第2成分との容積比は、特に限定されることはない。例えば、第1成分の容積と第2成分の容積(芯成分と鞘成分とを合わせた容積)の比は、8/2~3/7(第1成分の容積/第2成分の容積)であることが好ましく、75/25~35/65であることがより好ましく、70/30~40/60であることが特に好ましい。容積比が8/2~3/7である場合、紡糸性及び分割性がより向上し好ましい。 The volume ratio of the first component to the second component is not particularly limited as long as the split type composite fiber targeted by the present invention can be obtained. For example, the ratio of the volume of the first component to the volume of the second component (the volume of the core component and the sheath component) is 8/2 to 3/7 (volume of the first component / volume of the second component). Preferably, the ratio is 75/25 to 35/65, more preferably 70/30 to 40/60. A volume ratio of 8/2 to 3/7 is preferred because the spinnability and splitting properties are further improved.
 本発明が目的とする分割型複合繊維を得ることができる限り、分割型複合繊維の分割前の繊度は、特に限定されることはないが、0.5dtex~4.8dtexであることが好ましく、0.8dtex~3.6dtexであることがより好ましく、1.1dtex~2.4dtexであることがさらに好ましく、1.1dtex~2.0dtexであることが最も好ましい。分割型複合繊維の分割前の繊度が、0.5dtex~4.8dtexである場合、紡糸をよりし易く、生産性がより向上し好ましい。 The fineness before splitting of the split-type composite fiber is not particularly limited as long as the target split-type composite fiber of the present invention can be obtained, but is preferably 0.5 dtex to 4.8 dtex, More preferably, it is 0.8 dtex to 3.6 dtex, more preferably 1.1 dtex to 2.4 dtex, and most preferably 1.1 dtex to 2.0 dtex. When the fineness before splitting of the split-type composite fiber is 0.5 dtex to 4.8 dtex, it is preferable because spinning is easier and productivity is further improved.
 分割型複合繊維の分割前の単繊維強度は、2.5~7.0cN/dtexであることが好ましく、2.7~6.5cN/dtexであることがより好ましく、2.8~6.0cN/dtexであることが更により好ましく、3.0~5.8cN/dtexであることが特に好ましい。単繊維強度は、実施例に記載の方法で、測定する。 The single fiber strength of the split type composite fiber before splitting is preferably 2.5 to 7.0 cN / dtex, more preferably 2.7 to 6.5 cN / dtex, and more preferably 2.8 to 6.c. It is even more preferably 0 cN / dtex, and particularly preferably 3.0 to 5.8 cN / dtex. The single fiber strength is measured by the method described in the examples.
 分割型繊維の分割前の伸度は、10~120%であることが好ましく、15~80%であることがより好ましく、20~60%であることが更により好ましく、20~55%であることが特に好ましい。伸度は、実施例に記載の方法で、測定する。 The elongation before splitting of the split-type fiber is preferably 10 to 120%, more preferably 15 to 80%, still more preferably 20 to 60%, and further preferably 20 to 55%. It is particularly preferred. The elongation is measured by the method described in the examples.
 分割型複合繊維について、DSC(示差走査熱量測定)を行い、得られるDSC曲線について説明する。分割型複合繊維全体のDSCによるDSC曲線は、分割型複合繊維に含まれるポリプロピレン樹脂及びポリエチレン樹脂の各々の融点、分子量分布、結晶状態、結晶化度、分割型複合繊維中に含有される量、また、分割型複合繊維中に含まれる他の熱可塑性樹脂の種類、量、それらの結晶状態によって変わり得る。 DSC (differential scanning calorimetry) is performed on the split type composite fiber, and the resulting DSC curve will be described. The DSC curve by DSC of the entire split type composite fiber is the melting point, molecular weight distribution, crystal state, crystallinity, and amount contained in the split type composite fiber of each of the polypropylene resin and polyethylene resin contained in the split type composite fiber, Moreover, it may change with the kind of other thermoplastic resin contained in a split type composite fiber, quantity, and those crystal | crystallization states.
 本発明の分割型複合繊維は、DSCを行い、得られるDSC曲線のうち、ポリプロピレン樹脂の融解ピークの形状によって、分割型複合繊維の諸物性、特に分割型複合繊維の分割性が影響される。以下、本発明の分割型複合繊維についてDSCを行って得られるDSC曲線によって示されるポリプロピレン樹脂の融解ピークの形状について説明する。ポリプロピレン樹脂を含む分割型複合繊維では、DSC曲線において、ポリプロピレン樹脂の融解ピークが図4~11に示す形状のピークとなって現れる。 The split composite fiber of the present invention is subjected to DSC, and the physical properties of the split composite fiber, particularly the split properties of the split composite fiber, are affected by the shape of the melting peak of the polypropylene resin in the obtained DSC curve. Hereinafter, the shape of the melting peak of the polypropylene resin indicated by the DSC curve obtained by performing DSC on the split composite fiber of the present invention will be described. In split type composite fibers containing a polypropylene resin, the melting peak of the polypropylene resin appears as a peak having the shape shown in FIGS. 4 to 11 in the DSC curve.
 図4~11の各符号は次のものを示す。
a:分割型複合繊維に含まれるポリプロピレン樹脂の融解ピーク
:ポリプロピレン樹脂の第1融解ピーク(第1融解ピーク)
:ポリプロピレン樹脂の第2融解ピーク(第2融解ピーク)
:ポリプロピレン樹脂の融解ピークにおける谷間(融解ピークの谷間)
:ポリプロピレン樹脂の第1融解ピーク温度(℃)
(以下、単に第1融解ピーク温度とも称す)
:ポリプロピレン樹脂の第2融解ピーク温度(℃)
(以下、単に第2融解ピーク温度とも称す)
:ポリプロピレン樹脂の第2融解ピークにおける熱流束(mW)
:ポリプロピレン樹脂の第1融解ピークと第2融解ピークの間に存在する谷間(前記a)における熱流束(mW)
:ポリプロピレン樹脂の第1吸熱ピークの面積(第1融解ピーク面積)
:ポリプロピレン樹脂の第2吸熱ピークの面積(第2融解ピーク面積)
BLLT:DSC曲線における低温側のベースライン
BLHT:DSC曲線における高温側のベースライン
BL:DSC曲線において、低温側のベースラインを、その高温側の終端部(BLLTの右端部分)から、高温側ベースラインの低温側終端部(BLHTの左端部)に向けて延長した直線
 なお、図4~11において縦軸は熱流束(heat flux)(通常、単位はmW:ミリワット)で吸熱エネルギーに相当し、横軸は時間(通常単位は秒又は分)を示している。
4 to 11 indicate the following.
a: Melting peak of polypropylene resin contained in split type composite fiber a 1 : First melting peak of polypropylene resin (first melting peak)
a 2 : Second melting peak of polypropylene resin (second melting peak)
a 3 : valley in melting peak of polypropylene resin (valley in melting peak)
T 1 : First melting peak temperature of polypropylene resin (° C.)
(Hereinafter also simply referred to as the first melting peak temperature)
T 2 : second melting peak temperature of polypropylene resin (° C.)
(Hereinafter, also simply referred to as the second melting peak temperature)
W 2 : heat flux (mW) at the second melting peak of polypropylene resin
W 3 : heat flux (mW) in a valley (a 3 ) existing between the first melting peak and the second melting peak of the polypropylene resin
S 1 : area of the first endothermic peak of the polypropylene resin (first melting peak area)
S 2 : area of the second endothermic peak of the polypropylene resin (second melting peak area)
BL LT : Base line on the low temperature side in the DSC curve BL HT : Base line on the high temperature side in the DSC curve BL E : In the DSC curve, the base line on the low temperature side is moved from the terminal portion on the high temperature side (the right end portion of the BL LT ). , A straight line extending toward the low temperature side end of the high temperature side base line (the left end of the BL HT ) In FIGS. 4 to 11, the vertical axis is the heat flux (usually the unit is mW: milliwatt) and absorbs heat. It corresponds to energy, and the horizontal axis indicates time (usually the unit is seconds or minutes).
 本発明の分割型複合繊維は、DSC曲線において、ポリプロピレン樹脂の融解ピークの形状がダブルピーク形状であることを特徴とする。ポリプロプレン樹脂の融解ピークの形状がダブルピーク形状であるとは、以下の(1)又は(2)のいずれかに相当する形状であることを指す。 The split composite fiber of the present invention is characterized in that the shape of the melting peak of the polypropylene resin is a double peak shape in the DSC curve. The fact that the shape of the melting peak of the polypropylene resin is a double peak shape means that the shape corresponds to one of the following (1) or (2).
 (1)ポリプロピレン樹脂の吸熱ピークにおいて、低温側(言い換えるならば、昇温開始から経過した時間が短い側)に第1融解ピーク(a)が現れた後、ポリプロピレン樹脂の融解ピークにおける谷間(a)が明確に現れた後、高温側(言い換えるならば昇温開始から経過した時間が長い側)に第2融解ピーク(a)が現れる。
 (2)ポリプロピレン樹脂の融解ピークにおいて、低温側に第1融解ピークが現れるが、第1融解ピークと第2融解ピークが明確に分離できる2つの頂点として現れず、(言い換えるならば、ポリプロピレン樹脂の融解ピークにおける谷間(a)が明確に現れず)、図8~11で示されるごとく肩のような形状(肩状ピーク)が現れる。
(1) In the endothermic peak of the polypropylene resin, after the first melting peak (a 1 ) appears on the low temperature side (in other words, on the side where the time elapsed from the start of temperature increase is short), the valley in the melting peak of the polypropylene resin ( After a 3 ) clearly appears, the second melting peak (a 2 ) appears on the high temperature side (in other words, on the side where the time elapsed from the start of temperature increase is long).
(2) In the melting peak of polypropylene resin, the first melting peak appears on the low temperature side, but the first melting peak and the second melting peak do not appear as two vertices that can be clearly separated (in other words, the polypropylene resin A valley (a 3 ) in the melting peak does not appear clearly), and a shoulder-like shape (shoulder-like peak) appears as shown in FIGS.
 まず、前記(1)の条件を満たす、ポリプロピレン樹脂の融解ピーク形状について説明する。
 前記(1)の条件を満たす融解ピーク形状の概略図を図4~7に示す。前記(1)の条件を満たす融解ピークでは、DSCにおいて試料温度が145℃付近より、ポリプロピレン樹脂の融解が開始され、試料温度が約157~165℃の範囲で第1融解ピーク(a)が計測される。時間がさらに経過して、試料温度がさらに上昇すると、ポリプロピレン樹脂の融解ピークにおける谷間(a)が明確に現れた後、試料温度が約165~175℃の範囲で第2融解ピーク(a)が現れ、試料温度が180℃に達する頃にはポリプロピレン樹脂の融解が完了する。
First, the melting peak shape of the polypropylene resin that satisfies the condition (1) will be described.
Schematic diagrams of melting peak shapes satisfying the condition (1) are shown in FIGS. In the melting peak satisfying the condition (1), the melting of the polypropylene resin is started from around 145 ° C. in the DSC, and the first melting peak (a 1 ) is observed in the sample temperature range of about 157 to 165 ° C. It is measured. As time further elapses and the sample temperature further rises, after the valley (a 3 ) in the melting peak of the polypropylene resin clearly appears, the second melting peak (a 2 ) is observed when the sample temperature is in the range of about 165 to 175 ° C. ) Appears, and when the sample temperature reaches 180 ° C., the melting of the polypropylene resin is completed.
 次に、前記(2)の条件を満たす、ポリプロピレン樹脂の融解ピーク形状について説明する。
 前記(2)の条件を満たす融解ピーク形状の概略図を図8~11に示す。前記(2)の条件を満たす融解ピークでは、DSCにおいて試料温度が145℃付近より、ポリプロピレン樹脂の融解が開始するが、極小値となる第1融解ピークが測定されず、肩状のピークが測定された後、時間が経過して、試料の温度上昇に伴い、第2融解ピーク(a)が現れ、試料温度が180℃に達する頃にはポリプロピレン樹脂の融解が完了する。このような融解ピークの形状は第1融解ピークと第2融解ピークの温度が近い場合に測定される。
Next, the melting peak shape of the polypropylene resin that satisfies the condition (2) will be described.
Schematic diagrams of melting peak shapes satisfying the condition (2) are shown in FIGS. At the melting peak satisfying the condition (2), the melting of the polypropylene resin starts from a sample temperature of around 145 ° C. in DSC, but the first melting peak that is the minimum value is not measured, and the shoulder-like peak is measured. Then, as time elapses, the second melting peak (a 2 ) appears as the temperature of the sample rises, and when the sample temperature reaches 180 ° C., the melting of the polypropylene resin is completed. Such a shape of the melting peak is measured when the temperatures of the first melting peak and the second melting peak are close.
 DSC曲線において、ポリプロピレン樹脂の融解ピーク形状がダブルピークであるか否かは、前記(1)~(2)の条件のうちの一つを満たす場合ダブルピークの形状であり、いずれも満たさない場合は、融解ピークの形状がダブルピークではない、いわゆるシングルピークの形状となる(図12)。シングルピーク形状は、DSC曲線を微分したDDSC曲線を調べることで判定することができる。DDSC曲線とは、DSC曲線を時間で一次微分した曲線であり、DSC曲線の傾きを示す。そのため、DSC曲線の傾きがゼロになる時にゼロとなることから、DSC曲線における極大値や極小値ではDDSC曲線の値がゼロとなる。 In the DSC curve, whether or not the melting peak shape of the polypropylene resin is a double peak is a double peak shape if one of the above conditions (1) to (2) is satisfied, and none of them is satisfied. Has a so-called single peak shape in which the shape of the melting peak is not a double peak (FIG. 12). The single peak shape can be determined by examining a DDSC curve obtained by differentiating the DSC curve. The DDSC curve is a curve obtained by first differentiating the DSC curve with respect to time, and indicates the slope of the DSC curve. Therefore, when the slope of the DSC curve becomes zero, it becomes zero, and therefore the value of the DDSC curve becomes zero at the maximum value and the minimum value in the DSC curve.
 本発明の分割型複合繊維において、ポリプロピレン樹脂の融解ピーク(a)の形状はダブルピークの形状、より具体的には前記(1)~(2)の条件のうち、いずれか一つを満たせばよいが、前記(1)の条件を満たすことが特に好ましい。DSC曲線におけるポリプロピレン樹脂の融解に起因する吸熱ピークの形状が前記(1)の条件を満たす場合、言い換えるならばDSC曲線において、極小値となる融解ピークが2点存在し、前記2つの融解ピークの間に明確な融解ピークの谷間(a)が存在しているとき、分割型複合繊維に含まれるポリプロピレン樹脂は、結晶化度が高い状態となっているだけでなく、より低温で融解する領域と、より高温で融解する領域に分かれて結晶化していると考えられる。前記(1)の条件を満たす場合、得られる分割型複合繊維の分割性が高められる理由は定かではないが、選定した樹脂の特性および分割型複合繊維のDSC曲線から次のように考えられる。 In the split type composite fiber of the present invention, the shape of the melting peak (a) of the polypropylene resin is a double peak shape, more specifically, if any one of the conditions (1) to (2) is satisfied. However, it is particularly preferable that the condition (1) is satisfied. When the shape of the endothermic peak resulting from the melting of the polypropylene resin in the DSC curve satisfies the above condition (1), in other words, there are two melting peaks that are minimal in the DSC curve. When there is a clear melting peak valley (a 3 ) between them, the polypropylene resin contained in the split-type composite fiber is not only in a high crystallinity state, but also melts at a lower temperature. It is thought that it is crystallized by dividing into regions that melt at higher temperatures. When the condition (1) is satisfied, the reason why the splitting property of the obtained split composite fiber is improved is not clear, but it is considered as follows from the characteristics of the selected resin and the DSC curve of the split composite fiber.
 上述したように、分割型複合繊維のDSC曲線において、ポリプロピレン樹脂の融解ピークの形状が前記(1)の条件を満たすとき、ポリプロピレン樹脂は、より低温で融解する領域と、より高温で融解する領域に分かれて結晶化していると考えられる。
 より低温で融解する領域は、非晶質の相、より低温で融解する結晶相、結晶化した相だが分子量が小さい相、結晶化しているが、延伸工程により分子鎖に歪み・切断が生じている相等が含まれていると推測される。
 一方、より高温で融解する結晶領域は、溶融紡糸時に結晶化していないポリプロピレン分子は、延伸工程においてポリプロピレンのガラス転移温度以上にて高い延伸倍率で延伸された結果、ポリプロピレンが十分に結晶化することで生じた領域だと考えられる。
 尚、本発明は、このような理由で優れた効果を奏すると考えられるが、このような理由によって、本発明は、何ら制限されることはない。
As described above, when the shape of the melting peak of the polypropylene resin satisfies the condition (1) in the DSC curve of the split-type composite fiber, the polypropylene resin has a region that melts at a lower temperature and a region that melts at a higher temperature. It is thought that it has been crystallized separately.
The region that melts at a lower temperature is an amorphous phase, a crystalline phase that melts at a lower temperature, a crystallized phase that has a low molecular weight, or is crystallized. It is presumed that the same level is included.
On the other hand, in the crystalline region that melts at higher temperatures, polypropylene molecules that have not been crystallized during melt spinning are sufficiently crystallized as a result of stretching at a high draw ratio above the glass transition temperature of polypropylene in the stretching process. It is thought that this is the area that occurred in
In addition, although it is thought that this invention has the outstanding effect for such a reason, this invention is not restrict | limited at all for such a reason.
 分割型複合繊維に含まれるポリプロピレン樹脂の結晶化度を高めるには、延伸工程にて、ポリプロピレン分子の大部分を結晶化させることが好ましいと考えられる。そのために、ポリプロピレン分子の大きさ、即ち、ポリプロピレン分子の分子量を揃え、その挙動を揃えた方が好ましいと考えられる。従って、本発明の分割型複合繊維では、樹脂セグメントを構成するポリプロピレン樹脂として、分子量の分布幅がより狭い樹脂、即ち、紡糸後の重量平均分子量と数平均分子量の比であるQ値が6以下のポリプロプレン樹脂を含む。紡糸後のQ値が6より大きいポリプロピレン樹脂は、ポリプロピレン分子の分子量の幅が大きい、即ち分子量が大きすぎる(分子が長すぎる)ポリプロピレン分子がより多く存在する、及び/又は分子量が小さすぎる(分子が短すぎる)ポリプロピレン分子がより多く存在するため、前者は紡糸工程で結晶化してしまい、延伸工程では伸びにくくなることで延伸工程の工程性悪化を招くおそれがあり、後者は延伸工程を経ても結晶化しにくいため、樹脂セグメント中に軟質な領域として残存し、分割型複合繊維において分割性を低下させる原因となりうる。 In order to increase the crystallinity of the polypropylene resin contained in the split type composite fiber, it is considered preferable to crystallize most of the polypropylene molecules in the stretching step. Therefore, it is considered that it is preferable that the sizes of the polypropylene molecules, that is, the molecular weights of the polypropylene molecules are made uniform and their behaviors are made uniform. Therefore, in the split-type composite fiber of the present invention, as the polypropylene resin constituting the resin segment, a resin having a narrower molecular weight distribution width, that is, a Q value that is a ratio of the weight average molecular weight to the number average molecular weight after spinning is 6 or less. Of polypropylene resin. Polypropylene resin having a Q value of greater than 6 after spinning has a larger molecular weight range of the polypropylene molecule, that is, the molecular weight is too large (the molecule is too long) and / or the molecular weight is too small (molecular However, since the former is crystallized in the spinning process and becomes difficult to stretch in the stretching process, the process of the stretching process may be deteriorated. Since it is difficult to crystallize, it remains as a soft region in the resin segment, which may cause a decrease in the splitting property in the split composite fiber.
