WO2018181811A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2018181811A1
WO2018181811A1 PCT/JP2018/013446 JP2018013446W WO2018181811A1 WO 2018181811 A1 WO2018181811 A1 WO 2018181811A1 JP 2018013446 W JP2018013446 W JP 2018013446W WO 2018181811 A1 WO2018181811 A1 WO 2018181811A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
risk
restriction
level
control device
Prior art date
Application number
PCT/JP2018/013446
Other languages
French (fr)
Japanese (ja)
Inventor
潤 野村
雪生 森
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2018181811A1 publication Critical patent/WO2018181811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/92Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • Embodiments of the present invention relate to a vehicle control device.
  • Patent Document 1 a technique for determining a risk that may occur in a vehicle during automatic driving by detecting a vehicle failure or information around the vehicle is known. Further, in Patent Document 2, when it is determined that there is a risk in the state of the driver, safety is ensured by controlling the vehicle to stop (in an emergency) regardless of the level of the risk. Patent Document 3 discloses that the vehicle is stopped and the automatic driving operation is terminated when a failure occurs.
  • the vehicle when it is determined that there is a risk due to a failure or the like, if the vehicle is uniformly stopped, the vehicle can be stopped enough to continue running, and convenience may be impaired.
  • one of the problems of the embodiment is to provide a vehicle control device capable of reducing risk while achieving both safety and convenience.
  • the vehicle control device is acquired, for example, while a vehicle is running, a failure information acquisition unit that acquires failure information related to a vehicle failure, an environment information acquisition unit that acquires environment information related to an environment outside the vehicle, and the like.
  • the risk calculation unit that calculates the risk that may occur when the vehicle continues to travel based on failure information and environmental information, and at least some of the restrictions on the functions related to vehicle driving differ depending on the level of risk.
  • a restriction processing unit implemented at a degree.
  • FIG. 1 is an exemplary block diagram illustrating a schematic configuration of a vehicle including a vehicle control device according to an embodiment.
  • FIG. 2 is an exemplary block diagram illustrating a functional configuration of the vehicle control device according to the embodiment.
  • FIG. 3 is an exemplary diagram showing an example of an exposure rate map in which the exposure rate in a situation where the preceding vehicle decelerates is classified according to the deceleration of the preceding vehicle, which can be used in the embodiment.
  • FIG. 4 is an exemplary diagram showing an example of an exposure rate map in which the exposure rate in a situation where a parallel running vehicle can be used is classified according to the relative speed of the parallel running vehicle.
  • FIG. 5 is an exemplary diagram showing an example of a severity map used in the embodiment.
  • FIG. 1 is an exemplary block diagram illustrating a schematic configuration of a vehicle including a vehicle control device according to an embodiment.
  • FIG. 2 is an exemplary block diagram illustrating a functional configuration of the vehicle control device according to the embodiment.
  • FIG. 3 is an
  • FIG. 6 is an exemplary diagram showing an example of a risk level map used in the embodiment.
  • FIG. 7 is an exemplary flowchart showing a series of processes executed by the vehicle control apparatus according to the embodiment.
  • FIG. 8 is an exemplary diagram for describing a specific example of a situation in which travel restriction that is not an emergency stop is performed in the embodiment.
  • FIG. 1 is an exemplary block diagram showing a schematic configuration of a vehicle including a vehicle control device 10 according to an embodiment.
  • the vehicle control apparatus 10 realizes automatic driving of the vehicle by comprehensively controlling mechanisms related to traveling of the vehicle such as a brake mechanism, a transmission, and a steering mechanism.
  • the vehicle control device 10 is realized as an ECU (Electronic Control Unit) including hardware similar to a normal computer such as a processor or a memory.
  • ECU Electronic Control Unit
  • the vehicle control device 10 is connected to an actuator 20, a running state sensor 51, and an external sensor 52.
  • the vehicle control apparatus 10 controls the behavior of the vehicle by controlling the actuator 20 based on the output value of the sensor group such as the traveling state sensor 51 and the external sensor 52.
  • the actuator 20 is a drive unit that drives a mechanism related to traveling of the vehicle such as the brake mechanism described above.
  • the running state sensor 51 is a sensor that detects the running state of the vehicle
  • the external sensor 52 is a sensor that detects environmental information regarding the environment outside the vehicle.
  • the traveling state detected by the traveling state sensor 51 includes the current speed and acceleration of the vehicle. That is, the traveling state sensor 51 includes a wheel speed sensor, an acceleration sensor, and the like.
  • the environmental information detected by the external sensor 52 includes surrounding conditions such as preceding vehicles, parallel vehicles, and the presence of obstacles, traffic information such as the presence or absence of traffic, weather, and the like.
  • the external sensor 52 is a sensor corresponding to so-called sensor fusion that integrally processes data obtained by a camera, millimeter wave radar, or the like, cloud, VICS (Vehicle Information and Communication System), or V2X (Vehicle to Everything). It shall include compatible communication systems.
  • the vehicle may be stopped enough to continue running, and convenience may be impaired.
  • the vehicle control device 10 is configured as follows, and at least a part of the functions related to the traveling of the vehicle is limited at different limits depending on the level of risk calculated during automatic driving. Therefore, both safety and convenience are achieved.
  • the travel restriction includes deceleration or stop by control of the brake mechanism, speed restriction by control of the transmission, retreat travel by control of the steering mechanism, and the like.
  • FIG. 2 is an exemplary block diagram illustrating a functional configuration of the vehicle control device 10 according to the embodiment.
  • the functional configuration shown in FIG. 2 is realized, for example, as a result of the processor of the vehicle control device 10 executing software (program) stored in the memory.
  • program software
  • part or all of the functional configuration illustrated in FIG. 2 may be realized by dedicated hardware (circuit).
  • the vehicle control device 10 includes, as functional configurations, a failure information acquisition unit 101, an environment information acquisition unit 102, a traveling state acquisition unit 103, a performance limit calculation unit 104, and a performance limit map. 105, an exposure rate calculation unit 106, an exposure rate map 107, a risk calculation unit 108, a severity map 109, a risk determination unit 110, a risk level map 111, and a restriction processing unit 112.
  • the failure information acquisition unit 101 acquires failure information related to vehicle failure by detecting malfunctions in transmission and reception of signals with the actuator 20.
  • the environment information acquisition unit 102 acquires environment information related to the environment outside the vehicle based on the output value of the external sensor 52. Further, the traveling state acquisition unit 103 acquires the traveling state of the vehicle based on the output value of the traveling state sensor 51.
  • the performance limit calculation unit 104 calculates a performance limit that is a limit of running performance that the vehicle can exhibit while having a failure. (Identify.
  • the performance limit map 105 is a map in which failure information and performance limits are registered in association with each other.
  • performance limits corresponding to various failure modes are calculated in advance, and the performance limit map 105 in a state in which these pieces of information are associated with each other. Are registered in advance.
  • the performance limit calculation unit 104 may be configured to calculate the performance limit corresponding to the failure information in real time without using the performance limit map 105.
  • the exposure rate calculation unit 106 Based on the environmental information acquired by the environmental information acquisition unit 102 and the exposure rate map 107, the exposure rate calculation unit 106 has a probability that a specific situation that leads to vehicle danger occurs due to the external environment ( Frequency) is calculated (specified).
  • specific situations that lead to vehicle danger include, for example, situations in which the preceding vehicle decelerates and situations in which a parallel running vehicle interrupts. The former situation leads to a danger of a collision with a preceding vehicle, and the latter situation leads to a danger of a collision with a parallel running vehicle.
  • there may be specific situations that lead to the danger of the vehicle For example, in a situation where a traffic jam is approaching, a collision with the last vehicle in the traffic jam is assumed, so this situation can also be included as a specific situation that leads to the danger of the vehicle.
  • the exposure rate map 107 is a map in which occurrence frequencies (exposure rates) of a plurality of situations in which specific situations that lead to vehicle danger are further classified according to a predetermined standard are registered.
  • the exposure rate map 107 in which the exposure rate of the situation in which the preceding vehicle decelerates is classified according to the deceleration of the preceding vehicle, and the exposure rate in the situation in which the parallel running vehicle interrupts are shown as the parallel running vehicle.
  • the exposure rate map 107b classified according to the relative speed will be described.
  • FIG. 3 is an exemplary diagram showing an example of an exposure rate map 107a that can be used in the embodiment and classifies the exposure rate in a situation where the preceding vehicle decelerates according to the deceleration of the preceding vehicle.
  • the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of less than g1 is E4
  • the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of more than g1 and less than g2 is E3
  • the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of g2 or more and less than g3 is E2
  • the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of g3 or more is E1 (provided that g1 ⁇ g2 ⁇ g3).
  • ASIL Automatic Safety Integrity Level
  • E1 is defined as “very unlikely”
  • E2 is “not likely”
  • E3 is “medium”
  • E4 is “highly likely”.
  • ASIL there is a classification of E0 corresponding to “no possibility”, but in the example of FIG. 3, illustration of E0 is omitted for simplification.
  • FIG. 4 is an exemplary diagram showing an example of an exposure rate map 107b that can be used in the embodiment and classifies the exposure rate in a situation where a parallel running vehicle is interrupted by the relative speed of the parallel running vehicle.
  • the exposure rate of the situation where the parallel running vehicle is interrupted at a relative speed of less than v1 is E4
  • the situation of the situation where the parallel running vehicle is interrupted at a relative speed of v1 or more and less than v2 is shown.
  • the exposure rate is E3
  • the exposure rate of the situation where the parallel vehicle is interrupted at a relative speed of v2 or more and less than v3 is E2
  • the exposure rate of the situation where the parallel vehicle is interrupted at a relative speed of v3 or more is E1.
  • the exposure rate calculation unit 106 refers to the exposure rate map 107b to calculate (specify) the probability that the parallel running vehicle will interrupt.
  • the technique which specifies the exposure rate of the specific situation which leads to the danger of a vehicle using the exposure rate map 107 as shown in FIG. 3 and FIG. 4 was illustrated.
  • a technique for calculating the exposure rate corresponding to the environmental information in real time without using the exposure rate map 107 may be used, or a technique for acquiring the exposure rate corresponding to the environmental information from outside by communication. May be used.
  • the risk calculation unit 108 travels based on the performance limit calculated by the performance limit calculation unit 104, the exposure rate calculated by the exposure rate calculation unit 106, and the severity map 109. Calculate the risk that may occur if you continue.
  • the severity map 109 is a map in which the severity of danger that may occur in the vehicle due to the specific situation described above is registered. Similar to the performance limit and the exposure rate described above, in the embodiment, a technique for calculating the severity in real time without using the severity map 109 may be used.
  • a severity map 109a in which the severity of a danger of collision with a preceding vehicle or a parallel running vehicle is classified by collision speed will be described.
  • FIG. 5 is an exemplary diagram showing an example of the severity map 109a used in the embodiment.
  • the severity of collision at a collision speed of less than v11 is S0
  • the severity of collision at a collision speed of v11 or more and less than v12 is S1
  • the collision speed of v12 or more and less than v13 is S3 (where v11 ⁇ v12 ⁇ v13).
