WO2018181790A1 - Radio communication method and system - Google Patents

Radio communication method and system Download PDF

Info

Publication number
WO2018181790A1
WO2018181790A1 PCT/JP2018/013392 JP2018013392W WO2018181790A1 WO 2018181790 A1 WO2018181790 A1 WO 2018181790A1 JP 2018013392 W JP2018013392 W JP 2018013392W WO 2018181790 A1 WO2018181790 A1 WO 2018181790A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
node
channel
data communication
data
Prior art date
Application number
PCT/JP2018/013392
Other languages
French (fr)
Japanese (ja)
Inventor
史秀 児島
哲郎 中矢
篤 浪平
啓之 樽屋
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2018181790A1 publication Critical patent/WO2018181790A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a wireless communication method and system in a tree-type network that transmits and receives data between two or more nodes arranged with a collection control station as a root.
  • FIG. 10 shows an example of a time chart when data from lower nodes 72-3 and 72-4 is transmitted to the CS 71.
  • Each of the CS 71 and each node 72 is assigned an active period (communication period) T1 and a sleep period T2 within a basic interval (intermittent standby period) T.
  • Wireless communication can be performed in the communication period T1, and in the sleep period T2, the receiving side shifts to the sleep state and cannot perform wireless communication with each other.
  • the sleep period T2 By intentionally providing the sleep period T2 within the basic interval T, power consumption can be reduced, and as a result, power consumption of the entire system can be suppressed.
  • the node 72-3 When data is transmitted from the node 72-3 to the CS 71, the node 72-3 is relayed from the node 72-1 to become the CS 71 path.
  • the upper node 72-1 is a master and the lower node 72-3 is a slave.
  • the CS 71 as an upper node is a master and the lower node 72-1 is a slave.
  • the higher order master determines the timing of the communication period T1 in the basic interval T
  • the lower order slave determines the data in accordance with the timing of the communication period T1 determined on the master side. Will be sent.
  • the node 72-3 first transmits the data D81 generated at the timing t91 in accordance with the communication period T1 of the node 72-1 as the master starting at the timing t92.
  • the node 72-1 that has received the data D81 transmits the data D81 in accordance with the communication period T1 of the CS 71 as the master starting at the timing t93.
  • the CS 71 can receive the data D81 within the communication period T1 set by itself.
  • the node 72-4 when data is transmitted from the node 72-4 to the CS 71, the node 72-4 is relayed from the node 72-1 to become the CS 71 path.
  • the node 72-4 transmits the data D82 generated at the timing t94 in accordance with the communication period T1 of the node 72-1 as the master starting at the timing t95.
  • the node 72-1 that has received the data D82 transmits the data D82 in accordance with the communication period T1 of the CS 71 as the master starting at timing t96.
  • the CS 71 can receive the data D82 within the communication period T1 set by itself.
  • the CS 71 can collect all data from each node 72 in the tree network based on the above-described wireless communication processing operation method.
  • the control system from the CS 71 is used.
  • Control data for controlling this may be transmitted to the node 72 by downlink data communication.
  • the control system data D83 sometimes requires an emergency stop control of the valve or an emergency control to stop the gas pipe, and the so-called emergency data D83 must be transmitted to the node 72. .
  • the bidirectional transmission of uplink data communication from the node 72 to the CS 71 and downlink data communication from the CS 71 to the node 72 is performed, and the data collection and control by the CS 71 are originally different in expected transmission quality.
  • the same communication path via the node 72 is shared and the same frequency channel is shared.
  • the present invention has been devised in view of the above-described problems, and the object of the present invention is a tree type that transmits and receives data between two or more nodes arranged with a collection control station as a root.
  • the object of the present invention is a tree type that transmits and receives data between two or more nodes arranged with a collection control station as a root.
  • the present inventors previously set a communication resource including a frequency or a communication time when transmitting / receiving data between two or more nodes arranged with a collection control station as a root.
  • Each divided resource unit is divided into a plurality of divided resource units, and this is overlapped with the uplink data communication channel from the node to the collection control station and the downlink data communication channel from the collection control station to the node.
  • Invented a wireless communication method and system for controlling to allocate without performing.
  • a wireless communication method is a wireless communication method in a tree-type network that transmits and receives data between two or more nodes arranged with a collection control station as a root.
  • Each divided resource unit is divided into a plurality of divided resource units, and this is overlapped with the uplink data communication channel from the node to the collection control station and the downlink data communication channel from the collection control station to the node. It is characterized by assigning without doing.
  • the wireless communication method according to a second aspect of the present invention is the wireless communication method according to the first aspect, wherein the channel of each communication path of the uplink data communication is allocated to each divided resource unit allocated to the uplink data communication without overlapping each other, and A channel of each communication path of the downlink data communication is allocated to each divided resource unit allocated to data communication without overlapping each other.
  • the wireless communication method according to a third aspect of the present invention is the wireless communication method according to the second aspect, wherein each divided resource unit is divided in the order of the channel of each communication path of uplink data communication or the channel of each communication path of downlink data communication in which communication is started. Are allocated without overlapping each other, and when the channel is allocated to all of the divided resource units, the operation of allocating the divided resource unit to the channel where communication is newly started is stopped. And
  • a wireless communication method wherein the exchange status of each data frame between the uplink data communication and the downlink data communication is identified, and based on the identified exchange status
  • the communication path for uplink data communication or the communication path for downlink data communication is controlled, or the allocation of the divided resource unit to the channel is controlled.
  • a wireless communication method according to any one of the first to third aspects, wherein data is transmitted and received between nodes in accordance with a periodic standby communication period designated by a higher-order node. At least one node is pre-assigned as a controlled terminal, and the collection control station, the controlled terminal, and all nodes arranged on these paths are specified as control support terminals, and the controlled control terminal At least downlink data communication to the terminal is controlled to increase the time ratio of the communication period in the control support terminal.
  • a wireless communication system is a tree-type wireless communication system that transmits and receives data between nodes in which two or more nodes having a collection control station as a root are arranged.
  • Each divided resource unit divided in advance is divided into an uplink data communication channel from the node to the collection control station and a downlink data communication channel from the collection control station to the node. It is characterized by assigning without duplication.
  • the channels of the respective communication paths are also separated so as not to overlap each other. Allocate to each divided resource unit As a result, it is possible to prevent the data frames of the uplink data communication and the downlink data communication from colliding with each other, and the data frames are also exchanged between the channels of each communication path of the uplink data communication and between the channels of each communication path of the downlink data communication. It is possible to prevent a collision.
  • 1 is a diagram illustrating an example of a network that conforms to the IEEE 802.15.4 standard.
  • FIG. It is a figure for demonstrating the problem of a prior art.
  • FIG. 1 is a schematic diagram showing an example of a wireless communication system 1 to which the present invention is applied.
  • the wireless communication system 1 includes, as wireless communication terminals, nodes 3-1, 3-2, 3-3, 3-4 rooted at a collection control station (collection station: hereinafter referred to as CS) 2, and a so-called tree A type topology is adopted.
  • CS collection control station
  • a lower node 3 performs uplink data communication toward a higher node 3 and CS2.
  • the higher order node 3 and CS 2 perform downlink data communication toward the lower order node 3.
  • CS2 is the highest-level master device and collects data transmitted from each node 3-1 to 3-4 by upstream data communication.
  • the CS 2 also plays a role as a central control unit for controlling the entire wireless communication system 1 and performs downlink data communication of control data to a specific node 3.
  • Node 3 is a generic name for devices capable of transmitting and receiving data such as data transmission and relay, and is a communication device compliant with the IEEE 802.15.4 standard, for example.
  • the node 3 may be embodied as a sensor that senses predetermined data and transmits the data wirelessly, such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, a notebook personal computer (PC), or the like. It may be embodied as a terminal device capable of wireless communication.
  • the node 3 may include a control system such as an actuator. In such a case, for example, it is embodied as a device that can perform control for stopping a valve, control a robot, or perform control for stopping gas. If the node 3 is embodied as an actuator including a control system, various control operations are executed based on the control data transmitted from the CS 2 via the other nodes 3 via the downlink data. It becomes.
  • the present invention is not limited to this. That is, the node 3 arranged in the lower link of the CS 2 may have a tree structure composed of any branching pattern as long as the data is collected by the CS 2. It may be configured.
  • a channel is assigned to each communication path between the CS2 and the nodes 3-1 to 3-4.
  • the channel for uplink data communication from the node 3-1 to CS2 is ChU1
  • the channel for uplink data communication from the node 3-2 to the node 3-1 is ChU2
  • the channel from the node 3-3 to the node 3-1 is ChU3
  • the channel for uplink data communication from the node 3-4 to the node 3-2 is ChU4.
  • the downlink data communication channel from CS2 to node 3-1 is ChD1
  • the downlink data communication channel from CS2 to node 3-2 is ChD2
  • the downlink data communication channel from CS2 to node 3-3 is The channel is ChD3
  • the downlink data communication channel from CS2 to the node 3-4 is ChD4.
  • a divided resource unit 21 is formed by dividing a communication resource including a frequency channel as shown in FIG.
  • This divided resource unit 21 is a concept including both time-divided slots and frequency-divided bands.
  • Each divided resource unit 21 can be assigned to each channel of uplink data communication or downlink data communication. That is, a frequency channel is completed by assigning each communication channel to the divided resource unit 21.
  • the plurality of divided resource units 21 are allocated to uplink data communication and downlink data communication without overlapping each other.
  • the divided resource units 21-1 to 21-8 divided into eight are allocated to the uplink data communication channel, and the downlink data communication is performed.
  • Divided resource units 21-6 to 21-8 are allocated to the channel. In this way, control is performed so that there are no divided resource units 21 that are allocated in an overlapping manner between the uplink data communication channel and the downlink data communication channel. In addition, a so-called remaining divided resource unit to which no channel is allocated in the divided resource unit 21 may be included. In the following example, description will be made by taking as an example the case of comprising eight divided resource units, but the number of divided resource units may be constituted by any other number depending on the number of divisions.
  • a time-division divided resource unit 22 may be configured in which communication resources having communication times as shown in FIG.
  • Each time division resource unit 22 can be assigned to each channel of uplink data communication or downlink data communication. That is, a time division channel is completed by allocating each communication channel to this time division division resource unit 22.
  • the plurality of divided resource units 22 are allocated to uplink data communication and downlink data communication without overlapping each other.
  • the divided resource units 22-1 to 22-8 divided into eight are allocated to the uplink data communication channel, and the downlink data communication is performed.
  • Divided resource units 22-4 to 22-8 are allocated to the channel.
  • control is performed so that there are no divided resource units 22 that are allocated in an overlapping manner between the uplink data communication channel and the downlink data communication channel.
  • a so-called remaining divided resource unit to which no channel is assigned in the divided resource unit 22 may be included.
  • each divided resource unit 21 and 22 assigned to the uplink data communication includes each communication path of the uplink data communication. Are assigned without overlapping each other.
  • the channel ChU of each communication path of the stream data communication is allocated without overlapping each other.
  • the channel ChU1 is assigned to the divided resource unit 21-1
  • the channel ChU2 is assigned to the divided resource unit 21-2
  • the channel ChU3 is assigned to the divided resource unit 21-3
  • the divided resource unit 21-- 4 is assigned channel ChU4.
  • the channel ChD1 is allocated to the divided resource unit 21-6
  • the channel ChD4 is allocated to the divided resource unit 21-7
  • the channel ChD3 is allocated to the divided resource unit 21-8.
  • the divided resource unit 21 obtained by dividing the communication resource including the frequency has been described as an example.
  • the channel of each communication path does not overlap each other with respect to the time-divided divided resource unit 22 as well.
  • the divided resource units 21 and 22 assigned to the uplink data communication and the divided resource units 21 and 22 assigned to the downlink data communication are determined in advance, and the assigned divided resource units 21 and 22 are assigned.
  • channels for each communication path of uplink data communication and downlink data communication may be allocated, but the present invention is not limited to this.
  • each divided resource unit 21 in the channel for uplink data communication and the channel for downlink data communication may be executed based on the method described below.
  • the divided resource unit 22-1 is allocated to the channel ChU3 that starts communication first.
  • the divided resource unit 22-8 is allocated to this, and when communication on the channel ChD1 is started, this is assigned to this.
  • the divided resource unit 22-7 is allocated and communication of the channel ChU4 is started next, the divided resource unit 22-2 is allocated thereto.
  • the channel is assigned in ascending order from the divided resource unit 22-1 in order from the channel of the communication path where communication is started, and in the case of downlink data communication, the channel of the communication path where communication is started Are allocated in descending order from the divided resource unit 22-8.
  • uplink data communication and downlink data communication channels are allocated to all divided resource units 22. That is, the divided resource unit 22 is occupied by the uplink data communication channel and the downlink data communication channel, and there is no unused divided resource unit.
  • the allocation operation of the divided resource unit 22 is stopped. As a result, it is possible to prevent another channel from being redundantly assigned to the divided resource unit 22 to which another channel has already been assigned.
  • the divided resource units 22 are sequentially allocated from the channel where the communication is started, and therefore, the divided resource units 22 are allocated without omission for the channel having a high communication priority. Further, as a result of preferentially allocating the divided resource unit 22 allocated to uplink data communication and the divided resource unit 22 allocated to downlink data communication in advance from the channel where communication is newly started, Finally, the allocation boundary between the divided resource units 22 for uplink data communication and downlink data communication is determined naturally. For this reason, the division resource unit 22 does not remain in either one of the uplink data communication and the downlink data communication, and the division resource unit does not become insufficient in the other, and more efficient allocation of the division resource unit 22 can be realized. It becomes.
  • the allocation of the divided resource unit 21 to each channel may be executed after identifying the exchange status of each data frame between the uplink data communication and the downlink data communication.
  • the identification of the exchange status of the data frame here means that the communication amount and communication frequency of the data frame, the number of channels on which the communication is started, and the like are respectively determined for the uplink data communication and the downlink data communication.
  • the identification of the exchange status of the data frame includes whether or not data requiring urgency is transmitted. By performing these determinations, it is possible to determine the channel to which the divided resource units 21 and 22 should be preferentially allocated. For example, divided resource units 21 and 22 are preferentially assigned to channels in which the exchange status of data frames is active, and the priority of assignment of divided resource units 21 and 22 is lowered for channels in which the exchange status of data frames is low. You may do it.
  • control data that requires urgency may be sent from CS 2 to each node 3 via downlink data communication.
  • This urgent control data is control data for urgently stopping the valve and control data for urgently stopping the gas pipe.
  • the presence or absence of such urgency can be identified by setting a flag or the like in the data frame in advance.
  • the divided resource units 21 and 22 can be preferentially allocated to the downlink data communication with the higher urgency. .
  • the communication path for uplink data communication or the communication path for downlink data communication may be controlled based on the exchange status of the identified data frame.
  • the communication path for uplink data communication and the communication path for downlink data communication may overlap.
  • channel ChU1 and channel ChD1 may be assigned to the same communication path.
  • communication of uplink data communication Communication paths ChD2, ChD3, and ChD4 that do not overlap with the path may be set.
  • uplink data communication is similarly performed in terms of communication paths. Can effectively prevent communication collisions.
  • the node 3 described above may be a concept including CS2. That is, the process performed in each node 3 may be performed in CS2, and the process performed in CS2 may be performed in node 3. Further, CS2 may be replaced with a so-called node 3.
  • each processing described above can be similarly applied to communication between the CS 2 and the node 3 and communication between the nodes 3.
  • the processing operation described below is further executed on the assumption that the processing operation of the first embodiment described above is performed.
  • At least one of the nodes 3 is assigned as a controlled terminal.
  • the controlled terminal is a node that is embodied as an actuator or the like including a control system in the node 3, and is a node to which urgent control data may be transmitted from the CS2.
  • the urgent control data here is control data for urgently stopping the valve or control data for urgently stopping the gas pipe.
  • This allocation of controlled terminals may be performed manually by an administrator or user of the wireless communication system 1 in advance, or as a controlled terminal on the CS 2 side based on information sent from each node 3. You may make it identify automatically. In such a case, the case requiring urgency is classified in advance, and if the information sent from the node 3 is included in the case requiring urgency, this is specified as the controlled terminal. Also good. Other than this, it may be determined whether or not the terminal is a controlled terminal based on information sent from the node 3. For example, when CS2 identifies that a signal received from a certain node 3 is a unique signal sent from a robot, it identifies that there is a possibility of sending urgent control data, and You may make it allocate as a controlled terminal.
  • the CS 2 and controlled terminals and all nodes arranged on these routes are specified as control support terminals.
  • the communication method differs between the wireless communication between the control support terminals and the wireless communication between the other routes.
  • FIG. 6 shows a time chart in the case where data is transmitted from the node 3-5 to the CS 2 by relaying the node 3-2 between the nodes 3 other than the control support terminal.
  • Each of CS2 and each of the nodes 3-2 and 3-5 is assigned an active period (communication period) T1 and a sleep period T2 within a basic interval (intermittent standby period) T.
  • Wireless communication can be performed in the communication period T1, and in the sleep period T2, the receiving side shifts to the sleep state and cannot perform wireless communication with each other.
  • the sleep period T2 By intentionally providing the sleep period T2 within the basic interval T, power consumption can be reduced, and as a result, power consumption of the entire system can be suppressed.
  • the upper node 3-2 is the master and the lower node 3 is between the node 3-5 and the higher node 3-2. -5 is the slave relationship.
  • CS2 as a higher node is a master and the lower node 3-2 is a slave.
  • the higher order master determines the timing of the communication period T1 in the basic interval T
  • the lower order slave determines the data in accordance with the timing of the communication period T1 determined on the master side. Will be sent.
  • the node 3-5 first transmits the data D21 generated at the timing t11 in accordance with the communication period T1 starting at the timing t12 of the node 3-2 as the master. To do.
  • the node 3-2 that has received the data D21 transmits the data D21 in accordance with the communication period T1 of the CS2 as the master that starts at the timing t13.
  • the CS 2 can receive the data D21 within the communication period T1 set by itself.
  • the time ratio of the communication period T1 is increased within the basic interval T as shown in FIG. To shorten.
  • the amount of increase in the communication period may be any, but as shown in FIG. 7, all the basic intervals T may be assigned to the communication period T1 and the sleep period may be set to zero. Further, as shown in FIG. 7, the communication period T1 may be set shorter than the basic interval T by setting the end points Ts1 to Ts3 or the like. In such a case, the end points Ts1 to Ts3 are the start points of the sleep period.
  • control data when control data is transmitted from CS2 to the node 3-4, this control support terminal CS2 transmits this to the node 3-4 via the node 3-1.
  • the control support terminals (CS2, node 3-1, node 3-4) will be described by taking as an example the case where all basic intervals are allocated to the communication period and the sleep period is set to 0 as shown in the time chart of FIG. . With the time ratio of the active communication period increased in this way, the control data D22 is downlink data communicated from the CS 2 to the node 3-4.
  • the CS2 generates this data D22 at timing t14 and transmits it to the node 3-1. Since all the basic intervals are allocated to the communication period, the node 3-1 can receive the data D22 at the timing t14, and can transmit the data D22 to the node 3-4 at the same timing t14. Since all the basic intervals are also allocated to the communication period in the node 3-4, the data D22 can be received at this timing t14.
  • the present invention it becomes possible to perform downlink data communication of data D22 from CS2 to node 3-4 more quickly. Even if the data D22 is urgent, it is possible to transmit the data D22 to the node 3-4 as the controlled terminal without waiting until the sleep period elapses.
  • the various controls in the node 3-4 performed in this manner are executed quickly. As a result, it is possible to prevent a serious control delay caused by a delay in transmission of data D22 from CS2 to node 3-4 as a controlled terminal.
  • the data D23 when the data D23 is transmitted from the node 3-4 to CS2 between these control support terminals (CS2, node 3-1, node 3-4), this time ratio is increased. You may make it carry out using a communication period. Further, as shown in FIG. 8, it is assumed that CS2, node 3-1, and node 3-4 are not specified as control support terminals and the time ratio of the communication period is not increased, and is designated by the master side.
  • the data D23 may be transmitted in accordance with the communication period. In such a case, as shown in FIG. 8, the data D23 generated by the node 3-4 at the timing t15 is transmitted to the node 3-1 in the communication period starting at the timing t16. Then, the node 3-1 transmits the data D23 in the communication period starting at the timing t17 designated by CS2.
  • the number of nodes 3 that need to send control data that is particularly urgent is only a few of the total number of nodes. Therefore, the ratio of the control support terminal to the total number of nodes is very small. Only such a control support terminal increases the time ratio of the communication period T1 as described above, and for the other nodes 3 by increasing the sleep period without increasing the time ratio of the communication period T1 as in the prior art. Thus, the power consumption of the entire wireless communication system 1 does not increase so much, and the power saving performance can be continuously maintained.
  • the present invention it is possible to more quickly download data that requires urgent data from the CS 2 to the node 3 while maintaining the power saving performance of the entire system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[Problem] To provide a radio communication method and system which prevent data collision between uplink data communication and downlink data communication and which, depending on the expected communication quality of each, enables autonomous channel assignment and communication path assignment. [Solution] This radio communication method for sending and receiving data between nodes 3 in a tree-type network having a CS 2 as the root and two or more nodes 3 allocated to the CS 2, is characterized in that communication resources, which consist of frequencies or communication times and have been divided in advance into multiple divided resource units, are assigned without overlap to a channel for uplink data communication from a node 3 to the CS 2 and a channel for downlink data communication from the CS 2 to the node 3.

