WO2018181755A1 - Moulded body and laminated glass - Google Patents

Moulded body and laminated glass Download PDF

Info

Publication number
WO2018181755A1
WO2018181755A1 PCT/JP2018/013336 JP2018013336W WO2018181755A1 WO 2018181755 A1 WO2018181755 A1 WO 2018181755A1 JP 2018013336 W JP2018013336 W JP 2018013336W WO 2018181755 A1 WO2018181755 A1 WO 2018181755A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
laminated glass
less
layer
meth
Prior art date
Application number
PCT/JP2018/013336
Other languages
French (fr)
Japanese (ja)
Inventor
晋治 河田
郁 進藤
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018519981A priority Critical patent/JP6985259B2/en
Publication of WO2018181755A1 publication Critical patent/WO2018181755A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor

Definitions

  • the present invention relates to a molded article that can be suitably used for an interlayer film for laminated glass and the like. Moreover, this invention relates to the laminated glass using the said molded object.
  • Polyvinyl acetal resin is used for various purposes in laminated glass interlayer films for laminated glass, metal-treated wash primers, various paints, adhesives, resin processing agents, ceramic binders, and the like. In recent years, the use of polyvinyl acetal resin has been expanded to electronic materials and the like.
  • the above laminated glass is excellent in safety because the amount of glass fragments scattered is small even if it is damaged by an external impact. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
  • the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
  • Patent Document 1 discloses a polyvinyl acetal resin composition containing a polyvinyl acetal resin and a resin having a crosslinked structure.
  • the composition has a structure in which the resin having the crosslinked structure is dispersed as a dispersed phase in the polyvinyl acetal resin as a continuous phase.
  • the composition had a loss tangent maximum value derived from the polyvinyl acetal resin at 40 ° C. or higher and a loss derived from the resin having the crosslinked structure.
  • the maximum value of tangent is 10 ° C. or lower.
  • the resin having the crosslinked structure is a (meth) acrylic resin having a crosslinked structure.
  • Patent Document 2 discloses an intermediate film which is a polymer layer having a glass transition temperature of 33 ° C. or higher. Patent Document 2 describes that the polymer layer is disposed between glass plates having a thickness of 4.0 mm or less.
  • Patent Document 1 describes that excellent mechanical strength is expressed in a wide temperature range from low temperature to high temperature.
  • As the mechanical strength tensile elongation and breaking strength at ⁇ 20 ° C., 0 ° C., 20 ° C., 40 ° C., and 80 ° C. are measured.
  • a tensile test is performed at a relatively low speed of 100 mm / min.
  • laminated glass used in automobiles is subjected to deformation stress at a considerably high speed during external impact.
  • a laminated glass may be exposed to a low temperature environment.
  • the inventors of the present invention focused on the problem of further improving the fracture strength against high-speed deformation stress at a low temperature in a molded body such as an intermediate film.
  • a polyvinyl acetal resin and a polymer of a polymerizable component containing a (meth) acrylate compound having two or more (meth) acryloyl groups and 100 parts by weight of the polyvinyl acetal resin
  • a molded product having a content of the polymer of 85 parts by weight or more and 180 parts by weight or less and having a phase separation structure.
  • a (meth) acrylate compound having two or more (meth) acryloyl groups in 100% by weight of the polymerizable component constituting the polymer, a (meth) acrylate compound having two or more (meth) acryloyl groups, and a (meth) acryloyl group.
  • the total amount of the polymerizable compound having a (meth) acryloyl group other than the (meth) acrylate compound having two or more is 50% by weight or more, and the polymer is an acrylic polymer.
  • a molded object does not contain a plasticizer, or 10 parts weight or less of plasticizers with respect to a total of 100 weight part of the said polyvinyl acetal resin and the said polymer. Including.
  • a molded object does not contain a plasticizer, or 5 weight part or less of plasticizers with respect to a total of 100 weight part of the said polyvinyl acetal resin and the said polymer. Including.
  • the molded body includes a plasticizer.
  • the gel fraction obtained by the following formula (X) is 0% by weight or more and 50% by weight or less.
  • the polyvinyl acetal resin and the polymer are crosslinked.
  • the molded body is an interlayer film for laminated glass.
  • the thickness is 3 mm or less.
  • a molded object uses the 1st glass plate which is 1.6 mm or less in thickness, Between the said 1st glass plate and a 2nd glass plate. Arranged and used to obtain laminated glass.
  • a molded object is arrange
  • the total of the thickness of the plate and the thickness of the second glass plate is 3.5 mm or less.
  • the first laminated glass member, the second laminated glass member, and the molded body described above are provided, and the first laminated glass member and the second laminated glass member There is provided a laminated glass in which the molded body is disposed.
  • the first laminated glass member is a first glass plate, and the thickness of the first glass plate is 1.6 mm or less.
  • a said 1st laminated glass member is a 1st glass plate
  • a said 2nd laminated glass member is a 2nd glass plate
  • the said 1st glass The total of the thickness of the plate and the thickness of the second glass plate is 3.5 mm or less.
  • the molded body according to the present invention includes a polyvinyl acetal resin and a polymer of a polymerizable component including a (meth) acrylate compound having two or more (meth) acryloyl groups.
  • the content of the polymer is 85 parts by weight or more and 180 parts by weight or less with respect to 100 parts by weight of the polyvinyl acetal resin.
  • the molded body according to the present invention has a phase separation structure. Since the molded body according to the present invention has the above-described configuration, the fracture elongation of the molded body according to the present invention at low temperature and high speed can be increased, and the fracture strength at low temperature and high speed can be increased. it can.
  • FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
  • the molded body according to the present invention is a polymer of a polymerizable component containing a polyvinyl acetal resin and a (meth) acrylate compound having two or more (meth) acryloyl groups (hereinafter sometimes referred to as polymer X). including.
  • the (meth) acrylate compound having two or more (meth) acryloyl groups is a polymerizable compound.
  • the (meth) acrylate compound having two or more (meth) acryloyl groups is used as a part or all of the polymerizable component constituting the polymer X.
  • the polymer X is used as the second resin other than the polyvinyl acetal resin.
  • the content of the polymer X is 85 parts by weight or more and 180 parts by weight or less with respect to 100 parts by weight of the polyvinyl acetal resin.
  • the molded body according to the present invention has a phase separation structure.
  • the fracture elongation of the molded body according to the present invention at low temperature and high speed can be increased, and the fracture strength at low temperature and high speed can be increased. it can.
  • the breaking elongation and breaking strength at ⁇ 20 ° C. of the molded product according to the present invention can be increased.
  • the breaking elongation and breaking strength at a high speed of 500 mm / min of the molded body according to the present invention can be increased.
  • the molded body when a molded body is used as the interlayer film for laminated glass, the molded body is often disposed between the first glass plate and the second glass plate in order to obtain a laminated glass. Even if the thickness of the first glass plate is thin, the use of the molded body according to the present invention allows the molded body to have a low temperature and high speed elongation at break and a low temperature and high speed breaking strength of the molded body. It is possible to effectively suppress breakage of the glass and scattering of the glass plate. Moreover, even if the thickness of both the 1st glass plate and the 2nd glass plate is thin, damage of a laminated glass and scattering of a glass plate can fully be suppressed by use of the molded object which concerns on this invention. In addition, when both the thickness of the 1st glass plate and the 2nd glass plate is thick, the failure
  • the content of the polymer X is 85 parts by weight or more and 180 parts by weight or less with respect to 100 parts by weight of the polyvinyl acetal resin. From the viewpoint of further increasing the breaking elongation and breaking strength at low temperature and high speed, the content of the polymer X is preferably 90 parts by weight or more, preferably 130 parts by weight with respect to 100 parts by weight of the polyvinyl acetal resin. Or less.
  • the molded body has a phase separation structure.
  • the polymer X is preferably an island (domain) in the phase separation structure.
  • One factor for achieving the above effect in the present invention is considered to be that energy distribution proceeds smoothly by the phase separation structure.
  • the polyvinyl acetal resin preferably surrounds the domain, and the polyvinyl acetal resin is preferably a matrix.
  • the phase separation structure is preferably a co-continuous structure or a sea-island structure.
  • the phase separation structure may be a co-continuous structure or a sea-island structure.
  • the polyvinyl acetal resin and the polymer X are preferably contained in different phases.
  • a phase separation structure is preferably formed by the polyvinyl acetal resin and the polymer X.
  • the polyvinyl acetal resin may be a sea part, and the polymer X may be an island part, the polymer X may be a sea part, and the polyvinyl acetal resin may be an island part.
  • the polyvinyl acetal resin may be continuous (may have a continuous structure), and the polymer X may be continuous (may have a continuous structure). ), The polyvinyl acetal resin and the polymer X may form a co-continuous structure.
  • the polyvinyl acetal resin may be present in a network form, and the polymer X may be present in a network form.
  • the polyvinyl acetal resin and the polymer X preferably have a sea-island structure or a bicontinuous structure. That is, in the phase separation structure, it is preferable that the polyvinyl acetal resin and the polymer X form a sea-island structure or a bicontinuous structure.
  • the average diameter of the islands is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more, particularly preferably 30 nm or more, preferably 13 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably. Is 2 ⁇ m or less, particularly preferably 1 ⁇ m or less.
  • the diameter of one island part indicates the maximum diameter, and the average of the island parts is obtained by averaging the diameters (maximum diameters) of a plurality of islands.
  • the gel fraction obtained by the following formula (X) is preferably 0% by weight or more, preferably 50% by weight or less, More preferably, it is 30% by weight or less.
  • the molded body according to the present invention is suitably used as an interlayer film for laminated glass (hereinafter sometimes referred to as an interlayer film).
  • the intermediate film has a single-layer structure or a two-layer structure.
  • the intermediate film may have a single layer structure or a two or more layer structure.
  • the intermediate film may have a two-layer structure or may have a three-layer structure or more.
  • the intermediate film includes a first layer.
  • the intermediate film may be a single-layer intermediate film including only the first layer, or may be a multilayer intermediate film including the first layer and another layer.
  • the intermediate film may have a structure of two or more layers, and may include a second layer in addition to the first layer.
  • the intermediate film preferably further includes a second layer.
  • the second layer is disposed on the first surface side of the first layer.
  • the intermediate film may have a structure of three or more layers, and may include a third layer in addition to the first layer and the second layer.
  • the intermediate film preferably further includes a third layer.
  • the third layer is disposed on the second surface side of the first layer opposite to the first surface.
  • the surface of the second layer opposite to the first layer side is preferably a surface on which a laminated glass member or a glass plate is laminated.
  • stacked on the said 2nd layer becomes like this.
  • it is 1.6 mm or less, More preferably, it is 1.3 mm or less.
  • the second surface opposite to the first surface of the first layer may be a surface on which a laminated glass member or a glass plate is laminated.
  • stacked on the said 1st layer becomes like this.
  • the surface of the third layer opposite to the first layer side is preferably a surface on which a laminated glass member or a glass plate is laminated.