  • the severity classification of S0 to S3 is in accordance with the above-mentioned ASIL standard. Severity in ASIL represents an estimate of the severity of injury experienced by a driver or other traffic participant. In ASIL, S0 is “no injury”, S1 is “minor and moderate injury”, S2 is “severe and life-threatening injury (potential for survival)”, S3 is “life-threatening injury (survival is Is not clear) ”.
  • the risk calculation unit 108 calculates the distance between the vehicle and the vehicle with a possibility of collision based on the environmental information while taking into consideration the performance limit calculated by the performance limit calculation unit 104, so that a collision actually occurs. If this happens, the expected collision speed is calculated. For example, when it is calculated that the maximum deceleration achievable as a performance limit is ga in a situation where a preceding vehicle stopped at a position ahead by the distance lb is confirmed, the risk calculating unit 108 Is calculated from the relative speed, the distance lb, and the deceleration ga. The risk calculation unit 108 calculates (identifies) the severity of the collision by referring to the severity map 109a based on the calculated collision speed, and is calculated by the calculated severity and the exposure rate calculation unit 106. The combination of the exposure rate and the exposure rate is calculated (specified) as a risk that may occur when the vehicle continues to run.
  • the risk determination unit 110 is calculated by the risk calculation unit 108 based on the risk (combination of exposure rate and severity) calculated by the risk calculation unit 108 and the risk level map 111. Calculate (specify) the level of risk.
  • the risk level map 111 is a map in which relationships between all risks that can occur when the vehicle continues to travel and the levels of all the risks are registered.
  • FIG. 6 is an exemplary diagram showing an example of the risk level map 111 used in the embodiment.
  • the classifications QM and A to C registered in each cell are classifications generally used in the above-described ASIL, and represent risk levels.
  • QM corresponds to a level that does not require any travel restrictions.
  • a to C correspond to levels at which travel restriction needs to be implemented, and the required restriction degree increases in the order of A, B, and C.
  • the classification of C1 to C3 in the uppermost row is a classification generally used in the ASIL described above, and represents an estimate of the probability that the driver can avoid danger.
  • C1 is defined as “easy to avoid”
  • C2 is defined as “normally avoidable”
  • C3 is defined as “difficult to avoid or not avoidable”.
  • the risk determination unit 110 basically specifies the risk level by referring to the information of the column corresponding to C3 in the risk level map 111 of FIG. And the risk determination part 110 determines whether the specified level is below a predetermined level.
  • the predetermined level is, for example, QM that does not require execution of travel restrictions.
  • the emergency stop of the vehicle corresponds to the travel restriction with the largest degree of restriction, and is effective when the risk level is relatively high, for example, when the risk level is C in the ASIL classification described above.
  • the risk level is relatively low, for example, if the ASIL classification is A as described above, depending on the failure situation (performance limit), even if the vehicle is not limited to the emergency stop,
  • partial travel restrictions such as speed restrictions, it is possible to sufficiently suppress risks while continuing to travel and ensuring convenience.
  • the restriction processing unit 112 performs the travel restriction with different restriction degrees according to the risk level. More specifically, the restriction processing unit 112 performs the travel restriction with a degree of restriction that is smaller as the risk level is lower, so that the risk level is equal to or lower than the predetermined level described above. At this time, the restriction processing unit 112 considers the determination result of the risk determination unit 110 and the traveling state acquired by the traveling state acquisition unit 103. In other words, the restriction processing unit 112 performs the minimum travel required to achieve both safety and convenience based on the determination result of the risk determination unit 110 and the travel state acquired by the travel state acquisition unit 103. Enforce restrictions.
  • ASIL is exemplified as an index for determining the risk level.
  • the risk level can also be determined by an index other than ASIL.
  • a standard that is looser than the ASIL QM may be used as a predetermined level that does not require the travel restriction.
  • the standard that is looser than the QM referred to here is a standard that can surely avoid the injury that the driver or other traffic persons suffer.
  • FIG. 7 is an exemplary flowchart showing a series of processes executed by the vehicle control apparatus 10 according to the embodiment.
  • the series of processing shown in FIG. 7 is repeatedly executed during automatic driving of the vehicle.
  • step S1 the failure information acquisition unit 101 acquires failure information.
  • step S ⁇ b> 2 the performance limit calculation unit 104 calculates a performance limit based on the failure information acquired in step S ⁇ b> 1 and the performance limit map 105.
  • step S3 the environment information acquisition unit 102 acquires environment information.
  • step S4 the exposure rate calculation unit 106 calculates the exposure rate based on the environmental information acquired in step S3 and the exposure rate map 107.
  • FIG. 7 shows an example in which the processes in steps S3 and S4 are executed after the processes in steps S1 and S2. However, the processes in steps S1 and S2 and the processes in steps S3 and S4 are performed simultaneously. The processes in steps S1 and S2 may be executed after the processes in steps S3 and S4.
  • step S5 the risk calculation unit 108 calculates a risk based on the performance limit calculated in S2, the exposure rate calculated in step S4, and the severity map 109.
  • step S6 the risk determination unit 110 determines the risk level based on the risk calculated in step S5 and the risk level map 111. More specifically, the risk determination unit 110 determines whether or not the risk level is equal to or lower than a predetermined level that does not require execution of travel restriction.
  • step S7 the traveling state acquisition unit 103 acquires the (current) traveling state of the vehicle.
  • FIG. 7 shows an example in which the process of step S7 is executed after the process of step S6. However, the process of step S7 may be executed concurrently with the process of step S6. It may be executed before the process of step S6.
  • step S8 the restriction processing unit 112 executes travel restriction according to the risk level based on the determination result in step S6 and the travel state acquired in step S7. For example, if the risk does not fall below the predetermined level described above unless the vehicle is stopped, the restriction processing unit 112 performs an emergency stop that is a travel restriction with the largest degree of restriction, and a partial travel restriction such as a speed restriction. If the risk falls below a predetermined level if only the above is implemented, the vehicle will continue to run automatically while implementing the partial travel restriction, and the risk will be below the predetermined level even if the travel restriction is not implemented. If so, the current automatic operation is maintained. Then, the process ends.
  • an emergency stop that is a travel restriction with the largest degree of restriction
  • a partial travel restriction such as a speed restriction
  • FIG. 8 is an exemplary diagram for explaining a specific example of a situation where a travel restriction that is not an emergency stop is performed in the embodiment.
  • FIG. 8 illustrates a situation where the vehicle X and the vehicle Y are traveling in two lanes adjacent to each other in the same direction, and the vehicle Y is positioned ahead of the vehicle X by a distance lp.
  • the vehicle X is traveling straight at a low speed by automatic driving, and when a failure occurs in the brake pressure application function of the rear wheels of the brake mechanism of the vehicle X in this situation, the vehicle control device for the vehicle X
  • a specific example of the processing executed by 10 will be described with reference to the flowchart of FIG.
  • the failure information acquisition unit 101 acquires failure information indicating that the brake pressure application function of both rear wheels has failed (step S1). Then, based on the performance limit map 105, the performance limit calculation unit 104 calculates the maximum deceleration (for example, 0.6G) that can be generated only by the front wheel brake pressure pressurization function as the performance limit (step S2). ).
  • the maximum deceleration for example, 0.6G
  • the environment information acquisition unit 102 has a vehicle Y traveling at a relative speed vp of v1 or more and less than v2 and v11 or more and less than v12 at the position of the adjacent lane ahead of the vehicle (vehicle X) by a distance lp. This is acquired as environment information (step S3).
  • the exposure rate calculation unit 106 sets the vehicle Y traveling at the relative speed vp to the travel lane of itself (vehicle X). It is calculated that the exposure rate that is the probability of interruption is E3 (step S4).
  • the risk determination unit 110 determines that the estimate of the probability that the driver of the vehicle X can avoid the danger when interrupted during the automatic driving is C3, and the exposure calculated by the estimate C3 and the above processing. Based on the rate E3, the severity S2, and the risk level map 111, the current risk level is specified as A (step S6).
  • the traveling state acquisition unit 103 acquires a traveling state as a basis for determining whether or not the vehicle (vehicle X) is in a straight traveling state where the vehicle (X) can be stably decelerated and is in a constant speed traveling state (step S1). S7).
  • the restriction processing unit 112 estimates the probability that the driver of the vehicle (vehicle X) can avoid the danger based on the traveling state acquired in the above process and the risk level map 111 as C3. Under the circumstances, in order to set the risk level A specified in the above processing to QM, it is determined that it is appropriate to reduce the relative speed with respect to the vehicle Y to v11 or less by deceleration and change the severity from S2 to S1. To do. Further, the restriction processing unit 112 is based on the distance lp with the vehicle Y, and the deceleration (for example, 0) required to make the relative speed v11 or less before the distance between the vehicle Y and itself (vehicle X) becomes zero. .2G) is calculated.
  • the deceleration 0.2G calculated here is 0.6G or less which is the performance limit calculated by the above processing. Therefore, in this case, the restriction processing unit 112 selects the travel restriction instead of the emergency stop, and executes the deceleration control that decelerates itself (the vehicle X) so that the relative speed with the vehicle Y is equal to or less than v11 (step S8). ).
  • the vehicle control apparatus 10 includes the failure information acquisition unit 101 that acquires failure information related to vehicle failure, the environment information acquisition unit 102 that acquires environment information related to the environment outside the vehicle, and the vehicle Based on the failure information and environmental information acquired during the driving of the vehicle, a risk calculation unit 108 that calculates a risk that may occur when the vehicle continues to travel, and at least some of the restrictions on the functions related to the traveling of the vehicle, And a restriction processing unit 112 that implements with a different degree of restriction depending on the risk level.
  • the failure information acquisition unit 101 that acquires failure information related to vehicle failure
  • the environment information acquisition unit 102 that acquires environment information related to the environment outside the vehicle
  • the vehicle Based on the failure information and environmental information acquired during the driving of the vehicle
  • a risk calculation unit 108 that calculates a risk that may occur when the vehicle continues to travel, and at least some of the restrictions on the functions related to the traveling of the vehicle
  • a restriction processing unit 112 that implements with a different degree of restriction depending on the risk level.
  • the restriction processing unit 12 performs the travel restriction with a smaller degree of restriction as the risk level is lower. As a result, the restriction can be executed with a minimum degree of restriction according to the level of risk.
  • the risk calculation unit 108 determines the risk based on the performance limit that is specified based on the failure information and is the limit of the running performance that can be exhibited while the vehicle has a failure. calculate. Thereby, the risk can be calculated more accurately in consideration of the performance limit.
  • the risk calculation unit 108 determines the exposure rate that is specified based on the environmental information and is a probability that a specific situation that leads to the danger of the vehicle occurs due to the external environment. Based on this, the risk is calculated. Thereby, the risk can be calculated more accurately in consideration of the exposure rate.
  • the vehicle control device 10 includes a risk level map 111 in which the relationship between all risks that may occur when the vehicle continues to travel and all the risk levels is registered, and the risk level.
  • a risk determination unit 110 that determines whether or not the risk level calculated by the risk calculation unit 108 is equal to or lower than a predetermined level using the map 111;
  • limiting process part 112 implements driving