Description

無線通信方法及びシステムWireless communication method and system
 本発明は、収集制御局を根として2以上に亘り配置されたノード間のデータの送受信を行うツリー型ネットワークにおける無線通信方法及びシステムに関するものである。 The present invention relates to a wireless communication method and system in a tree-type network that transmits and receives data between two or more nodes arranged with a collection control station as a root.
 近年、ワイヤレスネットワークにおいて、小型で安価であり、かつ低出力のデジタル無線通信を行うことのできる、IEEE802.15.4の規格に準拠する通信デバイスが用いられている。IEEE802.15.4の規格に準拠するネットワークでは、図9に示すように、収集制御局であるCS(Collection station)71と、1つ以上のノード72-1~72-4とにより構成されたツリー型のトポロジが採用されている。 ツリー型トポロジでは、より下位のノード72が、より上位のノード72やCS71に向けて、必要に応じてデータを伝送することが行われている(例えば、特許文献1~3参照。)。 In recent years, in wireless networks, communication devices conforming to the IEEE 802.15.4 standard that are small, inexpensive, and capable of performing low-power digital wireless communication have been used. In a network compliant with the IEEE802.15.4 standard, as shown in FIG. 9, a tree type constituted by a collection control station CS (Collection station) 71 and one or more nodes 72-1 to 72-4. The topology is adopted. In the cocoon tree topology, lower nodes 72 transmit data to higher nodes 72 and CS 71 as needed (see, for example, Patent Documents 1 to 3).
 図10は、下位のノード72-3、72-4からのデータをCS71へ送信する場合におけるタイムチャートの例を示している。CS71並びに各ノード72は、それぞれ基本間隔(間欠待受周期)T内においてアクティブ期間(通信期間)T1と、スリープ期間T2とが割り当てられている。通信期間T1において無線通信を行うことが可能となり、スリープ期間T2においては受信側がスリープ状態に移行することで互いに無線通信を行うことができなくなる。あえて基本間隔T内においてスリープ期間T2を設けることにより消費電力を節減することができ、ひいてはシステム全体の使用電力を抑えること可能となる。 FIG. 10 shows an example of a time chart when data from lower nodes 72-3 and 72-4 is transmitted to the CS 71. Each of the CS 71 and each node 72 is assigned an active period (communication period) T1 and a sleep period T2 within a basic interval (intermittent standby period) T. Wireless communication can be performed in the communication period T1, and in the sleep period T2, the receiving side shifts to the sleep state and cannot perform wireless communication with each other. By intentionally providing the sleep period T2 within the basic interval T, power consumption can be reduced, and as a result, power consumption of the entire system can be suppressed.
 ノード72-3からCS71に向けてデータを送信する場合には、ノード72-3からノード72-1を中継させてCS71の経路となる。かかる場合には、ノード72-3とこれよりも上位にあるノード72-1との間では、上位のノード72-1がマスター、下位のノード72-3がスレーブの関係となる。同様にノード72-1とCS71との間では、上位のノードとしてのCS71がマスター、下位のノード72-1がスレーブの関係となる。このようなマスターとスレーブとの関係においてより上位のマスターが基本間隔Tにおける通信期間T1のタイミングを決定し、より下位のスレーブがこのマスター側において決定された通信期間T1のタイミングに合わせてデータを送信することとなる。 When data is transmitted from the node 72-3 to the CS 71, the node 72-3 is relayed from the node 72-1 to become the CS 71 path. In such a case, between the node 72-3 and the node 72-1, which is higher than the node 72-3, the upper node 72-1 is a master and the lower node 72-3 is a slave. Similarly, between the node 72-1 and the CS 71, the CS 71 as an upper node is a master and the lower node 72-1 is a slave. In such a relationship between the master and the slave, the higher order master determines the timing of the communication period T1 in the basic interval T, and the lower order slave determines the data in accordance with the timing of the communication period T1 determined on the master side. Will be sent.
 このような規則の下で、図10において先ずノード72-3は、タイミングt91において生成したデータD81を、タイミングt92において開始するマスターとしてのノード72-1の通信期間T1に合わせて送信する。このデータD81を受信したノード72-1は、タイミングt93において開始するマスターとしてのCS71の通信期間T1に合わせて当該データD81を送信する。これによりCS71は、このデータD81を自ら設定した通信期間T1内において受信することが可能となる。 Under such rules, in FIG. 10, the node 72-3 first transmits the data D81 generated at the timing t91 in accordance with the communication period T1 of the node 72-1 as the master starting at the timing t92. The node 72-1 that has received the data D81 transmits the data D81 in accordance with the communication period T1 of the CS 71 as the master starting at the timing t93. As a result, the CS 71 can receive the data D81 within the communication period T1 set by itself.
 同様に、ノード72-4からCS71に向けてデータを送信する場合には、ノード72-4からノード72-1を中継させてCS71の経路となる。ノード72-4は、タイミングt94において生成したデータD82を、タイミングt95において開始するマスターとしてのノード72-1の通信期間T1に合わせて送信する。このデータD82を受信したノード72-1は、タイミングt96において開始するマスターとしてのCS71の通信期間T1に合わせて当該データD82を送信する。これによりCS71は、このデータD82を自ら設定した通信期間T1内において受信することが可能となる。 Similarly, when data is transmitted from the node 72-4 to the CS 71, the node 72-4 is relayed from the node 72-1 to become the CS 71 path. The node 72-4 transmits the data D82 generated at the timing t94 in accordance with the communication period T1 of the node 72-1 as the master starting at the timing t95. The node 72-1 that has received the data D82 transmits the data D82 in accordance with the communication period T1 of the CS 71 as the master starting at timing t96. As a result, the CS 71 can receive the data D82 within the communication period T1 set by itself.
 CS71は、上述した無線通信の処理動作方法に基づいて、ツリー型ネットワークにおける各ノード72からのデータを全て収集することが可能となる。 The CS 71 can collect all data from each node 72 in the tree network based on the above-described wireless communication processing operation method.
特開2015-198333号公報JP-A-2015-198333 特開2014-23085号公報JP 2014-23085 A 特開2014-103580号公報JP 2014-103580 A
 ところで、上述した従来のツリー型トポロジでは、ノード72がセンサ等のように各種データをセンシングし、これをCS71において収集する場合には、特に一刻一秒を争う緊急性の高いデータではない場合が殆どであるため、上述したようにより上位のノード72やCS71によって定義される周期的な待ち受け用の通信期間T1に合わせてデータを送信することで特段問題が生じることは無い。 By the way, in the above-described conventional tree type topology, when the node 72 senses various data like a sensor and collects the data in the CS 71, it may not be highly urgent data that competes for every second. As described above, there is no particular problem by transmitting data in accordance with the periodic standby communication period T1 defined by the upper node 72 and CS 71 as described above.
 一方、ノード72が例えばアクチュエータとしての役割を担う場合、即ちバルブを停止させる制御を行ったり、ガス管を閉める制御を行うためのいわゆる制御系が加わるものである場合には、CS71からかかる制御系のノード72に対してこれを制御するための制御系データを下りデータ通信する場合がある。この制御系のデータD83は、時には緊急でバルブを停止したり、緊急でガス管を止める制御が求められる場合もあり、いわゆる緊急性を要するデータD83をノード72に送信しなければならない場合もある。 On the other hand, when the node 72 plays a role as an actuator, for example, when a control system for performing control to stop the valve or performing control to close the gas pipe is added, the control system from the CS 71 is used. Control data for controlling this may be transmitted to the node 72 by downlink data communication. The control system data D83 sometimes requires an emergency stop control of the valve or an emergency control to stop the gas pipe, and the so-called emergency data D83 must be transmitted to the node 72. .
 即ち、ノード72からCS71への上りデータ通信、並びにCS71からノード72への下りデータ通信の双方向の通信が行われる上で、CS71によるデータ収集と制御は、そもそも期待される伝送品質が異なる。 That is, the bidirectional transmission of uplink data communication from the node 72 to the CS 71 and downlink data communication from the CS 71 to the node 72 is performed, and the data collection and control by the CS 71 are originally different in expected transmission quality.
 このような互いに期待される伝送品質が異なる上りデータ通信及び下りデータ通信において、ノード72を介した同一の通信経路を共用し、更には同一の周波数チャネルを共用するのが現状であった。 In the uplink data communication and the downlink data communication having different transmission quality expected from each other, the same communication path via the node 72 is shared and the same frequency channel is shared.
 しかしながら、上りデータ通信及び下りデータ通信において、互いに同一の通信経路や同一の周波数チャネルを共用する場合には、双方にそれぞれ求められる伝送品質に応じた最適な設計を行うのが難しいことに加え、通信するデータフレームが衝突する恐れがあった。 However, in uplink data communication and downlink data communication, when sharing the same communication path and the same frequency channel, it is difficult to perform an optimal design according to the transmission quality required for both, There was a risk of colliding data frames to communicate.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、収集制御局を根として2以上に亘り配置されたノード間のデータの送受信を行うツリー型ネットワークにおいて、上りデータ通信及び下りデータ通信のデータ衝突を防止すると共に、それぞれ期待される通信品質に応じて自立的なチャネル割り当てや通信経路割り当てを可能とした無線通信方法及びシステムを提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is a tree type that transmits and receives data between two or more nodes arranged with a collection control station as a root. To provide a wireless communication method and system capable of preventing data collision between uplink data communication and downlink data communication in a network, and enabling autonomous channel allocation and communication path allocation according to each expected communication quality. is there.
 本発明者らは、上述した問題点を解決するために、収集制御局を根として2以上に亘り配置されたノード間のデータの送受信を行う際に、周波数又は通信時間からなる通信リソースを予め複数に分割した各分割リソース単位とした上で、これを上記ノードから上記収集制御局への上りデータ通信のチャネル及び上記収集制御局から上記ノードへの下りデータ通信のチャネルに対して、互いに重複することなく割り当てるように制御する無線通信方法及びシステムを発明した。 In order to solve the above-described problems, the present inventors previously set a communication resource including a frequency or a communication time when transmitting / receiving data between two or more nodes arranged with a collection control station as a root. Each divided resource unit is divided into a plurality of divided resource units, and this is overlapped with the uplink data communication channel from the node to the collection control station and the downlink data communication channel from the collection control station to the node. Invented a wireless communication method and system for controlling to allocate without performing.
 第1発明に係る無線通信方法は、収集制御局を根として2以上に亘り配置されたノード間のデータの送受信を行うツリー型ネットワークにおける無線通信方法において、周波数又は通信時間からなる通信リソースを予め複数に分割した各分割リソース単位とした上で、これを上記ノードから上記収集制御局への上りデータ通信のチャネル及び上記収集制御局から上記ノードへの下りデータ通信のチャネルに対して、互いに重複することなく割り当てることを特徴とする。 A wireless communication method according to a first aspect of the present invention is a wireless communication method in a tree-type network that transmits and receives data between two or more nodes arranged with a collection control station as a root. Each divided resource unit is divided into a plurality of divided resource units, and this is overlapped with the uplink data communication channel from the node to the collection control station and the downlink data communication channel from the collection control station to the node. It is characterized by assigning without doing.