  • the thickness of the glass plate laminated on the third layer is preferably 1.6 mm or less, more preferably 1.3 mm or less.
  • the intermediate film is disposed between the first glass plate and the second glass plate and is preferably used for obtaining laminated glass. Since the bending rigidity, breaking elongation and breaking strength can be sufficiently increased due to the interlayer film, the total of the thickness of the first glass plate and the thickness of the second glass plate is preferably 3. It is 5 mm or less, more preferably 3 mm or less.
  • the said intermediate film is arrange
  • the intermediate film includes a first glass plate having a thickness of 1.6 mm or less (preferably 1.3 mm or less) and a second glass plate having a thickness of 1.6 mm or less (preferably 1.3 mm or less). It is used between the first glass plate and the second glass plate and is more preferably used to obtain laminated glass. Also in this case, the bending rigidity, breaking elongation and breaking strength can be sufficiently increased due to the intermediate film.
  • FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the first embodiment of the present invention.
  • the intermediate film 11 shown in FIG. 1 is a multilayer intermediate film having a structure of two or more layers.
  • the intermediate film 11 is used to obtain a laminated glass.
  • the intermediate film 11 is an intermediate film for laminated glass.
  • the intermediate film 11 includes a first layer 1, a second layer 2, and a third layer 3.
  • On the first surface 1a of the first layer 1, the second layer 2 is disposed and laminated.
  • the third layer 3 is disposed on the second surface 1b opposite to the first surface 1a of the first layer 1 and laminated.
  • the first layer 1 is an intermediate layer.
  • Each of the second layer 2 and the third layer 3 is a protective layer, and is a surface layer in the present embodiment.
  • the first layer 1 is arranged between the second layer 2 and the third layer 3 and is sandwiched between them. Therefore, the intermediate film 11 has a multilayer structure (second layer 2 / first layer 1 / third layer) in which the second layer 2, the first layer 1, and the third layer 3 are laminated in this order. Having layer
  • layers may be disposed between the second layer 2 and the first layer 1 and between the first layer 1 and the third layer 3, respectively.
  • the second layer 2 and the first layer 1 and the first layer 1 and the third layer 3 are preferably laminated directly.
  • examples of other layers include layers containing polyethylene terephthalate and the like.
  • FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the second embodiment of the present invention.
  • the intermediate film 11A shown in FIG. 2 is a single-layer intermediate film having a single-layer structure.
  • the intermediate film 11A is a first layer.
  • the intermediate film 11A is used to obtain a laminated glass.
  • the intermediate film 11A is an intermediate film for laminated glass.
  • the molded body contains a polyvinyl acetal resin and a polymer X of a polymerizable component containing a (meth) acrylate compound having two or more (meth) acryloyl groups.
  • Each of the first layer, the second layer, and the third layer preferably includes a polyvinyl acetal resin.
  • the first layer, the second layer, and the third layer each preferably include the polymer X.
  • the said polyvinyl acetal resin only 1 type may be used and 2 or more types may be used together.
  • the said polymer X only 1 type may be used and 2 or more types may be used together.
  • the polyvinyl acetal resin is a polyvinyl acetoacetal resin, a polyvinyl butyral resin, a polyvinyl benzyl acetal resin, or a polyvinyl cumin acetal.
  • a resin is preferred.
  • the polyvinyl acetal resin is preferably a polyvinyl acetoacetal resin.
  • polyvinyl acetal resins include acetoacetalized resins, benzyl acetalized resins, and cumin acetalized resins.
  • the molded product is a polyolefin resin, an acrylic polymer, a urethane polymer, a silicone polymer, rubber, or vinyl acetate heavy as the polymer X. It is preferable to include a coalescence, and it is more preferable to include an acrylic polymer.
  • the acrylic polymer is a polymer obtained by using 50% by weight or more of a polymerizable compound having a (meth) acryloyl group as a polymerizable component.
  • the total amount A together with the polymerizable compound having a (meth) acryloyl group is defined as a total amount A.
  • the total amount A is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly preferably. 80% by weight or more, most preferably 90% by weight or more.
  • the obtained polymer X is an acrylic polymer.
  • Examples of the (meth) acrylate compound having two or more (meth) acryloyl groups include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth).
  • (Meth) acrylate compounds pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate di (meth) acrylate, dipentaerythritol tri (meth) acrylate, ⁇ -caprolactone modified tris
  • a trifunctional (meth) acrylate compound such as (2- (meth) acryloxyethyl) isocyanurate, tris [2-((meth) acryloyloxy) ethyl] phosphate; pen 4 or more functional groups such as taerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipenta
  • the (meth) acrylate compound having two or more (meth) acryloyl groups may be an epoxy (meth) acrylate compound and a urethane (meth) acrylate compound.
  • the polymer X is preferably a polymer of a polymerizable component containing a (meth) acrylic acid ester.
  • the polymer X is preferably a poly (meth) acrylic acid ester.
  • the poly (meth) acrylic acid ester is not particularly limited.
  • examples of the poly (meth) acrylic acid ester include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate n-propyl, poly (meth) acrylate i-propyl, poly N-butyl (meth) acrylate, i-butyl poly (meth) acrylate, t-butyl poly (meth) acrylate, 2-ethylhexyl poly (meth) acrylate, 2-hydroxyethyl poly (meth) acrylate, Poly (meth) acrylate 2-hydroxypropyl, poly (meth) acrylate 4-hydroxybutyl, poly (meth) acrylate glycidyl, poly (meth) acrylate octyl, poly (meth) acrylate propyl, poly (meth) 2-ethyloctyl acrylate, poly (meth)
  • Examples of (meth) acrylic acid having a polar group and (meth) acrylic acid ester include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and Examples include glycidyl (meth) acrylate.
  • polyacrylate is preferred, and polyethyl acrylate, poly (n-butyl acrylate), poly (acrylic acid) are preferred. 2-ethylhexyl acid or octyl polyacrylate is more preferred.
  • the productivity of the molded body and the balance of the characteristics of the molded body are further improved.
  • the said poly (meth) acrylic acid ester only 1 type may be used and 2 or more types may be used together.
  • the polyvinyl acetal resin and the polymer X are cross-linked.
  • the said molded object may contain the said polyvinyl acetal resin and the said polymer X as a crosslinked material which the said polyvinyl acetal resin and the said polymer X bridge
  • the thermoplastic resin may have a crosslinked structure. With the cross-linked structure, the shear storage elastic modulus can be controlled, and a molded article having both excellent flexibility and high strength can be produced.
  • a method in which crosslinks are formed by introducing functional groups that react with each other into the polymer structure of the resin A method of crosslinking using a crosslinking agent having two or more functional groups that react with a functional group present in the polymer structure of the resin.
  • a method of crosslinking a polymer by using a radical generator having a hydrogen abstraction ability such as peroxide A method of crosslinking by electron beam irradiation. Since it is easy to control the shear storage elastic modulus and the productivity of the molded body is high, a method of forming crosslinks by introducing functional groups that react with each other into the polymer structure of the resin is preferable.
  • the molded product contains a crosslinked product of the polyvinyl acetal resin and the polymer X
  • a polymerizable component containing a (meth) acrylate compound having two or more (meth) acryloyl groups in the presence of the polyvinyl acetal resin It is preferable that a step of forming a polymer X by polymerization to obtain a molded body is performed. By this step, a structure in which the polyvinyl acetal resin and the polymer X are cross-linked is formed.
  • the first layer (including a single-layer molded body) preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (1)).
  • the first layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (1)) as the thermoplastic resin (1).
  • the molded body contains the polyvinyl acetal resin (1).
  • the second layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (2)).
  • the second layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (2)) as the thermoplastic resin (2).
  • the third layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (3)).
  • the third layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (3)) as the thermoplastic resin (3).
  • the polyvinyl acetal resin (1), the polyvinyl acetal resin (2), and the polyvinyl acetal resin (3) may be the same or different. Since the sound insulation is further enhanced, the polyvinyl acetal resin (1) is preferably different from the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3).
  • the thermoplastic resin (1), the thermoplastic resin (2), and the thermoplastic resin (3) may be the same or different.
  • the said polyvinyl acetal resin (1), the said polyvinyl acetal resin (2), and the said polyvinyl acetal resin (3) only 1 type may respectively be used and 2 or more types may be used together.
  • the said thermoplastic resin (1), the said thermoplastic resin (2), and the said thermoplastic resin (3) only 1 type may respectively be used and 2 or more types may be used together.
  • thermoplastic resin examples include polyvinyl acetal resin, polyacrylic resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, and polyvinyl alcohol resin. Thermoplastic resins other than these may be used.
  • the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
  • the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
  • the saponification degree of the polyvinyl alcohol is generally 70 to 99.9 mol%.
  • the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, particularly preferably 2600 or more, most preferably 2700 or more, preferably It is 5000 or less, more preferably 4000 or less, and still more preferably 3500 or less.
  • the average degree of polymerization is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased.
  • the average degree of polymerization is not more than the above upper limit, the molded article can be easily molded.
  • the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
  • the carbon number of the acetal group is preferably 2 to 10, more preferably 2 to 5, and further preferably 2, 3 or 4.
  • the carbon number of the acetal group in the polyvinyl acetal resin is preferably 2 or 4, and in this case, the production of the polyvinyl acetal resin is efficient.
  • an aldehyde having 1 to 10 carbon atoms is suitably used as the aldehyde.
  • the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, Examples include n-nonyl aldehyde, n-decyl aldehyde, cumin aldehyde, and benzaldehyde.
  • Acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde are preferred. Acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde or n-valeraldehyde is more preferred, and acetaldehyde, n-butyraldehyde or n-valeraldehyde is still more preferred. As for the said aldehyde, only 1 type may be used and 2 or more types may be used together.
  • the hydroxyl content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably in the following range.
  • the hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 25 mol% or more, more preferably 28 mol% or more, more preferably 30 mol% or more, and even more preferably 31.5 mol%. More preferably, it is at least 32 mol%, particularly preferably at least 33 mol%.
  • the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin (1) is preferably not more than 37 mol%, more preferably not more than 36.5 mol%, still more preferably not more than 36 mol%.
  • the bending rigidity is further increased, and the adhesive strength of the molded body is further increased.
  • the flexibility of a molded object becomes it high that the content rate of the said hydroxyl group is below the said upper limit, and handling of a molded object becomes easy.
  • the hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 17 mol% or more, more preferably 20 mol% or more, still more preferably 22 mol% or more, preferably 28 mol% or less, more preferably. Is 27 mol% or less, more preferably 25 mol% or less, and particularly preferably 24 mol% or less.
  • the polyvinyl acetal resin (1) when used as a part of a multilayer molded article, it is preferable that the lower limit and the upper limit of the hydroxyl group content are satisfied.
  • the mechanical strength of a molded object becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum.
  • the reaction efficiency is high and the productivity is excellent, and when it is 28 mol% or less, the sound insulation of the laminated glass is further enhanced. .
  • the flexibility of a molded object becomes it high that the content rate of the said hydroxyl group is below the said upper limit, and handling of a molded object becomes easy.