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

A vehicle control device according to an embodiment of the present invention is provided with, for example: a failure information obtaining unit that obtains failure information related to the failure of a vehicle; an environmental information obtaining unit that obtains environmental information related to the external environment of the vehicle; a risk calculation unit that calculates, on the basis of the failure information and the environmental information obtained while the vehicle is traveling, a possible risk in the case where the vehicle continues traveling; and a restriction processing unit that implements restrictions on at least some of the functions related to the traveling of the vehicle with different degrees of restriction in accordance with the level of the risk.

Description

車両制御装置Vehicle control device
 本発明の実施形態は、車両制御装置に関する。 Embodiments of the present invention relate to a vehicle control device.
 従来、特許文献1に示されるように車両の故障や車両の周辺の情報などを検出することで、自動運転中の車両に発生しうるリスクを判定する技術が知られている。また、特許文献2には、運転者の状態にリスクがあると判定された場合、当該リスクのレベルに関わらず、車両を(緊急で)停止させるように制御することで、安全性を確保することが示されており、特許文献3には、故障発生時に車両を停止させて自動運転操行を終了することが示されている。 2. Description of the Related Art Conventionally, as shown in Patent Document 1, a technique for determining a risk that may occur in a vehicle during automatic driving by detecting a vehicle failure or information around the vehicle is known. Further, in Patent Document 2, when it is determined that there is a risk in the state of the driver, safety is ensured by controlling the vehicle to stop (in an emergency) regardless of the level of the risk. Patent Document 3 discloses that the vehicle is stopped and the automatic driving operation is terminated when a failure occurs.
特開2011-210095号公報Japanese Unexamined Patent Publication No. 2011-210095 特開2015-228090号公報Japanese Patent Laying-Open No. 2015-228090 特開2016-200986号公報Japanese Unexamined Patent Publication No. 2016-200906
 しかしながら、故障などによるリスクがあると判定された場合に一律で車両を停止させると、十分に走行を継続することが可能な車両まで停止させることになるため、利便性が損なわれることがある。 However, when it is determined that there is a risk due to a failure or the like, if the vehicle is uniformly stopped, the vehicle can be stopped enough to continue running, and convenience may be impaired.
 そこで、実施形態の課題の一つは、安全性と利便性とを両立しながらリスクを低減することが可能な車両制御装置を提供することである。 Therefore, one of the problems of the embodiment is to provide a vehicle control device capable of reducing risk while achieving both safety and convenience.
 実施形態による車両制御装置は、たとえば、車両の故障に関する故障情報を取得する故障情報取得部と、車両の外部の環境に関する環境情報を取得する環境情報取得部と、車両の走行中に取得される故障情報および環境情報に基づいて、車両が走行を継続する場合に発生しうるリスクを算出するリスク算出部と、車両の走行に関する機能の少なくとも一部の制限を、リスクのレベルに応じて異なる制限度合で実施する制限処理部と、を備える。これにより、リスクがあると判定された場合でも、一律で車両を停止させることなく、リスクのレベルに応じて車両の走行が継続されうるので、安全性と利便性とを両立しながらリスクを低減することができる。 The vehicle control device according to the embodiment is acquired, for example, while a vehicle is running, a failure information acquisition unit that acquires failure information related to a vehicle failure, an environment information acquisition unit that acquires environment information related to an environment outside the vehicle, and the like. The risk calculation unit that calculates the risk that may occur when the vehicle continues to travel based on failure information and environmental information, and at least some of the restrictions on the functions related to vehicle driving differ depending on the level of risk. A restriction processing unit implemented at a degree. As a result, even if it is determined that there is a risk, the vehicle can continue to run according to the level of the risk without stopping the vehicle uniformly, thus reducing the risk while achieving both safety and convenience can do.
図1は、実施形態による車両制御装置を含む車両の概略的構成を示した例示的なブロック図である。FIG. 1 is an exemplary block diagram illustrating a schematic configuration of a vehicle including a vehicle control device according to an embodiment. 図2は、実施形態による車両制御装置の機能的構成を示した例示的なブロック図である。FIG. 2 is an exemplary block diagram illustrating a functional configuration of the vehicle control device according to the embodiment. 図3は、実施形態において用いられうる、先行車両が減速する状況の暴露率を先行車両の減速度別に分類した暴露率マップの一例を示した例示的な図である。FIG. 3 is an exemplary diagram showing an example of an exposure rate map in which the exposure rate in a situation where the preceding vehicle decelerates is classified according to the deceleration of the preceding vehicle, which can be used in the embodiment. 図4は、実施形態において用いられうる、並走車両が割り込んでくる状況の暴露率を並走車両の相対速度別に分類した暴露率マップの一例を示した例示的な図である。FIG. 4 is an exemplary diagram showing an example of an exposure rate map in which the exposure rate in a situation where a parallel running vehicle can be used is classified according to the relative speed of the parallel running vehicle. 図5は、実施形態において用いられる重大度マップの一例を示した例示的な図である。FIG. 5 is an exemplary diagram showing an example of a severity map used in the embodiment. 図6は、実施形態において用いられるリスクレベルマップの一例を示した例示的な図である。FIG. 6 is an exemplary diagram showing an example of a risk level map used in the embodiment. 図7は、実施形態による車両制御装置が実行する一連の処理を示した例示的なフローチャートである。FIG. 7 is an exemplary flowchart showing a series of processes executed by the vehicle control apparatus according to the embodiment. 図8は、実施形態において緊急停止ではない走行制限が実施される状況の具体例を説明するための例示的な図である。FIG. 8 is an exemplary diagram for describing a specific example of a situation in which travel restriction that is not an emergency stop is performed in the embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。以下に記載する実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、あくまで一例であって、以下の記載内容に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The configuration of the embodiment described below, and the operation and result (effect) brought about by the configuration are merely examples, and are not limited to the following description.
 まず、実施形態の構成について説明する。 First, the configuration of the embodiment will be described.
 図1は、実施形態による車両制御装置10を含む車両の概略的構成を示した例示的なブロック図である。実施形態による車両制御装置10は、ブレーキ機構やトランスミッション、ステアリング機構などといった、車両の走行に関する機構を統括的に制御することで、車両の自動運転を実現する。車両制御装置10は、たとえば、プロセッサやメモリなどといった通常のコンピュータと同様のハードウェアを備えたECU(Electronic Control Unit)として実現される。 FIG. 1 is an exemplary block diagram showing a schematic configuration of a vehicle including a vehicle control device 10 according to an embodiment. The vehicle control apparatus 10 according to the embodiment realizes automatic driving of the vehicle by comprehensively controlling mechanisms related to traveling of the vehicle such as a brake mechanism, a transmission, and a steering mechanism. The vehicle control device 10 is realized as an ECU (Electronic Control Unit) including hardware similar to a normal computer such as a processor or a memory.
 図1に示されるように、車両制御装置10は、アクチュエータ20と、走行状態センサ51と、外部センサ52と、に接続されている。これにより、車両制御装置10は、走行状態センサ51や外部センサ52などといったセンサ群の出力値に基づいてアクチュエータ20を制御することで、車両の挙動を制御する。アクチュエータ20は、上述したブレーキ機構などといった車両の走行に関する機構を駆動する駆動部である。また、走行状態センサ51は、車両の走行状態を検出するセンサであり、外部センサ52は、車両の外部の環境に関する環境情報を検出するセンサである。 As shown in FIG. 1, the vehicle control device 10 is connected to an actuator 20, a running state sensor 51, and an external sensor 52. Thereby, the vehicle control apparatus 10 controls the behavior of the vehicle by controlling the actuator 20 based on the output value of the sensor group such as the traveling state sensor 51 and the external sensor 52. The actuator 20 is a drive unit that drives a mechanism related to traveling of the vehicle such as the brake mechanism described above. The running state sensor 51 is a sensor that detects the running state of the vehicle, and the external sensor 52 is a sensor that detects environmental information regarding the environment outside the vehicle.
 なお、以下では、走行状態センサ51が検出する走行状態には、車両の現在の速度や加速度などが含まれるものとする。つまり、走行状態センサ51は、車輪速センサや加速度センサなどを含むものとする。また、外部センサ52が検出する環境情報には、先行車両や並走車両、障害物の有無などといった周囲の状況や、渋滞の有無などの交通情報、天候などが含まれるものとする。つまり、外部センサ52は、カメラやミリ波レーダなどで得たデータを統合的に処理するいわゆるセンサフュージョンに対応したセンサや、クラウドやVICS(Vehicle Information and Communication System)、V2X(Vehicle to Everything)に対応した通信システムなどを含むものとする。 In the following, it is assumed that the traveling state detected by the traveling state sensor 51 includes the current speed and acceleration of the vehicle. That is, the traveling state sensor 51 includes a wheel speed sensor, an acceleration sensor, and the like. The environmental information detected by the external sensor 52 includes surrounding conditions such as preceding vehicles, parallel vehicles, and the presence of obstacles, traffic information such as the presence or absence of traffic, weather, and the like. In other words, the external sensor 52 is a sensor corresponding to so-called sensor fusion that integrally processes data obtained by a camera, millimeter wave radar, or the like, cloud, VICS (Vehicle Information and Communication System), or V2X (Vehicle to Everything). It shall include compatible communication systems.
 ところで、従来、車両の故障や車両の周辺の情報などを検出することで、自動運転中の車両に発生しうるリスクを判定する技術が知られている。このような従来の技術では、リスクがあると判定された場合、当該リスクのレベルに関わらず、車両を(緊急で)停止させるように制御することで、安全性を確保することが一般的であった。 By the way, conventionally, there is known a technique for determining a risk that may occur in a vehicle during automatic driving by detecting a vehicle failure or information around the vehicle. In such conventional technology, when it is determined that there is a risk, it is common to ensure safety by controlling the vehicle to stop (emergency) regardless of the level of the risk. there were.
 しかしながら、リスクがあると判定された場合に一律で車両を停止させると、十分に走行を継続することが可能な車両まで停止させることになるため、利便性が損なわれることがある。 However, if the vehicle is uniformly stopped when it is determined that there is a risk, the vehicle may be stopped enough to continue running, and convenience may be impaired.
 そこで、実施形態は、車両制御装置10を以下のように構成し、車両の走行に関する機能の少なくとも一部の制限を、自動運転中に算出されるリスクのレベルに応じて異なる制限度合で実施することで、安全性と利便性とを両立する。以下では、車両の走行に関する機能の少なくとも一部の制限を、走行制限という表現を用いて記載する。走行制限には、ブレーキ機構の制御による減速または停止や、トランスミッションの制御による速度制限、ステアリング機構の制御による退避走行などが含まれる。 Therefore, in the embodiment, the vehicle control device 10 is configured as follows, and at least a part of the functions related to the traveling of the vehicle is limited at different limits depending on the level of risk calculated during automatic driving. Therefore, both safety and convenience are achieved. In the following, at least a part of restrictions on functions related to vehicle travel will be described using the expression travel restriction. The travel restriction includes deceleration or stop by control of the brake mechanism, speed restriction by control of the transmission, retreat travel by control of the steering mechanism, and the like.
 図2は、実施形態による車両制御装置10の機能的構成を示した例示的なブロック図である。図2に示される機能的構成は、たとえば、車両制御装置10のプロセッサがメモリに格納されたソフトウェア(プログラム)を実行した結果として実現される。なお、実施形態では、図2に示される機能的構成の一部または全部が専用のハードウェア(回路)によって実現されてもよい。 FIG. 2 is an exemplary block diagram illustrating a functional configuration of the vehicle control device 10 according to the embodiment. The functional configuration shown in FIG. 2 is realized, for example, as a result of the processor of the vehicle control device 10 executing software (program) stored in the memory. In the embodiment, part or all of the functional configuration illustrated in FIG. 2 may be realized by dedicated hardware (circuit).