 第2発明に係る無線通信方法は、第1発明において、上記上りデータ通信に割り当てられた各分割リソース単位には、当該上りデータ通信の各通信経路のチャネルを互いに重複することなく割り当て、上記下りデータ通信に割り当てられた各分割リソース単位には、当該下りデータ通信の各通信経路のチャネルを互いに重複することなく割り当てることを特徴とする。 The wireless communication method according to a second aspect of the present invention is the wireless communication method according to the first aspect, wherein the channel of each communication path of the uplink data communication is allocated to each divided resource unit allocated to the uplink data communication without overlapping each other, and A channel of each communication path of the downlink data communication is allocated to each divided resource unit allocated to data communication without overlapping each other.
 第3発明に係る無線通信方法は、第2発明において、通信が開始される上りデータ通信の各通信経路のチャネル又は上記下りデータ通信の各通信経路のチャネルの順に、上記分割した各分割リソース単位を互いに重複することなく割り当て、上記分割した全ての分割リソース単位に対して上記チャネルが割り当てた場合には、新たに通信が開始されるチャネルに対する上記分割リソース単位の割り当て動作を停止することを特徴とする。 The wireless communication method according to a third aspect of the present invention is the wireless communication method according to the second aspect, wherein each divided resource unit is divided in the order of the channel of each communication path of uplink data communication or the channel of each communication path of downlink data communication in which communication is started. Are allocated without overlapping each other, and when the channel is allocated to all of the divided resource units, the operation of allocating the divided resource unit to the channel where communication is newly started is stopped. And
 第4発明に係る無線通信方法は、第1発明又は第2発明において、上記上りデータ通信及び上記下りデータ通信間のそれぞれのデータフレームの交換状況を識別し、識別した上記交換状況に基づいて上記上りデータ通信の通信経路又は上記下りデータ通信の通信経路を制御し、又は上記チャネルに対する上記分割リソース単位の割り当てを制御することを特徴とする。 According to a fourth aspect of the present invention, there is provided a wireless communication method according to the first or second aspect, wherein the exchange status of each data frame between the uplink data communication and the downlink data communication is identified, and based on the identified exchange status The communication path for uplink data communication or the communication path for downlink data communication is controlled, or the allocation of the divided resource unit to the channel is controlled.
 第5発明に係る無線通信方法は、第1発明~第3発明の何れかにおいて、より上位のノードにより指定された周期的な待ち受け用の通信期間に合わせてノード間のデータの送受信を行い、少なくとも一のノードを被制御端末として予め割り当てると共に、上記収集制御局及び上記被制御端末並びにこれらの経路上に配置された全てのノードを制御支援端末として特定し、上記収集制御局から上記被制御端末への少なくとも下りデータ通信については、上記制御支援端末における上記通信期間の時間割合を増大させるように制御することを特徴とする。 According to a fifth aspect of the present invention, there is provided a wireless communication method according to any one of the first to third aspects, wherein data is transmitted and received between nodes in accordance with a periodic standby communication period designated by a higher-order node. At least one node is pre-assigned as a controlled terminal, and the collection control station, the controlled terminal, and all nodes arranged on these paths are specified as control support terminals, and the controlled control terminal At least downlink data communication to the terminal is controlled to increase the time ratio of the communication period in the control support terminal.
 第6発明に係る無線通信システムは、収集制御局を根とした2以上のノードが配置されたノード間のデータの送受信を行うツリー型の無線通信システムにおいて、周波数又は通信時間からなる通信リソースを予め複数に分割した各分割リソース単位とした上で、これを上記ノードから上記収集制御局への上りデータ通信のチャネル及び上記収集制御局から上記ノードへの下りデータ通信のチャネルに対して、互いに重複することなく割り当てることを特徴とする。 A wireless communication system according to a sixth aspect of the present invention is a tree-type wireless communication system that transmits and receives data between nodes in which two or more nodes having a collection control station as a root are arranged. Each divided resource unit divided in advance is divided into an uplink data communication channel from the node to the collection control station and a downlink data communication channel from the collection control station to the node. It is characterized by assigning without duplication.
 上述した構成からなる本発明によれば、上りデータ通信と下りデータ通信との間で互いに分割リソース単位が重複しないように制御することに加えて、各通信経路のチャネルも互いに重複しないように別々の分割リソース単位に割り当てる。これにより、上りデータ通信と下りデータ通信の各データフレームが互いに衝突するのを防止でき、しかも上りデータ通信の各通信経路のチャネル間、下りデータ通信の各通信経路のチャネル間でも互いにデータフレームが衝突するのを防止することが可能となる。 According to the present invention having the above-described configuration, in addition to controlling so that the divided resource units do not overlap each other between the uplink data communication and the downlink data communication, the channels of the respective communication paths are also separated so as not to overlap each other. Allocate to each divided resource unit As a result, it is possible to prevent the data frames of the uplink data communication and the downlink data communication from colliding with each other, and the data frames are also exchanged between the channels of each communication path of the uplink data communication and between the channels of each communication path of the downlink data communication. It is possible to prevent a collision.
本発明が適用される無線通信システムの例を示す模式図である。It is a schematic diagram which shows the example of the radio | wireless communications system to which this invention is applied. 複数の分割リソース単位を上りデータ通信及び下りデータ通信に対して互いに重複することなく割り当てる例について説明するための図である。It is a figure for demonstrating the example which allocates a some division | segmentation resource unit without mutually overlapping with respect to uplink data communication and downlink data communication. 複数の分割リソース単位を上りデータ通信及び下りデータ通信に対して互いに重複することなく割り当てる例について説明するための他の図である。It is another figure for demonstrating the example which allocates a some division | segmentation resource unit with respect to uplink data communication and downlink data communication, without mutually overlapping. 上りデータ通信のチャネルと、下りデータ通信のチャネルにおける各分割リソース単位の割り当て動作について説明するための図である。It is a figure for demonstrating the allocation operation | movement of each division | segmentation resource unit in the channel of uplink data communication, and the channel of downlink data communication. 一のノードを被制御端末として割り当てた場合における制御支援端末の特定例を示す図である。It is a figure which shows the specific example of the control assistance terminal in the case of assigning one node as a controlled terminal. 制御支援端末以外のノード間の上りデータ通信時のタイムチャートである。It is a time chart at the time of the uplink data communication between nodes other than a control assistance terminal. 基本間隔内において通信期間の時間割合を増大させ、その分においてスリープ期間を短縮する例を示す図である。It is a figure which shows the example which increases the time ratio of a communication period within a basic interval, and shortens a sleep period in the part. 収集制御局からあるノードに対して緊急用の制御データを送信する場合におけるタイムチャートである。It is a time chart in the case of transmitting emergency control data from a collection control station to a certain node. IEEE802.15.4の規格に準拠するネットワークの例を示す図である。1 is a diagram illustrating an example of a network that conforms to the IEEE 802.15.4 standard. FIG. 従来技術の問題点について説明するための図である。It is a figure for demonstrating the problem of a prior art.
 第1実施形態
 以下、本発明の第1実施形態としての無線通信方法について詳細に説明する。 図1は、本発明が適用される無線通信システム1の例を示す模式図である。無線通信システム1は、無線通信端末として、収集制御局(Collection Station:以下CSという。)2を根としたノード3-1、3-2、3-3、3-4とを備え、いわゆるツリー型のトポロジが採用されている。 この無線通信システム1では、より下位のノード3が、より上位のノード3やCS2に向けて上りデータ通信を行う。また無線通信システム1では、より上位のノード3やCS2が、より下位のノード3に向けて下りデータ通信する。
First Embodiment Hereinafter, a wireless communication method as a first embodiment of the present invention will be described in detail. FIG. 1 is a schematic diagram showing an example of a wireless communication system 1 to which the present invention is applied. The wireless communication system 1 includes, as wireless communication terminals, nodes 3-1, 3-2, 3-3, 3-4 rooted at a collection control station (collection station: hereinafter referred to as CS) 2, and a so-called tree A type topology is adopted. In this wireless communication system 1, a lower node 3 performs uplink data communication toward a higher node 3 and CS2. In the wireless communication system 1, the higher order node 3 and CS 2 perform downlink data communication toward the lower order node 3.
 CS2は、最上位のマスターデバイスであり、各ノード3-1~3-4から上りデータ通信により送信されてくるデータを収集する。また、CS2は、この無線通信システム1全体を制御するための中央制御部としての役割も担い、ある特定のノード3に対して制御系のデータを下りデータ通信する。 CS2 is the highest-level master device and collects data transmitted from each node 3-1 to 3-4 by upstream data communication. The CS 2 also plays a role as a central control unit for controlling the entire wireless communication system 1 and performs downlink data communication of control data to a specific node 3.
 ノード3は、データの発信や中継等を始めとしたデータの送受信を行うことが可能なデバイスの総称であり、例えばIEEE802.15.4の規格に準拠する通信デバイスである。ノード3は、所定のデータをセンシングしてこれを無線により送信するセンサとして具現化されるものもあれば、例えば携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末、ノート型のパーソナルコンピュータ(PC)等のような無線通信が可能な端末装置として具現化されるものであってもよい。またこのノード3はアクチュエータのような制御系を含むものであってもよい。かかる場合には、例えばバルブを停止する制御を行ったり、ロボットの制御を行ったり、ガスを停止するための制御を行うことを可能とするデバイスとして具現化される。ノード3が制御系を含むアクチュエータ等として具現化されるものであれば、CS2から他のノード3を介して下りデータ通信されてくる制御用のデータに基づき、各種制御動作を実行していくこととなる。 Node 3 is a generic name for devices capable of transmitting and receiving data such as data transmission and relay, and is a communication device compliant with the IEEE 802.15.4 standard, for example. The node 3 may be embodied as a sensor that senses predetermined data and transmits the data wirelessly, such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, a notebook personal computer (PC), or the like. It may be embodied as a terminal device capable of wireless communication. The node 3 may include a control system such as an actuator. In such a case, for example, it is embodied as a device that can perform control for stopping a valve, control a robot, or perform control for stopping gas. If the node 3 is embodied as an actuator including a control system, various control operations are executed based on the control data transmitted from the CS 2 via the other nodes 3 via the downlink data. It becomes.
 本実施の形態においては、図1に示す無線通信システム1に示すように、CS2の下に4つのノード3-1、3-2、3-3、3-4が配置されている場合を例にとり説明をするが、これに限定されるものではない。即ち、CS2の下位リンクに配置されるノード3は、CS2にデータを収集させるものであれば、いかなる枝分かれのパターンで構成されるツリー構造とされていてもよく、また2以上のいかなるノード数で構成されていてもよい。 In the present embodiment, as shown in the wireless communication system 1 shown in FIG. 1, an example is shown in which four nodes 3-1, 3-2, 3-3, 3-4 are arranged under CS2. However, the present invention is not limited to this. That is, the node 3 arranged in the lower link of the CS 2 may have a tree structure composed of any branching pattern as long as the data is collected by the CS 2. It may be configured.