  • a laminated glass using a molded product having a hydroxyl group content of 28 mol% or less in the polyvinyl acetal resin (1) tends to have a low bending rigidity. Can improve.
  • the content of each hydroxyl group in the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 25 mol% or more, more preferably 28 mol% or more, more preferably 30 mol% or more, and still more preferably. It is 31.5 mol% or more, more preferably 32 mol% or more, and particularly preferably 33 mol% or more.
  • Each content rate of the hydroxyl group of the said polyvinyl acetal resin (2) and the said polyvinyl acetal resin (3) becomes like this. Preferably it is 37 mol% or less, More preferably, it is 36.5 mol% or less, More preferably, it is 36 mol% or less.
  • the hydroxyl group content is at least the above lower limit, the bending rigidity is further increased, and the adhesive strength of the molded body is further increased. Moreover, the flexibility of a molded object becomes it high that the content rate of the said hydroxyl group is below the said upper limit, and handling of a molded object becomes easy.
  • the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (2). From the viewpoint of further increasing the sound insulation, the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (3). From the viewpoint of further improving sound insulation, the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 1 mol% or more.
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 1 mol% or more. More preferably, it is 5 mol% or more, more preferably 9 mol% or more, particularly preferably 10 mol% or more, and most preferably 12 mol% or more.
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 20 mol% or less.
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 20 mol% or less.
  • the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the amount of the ethylene group to which the hydroxyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
  • the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin (1) is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 7 mol% or more, still more preferably 9 It is at least mol%, preferably at most 30 mol%, more preferably at most 25 mol%, still more preferably at most 24 mol%.
  • the degree of acetylation is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer or other thermoplastic resin is increased, the sound insulation and penetration resistance are further improved, and the performance is further improved over a long period of time. Stabilize.
  • the degree of acetylation is not more than the above upper limit, the moisture resistance of the molded body and the laminated glass is increased.
  • the degree of acetylation of the polyvinyl acetal resin (1) is 0.1 mol% or more and 25 mol% or less, the penetration resistance is further improved.
  • Each degree of acetylation of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably. Is 2 mol% or less.
  • the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased.
  • the degree of acetylation is not more than the above upper limit, the moisture resistance of the molded body and the laminated glass is increased.
  • the degree of acetylation is a value obtained by dividing the amount of ethylene groups to which the acetyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
  • the amount of ethylene group to which the acetyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
  • the degree of acetalization of the polyvinyl acetal resin (1) is preferably 47 mol% or more, more preferably 60 mol% or more, still more preferably 68 mol% or more, preferably It is 85 mol% or less, More preferably, it is 80 mol% or less, More preferably, it is 75 mol% or less.
  • the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
  • the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
  • the degree of acetalization (degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 55 mol% or more, more preferably 60 mol% or more, preferably Is 75 mol% or less, more preferably 71 mol% or less.
  • degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
  • the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
  • the degree of acetalization is obtained as follows. First, a value obtained by subtracting the amount of ethylene groups bonded with hydroxyl groups and the amount of ethylene groups bonded with acetyl groups from the total amount of ethylene groups in the main chain is obtained. The obtained value is divided by the total amount of ethylene groups in the main chain to obtain the mole fraction. A value indicating the mole fraction as a percentage is the degree of acetalization.
  • the hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. However, measurement by ASTM D1396-92 may be used.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the hydroxyl group content (hydroxyl amount), the acetalization degree (butyralization degree), and the acetylation degree are determined in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the results measured by
  • the molded body preferably contains a plasticizer.
  • the first layer (including a single-layer molded body) preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (1)).
  • the second layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (2)).
  • the third layer preferably contains a plasticizer (hereinafter may be referred to as a plasticizer (3)).
  • a plasticizer By using a plasticizer, and by using a polyvinyl acetal resin and a plasticizer in combination, the penetration resistance is further improved, and the adhesive strength of the layer containing the polyvinyl acetal resin and the plasticizer to the laminated glass member or other layers is moderately high. Become.
  • the plasticizer is not particularly limited.
  • the plasticizer (1), the plasticizer (2), and the plasticizer (3) may be the same or different. As for the said plasticizer (1), the said plasticizer (2), and the said plasticizer (3), only 1 type may respectively be used and 2 or more types may be
  • plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphate plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. .
  • organic ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • Examples of the monobasic organic acid ester include glycol esters obtained by a reaction between glycol and a monobasic organic acid.
  • Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
  • Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
  • polybasic organic acid ester examples include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • polybasic organic acid examples include adipic acid, sebacic acid, and azelaic acid.
  • organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Hexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-eth
  • organic phosphate plasticizer examples include tributoxyethyl phosphate, isodecylphenyl phosphate, tricresyl phosphate, triisopropyl phosphate, and the like.
  • the plasticizer is preferably a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represent an organic group having 2 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10
  • R1 and R2 in the above formula (1) are each preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
  • the plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. .
  • the plasticizer preferably includes triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and further includes triethylene glycol di-2-ethylhexanoate. preferable.
  • the molded article does not contain a plasticizer, or the total of 100 parts by weight of the polyvinyl acetal resin and the polymer.
  • the plasticizer is preferably contained in an amount of 10 parts by weight or less (preferably 5 parts by weight or less).
  • the molded body preferably contains a plasticizer, and the plasticizer is added in an amount of 0.01 parts by weight or more with respect to a total of 100 parts by weight of the polyvinyl acetal resin and the polymer. (Preferably 0.1 parts by weight or more).
  • the plastic with respect to 100 parts by weight of the thermoplastic resin (2) (when the thermoplastic resin (2) is a polyvinyl acetal resin (2), 100 parts by weight of the polyvinyl acetal resin (2)).
  • content of an agent (2) be content (2).
  • the plastic relative to 100 parts by weight of the thermoplastic resin (3) (when the thermoplastic resin (3) is a polyvinyl acetal resin (3), 100 parts by weight of the polyvinyl acetal resin (3)).
  • content of an agent (3) be content (3).
  • the content (2) and the content (3) are each preferably 10 parts by weight or more, more preferably 15 parts by weight or more, preferably 40 parts by weight or less, more preferably 35 parts by weight or less, and still more preferably 32 parts.
  • the content (2) and the content (3) are equal to or more than the lower limit, the flexibility of the molded body is increased and the molded body is easily handled.
  • the content (2) and the content (3) are equal to or lower than the upper limit, the bending rigidity is further increased.
  • the plastic relative to 100 parts by weight of the thermoplastic resin (1) (or 100 parts by weight of the polyvinyl acetal resin (1) when the thermoplastic resin (1) is a polyvinyl acetal resin (1)).
  • content of an agent (1) be content (1).
  • the content (1) is preferably 1 part by weight or more, more preferably 2 parts by weight or more, still more preferably 3 parts by weight or more, still more preferably 5 parts by weight or more, preferably 90 parts by weight or less, more preferably 85 parts by weight or less, more preferably 80 parts by weight or less.
  • the content (1) is not less than the above lower limit, the flexibility of the molded body is increased and the molded body is easily handled.
  • the content (1) may be 50 parts by weight or more, 55 parts by weight or more, or 60 parts by weight or more.
  • the content (1) may be 30 parts by weight or less, 20 parts by weight or less, or 10 parts by weight or less.
  • the content (1) is preferably larger than the content (2) in order to enhance the sound insulation of the laminated glass, and the content (1) is It is preferable that there is more than the said content (3).
  • the laminated glass using the molded body having the content (1) of 55 parts by weight or more tends to have low bending rigidity, but the structure of the present invention can remarkably improve the bending rigidity.
  • the absolute value of the difference between the content (2) and the content (1), and the difference between the content (3) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and still more preferably 20 parts by weight or more.
  • the absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are each preferably 80 parts by weight or less. More preferably, it is 75 weight part or less, More preferably, it is 70 weight part or less.
  • the molded body preferably contains a heat shielding material (heat shielding compound).
  • the first layer preferably contains a heat shielding material.
  • the second layer preferably includes a heat shielding material.
  • the third layer preferably contains a heat shielding material. As for the said heat-shielding substance, only 1 type may be used and 2 or more types may be used together.
  • the heat-insulating substance preferably contains at least one component X of phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds, or contains heat-shielding particles. In this case, both the component X and the heat shielding particles may be included.
  • the molded body preferably contains at least one component X of a phthalocyanine compound, a naphthalocyanine compound, and an anthracocyanine compound.
  • the first layer preferably contains the component X.
  • the second layer preferably contains the component X.
  • the third layer preferably contains the component X.
  • the component X is a heat shielding material. As for the said component X, only 1 type may be used and 2 or more types may be used together.
  • the component X is not particularly limited.
  • component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds can be used.
  • the component X is preferably at least one selected from the group consisting of phthalocyanine, a derivative of phthalocyanine, naphthalocyanine, and a derivative of naphthalocyanine. More preferably, it is at least one of phthalocyanine and phthalocyanine derivatives.
  • the component X preferably contains a vanadium atom or a copper atom.
  • the component X preferably contains a vanadium atom, and preferably contains a copper atom.
  • the component X is more preferably at least one of a phthalocyanine containing a vanadium atom or a copper atom and a phthalocyanine derivative containing a vanadium atom or a copper atom.
  • the component X preferably has a structural unit in which an oxygen atom is bonded to a vanadium atom.
  • the content of the component X is preferably 0.001% by weight or more, more preferably 0.005. % By weight or more, more preferably 0.01% by weight or more, particularly preferably 0.02% by weight or more. In 100% by weight of the layer containing the component X (first layer, second layer, or third layer), the content of the component X is preferably 0.2% by weight or less, more preferably 0.1%. % By weight or less, more preferably 0.05% by weight or less, particularly preferably 0.04% by weight or less.
  • the content of the component X is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
  • the visible light transmittance can be 70% or more.
  • Thermal barrier particles The molded body preferably includes heat shielding particles.
  • the first layer (including a single-layer molded body) preferably includes the heat shielding particles.
  • the second layer preferably includes the heat shielding particles.
  • the third layer preferably contains the heat shielding particles.
  • the heat shielding particles are heat shielding materials. By using heat shielding particles, infrared rays (heat rays) can be effectively blocked. As for the said heat-shielding particle, only 1 type may be used and 2 or more types may be used together.
  • the heat shielding particles are more preferably metal oxide particles.
  • the heat shielding particles are preferably particles (metal oxide particles) formed of a metal oxide.
  • Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
  • infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays.
  • heat shielding particles By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked.
  • the heat shielding particles mean particles that can absorb infrared rays.
  • heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
  • Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used.
  • Metal oxide particles are preferred because of their high heat ray shielding function, ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles are more preferred, and ITO particles or tungsten oxide particles are particularly preferred.
  • tin-doped indium oxide particles (ITO particles) are preferable, and tungsten oxide particles are also preferable because they have a high heat ray shielding function and are easily available.
  • the tungsten oxide particles are preferably metal-doped tungsten oxide particles.
  • the “tungsten oxide particles” include metal-doped tungsten oxide particles. Specific examples of the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, and rubidium-doped tungsten oxide particles.