 図2に示されるように、車両制御装置10は、機能的構成として、故障情報取得部101と、環境情報取得部102と、走行状態取得部103と、性能限界算出部104と、性能限界マップ105と、暴露率算出部106と、暴露率マップ107と、リスク算出部108と、重大度マップ109と、リスク判定部110と、リスクレベルマップ111と、制限処理部112と、を備える。 As shown in FIG. 2, the vehicle control device 10 includes, as functional configurations, a failure information acquisition unit 101, an environment information acquisition unit 102, a traveling state acquisition unit 103, a performance limit calculation unit 104, and a performance limit map. 105, an exposure rate calculation unit 106, an exposure rate map 107, a risk calculation unit 108, a severity map 109, a risk determination unit 110, a risk level map 111, and a restriction processing unit 112.
 故障情報取得部101は、アクチュエータ20との間の信号の送受信の不調などを検出することで、車両の故障に関する故障情報を取得する。また、環境情報取得部102は、外部センサ52の出力値に基づいて、車両の外部の環境に関する環境情報を取得する。また、走行状態取得部103は、走行状態センサ51の出力値に基づいて、車両の走行状態を取得する。 The failure information acquisition unit 101 acquires failure information related to vehicle failure by detecting malfunctions in transmission and reception of signals with the actuator 20. The environment information acquisition unit 102 acquires environment information related to the environment outside the vehicle based on the output value of the external sensor 52. Further, the traveling state acquisition unit 103 acquires the traveling state of the vehicle based on the output value of the traveling state sensor 51.
 性能限界算出部104は、故障情報取得部101により取得される故障情報と、性能限界マップ105と、に基づいて、車両が故障を抱えたままで発揮可能な走行性能の限界である性能限界を算出(特定)する。性能限界マップ105は、故障情報と、性能限界と、が対応付けて登録されたマップである。一般に、車両の故障の態様(部位、種類)は多岐にわたるため、実施形態では、様々な故障の態様に対応した性能限界が予め算出され、それらの情報が対応付けられた状態で性能限界マップ105に予め登録されているものとする。なお、実施形態では、性能限界算出部104が、性能限界マップ105を使用することなく、故障情報に対応した性能限界をリアルタイムで算出するように構成されていてもよい。 Based on the failure information acquired by the failure information acquisition unit 101 and the performance limit map 105, the performance limit calculation unit 104 calculates a performance limit that is a limit of running performance that the vehicle can exhibit while having a failure. (Identify. The performance limit map 105 is a map in which failure information and performance limits are registered in association with each other. In general, since vehicle failure modes (parts and types) are diverse, in the embodiment, performance limits corresponding to various failure modes are calculated in advance, and the performance limit map 105 in a state in which these pieces of information are associated with each other. Are registered in advance. In the embodiment, the performance limit calculation unit 104 may be configured to calculate the performance limit corresponding to the failure information in real time without using the performance limit map 105.
 暴露率算出部106は、環境情報取得部102により取得される環境情報と、暴露率マップ107と、に基づいて、車両の危険につながる特定の状況が外部の環境に起因して発生する確率(頻度)である暴露率を算出(特定)する。車両の危険につながる特定の状況の例としては、たとえば、先行車両が減速する状況と、並走車両が割り込んでくる状況と、が挙げられる。前者の状況は、先行車両との衝突という危険につながり、後者の状況は、並走車両との衝突という危険につながる。なお、ここで例示した2種類の状況以外にも、車両の危険につながる特定の状況が存在しうることは、言うまでもない。たとえば、渋滞に接近しようとしている状況では、その渋滞の最後尾の車両との衝突が想定されるので、この状況も、車両の危険につながる特定の状況として含まれうる。 Based on the environmental information acquired by the environmental information acquisition unit 102 and the exposure rate map 107, the exposure rate calculation unit 106 has a probability that a specific situation that leads to vehicle danger occurs due to the external environment ( Frequency) is calculated (specified). Examples of specific situations that lead to vehicle danger include, for example, situations in which the preceding vehicle decelerates and situations in which a parallel running vehicle interrupts. The former situation leads to a danger of a collision with a preceding vehicle, and the latter situation leads to a danger of a collision with a parallel running vehicle. In addition to the two types of situations exemplified here, it goes without saying that there may be specific situations that lead to the danger of the vehicle. For example, in a situation where a traffic jam is approaching, a collision with the last vehicle in the traffic jam is assumed, so this situation can also be included as a specific situation that leads to the danger of the vehicle.
 暴露率マップ107は、車両の危険につながる特定の状況を所定の基準でさらに細かく分類した複数の状況の発生頻度(暴露率)が登録されたマップである。以下では、暴露率マップ107の例として、先行車両が減速する状況の暴露率を先行車両の減速度別に分類した暴露率マップ107aと、並走車両が割り込んでくる状況の暴露率を並走車両の相対速度別に分類した暴露率マップ107bと、について説明する。なお、前述の通り、車両の危険につながる特定の状況は、ここで例示した2種類の状況以外にも様々に存在しうるので、以下で説明する暴露率マップ107aおよび107b以外にも暴露率マップ107が存在しうることは、言うまでもない。 The exposure rate map 107 is a map in which occurrence frequencies (exposure rates) of a plurality of situations in which specific situations that lead to vehicle danger are further classified according to a predetermined standard are registered. Below, as an example of the exposure rate map 107, the exposure rate map 107a in which the exposure rate of the situation in which the preceding vehicle decelerates is classified according to the deceleration of the preceding vehicle, and the exposure rate in the situation in which the parallel running vehicle interrupts are shown as the parallel running vehicle. The exposure rate map 107b classified according to the relative speed will be described. Note that, as described above, there are various specific situations that lead to the danger of the vehicle in addition to the two types of situations exemplified here, so that the exposure rate maps 107a and 107b described below are also used. It goes without saying that 107 can exist.
 図3は、実施形態において用いられうる、先行車両が減速する状況の暴露率を先行車両の減速度別に分類した暴露率マップ107aの一例を示した例示的な図である。図3に示される暴露率マップ107aには、先行車両がg1未満の減速度で減速する状況の暴露率がE4、先行車両がg1以上g2未満の減速度で減速する状況の暴露率がE3、先行車両がg2以上g3未満の減速度で減速する状況の暴露率がE2、先行車両がg3以上の減速度で減速する状況の暴露率がE1であることが登録されている(ただし、g1<g2<g3とする)。暴露率算出部106は、環境情報に基づいて先行車両が存在すると判定した場合、暴露率マップ107aを参照することで、先行車両が減速する確率を算出(特定)する。 FIG. 3 is an exemplary diagram showing an example of an exposure rate map 107a that can be used in the embodiment and classifies the exposure rate in a situation where the preceding vehicle decelerates according to the deceleration of the preceding vehicle. In the exposure rate map 107a shown in FIG. 3, the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of less than g1 is E4, and the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of more than g1 and less than g2 is E3, It is registered that the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of g2 or more and less than g3 is E2, and the exposure rate of the situation where the preceding vehicle decelerates at a deceleration of g3 or more is E1 (provided that g1 < g2 <g3). When it is determined that there is a preceding vehicle based on the environmental information, the exposure rate calculation unit 106 calculates (specifies) the probability that the preceding vehicle decelerates by referring to the exposure rate map 107a.
 なお、上述したE1~E4という暴露率の分類は、自動車用の機能安全規格ISO26262で定義されているASIL(Automotive Safety Integrity Level)という指標に沿ったものである。ASILでは、E1は「可能性が非常に低い」、E2は「可能性が低い」、E3は「可能性が中程度」、E4は「可能性が高い」として定義されている。なお、ASILでは、「可能性なし」に対応したE0という分類も存在するが、図3の例では、簡単化のため、E0に関する図示が省略されている。 The above-described exposure rate classifications E1 to E4 are in accordance with an index called ASIL (Automatic Safety Integrity Level) defined in the functional safety standard ISO26262 for automobiles. In ASIL, E1 is defined as “very unlikely”, E2 is “not likely”, E3 is “medium”, and E4 is “highly likely”. In ASIL, there is a classification of E0 corresponding to “no possibility”, but in the example of FIG. 3, illustration of E0 is omitted for simplification.
 また、図4は、実施形態において用いられうる、並走車両が割り込んでくる状況の暴露率を並走車両の相対速度別に分類した暴露率マップ107bの一例を示した例示的な図である。図4に示される暴露率マップ107bには、並走車両がv1未満の相対速度で割りこんでくる状況の暴露率がE4、並走車両がv1以上v2未満の相対速度で割り込んでくる状況の暴露率がE3、並走車両がv2以上v3未満の相対速度で割り込んでくる状況の暴露率がE2、並走車両がv3以上の相対速度で割り込んでくる状況の暴露率がE1であることが登録されている(ただし、v1<v2<v3とする)。暴露率算出部106は、環境情報に基づいて並走車両が存在すると判定した場合、暴露率マップ107bを参照することで、並走車両が割り込んでくる確率を算出(特定)する。 FIG. 4 is an exemplary diagram showing an example of an exposure rate map 107b that can be used in the embodiment and classifies the exposure rate in a situation where a parallel running vehicle is interrupted by the relative speed of the parallel running vehicle. In the exposure rate map 107b shown in FIG. 4, the exposure rate of the situation where the parallel running vehicle is interrupted at a relative speed of less than v1 is E4, and the situation of the situation where the parallel running vehicle is interrupted at a relative speed of v1 or more and less than v2 is shown. The exposure rate is E3, the exposure rate of the situation where the parallel vehicle is interrupted at a relative speed of v2 or more and less than v3 is E2, and the exposure rate of the situation where the parallel vehicle is interrupted at a relative speed of v3 or more is E1. Registered (where v1 <v2 <v3). When it is determined that there is a parallel running vehicle based on the environmental information, the exposure rate calculation unit 106 refers to the exposure rate map 107b to calculate (specify) the probability that the parallel running vehicle will interrupt.
 なお、上記では、図3および図4に示されるような暴露率マップ107を用いて、車両の危険につながる特定の状況の暴露率を特定する技術を例示した。しかしながら、実施形態では、暴露率マップ107を用いることなく、環境情報に対応した暴露率をリアルタイムで算出する技術が用いられてよいし、環境情報に対応した暴露率を通信によって外部から取得する技術が用いられてもよい。 In addition, in the above, the technique which specifies the exposure rate of the specific situation which leads to the danger of a vehicle using the exposure rate map 107 as shown in FIG. 3 and FIG. 4 was illustrated. However, in the embodiment, a technique for calculating the exposure rate corresponding to the environmental information in real time without using the exposure rate map 107 may be used, or a technique for acquiring the exposure rate corresponding to the environmental information from outside by communication. May be used.
 図2に戻り、リスク算出部108は、性能限界算出部104により算出された性能限界と、暴露率算出部106により算出された暴露率と、重大度マップ109と、に基づいて、車両が走行を継続する場合に発生しうるリスクを算出する。重大度マップ109とは、上述した特定の状況に起因して車両に発生しうる危険の重大度が登録されたマップである。なお、上述した性能限界および暴露率と同様、実施形態では、重大度マップ109を用いることなく、重大度をリアルタイムで算出する技術が用いられてもよい。以下、重大度マップ109の例として、先行車両または並走車両との衝突という危険の重大度を衝突速度別に分類した重大度マップ109aについて説明する。 Returning to FIG. 2, the risk calculation unit 108 travels based on the performance limit calculated by the performance limit calculation unit 104, the exposure rate calculated by the exposure rate calculation unit 106, and the severity map 109. Calculate the risk that may occur if you continue. The severity map 109 is a map in which the severity of danger that may occur in the vehicle due to the specific situation described above is registered. Similar to the performance limit and the exposure rate described above, in the embodiment, a technique for calculating the severity in real time without using the severity map 109 may be used. Hereinafter, as an example of the severity map 109, a severity map 109a in which the severity of a danger of collision with a preceding vehicle or a parallel running vehicle is classified by collision speed will be described.
 図5は、実施形態において用いられる重大度マップ109aの一例を示した例示的な図である。図5に示される重大度マップ109aには、v11未満の衝突速度での衝突の重大度がS0、v11以上v12未満の衝突速度での衝突の重大度がS1、v12以上v13未満の衝突速度での衝突の重大度がS2、v13以上の衝突速度での衝突の重大度がS3であることが登録されている(ただし、v11<v12<v13とする)。なお、S0~S3という重大度の分類は、上述したASILの基準に沿ったものである。ASILにおける重大度は、ドライバまたは他の交通関係者が受ける傷害の重さの見積もりを表している。ASILでは、S0は「傷害なし」、S1は「軽度および中程度の傷害」、S2は「重度および生命を脅かす傷害(生存の可能性がある)」、S3は「生命を脅かす傷害(生存がはっきりしない)」として定義されている。 FIG. 5 is an exemplary diagram showing an example of the severity map 109a used in the embodiment. In the severity map 109a shown in FIG. 5, the severity of collision at a collision speed of less than v11 is S0, the severity of collision at a collision speed of v11 or more and less than v12 is S1, the collision speed of v12 or more and less than v13. It is registered that the severity of collision at the collision speed of S2 and v13 or higher is S3 (where v11 <v12 <v13). The severity classification of S0 to S3 is in accordance with the above-mentioned ASIL standard. Severity in ASIL represents an estimate of the severity of injury experienced by a driver or other traffic participant. In ASIL, S0 is “no injury”, S1 is “minor and moderate injury”, S2 is “severe and life-threatening injury (potential for survival)”, S3 is “life-threatening injury (survival is Is not clear) ”.