 各これらCS2及びノード3-1~3-4間の通信経路それぞれについてチャネルが割り当てられる。図1では、ノード3-1からCS2への上りデータ通信のチャネルをChU1、ノード3-2からノード3-1への上りデータ通信のチャネルをChU2、ノード3-3からノード3-1への上りデータ通信のチャネルをChU3、ノード3-4からノード3-2への上りデータ通信のチャネルをChU4としている。同様に図1では、CS2からノード3-1への下りデータ通信のチャネルをChD1、CS2からノード3-2への下りデータ通信のチャネルをChD2、CS2からノード3-3への下りデータ通信のチャネルをChD3、CS2からノード3-4への下りデータ通信のチャネルをChD4としている。 A channel is assigned to each communication path between the CS2 and the nodes 3-1 to 3-4. In FIG. 1, the channel for uplink data communication from the node 3-1 to CS2 is ChU1, the channel for uplink data communication from the node 3-2 to the node 3-1 is ChU2, and the channel from the node 3-3 to the node 3-1 The channel for uplink data communication is ChU3, and the channel for uplink data communication from the node 3-4 to the node 3-2 is ChU4. Similarly, in FIG. 1, the downlink data communication channel from CS2 to node 3-1 is ChD1, the downlink data communication channel from CS2 to node 3-2 is ChD2, and the downlink data communication channel from CS2 to node 3-3 is The channel is ChD3, and the downlink data communication channel from CS2 to the node 3-4 is ChD4.
 本発明を適用した無線通信システム1では、図2(a)に示すような周波数チャネルからなる通信リソースを予め複数に分割した分割リソース単位21を構成する。この分割リソース単位21は、時間分割されたスロット、及び周波数分割された帯域の双方を含む概念である。各分割リソース単位21には、上りデータ通信又は下りデータ通信の各チャネルが割り当て可能とされている。即ち、この分割リソース単位21にそれぞれ各通信のチャネルが割り当てられることにより、周波数チャネルが完成することとなる。本発明においては、これら複数の分割リソース単位21を上りデータ通信及び下りデータ通信に対して互いに重複することなく割り当てる。図2(a)の例では、8つに分割した分割リソース単位21-1~21-8のうち、上りデータ通信のチャネルに分割リソース単位21-1~21-5を割り当て、下りデータ通信のチャネルに分割リソース単位21-6~21-8を割り当てる。このようにして、上りデータ通信のチャネルと、下りデータ通信のチャネル間において、互いに重複して割り当てられる分割リソース単位21が存在しないように制御されることとなる。なお、この分割リソース単位21においていずれのチャネルも割り当てられない、いわゆる残存分割リソース単位が含まれるものであってもよい。なお、以下の例では、8つの分割リソース単位により構成する場合を例にとり説明をするが、分割リソース単位数は分割の数に応じて他のいかなる数で構成されるものであってもよい。 In the wireless communication system 1 to which the present invention is applied, a divided resource unit 21 is formed by dividing a communication resource including a frequency channel as shown in FIG. This divided resource unit 21 is a concept including both time-divided slots and frequency-divided bands. Each divided resource unit 21 can be assigned to each channel of uplink data communication or downlink data communication. That is, a frequency channel is completed by assigning each communication channel to the divided resource unit 21. In the present invention, the plurality of divided resource units 21 are allocated to uplink data communication and downlink data communication without overlapping each other. In the example of FIG. 2A, among the divided resource units 21-1 to 21-8 divided into eight, the divided resource units 21-1 to 21-5 are allocated to the uplink data communication channel, and the downlink data communication is performed. Divided resource units 21-6 to 21-8 are allocated to the channel. In this way, control is performed so that there are no divided resource units 21 that are allocated in an overlapping manner between the uplink data communication channel and the downlink data communication channel. In addition, a so-called remaining divided resource unit to which no channel is allocated in the divided resource unit 21 may be included. In the following example, description will be made by taking as an example the case of comprising eight divided resource units, but the number of divided resource units may be constituted by any other number depending on the number of divisions.
 また本発明を適用した無線通信システム1では、図2(b)に示すような通信時間からなる通信リソースを予め複数に分割した時分割の分割リソース単位22を構成するようにしてもよい。各時分割の分割リソース単位22には、上りデータ通信又は下りデータ通信の各チャネルが割り当て可能とされている。即ち、この時分割の分割リソース単位22にそれぞれ各通信のチャネルが割り当てられることにより、時分割チャネルが完成することとなる。本発明においては、これら複数の分割リソース単位22を上りデータ通信及び下りデータ通信に対して互いに重複することなく割り当てる。図2(b)の例では、8つに分割した分割リソース単位22-1~22-8のうち、上りデータ通信のチャネルに分割リソース単位22-1~22-3を割り当て、下りデータ通信のチャネルに分割リソース単位22-4~22-8を割り当てる。このようにして、上りデータ通信のチャネルと、下りデータ通信のチャネル間において、互いに重複して割り当てられる分割リソース単位22が存在しないように制御されることとなる。なお、この分割リソース単位22においていずれのチャネルも割り当てられない、いわゆる残存分割リソース単位が含まれるものであってもよい。 Also, in the wireless communication system 1 to which the present invention is applied, a time-division divided resource unit 22 may be configured in which communication resources having communication times as shown in FIG. Each time division resource unit 22 can be assigned to each channel of uplink data communication or downlink data communication. That is, a time division channel is completed by allocating each communication channel to this time division division resource unit 22. In the present invention, the plurality of divided resource units 22 are allocated to uplink data communication and downlink data communication without overlapping each other. In the example of FIG. 2B, among the divided resource units 22-1 to 22-8 divided into eight, the divided resource units 22-1 to 22-3 are allocated to the uplink data communication channel, and the downlink data communication is performed. Divided resource units 22-4 to 22-8 are allocated to the channel. In this way, control is performed so that there are no divided resource units 22 that are allocated in an overlapping manner between the uplink data communication channel and the downlink data communication channel. Note that a so-called remaining divided resource unit to which no channel is assigned in the divided resource unit 22 may be included.
 このような周波数又は通信時間からなる通信リソースを分割した分割リソース単位21、22を割り当てる上で、上りデータ通信に割り当てられた各分割リソース単位21、22には、当該上りデータ通信の各通信経路のチャネルChDを互いに重複することなく割り当てる。同様に下りデータ通信に割り当てられた各分割リソース単位21、22には、当該くだりデータ通信の各通信経路のチャネルChUを互いに重複することなく割り当てる。 In assigning the divided resource units 21 and 22 obtained by dividing the communication resource having such frequency or communication time, each divided resource unit 21 and 22 assigned to the uplink data communication includes each communication path of the uplink data communication. Are assigned without overlapping each other. Similarly, to each divided resource unit 21 and 22 allocated to downlink data communication, the channel ChU of each communication path of the stream data communication is allocated without overlapping each other.
 図3の例では、分割リソース単位21について、分割リソース単位21-1にチャネルChU1を、分割リソース単位21-2にチャネルChU2を、分割リソース単位21-3にチャネルChU3を、分割リソース単位21-4にチャネルChU4を割り当てる。また分割リソース単位21-6にチャネルChD1を、分割リソース単位21-7にチャネルChD4を、分割リソース単位21-8にチャネルChD3を割り当てる。 In the example of FIG. 3, for the divided resource unit 21, the channel ChU1 is assigned to the divided resource unit 21-1, the channel ChU2 is assigned to the divided resource unit 21-2, the channel ChU3 is assigned to the divided resource unit 21-3, and the divided resource unit 21-- 4 is assigned channel ChU4. Further, the channel ChD1 is allocated to the divided resource unit 21-6, the channel ChD4 is allocated to the divided resource unit 21-7, and the channel ChD3 is allocated to the divided resource unit 21-8.
 このようにして、上りデータ通信と下りデータ通信との間で互いに分割リソース単位21が重複しないように制御することに加えて、各通信経路のチャネルも互いに重複しないように別々の分割リソース単位21に割り当てる。 In this way, in addition to controlling the divided resource units 21 so as not to overlap each other between the uplink data communication and the downlink data communication, separate divided resource units 21 so that the channels of the respective communication paths do not overlap each other. Assign to.
 これにより、上りデータ通信と下りデータ通信の各データフレームが互いに衝突するのを防止でき、しかも上りデータ通信の各通信経路のチャネル間、下りデータ通信の各通信経路のチャネル間でも互いにデータフレームが衝突するのを防止することが可能となる。 As a result, it is possible to prevent the data frames of the uplink data communication and the downlink data communication from colliding with each other, and the data frames are also exchanged between the channels of each communication path of the uplink data communication and between the channels of each communication path of the downlink data communication. It is possible to prevent a collision.
 上述した図3の例では、周波数からなる通信リソースを分割した分割リソース単位21を例にとり説明をしたが、時分割の分割リソース単位22についても同様に、各通信経路のチャネルも互いに重複しないように別々の分割リソース単位21に割り当てることで、上述した作用効果が得られる。 In the example of FIG. 3 described above, the divided resource unit 21 obtained by dividing the communication resource including the frequency has been described as an example. Similarly, the channel of each communication path does not overlap each other with respect to the time-divided divided resource unit 22 as well. By assigning them to different divided resource units 21, the above-described effects can be obtained.
 なお、本発明においては、上述したように上りデータ通信に割り当てられる分割リソース単位21、22と下りデータ通信に割り当てられる分割リソース単位21、22を予め決定し、その割り当てた分割リソース単位21、22の範囲内で、上りデータ通信と下りデータ通信の各通信経路のチャネルを割り当てるようにしてもよいが、これに限定されるものではない。 In the present invention, as described above, the divided resource units 21 and 22 assigned to the uplink data communication and the divided resource units 21 and 22 assigned to the downlink data communication are determined in advance, and the assigned divided resource units 21 and 22 are assigned. Within this range, channels for each communication path of uplink data communication and downlink data communication may be allocated, but the present invention is not limited to this.
 また本発明は、このような上りデータ通信のチャネルと、下りデータ通信のチャネルにおける各分割リソース単位21の割り当てを以下に説明する方法に基づいて実行するようにしてもよい。 In the present invention, the allocation of each divided resource unit 21 in the channel for uplink data communication and the channel for downlink data communication may be executed based on the method described below.