  • cesium-doped tungsten oxide particles are particularly preferable.
  • the cesium-doped tungsten oxide particles are preferably tungsten oxide particles represented by the formula: Cs 0.33 WO 3 .
  • the average particle diameter of the heat shielding particles is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
  • the average particle size is not less than the above lower limit, the heat ray shielding property is sufficiently increased.
  • the average particle size is not more than the above upper limit, the dispersibility of the heat shielding particles is increased.
  • the above “average particle diameter” indicates the volume average particle diameter.
  • the average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
  • the content of the heat shielding particles is preferably 0.01% by weight or more, more preferably 0%. .1% by weight or more, more preferably 1% by weight or more, and particularly preferably 1.5% by weight or more.
  • the content of the heat shielding particles is preferably 6% by weight or less, more preferably 5.5%. % By weight or less, more preferably 4% by weight or less, particularly preferably 3.5% by weight or less, and most preferably 3% by weight or less.
  • the molded body preferably contains at least one metal salt (hereinafter sometimes referred to as metal salt M) among alkali metal salts, alkaline earth metal salts, and magnesium salts.
  • the first layer preferably includes the metal salt M.
  • the second layer preferably contains the metal salt M.
  • the third layer preferably contains the metal salt M.
  • Use of the metal salt M makes it easy to control the adhesion between the molded body and the laminated glass member or the adhesion between the layers in the molded body.
  • the said metal salt M only 1 type may be used and 2 or more types may be used together.
  • the metal salt M preferably contains at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
  • the metal salt contained in the molded body preferably contains at least one metal of K and Mg.
  • the metal salt M is an alkali metal salt of an organic acid having 2 to 16 carbon atoms, an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms, or a magnesium salt of an organic acid having 2 to 16 carbon atoms. Is more preferable, and it is more preferably a carboxylic acid magnesium salt having 2 to 16 carbon atoms or a carboxylic acid potassium salt having 2 to 16 carbon atoms.
  • Examples of the C 2-16 carboxylic acid magnesium salt and the C 2-16 carboxylic acid potassium salt include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, 2-ethylbutanoic acid. Examples include potassium, magnesium 2-ethylhexanoate, and potassium 2-ethylhexanoate.
  • the total content of Mg and K in the layer containing the metal salt M is preferably 5 ppm or more, more preferably 10 ppm or more, and even more preferably 20 ppm or more. , Preferably 300 ppm or less, more preferably 250 ppm or less, still more preferably 200 ppm or less.
  • the adhesion between the molded body and the laminated glass member or the adhesion between the layers in the molded body can be controlled even better.
  • the molded body preferably contains an ultraviolet shielding agent.
  • the first layer preferably contains an ultraviolet shielding agent.
  • the second layer preferably contains an ultraviolet shielding agent.
  • the third layer preferably contains an ultraviolet shielding agent.
  • the ultraviolet shielding agent includes an ultraviolet absorber.
  • the ultraviolet shielding agent is preferably an ultraviolet absorber.
  • the ultraviolet shielding agent examples include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure (benzotriazole compound), and an ultraviolet shielding agent having a benzophenone structure (benzophenone compound). ), UV screening agent having triazine structure (triazine compound), UV screening agent having malonate ester structure (malonic acid ester compound), UV screening agent having oxalic acid anilide structure (oxalic acid anilide compound) and benzoate structure Examples thereof include an ultraviolet shielding agent (benzoate compound).
  • Examples of the ultraviolet shielding agent containing a metal atom include platinum particles, particles having platinum particles coated with silica, palladium particles, and particles having palladium particles coated with silica.
  • the ultraviolet shielding agent is preferably not a heat shielding particle.
  • the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure, an ultraviolet shielding agent having a benzophenone structure, an ultraviolet shielding agent having a triazine structure, or an ultraviolet shielding agent having a benzoate structure.
  • the ultraviolet shielding agent is more preferably an ultraviolet shielding agent having a benzotriazole structure or an ultraviolet shielding agent having a benzophenone structure, and more preferably an ultraviolet shielding agent having a benzotriazole structure.
  • Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
  • Examples of the ultraviolet screening agent having the benzotriazole structure include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole (“Tinvin 320” manufactured by BASF), 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) And “Tinuvin 326” manufactured by BASF, etc.) and the like.
  • the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure containing a halogen atom, and may be an ultraviolet shielding agent having a benzotriazole structure containing a chlorine atom. More preferred.
  • Examples of the ultraviolet shielding agent having the benzophenone structure include octabenzone (“Chimasorb 81” manufactured by BASF).
  • UV shielding agent having the triazine structure examples include “LA-F70” manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl). Oxy] -phenol (“Tinuvin 1577FF” manufactured by BASF) and the like.
  • UV screening agent having a malonic ester structure examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
  • 2- (p-methoxybenzylidene) malonate examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
  • Examples of commercially available ultraviolet screening agents having a malonic ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
  • Examples of the ultraviolet shielding agent having the oxalic anilide structure include N- (2-ethylphenyl) -N ′-(2-ethoxy-5-tert-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl)- Oxalic acid diamides having an aryl group substituted on the nitrogen atom such as N ′-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2′-ethoxy-oxyanilide (“SlandorVSU” manufactured by Clariant)kind.
  • ultraviolet shielding agent having the benzoate structure examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF). .
  • the content of the ultraviolet screening agent is preferably 0.1% by weight or more, more preferably 0%. .2% by weight or more, more preferably 0.3% by weight or more, and particularly preferably 0.5% by weight or more.
  • the content of the ultraviolet shielding agent is preferably 2.5% by weight or less, more preferably 2%. % By weight or less, more preferably 1% by weight or less, particularly preferably 0.8% by weight or less.
  • the content of the ultraviolet shielding agent is not less than the above lower limit and not more than the above upper limit, a decrease in visible light transmittance after a lapse of time can be further suppressed.
  • the content of the ultraviolet shielding agent is 0.2% by weight or more, thereby reducing the visible light transmittance after the passage of the molded body and the laminated glass. Remarkably suppressed.
  • the molded body preferably contains an antioxidant.
  • the first layer preferably contains an antioxidant.
  • the second layer preferably contains an antioxidant.
  • the third layer preferably contains an antioxidant. As for the said antioxidant, only 1 type may be used and 2 or more types may be used together.
  • antioxidants examples include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
  • the phenolic antioxidant is an antioxidant having a phenol skeleton.
  • the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
  • the phosphorus antioxidant is an antioxidant containing a phosphorus atom.
  • the antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
  • phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis- (4-methyl-6-butylphenol), 2,2′-methylenebis- (4-ethyl-6) -T-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane Tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydro) Loxy-5-t-butylphenol) butane, 1,3,5-trimethyl-2,4,6
  • Examples of the phosphorus antioxidant include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos.
  • antioxidants examples include “IRGANOX 245” manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Smilizer BHT” manufactured by Sumitomo Chemical Co., Ltd., and Sakai Chemical Industry Examples thereof include “H-BHT” and “IRGANOX 1010” manufactured by BASF.
  • a layer in 100% by weight of the molded body or containing an antioxidant.
  • the content of the antioxidant is preferably 0.1% by weight or more.
  • the content of the antioxidant is preferably 2% by weight or less in 100% by weight of the molded body or 100% by weight of the layer containing the antioxidant.
  • the molded body, the first layer, the second layer, and the third layer are respectively a coupling agent containing silicon, aluminum, or titanium, a dispersant, a surfactant, a flame retardant, Additives such as antistatic agents, fillers, pigments, dyes, adhesive strength modifiers, moisture-proofing agents, fluorescent brighteners and infrared absorbers may be included. As for these additives, only 1 type may be used and 2 or more types may be used together.
  • the molded body, the first layer, the second layer, and the third layer may contain a filler.
  • the filler include calcium carbonate particles and silica particles. Silica particles are preferable from the viewpoint of effectively increasing the bending rigidity and effectively suppressing the decrease in transparency.
  • the content of the filler is preferably 1% by weight or more, more preferably 5% by weight or more, and still more preferably. It is 10 weight part or more, Preferably it is 60 weight% or less, More preferably, it is 50 weight% or less.
  • the thickness of the molded body is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently increasing the penetration resistance and bending rigidity of the laminated glass, the thickness of the molded body is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more Preferably it is 1.5 mm or less. When the thickness of the molded body is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased. When the thickness of the molded body is not more than the above upper limit, the transparency of the molded body is further improved.
  • the thickness of the intermediate film is T.
  • the thickness of the first layer is preferably 0.035T or more, more preferably 0.0625T or more, further preferably 0.1T or more, preferably 0.4T or less, more preferably 0.375T or less, and still more preferably. It is 0.25 T or less, particularly preferably 0.15 T or less.
  • the thickness of the first layer is 0.4 T or less, the bending rigidity is further improved.
  • Each thickness of the second layer and the third layer is preferably 0.3 T or more, more preferably 0.3125 T or more, still more preferably 0.375 T or more, preferably 0.97 T or less, more preferably 0. 9375T or less, more preferably 0.9T or less.
  • Each thickness of the second layer and the third layer may be 0.46875T or less, or 0.45T or less. Further, when the thicknesses of the second layer and the third layer are not less than the lower limit and not more than the upper limit, the rigidity and sound insulation of the laminated glass are further enhanced.
  • the total thickness of the second layer and the third layer is preferably 0.625 T or more, more preferably 0.75 T or more, still more preferably 0.85 T or more, preferably 0.97 T or less, more preferably 0.9375T or less, more preferably 0.9T or less. Further, when the total thickness of the second layer and the third layer is not less than the above lower limit and not more than the above upper limit, the rigidity and sound insulation of the laminated glass are further enhanced.
  • the intermediate film may be an intermediate film having a uniform thickness or an intermediate film having a changed thickness.
  • the cross-sectional shape of the intermediate film may be rectangular or wedge-shaped.
  • the method for producing the molded body according to the present invention is not particularly limited.
  • Examples of the method for producing a molded body according to the present invention include a method of extruding a resin composition using an extruder in the case of a single-layer molded body.
  • a method for producing a molded body according to the present invention in the case of a multilayer molded body, for example, a method of laminating each obtained layer after forming each layer using each resin composition for forming each layer
  • a method of laminating each layer by coextruding each resin composition for forming each layer using an extruder may be used. Since it is suitable for continuous production, an extrusion method is preferred.
  • the same polyvinyl acetal resin is contained in the second layer and the third layer because the production efficiency of the molded body is excellent. Since the production efficiency of the intermediate film is excellent, it is more preferable that the same polyvinyl acetal resin and the same plasticizer are contained in the second layer and the third layer. Since the production efficiency of the intermediate film is excellent, it is more preferable that the second layer and the third layer are formed of the same resin composition.
  • the molded body preferably has an uneven shape on at least one of the surfaces on both sides. It is more preferable that the molded body has an uneven shape on both surfaces. It does not specifically limit as a method of forming said uneven
  • the embossing roll method is preferable because it can form a large number of concavo-convex embossments that are quantitatively constant.