 なお、本発明において、分割型複合繊維の示差走査熱量測定(DSC)はJIS K 7121(1987年) プラスチックの転移温度測定方法に基づいて測定する。 In the present invention, the differential scanning calorimetry (DSC) of the split-type composite fibers is measured based on the plastic transition temperature measurement method of JIS K 7121 (1987).
 本発明の形態の分割型複合繊維は、次に示す(A)及び(B)の少なくとも一方を満たすことが好ましい。
 (A)前記条件で行った示差走査熱量測定(DSC)において、前記ポリプロピレン樹脂の融解ピークを低温側領域、高温側領域に分け、それぞれの領域の面積を第1融解ピーク面積、第2融解ピーク面積としたとき、第2融解ピーク面積と第1融解ピーク面積の比率(第2融解ピーク面積/第1融解ピーク面積)が0.85以上3.5以下である、好ましくは0.9以上3.2以下である、より好ましくは0.95以上3.0以下である、更により好ましくは1.0以上2.5以下である。
 (B)前記条件で行った示差走査熱量測定(DSC)において、前記ポリプロピレン樹脂のDSC曲線における融解ピークについて、後述する方法で求められるW、Wの値から求められる第2ピークの伸びが0.6以上である、第2ピークの伸びは好ましくは0.7以上であり、より好ましくは0.8以上であり、更により好ましくは0.85以上である。
It is preferable that the split type composite fiber according to the embodiment of the present invention satisfies at least one of the following (A) and (B).
(A) In differential scanning calorimetry (DSC) performed under the above conditions, the melting peak of the polypropylene resin is divided into a low temperature side region and a high temperature side region, and the area of each region is defined as a first melting peak area and a second melting peak. When the area is defined, the ratio of the second melting peak area to the first melting peak area (second melting peak area / first melting peak area) is 0.85 or more and 3.5 or less, preferably 0.9 or more and 3 .2 or less, more preferably 0.95 or more and 3.0 or less, and even more preferably 1.0 or more and 2.5 or less.
(B) In the differential scanning calorimetry (DSC) performed under the above conditions, the elongation of the second peak obtained from the values of W 2 and W 3 obtained by the method described later is obtained for the melting peak in the DSC curve of the polypropylene resin. The elongation of the second peak, which is 0.6 or more, is preferably 0.7 or more, more preferably 0.8 or more, and even more preferably 0.85 or more.
 本発明の分割型複合繊維において好ましい条件である、前記(A)の条件について説明する。
 分割型複合繊維のDSCにおいて、測定されたポリプロピレン樹脂の融解ピークの形状が前記(1)の条件を満たす融解ピークである場合、ポリプロピレン樹脂の融解ピークにおける谷間(a)を通過し、グラフの横軸に対して垂直に交わる直線を引き、その直線を境界線として、ポリプロピレンの融解ピークを低温側の領域、高温側領域に分ける。この直線と、DSC曲線、及び、ポリプロピレンの融解ピークにおいて、低温側のベースライン(BLLT)を、その高温側終端部から高温側ベースライン(BLHT)に向けて延長した直線(BL)で囲まれるそれぞれの領域の面積を第1融解ピーク面積、第2融解ピーク面積と称す。より具体的には、図6において、斜線で塗りつぶされている領域Sが第1融解ピーク面積であり、図7において斜線で塗りつぶされている領域Sが第2融解ピーク面積である。
The condition (A), which is a preferable condition in the split type composite fiber of the present invention, will be described.
When the shape of the measured melting peak of the polypropylene resin in the DSC of the split-type composite fiber is a melting peak satisfying the condition (1), it passes through the valley (a 3 ) in the melting peak of the polypropylene resin, A straight line perpendicular to the horizontal axis is drawn, and the straight line is used as a boundary line to divide the melting peak of polypropylene into a low temperature region and a high temperature region. A straight line (BL E ) obtained by extending the low-temperature side base line (BL LT ) from the high-temperature side end portion toward the high-temperature side base line (BL HT ) in this line, the DSC curve, and the melting peak of polypropylene. The area of each region surrounded by is referred to as a first melting peak area and a second melting peak area. More specifically, in FIG. 6, a region S 1 which is filled with oblique lines is a first melting peak area, the area S 2 which is filled with oblique lines is a second melting peak area in FIG.
 本発明の分割型複合繊維において好ましい条件である、前記(A)の条件について、さらに説明する。
 分割型複合繊維のDSCにおいて、測定されたポリプロピレン樹脂の融解ピークの形状が、前記(2)の条件を満たす融解ピークである場合、ポリプロピレンの融解ピーク(a)において測定された肩状ピークについて、TとTの間でDSC曲線の1次微分の絶対値が最も小さくなる点を通り、グラフの横軸に対して垂直に交わる直線を引き、その直線を境界線として、ポリプロピレンの融解ピークを低温側の領域、高温側の領域に分ける。
 この直線と、DSC曲線、およびポリプロピレンの融解ピークにおいて、低温側のベースライン(BLLT)を、その高温側終端部から高温側ベースライン(BLHT)に向けて延長した直線(BL)で囲まれるそれぞれの領域の面積を、第1融解ピーク面積、第2融解ピーク面積と称す。より具体的には、図10において、斜線で塗りつぶされている領域Sが第1融解ピーク面積であり、図11において斜線で塗りつぶされている領域Sが第2融解ピーク面積である。
The condition (A), which is a preferable condition for the split-type conjugate fiber of the present invention, will be further described.
When the shape of the melting peak of the polypropylene resin measured in the DSC of the split type composite fiber is a melting peak satisfying the condition (2) above, the shoulder peak measured in the melting peak (a) of polypropylene, T 1 and T as the absolute value of the first derivative of the DSC curve points becomes minimum between 2, a straight line is drawn which intersects perpendicularly to the horizontal axis of the graph, the straight line as a boundary line, melting peak of polypropylene Are divided into a low temperature region and a high temperature region.
In this straight line, DSC curve, and melting peak of polypropylene, the low temperature side baseline (BL LT ) is a straight line (BL E ) extending from the high temperature side end portion toward the high temperature side base line (BL HT ). The area of each enclosed region is referred to as a first melting peak area and a second melting peak area. More specifically, in FIG. 10, region S 1 which is filled with oblique lines is a first melting peak area, the area S 2 which is filled with oblique lines is a second melting peak area in FIG. 11.
 第2融解ピーク面積と第1融解ピーク面積の比(第2融解ピーク面積/第1融解ピーク面積)を求める場合、DSC曲線を紙に印刷した後前記の方法で境界線を作図した後、第1融解ピーク面積に相当する部分、第2融解ピーク面積に相当する部分を切り取りそれらの質量を測定して、第2融解ピーク面積と第1融解ピーク面積の比(第2融解ピーク面積/第1融解ピーク面積)を得ることができる。又はDSC曲線を任意の区間において自動的に積分できる測定機器を用いて(その測定機器に付属する機能を用いて)、第1融解ピーク面積、第2融解ピーク面積を求め、それらの比を算出することもできる。 When determining the ratio of the second melting peak area to the first melting peak area (second melting peak area / first melting peak area), after printing the DSC curve on paper and drawing the boundary line by the above method, A portion corresponding to the first melting peak area and a portion corresponding to the second melting peak area are cut out and their masses are measured, and the ratio of the second melting peak area to the first melting peak area (second melting peak area / first Melting peak area). Alternatively, using a measuring instrument that can automatically integrate the DSC curve in an arbitrary interval (using the function attached to the measuring instrument), obtain the first melting peak area and the second melting peak area, and calculate the ratio thereof. You can also
 本発明の分割型複合繊維において好ましい条件である、前記(B)の条件について説明する。
 (B):前記示差走査熱量測定(DSC)において、前記ダブルピーク形状のポリプロピレン樹脂の融解ピークを第1融解ピーク及び第2融解ピークに分け、
 第2融解ピーク温度となったときのDSC曲線の値をW(mW)とし、
 第1融解ピークと第2融解ピークの間で、DSC曲線の一次微分の絶対値が最小になるDSC曲線の値をW(mW)として、
  ・第2融解ピークの伸び=(Wの絶対値)-(Wの絶対値)
で定義する第二ピークの伸びが0.6以上である。
 より具体的には、図5に示すようにポリプロピレンの融解ピーク(a)において、第2融解ピーク(a)、第1融解ピーク(a)およびa、aの間で測定されるポリプロピレン樹脂の融解ピークにおける谷間(a)が存在する場合、aにおけるDSCの値(W)、融解ピークの谷間(a)となった時のDSCの値(W)を測定し、W、Wそれぞれの絶対値の差が第2融解ピークの伸びである。
The condition (B), which is a preferable condition for the split conjugate fiber of the present invention, will be described.
(B): In the differential scanning calorimetry (DSC), the melting peak of the double peak-shaped polypropylene resin is divided into a first melting peak and a second melting peak,
The value of the DSC curve when the second melting peak temperature is reached is W 2 (mW),
The value of the DSC curve that minimizes the absolute value of the first derivative of the DSC curve between the first melting peak and the second melting peak is W 3 (mW),
Elongation of second melting peak = (Absolute value of W 2 ) − (Absolute value of W 3 )
The elongation of the second peak defined by is 0.6 or more.
More specifically, as shown in FIG. 5, in the melting peak (a) of polypropylene, it is measured between the second melting peak (a 2 ), the first melting peak (a 1 ), and a 1 , a 2. If valley in melting peak of the polypropylene resin (a 3) is present, the value of the DSC in a 2 (W 2), measures the value of DSC when a valley of the melting peak (a 3) (W 3) The difference between the absolute values of W 2 and W 3 is the elongation of the second melting peak.
 本発明の分割型複合繊維において好ましい条件である、前記(B)の条件についてさらに説明する。
 分割型複合繊維のDSCにおいて、測定されたポリプロピレン樹脂の融解ピークの形状が、前記(2)の条件を満たす場合、第2融解ピークの伸びは以下のように定義される。
 即ち、(B):前記示差走査熱量測定(DSC)において、前記ダブルピーク形状のポリプロピレン樹脂の融解ピークを第1融解ピーク及び第2融解ピークに分け、
 第2融解ピーク温度となったときのDSC曲線の値をW(mW)とし、
 第1融解ピークと第2融解ピークの間で、DSC曲線の一次微分の絶対値が最小になるDSC曲線の値をW(mW)として、
  ・第2融解ピークの伸び=(Wの絶対値)-(Wの絶対値)
で定義する第二ピークの伸びが0.6以上である。
 より具体的には、図9に示すようにポリプロピレンの融解ピーク(a)において、第2融解ピーク(a)とその低温側で測定された肩状ピークが存在し、aにおけるDSCの値(W)、TとTの間でDSC曲線の1次微分の絶対値が最も小さくなる点で測定されるDSCの値(W)を測定し、W、Wそれぞれの絶対値の差が第2融解ピークの伸びである。
The condition (B), which is a preferable condition in the split type composite fiber of the present invention, will be further described.
When the shape of the melting peak of the polypropylene resin measured in the DSC of the split composite fiber satisfies the condition (2), the elongation of the second melting peak is defined as follows.
That is, (B): In the differential scanning calorimetry (DSC), the melting peak of the double peak-shaped polypropylene resin is divided into a first melting peak and a second melting peak,
The value of the DSC curve when the second melting peak temperature is reached is W 2 (mW),
The value of the DSC curve that minimizes the absolute value of the first derivative of the DSC curve between the first melting peak and the second melting peak is W 3 (mW),
Elongation of second melting peak = (Absolute value of W 2 ) − (Absolute value of W 3 )
The elongation of the second peak defined by is 0.6 or more.
More specifically, as shown in FIG. 9, in the melting peak (a) of polypropylene, there is a second melting peak (a 2 ) and a shoulder-like peak measured on its low temperature side, and the DSC value at a 2 (W 2 ), the DSC value (W 3 ) measured at the point where the absolute value of the first derivative of the DSC curve is smallest between T 1 and T 2 , and the absolute values of W 2 and W 3 The difference in values is the elongation of the second melting peak.
 なお、本発明の形態の分割型複合繊維についてDSCを行い、得られるDSC曲線の説明を図4~11を用いて説明したが、図4~11はあくまで一例である。例えば、これらのDSC曲線の形状、即ち、ポリプロピレン樹脂の融解ピーク形状は、低温側の融解ピーク(第1融解ピーク)の方が高温側の融解ピーク(第2融解ピーク)よりも小さい、逆にいえば高温側の融解ピーク(第2融解ピーク)が低温側の融解ピーク(第1融解ピーク)よりも大きいが、そのような形状に必ずしもなるわけではない。よって、第1融解ピーク、第2融解ピークの大きさの関係が逆転し、第1融解ピークの方が第2融解ピークよりも大きい(融解ピークがシャープで、伸びている)場合であっても、前記の条件、即ち、本発明におけるポリプロピレン樹脂の融解ピークの形状がダブルピークであることの定義を満たし、第2融解ピーク面積と第1融解ピーク面積の比率や、第2融解ピークの伸びを満たす分割型複合繊維が本発明に含まれることはいうまでもない In addition, although DSC was performed on the split-type composite fiber according to the embodiment of the present invention and the obtained DSC curves were described using FIGS. 4 to 11, FIGS. 4 to 11 are merely examples. For example, the shape of these DSC curves, that is, the melting peak shape of polypropylene resin is such that the melting peak on the low temperature side (first melting peak) is smaller than the melting peak on the high temperature side (second melting peak). In other words, the melting peak on the high temperature side (second melting peak) is larger than the melting peak on the low temperature side (first melting peak), but such a shape is not necessarily obtained. Therefore, even if the relationship between the size of the first melting peak and the second melting peak is reversed, the first melting peak is larger than the second melting peak (the melting peak is sharp and elongated). The above-mentioned conditions, that is, satisfying the definition that the shape of the melting peak of the polypropylene resin in the present invention is a double peak, the ratio of the second melting peak area to the first melting peak area, and the elongation of the second melting peak Needless to say, the present invention includes split type composite fibers that satisfy the requirements.
 <極細繊維>
 分割型複合繊維は、割繊して、第1セグメントに由来する極細繊維1を形成し、第2セグメントに由来する極細繊維2を形成する。他のセグメントを含む場合、他のセグメントに由来する他の極細繊維を形成する。
<Ultrafine fiber>
The split-type conjugate fiber is split to form an ultrafine fiber 1 derived from the first segment, and an ultrafine fiber 2 derived from the second segment. When other segments are included, other ultrafine fibers derived from the other segments are formed.
 分割型複合繊維の繊維断面構造は、各セグメントが放射状に交互に配列された維断面構造であることが好ましい。更に、分割型複合繊維において、繊維中心部に中空部を有する繊維断面構造とすることも好ましい。 The fiber cross-sectional structure of the split-type composite fiber is preferably a fiber cross-sectional structure in which the segments are arranged alternately in a radial pattern. Furthermore, in the split type composite fiber, it is also preferable to have a fiber cross-sectional structure having a hollow part at the fiber center part.
 極細繊維1及び/又は極細繊維2は、繊度が0.6dtex未満であることが好ましく、0.4dtex未満であることがより好ましい。極細繊維の繊度が0.6dtex未満である場合、厚さの薄い繊維構造物をより容易に得ることができる。なお、極細繊維1と極細繊維2の繊度は、互いに同じでも異なっていてもよく、いずれの極細繊維についても、繊度の下限は、好ましくは0.006dtexである。 The ultrafine fiber 1 and / or the ultrafine fiber 2 preferably has a fineness of less than 0.6 dtex, and more preferably less than 0.4 dtex. When the fineness of the ultrafine fiber is less than 0.6 dtex, a thin fiber structure can be obtained more easily. The fineness of the ultrafine fibers 1 and 2 may be the same or different from each other, and the lower limit of the fineness is preferably 0.006 dtex for any of the ultrafine fibers.
 特に、極細繊維2は芯鞘型であることから、極細繊維2の繊度は、0.4dtex未満であることが好ましい。繊維構造物において、芯鞘型複合繊維が含まれる場合、複合繊維の繊度が小さいほど、複合繊維の表面積が大きくなるため、熱接着面積が大きくなり、熱接着後の繊維構造物の機械的強度がより高くなる。極細繊維2が、芯鞘型極細複合繊維である場合、特により小さい繊度を有することが好ましい。 Particularly, since the ultrafine fiber 2 is a core-sheath type, the fineness of the ultrafine fiber 2 is preferably less than 0.4 dtex. When the core-sheath type composite fiber is included in the fiber structure, the smaller the fineness of the composite fiber, the larger the surface area of the composite fiber, so that the thermal bonding area increases, and the mechanical strength of the fiber structure after thermal bonding Becomes higher. When the ultrafine fiber 2 is a core-sheath type ultrafine composite fiber, it is particularly preferable to have a smaller fineness.
 <分割型複合繊維の製造方法>
 本発明は他の要旨において、新たな分割型複合繊維の製造方法を提供し、それは、
 繊維断面において、第1セグメントと第2セグメントを含む分割型複合繊維であって、
 前記第1セグメントは、第1成分からなる樹脂セグメントであり、
 前記第2セグメントは、断面構造が前記第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントである分割型複合繊維となる分割型複合ノズルを装着した溶融紡糸機を準備すること;
 Mw/Mnが6以下のポリプロピレン樹脂を50質量%以上含む樹脂成分を第1成分とし、ポリエチレン樹脂を50質量%以上含む樹脂成分を第2成分として使用して、溶融紡糸機で溶融紡糸して、紡糸フィラメントを製造すること;
 60℃以上125℃以下の延伸温度、1.1倍以上の延伸倍率で、紡糸フィラメントを延伸して、分割型複合繊維を得ること
を含む、分割型複合繊維の製造方法である。
<Method for producing split composite fiber>
In another aspect, the present invention provides a method for producing a new split-type composite fiber,
In a fiber cross section, a split-type conjugate fiber including a first segment and a second segment,
The first segment is a resin segment composed of a first component,
The second segment is a melt spinning machine equipped with a split type composite nozzle that is a split type composite fiber that is a core-sheath type resin segment whose cross-sectional structure is the core component of the first component and the sheath component of the second component. To prepare;
Using a resin component containing 50% by mass or more of a polypropylene resin having an Mw / Mn of 6 or less as a first component and a resin component containing 50% by mass or more of a polyethylene resin as a second component, melt spinning with a melt spinning machine Producing spinning filaments;
This is a method for producing a split-type conjugate fiber, comprising drawing a spun filament at a drawing temperature of 60 ° C. or more and 125 ° C. or less and a draw ratio of 1.1 times or more to obtain a split-type conjugate fiber.