 例えば、図4(a)に示すように分割リソース単位22-1~22-8に対して最初に通信を開始するチャネルChU3に分割リソース単位22-1を割り当てる。次に図4(b)に示すように、チャネルChD4の通信が開始された場合には、これに分割リソース単位22-8を割り当て、更にチャネルChD1の通信が開始された場合には、これに分割リソース単位22-7を割り当て、次にチャネルChU4の通信が開始された場合には、これに分割リソース単位22-2を割り当てる。このように上りデータ通信の場合には、通信が開始される通信経路のチャネルから順に分割リソース単位22-1から昇順に割り当て、下りデータ通信の場合には、通信が開始される通信経路のチャネルから順に分割リソース単位22-8から降順に割り当てる。その結果、何れは図4(c)に示すように、分割した全ての分割リソース単位22に対して上りデータ通信及び下りデータ通信のチャネルが割り当てることとなる。即ち分割リソース単位22には、上りデータ通信のチャネルと、下りデータ通信のチャネルにより占有され、未使用の残存分割リソース単位が一つも存在しない状態となる。 For example, as shown in FIG. 4A, for the divided resource units 22-1 to 22-8, the divided resource unit 22-1 is allocated to the channel ChU3 that starts communication first. Next, as shown in FIG. 4B, when communication on the channel ChD4 is started, the divided resource unit 22-8 is allocated to this, and when communication on the channel ChD1 is started, this is assigned to this. When the divided resource unit 22-7 is allocated and communication of the channel ChU4 is started next, the divided resource unit 22-2 is allocated thereto. In this way, in the case of uplink data communication, the channel is assigned in ascending order from the divided resource unit 22-1 in order from the channel of the communication path where communication is started, and in the case of downlink data communication, the channel of the communication path where communication is started Are allocated in descending order from the divided resource unit 22-8. As a result, as shown in FIG. 4C, uplink data communication and downlink data communication channels are allocated to all divided resource units 22. That is, the divided resource unit 22 is occupied by the uplink data communication channel and the downlink data communication channel, and there is no unused divided resource unit.
 このような状態になった場合において、仮に新たに通信が開始されるチャネルが発生した場合においても、これに対する分割リソース単位22の割り当て動作を停止する。これにより、既に他のチャネルが割り当てられている分割リソース単位22に対して重複して別のチャネルが割り当てられることを防止することができる。しかも、この割り当て方法によれば、通信が開始されるチャネルから分割リソース単位22を順次割り当てるものであるから、通信の優先度の高いチャネルについては分割リソース単位22が漏れなく割り当てられることとなる。また、上りデータ通信に割り当てられる分割リソース単位22と、下りデータ通信に割り当てられる分割リソース単位22を事前に分類するのではなく、あくまで新たに通信が開始されるチャネルから優先的に割り当てた結果、最終的に上りデータ通信と下りデータ通信の分割リソース単位22の割り当て境界が自然に決まる構成となっている。このため、上りデータ通信及び下りデータ通信の何れか一方において分割リソース単位22が余り、他方において分割リソース単位が足りなくなることが無くなり、より効率的な分割リソース単位22の割り当てを実現することが可能となる。 In such a state, even if a new channel for starting communication is generated, the allocation operation of the divided resource unit 22 is stopped. As a result, it is possible to prevent another channel from being redundantly assigned to the divided resource unit 22 to which another channel has already been assigned. In addition, according to this allocation method, the divided resource units 22 are sequentially allocated from the channel where the communication is started, and therefore, the divided resource units 22 are allocated without omission for the channel having a high communication priority. Further, as a result of preferentially allocating the divided resource unit 22 allocated to uplink data communication and the divided resource unit 22 allocated to downlink data communication in advance from the channel where communication is newly started, Finally, the allocation boundary between the divided resource units 22 for uplink data communication and downlink data communication is determined naturally. For this reason, the division resource unit 22 does not remain in either one of the uplink data communication and the downlink data communication, and the division resource unit does not become insufficient in the other, and more efficient allocation of the division resource unit 22 can be realized. It becomes.
 なお、上述した分割リソース単位22の割り当て方法を、分割リソース単位21の割り当て方法に対して適用するようにしてもよいことは勿論である。 Of course, the above-described allocation method of the divided resource unit 22 may be applied to the allocation method of the divided resource unit 21.
 また、本発明によれば、各チャネルへの分割リソース単位21の割り当てを、上りデータ通信及び下りデータ通信間のそれぞれのデータフレームの交換状況を識別した上で実行するようにしてもよい。ここでいうデータフレームの交換状況の識別とは、データフレームの通信量や通信頻度、通信が開始されているチャネル数等を上りデータ通信と下りデータ通信とについて、それぞれ判別することを意味する。またデータフレームの交換状況の識別は、緊急性を要するデータの送信か否かも含まれる。これらの判別を行うことにより、分割リソース単位21、22を優先的に割り当てるべきチャネルを判別することができる。仮にデータフレームの交換状況が活発なチャネルに対しては優先的に分割リソース単位21、22を割り当て、データフレームの交換状況が低調なチャネルについては分割リソース単位21、22の割り当ての優先順位を下げるようにしてもよい。 Further, according to the present invention, the allocation of the divided resource unit 21 to each channel may be executed after identifying the exchange status of each data frame between the uplink data communication and the downlink data communication. The identification of the exchange status of the data frame here means that the communication amount and communication frequency of the data frame, the number of channels on which the communication is started, and the like are respectively determined for the uplink data communication and the downlink data communication. Further, the identification of the exchange status of the data frame includes whether or not data requiring urgency is transmitted. By performing these determinations, it is possible to determine the channel to which the divided resource units 21 and 22 should be preferentially allocated. For example, divided resource units 21 and 22 are preferentially assigned to channels in which the exchange status of data frames is active, and the priority of assignment of divided resource units 21 and 22 is lowered for channels in which the exchange status of data frames is low. You may do it.
 特に、CS2から各ノード3へ緊急性を要する制御用データを下りデータ通信を介して送る場合がある。この緊急性を要する制御用データとは、緊急でバルブを停止するための制御データや、緊急でガス管を止めるための制御データである。このような緊急性の有無についても予めデータフレームにフラグ等を立てておくことで、これを識別することができる。この緊急性が高いほどデータフレームの交換状況が高くなるように設定しておくことにより、この緊急性の高い下りデータ通信に対して優先的に分割リソース単位21、22を割り当てることが可能となる。 In particular, control data that requires urgency may be sent from CS 2 to each node 3 via downlink data communication. This urgent control data is control data for urgently stopping the valve and control data for urgently stopping the gas pipe. The presence or absence of such urgency can be identified by setting a flag or the like in the data frame in advance. By setting the data frame exchange status to be higher as the urgency is higher, the divided resource units 21 and 22 can be preferentially allocated to the downlink data communication with the higher urgency. .
 更に本発明によれば、識別したデータフレームの交換状況に基づいて上りデータ通信の通信経路又は下りデータ通信の通信経路を制御するようにしてもよい。本発明では、上りデータ通信の通信経路と、下りデータ通信の通信経路が重複してもよく、例えばチャネルChU1とチャネルChD1とが同一の通信経路に割り当てられていても良い。但し、データフレームの交換状況がより活発な通信経路や、上述のように緊急性の高い下りデータ通信を行う場合には、上りデータ通信の通信経路との衝突を避けるべく、上りデータ通信の通信経路とは重複しない通信経路ChD2、ChD3、ChD4を設定するようにしてもよい。これにより、データフレームの交換状況がより活発な通信経路や、上述のように緊急性の高い下りデータ通信につき、通信リソースを互いに異ならせることに加え、通信経路の面においても同様に上りデータ通信との通信衝突を効果的に防止することができる。 Furthermore, according to the present invention, the communication path for uplink data communication or the communication path for downlink data communication may be controlled based on the exchange status of the identified data frame. In the present invention, the communication path for uplink data communication and the communication path for downlink data communication may overlap. For example, channel ChU1 and channel ChD1 may be assigned to the same communication path. However, in the case of a communication path where the exchange status of data frames is more active, or when performing downlink data communication with high urgency as described above, in order to avoid collision with the communication path of uplink data communication, communication of uplink data communication Communication paths ChD2, ChD3, and ChD4 that do not overlap with the path may be set. As a result, in addition to making communication resources different from each other for communication paths in which the exchange status of data frames is more active and downlink data communication with high urgency as described above, uplink data communication is similarly performed in terms of communication paths. Can effectively prevent communication collisions.
 このように本発明は、データフレームの交換状況に応じてチャネルを割り当てる分割リソース単位21、22や通信経路を自立分散的に制御することが可能となる。 As described above, according to the present invention, it is possible to control the divided resource units 21 and 22 to which channels are allocated according to the exchange state of data frames and communication paths in an autonomous and distributed manner.
 また、上述したノード3は、CS2を含む概念とされていてもよい。即ち、各ノード3において行われる処理は、CS2において行われるものであってもよいし、CS2において行われる処理はノード3において行われるものであってもよい。また、CS2はいわゆるノード3に置き換えられるものであってもよい。 Further, the node 3 described above may be a concept including CS2. That is, the process performed in each node 3 may be performed in CS2, and the process performed in CS2 may be performed in node 3. Further, CS2 may be replaced with a so-called node 3.
 また、上述した各処理は、CS2とノード3間との通信、及びノード3同士の通信において同様に適用可能であることは勿論である。 Of course, each processing described above can be similarly applied to communication between the CS 2 and the node 3 and communication between the nodes 3.
 第2実施形態
 以下、本発明の第2実施形態としての無線通信方法について詳細に説明する。この第2実施形態において、上述した第1実施形態と同一の構成要素、部材に関しては同一の符号を付すことにより以下での説明を省略する。
Second Embodiment Hereinafter, a wireless communication method as a second embodiment of the present invention will be described in detail. In the second embodiment, the same components and members as those of the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
 第2実施形態では、上述した第1実施形態の処理動作を行うことを前提とした上で、更に以下に説明する処理動作を実行する。 In the second embodiment, the processing operation described below is further executed on the assumption that the processing operation of the first embodiment described above is performed.
 先ずノード3のうち、少なくとも一のノード3を被制御端末として割り当てる。この被制御端末とは、ノード3のうち、制御系を含むアクチュエータ等として具現化されるものであり、かつ緊急性を要する制御用データがCS2から送信される可能性のあるノードとする。ここでいう緊急性を要する制御用データとは、緊急でバルブを停止するための制御データや、緊急でガス管を止めるための制御データである。 First, at least one of the nodes 3 is assigned as a controlled terminal. The controlled terminal is a node that is embodied as an actuator or the like including a control system in the node 3, and is a node to which urgent control data may be transmitted from the CS2. The urgent control data here is control data for urgently stopping the valve or control data for urgently stopping the gas pipe.