  • FIG. 3 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
  • the intermediate film 11 is disposed between the first laminated glass member 21 and the second laminated glass member 22 and is sandwiched.
  • the first laminated glass member 21 is laminated on the first surface 11 a of the intermediate film 11.
  • a second laminated glass member 22 is laminated on the second surface 11 b opposite to the first surface 11 a of the intermediate film 11.
  • a first laminated glass member 21 is laminated on the outer surface 2 a of the second layer 2.
  • a second laminated glass member 22 is laminated on the outer surface 3 a of the third layer 3.
  • FIG. 4 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
  • a laminated glass 31A shown in FIG. 4 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11A.
  • 11 A of intermediate films are arrange
  • the first laminated glass member 21 is laminated on the first surface 11a of the intermediate film 11A.
  • a second laminated glass member 22 is laminated on the second surface 11b opposite to the first surface 11a of the intermediate film 11A.
  • the laminated glass which concerns on this invention is equipped with the 1st laminated glass member, the 2nd laminated glass member, and a molded object (intermediate film), and this molded object (intermediate film) is this book. It is the molded object which concerns on invention.
  • the said molded object is arrange
  • the first laminated glass member is preferably a first glass plate.
  • the second laminated glass member is preferably a second glass plate.
  • the laminated glass member examples include a glass plate and a PET (polyethylene terephthalate) film.
  • the laminated glass includes not only laminated glass in which a molded body is sandwiched between two glass plates, but also laminated glass in which a molded body is sandwiched between a glass plate and a PET film or the like.
  • the laminated glass is a laminate including a glass plate, and preferably at least one glass plate is used.
  • Each of the first laminated glass member and the second laminated glass member is a glass plate or a PET film, and the laminated glass is one of the first laminated glass member and the second laminated glass member. It is preferable to provide a glass plate as at least one.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, and wire-containing plate glass.
  • the organic glass is a synthetic resin glass that replaces the inorganic glass.
  • examples of the organic glass include polycarbonate plates and poly (meth) acrylic resin plates.
  • Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
  • the thickness of the laminated glass member is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
  • the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less, more preferably 3 mm or less.
  • the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
  • the use of the molded body according to the present invention can maintain the bending rigidity of the laminated glass high even if the laminated glass is thin.
  • the thickness of the glass plate is preferably 2 mm or less, more preferably 1.8 mm or less, even more preferably 1.6 mm or less, still more preferably 1.5 mm or less, still more preferably 1.4 mm or less, and even more preferably 1. 0.3 mm or less, still more preferably 1.0 mm or less, and particularly preferably 0.7 mm or less.
  • the laminated glass can be reduced in weight
  • the environmental load can be reduced by reducing the material of the laminated glass
  • the environmental load can be reduced by improving the fuel efficiency of the automobile by reducing the weight of the laminated glass. .
  • the total thickness of the first glass plate and the second glass plate is preferably 3.5 mm or less, more preferably 3.2 mm or less, still more preferably 3 mm or less, particularly preferably 2.8 mm or less. It is.
  • the laminated glass can be reduced in weight
  • the environmental load can be reduced by reducing the material of the laminated glass
  • the environmental load can be reduced by improving the fuel efficiency of the automobile by reducing the weight of the laminated glass. .
  • the method for producing the laminated glass is not particularly limited. First, a molded body is sandwiched between the first laminated glass member and the second laminated glass member to obtain a laminate. Next, for example, the obtained laminated body is passed through a pressing roll or put in a rubber bag and sucked under reduced pressure, whereby the first laminated glass member, the second laminated glass member, and the molded body. The remaining air is deaerated. Thereafter, pre-bonding is performed at about 70 to 110 ° C. to obtain a pre-bonded laminate. Next, the pre-pressed laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained. You may laminate
  • the molded body and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the said molded object and the said laminated glass can be used besides these uses.
  • the molded body and the laminated glass are preferably a molded body and laminated glass for vehicles or buildings, and more preferably an interlayer film and laminated glass for vehicles.
  • the said molded object and the said laminated glass can be used for the windshield, side glass, rear glass, roof glass, etc. of a motor vehicle.
  • the said molded object and the said laminated glass are used suitably for a motor vehicle.
  • the said molded object is used in order to obtain the laminated glass of a motor vehicle.
  • Polyvinyl acetal resin Polyvinyl acetal resins shown in Tables 1 to 3 below were appropriately used.
  • the degree of acetalization, the degree of acetylation, and the hydroxyl group content were measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. In addition, when measured by ASTM D1396-92, the same numerical value as the method based on JIS K6728 “Testing method for polyvinyl butyral” was shown. Further, when the type of acetal is acetoacetal, benzyl acetal or cumin acetal, the degree of acetal is similarly measured for the degree of acetylation and the content of hydroxyl groups, and the molar fraction is determined from the obtained measurement results. Calculated, and then calculated by subtracting the degree of acetylation and the hydroxyl group content from 100 mol%.
  • the acrylic polymers shown in Tables 1 to 3 below are acrylic polymers obtained by polymerizing polymerizable components containing the following compounds in the contents shown in Tables 1 to 3 below.
  • Ethyl acrylate butyl acrylate benzyl acrylate 2-hydroxyethyl acrylate acrylic acid glycidyl methacrylate tripropylene glycol diacrylate (“APG-200” manufactured by Shin-Nakamura Chemical Co., Ltd.) Polypropylene glycol # 400 diacrylate (“APG-400” manufactured by Shin-Nakamura Chemical Co., Ltd.) Polypropylene glycol (# 700) diacrylate (“APG-700” manufactured by Shin-Nakamura Chemical Co., Ltd.) Ethoxylated bisphenol A diacrylate (“A-BPE-20” manufactured by Shin-Nakamura Chemical Co., Ltd.) ⁇ -Caprolactone-modified tris- (2-acryloxyethyl) isocyanurate (“A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., Ltd.) Tris phosphate [2- (acryloyloxy) ethyl] Ethoxylated pentaerythritol
  • Example 1 A polyvinyl acetal resin (average polymerization degree 560, acetalization degree 74.0 mol%, hydroxyl group content 25.0 mol%, acetylation degree 0.9 mol%) was prepared. 100 parts by weight of a polymerizable component (60 parts by weight of ethyl acrylate, 14.2 parts by weight of butyl acrylate, 25.2 parts by weight of benzyl acrylate, and 0.6 parts by weight of tripropylene glycol diacrylate) were prepared.
  • a polymerizable component 60 parts by weight of ethyl acrylate, 14.2 parts by weight of butyl acrylate, 25.2 parts by weight of benzyl acrylate, and 0.6 parts by weight of tripropylene glycol diacrylate
  • a reaction vessel equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube, 100 parts by weight of the polyvinyl acetal resin as a raw material, 100 parts by weight of the polymerizable component, and 300 parts by weight of ethyl acetate as a polymerization solvent.
  • the polyvinyl acetal resin was dissolved while stirring.
  • nitrogen gas was blown for 30 minutes to replace the inside of the reaction vessel with nitrogen, and then the reaction vessel was heated to 80 ° C. while stirring.
  • 3GO as a plasticizer
  • diluted solvent mixed solvent of methanol and toluene, methanol and toluene, was diluted 1: 2
  • this solution was applied onto a PET film that had been subjected to a mold release treatment using a coater so that the thickness after drying was 50 ⁇ m, and dried at 80 ° C. for 1 hour to obtain an intermediate film.
  • the obtained intermediate film having a thickness of 50 ⁇ m was superposed and subjected to thermocompression bonding at 150 ° C. and 20 MPa to obtain an intermediate film having a thickness of 400 ⁇ m.
  • Examples 2 to 20 and Comparative Examples 1 to 9 An interlayer film and a laminated glass were obtained in the same manner as in Example 1 except that the composition of the composition for forming the interlayer film was set as shown in Tables 1 to 3 below.
  • the diameter (maximum diameter) of the island part was observed at 3000 times or 5000 times, and the average value was obtained.
  • the average diameter of the islands was determined according to the following criteria.
  • A The average diameter of the islands is 10 nm or more and 1 ⁇ m or less.
  • B Does not correspond to the standard of A.
  • Break strength is 40 MPa or more ⁇ : Break strength is 30 MPa or more and less than 40 MPa ⁇ : Break strength is 20 MPa or more and less than 30 MPa ⁇ : Break strength is less than 20 MPa

Abstract

Provided is a moulded body which is capable of improving elongation at break at low temperatures and high speeds, and which is capable of improving breaking strength at low temperatures and high speeds. A moulded body according to the present invention is provided with a phase separation structure which includes a polyvinyl acetal resin, and a polymer of a polymerizable component including a (meth)acrylate compound having two or more (meth)acryloyl groups. The content of the polymer is at least 85 but not more than 180 parts by weight per 100 parts by weight of the polyvinyl acetal resin.

Description

成形体及び合わせガラスMolded body and laminated glass
 本発明は、合わせガラス用中間膜等に好適に用いることができる成形体に関する。また、本発明は、上記成形体を用いた合わせガラスに関する。 The present invention relates to a molded article that can be suitably used for an interlayer film for laminated glass and the like. Moreover, this invention relates to the laminated glass using the said molded object.
 ポリビニルアセタール樹脂は、合わせガラスにおける合わせガラス用中間膜、金属処理のウォッシュプライマー、各種塗料、接着剤、樹脂加工剤、及びセラミックスバインダー等に多目的に用いられている。近年、ポリビニルアセタール樹脂の用途が電子材料等に拡大している。 Polyvinyl acetal resin is used for various purposes in laminated glass interlayer films for laminated glass, metal-treated wash primers, various paints, adhesives, resin processing agents, ceramic binders, and the like. In recent years, the use of polyvinyl acetal resin has been expanded to electronic materials and the like.
 上記合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散量が少なく、安全性に優れている。このため、上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に広く使用されている。上記合わせガラスは、2つのガラス板の間に合わせガラス用中間膜を挟み込むことにより、製造されている。 The above laminated glass is excellent in safety because the amount of glass fragments scattered is small even if it is damaged by an external impact. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc. The laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
 上記合わせガラス用中間膜等に用いられる組成物の一例として、下記の特許文献1には、ポリビニルアセタール樹脂と、架橋構造を有する樹脂とを含有するポリビニルアセタール系樹脂組成物が開示されている。上記組成物は、連続相としての上記ポリビニルアセタール樹脂中に、分散相として上記架橋構造を有する樹脂が分散した構造を有する。周波数10Hzで動的粘弾性スペクトルを測定したとき、上記組成物は、上記ポリビニルアセタール樹脂に由来する損失正接の極大値を40℃以上に有し、かつ、上記架橋構造を有する樹脂に由来する損失正接の極大値を10℃以下に有する。上記架橋構造を有する樹脂は、架橋構造を有する(メタ)アクリル樹脂である。 As an example of the composition used for the interlayer film for laminated glass and the like, Patent Document 1 below discloses a polyvinyl acetal resin composition containing a polyvinyl acetal resin and a resin having a crosslinked structure. The composition has a structure in which the resin having the crosslinked structure is dispersed as a dispersed phase in the polyvinyl acetal resin as a continuous phase. When the dynamic viscoelastic spectrum was measured at a frequency of 10 Hz, the composition had a loss tangent maximum value derived from the polyvinyl acetal resin at 40 ° C. or higher and a loss derived from the resin having the crosslinked structure. The maximum value of tangent is 10 ° C. or lower. The resin having the crosslinked structure is a (meth) acrylic resin having a crosslinked structure.