 上述の本発明の形態の分割型複合繊維は、目的とする分割型複合繊維を得られる限り、その製造方法は、特に制限されることはないが、上述の分割型複合繊維の製造方法を用いて、上述の本発明の形態の分割型複合繊維を好ましく製造することができる。
 以下、分割型複合繊維の製造方法をより詳細に説明する。
As long as the split-type conjugate fiber according to the embodiment of the present invention can obtain the target split-type conjugate fiber, its production method is not particularly limited, but the above-described split-type conjugate fiber production method is used. Thus, it is possible to preferably manufacture the above-mentioned split type composite fiber according to the present invention.
Hereinafter, the manufacturing method of a split type composite fiber is demonstrated in detail.
 分割型複合繊維は、所望の繊維断面構造が得られるように、適切な複合紡糸ノズルを用いて、常套の溶融紡糸機を用いて、複合紡糸することができる。紡糸温度(ノズル温度)は、使用する樹脂成分に応じて選択され、例えば200℃以上360℃以下としてよい。 The split type composite fiber can be composite-spun using a conventional melt-spinning machine using an appropriate composite spinning nozzle so that a desired fiber cross-sectional structure can be obtained. The spinning temperature (nozzle temperature) is selected according to the resin component used, and may be, for example, 200 ° C. or higher and 360 ° C. or lower.
 具体的には、溶融紡糸機に所定の繊維断面を得る分割型の複合ノズルを装着し、繊維断面において第1セグメントと第2セグメントが隣接し、互いに分割された構造となるように、紡糸温度200~360℃で、第1セグメントを構成するポリプロピレン樹脂及び第2セグメントを構成するポリエチレン樹脂を押し出して溶融紡糸し、紡糸フィラメント(未延伸繊維束)を得ることができる。 Specifically, a split type composite nozzle that obtains a predetermined fiber cross section is attached to the melt spinning machine, and the spinning temperature is set so that the first segment and the second segment are adjacent to each other in the fiber cross section and are divided from each other. The polypropylene resin constituting the first segment and the polyethylene resin constituting the second segment can be extruded and melt-spun at 200 to 360 ° C. to obtain a spun filament (unstretched fiber bundle).
 紡糸フィラメント(未延伸繊維束)の繊度は、1dtex以上30dtex以下の範囲内であってよい。紡糸フィラメントの繊度が1dtex以上30dtex以下の場合、より紡糸を容易にすることができる。紡糸フィラメントを高度に延伸して、分割性を向上させる場合、紡糸フィラメントの繊度は、2.0~15dtexであることが好ましく、2.5~12dtexであることがより好ましく、3~10dtexであることがさらに好ましく、4.0~8.0dtexであることが特に好ましく、4.5~7.5dtexが最も好ましい。 The fineness of the spun filament (unstretched fiber bundle) may be in the range of 1 dtex to 30 dtex. When the fineness of the spinning filament is 1 dtex or more and 30 dtex or less, spinning can be facilitated. In the case where the spinning filament is highly stretched to improve the splitting property, the fineness of the spinning filament is preferably 2.0 to 15 dtex, more preferably 2.5 to 12 dtex, and 3 to 10 dtex. More preferably, it is 4.0 to 8.0 dtex, particularly preferably 4.5 to 7.5 dtex.
 次いで、紡糸フィラメントを公知の延伸処理機を用いて延伸処理して、延伸フィラメントを得ることができる。延伸処理は、延伸温度を60℃ 以上125℃ 以下の範囲内にある温度に設定して実施することが好ましく、80℃以上120℃以下の範囲内にある温度で行うことがより好ましい。なお、延伸処理は、分割型複合繊維を構成する樹脂成分のうち、もっとも融点の低い樹脂の融点以下で行うことが好ましい。延伸倍率は、1.1倍以上とすることが好ましく、1.5倍以上とすることがより好ましく、2~8倍とすることがさらに好ましく、3~6倍とすることが特に好ましく、3.5~5.5倍とすることが最も好ましい。延伸倍率を1.1倍以上とすると、繊維を構成する分子が繊維の長さ方向に配向することに起因して、分割性が向上する。 Next, the drawn filament can be obtained by drawing the spinning filament using a known drawing processor. The stretching treatment is preferably carried out by setting the stretching temperature to a temperature within the range of 60 ° C. to 125 ° C., and more preferably at a temperature within the range of 80 ° C. to 120 ° C. In addition, it is preferable to perform a extending | stretching process below below melting | fusing point of resin with the lowest melting | fusing point among the resin components which comprise split-type composite fiber. The draw ratio is preferably 1.1 times or more, more preferably 1.5 times or more, further preferably 2 to 8 times, particularly preferably 3 to 6 times. Most preferably, the ratio is from 5 to 5.5 times. When the draw ratio is 1.1 times or more, the molecules constituting the fiber are oriented in the length direction of the fiber, so that the splitting property is improved.
 延伸方法は、使用する樹脂成分に応じて、温水または熱水中で実施する湿式延伸法、熱風吹付け、高温雰囲気中で実施する乾式延伸法、あるいはシリコンオイルなどの水以外の液体熱媒中で延伸処理を行う方法などで実施すればよいが、熱効率がよく、生産性に優れることから、乾式延伸法、湿式延伸法、水蒸気延伸法で行うことが好ましく、乾式延伸法又は湿式延伸法がより好ましい。延伸方法は、得られる分割型複合繊維の用途を考慮して選択できる。すなわち、高圧水流に晒さなくても高い割合で分割することや、高い単繊維強度が求められる用途に対し、本発明の分割型複合繊維を使用する場合は、延伸方法はより高温で延伸できる乾式延伸や水蒸気延伸を行う方が好ましい。逆に、水流交絡不織布を構成する繊維として本発明の分割型複合繊維を使用する場合、また、得られる分割型複合繊維や、分割後に得られる極細繊維に対し、高い単繊維強度が求められない用途に使用するのであれば、生産性が安定しやすい湿式延伸を行う方が好ましい。湿式延伸法の場合には延伸温度を60℃以上98℃以下の範囲としてもよく、60℃以上95℃以下の範囲内としてもよく、70℃以上95℃以下の範囲としてもよく、80℃以上95℃以下の範囲としてもよい。乾式延伸法の場合には延伸温度を80℃以上125℃以下の範囲内としてよく、90℃以上125℃以下の範囲内としてもよく、100℃以上125℃以下の範囲内としてもよく、100℃以上120℃以下の範囲内としてもよい。 Depending on the resin component used, the stretching method may be a wet stretching method performed in warm water or hot water, hot air spraying, a dry stretching method performed in a high temperature atmosphere, or in a liquid heat medium other than water such as silicone oil. However, it is preferable to carry out by a dry stretching method, a wet stretching method, or a steam stretching method because the thermal efficiency is good and the productivity is excellent. More preferred. The drawing method can be selected in consideration of the intended use of the resulting split conjugate fiber. That is, when the split composite fiber of the present invention is used for splitting at a high ratio without being exposed to a high-pressure water stream, or for applications where high single fiber strength is required, the stretching method is a dry process that can be stretched at a higher temperature. It is preferable to perform stretching or steam stretching. On the contrary, when the split-type composite fiber of the present invention is used as a fiber constituting the hydroentangled nonwoven fabric, a high single fiber strength is not required for the obtained split-type composite fiber and the ultrafine fiber obtained after the split. If it is used for an application, it is preferable to perform wet stretching where the productivity is easily stabilized. In the case of the wet stretching method, the stretching temperature may be in the range of 60 ° C. or higher and 98 ° C. or lower, may be in the range of 60 ° C. or higher and 95 ° C. or lower, may be in the range of 70 ° C. or higher and 95 ° C. or lower, and is 80 ° C. or higher. It is good also as a range below 95 degreeC. In the case of the dry stretching method, the stretching temperature may be in the range of 80 ° C. or more and 125 ° C. or less, may be in the range of 90 ° C. or more and 125 ° C. or less, may be in the range of 100 ° C. or more and 125 ° C. or less, It is good also in the range below 120 degreeC.
 延伸倍率は、最大延伸倍率(Vmax)の0.7倍以上0.98倍以下(延伸倍率/Vmax=0.7以上0.98以下)であることが好ましく、0.75倍以上0.97倍以下であることがより好ましく、0.8倍以上0.96倍以下であることが更により好ましく、0.85倍以上0.96倍以下であることが特に好ましい。延伸倍率が最大延伸倍率(Vmax)の0.7倍以上0.98倍以下(延伸倍率/Vmax=0.7以上0.98以下)である場合、紡糸フィラメントに対し、高い延伸倍率で延伸処理を行うことになり、紡糸フィラメントを構成するポリプロピレン樹脂に含まれるポリプロピレン分子や、ポリエチレン樹脂を構成するポリエチレン分子が延伸処理により結晶化が進んだり、分子配列の配向が進んだりするため、得られる分割型複合繊維が、各セグメントに分割されやすくなる、という有利な効果がある。
 最大延伸倍率は、実施例に記載の方法で求める。
The draw ratio is preferably 0.7 to 0.98 times the maximum draw ratio (Vmax) (draw ratio / Vmax = 0.7 to 0.98), preferably 0.75 to 0.97. It is more preferable that it is 2 times or less, 0.8 to 0.96 times is even more preferable, and 0.85 to 0.96 times is particularly preferable. When the draw ratio is 0.7 to 0.98 times the maximum draw ratio (Vmax) (draw ratio / Vmax = 0.7 to 0.98), the spinning filament is stretched at a high draw ratio. Since the crystallization of the polypropylene molecules contained in the polypropylene resin that constitutes the spinning filament and the polyethylene molecules that constitute the polyethylene resin are advanced by the stretching treatment, and the orientation of the molecular arrangement is advanced, the resulting division is obtained. There exists an advantageous effect that a type | mold composite fiber becomes easy to be divided | segmented into each segment.
The maximum draw ratio is determined by the method described in the examples.
 得られた延伸フィラメントに、必要に応じて所定量の繊維処理剤が付着させられ、さらに必要に応じてクリンパー(捲縮付与装置)で機械捲縮が与えられる。繊維処理剤は、後述するように、不織布を湿式抄紙法で製造する場合には、繊維を水等に分散させることを容易にする。また、繊維処理剤が付着した繊維に、繊維表面から外力を加えて(外力は、例えば、クリンパーによる捲縮付与の際に加わる力である)、繊維処理剤を繊維に染み込ませると、さらに水等への分散性が向上する。 A predetermined amount of fiber treatment agent is adhered to the obtained drawn filament as necessary, and further, mechanical crimping is given by a crimper (crimping device) as necessary. As will be described later, the fiber treatment agent facilitates dispersion of fibers in water or the like when a nonwoven fabric is produced by a wet papermaking method. Further, when an external force is applied to the fiber to which the fiber treatment agent is attached from the fiber surface (the external force is a force applied when crimping is applied by a crimper, for example), and the fiber treatment agent is soaked into the fiber, water is further added. The dispersibility to etc. improves.
 繊維処理剤付与後の(又は繊維処理剤が付与されていないがウェットな状態にある) フィラメントに80℃以上110℃以下の範囲内にある温度で、数秒~約30分間、乾燥処理を施し、繊維を乾燥させる。乾燥処理は場合により省略してよい。その後、フィラメントは、好ましくは、繊維長が1mm~100mm、より好ましくは、2mm~70mmとなるように切断される。後述するように、不織布を湿式抄紙法で製造する場合、繊維長を3mm~20mmとすることがより好ましい。湿式抄紙法で不織布を製造する場合、繊維長が短いほど、分割型複合繊維の分割率が高くなる。不織布をカード法で製造する場合、繊維長を20mm~100mmとすることがより好ましい。 After the fiber treatment agent is applied (or the fiber treatment agent is not applied but is in a wet state), the cocoon filament is dried at a temperature within the range of 80 ° C. to 110 ° C. for several seconds to about 30 minutes, Allow the fibers to dry. The drying process may be omitted depending on circumstances. Thereafter, the filament is preferably cut so that the fiber length is 1 mm to 100 mm, more preferably 2 mm to 70 mm. As will be described later, when the nonwoven fabric is produced by the wet papermaking method, the fiber length is more preferably 3 mm to 20 mm. When manufacturing a nonwoven fabric by the wet papermaking method, the division | segmentation rate of a split type composite fiber becomes high, so that fiber length is short. When the nonwoven fabric is produced by the card method, the fiber length is more preferably 20 mm to 100 mm.
 <繊維構造物>
 本発明の繊維構造物について説明する。繊維構造物の形態としては、特に限定されないが、例えば織物、編物及び不織布などが挙げられる。また、上記不織布の繊維ウェブ形態も特に限定されず、例えば、カード法により形成されたカードウェブ、エアレイ法により形成されたエアレイウェブ、湿式抄紙法により形成された湿式抄紙ウェブなどが挙げられる。
<Fiber structure>
The fiber structure of the present invention will be described. Although it does not specifically limit as a form of a fiber structure, For example, a woven fabric, a knitted fabric, a nonwoven fabric etc. are mentioned. Moreover, the fiber web form of the nonwoven fabric is not particularly limited, and examples thereof include a card web formed by a card method, an air lay web formed by an air lay method, and a wet paper making web formed by a wet paper making method.
 繊維構造物は、分割型複合繊維の分割により形成された極細繊維を5質量%以上の割合で含むことが好ましい。すなわち、繊維構造物は、極細繊維1と極細繊維2とを合わせて5質量%以上の割合で含んでよい。繊維構造物は、好ましくは極細繊維を10質量%以上の割合で含み、より好ましくは20質量%以上の割合で含み、最も好ましくは25質量%以上の割合で含む。好ましい上限は100質量%である。繊維構造物中の分割型複合繊維の占める割合が多いと、緻密な不織布が得られやすい傾向がある。 It is preferable that the fiber structure includes 5% by mass or more of ultrafine fibers formed by dividing the split composite fiber. That is, the fiber structure may include the ultrafine fiber 1 and the ultrafine fiber 2 in a proportion of 5% by mass or more. The fiber structure preferably contains ultrafine fibers in a proportion of 10% by mass or more, more preferably in a proportion of 20% by mass or more, and most preferably in a proportion of 25% by mass or more. A preferable upper limit is 100 mass%. When the proportion of the split composite fibers in the fiber structure is large, a dense nonwoven fabric tends to be obtained.
 繊維構造物が、リチウムイオン電池及びニッケル水素電池等の各種二次電池、各種コンデンサー及び各種キャパシタ等の各種蓄電デバイスに使用するセパレータ用の繊維構造物;液体及び気体等の流体から異物を捕捉及び/又は除去するカートリッジフィルター及び積層フィルター等の各種フィルターを構成するろ過層用の繊維構造物;逆浸透膜(RO膜)やナノろ過膜(NF膜)、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)といった各種ろ過膜の支持体として使用される、各種膜支持体用の繊維構造物;対人及び/又は対物ワイパー等の各種ワイピングシート用の繊維構造物;フェイスマスク等の化粧料含浸皮膚被覆シート用の繊維構造物;乳幼児用紙おむつ、介護用紙おむつ、生理用ナプキン等の吸収性物品を構成する表面シート、セカンドシート及びバックシート等の吸収性物品用シートの繊維構造物である場合であっても、上記分割型複合繊維の割合が100質量%となる繊維構造物を使用してもよい。上記分割型複合繊維を含む繊維構造物に対し、ある程度の構成繊維間の空隙やそれに伴う通気性、通液性が求められるのであれば、繊維構造物全体に占める分割型複合繊維の含有量は、90質量%以下でもよいし、80質量%以下でもよいし、75質量%以下でもよい。なお、繊維構造物に含まれる上記分割型複合繊維の下限は上記の通り、10質量%以上であってよく、20質量%以上であってよく、25質量%以上であってよい。
 乾式不織布、湿式不織布などの繊維構造物中に含まれる上記分割型複合繊維の割合が90質量%以下である場合、得られた繊維構造物に占める分割型複合繊維から発生した極細繊維の割合が適度となり、繊維構造物の用途によってはその構造が適度に緻密な不織布となり好ましい。
Fiber structure for separators used for various secondary batteries such as lithium ion batteries and nickel metal hydride batteries, various capacitors and various power storage devices such as capacitors; captures foreign substances from fluids such as liquids and gases Fiber structures for filtration layers constituting various filters such as cartridge filters and multilayer filters to be removed; reverse osmosis membrane (RO membrane), nanofiltration membrane (NF membrane), ultrafiltration membrane (UF membrane), precision Fiber structures for various membrane supports used as supports for various filtration membranes such as filtration membranes (MF membranes); fiber structures for various wiping sheets such as interpersonal and / or objective wipers; cosmetics such as face masks Fiber structures for skin-impregnated skin-coated sheets; surface sheets constituting absorbent articles such as infant paper diapers, nursing care paper diapers, sanitary napkins, Even if it is Kandoshito and backsheet fiber structure of the sheet for an absorbent article, such as the proportion of the splittable conjugate fibers may be used fiber structure comprising a 100% by weight. If a certain amount of voids between constituent fibers and the air permeability and liquid permeability associated therewith are required for the fiber structure containing the above-mentioned split type composite fiber, the content of the split type composite fiber in the entire fiber structure is 90 mass% or less, 80 mass% or less, or 75 mass% or less. In addition, as above-mentioned, the minimum of the said splitting type | mold composite fiber contained in a fiber structure may be 10 mass% or more, may be 20 mass% or more, and may be 25 mass% or more.
When the ratio of the above-mentioned split-type composite fibers contained in the fiber structure such as dry nonwoven fabric and wet nonwoven fabric is 90% by mass or less, the ratio of the ultrafine fibers generated from the split-type composite fibers in the obtained fiber structure is Depending on the use of the fiber structure, the structure is preferably a suitably dense non-woven fabric.
 繊維構造物は、極細繊維2を10質量%以上の割合で含むことがより好ましく、極細繊維1を20質量%以上の割合で含むことがさらに好ましく、極細繊維2を35質量%以上の割合で含むことが最も好ましい。好ましい上限は50質量%である。不織布中に極細繊維2として芯鞘型極細複合繊維をかかる範囲の割合で含む場合、小さい繊度(0.6dtex未満)の芯鞘型複合繊維を含むので、大きい繊度の芯鞘型複合繊維を同量含む不織布と比較して、より高い機械的強度を有する。また、薄くかつ機械的強度に優れた繊維構造物を得ることができる。 The fiber structure more preferably contains the ultrafine fiber 2 in a proportion of 10% by mass or more, more preferably contains the ultrafine fiber 1 in a proportion of 20% by mass or more, and the ultrafine fiber 2 in a proportion of 35% by mass or more. The inclusion is most preferred. A preferable upper limit is 50 mass%. When the core-sheath type ultrafine composite fiber is included in the nonwoven fabric in such a ratio as the ultrafine fiber 2, the core-sheath type composite fiber having a small fineness (less than 0.6 dtex) is included. Compared with the non-woven fabric containing the amount, it has higher mechanical strength. Further, a thin fiber structure having excellent mechanical strength can be obtained.