 リスク算出部108は、性能限界算出部104により算出された性能限界を考慮しながら、衝突の可能性のある車両との車間距離などを環境情報に基づいて算出することで、実際に衝突が発生した場合に想定される衝突速度を算出する。たとえば、距離lbだけ前方の位置で停止している先行車両が確認された状況で、性能限界として達成可能な最大の減速度がgaであると算出された場合、リスク算出部108は、先行車両との相対速度と、距離lbと、減速度gaとから、想定される衝突速度を算出する。そして、リスク算出部108は、算出した衝突速度に基づいて重大度マップ109aを参照することで、衝突の重大度を算出(特定)し、算出した重大度と、暴露率算出部106により算出された暴露率と、の組み合わせを、車両が走行を継続する場合に発生しうるリスクとして算出(特定)する。 The risk calculation unit 108 calculates the distance between the vehicle and the vehicle with a possibility of collision based on the environmental information while taking into consideration the performance limit calculated by the performance limit calculation unit 104, so that a collision actually occurs. If this happens, the expected collision speed is calculated. For example, when it is calculated that the maximum deceleration achievable as a performance limit is ga in a situation where a preceding vehicle stopped at a position ahead by the distance lb is confirmed, the risk calculating unit 108 Is calculated from the relative speed, the distance lb, and the deceleration ga. The risk calculation unit 108 calculates (identifies) the severity of the collision by referring to the severity map 109a based on the calculated collision speed, and is calculated by the calculated severity and the exposure rate calculation unit 106. The combination of the exposure rate and the exposure rate is calculated (specified) as a risk that may occur when the vehicle continues to run.
 図2に戻り、リスク判定部110は、リスク算出部108により算出されたリスク(暴露率と重大度との組み合わせ)と、リスクレベルマップ111と、に基づいて、リスク算出部108により算出されたリスクのレベルを算出(特定)する。なお、実施形態において、リスクレベルマップ111を用いることなくリアルタイムでリスクのレベルを算出する技術が用いられてもよいことは、言うまでもない。以下に説明するように、リスクレベルマップ111とは、車両が走行を継続する場合に発生しうる全てのリスクと、当該全てのリスクのレベルと、の関係が登録されたマップである。 Returning to FIG. 2, the risk determination unit 110 is calculated by the risk calculation unit 108 based on the risk (combination of exposure rate and severity) calculated by the risk calculation unit 108 and the risk level map 111. Calculate (specify) the level of risk. In the embodiment, it goes without saying that a technique for calculating the risk level in real time without using the risk level map 111 may be used. As will be described below, the risk level map 111 is a map in which relationships between all risks that can occur when the vehicle continues to travel and the levels of all the risks are registered.
 図6は、実施形態において用いられるリスクレベルマップ111の一例を示した例示的な図である。図6において、各セルに登録されたQMおよびA~Cという分類は、上述したASILで一般的に用いられる分類であり、リスクのレベルを表している。QMは、走行制限を実施する必要が全くないレベルに対応する。A~Cは、走行制限を実施する必要があるレベルに対応し、A、B、Cの順に、必要な制限度合が大きくなる。 FIG. 6 is an exemplary diagram showing an example of the risk level map 111 used in the embodiment. In FIG. 6, the classifications QM and A to C registered in each cell are classifications generally used in the above-described ASIL, and represent risk levels. QM corresponds to a level that does not require any travel restrictions. A to C correspond to levels at which travel restriction needs to be implemented, and the required restriction degree increases in the order of A, B, and C.
 また、図6において、最上段の行のC1~C3という分類は、上述したASILで一般的に用いられる分類であり、ドライバが危険を回避することができる確率の見積もりを表している。ASILでは、C1は「容易に回避可能」、C2は「通常は回避可能」、C3は、「回避困難または回避不可」として定義されている。なお、ASILでは、「一般的に回避可能」に対応したC0という分類も存在するが、「一般的に回避可能」であれば、そもそもリスクのレベルを判定(評価)する必要が無いので、図6の例では、C0に関する図示が存在しない。 In FIG. 6, the classification of C1 to C3 in the uppermost row is a classification generally used in the ASIL described above, and represents an estimate of the probability that the driver can avoid danger. In ASIL, C1 is defined as “easy to avoid”, C2 is defined as “normally avoidable”, and C3 is defined as “difficult to avoid or not avoidable”. In ASIL, there is a classification of C0 corresponding to “generally avoidable”, but if it is “generally avoidable”, there is no need to determine (evaluate) the risk level in the first place. In the example of 6, there is no illustration regarding C0.
 ここで、実施形態では、自動運転中の車両に発生するリスクを想定している。つまり、実施形態では、基本的に、ドライバが危険を回避するための操作の準備をしていない状況を想定している。したがって、実施形態によるリスク判定部110は、基本的に、図6のリスクレベルマップ111のうち、C3に対応した列の情報を参照して、リスクのレベルを特定する。そして、リスク判定部110は、特定したレベルが所定のレベル以下であるか否かを判定する。所定のレベルとは、たとえば走行制限の実施を必要としないQMである。 Here, in the embodiment, a risk occurring in a vehicle during automatic driving is assumed. That is, in the embodiment, basically, a situation is assumed in which the driver is not preparing for an operation to avoid danger. Therefore, the risk determination unit 110 according to the embodiment basically specifies the risk level by referring to the information of the column corresponding to C3 in the risk level map 111 of FIG. And the risk determination part 110 determines whether the specified level is below a predetermined level. The predetermined level is, for example, QM that does not require execution of travel restrictions.
 ところで、前述したように、リスクのレベルに関わらず一律で車両を(緊急で)停止させれば、安全性を確保することができる。車両の緊急停止は、最も大きい制限度合の走行制限に該当し、リスクのレベルが比較的高い場合、たとえば上述したASILの分類でリスクのレベルがCである場合に有効である。しかしながら、リスクのレベルが比較的低い場合、たとえば上述したASILの分類でAである場合には、故障の状況(性能限界)によっては、車両の緊急停止程の走行制限を実施しなくても、速度制限などといった部分的な走行制限を実施するだけで、走行を継続して利便性を確保しながら、十分にリスクを抑えることが可能である。 By the way, as described above, safety can be ensured by stopping the vehicle uniformly (in an emergency) regardless of the level of risk. The emergency stop of the vehicle corresponds to the travel restriction with the largest degree of restriction, and is effective when the risk level is relatively high, for example, when the risk level is C in the ASIL classification described above. However, if the risk level is relatively low, for example, if the ASIL classification is A as described above, depending on the failure situation (performance limit), even if the vehicle is not limited to the emergency stop, By only implementing partial travel restrictions such as speed restrictions, it is possible to sufficiently suppress risks while continuing to travel and ensuring convenience.
 したがって、図2に戻り、実施形態による制限処理部112は、走行制限を、リスクのレベルに応じて異なる制限度合で実施する。より具体的に、制限処理部112は、リスクのレベルが上述した所定のレベル以下になるように、リスクのレベルが低い程小さい制限度合で走行制限を実施する。なお、この際、制限処理部112は、リスク判定部110の判定結果と、走行状態取得部103により取得される走行状態と、を考慮する。つまり、制限処理部112は、リスク判定部110の判定結果と、走行状態取得部103により取得される走行状態と、に基づいて、安全性と利便性とを両立するために必要最小限の走行制限を実施する。 Therefore, returning to FIG. 2, the restriction processing unit 112 according to the embodiment performs the travel restriction with different restriction degrees according to the risk level. More specifically, the restriction processing unit 112 performs the travel restriction with a degree of restriction that is smaller as the risk level is lower, so that the risk level is equal to or lower than the predetermined level described above. At this time, the restriction processing unit 112 considers the determination result of the risk determination unit 110 and the traveling state acquired by the traveling state acquisition unit 103. In other words, the restriction processing unit 112 performs the minimum travel required to achieve both safety and convenience based on the determination result of the risk determination unit 110 and the travel state acquired by the travel state acquisition unit 103. Enforce restrictions.
 なお、上記では、リスクのレベルを判定する指標として、ASILを例示したが、実施形態では、ASIL以外の指標でリスクのレベルを判定することも可能である。この場合、走行制限の実施を必要としない所定のレベルとして、ASILのQMよりも緩い基準を用いてもよい。ただし、ここで言及しているQMよりも緩い基準は、ドライバまたは他の交通関係者が受ける傷害を確実に回避可能な基準であることが望ましい。 In the above, ASIL is exemplified as an index for determining the risk level. However, in the embodiment, the risk level can also be determined by an index other than ASIL. In this case, a standard that is looser than the ASIL QM may be used as a predetermined level that does not require the travel restriction. However, it is desirable that the standard that is looser than the QM referred to here is a standard that can surely avoid the injury that the driver or other traffic persons suffer.
 次に、実施形態において実行される処理について詳細に説明する。
 図7は、実施形態による車両制御装置10が実行する一連の処理を示した例示的なフローチャートである。この図7に示される一連の処理は、車両の自動運転中に繰り返し実行される。
Next, processing executed in the embodiment will be described in detail.
FIG. 7 is an exemplary flowchart showing a series of processes executed by the vehicle control apparatus 10 according to the embodiment. The series of processing shown in FIG. 7 is repeatedly executed during automatic driving of the vehicle.
 図7に示されるように、実施形態では、まず、ステップS1において、故障情報取得部101は、故障情報を取得する。そして、ステップS2において、性能限界算出部104は、ステップS1で取得された故障情報と、性能限界マップ105と、に基づいて、性能限界を算出する。 As shown in FIG. 7, in the embodiment, first, in step S1, the failure information acquisition unit 101 acquires failure information. In step S <b> 2, the performance limit calculation unit 104 calculates a performance limit based on the failure information acquired in step S <b> 1 and the performance limit map 105.
 また、ステップS3において、環境情報取得部102は、環境情報を取得する。そして、ステップS4において、暴露率算出部106は、ステップS3で取得された環境情報と、暴露率マップ107と、に基づいて、暴露率を算出する。 In step S3, the environment information acquisition unit 102 acquires environment information. In step S4, the exposure rate calculation unit 106 calculates the exposure rate based on the environmental information acquired in step S3 and the exposure rate map 107.
 なお、図7では、ステップS1およびS2の処理の後にステップS3およびS4の処理が実行される例が示されているが、ステップS1およびS2の処理と、ステップS3およびS4の処理とは、同時並行的に実行されてもよいし、ステップS3およびS4の処理の後にステップS1およびS2の処理が実行されてもよい。 FIG. 7 shows an example in which the processes in steps S3 and S4 are executed after the processes in steps S1 and S2. However, the processes in steps S1 and S2 and the processes in steps S3 and S4 are performed simultaneously. The processes in steps S1 and S2 may be executed after the processes in steps S3 and S4.
 ステップS5において、リスク算出部108は、S2で算出された性能限界と、ステップS4で算出された暴露率と、重大度マップ109と、に基づいて、リスクを算出する。そして、ステップS6において、リスク判定部110は、ステップS5で算出されたリスクと、リスクレベルマップ111と、に基づいて、リスクのレベルを判定する。より具体的に、リスク判定部110は、リスクのレベルが、走行制限の実施を必要としない所定のレベル以下であるか否かを判定する。 In step S5, the risk calculation unit 108 calculates a risk based on the performance limit calculated in S2, the exposure rate calculated in step S4, and the severity map 109. In step S6, the risk determination unit 110 determines the risk level based on the risk calculated in step S5 and the risk level map 111. More specifically, the risk determination unit 110 determines whether or not the risk level is equal to or lower than a predetermined level that does not require execution of travel restriction.
 ステップS7において、走行状態取得部103は、車両の(現在の)走行状態を取得する。なお、図7では、ステップS6の処理の後にステップS7の処理が実行される例が示されているが、ステップS7の処理は、ステップS6の処理と同時並行的に実行されてもよいし、ステップS6の処理よりも前に実行されてもよい。 In step S7, the traveling state acquisition unit 103 acquires the (current) traveling state of the vehicle. FIG. 7 shows an example in which the process of step S7 is executed after the process of step S6. However, the process of step S7 may be executed concurrently with the process of step S6. It may be executed before the process of step S6.