 下記の特許文献2には、33℃以上のガラス転移温度を有するポリマー層である中間膜が開示されている。特許文献2では、上記ポリマー層が、厚みが4.0mm以下であるガラス板の間に配置されることが記載されている。 The following Patent Document 2 discloses an intermediate film which is a polymer layer having a glass transition temperature of 33 ° C. or higher. Patent Document 2 describes that the polymer layer is disposed between glass plates having a thickness of 4.0 mm or less.
WO2014/050746A1WO2014 / 050746A1 US2013/0236711A1US2013 / 0236711A1
 特許文献1では、低温から高温に至る幅広い温度範囲で、優れた機械強度を発現することが記載されている。機械強度として、-20℃、0℃、20℃、40℃、及び80℃での引張伸度及び破断強度が測定されている。この機械強度の試験では、比較的低速の100mm/分で引張試験が行われている。 Patent Document 1 describes that excellent mechanical strength is expressed in a wide temperature range from low temperature to high temperature. As the mechanical strength, tensile elongation and breaking strength at −20 ° C., 0 ° C., 20 ° C., 40 ° C., and 80 ° C. are measured. In this mechanical strength test, a tensile test is performed at a relatively low speed of 100 mm / min.
 例えば、自動車に用いられる合わせガラスには、外部衝撃時に、かなり高速で変形応力が加わる。また、合わせガラスは、低温環境に晒されることがある。本発明者らは、中間膜等の成形体において、低温における高速での変形応力に対して、破壊強度をより一層向上させるという課題に着目した。 For example, laminated glass used in automobiles is subjected to deformation stress at a considerably high speed during external impact. Moreover, a laminated glass may be exposed to a low temperature environment. The inventors of the present invention focused on the problem of further improving the fracture strength against high-speed deformation stress at a low temperature in a molded body such as an intermediate film.
 本発明の目的は、低温かつ高速での破断伸度を高めることができ、かつ低温かつ高速での破断強度を高めることができる成形体を提供することである。また、本発明は、上記成形体を用いた合わせガラスを提供することも目的とする。 An object of the present invention is to provide a molded body that can increase the elongation at break at low temperature and high speed and can increase the breaking strength at low temperature and high speed. Another object of the present invention is to provide a laminated glass using the molded body.
 本発明の広い局面によれば、ポリビニルアセタール樹脂と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物を含む重合性成分の重合体とを含み、前記ポリビニルアセタール樹脂100重量部に対して、前記重合体の含有量が85重量部以上180重量部以下であり、相分離構造を有する、成形体が提供される。 According to a wide aspect of the present invention, a polyvinyl acetal resin and a polymer of a polymerizable component containing a (meth) acrylate compound having two or more (meth) acryloyl groups, and 100 parts by weight of the polyvinyl acetal resin Thus, there is provided a molded product having a content of the polymer of 85 parts by weight or more and 180 parts by weight or less and having a phase separation structure.
 本発明に係る成形体のある特定の局面では、前記重合体を構成する重合性成分100重量%中、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物以外の(メタ)アクリロイル基を有する重合性化合物との合計の量が50重量%以上であり、前記重合体が、アクリル重合体である。 In a specific aspect of the molded article according to the present invention, in 100% by weight of the polymerizable component constituting the polymer, a (meth) acrylate compound having two or more (meth) acryloyl groups, and a (meth) acryloyl group. The total amount of the polymerizable compound having a (meth) acryloyl group other than the (meth) acrylate compound having two or more is 50% by weight or more, and the polymer is an acrylic polymer.
 本発明に係る成形体のある特定の局面では、成形体は、可塑剤を含まないか、又は、前記ポリビニルアセタール樹脂と前記重合体との合計100重量部に対して可塑剤を10重量部以下で含む。 On the specific situation with the molded object which concerns on this invention, a molded object does not contain a plasticizer, or 10 parts weight or less of plasticizers with respect to a total of 100 weight part of the said polyvinyl acetal resin and the said polymer. Including.
 本発明に係る成形体のある特定の局面では、成形体は、可塑剤を含まないか、又は、前記ポリビニルアセタール樹脂と前記重合体との合計100重量部に対して可塑剤を5重量部以下で含む。 On the specific situation with the molded object which concerns on this invention, a molded object does not contain a plasticizer, or 5 weight part or less of plasticizers with respect to a total of 100 weight part of the said polyvinyl acetal resin and the said polymer. Including.
 本発明に係る成形体のある特定の局面では、成形体は、可塑剤を含む。 In a specific aspect of the molded body according to the present invention, the molded body includes a plasticizer.
 本発明に係る成形体のある特定の局面では、下記式(X)により求められるゲル分率が0重量%以上50重量%以下である。 In a specific aspect of the molded body according to the present invention, the gel fraction obtained by the following formula (X) is 0% by weight or more and 50% by weight or less.
 ゲル分率(重量%)=W2/W1×100 ・・・式(X)
 W1:成形体を23℃のテトラヒドロフランに浸漬する前の成形体の重量
 W2:成形体を23℃のテトラヒドロフランに浸漬した後に取り出し、乾燥した後の成形体の重量
Gel fraction (% by weight) = W2 / W1 × 100 Formula (X)
W1: Weight of the molded body before immersing the molded body in tetrahydrofuran at 23 ° C. W2: Weight of the molded body after taking out the molded body after immersing in tetrahydrofuran at 23 ° C. and drying
 本発明に係る成形体のある特定の局面では、前記ポリビニルアセタール樹脂と前記重合体とが架橋している。 In a specific aspect of the molded body according to the present invention, the polyvinyl acetal resin and the polymer are crosslinked.
 本発明に係る成形体のある特定の局面では、成形体は、合わせガラス用中間膜である。 In a specific aspect of the molded body according to the present invention, the molded body is an interlayer film for laminated glass.
 本発明に係る成形体のある特定の局面では、厚みが3mm以下である。 In a specific aspect of the molded body according to the present invention, the thickness is 3 mm or less.
 本発明に係る成形体のある特定の局面では、成形体は、厚みが1.6mm以下である第1のガラス板を用いて、前記第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられる。 On the specific situation with the molded object which concerns on this invention, a molded object uses the 1st glass plate which is 1.6 mm or less in thickness, Between the said 1st glass plate and a 2nd glass plate. Arranged and used to obtain laminated glass.
 本発明に係る成形体のある特定の局面では、成形体は、第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられ、前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である。 On the specific situation with the molded object which concerns on this invention, a molded object is arrange | positioned between a 1st glass plate and a 2nd glass plate, and is used in order to obtain a laminated glass, Said 1st glass The total of the thickness of the plate and the thickness of the second glass plate is 3.5 mm or less.
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した成形体とを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記成形体が配置されている、合わせガラスが提供される。 According to a wide aspect of the present invention, the first laminated glass member, the second laminated glass member, and the molded body described above are provided, and the first laminated glass member and the second laminated glass member There is provided a laminated glass in which the molded body is disposed.
 本発明に係る合わせガラスのある特定の局面では、前記第1の合わせガラス部材が第1のガラス板であり、前記第1のガラス板の厚みが1.6mm以下である。 In a specific aspect of the laminated glass according to the present invention, the first laminated glass member is a first glass plate, and the thickness of the first glass plate is 1.6 mm or less.
 本発明に係る合わせガラスのある特定の局面では、前記第1の合わせガラス部材が第1のガラス板であり、前記第2の合わせガラス部材が第2のガラス板であり、前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である。 On the specific situation with the laminated glass which concerns on this invention, a said 1st laminated glass member is a 1st glass plate, a said 2nd laminated glass member is a 2nd glass plate, The said 1st glass The total of the thickness of the plate and the thickness of the second glass plate is 3.5 mm or less.
 本発明に係る成形体は、ポリビニルアセタール樹脂と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物を含む重合性成分の重合体とを含む。本発明に係る成形体では、上記ポリビニルアセタール樹脂100重量部に対して、上記重合体の含有量が85重量部以上180重量部以下である。本発明に係る成形体は、相分離構造を有する。本発明に係る成形体では、上記の構成が備えられているので、本発明に係る成形体の低温かつ高速での破断伸度を高めることができ、低温かつ高速での破断強度を高めることができる。 The molded body according to the present invention includes a polyvinyl acetal resin and a polymer of a polymerizable component including a (meth) acrylate compound having two or more (meth) acryloyl groups. In the molded article according to the present invention, the content of the polymer is 85 parts by weight or more and 180 parts by weight or less with respect to 100 parts by weight of the polyvinyl acetal resin. The molded body according to the present invention has a phase separation structure. Since the molded body according to the present invention has the above-described configuration, the fracture elongation of the molded body according to the present invention at low temperature and high speed can be increased, and the fracture strength at low temperature and high speed can be increased. it can.
図1は、本発明の第1の実施形態に係る成形体としての合わせガラス用中間膜を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る成形体としての合わせガラス用中間膜を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the second embodiment of the present invention. 図3は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG. 図4は、図2に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 (成形体)
 本発明に係る成形体は、ポリビニルアセタール樹脂と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物を含む重合性成分の重合体(以下、重合体Xと記載することがある)とを含む。上記(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物は、重合性化合物である。上記(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物は、上記重合体Xを構成する重合性成分の一部又は全部として用いられている。本発明に係る成形体では、ポリビニルアセタール樹脂以外の第2の樹脂として、上記重合体Xが用いられている。本発明に係る成形体では、上記ポリビニルアセタール樹脂100重量部に対して、上記重合体Xの含有量が85重量部以上180重量部以下である。
(Molded body)
The molded body according to the present invention is a polymer of a polymerizable component containing a polyvinyl acetal resin and a (meth) acrylate compound having two or more (meth) acryloyl groups (hereinafter sometimes referred to as polymer X). including. The (meth) acrylate compound having two or more (meth) acryloyl groups is a polymerizable compound. The (meth) acrylate compound having two or more (meth) acryloyl groups is used as a part or all of the polymerizable component constituting the polymer X. In the molded body according to the present invention, the polymer X is used as the second resin other than the polyvinyl acetal resin. In the molded article according to the present invention, the content of the polymer X is 85 parts by weight or more and 180 parts by weight or less with respect to 100 parts by weight of the polyvinyl acetal resin.
 本発明に係る成形体は、相分離構造を有する。 The molded body according to the present invention has a phase separation structure.