 極細繊維が5質量%以上含まれる場合、繊維構造物は、前記分割型複合繊維から形成される極細繊維以外の他の繊維を95質量%以下の量で含んでよい。他の繊維は、天然繊維もしくは再生繊維であってよく、または合成樹脂から成る単一繊維および複合繊維であってよい。あるいはまた、他の繊維は、別の分割型複合繊維から形成される極細繊維を含んでよい。あるいは、他の繊維は、分割型複合繊維から形成された極細繊維ではなく、単一紡糸法により製造された、繊度0.6dtex未満の極細繊維であってよい。あるいはまた、繊維構造物は、前記分割型複合繊維に由来する繊維のみ(第1セグメントに由来する極細繊維1、第2セグメントに由来する極細繊維2、ならびに分割が完全に進行しなかったために発生する繊度の大きい繊維および一本の繊維において枝分かれが生じている繊維等を含む)で構成されてよく、あるいは前記分割型複合繊維から形成される極細繊維のみで構成されてよい。 When the ultrafine fiber is contained in an amount of 5% by mass or more, the fiber structure may contain other fibers other than the ultrafine fiber formed from the split composite fiber in an amount of 95% by mass or less. Other fibers may be natural fibers or regenerated fibers, or may be single fibers and composite fibers made of synthetic resin. Alternatively, the other fiber may include an ultrafine fiber formed from another split type composite fiber. Alternatively, the other fiber may be an ultrafine fiber having a fineness of less than 0.6 dtex manufactured by a single spinning method, rather than an ultrafine fiber formed from a split composite fiber. Alternatively, the fiber structure is generated only because of the fibers derived from the split type composite fibers (the ultrafine fiber 1 derived from the first segment, the ultrafine fiber 2 derived from the second segment, and the division did not proceed completely) Or a fiber having a branching in one fiber, or the like, or may be composed only of ultrafine fibers formed from the split type composite fibers.
 繊維構造物は、好ましくは、繊維構造物に占める小さい繊度(0.6dtex未満)の繊維の総量が、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、50質量%以上であることがさらにより好ましく、70質量%以上であることが最も好ましい。なお、好ましい上限は100質量%である。繊維構造物に占める小さい繊度(0.6dtex未満)の繊維の総量が上記範囲内であると、容易に厚さの薄い繊維構造物を得ることができる。繊維構造物に占める小さい繊度(0.6dtex未満)の繊維は、極細繊維1のみ、或いは極細繊維1および極細繊維2のみであってよく、又は、これらと他の極細繊維とで構成されてよい。 The fiber structure preferably has a total amount of fibers having a small fineness (less than 0.6 dtex) in the fiber structure, preferably 10% by mass or more, more preferably 20% by mass or more, and 50% by mass. % Or more is even more preferable, and 70% by mass or more is most preferable. In addition, a preferable upper limit is 100 mass%. When the total amount of fibers having a small fineness (less than 0.6 dtex) in the fiber structure is within the above range, a thin fiber structure can be easily obtained. The fibers having a small fineness (less than 0.6 dtex) in the fiber structure may be only the ultrafine fibers 1 or only the ultrafine fibers 1 and 2 or may be composed of these and other ultrafine fibers. .
 上記繊維構造物において、本発明の分割型複合繊維は、物理的衝撃を与えることにより分割させることができる。例えば、水流交絡処理(高圧水流を噴射すること)により実施することができ、あるいは、湿式抄紙法により不織布を製造する場合、抄紙の際の離解処理時に受ける衝撃を利用して実施することができる。 In the above fiber structure, the split composite fiber of the present invention can be split by applying a physical impact. For example, it can be carried out by hydroentanglement treatment (injecting a high-pressure water flow), or when a nonwoven fabric is produced by a wet papermaking method, it can be carried out by using the impact received during the disaggregation treatment during papermaking. .
 水流交絡処理は、孔径0.05~0.5mmのオリフィスが0.5~1.5mmの間隔で設けられたノズルから、水圧3~20MPaの柱状水流を不織布の表裏にそれぞれ1回以上噴射することが好ましい。そして、本発明の分割型複合繊維であれば、繊維ウェブの地合の乱れや高圧水流による開孔が発生しにくい水圧10MPa以下という従来の分割型複合繊維では十分に分割し得なかった低圧下でも分割させることが可能であり、さらには水圧8MPa以下でも分割させることが可能であり、特には水圧6MPa以下でも分割させることができる。 In the water entangling process, a columnar water flow with a water pressure of 3 to 20 MPa is sprayed at least once on the front and back of the nonwoven fabric from a nozzle in which orifices having a hole diameter of 0.05 to 0.5 mm are provided at intervals of 0.5 to 1.5 mm. It is preferable. If the split type composite fiber of the present invention is used, the conventional split type composite fiber having a water pressure of 10 MPa or less in which the formation of the fiber web is not disturbed and the opening due to the high-pressure water flow is less likely to be sufficiently split. However, it is possible to divide, and further, it is possible to divide even when the water pressure is 8 MPa or less, and it is possible to divide even when the water pressure is 6 MPa or less.
 繊維構造物の製造方法について、不織布を例に挙げて説明する。不織布は、公知の方法に従って、繊維ウェブを作製した後、必要に応じて、熱処理に付して繊維同士を熱接着させて作製する。また、必要に応じて、繊維ウェブを繊維交絡処理に付してよい。繊維ウェブは、例えば、繊維長が10mm以上80mm以下の範囲内にある分割型複合繊維を用いてカード法またはエアレイ法等の乾式法により、または繊維長が2mm以上20mm以下の範囲内にある分割型複合繊維を用いて湿式抄紙法により作製する。対人・対物ワイパーやフィルターなどの分野に用いる場合、カード法またはエアレイ法等の乾式法により製造された不織布であることが好ましい。乾式法により製造された不織布は、風合いが柔らかであり、適度な密度を有しているからである。また、電池セパレータなどの分野に用いる場合、湿式抄紙ウェブから製造された不織布であることが好ましい。湿式抄紙ウェブを使用して作製する不織布は、一般的に緻密であって、良好な地合いを有するからである。さらに、湿式抄紙法によれば、抄紙の際の解離処理の条件を調節することによって、解離処理のみで分割型複合繊維を所望の分割率で分割することが可能である。 A method for manufacturing a fiber structure will be described taking a nonwoven fabric as an example. The non-woven fabric is produced by producing a fiber web according to a known method and then subjecting the fibers to heat treatment by heat treatment as necessary. Moreover, you may attach | subject a fiber web to a fiber entanglement process as needed. For example, the fiber web is divided by a dry method such as a card method or an air array method using a split type composite fiber having a fiber length in a range of 10 mm to 80 mm, or a fiber length in a range of 2 mm to 20 mm. It is produced by wet papermaking using a mold composite fiber. When used in fields such as interpersonal / objective wipers and filters, nonwoven fabrics produced by dry methods such as the card method or air array method are preferred. This is because the nonwoven fabric produced by the dry method has a soft texture and an appropriate density. Moreover, when using in field | areas, such as a battery separator, it is preferable that it is the nonwoven fabric manufactured from the wet papermaking web. This is because a nonwoven fabric produced using a wet papermaking web is generally dense and has a good texture. Furthermore, according to the wet papermaking method, by adjusting the conditions of the dissociation process during papermaking, it is possible to divide the split-type composite fiber at a desired splitting rate only by the dissociation process.
 次いで、繊維ウェブを熱接着処理に付してよい。例えば、分割型複合繊維の他に芯鞘型複合繊維を加えて、芯鞘型複合繊維の鞘成分により繊維同士を接着してよい。或いは、極細繊維2を含み、極細繊維2は芯鞘型極細複合繊維であるから、芯鞘型極細複合繊維の鞘成分により繊維同士を接着してよい。熱接着処理の条件は、繊維ウェブの目付、芯鞘型極細複合繊維の断面形態、および不織布に含まれる繊維を構成する樹脂の種類等に応じて適宜選択される。例えば、熱処理機としては、シリンダードライヤー( ヤンキードライヤー)、熱風吹き付け加工機、熱ロール加工機、または熱エンボス加工機等を用いることができる。特にシリンダードライヤー(ヤンキードライヤー)は、不織布の厚みを調整しながら、繊維同士を熱接着させることができる点で好ましい。シリンダードライヤーの熱処理温度は、例えば、エチレンビニルアルコール共重合体が鞘成分である場合、80~160℃であることが好ましく、ポリエチレンが鞘成分である場合、100~160℃であることが好ましい。 Next, the fiber web may be subjected to a thermal bonding treatment. For example, a core-sheath type composite fiber may be added in addition to the split type composite fiber, and the fibers may be bonded together by the sheath component of the core-sheath type composite fiber. Alternatively, since the ultrafine fibers 2 are included and the ultrafine fibers 2 are core-sheath type ultrafine composite fibers, the fibers may be bonded to each other by the sheath component of the core-sheath type ultrafine composite fibers. The conditions for the thermal bonding treatment are appropriately selected according to the basis weight of the fiber web, the cross-sectional shape of the core-sheath ultrafine composite fiber, the type of resin constituting the fiber contained in the nonwoven fabric, and the like. For example, as the heat treatment machine, a cylinder dryer (a yankee dryer), a hot air spraying machine, a hot roll processing machine, a hot embossing machine, or the like can be used. In particular, a cylinder dryer (Yankee dryer) is preferable in that the fibers can be thermally bonded while adjusting the thickness of the nonwoven fabric. The heat treatment temperature of the cylinder dryer is, for example, preferably 80 to 160 ° C. when the ethylene vinyl alcohol copolymer is a sheath component, and preferably 100 to 160 ° C. when polyethylene is the sheath component.
 熱接着処理は、後述のように、繊維ウェブを水流交絡処理に付す場合、水流交絡処理の前に実施することが好ましい。繊維ウェブの繊維同士を予め接合してから水流交絡処理を実施すると、繊維に高圧水流があたるときに繊維の「逃げ」が生じにくくなり、繊維同士を緊密に交絡させることができ、分割型複合繊維の分割がより促進される。尤も、熱接着処理は、繊維同士を交絡させた後に実施してもよい。即ち、熱接着処理と水流交絡処理の順序は、所望の不織布が得られる限りにおいて特に限定されない。 As will be described later, the thermal bonding treatment is preferably performed before the hydroentanglement treatment when the fiber web is subjected to the hydroentanglement treatment. When the hydroentanglement treatment is carried out after the fibers of the fiber web have been joined in advance, the fiber “escape” is less likely to occur when the fibers are subjected to a high-pressure water stream, and the fibers can be closely entangled, and the split composite Fiber splitting is further promoted. However, the thermal bonding treatment may be performed after the fibers are entangled. That is, the order of the thermal bonding treatment and the hydroentanglement treatment is not particularly limited as long as a desired nonwoven fabric is obtained.
 本発明の繊維構造物において、繊維同士を交絡させてよい。繊維同士を交絡させる処理として、高圧水流の作用により繊維同士を交絡させる水流交絡処理が好ましく用いられる。水流交絡処理によれば、不織布全体の緻密さを損なうことなく、繊維同士を強固に交絡させることができる。また、水流交絡処理によって、繊維同士の交絡と同時に当該分割型複合繊維の分割および分割により生じた極細繊維同士の交絡も進行させることができる。 In the fiber structure of the present invention, the fibers may be entangled. As a process for entanglement of fibers, a water entanglement process for entanglement of fibers by the action of a high-pressure water flow is preferably used. According to the hydroentanglement process, the fibers can be strongly entangled without impairing the density of the entire nonwoven fabric. Moreover, the entanglement between the ultrafine fibers generated by the splitting and splitting of the split-type composite fibers can be advanced simultaneously with the entanglement of the fibers by the hydroentanglement process.
 水流交絡処理の条件は、使用する繊維ウェブの種類および目付、ならびに繊維ウェブに含まれる繊維の種類および割合等に応じて、適宜選択される。例えば、目付10~100g/m2の湿式抄紙ウェブを水流交絡処理に付す場合、繊維ウェブを70~100メッシュ程度の平織り構造等の支持体に載置して、孔径0.05~0.3mmのオリフィスが0.5~1.5mmの間隔で設けられたノズルから、水圧1~15MPa、より好ましくは2~10MPaの柱状水流を繊維ウェブの片面または両面にそれぞれ1~10回ずつ噴射するとよい。水流交絡処理後の繊維ウェブは、必要に応じて乾燥処理に付される。 The conditions for the hydroentanglement treatment are appropriately selected according to the type and basis weight of the fiber web to be used and the type and ratio of the fibers contained in the fiber web. For example, when a wet papermaking web having a basis weight of 10 to 100 g / m 2 is subjected to hydroentanglement treatment, the fiber web is placed on a support having a plain weave structure of about 70 to 100 mesh and a pore diameter of 0.05 to 0.3 mm. A columnar water flow having a water pressure of 1 to 15 MPa, more preferably 2 to 10 MPa, may be sprayed 1 to 10 times each on one or both sides of the fiber web from a nozzle provided with an orifice of 0.5 to 1.5 mm. . The fiber web after the hydroentanglement treatment is subjected to a drying treatment as necessary.
 繊維構造物は、必要に応じて親水化処理に付してよい。親水化処理は、フッ素ガス処理、ビニルモノマーのグラフト重合処理、スルホン化処理、放電処理、界面活性剤処理または親水性樹脂付与処理等の任意の方法を用いて実施してよい。 The fiber structure may be subjected to a hydrophilization treatment as necessary. The hydrophilization treatment may be performed using any method such as a fluorine gas treatment, a vinyl monomer graft polymerization treatment, a sulfonation treatment, a discharge treatment, a surfactant treatment, or a hydrophilic resin application treatment.
 繊維構造物は、好ましくは2g/m2以上100g/m2以下の目付を有し、より好ましくは10g/m2以上100g/m2以下の目付を有し、さらに好ましくは20g/m2以上80g/m2以下の目付を有し、特に好ましくは30g/m2以上60g/m2以下の目付を有する。繊維ウェブの目付が2g/m2以上であると、得られる繊維ウェブ及び繊維構造物の地合が良好になり、繊維構造物の強力や突刺強度が高いものとなりやすい。繊維ウェブの目付が100g/m2以下であると、繊維構造物の通気性は低下せず、また、繊維ウェブに含まれる本発明の分割型複合繊維を後述する水流交絡処理により各成分に分割させる際、高圧水流が繊維ウェブ全体に均一に作用しやすくなり、上記分割型複合繊維を充分に分割させることが容易になる。 Fiber structure preferably has a 2 g / m 2 or more 100 g / m 2 or less of the mass per unit area, more preferably has a 10 g / m 2 or more 100 g / m 2 or less of the mass per unit area, more preferably 20 g / m 2 or more It has a basis weight of 80 g / m 2 or less, and particularly preferably has a basis weight of 30 g / m 2 or more and 60 g / m 2 or less. When the basis weight of the fiber web is 2 g / m 2 or more, the resulting fiber web and the fiber structure are well formed, and the fiber structure tends to have high strength and high puncture strength. When the basis weight of the fiber web is 100 g / m 2 or less, the air permeability of the fiber structure is not lowered, and the split type composite fiber of the present invention contained in the fiber web is divided into each component by hydroentanglement treatment described later. When this is done, the high-pressure water stream tends to act uniformly on the entire fiber web, and it becomes easy to sufficiently divide the split composite fibers.
 また、本発明は、第2セグメントから形成される芯鞘型極細複合繊維の鞘成分により極細繊維同士を接着することができるため、極細繊維のみで繊維間を接着した繊維構造物を形成することができる。このような繊維構造物は、例えば、不織布の形態が好ましく、電池セパレータ、各種ろ過材、各種膜支持体として用いることができる。このような場合、繊維構造物の目付は、好ましくは5g/m2以上80g/m2以下の目付を有し、より好ましくは5g/m2以上60g/m2以下の目付を有し、特に好ましくは5g/m2以上50g/m2以下の目付を有し、最も好ましくは10g/m2以上30g/m2以下の目付を有する。 Moreover, since the present invention can bond ultrafine fibers to each other by the sheath component of the core-sheath type ultrafine composite fiber formed from the second segment, it forms a fiber structure in which the fibers are bonded only by the ultrafine fibers. Can do. Such a fiber structure is preferably in the form of a non-woven fabric, for example, and can be used as a battery separator, various filter media, and various membrane supports. In such a case, the basis weight of the fiber structure preferably has a basis weight of 5 g / m 2 to 80 g / m 2 , more preferably 5 g / m 2 to 60 g / m 2 , Preferably, it has a basis weight of 5 g / m 2 or more and 50 g / m 2 or less, and most preferably has a basis weight of 10 g / m 2 or more and 30 g / m 2 or less.
 本発明の形態の繊維構造物は、分割型複合繊維の分割率が、90%以上であることが好ましく、92%以上であることがより好ましく、95%以上であることが更により好ましく、97%以上であることが特に好ましい。 In the fiber structure in the form of the present invention, the splitting ratio of the split-type composite fiber is preferably 90% or more, more preferably 92% or more, still more preferably 95% or more, 97 % Or more is particularly preferable.
 本発明の形態の繊維構造物は、通気度が、5~24cm3/cm2・秒であることが好ましく、8~22cm3/cm2・秒であることがより好ましく、10~20cm3/cm2・秒であることが更により好ましく、12~18cm3/cm2・秒であることが特に好ましい。
 通気度は、実施例で記載の方法で測定する。
The fiber structure in the form of the present invention preferably has an air permeability of 5 to 24 cm 3 / cm 2 · second, more preferably 8 to 22 cm 3 / cm 2 · second, and 10 to 20 cm 3 / second. preferably more than that cm is 2 · sec, particularly preferably 12 ~ 18cm 3 / cm 2 · sec.
The air permeability is measured by the method described in the examples.