 そして、ステップS8において、制限処理部112は、ステップS6における判定結果と、ステップS7で取得された走行状態と、に基づいて、リスクのレベルに応じた走行制限を実施する。たとえば、制限処理部112は、車両を停止させなければリスクが上述した所定のレベル以下にならない場合、制限度合の最も大きい走行制限である緊急停止を実施し、速度制限などの部分的な走行制限のみを実施すればリスクが所定のレベル以下になる場合、当該部分的な走行制限を実施しながら自動運転による車両の走行を継続し、走行制限を実施しなくてもリスクがそもそも所定のレベル以下である場合には、現状の自動運転を維持する。そして、処理が終了する。 In step S8, the restriction processing unit 112 executes travel restriction according to the risk level based on the determination result in step S6 and the travel state acquired in step S7. For example, if the risk does not fall below the predetermined level described above unless the vehicle is stopped, the restriction processing unit 112 performs an emergency stop that is a travel restriction with the largest degree of restriction, and a partial travel restriction such as a speed restriction. If the risk falls below a predetermined level if only the above is implemented, the vehicle will continue to run automatically while implementing the partial travel restriction, and the risk will be below the predetermined level even if the travel restriction is not implemented. If so, the current automatic operation is maintained. Then, the process ends.
 以下、緊急停止ではない走行制限が実施される状況で実行される処理につき、具体例を挙げてより詳細に説明する。 Hereinafter, the process executed in a situation where the travel restriction other than the emergency stop is performed will be described in more detail with a specific example.
 図8は、実施形態において緊急停止ではない走行制限が実施される状況の具体例を説明するための例示的な図である。図8には、車両Xと車両Yとが隣接する2車線を同方向に走行しており、車両Yが車両Xよりも距離lpだけ前方に位置している状況が例示されている。以下では、車両Xが自動運転によって低速で直進している状況を想定し、この状況で車両Xのブレーキ機構のリヤ両輪のブレーキ圧加圧機能に故障が発生した場合に車両Xの車両制御装置10によって実行される処理の具体例につき、図7のフローチャートに沿って説明する。 FIG. 8 is an exemplary diagram for explaining a specific example of a situation where a travel restriction that is not an emergency stop is performed in the embodiment. FIG. 8 illustrates a situation where the vehicle X and the vehicle Y are traveling in two lanes adjacent to each other in the same direction, and the vehicle Y is positioned ahead of the vehicle X by a distance lp. In the following, it is assumed that the vehicle X is traveling straight at a low speed by automatic driving, and when a failure occurs in the brake pressure application function of the rear wheels of the brake mechanism of the vehicle X in this situation, the vehicle control device for the vehicle X A specific example of the processing executed by 10 will be described with reference to the flowchart of FIG.
 この場合、まず、故障の発生に伴い、故障情報取得部101は、リヤ両輪のブレーキ圧加圧機能が故障したことを示す故障情報を取得する(ステップS1)。そして、性能限界算出部104は、性能限界マップ105に基づいて、前輪のブレーキ圧加圧機能のみで発生可能な最大減速度(たとえば0.6Gとする)を、性能限界として算出する(ステップS2)。 In this case, first, along with the occurrence of a failure, the failure information acquisition unit 101 acquires failure information indicating that the brake pressure application function of both rear wheels has failed (step S1). Then, based on the performance limit map 105, the performance limit calculation unit 104 calculates the maximum deceleration (for example, 0.6G) that can be generated only by the front wheel brake pressure pressurization function as the performance limit (step S2). ).
 そして、環境情報取得部102は、自身(車両X)に対して距離lpだけ前方の隣接車線の位置に、v1以上v2未満でありかつv11以上v12未満の相対速度vpで走行する車両Yが存在することを、環境情報として取得する(ステップS3)。 Then, the environment information acquisition unit 102 has a vehicle Y traveling at a relative speed vp of v1 or more and less than v2 and v11 or more and less than v12 at the position of the adjacent lane ahead of the vehicle (vehicle X) by a distance lp. This is acquired as environment information (step S3).
 そして、暴露率算出部106は、環境情報取得部102により取得された環境情報と、暴露率マップ107bに基づいて、相対速度vpで走行している車両Yが自身(車両X)の走行車線に割り込んでくる確率である暴露率がE3であると算出する(ステップS4)。 Then, based on the environmental information acquired by the environmental information acquisition unit 102 and the exposure rate map 107b, the exposure rate calculation unit 106 sets the vehicle Y traveling at the relative speed vp to the travel lane of itself (vehicle X). It is calculated that the exposure rate that is the probability of interruption is E3 (step S4).
 さらに、リスク算出部108は、自身(車両X)がこのまま走行を継続し、車両Yが自身(車両X)の前に割り込んできて衝突した場合における衝突速度(=相対速度vp)と、重大度マップ109aと、に基づいて、車両Yとの衝突の重大度がS2であると算出する(ステップS5)。 Furthermore, the risk calculation unit 108 continues the traveling as it is, and the collision speed (= relative speed vp) and the severity when the vehicle Y is interrupted in front of itself (the vehicle X) and collides. Based on the map 109a, it is calculated that the severity of the collision with the vehicle Y is S2 (step S5).
 また、リスク判定部110は、自動運転中に割り込まれた時の車両Xのドライバが危険を回避できる確率の見積もりがC3であると判断し、この見積もりC3と、上記の処理で算出された暴露率E3および重大度S2と、リスクレベルマップ111と、に基づいて、現在のリスクのレベルがAであると特定する(ステップS6)。 Further, the risk determination unit 110 determines that the estimate of the probability that the driver of the vehicle X can avoid the danger when interrupted during the automatic driving is C3, and the exposure calculated by the estimate C3 and the above processing. Based on the rate E3, the severity S2, and the risk level map 111, the current risk level is specified as A (step S6).
 続いて、走行状態取得部103は、自身(車両X)が安定して減速可能な直進状態であり、かつ定速走行状態であるか否かを判断する根拠としての走行状態を取得する(ステップS7)。 Subsequently, the traveling state acquisition unit 103 acquires a traveling state as a basis for determining whether or not the vehicle (vehicle X) is in a straight traveling state where the vehicle (X) can be stably decelerated and is in a constant speed traveling state (step S1). S7).
 そして、制限処理部112は、上記の処理で取得された走行状態と、リスクレベルマップ111とに基づいて、自身(車両X)のドライバが危険を回避することができる確率の見積もりがC3である状況で、上記の処理で特定されたリスクのレベルAをQMにするためには、減速によって車両Yとの相対速度をv11以下にして重大度をS2からS1にすることが適切であると判断する。さらに、制限処理部112は、車両Yとの距離lpに基づき、車両Yと自身(車両X)との距離が0となる前に相対速度をv11以下とするために必要な減速度(たとえば0.2Gとする)を算出する。ここで算出される減速度0.2Gは、上記の処理で算出された性能限界である0.6G以下である。したがって、この場合、制限処理部112は、緊急停止ではなく走行制限を選択し、車両Yとの相対速度がv11以下となるように自身(車両X)を減速させる減速制御を実行する(ステップS8)。 The restriction processing unit 112 estimates the probability that the driver of the vehicle (vehicle X) can avoid the danger based on the traveling state acquired in the above process and the risk level map 111 as C3. Under the circumstances, in order to set the risk level A specified in the above processing to QM, it is determined that it is appropriate to reduce the relative speed with respect to the vehicle Y to v11 or less by deceleration and change the severity from S2 to S1. To do. Further, the restriction processing unit 112 is based on the distance lp with the vehicle Y, and the deceleration (for example, 0) required to make the relative speed v11 or less before the distance between the vehicle Y and itself (vehicle X) becomes zero. .2G) is calculated. The deceleration 0.2G calculated here is 0.6G or less which is the performance limit calculated by the above processing. Therefore, in this case, the restriction processing unit 112 selects the travel restriction instead of the emergency stop, and executes the deceleration control that decelerates itself (the vehicle X) so that the relative speed with the vehicle Y is equal to or less than v11 (step S8). ).
 以上説明したように、実施形態による車両制御装置10は、車両の故障に関する故障情報を取得する故障情報取得部101と、車両の外部の環境に関する環境情報を取得する環境情報取得部102と、車両の走行中に取得される故障情報および環境情報に基づいて、車両が走行を継続する場合に発生しうるリスクを算出するリスク算出部108と、車両の走行に関する機能の少なくとも一部の制限を、リスクのレベルに応じて異なる制限度合で実施する制限処理部112と、を備える。これにより、リスクがあると判定された場合でも、一律で車両を停止させることなく、リスクのレベルに応じて車両の走行が継続されうるので、安全性と利便性とを両立しながらリスクを低減することができる。 As described above, the vehicle control apparatus 10 according to the embodiment includes the failure information acquisition unit 101 that acquires failure information related to vehicle failure, the environment information acquisition unit 102 that acquires environment information related to the environment outside the vehicle, and the vehicle Based on the failure information and environmental information acquired during the driving of the vehicle, a risk calculation unit 108 that calculates a risk that may occur when the vehicle continues to travel, and at least some of the restrictions on the functions related to the traveling of the vehicle, And a restriction processing unit 112 that implements with a different degree of restriction depending on the risk level. As a result, even if it is determined that there is a risk, the vehicle can continue to run according to the level of the risk without stopping the vehicle uniformly, thus reducing the risk while achieving both safety and convenience can do.
 また、実施形態による車両制御装置10において、制限処理部12は、リスクのレベルが低い程小さい制限度合で走行制限を実施する。これにより、リスクのレベルに応じて必要最小限の制限度合で制限を実行することができる。 Further, in the vehicle control device 10 according to the embodiment, the restriction processing unit 12 performs the travel restriction with a smaller degree of restriction as the risk level is lower. As a result, the restriction can be executed with a minimum degree of restriction according to the level of risk.
 また、実施形態による車両制御装置10において、リスク算出部108は、故障情報に基づいて特定される、車両が故障を抱えたままで発揮可能な走行性能の限界である性能限界に基づいて、リスクを算出する。これにより、性能限界を考慮して、より正確にリスクを算出することができる。 Further, in the vehicle control device 10 according to the embodiment, the risk calculation unit 108 determines the risk based on the performance limit that is specified based on the failure information and is the limit of the running performance that can be exhibited while the vehicle has a failure. calculate. Thereby, the risk can be calculated more accurately in consideration of the performance limit.
 また、実施形態による車両制御装置10において、リスク算出部108は、環境情報に基づいて特定される、車両の危険につながる特定の状況が外部の環境に起因して発生する確率である暴露率に基づいて、リスクを算出する。これにより、暴露率を考慮して、より正確にリスクを算出することができる。 Further, in the vehicle control apparatus 10 according to the embodiment, the risk calculation unit 108 determines the exposure rate that is specified based on the environmental information and is a probability that a specific situation that leads to the danger of the vehicle occurs due to the external environment. Based on this, the risk is calculated. Thereby, the risk can be calculated more accurately in consideration of the exposure rate.
 また、実施形態による車両制御装置10は、車両が走行を継続する場合に発生しうる全てのリスクと、当該全てのリスクのレベルと、の関係が登録されたリスクレベルマップ111と、当該リスクレベルマップ111を用いて、リスク算出部108により算出されたリスクのレベルが所定のレベル以下であるか否かを判定するリスク判定部110と、を備える。そして、制限処理部112は、リスク判定部110の判定結果に基づいて、リスクのレベルが所定のレベル以下になるように走行制限を実施する。これにより、リスクレベルマップ111を用いて、走行制限の実施の必要性を容易に判定し、必要な走行制限を容易に実施することができる。 In addition, the vehicle control device 10 according to the embodiment includes a risk level map 111 in which the relationship between all risks that may occur when the vehicle continues to travel and all the risk levels is registered, and the risk level. A risk determination unit 110 that determines whether or not the risk level calculated by the risk calculation unit 108 is equal to or lower than a predetermined level using the map 111; And the restriction | limiting process part 112 implements driving | running | working restrictions based on the determination result of the risk determination part 110 so that the level of a risk may become below a predetermined level. Thereby, it is possible to easily determine the necessity of the travel restriction using the risk level map 111 and easily carry out the necessary travel restriction.
 以上、本発明の実施形態を説明したが、上述した実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上述した新規な実施形態は、様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。また、上述した実施形態およびその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although embodiment of this invention was described, embodiment mentioned above is an example to the last, Comprising: It is not intending limiting the range of invention. The above-described novel embodiments can be implemented in various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. Further, the above-described embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and an equivalent scope thereof.