 本発明に係る成形体では、上記の構成が備えられているので、本発明に係る成形体の低温かつ高速での破断伸度を高めることができ、低温かつ高速での破断強度を高めることができる。例えば、本発明に係る成形体の-20℃での破断伸度及び破断強度を高めることができる。また、本発明に係る成形体の500mm/分の高速での破断伸度及び破断強度を高めることができる。 Since the molded body according to the present invention has the above-described configuration, the fracture elongation of the molded body according to the present invention at low temperature and high speed can be increased, and the fracture strength at low temperature and high speed can be increased. it can. For example, the breaking elongation and breaking strength at −20 ° C. of the molded product according to the present invention can be increased. Moreover, the breaking elongation and breaking strength at a high speed of 500 mm / min of the molded body according to the present invention can be increased.
 また、合わせガラス用中間膜として成形体を用いる場合に、合わせガラスを得るために、成形体は、第1のガラス板と第2のガラス板との間に配置されることが多い。第1のガラス板の厚みが薄くても、本発明に係る成形体の使用により、成形体の低温かつ高速の破断伸度、及び、成形体の低温かつ高速での破断強度が高いので、合わせガラスの破損及びガラス板の飛散を効果的に抑えることができる。また、第1のガラス板と第2のガラス板との双方の厚みが薄くても、本発明に係る成形体の使用により、合わせガラスの破損及びガラス板の飛散を十分に抑えることができる。なお、第1のガラス板と第2のガラス板との双方の厚みが厚いと、合わせガラスの破損及びガラス板の飛散がより一層抑えられる。 Further, when a molded body is used as the interlayer film for laminated glass, the molded body is often disposed between the first glass plate and the second glass plate in order to obtain a laminated glass. Even if the thickness of the first glass plate is thin, the use of the molded body according to the present invention allows the molded body to have a low temperature and high speed elongation at break and a low temperature and high speed breaking strength of the molded body. It is possible to effectively suppress breakage of the glass and scattering of the glass plate. Moreover, even if the thickness of both the 1st glass plate and the 2nd glass plate is thin, damage of a laminated glass and scattering of a glass plate can fully be suppressed by use of the molded object which concerns on this invention. In addition, when both the thickness of the 1st glass plate and the 2nd glass plate is thick, the failure | damage of a laminated glass and the scattering of a glass plate are suppressed further.
 低温かつ高速での破断伸度及び破断強度を高める観点から、上記ポリビニルアセタール樹脂100重量部に対して、上記重合体Xの含有量は、85重量部以上180重量部以下である。低温かつ高速での破断伸度及び破断強度をより一層高める観点からは、上記ポリビニルアセタール樹脂100重量部に対して、上記重合体Xの含有量は、好ましくは90重量部以上、好ましくは130重量部以下である。 From the viewpoint of increasing the breaking elongation and breaking strength at low temperature and high speed, the content of the polymer X is 85 parts by weight or more and 180 parts by weight or less with respect to 100 parts by weight of the polyvinyl acetal resin. From the viewpoint of further increasing the breaking elongation and breaking strength at low temperature and high speed, the content of the polymer X is preferably 90 parts by weight or more, preferably 130 parts by weight with respect to 100 parts by weight of the polyvinyl acetal resin. Or less.
 低温かつ高速での断伸度及び破断強度を高める観点から、上記成形体は、相分離構造を有する。低温かつ高速での破断伸度及び破断強度をより一層高める観点から、上記相分離構造において、上記重合体Xが島部(ドメイン)であることが好ましい。本発明において上記の効果が奏される1つの要因として、相分離構造によって、エネルギー分配が円滑に進むためであると考えられる。 From the viewpoint of increasing the elongation and breaking strength at a low temperature and high speed, the molded body has a phase separation structure. From the viewpoint of further increasing the breaking elongation and breaking strength at low temperature and high speed, the polymer X is preferably an island (domain) in the phase separation structure. One factor for achieving the above effect in the present invention is considered to be that energy distribution proceeds smoothly by the phase separation structure.
 上記ポリビニルアセタール樹脂がドメインを取り囲んでいることが好ましく、上記ポリビニルアセタール樹脂がマトリックスであることが好ましい。上記相分離構造は、共連続構造又は海島構造であることが好ましい。上記相分離構造は、共連続構造であってもよく、海島構造であってもよい。上記ポリビニルアセタール樹脂と上記重合体Xとが異なる相に含まれることが好ましい。上記ポリビニルアセタール樹脂と上記重合体Xとで、相分離構造が形成されていることが好ましい。海島構造の場合に、上記ポリビニルアセタール樹脂が海部であり、かつ上記重合体Xが島部であってもよく、上記重合体Xが海部であり、かつ上記ポリビニルアセタール樹脂が島部であってもよい。上記相分離構造において、上記ポリビニルアセタール樹脂は連なっていてもよく(連続した構造を有していてもよく)、上記重合体Xは連なっていてもよく(連続した構造を有していてもよく)、上記ポリビニルアセタール樹脂と上記重合体Xとが共連続構造を形成していてもよい。上記相分離構造において、上記ポリビニルアセタール樹脂が網目状に存在していてもよく、上記重合体Xが網目状に存在していてもよい。本発明の効果に優れることから、上記ポリビニルアセタール樹脂と上記重合体Xとが海島構造又は共連続構造を有することが好ましい。すなわち、上記相分離構造において、上記ポリビニルアセタール樹脂と上記重合体Xとが海島構造又は共連続構造を形成していることが好ましい。 The polyvinyl acetal resin preferably surrounds the domain, and the polyvinyl acetal resin is preferably a matrix. The phase separation structure is preferably a co-continuous structure or a sea-island structure. The phase separation structure may be a co-continuous structure or a sea-island structure. The polyvinyl acetal resin and the polymer X are preferably contained in different phases. A phase separation structure is preferably formed by the polyvinyl acetal resin and the polymer X. In the case of a sea-island structure, the polyvinyl acetal resin may be a sea part, and the polymer X may be an island part, the polymer X may be a sea part, and the polyvinyl acetal resin may be an island part. Good. In the phase separation structure, the polyvinyl acetal resin may be continuous (may have a continuous structure), and the polymer X may be continuous (may have a continuous structure). ), The polyvinyl acetal resin and the polymer X may form a co-continuous structure. In the phase separation structure, the polyvinyl acetal resin may be present in a network form, and the polymer X may be present in a network form. From the viewpoint of excellent effects of the present invention, the polyvinyl acetal resin and the polymer X preferably have a sea-island structure or a bicontinuous structure. That is, in the phase separation structure, it is preferable that the polyvinyl acetal resin and the polymer X form a sea-island structure or a bicontinuous structure.
 上記相分離構造において、島部の径の平均は、好ましくは10nm以上、より好ましくは15nm以上、更に好ましくは20nm以上、特に好ましくは30nm以上、好ましくは13μm以下、より好ましくは10μm以下、更に好ましくは2μm以下、特に好ましくは1μm以下である。1つあたりの島部の径は、最大径を示し、島部の径の平均は、複数の島部の径(最大径)を平均することにより求められる。 In the above phase separation structure, the average diameter of the islands is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more, particularly preferably 30 nm or more, preferably 13 μm or less, more preferably 10 μm or less, still more preferably. Is 2 μm or less, particularly preferably 1 μm or less. The diameter of one island part indicates the maximum diameter, and the average of the island parts is obtained by averaging the diameters (maximum diameters) of a plurality of islands.
 低温かつ高速での破断伸度及び破断強度をより一層高める観点からは、上記成形体において、下記式(X)により求められるゲル分率は好ましくは0重量%以上、好ましくは50重量%以下、より好ましくは30重量%以下である。 From the viewpoint of further increasing the breaking elongation and breaking strength at low temperature and high speed, the gel fraction obtained by the following formula (X) is preferably 0% by weight or more, preferably 50% by weight or less, More preferably, it is 30% by weight or less.
 ゲル分率(重量%)=W2/W1×100 ・・・式(X)
 W1:成形体を23℃のテトラヒドロフランに浸漬する前の成形体の重量
 W2:成形体を23℃のテトラヒドロフランに浸漬した後に取り出し、乾燥した後の成形体の重量
Gel fraction (% by weight) = W2 / W1 × 100 Formula (X)
W1: Weight of the molded body before immersing the molded body in tetrahydrofuran at 23 ° C. W2: Weight of the molded body after taking out the molded body after immersing in tetrahydrofuran at 23 ° C. and drying
 本発明に係る成形体は、合わせガラス用中間膜(以下、中間膜と記載することがある)として好適に用いられる。上記中間膜は、1層の構造又は2層以上の構造を有する。上記中間膜は、1層の構造を有していてもよく、2層以上の構造を有していてもよい。上記中間膜は、2層の構造を有していてもよく、3層以上の構造を有していてもよい。上記中間膜は、第1の層を備える。上記中間膜は、第1の層のみを備える単層の中間膜であってもよく、第1の層と他の層とを備える多層の中間膜であってもよい。 The molded body according to the present invention is suitably used as an interlayer film for laminated glass (hereinafter sometimes referred to as an interlayer film). The intermediate film has a single-layer structure or a two-layer structure. The intermediate film may have a single layer structure or a two or more layer structure. The intermediate film may have a two-layer structure or may have a three-layer structure or more. The intermediate film includes a first layer. The intermediate film may be a single-layer intermediate film including only the first layer, or may be a multilayer intermediate film including the first layer and another layer.
 上記中間膜は、2層以上の構造を有していてもよく、第1の層に加えて第2の層を備えていてもよい。上記中間膜は、第2の層をさらに備えることが好ましい。上記中間膜が上記第2の層を備える場合に、上記第1の層の第1の表面側に、上記第2の層が配置される。 The intermediate film may have a structure of two or more layers, and may include a second layer in addition to the first layer. The intermediate film preferably further includes a second layer. When the intermediate film includes the second layer, the second layer is disposed on the first surface side of the first layer.
 上記中間膜は、3層以上の構造を有していてもよく、第1の層及び第2の層に加えて第3の層を備えていてもよい。上記中間膜は、第3の層をさらに備えることが好ましい。上記中間膜が上記第2の層及び上記第3の層を備える場合に、上記第1の層の上記第1の表面とは反対の第2の表面側に、上記第3の層が配置される。 The intermediate film may have a structure of three or more layers, and may include a third layer in addition to the first layer and the second layer. The intermediate film preferably further includes a third layer. When the intermediate film includes the second layer and the third layer, the third layer is disposed on the second surface side of the first layer opposite to the first surface. The
 上記第2の層の上記第1の層側とは反対の表面は、合わせガラス部材又はガラス板が積層される表面であることが好ましい。上記第2の層に積層されるガラス板の厚みは好ましくは1.6mm以下、より好ましくは1.3mm以下である。上記第1の層の第1の表面(上記第2の層側の表面)とは反対の第2の表面は、合わせガラス部材又はガラス板が積層される表面であってもよい。上記第1の層に積層されるガラス板の厚みは好ましくは1.6mm以下、より好ましくは1.3mm以下である。上記第3の層の上記第1の層側とは反対の表面は、合わせガラス部材又はガラス板が積層される表面であることが好ましい。上記第3の層に積層されるガラス板の厚みは好ましくは1.6mm以下、より好ましくは1.3mm以下である。 The surface of the second layer opposite to the first layer side is preferably a surface on which a laminated glass member or a glass plate is laminated. The thickness of the glass plate laminated | stacked on the said 2nd layer becomes like this. Preferably it is 1.6 mm or less, More preferably, it is 1.3 mm or less. The second surface opposite to the first surface of the first layer (the surface on the second layer side) may be a surface on which a laminated glass member or a glass plate is laminated. The thickness of the glass plate laminated | stacked on the said 1st layer becomes like this. Preferably it is 1.6 mm or less, More preferably, it is 1.3 mm or less. The surface of the third layer opposite to the first layer side is preferably a surface on which a laminated glass member or a glass plate is laminated. The thickness of the glass plate laminated on the third layer is preferably 1.6 mm or less, more preferably 1.3 mm or less.