 本発明の形態の繊維構造物は、平均孔径が1~16μmであることが好ましく、2~15μmであることがより好ましく、3~12μmであることが特に好ましく、5~10μmであることが最も好ましい。繊維構造物の平均孔径が1~16μmであると、繊維構造物に存在する細孔が十分に小さく、繊維構造物全体が緻密な構造になっていると考えられ、各種蓄電デバイスに使用するセパレータ用の繊維構造物;各種フィルターを構成するろ過層用の繊維構造物;各種ろ過膜の支持体として使用される、各種膜支持体用の繊維構造物に特に適した繊維構造物となる。また、本発明の形態の繊維構造物は、最大孔径が5~30μmであることが好ましく、8~24μmであることがより好ましく、10~20μmであることが特に好ましく、12~18μmであることが最も好ましい。繊維構造物の最大孔径が5~30μmであると、繊維構造物に存在する細孔の中で、最も大きな細孔の径が十分に小さくなっているといえ、異物の通過や不純物の通過を阻止することが求められるセパレータ用繊維構造物、ろ過層用繊維構造物、膜支持体用繊維構造物に特に適した繊維構造物となる。 The fiber structure in the form of the present invention preferably has an average pore size of 1 to 16 μm, more preferably 2 to 15 μm, particularly preferably 3 to 12 μm, most preferably 5 to 10 μm. preferable. When the average pore size of the fiber structure is 1 to 16 μm, it is considered that the pores present in the fiber structure are sufficiently small and the entire fiber structure has a dense structure. The fiber structure for the filter layer which comprises various filters; It becomes a fiber structure especially suitable for the fiber structure for various membrane supports used as a support body of various filter membranes. The fiber structure of the present invention preferably has a maximum pore size of 5 to 30 μm, more preferably 8 to 24 μm, particularly preferably 10 to 20 μm, and 12 to 18 μm. Is most preferred. If the maximum pore size of the fiber structure is 5 to 30 μm, it can be said that the diameter of the largest pore among the pores existing in the fiber structure is sufficiently small. The fiber structure is particularly suitable for a separator fiber structure, a filtration layer fiber structure, and a membrane support fiber structure that are required to be blocked.
 本発明の形態の繊維構造物は、最小孔径が1~10μmであることが好ましく、2~8μmであることがより好ましく、2.5~6μmであることが特に好ましく、3~5μmであることが最も好ましい。また、本発明の形態の繊維構造物は、最多孔径が1~15μmであることが好ましく、2~12μmであることがより好ましく、2.5~10μmであることが特に好ましく、3~8μmであることが最も好ましい。繊維構造物の最小孔径が1~10μmであったり、繊維構造物の最多孔径が1~15μmであると、繊維構造物に存在する細孔が十分に小さく、緻密な構造になっているだけでなく、繊維構造物が水や気体といった異物以外の物質を透過させたり、保持したりすることができるため、セパレータ用繊維構造物、ろ過層用繊維構造物、膜支持体用繊維構造物に特に適した繊維構造物となる。平均孔径、最大孔径、最小孔径、及び最多孔径といった細孔分布は、実施例で記載の方法で測定する。 The fiber structure in the form of the present invention preferably has a minimum pore size of 1 to 10 μm, more preferably 2 to 8 μm, particularly preferably 2.5 to 6 μm, and 3 to 5 μm. Is most preferred. The fiber structure of the present invention preferably has a most porous diameter of 1 to 15 μm, more preferably 2 to 12 μm, particularly preferably 2.5 to 10 μm, and 3 to 8 μm. Most preferably it is. If the minimum pore size of the fiber structure is 1 to 10 μm or the maximum pore diameter of the fiber structure is 1 to 15 μm, the pores existing in the fiber structure are sufficiently small and the structure is dense. In particular, since the fiber structure can permeate or hold substances other than foreign matters such as water and gas, it is particularly suitable for a separator fiber structure, a filter layer fiber structure, and a membrane support fiber structure. It becomes a suitable fiber structure. The pore distribution such as the average pore size, the maximum pore size, the minimum pore size, and the maximum pore size is measured by the method described in Examples.
 本発明の形態の繊維構造物は、突刺強度が6N以上であると好ましく、8N以上であるとより好ましく、10N以上であると特に好ましく、12N以上であると最も好ましい。繊維構造物の突刺強度が大きいと異物との接触による破損や破れ、異物の貫通が発生しにくくなる。突刺強度の大きい繊維構造物をセパレータ材料として使用すると、金属のバリを始めとする混入した異物や、二次電池を繰り返し使用した際に発生する針状の結晶(デンドライト)に起因する短絡(ショート)が発生しにくくなり好ましい。また、突刺強度の大きい繊維構造物を、液体や気体をろ過する各種ろ過材やRO膜やNF膜といった各種ろ過膜の支持体として使用すると、使用中に異物によって破損したり、ろ過時の圧力によってろ過材やろ過膜が破損したりすることが抑えられ好ましい。本発明の形態の繊維構造物は、突刺強度の上限は特に限定されないが、繊維構造物の生産性、取り扱い性を考慮すると30N以下であることが好ましく、27N以下であることがより好ましく、25N以下であることが特に好ましい。
 突刺強度は、実施例で記載の方法で測定する。
The fiber structure in the form of the present invention preferably has a puncture strength of 6N or more, more preferably 8N or more, particularly preferably 10N or more, and most preferably 12N or more. When the puncture strength of the fiber structure is large, breakage or tear due to contact with the foreign matter and penetration of the foreign matter are difficult to occur. When a fiber structure with high piercing strength is used as a separator material, a short circuit (short) caused by foreign matter, such as metal burrs, or needle-like crystals (dendrites) that occur when secondary batteries are used repeatedly ) Is less likely to occur. In addition, if a fiber structure with high puncture strength is used as a support for various filtration media for filtering liquids and gases, and various filtration membranes such as RO membranes and NF membranes, it may be damaged by foreign substances during use, or the pressure during filtration It is preferable that the filter medium and the filter membrane are prevented from being damaged. The upper limit of the puncture strength of the fiber structure in the form of the present invention is not particularly limited, but is preferably 30 N or less, more preferably 27 N or less, considering the productivity and handleability of the fiber structure, 25 N It is particularly preferred that
The puncture strength is measured by the method described in the examples.
 本発明の形態の繊維構造物において、その突刺強度は繊維構造物の目付によって左右される。すなわち目付の大きい繊維構造物ほど突刺強度が大きくなる傾向がある。本発明の形態の繊維構造物は、容易に分割する分割型複合繊維を含み、好ましくは芯鞘型の断面構造を有する極細繊維を含んでいるため、得られる繊維構造物の目付が小さくても突刺強度が大きい物が得られやすい。本発明の形態の繊維構造物は、単位目付(g/m)あたりの突刺強度(N)が0.15N以上であると好ましく、0.2N以上であるとより好ましく、0.25N以上であると特に好ましく、0.3N以上であると最も好ましい。単位目付あたりの突刺強度が大きくなることで、低目付の繊維構造物であっても使用中の破損や破れの発生しにくい繊維構造物となり好ましい。本発明の形態の繊維構造物は、単位目付(g/m)あたりの突刺強度(N)の上限は特に限定されないが、繊維構造物の生産性、取り扱い性を考慮すると0.8N以下であることが好ましく、0.7N以下であることがより好ましく、0.65N以下であることが特に好ましい。
 単位目付(g/m)あたりの突刺強度(N)は、実施例で記載の方法で測定した突刺強度(N)を、測定に用いた試料の目付(g/m)で除すことで求められる。
In the fiber structure in the form of the present invention, the puncture strength depends on the basis weight of the fiber structure. That is, the fiber structure having a larger basis weight tends to have higher puncture strength. The fiber structure in the form of the present invention includes split-type composite fibers that can be easily divided, and preferably includes ultrafine fibers having a core-sheath cross-sectional structure, so that the resulting fiber structure has a small basis weight. Products with high puncture strength are easily obtained. The fiber structure in the form of the present invention preferably has a puncture strength (N) per unit basis weight (g / m 2 ) of 0.15 N or more, more preferably 0.2 N or more, and 0.25 N or more. It is particularly preferable if it is, and it is most preferable if it is 0.3 N or more. By increasing the puncture strength per unit basis weight, even a low-weight fiber structure is preferable because it is less likely to be broken or torn during use. The upper limit of the puncture strength (N) per unit basis weight (g / m 2 ) of the fiber structure in the form of the present invention is not particularly limited, but is 0.8 N or less in consideration of the productivity and handleability of the fiber structure. Preferably, it is 0.7N or less, more preferably 0.65N or less.
Unit basis weight (g / m 2) per puncture strength (N) is dividing the puncture strength was measured by the method described in Example (N), in basis weight of the sample used for the measurement (g / m 2) Is required.
 本発明の分割型複合繊維は、上記のように優れた分割性を有し、緻密で地合いのよい不織布などの繊維構造物を作製できる。本発明の分割型複合繊維を含む繊維構造物は、例えば、リチウムイオン電池及びニッケル水素電池等の各種二次電池、各種コンデンサー及び各種キャパシタ等の各種蓄電デバイスに使用するセパレータ、液体及び気体等の流体から異物を捕捉及び/又は除去するカートリッジフィルター及び積層フィルター等の各種フィルターを構成するろ過材料、逆浸透膜(RO膜)やナノろ過膜(NF膜)、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)といった各種ろ過膜の支持体として使用される、各種膜支持体用の繊維構造物、対人及び/又は対物ワイパー等の各種ワイピングシート、フェイスマスク等の化粧料含浸皮膚被覆シート、乳幼児用紙おむつ、介護用紙おむつ、生理用ナプキン等の吸収性物品を構成する表面シート、セカンドシート及びバックシート等の吸収性物品用シート等として有用である。 The split type composite fiber of the present invention has excellent splitting properties as described above, and can produce a fiber structure such as a dense and well-woven nonwoven fabric. The fiber structure containing the split composite fiber of the present invention includes, for example, various secondary batteries such as lithium ion batteries and nickel metal hydride batteries, separators used for various power storage devices such as various capacitors and various capacitors, liquids and gases, etc. Filtration materials, reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), ultrafiltration membranes (UF membranes), which constitute various filters such as cartridge filters and laminated filters that capture and / or remove foreign substances from fluids, Used as a support for various filtration membranes such as microfiltration membranes (MF membranes), fiber structures for various membrane supports, various wiping sheets such as interpersonal and / or objective wipers, and cosmetic-impregnated skin coatings such as face masks Sheet, infant paper diaper, nursing paper diaper, surface sheet constituting a absorbent article such as sanitary napkin, second sheet, and the like It is useful as an absorbent article sheet such as Kkushito.
 以下に本発明を実施例及び、比較例を用いて説明するが、これらの例は本発明を説明するためのものであり、本発明を何ら限定するものではない。 Hereinafter, the present invention will be described using examples and comparative examples, but these examples are for explaining the present invention and do not limit the present invention in any way.
 実施例及び、比較例の不織布を製造するために使用した成分を以下に示す。
 <第1成分:ポリプロピレン(PP)>
 PP1:紡糸後Mn=9.6×10、紡糸後Mw=2.5×105、紡糸後Mz=5.3×105、紡糸後Q値=2.63、MFR (g/10分)=30の日本ポリプロ株式会社 製のSA03(商品名)
 PP2:紡糸後Mn=5.3×10、紡糸後Mw=2.8×105、紡糸後Mz=8.3×105、紡糸後Q値=5.21、MFR (g/10分)=30のプライムポリマー株式会社 製のS105HG(商品名)
 PP3:紡糸後Mn=9.5×10、紡糸後Mw=3.1×105、紡糸後Mz=7.8×105、紡糸後Q値=3.28、MFR (g/10分)=9の日本ポリプロ株式会社 製のSA01A(商品名)
 PP4:紡糸後Mn=4.3×10、紡糸後Mw=2.9×105、紡糸後Mz=10.6×105、紡糸後Q値=6.68、MFR (g/10分)=10のプライムポリマー株式会社 製のCJ700(商品名)
The component used in order to manufacture the nonwoven fabric of an Example and a comparative example is shown below.
<First component: Polypropylene (PP)>
PP1: Mn = 9.6 × 10 4 after spinning, Mw = 2.5 × 10 5 after spinning, Mz = 5.3 × 10 5 after spinning, Q value after spinning = 2.63, MFR (g / 10 min) = 30 SA03 (product name)
PP2: After spinning, Mn = 5.3 × 10 4 , After spinning Mw = 2.8 × 10 5 , After spinning Mz = 8.3 × 10 5 , After spinning Q value = 5.21, MFR (g / 10 min) = 30 Made by S105HG (trade name)
PP3: Mn = 9.5 × 10 4 after spinning, Mw = 3.1 × 10 5 after spinning, Mz = 7.8 × 10 5 after spinning, Q value after spinning = 3.28, MFR (g / 10 min) = 9 SA01A (product name)
PP4: After spinning Mn = 4.3 × 10 4 , after spinning Mw = 2.9 × 10 5 , after spinning Mz = 10.6 × 10 5 , after spinning Q-value = 6.68, MFR (g / 10 min) = 10 Prime Polymer Co., Ltd. CJ700 (product name)
 <第2成分:ポリエチレン(PE)>
 PE1:MFR (g/10分)=20の日本ポリエチレン株式会社 製のHE490(商品名)
 PE2:MFR (g/10分)=10の日本ポリエチレン株式会社 製のHE481(商品名)
<Second component: Polyethylene (PE)>
PE1: MFR (g / 10min) = 20 HE490 (trade name) manufactured by Nippon Polyethylene Corporation
PE2: MFR (g / 10 min) = 10 HE481 (trade name) manufactured by Japan Polyethylene Corporation
 <数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、Q値の測定>
  ポリプロピレン樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、及びMwとMnの比であるQ値(Mw/Mn)ゲル浸透クロマトグラフ分析(GPC)により測定した。測定には、検出器として示差屈折率検出器RIを備えるゲル浸透クロマトグラフ装置(高温GPC装置 Polymer Laboratories 製 PL-220)を使用した。
<Measurement of number average molecular weight (Mn), weight average molecular weight (Mw), z average molecular weight (Mz), Q value>
The number average molecular weight (Mn), weight average molecular weight (Mw), z average molecular weight (Mz), and Q value (Mw / Mn) ratio of Mw and Mn of polypropylene resin were measured by gel permeation chromatographic analysis (GPC). . For the measurement, a gel permeation chromatograph apparatus (PL-220 manufactured by Polymer Laboratories, high temperature GPC apparatus) equipped with a differential refractive index detector RI as a detector was used.
 ポリプロピレン樹脂を含む試料を5mg秤量し、この試料に対し、安定剤及び酸化防止剤としてブチルヒドロキシトルエン(BHT)を0.1%含む1,2,4-トリクロロベンゼン(TCB)を5mL秤量して加え、160℃から170℃に加熱しながら30分間攪拌してポリプロピレン樹脂を溶媒に溶解させた。次に、試料を溶解させた溶液から未溶解の試料といった異物を除去するため、この溶液を金属フィルターでろ過して測定用試料溶液を得た。得られた測定用試料溶液を、前記ゲル浸透クロマトグラフ装置に対し、流速を1.0mL/分、注入量0.2mL(200μL)の条件で注入して数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)を測定した。測定する際、測定溶媒としてBHTを0.1%含むTCBを用い、カラムとしてShodex製 HT-Gを1本、昭和電工株式会社製 HT-806Mを2本使用し、カラム恒温槽の温度を145℃として測定した。 Weigh 5 mg of a sample containing polypropylene resin, and weigh 5 mL of 1,2,4-trichlorobenzene (TCB) containing 0.1% of butylhydroxytoluene (BHT) as a stabilizer and antioxidant. In addition, the polypropylene resin was dissolved in the solvent by stirring for 30 minutes while heating from 160 ° C to 170 ° C. Next, in order to remove foreign matters such as an undissolved sample from the solution in which the sample was dissolved, this solution was filtered with a metal filter to obtain a measurement sample solution. The obtained sample solution for measurement was injected into the gel permeation chromatograph apparatus under the conditions of a flow rate of 1.0 mL / min and an injection amount of 0.2 mL (200 μL), and a number average molecular weight (Mn) and a weight average molecular weight. (Mw), z average molecular weight (Mz) was measured. In the measurement, TCB containing 0.1% BHT was used as a measurement solvent, one Shodex HT-G and two Showa Denko HT-806M were used as columns, and the temperature of the column thermostat was 145. Measured as ° C.
 <メルトフローレート(MFR)の測定>
 ポリプロピレン樹脂のメルトフローレートは、JIS K 7210に準じ、230℃、荷加重21.18Nでメルトフローレートを測定した。ポリエチレン樹脂のメルトフローレートは、JIS K 7210に準じ、190℃、荷加重21.18Nでメルトフローレートを測定した。
<Measurement of melt flow rate (MFR)>
The melt flow rate of the polypropylene resin was measured at 230 ° C. and a load load of 21.18 N according to JIS K 7210. The melt flow rate of the polyethylene resin was measured according to JIS K 7210 at 190 ° C. and a load load of 21.18 N.
 <実施例1の分割型複合繊維の製造>
 図1に示す繊維断面形状を有し、第1セグメントおよび芯鞘型第2セグメントの芯成分として、ホモポリプロピレン樹脂のPP1を用い、芯鞘型第2セグメントの鞘成分として、高密度ポリエチレンのPE1を用いて、分割数が16である、実施例1の分割型複合繊維を製造した。
<Manufacture of split type composite fiber of Example 1>
The cross-sectional shape of the fiber shown in FIG. 1, PP1 of homopolypropylene resin is used as the core component of the first segment and the core-sheath type second segment, and PE1 of high-density polyethylene is used as the sheath component of the core-sheath type second segment. Was used to produce the split type conjugate fiber of Example 1 having a split number of 16.
 実施例1の分割型複合繊維の製造は、下記の紡糸条件及び延伸条件で行った。ノズル孔が205個設けられ、押し出された溶融樹脂断面構造が図1の断面となる分割型複合ノズルを用い、ホモポリプロピレン樹脂(PP1)、高密度ポリエチレン(PE1)を別々の押出機に投入し、十分に溶融させた。溶融させた前記ホモポリプロピレン樹脂と高密度ポリエチレン樹脂を吐出量が、PP1/PE1の容積比=5/5(第1セグメント/第2セグメントの容積比 =2.5/7.5)の割合になるようにそれぞれの押出機より押し出し、紡糸温度290℃、一つのノズル孔あたりの吐出量を0.51g/分とし、引取速度840m/分の条件で溶融樹脂を引き取り、冷却することで、繊度6.0dtexの紡糸フィラメントを得た。次に、紡糸フィラメントを105℃で4.2倍の延伸倍率で乾式延伸し、繊度1.60dtexの延伸フィラメントを得た。 The production of the split type composite fiber of Example 1 was performed under the following spinning conditions and stretching conditions. Using a split type composite nozzle that has 205 nozzle holes and the cross-sectional structure of the extruded molten resin is the cross section shown in FIG. 1, homopolypropylene resin (PP1) and high-density polyethylene (PE1) are put into separate extruders. Fully melted. The discharge rate of the melted homopolypropylene resin and high-density polyethylene resin is such that the volume ratio of PP1 / PE1 = 5/5 (volume ratio of the first segment / second segment = 2.5 / 7.5) By extruding from each extruder so that the spinning temperature is 290 ° C., the discharge amount per nozzle hole is 0.51 g / min, and the molten resin is drawn under the conditions of a take-up speed of 840 m / min and cooled, the fineness A 6.0 dtex spun filament was obtained. Next, the spinning filament was dry-drawn at a draw ratio of 4.2 times at 105 ° C. to obtain a drawn filament having a fineness of 1.60 dtex.