 この被制御端末の割り当ては、無線通信システム1の管理者やユーザ等が予め人為的に行うようにしてもよいし、各ノード3から送られてくる情報に基づいてCS2側において被制御端末として自動的に特定するようにしてもよい。かかる場合には、緊急性を要するケースを予め類型化しておき、ノード3から送られてくる情報が緊急性を要するケースに含まれるものであれば、これを被制御端末として特定するようにしてもよい。これ以外には、ノード3から送られてくる情報に基づいて被制御端末であるか否かを判別するようにしてもよい。例えばCS2があるノード3から受信した信号がロボットから送られてくる特有の信号等であることを識別した場合、緊急性を要する制御用データを送付する可能性があることを識別し、これを被制御端末として割り当てるようにしてもよい。 This allocation of controlled terminals may be performed manually by an administrator or user of the wireless communication system 1 in advance, or as a controlled terminal on the CS 2 side based on information sent from each node 3. You may make it identify automatically. In such a case, the case requiring urgency is classified in advance, and if the information sent from the node 3 is included in the case requiring urgency, this is specified as the controlled terminal. Also good. Other than this, it may be determined whether or not the terminal is a controlled terminal based on information sent from the node 3. For example, when CS2 identifies that a signal received from a certain node 3 is a unique signal sent from a robot, it identifies that there is a possibility of sending urgent control data, and You may make it allocate as a controlled terminal.
 無線通信システム1では、CS2及び被制御端末並びにこれらの経路上に配置された全てのノードを制御支援端末として特定する。図5に示す例ではノード3-4を被制御端末として割り当てた場合、CS2、ノード3-1、ノード3-4を制御支援端末として特定されることとなる。本発明においては、この制御支援端末間の無線通信と、それ以外の経路間の無線通信との間で、通信の方式が互いに異なる。 In the wireless communication system 1, the CS 2 and controlled terminals and all nodes arranged on these routes are specified as control support terminals. In the example shown in FIG. 5, when node 3-4 is assigned as a controlled terminal, CS2, node 3-1, and node 3-4 are specified as control support terminals. In the present invention, the communication method differs between the wireless communication between the control support terminals and the wireless communication between the other routes.
 図6は、制御支援端末以外のノード3間として、ノード3-5からノード3-2を中継させてCS2へデータを上りデータ通信する場合におけるタイムチャートを示している。CS2並びに各ノード3-2、3-5は、それぞれ基本間隔(間欠待受周期)T内においてアクティブ期間(通信期間)T1と、スリープ期間T2とが割り当てられている。通信期間T1において無線通信を行うことが可能となり、スリープ期間T2においては受信側がスリープ状態に移行することで互いに無線通信を行うことができなくなる。あえて基本間隔T内においてスリープ期間T2を設けることにより消費電力を節減することができ、ひいてはシステム全体の使用電力を抑えること可能となる。 FIG. 6 shows a time chart in the case where data is transmitted from the node 3-5 to the CS 2 by relaying the node 3-2 between the nodes 3 other than the control support terminal. Each of CS2 and each of the nodes 3-2 and 3-5 is assigned an active period (communication period) T1 and a sleep period T2 within a basic interval (intermittent standby period) T. Wireless communication can be performed in the communication period T1, and in the sleep period T2, the receiving side shifts to the sleep state and cannot perform wireless communication with each other. By intentionally providing the sleep period T2 within the basic interval T, power consumption can be reduced, and as a result, power consumption of the entire system can be suppressed.
 ノード3-5からCS2に向けてデータを送信する場合には、ノード3-5とこれよりも上位にあるノード3-2との間では、上位のノード3-2がマスター、下位のノード3-5がスレーブの関係となる。同様にノード3-2とCS2との間では、上位のノードとしてのCS2がマスター、下位のノード3-2がスレーブの関係となる。このようなマスターとスレーブとの関係においてより上位のマスターが基本間隔Tにおける通信期間T1のタイミングを決定し、より下位のスレーブがこのマスター側において決定された通信期間T1のタイミングに合わせてデータを送信することとなる。 When data is transmitted from the node 3-5 to the CS2, the upper node 3-2 is the master and the lower node 3 is between the node 3-5 and the higher node 3-2. -5 is the slave relationship. Similarly, between the node 3-2 and CS2, CS2 as a higher node is a master and the lower node 3-2 is a slave. In such a relationship between the master and the slave, the higher order master determines the timing of the communication period T1 in the basic interval T, and the lower order slave determines the data in accordance with the timing of the communication period T1 determined on the master side. Will be sent.
 このような規則の下で、図6に示すように先ずノード3-5は、タイミングt11において生成したデータD21を、マスターとしてのノード3-2のタイミングt12において開始する通信期間T1に合わせて送信する。このデータD21を受信したノード3-2は、タイミングt13において開始するマスターとしてのCS2の通信期間T1に合わせて当該データD21を送信する。これによりCS2は、このデータD21を自ら設定した通信期間T1内において受信することが可能となる。 Under such a rule, as shown in FIG. 6, the node 3-5 first transmits the data D21 generated at the timing t11 in accordance with the communication period T1 starting at the timing t12 of the node 3-2 as the master. To do. The node 3-2 that has received the data D21 transmits the data D21 in accordance with the communication period T1 of the CS2 as the master that starts at the timing t13. As a result, the CS 2 can receive the data D21 within the communication period T1 set by itself.
 これに対して、制御支援端末(CS2、ノード3-1、ノード3-4)については、図7に示すように基本間隔T内において通信期間T1の時間割合を増大させ、その分においてスリープ期間を短縮する。この通信期間の増大量はいかなるものであってもよいが、図7に示すように基本間隔T全てを通信期間T1に割り当ててスリープ期間を0にしてもよい。また図7に示すように通信期間T1を終点Ts1~Ts3等に設定することで基本間隔Tよりも短くするようにしてもよい。かかる場合には終点Ts1~Ts3がスリープ期間の始点となる。 On the other hand, for the control support terminals (CS2, node 3-1, node 3-4), the time ratio of the communication period T1 is increased within the basic interval T as shown in FIG. To shorten. The amount of increase in the communication period may be any, but as shown in FIG. 7, all the basic intervals T may be assigned to the communication period T1 and the sleep period may be set to zero. Further, as shown in FIG. 7, the communication period T1 may be set shorter than the basic interval T by setting the end points Ts1 to Ts3 or the like. In such a case, the end points Ts1 to Ts3 are the start points of the sleep period.
 ここでCS2からノード3-4に対して制御データを送信する場合には、この制御支援端末であるCS2からノード3-1を介してノード3-4へこれを送信することとなるが、これら制御支援端末(CS2、ノード3-1、ノード3-4)については図8のタイムチャートに示すように基本間隔全てを通信期間に割り当ててスリープ期間を0にする場合を例に取り説明をする。このようにアクティブな通信期間の時間割合を増大させた状態で、CS2からノード3-4に対して制御用のデータD22を下りデータ通信する。 Here, when control data is transmitted from CS2 to the node 3-4, this control support terminal CS2 transmits this to the node 3-4 via the node 3-1. The control support terminals (CS2, node 3-1, node 3-4) will be described by taking as an example the case where all basic intervals are allocated to the communication period and the sleep period is set to 0 as shown in the time chart of FIG. . With the time ratio of the active communication period increased in this way, the control data D22 is downlink data communicated from the CS 2 to the node 3-4.
 CS2はタイミングt14においてこのデータD22を生成し、これをノード3-1へ送信する。ノード3-1は基本間隔全てが通信期間に割り当てられているため、タイミングt14においてデータD22を受信することができ、同じタイミングt14において当該データD22をノード3-4へ送信することができる。ノード3-4も基本間隔全てが通信期間に割り当てられているため、データD22をこのタイミングt14において受信することができる。 CS2 generates this data D22 at timing t14 and transmits it to the node 3-1. Since all the basic intervals are allocated to the communication period, the node 3-1 can receive the data D22 at the timing t14, and can transmit the data D22 to the node 3-4 at the same timing t14. Since all the basic intervals are also allocated to the communication period in the node 3-4, the data D22 can be received at this timing t14.
 このため、本発明によれば、CS2からノード3-4に対してデータD22をより迅速に下りデータ通信することが可能となる。仮にデータD22が緊急性を要するものである場合においても、スリープ期間が経過するまで待機すること無くデータD22を被制御端末としてのノード3-4に送信することが可能となり、当該データD22に基づいて行われるノード3-4における各種制御が迅速に実行させることとなる。その結果、CS2から被制御端末としてのノード3-4へのデータD22の送信が遅れることによる深刻な制御遅延を引き起こしてしまうことを防止することができる。 Therefore, according to the present invention, it becomes possible to perform downlink data communication of data D22 from CS2 to node 3-4 more quickly. Even if the data D22 is urgent, it is possible to transmit the data D22 to the node 3-4 as the controlled terminal without waiting until the sleep period elapses. The various controls in the node 3-4 performed in this manner are executed quickly. As a result, it is possible to prevent a serious control delay caused by a delay in transmission of data D22 from CS2 to node 3-4 as a controlled terminal.
 ちなみに、これら制御支援端末(CS2、ノード3-1、ノード3-4)間において、ノード3-4からCS2に向けてデータD23を上りデータ通信を行う場合には、この時間割合を増大させた通信期間を利用して行うようにしてもよい。また図8に示すようにCS2、ノード3-1、ノード3-4が制御支援端末として特定されておらず、通信期間の時間割合を増大されていない場合を仮定し、マスター側から指定された通信期間に合わせてデータD23を送信するようにしてもよい。かかる場合には、図8に示すようにタイミングt15においてノード3-4が生成したデータD23を、タイミングt16において開始する通信期間においてノード3-1へ上りデータ通信する。そしてノード3-1は、CS2により指定されたタイミングt17において開始する通信期間においてデータD23を送信することとなる。 By the way, when the data D23 is transmitted from the node 3-4 to CS2 between these control support terminals (CS2, node 3-1, node 3-4), this time ratio is increased. You may make it carry out using a communication period. Further, as shown in FIG. 8, it is assumed that CS2, node 3-1, and node 3-4 are not specified as control support terminals and the time ratio of the communication period is not increased, and is designated by the master side. The data D23 may be transmitted in accordance with the communication period. In such a case, as shown in FIG. 8, the data D23 generated by the node 3-4 at the timing t15 is transmitted to the node 3-1 in the communication period starting at the timing t16. Then, the node 3-1 transmits the data D23 in the communication period starting at the timing t17 designated by CS2.
 特に緊急性を要する制御用のデータを送る必要があるノード3は、全体のノード数の中で僅かに過ぎない。従って、全ノード数に対する、制御支援端末の割合は、非常に小さいものとなる。このような制御支援端末のみ上述したように通信期間T1の時間割合を増大させ、それ以外のノード3については従来と同様に通信期間T1の時間割合を増大させることなくスリープ期間を長く取ることにより、無線通信システム1全体の消費電力はそれほど上昇することなく、同様に省電力性は維持し続けることが可能となる。 The number of nodes 3 that need to send control data that is particularly urgent is only a few of the total number of nodes. Therefore, the ratio of the control support terminal to the total number of nodes is very small. Only such a control support terminal increases the time ratio of the communication period T1 as described above, and for the other nodes 3 by increasing the sleep period without increasing the time ratio of the communication period T1 as in the prior art. Thus, the power consumption of the entire wireless communication system 1 does not increase so much, and the power saving performance can be continuously maintained.
 従って本発明によれば、システム全体の省電力性は維持しつつ、CS2からノード3への緊急性を要するデータをより迅速に下りデータ通信することが可能となる。このような下りデータ通信を行う上で、緊急性を要するデータを識別することにより、これを優先的に分割リソース単位21、22に割り当てることが可能となる。このため、緊急性を要する下りデータ通信が、上りデータ通信と衝突してしまうのを強固に防止することが可能となる。 Therefore, according to the present invention, it is possible to more quickly download data that requires urgent data from the CS 2 to the node 3 while maintaining the power saving performance of the entire system. In performing such downlink data communication, it is possible to preferentially assign the divided resource units 21 and 22 by identifying data that requires urgency. For this reason, it becomes possible to firmly prevent the downlink data communication that requires urgency from colliding with the uplink data communication.
1 無線通信システム
2 CS
3 ノード
21、22 分割リソース単位
1 Wireless communication system 2 CS
3 Nodes 21 and 22 Split resource unit