Claims (5)

  1.  車両の故障に関する故障情報を取得する故障情報取得部と、
     前記車両の外部の環境に関する環境情報を取得する環境情報取得部と、
     前記車両の走行中に取得される前記故障情報および前記環境情報に基づいて、前記車両が走行を継続する場合に発生しうるリスクを算出するリスク算出部と、
     前記車両の走行に関する機能の少なくとも一部の制限を、前記リスクのレベルに応じて異なる制限度合で実施する制限処理部と、
     を備える、車両制御装置。
    A failure information acquisition unit for acquiring failure information relating to a vehicle failure;
    An environmental information acquisition unit for acquiring environmental information related to the environment outside the vehicle;
    A risk calculating unit that calculates a risk that may occur when the vehicle continues to travel based on the failure information and the environmental information acquired during the traveling of the vehicle;
    A restriction processing unit that implements restriction on at least a part of the functions related to traveling of the vehicle at different restriction degrees according to the level of the risk;
    A vehicle control device comprising:
  2.  前記制限処理部は、前記リスクのレベルが低い程小さい制限度合で前記制限を実施する、
     請求項1に記載の車両制御装置。
    The restriction processing unit implements the restriction with a degree of restriction that is smaller as the risk level is lower.
    The vehicle control device according to claim 1.
  3.  前記リスク算出部は、前記故障情報に基づいて特定される、前記車両が前記故障を抱えたままで発揮可能な走行性能の限界に基づいて、前記リスクを算出する、
     請求項1または2に記載の車両制御装置。
    The risk calculation unit calculates the risk based on a limit of running performance that is specified based on the failure information and that the vehicle can exhibit with the failure.
    The vehicle control device according to claim 1 or 2.
  4.  前記リスク算出部は、前記環境情報に基づいて特定される、前記車両の危険につながる特定の状況が前記外部の環境に起因して発生する確率に基づいて、前記リスクを算出する、
     請求項1~3のいずれか1項に記載の車両制御装置。
    The risk calculation unit calculates the risk based on a probability that a specific situation that is identified based on the environmental information and that leads to a danger of the vehicle occurs due to the external environment;
    The vehicle control device according to any one of claims 1 to 3.
  5.  前記車両が走行を継続する場合に発生しうる全てのリスクと、当該全てのリスクのレベルと、の関係が登録されたリスクレベルマップと、
     前記リスクレベルマップを用いて、前記リスク算出部により算出された前記リスクのレベルが所定のレベル以下であるか否かを判定するリスク判定部と、
     をさらに備え、
     前記制限処理部は、前記リスク判定部の判定結果に基づいて、前記リスクのレベルが前記所定のレベル以下になるように前記制限を実施する、
     請求項1~4のいずれか1項に記載の車両制御装置。
    A risk level map in which the relationship between all risks that can occur when the vehicle continues to travel and the levels of all the risks is registered;
    A risk determination unit that determines whether or not the level of the risk calculated by the risk calculation unit is equal to or lower than a predetermined level using the risk level map;
    Further comprising
    The restriction processing unit implements the restriction based on the determination result of the risk determination unit so that the level of the risk is equal to or lower than the predetermined level.
    The vehicle control device according to any one of claims 1 to 4.
PCT/JP2018/013446 2017-03-31 2018-03-29 Vehicle control device WO2018181811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070140 2017-03-31
JP2017070140A JP2018173724A (en) 2017-03-31 2017-03-31 Vehicle control device