 紡糸フィラメントの延伸性を評価するため、下記の方法で最大延伸倍率(Vmax)を測定した。まず、得られた紡糸フィラメントを、所定の延伸温度に合わせた延伸装置にセットする。この際、前記紡糸フィラメントを送り出すロールの送り出し速度(V)を5m/秒とし、巻き取る側の金属ロールの巻き取り速度(V)を5m/秒より徐々に増加させる。そして、紡糸フィラメントが破断したときの巻き取る側の金属ロールの巻き取り速度を最大延伸速度とし、上記最大延伸速度と未延伸繊維束を送り出すロールの送り出し速度との比(V/V)を求め、得られた速度比を最大延伸倍率(Vmax)とする。最大延伸倍率が3以上であると、高い延伸倍率で延伸処理が行えるため、繊度の小さい分割型複合繊維が容易に得られるため、好ましい。最大延伸倍率が3未満であっても延伸処理には影響を与えないが、最大延伸倍率が低いため、所望の繊度の分割型複合繊維が得にくい恐れがある。 In order to evaluate the drawability of the spinning filament, the maximum draw ratio (Vmax) was measured by the following method. First, the obtained spinning filament is set in a stretching apparatus that matches a predetermined stretching temperature. At this time, the feeding speed (V 1 ) of the roll for feeding the spinning filament is set to 5 m / second, and the winding speed (V 2 ) of the metal roll on the winding side is gradually increased from 5 m / second. The winding speed of the metal roll on the winding side when the spinning filament breaks is the maximum drawing speed, and the ratio between the maximum drawing speed and the feed speed of the roll that feeds the unstretched fiber bundle (V 2 / V 1 ). And the obtained speed ratio is taken as the maximum draw ratio (Vmax). A maximum draw ratio of 3 or more is preferable because a stretchable treatment can be performed at a high draw ratio, and a split-type composite fiber having a small fineness can be easily obtained. Even if the maximum draw ratio is less than 3, it does not affect the drawing treatment, but since the maximum draw ratio is low, there is a possibility that it is difficult to obtain a split type composite fiber having a desired fineness.
 実施例1の紡糸フィラメントについて上記の方法で最大延伸倍率を測定したところ、最大延伸倍率は(Vmax)は、4.4倍であった。従って、延伸倍率は、最大延伸倍率の0.95倍(延伸倍率/Vmax=0.95)であった。延伸フィラメントに繊維処理剤を付与した後、3mmの繊維長に切断して、実施例1の分割型複合繊維を、短繊維の形態で得た。
 実施例1の分割型複合繊維の製造、構成及び繊度等を、表1に示す。
When the maximum draw ratio of the spun filament of Example 1 was measured by the above method, the maximum draw ratio (Vmax) was 4.4 times. Therefore, the draw ratio was 0.95 times the maximum draw ratio (draw ratio / Vmax = 0.95). After the fiber treatment agent was applied to the drawn filament, it was cut into a fiber length of 3 mm to obtain the split type composite fiber of Example 1 in the form of a short fiber.
Table 1 shows the production, configuration, fineness, and the like of the split-type composite fiber of Example 1.
 <実施例2~8及び比較例1~4の分割型複合繊維の製造> 
 表1~3に記載した成分、紡糸条件及び延伸条件を用いた以外は、実施例1の分割型複合繊維の製造方法と同様の方法に従って、実施例2~8及び比較例1~4の分割型複合繊維を、繊維長3mmの短繊維の形態で得た。
 実施例2~8及び比較例1~4の分割型複合繊維の製造、構成及び繊度等を、表1~3に示す。
<Manufacture of split type composite fibers of Examples 2 to 8 and Comparative Examples 1 to 4>
The division of Examples 2 to 8 and Comparative Examples 1 to 4 was carried out in the same manner as the production method of the split type composite fiber of Example 1, except that the components, spinning conditions and drawing conditions described in Tables 1 to 3 were used. Mold composite fibers were obtained in the form of short fibers with a fiber length of 3 mm.
Tables 1 to 3 show the production, configuration, fineness, and the like of the split type composite fibers of Examples 2 to 8 and Comparative Examples 1 to 4.
 <比較例5の分割型複合繊維の製造>
 比較例5の分割型複合繊維の製造は、下記の紡糸条件及び延伸条件で行った。ノズル孔が300個設けられた、繊維断面が図3に示す中空16分割型(第1セグメントと第2セグメントの両方共単一型である)となる分割型複合ノズルを用い、ホモポリプロピレン樹脂(PP2)、高密度ポリエチレン(PE1)を別々の押出機に投入し、十分に溶融させた。溶融させた前記ホモポリプロピレン樹脂と高密度ポリエチレン樹脂を、吐出量が、PP2/PE1の容積比=5/5(第1セグメント/第2セグメントの容積比=5/5)の割合になるようにそれぞれの押出機より押し出し、紡糸温度(紡糸ヘッドの温度)290℃、一つのノズル孔あたりの吐出量を0.51g/分とし、引取速度840m/分 の条件で溶融樹脂を引き取り、冷却することで、PP2及びPE1を溶融押出し、繊度7.1dtexの紡糸フィラメントを得た。次に、紡糸フィラメントを90℃の温水で満たした温水槽を使用し、90℃にて5.0倍の延伸倍率で湿式延伸した後、90℃の温水槽にて延伸倍率1.0倍にて熱セットを行い、繊度1.70dtexの延伸フィラメントを得た。延伸したフィラメントに実施例1の分割型複合繊維と同じ繊維処理剤を付与した後、3mmの繊維長に切断して、比較例5の分割型複合繊維を、短繊維の形態で得た。なお、比較例5の紡糸フィラメントは、最大延伸倍率が5.9倍である。
<Manufacture of split type composite fiber of Comparative Example 5>
The split composite fiber of Comparative Example 5 was produced under the following spinning conditions and stretching conditions. Using a split type composite nozzle having 300 nozzle holes and having a fiber cross section shown in FIG. 3 that is a hollow 16 split type (both the first segment and the second segment are a single type), a homopolypropylene resin ( PP2) and high-density polyethylene (PE1) were put into separate extruders and sufficiently melted. The melted homopolypropylene resin and high-density polyethylene resin have a discharge rate of PP2 / PE1 volume ratio = 5/5 (first segment / second segment volume ratio = 5/5). Extruding from each extruder, spinning temperature (spinning head temperature) 290 ° C, discharge rate per nozzle hole 0.51g / min, taking molten resin under conditions of take-up speed 840m / min and cooling Then, PP2 and PE1 were melt-extruded to obtain a spun filament having a fineness of 7.1 dtex. Next, after using a hot water tank filled with 90 ° C. hot water and spinning the filament at 90 ° C. at a draw ratio of 5.0 times, the draw ratio is 1.0 times in a 90 ° C. hot water tank. Then, heat setting was performed to obtain a drawn filament having a fineness of 1.70 dtex. After applying the same fiber treating agent as that of the split type composite fiber of Example 1 to the drawn filament, it was cut into a fiber length of 3 mm to obtain the split type composite fiber of Comparative Example 5 in the form of short fibers. In addition, the spinning filament of Comparative Example 5 has a maximum draw ratio of 5.9 times.
 <比較例6の分割型複合繊維の製造>
 比較例5と同じ方法で得られた紡糸フィラメントに対し、加熱した金属ロールを用いた乾式延伸処理を行い、分割型複合繊維を製造した。すなわち、比較例5と同じ方法で紡糸フィラメントを製造し、得られた紡糸フィラメントを105℃に加熱した金属ロール間で、延伸倍率が4.95倍になるように乾式延伸処理を行い、繊度1.51dtexの延伸フィラメントを得た。延伸したフィラメントに実施例1の分割型複合繊維と同じ繊維処理剤を付与した後、3mmの繊維長に切断して、比較例6の分割型複合繊維を、短繊維の形態で得た。なお、比較例6の紡糸フィラメントは、最大延伸倍率が5.2倍である。
<Manufacture of split type composite fiber of Comparative Example 6>
The spinning filament obtained by the same method as in Comparative Example 5 was subjected to a dry stretching process using a heated metal roll to produce a split composite fiber. That is, a spun filament was produced by the same method as in Comparative Example 5, and the obtained spun filament was dry-stretched between metal rolls heated to 105 ° C. so that the stretch ratio was 4.95 times. A 51 dtex drawn filament was obtained. After applying the same fiber treating agent as the split type composite fiber of Example 1 to the drawn filament, it was cut into a fiber length of 3 mm to obtain the split type composite fiber of Comparative Example 6 in the form of a short fiber. The spun filament of Comparative Example 6 has a maximum draw ratio of 5.2 times.
 <短繊維強度及び伸度の測定>
 JIS L 1015(2010年)に準じ、引張試験機を用いて、試料のつかみ間隔を20mmとし、繊維が切断したときの荷重値を単繊維強度とし、切断したときの伸びを伸度とした。
<Measurement of short fiber strength and elongation>
In accordance with JIS L 1015 (2010), using a tensile tester, the holding distance of the sample was 20 mm, the load value when the fiber was cut was the single fiber strength, and the elongation when cut was the elongation.
 <DSCによるポリプロピレン樹脂の融解ピーク形状、第2融解ピーク面積/第1融解ピーク面積、第2融解ピークの伸びの測定>
 得られた実施例、比較例の分割型複合繊維について、DSCを行い、前記の定義に従ってポリプロピレン樹脂の融解ピークの形状に関する判定、第2融解ピーク面積、第1融解ピーク面積の特定、第2融解ピークの伸びの測定を行った。第2融解ピーク面積と第1融解ピーク面積の比率は、求めるDSC曲線を紙に拡大して印刷し、ポリプロピレン樹脂の融解ピーク部分にベースラインなどの境界線を作図した後、境界線に沿って第1ピーク面積に相当する部分、第2ピーク面積に相当する部分を切り抜き、切り抜いた部分の質量を測定し、その比率を求めた。なお、分割型複合繊維の示差走査熱量測定(DSC)はJIS K 7121(1987年) プラスチックの転移温度測定方法に基づき、示差走査熱量計(セイコーインスツル株式会社 製、商品名「EXSTAR6000/DSC6200」)を用いて測定した。
<Measurement of melting peak shape of polypropylene resin by DSC, second melting peak area / first melting peak area, elongation of second melting peak>
About the obtained split type composite fibers of Examples and Comparative Examples, DSC is performed, and the determination regarding the shape of the melting peak of the polypropylene resin, the second melting peak area, the identification of the first melting peak area, and the second melting are performed according to the above definition. The peak elongation was measured. The ratio of the second melting peak area to the first melting peak area is determined by enlarging the DSC curve to be obtained on paper and printing a boundary line such as a baseline on the melting peak portion of the polypropylene resin, and then along the boundary line. A portion corresponding to the first peak area and a portion corresponding to the second peak area were cut out, the mass of the cut out portion was measured, and the ratio was determined. The differential scanning calorimetry (DSC) of the split-type composite fiber is based on JIS K 7121 (1987), a plastic transition temperature measurement method, and a differential scanning calorimeter (trade name “EXSTAR6000 / DSC6200” manufactured by Seiko Instruments Inc.). ).
 <実施例1の不織布の製造>
 実施例1の分割型複合繊維を用いて、湿式抄紙法で繊維ウェブを作製した。具体的には、繊維の濃度が0.01質量%となるようにスラリーを調製し、パルパーにて回転数2000rpmで5分間攪拌して、繊維を解離させるとともに、分割型複合繊維を割繊させて、第1セグメントの極細繊維1および第2セグメントの極細繊維2を形成させた。円網式湿式抄紙機を用いて、湿式抄紙して、目付80g/m2のウェブを得た。ウェブを、搬送用支持体で搬送し、140℃に加熱したシリンダードライヤーを用いて、45秒間、ウェブに加熱処理を施して、ウェブを乾燥させると同時に、極細繊維2の鞘成分で繊維同士を接着させて、実施例1の不織布を得た。
 実施例2~8及び比較例1~6の分割型複合繊維を用いた以外は、実施例1に記載の方法と同様の方法を用いて、実施例2~8及び比較例1~6の不織布を得た。
<Manufacture of the nonwoven fabric of Example 1>
A fiber web was produced by the wet papermaking method using the split type composite fiber of Example 1. Specifically, the slurry is prepared so that the fiber concentration becomes 0.01% by mass, and stirred with a pulper at a rotation speed of 2000 rpm for 5 minutes to dissociate the fibers and split the split-type composite fibers. Thus, the ultrafine fiber 1 of the first segment and the ultrafine fiber 2 of the second segment were formed. Wet paper making was carried out using a circular net type wet paper machine to obtain a web having a basis weight of 80 g / m 2 . Using a cylinder dryer heated to 140 ° C. by transporting the web with a support for transportation, the web is heated for 45 seconds to dry the web, and at the same time, the fibers are separated from each other by the sheath component of the ultrafine fibers 2. The nonwoven fabric of Example 1 was obtained by bonding.
The nonwoven fabrics of Examples 2 to 8 and Comparative Examples 1 to 6 were used in the same manner as described in Example 1 except that the split type composite fibers of Examples 2 to 8 and Comparative Examples 1 to 6 were used. Got.
 <分割率の測定>
 加熱処理を施す前の段階で、湿式抄紙ウェブの厚さ方向の切断面が露出するように、ウェブを、筒に、できるだけ密に詰めた。筒に詰めた不織布を、電子顕微鏡で300倍に拡大して、0.4mm×0.3mmの領域を撮影した。撮影した写真において現れている繊維断面を1つずつ確認し、極細繊維1の数、および極細繊維2の数をカウントした。また、未分割の繊維について、それぞれの第1セグメント及び第2セグメントの合計の数を測定して求め(例えば、図1~3の繊維断面を有する場合、全く分割していない繊維の第1セグメント及び第2セグメントの合計の数は16であり、半分に分割している繊維の第1セグメント及び第2セグメントの合計の数は8である)、第1セグメント及び第2セグメントの合計の数を各未分割の繊維の数としてカウントした。よって、例えば未分割の繊維が1本存在し、その第1セグメント及び第2セグメントの合計の数が16であると、その繊維は16本とカウントされる。カウント結果より、下記の式に基づいて分割率を算出した。
 分割率(%)=[極細繊維1の数+極細繊維2の数]÷[極細繊維1の数+極細繊維2の数+未分割の繊維の数の合計]×100
 分割率は、表1~3に示した。
<Measurement of split ratio>
Before the heat treatment, the web was packed into the cylinder as densely as possible so that the cut surface in the thickness direction of the wet papermaking web was exposed. The non-woven fabric packed in a cylinder was magnified 300 times with an electron microscope, and a region of 0.4 mm × 0.3 mm was photographed. The cross sections of the fibers appearing in the photograph taken were confirmed one by one, and the number of ultrafine fibers 1 and the number of ultrafine fibers 2 were counted. For undivided fibers, the total number of the first and second segments is measured (for example, the first segment of fibers that are not divided at all when having the fiber cross section shown in FIGS. 1 to 3). And the total number of the second segment is 16, the total number of the first segment and the second segment of the fiber divided in half is 8, and the total number of the first segment and the second segment is Counted as the number of each undivided fiber. Therefore, for example, when there is one undivided fiber and the total number of the first segment and the second segment is 16, the fiber is counted as 16. From the count result, the division ratio was calculated based on the following formula.
Division ratio (%) = [number of ultrafine fibers 1 + number of ultrafine fibers 2] / [number of ultrafine fibers 1 + number of ultrafine fibers 2 + total number of undivided fibers] × 100
The division ratios are shown in Tables 1 to 3.
 <通気性>
 不織布の通気性を、通気度を測定して評価した。通気度の測定はJIS L 1096(2010年)8.26A(フラジール形法)に準じて測定した。
<Breathability>
The air permeability of the nonwoven fabric was evaluated by measuring the air permeability. The air permeability was measured according to JIS L 1096 (2010) 8.26A (Fragile method).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~8の不織布は、いずれも、実施例1~8の分割型複合繊維を使用して得られ、ポリプロピレン樹脂のMw/Mnが6以下であり、DSC曲線が示すポリプロピレン樹脂の融解ピークの形状がダブルピーク形状であるので、繊維製造時の生産性及び分割性等の問題の少なくとも一つが向上する。 The nonwoven fabrics of Examples 1 to 8 are all obtained using the split-type composite fibers of Examples 1 to 8, and the Mw / Mn of the polypropylene resin is 6 or less, and the melting peak of the polypropylene resin indicated by the DSC curve Since the shape is a double peak shape, at least one of the problems such as productivity and splitability during fiber production is improved.
 実施例1~6及び8の不織布は、更に、(A)第2融解ピーク面積/第1融解ピーク面積が0.85以上3.5以下である;及び(B)第二ピークの伸びが0.6以上であるの少なくとも1つを満たすので、更に分割性及び通気性の両方に優れる。 In the nonwoven fabrics of Examples 1 to 6 and 8, the (A) second melting peak area / first melting peak area is 0.85 or more and 3.5 or less; and (B) the second peak elongation is 0. Since it satisfies at least one of 6 or more, it is further excellent in both splitting property and air permeability.
 これに対し、比較例1~4の不織布は、ポリプロピレン樹脂のMw/Mnが6以下でない、又はDSC曲線が示すポリプロピレン樹脂の融解ピークの形状がダブルピーク形状でないので、繊維製造時の生産性及び分割性等の問題のいずれも向上しない。また、比較例5、比較例6の分割型複合繊維は実施例5の分割型複合繊維と同じポリプロピレン樹脂、ポリエチレン樹脂を使用しているが、得られた分割型複合繊維の分割率は低かった。これは、繊維断面において、第2セグメントが芯鞘型断面になっていないことで溶融紡糸時の冷却過程、冷却過程で発生した熱可塑性樹脂の結晶化状態、溶融紡糸時や延伸処理時に繊維内部に発生するひずみの状態が異なることで、樹脂セグメント間が強固に膠着した、あるいは分割型複合繊維に対して力を加えたときに、その衝撃を吸収する作用が高まったため、割れにくくなったと推測される。 On the other hand, in the nonwoven fabrics of Comparative Examples 1 to 4, the Mw / Mn of the polypropylene resin is not 6 or less, or the shape of the melting peak of the polypropylene resin indicated by the DSC curve is not the double peak shape. None of the problems such as separability improve. Further, the split composite fibers of Comparative Example 5 and Comparative Example 6 use the same polypropylene resin and polyethylene resin as the split composite fiber of Example 5, but the split ratio of the obtained split composite fibers was low. . This is because, in the fiber cross section, the second segment is not a core-sheath cross section, so that the cooling process during melt spinning, the crystallization state of the thermoplastic resin generated during the cooling process, the fiber interior during melt spinning and stretching It is estimated that because the strain state generated in the resin is different, the resin segments are firmly adhered to each other, or when the force is applied to the split composite fiber, the effect of absorbing the impact is increased, so that it is difficult to break. Is done.