Claims (6)

  1.  収集制御局を根として2以上に亘り配置されたノード間のデータの送受信を行うツリー型ネットワークにおける無線通信方法において、
     周波数又は通信時間からなる通信リソースを予め複数に分割した各分割リソース単位とした上で、これを上記ノードから上記収集制御局への上りデータ通信のチャネル及び上記収集制御局から上記ノードへの下りデータ通信のチャネルに対して、互いに重複することなく割り当てること
     を特徴とする無線通信方法。
    In a wireless communication method in a tree-type network that transmits and receives data between two or more nodes arranged with a collection control station as a root,
    A communication resource comprising a frequency or a communication time is divided into a plurality of divided resource units in advance, and this is used as an uplink data communication channel from the node to the collection control station and a downlink from the collection control station to the node. A wireless communication method characterized by assigning data channels without overlapping each other.
  2.  上記上りデータ通信に割り当てられた各分割リソース単位には、当該上りデータ通信の各通信経路のチャネルを互いに重複することなく割り当て、
     上記下りデータ通信に割り当てられた各分割リソース単位には、当該下りデータ通信の各通信経路のチャネルを互いに重複することなく割り当てること
     を特徴とする請求項1記載の無線通信方法。
    For each divided resource unit assigned to the uplink data communication, the channel of each communication path of the uplink data communication is assigned without overlapping each other,
    2. The radio communication method according to claim 1, wherein the channel of each communication path of the downlink data communication is allocated to each divided resource unit allocated to the downlink data communication without overlapping each other.
  3.  通信が開始される上りデータ通信の各通信経路のチャネル又は上記下りデータ通信の各通信経路のチャネルの順に、上記分割した各分割リソース単位を互いに重複することなく割り当て、
     上記分割した全ての分割リソース単位に対して上記チャネルが割り当てた場合には、新たに通信が開始されるチャネルに対する上記分割リソース単位の割り当て動作を停止すること
     を特徴とする請求項2記載の無線通信方法。
    Assign each of the divided resource units without overlapping each other in the order of the channel of each communication path of uplink data communication or the channel of each communication path of downlink data communication where communication is started,
    3. The radio according to claim 2, wherein when the channel is allocated to all the divided resource units, the operation of allocating the divided resource unit to a channel for which communication is newly started is stopped. Communication method.
  4.  上記上りデータ通信及び上記下りデータ通信間のそれぞれのデータフレームの交換状況を識別し、
     識別した上記交換状況に基づいて上記上りデータ通信の通信経路又は上記下りデータ通信の通信経路を制御し、又は上記チャネルに対する上記分割リソース単位の割り当てを制御すること
     を特徴とする請求項1又は2記載の無線通信方法。
    Identifying the exchange status of each data frame between the uplink data communication and the downlink data communication;
    3. The communication path for the uplink data communication or the communication path for the downlink data communication is controlled based on the identified exchange status, or the allocation of the divided resource unit to the channel is controlled. The wireless communication method described.
  5.  より上位のノードにより指定された周期的な待ち受け用の通信期間に合わせてノード間のデータの送受信を行い、
     少なくとも一のノードを被制御端末として予め割り当てると共に、上記収集制御局及び上記被制御端末並びにこれらの経路上に配置された全てのノードを制御支援端末として特定し、
     上記収集制御局から上記被制御端末への少なくとも下りデータ通信については、上記制御支援端末における上記通信期間の時間割合を増大させるように制御すること
     を特徴とする請求項1~3のうち何れか1項記載の無線通信方法。
    Send and receive data between nodes according to the periodic standby communication period specified by a higher-order node,
    At least one node is pre-assigned as a controlled terminal, and the collection control station and the controlled terminal and all nodes arranged on these routes are specified as control support terminals,
    4. At least downlink data communication from the collection control station to the controlled terminal is controlled so as to increase a time ratio of the communication period in the control support terminal. The wireless communication method according to claim 1.
  6.  収集制御局を根とした2以上のノードが配置されたノード間のデータの送受信を行うツリー型の無線通信システムにおいて、
     周波数又は通信時間からなる通信リソースを予め複数に分割した各分割リソース単位とした上で、これを上記ノードから上記収集制御局への上りデータ通信のチャネル及び上記収集制御局から上記ノードへの下りデータ通信のチャネルに対して、互いに重複することなく割り当てること
     を特徴とする無線通信システム。
    In a tree-type wireless communication system that transmits and receives data between nodes in which two or more nodes having a collection control station as a root are arranged,
    A communication resource comprising a frequency or a communication time is divided into a plurality of divided resource units in advance, and this is used as an uplink data communication channel from the node to the collection control station and a downlink from the collection control station to the node. A wireless communication system, characterized by being assigned to data communication channels without overlapping each other.
PCT/JP2018/013392 2017-03-30 2018-03-29 Radio communication method and system WO2018181790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068652A JP6985658B2 (en) 2017-03-30 2017-03-30 Wireless communication method and system
JP2017-068652 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181790A1 true WO2018181790A1 (en) 2018-10-04