Publications (1)

Publication Number Publication Date
WO2018181811A1 true WO2018181811A1 (en) 2018-10-04

Family

ID=63676509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013446 WO2018181811A1 (en) 2017-03-31 2018-03-29 Vehicle control device

Country Status (2)

Country Link
JP (1) JP2018173724A (en)
WO (1) WO2018181811A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034915A (en) * 2005-07-29 2007-02-08 Nissan Motor Co Ltd Drive operation assist device for vehicle and vehicle with drive operation assist device
JP2008024165A (en) * 2006-07-21 2008-02-07 Fujitsu Ten Ltd Load control device, load control method and vehicle slip suppression device
JP2011191849A (en) * 2010-03-12 2011-09-29 Ud Trucks Corp Safe driving-promotion system
JP2011210095A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Driving assistance system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034915A (en) * 2005-07-29 2007-02-08 Nissan Motor Co Ltd Drive operation assist device for vehicle and vehicle with drive operation assist device
JP2008024165A (en) * 2006-07-21 2008-02-07 Fujitsu Ten Ltd Load control device, load control method and vehicle slip suppression device
JP2011191849A (en) * 2010-03-12 2011-09-29 Ud Trucks Corp Safe driving-promotion system
JP2011210095A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Driving assistance system

Also Published As

Publication number Publication date
JP2018173724A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
CN109895771B (en) Apparatus and method for controlling train traveling in lead vehicle
CN109204312B (en) ECU, autonomous vehicle having the same, and method of controlling lane change of the vehicle
CN109895772B (en) Apparatus and method for controlling train traveling in lead vehicle
US10933883B2 (en) Driving control apparatus and method for vehicle
US11427166B2 (en) Adaptive AEB system considering steerable path and control method thereof
US10967857B2 (en) Driving support device and driving support method
US20200055514A1 (en) Automatic parking control device
CN112319471A (en) Queue travel controller, system including the same, and queue travel control method
US11011059B2 (en) Vehicle control device
US20190367041A1 (en) Electronic control device, recording medium, and gateway device
CN112334377B (en) Vehicle control device
US11608009B2 (en) Camera signal monitoring apparatus and method
KR20220023528A (en) Apparatus and method for controlling platooning information of vehicle
CN112537318A (en) Method for remotely controlling a motor vehicle
CN113272197B (en) Device and method for improving an auxiliary system for lateral vehicle movement
US11027727B2 (en) Apparatus for responding to vehicle water splashing, system having the same and method thereof
JP6481627B2 (en) Vehicle travel control device
CN112714730A (en) Method and device for operating an at least partially automatically operated first vehicle
US10328849B2 (en) Collision avoidance apparatus for notification of collision avoidance direction
WO2018181811A1 (en) Vehicle control device
US20240051554A1 (en) Apparatus for Controlling a Vehicle and Method Thereof
US20240174230A1 (en) Vehicle control device
CN114735029A (en) Control method and device for automatic driving vehicle
JP2019153029A (en) Vehicle control device
CN112009496B (en) Security architecture for autonomous vehicle control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774209

Country of ref document: EP

Kind code of ref document: A1