 <繊維構造物の評価>
 [実施例9]
 本発明の分割型複合繊維の各種繊維構造体、特に機械的強度、緻密性が要求される各種電池セパレータ用途、ろ過材、各種膜支持体(例えばRO膜支持体が挙げられる)といった液体処理材用途への適応性を調べるため、本発明の分割型複合繊維を用いた熱接着不織布を作製した。
<Evaluation of fiber structure>
[Example 9]
Various fiber structures of the split-type composite fiber of the present invention, especially liquid treatment materials such as various battery separator applications requiring mechanical strength and denseness, filter media, and various membrane supports (for example, RO membrane supports). In order to examine the adaptability to use, a heat-bonding nonwoven fabric using the split type conjugate fiber of the present invention was produced.
 実施例5の分割型複合繊維を用いて、上記の製造条件と同じスラリーの濃度、回転数にてスラリーを調製し、分割型複合繊維を割繊させて、第1セグメントの極細繊維1および第2セグメントの極細繊維2を形成させた。円網式湿式抄紙機を用いて、湿式抄紙して、目付が約40g/m2のウェブを得た。ウェブを、搬送用支持体で搬送し、140℃に加熱したシリンダードライヤーを用いて、45秒間、ウェブに加熱処理を施して、ウェブを乾燥させると同時に、極細繊維2の鞘成分で繊維同士を接着させて熱接着不織布とした。 Using the split type composite fiber of Example 5, a slurry was prepared at the same slurry concentration and rotation speed as the above production conditions, and the split type composite fiber was split to obtain the first segment of ultrafine fibers 1 and Two segments of ultrafine fibers 2 were formed. Using a circular net type wet paper machine, wet paper was made to obtain a web having a basis weight of about 40 g / m 2 . Using a cylinder dryer heated to 140 ° C. by transporting the web with a support for transportation, the web is heated for 45 seconds to dry the web, and at the same time, the fibers are separated from each other by the sheath component of the ultrafine fibers 2. It was made to adhere and it was set as the heat bonding nonwoven fabric.
 得られた熱接着不織布に、温度80℃、線圧約760N/cmの条件で熱ロールを用いた厚さ加工を行い、熱接着不織布の厚みを約120μmに厚さを調整し、実施例9の熱接着不織布を得た。 Thickness processing using a heat roll was performed on the obtained heat-bonded nonwoven fabric under conditions of a temperature of 80 ° C. and a linear pressure of about 760 N / cm, and the thickness of the heat-bonded nonwoven fabric was adjusted to about 120 μm. A heat bonded nonwoven fabric was obtained.
 得られた実施例9の熱接着不織布について以下の方法で評価を行った。 The obtained heat bonded nonwoven fabric of Example 9 was evaluated by the following method.
 [厚さ]
 得られた熱接着不織布の厚さを、マイクロメータ(株式会社 ミツトヨ 製 マイクロメータ MDC-25MJ)を用い、JIS B 7502に準じ、3枚の試料のそれぞれ異なる10箇所で、荷重が175kPaになるようにして厚さを測定し、計30箇所の平均値を求め、試料の厚さとした。
[thickness]
Using a micrometer (Micrometer MDC-25MJ manufactured by Mitutoyo Corporation), the thickness of the obtained heat-bonded nonwoven fabric is 175 kPa so that the load is 175 kPa at 10 different points of each of the three samples according to JIS B 7502. Then, the thickness was measured, and the average value of a total of 30 locations was obtained to obtain the thickness of the sample.
 [細孔分布]
 得られた実施例9の熱接着不織布の孔径分布をASTM F 316-86(バブルポイント法)に準じて測定を行い、熱接着不織布の平均孔径、最大孔径、最多孔径および最小孔径を測定した。
[Pore distribution]
The pore size distribution of the obtained heat-bonded nonwoven fabric of Example 9 was measured according to ASTM F 316-86 (bubble point method), and the average pore size, maximum pore size, maximum pore size and minimum pore size of the heat-bonded nonwoven fabric were measured.
 [引裂強さ]
 JIS L 1085 5.5.A-1法(シングルタング法)に準じ、引張試験機((株式会社 エー・アンド・ディー製、テンシロン(登録商標)UCT-1(商品名))を用いて測定した。本実施例では、試験片として、幅5cm×長さ15cmにカットした長方形片の短辺の中央に辺と直角に8cmの切れ目を入れて2枚の舌をつくったものを用い、つかみ間隔10cmとして、引張速度30cm/分で引き裂いたときの最大荷重を測定した。
[Tear strength]
JIS L 1085 5.5. According to the A-1 method (single tongue method), measurement was performed using a tensile testing machine (A & D Co., Ltd., Tensilon (registered trademark) UCT-1 (trade name)). As the test piece, a rectangular piece cut into a width of 5 cm and a length of 15 cm was cut in the center of the short side with a cut of 8 cm perpendicular to the side to create two tongues. The maximum load when tearing at / min was measured.
 [引張強さ]
 JIS L 1096 8.12.1 A法(ストリップ法)に準じて、定速緊張形引張試験機を用いて、幅5cm、長さ30cmの試料片を、つかみ間隔10cm、引張速度30±2cm/分の条件で引張試験に付し、荷重が最大となったときの荷重値を測定し、引張強度とした。引張試験は、不織布のタテ方向(機械方向)について実施した。
[Tensile strength]
In accordance with JIS L 1096 8.12.1 A method (strip method), using a constant speed tension type tensile tester, a sample piece having a width of 5 cm and a length of 30 cm is gripped at a distance of 10 cm and a tensile speed of 30 ± 2 cm / The sample was subjected to a tensile test under the condition of minutes, and the load value when the load reached the maximum was measured to obtain the tensile strength. The tensile test was implemented about the vertical direction (machine direction) of the nonwoven fabric.
 [突刺強度]
 突刺強度は、ニードル貫通力測定による貫通点での応力(最大貫通力F)をいい、下記の方法で測定した。まず、縦30mm、幅100mmの大きさに裁断した不織布を試料として準備した。この試料を、ハンディー圧縮試験機(カトーテック株式会社 製 KES-G5)の円筒状貫通孔(直径11mm)を有する支持体の上に置いた。次いで、支持体の上に配置された試料の上に、縦46mm、横86mm、厚み7mmであり、中央部に直径11mmの孔を有するアルミ板からなる押さえ板を、押さえ板の孔と支持体の円筒状貫通孔と一致するように載置した。次いで、高さ18.7mm、底面直径2.2mm、先端部形状が1mmの球形である円錐形状の針を、2mm/秒の速度で押さえ板の中央に垂直に突き刺した時の荷重と、上記円錐状の針によって試料が押され、変形した長さを測定し、測定した荷重のうち、上記円錐状の針が試料を貫通する貫通点での応力を最大貫通力F(N)すなわち突刺強度とした。突刺強度は、1枚の不織布(電池セパレータ)から4枚の試料を採取し、それぞれの試料について異なる5箇所で測定し、計20箇所で測定した値の平均値とした。また、単位目付(g/m)あたりの突刺強度(N)は、この値を試料の目付で除すことにより求めた。
[Puncture strength]
The puncture strength refers to the stress (maximum penetration force F) at the penetration point by needle penetration force measurement, and was measured by the following method. First, a nonwoven fabric cut to a size of 30 mm in length and 100 mm in width was prepared as a sample. This sample was placed on a support having a cylindrical through hole (diameter 11 mm) of a handy compression tester (KES-G5 manufactured by Kato Tech Co., Ltd.). Next, a pressing plate made of an aluminum plate having a length of 46 mm, a width of 86 mm, and a thickness of 7 mm and having a hole of 11 mm in diameter at the center is placed on the sample placed on the support. It was placed so as to coincide with the cylindrical through hole. Next, the load when a needle of a conical shape with a height of 18.7 mm, a bottom diameter of 2.2 mm, and a tip shape of 1 mm is vertically stabbed into the center of the holding plate at a speed of 2 mm / second, and the above The sample is pushed by the conical needle and the length of the deformation is measured. Of the measured load, the stress at the penetration point where the conical needle penetrates the sample is the maximum penetration force F (N), that is, the puncture strength. It was. The puncture strength was obtained by taking four samples from one non-woven fabric (battery separator), measuring each sample at five different locations, and taking the average of the values measured at a total of 20 locations. The puncture strength (N) per unit basis weight (g / m 2 ) was determined by dividing this value by the basis weight of the sample.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例9の不織布は分割型複合繊維を使用したことに加え、使用した分割型複合繊維が抄紙前のスラリーを調整する際に行った攪拌処理で十分に分割されたため、得られる不織布を構成する繊維の大半が極細繊維となり、熱接着及び厚み加工を行うことで、緻密な不織布になったと考えられる。 In addition to the use of split-type conjugate fibers, the nonwoven fabric of Example 9 constitutes the resulting non-woven fabric because the split-type conjugate fibers used were sufficiently split by the stirring treatment performed when preparing the slurry before papermaking. Most of the fibers became ultrafine fibers, and it was thought that the heat-bonding and thickness processing resulted in a dense nonwoven fabric.
 細孔分布の測定結果から、実施例9の不織布は、測定を行った平均孔径、最小孔径、最大孔径、最多孔径の全てが小さくなっている。不織布の内部に構成される空隙部分が小さくなっただけでなく、不織布にできる細孔が小さく、均一になったと考えられる。 From the measurement results of the pore distribution, the nonwoven fabric of Example 9 has all of the measured average pore diameter, minimum pore diameter, maximum pore diameter, and maximum pore diameter being small. It is considered that not only the void portion formed inside the nonwoven fabric was reduced, but also the pores formed in the nonwoven fabric were small and uniform.
 得られた不織布の機械的強度(引裂強さ、引張強さ)から、実施例9の不織布は薄いが、引裂強さ、及び引張強さが高くなっている。これは、実施例9の不織布は一方の樹脂セグメントが芯鞘型断面となっている分割型複合繊維から得られた不織布であるため、不織布を構成する繊維の半数が、適度な加熱により、繊維同士を熱接着させる極細繊維となり、得られた繊維ウェブに対し、加熱処理を行うことで極細繊維同士を強固に熱接着したためと考えられる。 From the mechanical strength (tear strength and tensile strength) of the obtained nonwoven fabric, the nonwoven fabric of Example 9 is thin, but the tear strength and tensile strength are high. This is because the nonwoven fabric of Example 9 is a nonwoven fabric obtained from a split type composite fiber in which one resin segment has a core-sheath cross section. This is thought to be because the ultrafine fibers were bonded to each other by heat, and the resulting fiber web was heat-bonded to each other by heat treatment.
 本明細書は、下記の形態を含む。
 1.
 第1セグメントと第2セグメントを含む分割型複合繊維であり、
 前記第1セグメントは、第1成分からなる樹脂セグメントであり、
 前記第2セグメントは、断面構造が前記第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントであり、
 前記第1成分は、ポリプロピレン樹脂を50質量%以上含む樹脂成分であり、
 前記第2成分は、ポリエチレン樹脂を50質量%以上含む樹脂成分であり、
 紡糸後に測定された、前記ポリプロピレン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、6以下であり、
 紡糸後に、JIS K 7121(1987年) プラスチックの転移温度測定方法に基づいて示差走査熱量測定(DSC)されたDSC曲線が示す前記ポリプロピレン樹脂の融解ピークの形状がダブルピーク形状である、分割型複合繊維。
 2.
 下記(A)及び(B)の少なくとも一方を満たす、上記1に記載の分割型複合繊維。
 (A):前記DSC曲線が示す前記ポリプロピレン樹脂のダブルピーク形状の融解ピークを、第1融解ピーク及び第2融解ピークに分け、
 それぞれの領域の面積を第1融解ピーク面積及び第2融解ピーク面積とすると、
 第2融解ピーク面積と第1融解ピーク面積の比率(第2融解ピーク面積/第1融解ピーク面積)が0.85以上3.5以下である;及び
 (B):前記示差走査熱量測定(DSC)において、前記ダブルピーク形状のポリプロピレン樹脂の融解ピークを第1融解ピーク及び第2融解ピークに分け、
 第2融解ピーク温度となったときのDSC曲線の値をW(mW)とし、
 第1融解ピークと第2融解ピークの間で、DSC曲線の一次微分の絶対値が最小になるDSC曲線の値をW(mW)として、
  第2融解ピークの伸び=(Wの絶対値)-(Wの絶対値)
で定義する第二ピークの伸びが0.6以上である。
 3.
 前記分割型複合繊維の単繊維強度が3.0cN/dtex以上8.0cN/dtex以下であり、伸度が20%以上120%以下である上記1または2に記載の分割型複合繊維。
 4.
 前記分割型複合繊維に含まれる第1成分と第2成分の比率(第1成分/第2成分)が8/2~3/7(体積比)である上記1~3のいずれか1つに記載の分割型複合繊維。
 5.
 上記1~4のいずれか1つに記載の分割型複合繊維を10質量%以上含む繊維構造物。
 6.
 フラジール型試験機を用い、JIS L 1096に準じて測定される通気度が8cm3/cm2・秒以上22cm3/cm2・秒以下である上記5に記載の繊維構造物。
 7.
 上記5または6に記載の繊維構造物を含むセパレータ材料。
 8.
 上記5または6に記載の繊維構造物を含むろ過材料。
 9.
 繊維断面において、第1セグメントと第2セグメントを含む分割型複合繊維であって、
 前記第1セグメントは、第1成分からなる樹脂セグメントであり、
 前記第2セグメントは、断面構造が前記第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントである分割型複合繊維となる分割型複合ノズルを装着した溶融紡糸機を準備すること;
 Mw/Mnが6以下のポリプロピレン樹脂を50質量%以上含む樹脂成分を第1成分とし、ポリエチレン樹脂を50質量%以上含む樹脂成分を第2成分として使用して、溶融紡糸機で溶融紡糸して、紡糸フィラメントを製造すること;
 60℃以上125℃以下の延伸温度、1.1倍以上の延伸倍率で、紡糸フィラメントを延伸して、分割型複合繊維を得ること
を含む、上記1~4のいずれか1つに記載の分割型複合繊維の製造方法。
 10.
 3倍以上8倍以下の延伸倍率で、紡糸フィラメントを延伸することを含む、上記9に記載の製造方法。
 11.
 60℃以上95℃以下の延伸温度で、紡糸フィラメントを湿式延伸することを含む、上記9又は10に記載の製造方法。
 12.
 80℃以上125℃以下の延伸温度で、紡糸フィラメントを乾式延伸することを含む、上記9又は10に記載の製造方法。
 13.
 最大延伸倍率の0.7倍以上0.98倍以下の延伸倍率で、紡糸フィラメントを延伸することを含む、上記9~12のいずれか1つに記載の製造方法。
 14.
 上記9~13のいずれか1つに記載の製造方法で製造された、分割型複合繊維。
 15.
 上記14に記載の分割型複合繊維を10質量%以上含む繊維構造物。
This specification includes the following forms.
1.
A split-type composite fiber including a first segment and a second segment;
The first segment is a resin segment composed of a first component,
The second segment is a core-sheath resin segment whose cross-sectional structure has the first component as a core component and the second component as a sheath component,
The first component is a resin component containing 50% by mass or more of polypropylene resin,
The second component is a resin component containing 50% by mass or more of a polyethylene resin,
The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polypropylene resin measured after spinning is 6 or less,
After spinning, JIS K 7121 (1987) Split type composite in which the shape of the melting peak of the polypropylene resin indicated by the DSC curve obtained by differential scanning calorimetry (DSC) based on the plastic transition temperature measurement method is a double peak shape fiber.
2.
2. The split type composite fiber according to 1 above, which satisfies at least one of the following (A) and (B).
(A): The melting peak of the double peak shape of the polypropylene resin indicated by the DSC curve is divided into a first melting peak and a second melting peak,
When the area of each region is the first melting peak area and the second melting peak area,
The ratio of the second melting peak area to the first melting peak area (second melting peak area / first melting peak area) is 0.85 or more and 3.5 or less; and (B): the differential scanning calorimetry (DSC). ), The melting peak of the double peak-shaped polypropylene resin is divided into a first melting peak and a second melting peak,
The value of the DSC curve when the second melting peak temperature is reached is W 2 (mW),
The value of the DSC curve that minimizes the absolute value of the first derivative of the DSC curve between the first melting peak and the second melting peak is W 3 (mW),
Elongation of second melting peak = (Absolute value of W 2 ) − (Absolute value of W 3 )
The elongation of the second peak defined by is 0.6 or more.
3.
3. The split type composite fiber according to 1 or 2 above, wherein the split type composite fiber has a single fiber strength of 3.0 cN / dtex or more and 8.0 cN / dtex or less and an elongation of 20% or more and 120% or less.
4).
The ratio of the first component to the second component (first component / second component) contained in the split composite fiber is any one of the above items 1 to 3, wherein the ratio is 8/2 to 3/7 (volume ratio) The split type composite fiber as described.
5).
A fiber structure containing 10% by mass or more of the split-type conjugate fiber according to any one of 1 to 4 above.
6).
6. The fiber structure according to 5 above, wherein the air permeability measured according to JIS L 1096 is 8 cm 3 / cm 2 · sec or more and 22 cm 3 / cm 2 · sec or less using a Frazier type tester.
7).
The separator material containing the fiber structure of said 5 or 6.
8).
A filtration material comprising the fiber structure according to 5 or 6 above.
9.
In a fiber cross section, a split-type conjugate fiber including a first segment and a second segment,
The first segment is a resin segment composed of a first component,
The second segment is a melt spinning machine equipped with a split type composite nozzle that is a split type composite fiber that is a core-sheath type resin segment whose cross-sectional structure is the core component of the first component and the sheath component of the second component. To prepare;
Using a resin component containing 50% by mass or more of a polypropylene resin having an Mw / Mn of 6 or less as a first component and a resin component containing 50% by mass or more of a polyethylene resin as a second component, melt spinning with a melt spinning machine Producing spinning filaments;
5. The division according to any one of 1 to 4 above, comprising drawing a spun filament at a drawing temperature of 60 ° C. to 125 ° C. and a draw ratio of 1.1 times or more to obtain a split type composite fiber A method for producing a mold composite fiber.
10.
10. The production method according to 9 above, comprising drawing the spun filament at a draw ratio of 3 to 8 times.
11.
11. The production method according to 9 or 10 above, comprising wet-drawing a spun filament at a drawing temperature of 60 ° C. or higher and 95 ° C. or lower.
12
11. The production method according to 9 or 10 above, comprising dry-drawing the spun filament at a drawing temperature of 80 ° C or higher and 125 ° C or lower.
13.
13. The production method according to any one of 9 to 12, comprising drawing the spun filament at a draw ratio of 0.7 to 0.98 times the maximum draw ratio.
14
14. A split type composite fiber produced by the production method according to any one of 9 to 13 above.
15.
15. A fiber structure containing 10% by mass or more of the split type composite fiber described in 14 above.
 <関連出願>
 本出願は、2017年3月31日に日本国で出願された出願番号2017-72525を基礎出願とするパリ条約第4条に基づく優先権を主張する。この基礎出願の内容は、参照することによって、本明細書に組み込まれる。
<Related applications>
This application claims priority based on Article 4 of the Paris Convention, which is based on application number 2017-72525 filed in Japan on March 31, 2017. The contents of this basic application are incorporated herein by reference.