Family

ID=63678040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013392 WO2018181790A1 (en) 2017-03-30 2018-03-29 Radio communication method and system

Country Status (2)

Country Link
JP (1) JP6985658B2 (en)
WO (1) WO2018181790A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228176A (en) * 2007-03-15 2008-09-25 Japan Radio Co Ltd Radio device
JP2009218861A (en) * 2008-03-11 2009-09-24 Fujitsu Ltd Radio communication apparatus, radio communication method, and radio communication control program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228176A (en) * 2007-03-15 2008-09-25 Japan Radio Co Ltd Radio device
JP2009218861A (en) * 2008-03-11 2009-09-24 Fujitsu Ltd Radio communication apparatus, radio communication method, and radio communication control program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUURA YOSHIKI ET AL.: "Wireless Access Priority Control Scheme Considering Bi-Directional Communication in Multi-hop Networks", IEICE TECHNICAL REPORT- ASN2013-51, vol. 113, no. 132, 10 July 2013 (2013-07-10), pages 23 - 28, XP055612835 *

Also Published As

Publication number Publication date
JP2018170723A (en) 2018-11-01
JP6985658B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
EP2666334B1 (en) Methods and apparatus for scheduling peer to peer traffic in cellular networks
KR20170100317A (en) Method and node device for allocating resources in wireless sensor networks
CN111757291B (en) Communication method and device
RU2010137833A (en) DEVICE AND METHOD FOR PLANNING ON MULTIPLE TRANSIT NETWORK SEGMENTS
JP7019914B2 (en) Wireless communication methods and devices
US11399316B2 (en) Method and apparatus to support resource sharing between an access link and a backhaul link
US11497049B2 (en) Methods and apparatus for scheduling and/or granting uplink resources
EP3793246A1 (en) Bearer mapping method for wireless backhaul node, wireless backhaul node and donor base station
CN106605442B (en) Resource allocation system and method adapted to enable device-to-device communication in a wireless communication network
WO2018181790A1 (en) Radio communication method and system
CN109429273B (en) Resource allocation method and device
CN108811142B (en) Resource allocation method, related device and system
CN112806078A (en) Resource scheduling between network nodes
JP4635773B2 (en) Wireless multi-hop network, communication terminal apparatus, channel reservation method used therefor, and program thereof
CN111836333B (en) Communication method, communication device and terminal equipment
WO2017205999A1 (en) Data transmission method, device and system
US9762342B2 (en) Transmitting data to and from nodes of a clustered multi-hop network with a TDMA scheme
JP6845310B2 (en) Methods and equipment for uplink data operations
US20140286163A1 (en) Data channel scheduling method and system for orthogonal frequency division multiplexing access (ofdma)-based wireless mesh network
CN107787593A (en) Frame structure, communication equipment and method for communication
KR101094795B1 (en) Method for allocating physical downlink control channel in a wireless communication system
JP2011029876A (en) Radio communication method and system
JP2017063346A (en) Wireless base station, wireless communication terminal, wireless communication method, and program
KR20220115544A (en) Method and apparatus for allocating resource for a mobile terminal on a wireless network
EP3369269B1 (en) Method and network entity for generating resource templates for radio links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777462

Country of ref document: EP

Kind code of ref document: A1