 本発明の分割型複合繊維は生産性が高く、分割性に優れる。更に一方の樹脂セグメントを芯鞘型樹脂セグメントとすることで、加熱により極細繊維間を接着できる分割型複合繊維となる。本発明の分割型複合繊維は緻密な繊維構造物、構成繊維の繊維径が細い繊維構造物が求められる用途、例えば、リチウムイオン電池及びニッケル水素電池等の各種二次電池、各種コンデンサー及び各種キャパシタ等の各種蓄電デバイスに使用するセパレータ用の繊維構造物、液体及び気体等の流体から異物を捕捉及び/又は除去するカートリッジフィルター及び積層フィルター等の各種フィルターを構成するろ過層用の繊維構造物、逆浸透膜(RO膜)やナノろ過膜(NF膜)、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)といった各種ろ過膜の支持体として使用される各種膜支持体用の繊維構造物、対人及び/又は対物ワイパー等の各種ワイピングシート用の繊維構造物、フェイスマスク等の化粧料含浸皮膚被覆シート用の繊維構造物、乳幼児用紙おむつ、介護用紙おむつ、生理用ナプキン等の吸収性物品を構成する表面シート、セカンドシート及びバックシート等の吸収性物品用シートの繊維構造物、人工皮革に使用する繊維構造物に用いることができる。 The split composite fiber of the present invention has high productivity and excellent splitability. Furthermore, by setting one resin segment as a core-sheath type resin segment, it becomes a split type composite fiber that can bond ultrafine fibers by heating. The split composite fiber of the present invention is used in applications where a dense fiber structure and a fiber structure having a small fiber diameter are required, for example, various secondary batteries such as lithium ion batteries and nickel metal hydride batteries, various capacitors, and various capacitors. Fiber structures for separators used in various power storage devices such as, fiber structures for filtration layers constituting various filters such as cartridge filters and laminated filters that capture and / or remove foreign substances from fluids such as liquids and gases, Fibers for various membrane supports used as supports for various filtration membranes such as reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), ultrafiltration membranes (UF membranes), and microfiltration membranes (MF membranes) Structures, fiber structures for various wiping sheets such as interpersonal and / or objective wipers, fiber structures for cosmetic-impregnated skin-covering sheets such as face masks, To be used for absorbent fabrics such as infant paper diapers, nursing care diapers, sanitary napkins, etc. Can do.
1:第1セグメント、2:第2セグメント、4:芯成分、6:鞘成分、8:中空、
10:分割型複合繊維、14:芯成分、16:鞘成分、20:分割型複合繊維、
a:ポリプロピレン樹脂の融解ピーク、a:ポリプロピレン樹脂の第1融解ピーク
:ポリプロピレン樹脂の第2融解ピーク、a:ポリプロピレン樹脂の融解ピークにおける谷間
:ポリプロピレン樹脂の第1融解ピーク温度、T:ポリプロピレン樹脂の第2融解ピーク温度
:ポリプロピレン樹脂の第2融解ピークにおける熱流束、W:ポリプロピレン樹脂の第1融解ピークと第2融解ピークの間に存在する谷間における熱流束
:ポリプロピレン樹脂の第1吸熱ピークの面積、S:ポリプロピレン樹脂の第2吸熱ピークの面積
BLLT:DSC曲線における低温側のベースライン、BLHT:DSC曲線における高温側のベースライン、BL:DSC曲線において、低温側のベースラインを、その高温側の終端部から、高温側ベースラインの低温側終端部に向けて延長した直線
1: first segment, 2: second segment, 4: core component, 6: sheath component, 8: hollow,
10: Split type composite fiber, 14: Core component, 16: Sheath component, 20: Split type composite fiber,
a: melting peak of polypropylene resin, a 1 : first melting peak of polypropylene resin a 2 : second melting peak of polypropylene resin, a 3 : valley in melting peak of polypropylene resin T 1 : first melting peak temperature of polypropylene resin T 2 : second melting peak temperature of the polypropylene resin W 2 : heat flux at the second melting peak of the polypropylene resin, W 3 : heat flux at the valley existing between the first melting peak and the second melting peak of the polypropylene resin S 1 : Area of the first endothermic peak of the polypropylene resin, S 2 : Area of the second endothermic peak of the polypropylene resin BL LT : Base line on the low temperature side in the DSC curve, BL HT : Base line on the high temperature side in the DSC curve, BL E: in the DSC curve, the baseline on the low temperature side, the From the end portion of the hot side, and extended toward the low temperature side end portion of the high temperature side base line linear

Claims (13)

  1.  第1セグメントと第2セグメントを含む分割型複合繊維であり、
     前記第1セグメントは、第1成分からなる樹脂セグメントであり、
     前記第2セグメントは、断面構造が前記第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントであり、
     前記第1成分は、ポリプロピレン樹脂を50質量%以上含む樹脂成分であり、
     前記第2成分は、ポリエチレン樹脂を50質量%以上含む樹脂成分であり、
     紡糸後に測定された、前記ポリプロピレン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、6以下であり、
     紡糸後に、JIS K 7121(1987年) プラスチックの転移温度測定方法に基づいて示差走査熱量測定(DSC)されたDSC曲線が示す前記ポリプロピレン樹脂の融解ピークの形状がダブルピーク形状である、分割型複合繊維。
    A split-type composite fiber including a first segment and a second segment;
    The first segment is a resin segment composed of a first component,
    The second segment is a core-sheath resin segment whose cross-sectional structure has the first component as a core component and the second component as a sheath component,
    The first component is a resin component containing 50% by mass or more of polypropylene resin,
    The second component is a resin component containing 50% by mass or more of a polyethylene resin,
    The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polypropylene resin measured after spinning is 6 or less,
    After spinning, JIS K 7121 (1987) Split type composite in which the shape of the melting peak of the polypropylene resin indicated by the DSC curve obtained by differential scanning calorimetry (DSC) based on the plastic transition temperature measurement method is a double peak shape fiber.
  2.  下記(A)及び(B)の少なくとも一方を満たす、請求項1に記載の分割型複合繊維。
     (A):前記DSC曲線が示す前記ポリプロピレン樹脂のダブルピーク形状の融解ピークを、第1融解ピーク及び第2融解ピークに分け、
     それぞれの領域の面積を第1融解ピーク面積及び第2融解ピーク面積とすると、
     第2融解ピーク面積と第1融解ピーク面積の比率(第2融解ピーク面積/第1融解ピーク面積)が0.85以上3.5以下である;及び
     (B):前記示差走査熱量測定(DSC)において、前記ダブルピーク形状のポリプロピレン樹脂の融解ピークを第1融解ピーク及び第2融解ピークに分け、
     第2融解ピーク温度となったときのDSC曲線の値をW(mW)とし、
     第1融解ピークと第2融解ピークの間で、DSC曲線の一次微分の絶対値が最小になるDSC曲線の値をW(mW)として、
      第2融解ピークの伸び=(Wの絶対値)-(Wの絶対値)
    で定義する第二ピークの伸びが0.6以上である。
    The split-type conjugate fiber according to claim 1, which satisfies at least one of the following (A) and (B).
    (A): The melting peak of the double peak shape of the polypropylene resin indicated by the DSC curve is divided into a first melting peak and a second melting peak,
    When the area of each region is the first melting peak area and the second melting peak area,
    The ratio of the second melting peak area to the first melting peak area (second melting peak area / first melting peak area) is 0.85 or more and 3.5 or less; and (B): the differential scanning calorimetry (DSC). ), The melting peak of the double peak-shaped polypropylene resin is divided into a first melting peak and a second melting peak,
    The value of the DSC curve when the second melting peak temperature is reached is W 2 (mW),
    The value of the DSC curve that minimizes the absolute value of the first derivative of the DSC curve between the first melting peak and the second melting peak is W 3 (mW),
    Elongation of second melting peak = (Absolute value of W 2 ) − (Absolute value of W 3 )
    The elongation of the second peak defined by is 0.6 or more.
  3.  前記分割型複合繊維の単繊維強度が3.0cN/dtex以上8.0cN/dtex以下であり、伸度が20%以上120%以下である請求項1または2に記載の分割型複合繊維。 The split composite fiber according to claim 1 or 2, wherein the split composite fiber has a single fiber strength of 3.0 cN / dtex or more and 8.0 cN / dtex or less and an elongation of 20% or more and 120% or less.
  4.  前記分割型複合繊維に含まれる第1成分と第2成分の比率(第1成分/第2成分)が8/2~3/7(体積比)である請求項1~3のいずれか1項に記載の分割型複合繊維。 The ratio of the first component and the second component (first component / second component) contained in the split-type conjugate fiber is 8/2 to 3/7 (volume ratio). Split type composite fiber as described in 1.
  5.  請求項1~4のいずれか1項に記載の分割型複合繊維を10質量%以上含む繊維構造物。 A fiber structure comprising 10% by mass or more of the split-type conjugate fiber according to any one of claims 1 to 4.
  6.  フラジール型試験機を用い、JIS L 1096に準じて測定される通気度が8cm3/cm2・秒以上22cm3/cm2・秒以下である請求項5に記載の繊維構造物。 6. The fiber structure according to claim 5, wherein the air permeability measured in accordance with JIS L 1096 is 8 cm 3 / cm 2 · second or more and 22 cm 3 / cm 2 · second or less using a Frazier type tester.
  7.  請求項5または6に記載の繊維構造物を含むセパレータ材料。 Separator material containing the fiber structure according to claim 5 or 6.
  8.  請求項5または6に記載の繊維構造物を含むろ過材料。 A filtration material comprising the fiber structure according to claim 5 or 6.
  9.  繊維断面において、第1セグメントと第2セグメントを含む分割型複合繊維であって、
     前記第1セグメントは、第1成分からなる樹脂セグメントであり、
     前記第2セグメントは、断面構造が前記第1成分を芯成分とし、第2成分を鞘成分とする芯鞘型樹脂セグメントである分割型複合繊維となる分割型複合ノズルを装着した溶融紡糸機を準備すること;
     Mw/Mnが6以下のポリプロピレン樹脂を50質量%以上含む樹脂成分を第1成分とし、ポリエチレン樹脂を50質量%以上含む樹脂成分を第2成分として使用して、溶融紡糸機で溶融紡糸して、紡糸フィラメントを製造すること;
     60℃以上125℃以下の延伸温度、1.1倍以上の延伸倍率で、紡糸フィラメントを延伸して、分割型複合繊維を得ること
    を含む、
    請求項1に記載の分割型複合繊維の製造方法。
    In a fiber cross section, a split-type conjugate fiber including a first segment and a second segment,
    The first segment is a resin segment composed of a first component,
    The second segment is a melt spinning machine equipped with a split type composite nozzle that is a split type composite fiber that is a core-sheath type resin segment whose cross-sectional structure is the core component of the first component and the sheath component of the second component. To prepare;
    Using a resin component containing 50% by mass or more of a polypropylene resin having an Mw / Mn of 6 or less as a first component and a resin component containing 50% by mass or more of a polyethylene resin as a second component, melt spinning with a melt spinning machine Producing spinning filaments;
    Including stretching a spinning filament at a stretching temperature of 60 ° C. or more and 125 ° C. or less and a draw ratio of 1.1 or more to obtain a split-type composite fiber;
    The manufacturing method of the split type composite fiber of Claim 1.
  10.  3倍以上8倍以下の延伸倍率で、紡糸フィラメントを延伸することを含む、請求項9に記載の製造方法。 The production method according to claim 9, comprising drawing the spun filament at a draw ratio of 3 to 8 times.
  11.  60℃以上95℃以下の延伸温度で、紡糸フィラメントを湿式延伸することを含む、請求項9又は10に記載の製造方法。 The production method according to claim 9 or 10, comprising wet-stretching the spinning filament at a stretching temperature of 60 ° C or higher and 95 ° C or lower.
  12.  80℃以上125℃以下の延伸温度で、紡糸フィラメントを乾式延伸することを含む、請求項9又は10に記載の製造方法。 The production method according to claim 9 or 10, comprising dry-drawing the spun filament at a drawing temperature of from 80 ° C to 125 ° C.
  13.  最大延伸倍率の0.7倍以上0.98倍以下の延伸倍率で、紡糸フィラメントを延伸することを含む、請求項9~12のいずれか1項に記載の製造方法。 The production method according to any one of claims 9 to 12, comprising drawing the spun filament at a draw ratio of 0.7 to 0.98 times the maximum draw ratio.
PCT/JP2018/013648 2017-03-31 2018-03-30 Splittable conjugate fibers and fiber structure using same WO2018181909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019510255A JP7364829B2 (en) 2017-03-31 2018-03-30 Splitable composite fibers and fiber structures using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072525 2017-03-31
JP2017072525 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181909A1 true WO2018181909A1 (en) 2018-10-04

Family

ID=63676286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013648 WO2018181909A1 (en) 2017-03-31 2018-03-30 Splittable conjugate fibers and fiber structure using same

Country Status (3)

Country Link
JP (1) JP7364829B2 (en)
TW (1) TWI787248B (en)
WO (1) WO2018181909A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565237A (en) * 2019-09-12 2019-12-13 广东蒙泰高新纤维股份有限公司 Method for manufacturing lithium battery diaphragm by PE-PP orange-petal composite spinning superfine denier fibers
WO2020214576A1 (en) * 2019-04-16 2020-10-22 Dow Global Technologies Llc Nonwoven webs, and processes for manufacturing such
CN115315545A (en) * 2020-01-10 2022-11-08 特雷维拉股份有限公司 Biodegradable polymer fibers made from renewable raw materials
WO2023191101A1 (en) * 2022-03-31 2023-10-05 大和紡績株式会社 Core-sheath type composite fiber, method for manufacturing same, and fiber aggregate including same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921498A (en) * 2019-12-06 2021-06-08 财团法人纺织产业综合研究所 Method for making non-woven fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163315A (en) * 1990-10-22 1992-06-08 Daiwabo Create Kk Divided type conjugate fiber
JP2002220740A (en) * 2001-01-25 2002-08-09 Daiwabo Co Ltd Splittable conjugated fiber, method for producing the same and nonwoven fabric using ultrafine fiber obtained from the same
JP2002235244A (en) * 2001-02-08 2002-08-23 Chisso Corp Heat bonding conjugate fiber, nonwoven fabric using the same, and molding
WO2011122657A1 (en) * 2010-03-30 2011-10-06 ダイワボウホールディングス株式会社 Polyolefin-based split-type conjugate fibre, fibrous mass and cell separator using same, and production method for same
JP2012140734A (en) * 2011-01-05 2012-07-26 Daiwabo Holdings Co Ltd Splittable conjugate fiber and fiber aggregate using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495255B2 (en) * 2000-06-26 2002-12-17 Chisso Corporation Polyolefin splittable conjugate fiber and a fiber structure using the same
JP5168467B2 (en) * 2007-03-20 2013-03-21 Esファイバービジョンズ株式会社 Split type composite fiber containing polyacetal, and fiber molded body and product using the same
EP2435526A4 (en) * 2009-05-29 2012-10-31 Exxonmobil Chem Patents Inc Polyolefin adhesive compositions and method of making thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163315A (en) * 1990-10-22 1992-06-08 Daiwabo Create Kk Divided type conjugate fiber
JP2002220740A (en) * 2001-01-25 2002-08-09 Daiwabo Co Ltd Splittable conjugated fiber, method for producing the same and nonwoven fabric using ultrafine fiber obtained from the same
JP2002235244A (en) * 2001-02-08 2002-08-23 Chisso Corp Heat bonding conjugate fiber, nonwoven fabric using the same, and molding
WO2011122657A1 (en) * 2010-03-30 2011-10-06 ダイワボウホールディングス株式会社 Polyolefin-based split-type conjugate fibre, fibrous mass and cell separator using same, and production method for same
JP2012140734A (en) * 2011-01-05 2012-07-26 Daiwabo Holdings Co Ltd Splittable conjugate fiber and fiber aggregate using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214576A1 (en) * 2019-04-16 2020-10-22 Dow Global Technologies Llc Nonwoven webs, and processes for manufacturing such
CN113677840A (en) * 2019-04-16 2021-11-19 陶氏环球技术有限责任公司 Nonwoven web and method of making same
CN113677840B (en) * 2019-04-16 2023-09-08 陶氏环球技术有限责任公司 Nonwoven web and method of making the same
CN110565237A (en) * 2019-09-12 2019-12-13 广东蒙泰高新纤维股份有限公司 Method for manufacturing lithium battery diaphragm by PE-PP orange-petal composite spinning superfine denier fibers
CN115315545A (en) * 2020-01-10 2022-11-08 特雷维拉股份有限公司 Biodegradable polymer fibers made from renewable raw materials
WO2023191101A1 (en) * 2022-03-31 2023-10-05 大和紡績株式会社 Core-sheath type composite fiber, method for manufacturing same, and fiber aggregate including same

Also Published As

Publication number Publication date
TW201842247A (en) 2018-12-01
JPWO2018181909A1 (en) 2020-02-13
JP7364829B2 (en) 2023-10-19
TWI787248B (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2018181909A1 (en) Splittable conjugate fibers and fiber structure using same
JP5560324B2 (en) Polyolefin-based split composite fiber, fiber assembly and battery separator using the same, and method for producing the same
JP5450055B2 (en) Mixed long fiber nonwoven fabric and method for producing the same
KR20130115374A (en) Spunbonded nonwoven fabric
JP6457757B2 (en) Meltblown nonwoven
JP5337599B2 (en) Battery separator, battery and split type composite fiber
JP5181028B2 (en) Long fiber nonwoven fabric
JP5844987B2 (en) Separator material and battery using the same
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
CN111587303B (en) Spun-bonded nonwoven fabric, sanitary material, and method for producing spun-bonded nonwoven fabric
JP7156033B2 (en) CRIMPED FIBERS, SPUNBOND NONWOVENS AND METHOD OF MANUFACTURE THEREOF
JP5812607B2 (en) Split type composite fiber and fiber assembly using the same
JP5752462B2 (en) Separator material and battery using the same
KR102500062B1 (en) Spunbond nonwoven fabric, sanitary material, and method for producing spunbond nonwoven fabric
EP3722477B1 (en) Method for producing spun-bonded nonwoven fabric and spun-bonded nonwoven fabric
JP4377773B2 (en) Battery separator and battery
WO2023191101A1 (en) Core-sheath type composite fiber, method for manufacturing same, and fiber aggregate including same
JP4026280B2 (en) Polyolefin-based split composite fiber, production method thereof, and fiber molded body using the fiber
JP5647010B2 (en) Battery separator and battery using the same
JP7458228B2 (en) Polyolefin splittable conjugate fiber, method for producing the same, fiber aggregate and battery separator using the same
JP2022159169A (en) Split type composite fiber, manufacturing method thereof, and fiber assembly and separator material using the same
JP2014148774A (en) Nonwoven fabric and method for producing the same
JP2006028690A (en) Method for producing drawn and extracted fiber, drawn and extracted fiber and nonwoven fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775874

Country of ref document: EP

Kind code of ref document: A1