 上記中間膜は、第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために好適に用いられる。中間膜に起因して曲げ剛性、破断伸度及び破断強度を充分に高くすることができるので、上記第1のガラス板の厚みと上記第2のガラス板の厚みとの合計は好ましくは3.5mm以下、より好ましくは3mm以下である。上記中間膜は、第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために好適に用いられる。中間膜に起因して曲げ剛性、破断伸度及び破断強度を充分に高くすることができるので、上記中間膜は、厚みが1.6mm以下(好ましくは1.3mm以下)である第1のガラス板を用いて、該第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために好適に用いられる。上記中間膜は、厚みが1.6mm以下(好ましくは1.3mm以下)である第1のガラス板と厚みが1.6mm以下(好ましくは1.3mm以下)である第2のガラス板とを用いて、上記第1のガラス板と上記第2のガラス板との間に配置されて、合わせガラスを得るためにより好適に用いられる。この場合にも、中間膜に起因して曲げ剛性、破断伸度及び破断強度を充分に高くすることができる。 The intermediate film is disposed between the first glass plate and the second glass plate and is preferably used for obtaining laminated glass. Since the bending rigidity, breaking elongation and breaking strength can be sufficiently increased due to the interlayer film, the total of the thickness of the first glass plate and the thickness of the second glass plate is preferably 3. It is 5 mm or less, more preferably 3 mm or less. The said intermediate film is arrange | positioned between a 1st glass plate and a 2nd glass plate, and is used suitably in order to obtain a laminated glass. Since the bending rigidity, breaking elongation and breaking strength can be sufficiently increased due to the interlayer film, the interlayer film has a thickness of 1.6 mm or less (preferably 1.3 mm or less). Using a board, it arrange | positions between this 1st glass plate and a 2nd glass plate, and is used suitably in order to obtain a laminated glass. The intermediate film includes a first glass plate having a thickness of 1.6 mm or less (preferably 1.3 mm or less) and a second glass plate having a thickness of 1.6 mm or less (preferably 1.3 mm or less). It is used between the first glass plate and the second glass plate and is more preferably used to obtain laminated glass. Also in this case, the bending rigidity, breaking elongation and breaking strength can be sufficiently increased due to the intermediate film.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る成形体としての合わせガラス用中間膜を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the first embodiment of the present invention.
 図1に示す中間膜11は、2層以上の構造を有する多層の中間膜である。中間膜11は、合わせガラスを得るために用いられる。中間膜11は、合わせガラス用中間膜である。中間膜11は、第1の層1と、第2の層2と、第3の層3とを備える。第1の層1の第1の表面1aに、第2の層2が配置されており、積層されている。第1の層1の第1の表面1aとは反対の第2の表面1bに、第3の層3が配置されており、積層されている。第1の層1は中間層である。第2の層2及び第3の層3はそれぞれ、保護層であり、本実施形態では表面層である。第1の層1は、第2の層2と第3の層3との間に配置されており、挟み込まれている。従って、中間膜11は、第2の層2と第1の層1と第3の層3とがこの順で積層された多層構造(第2の層2/第1の層1/第3の層3)を有する。 The intermediate film 11 shown in FIG. 1 is a multilayer intermediate film having a structure of two or more layers. The intermediate film 11 is used to obtain a laminated glass. The intermediate film 11 is an intermediate film for laminated glass. The intermediate film 11 includes a first layer 1, a second layer 2, and a third layer 3. On the first surface 1a of the first layer 1, the second layer 2 is disposed and laminated. The third layer 3 is disposed on the second surface 1b opposite to the first surface 1a of the first layer 1 and laminated. The first layer 1 is an intermediate layer. Each of the second layer 2 and the third layer 3 is a protective layer, and is a surface layer in the present embodiment. The first layer 1 is arranged between the second layer 2 and the third layer 3 and is sandwiched between them. Therefore, the intermediate film 11 has a multilayer structure (second layer 2 / first layer 1 / third layer) in which the second layer 2, the first layer 1, and the third layer 3 are laminated in this order. Having layer 3).
 なお、第2の層2と第1の層1との間、及び、第1の層1と第3の層3との間にはそれぞれ、他の層が配置されていてもよい。第2の層2と第1の層1、及び、第1の層1と第3の層3とはそれぞれ、直接積層されていることが好ましい。他の層として、ポリエチレンテレフタレート等を含む層が挙げられる。 It should be noted that other layers may be disposed between the second layer 2 and the first layer 1 and between the first layer 1 and the third layer 3, respectively. The second layer 2 and the first layer 1 and the first layer 1 and the third layer 3 are preferably laminated directly. Examples of other layers include layers containing polyethylene terephthalate and the like.
 図2は、本発明の第2の実施形態に係る成形体としての合わせガラス用中間膜を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass as a molded body according to the second embodiment of the present invention.
 図2に示す中間膜11Aは、1層の構造を有する単層の中間膜である。中間膜11Aは、第1の層である。中間膜11Aは、合わせガラスを得るために用いられる。中間膜11Aは、合わせガラス用中間膜である。 The intermediate film 11A shown in FIG. 2 is a single-layer intermediate film having a single-layer structure. The intermediate film 11A is a first layer. The intermediate film 11A is used to obtain a laminated glass. The intermediate film 11A is an intermediate film for laminated glass.
 以下、上記成形体を構成する上記第1の層、上記第2の層及び上記第3の層の詳細、並びに上記第1の層、上記第2の層及び上記第3の層に含まれる各成分の詳細を説明する。 Hereinafter, details of the first layer, the second layer, and the third layer constituting the molded body, and each of the first layer, the second layer, and the third layer included in the molded body. Details of the components will be described.
 (樹脂)
 成形体は、ポリビニルアセタール樹脂と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物を含む重合性成分の重合体Xとを含む。上記第1の層、上記第2の層及び上記第3の層はそれぞれ、ポリビニルアセタール樹脂を含むことが好ましい。上記第1の層、上記第2の層及び上記第3の層はそれぞれ、上記重合体Xを含むことが好ましい。上記ポリビニルアセタール樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記重合体Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
(resin)
The molded body contains a polyvinyl acetal resin and a polymer X of a polymerizable component containing a (meth) acrylate compound having two or more (meth) acryloyl groups. Each of the first layer, the second layer, and the third layer preferably includes a polyvinyl acetal resin. The first layer, the second layer, and the third layer each preferably include the polymer X. As for the said polyvinyl acetal resin, only 1 type may be used and 2 or more types may be used together. As for the said polymer X, only 1 type may be used and 2 or more types may be used together.
 樹脂成分と可塑剤との親和性を効果的に高め、耐貫通性を効果的に高める観点からは、上記ポリビニルアセタール樹脂は、ポリビニルアセトアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルベンジルアセタール樹脂又はポリビニルクミンアセタール樹脂であることが好ましい。40℃での曲げ剛性をより一層高める観点からは、上記ポリビニルアセタール樹脂は、ポリビニルアセトアセタール樹脂であることが好ましい。本明細書において、ポリビニルアセタール樹脂には、アセトアセタール化された樹脂、ベンジルアセタール化された樹脂及びクミンアセタール化された樹脂が含まれる。 From the viewpoint of effectively increasing the affinity between the resin component and the plasticizer and effectively increasing the penetration resistance, the polyvinyl acetal resin is a polyvinyl acetoacetal resin, a polyvinyl butyral resin, a polyvinyl benzyl acetal resin, or a polyvinyl cumin acetal. A resin is preferred. From the viewpoint of further increasing the bending rigidity at 40 ° C., the polyvinyl acetal resin is preferably a polyvinyl acetoacetal resin. In the present specification, polyvinyl acetal resins include acetoacetalized resins, benzyl acetalized resins, and cumin acetalized resins.
 低温かつ高速での破断伸度及び破断強度をより一層高める観点からは、成形体は、上記重合体Xとして、ポリオレフィン樹脂、アクリル重合体、ウレタン重合体、シリコーン重合体、ゴム、又は酢酸ビニル重合体を含むことが好ましく、アクリル重合体を含むことがより好ましい。上記アクリル重合体は、重合性成分として、(メタ)アクリロイル基を有する重合性化合物を50重量%以上用いて得られる重合体である。 From the viewpoint of further increasing the breaking elongation and breaking strength at a low temperature and at a high speed, the molded product is a polyolefin resin, an acrylic polymer, a urethane polymer, a silicone polymer, rubber, or vinyl acetate heavy as the polymer X. It is preferable to include a coalescence, and it is more preferable to include an acrylic polymer. The acrylic polymer is a polymer obtained by using 50% by weight or more of a polymerizable compound having a (meth) acryloyl group as a polymerizable component.
 上記重合体Xを構成する重合性成分100重量%中、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物以外の(メタ)アクリロイル基を有する重合性化合物との合計の量を、合計量Aとする。低温かつ高速での破断伸度及び破断強度をより一層高める観点からは、上記合計量Aは好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記合計量Aが50重量%以上である場合に、得られる重合体Xは、アクリル重合体である。 In 100% by weight of the polymerizable component constituting the polymer X, (meth) acrylate compounds having two or more (meth) acryloyl groups and (meth) acrylate compounds having two or more (meth) acryloyl groups ( The total amount A together with the polymerizable compound having a (meth) acryloyl group is defined as a total amount A. From the viewpoint of further increasing the breaking elongation and breaking strength at low temperature and high speed, the total amount A is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly preferably. 80% by weight or more, most preferably 90% by weight or more. When the total amount A is 50% by weight or more, the obtained polymer X is an acrylic polymer.
 上記(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物としては、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、トリテトラメチレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート等の2官能の(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレートジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、リン酸トリス[2-((メタ)アクリロイルオキシ)エチル]等の3官能の(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート化合物等が挙げられる。 Examples of the (meth) acrylate compound having two or more (meth) acryloyl groups include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tripropylene glycol di (meth). ) Acrylate, tetraethylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) ) Acrylate, 1,6-hexanediol di (meth) acrylate, 2-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, 1,9-nonanediol di (meth) Bifunctional (such as acrylate, dimethylol-tricyclodecane di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, tritetramethylene glycol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, etc. (Meth) acrylate compounds; pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate di (meth) acrylate, dipentaerythritol tri (meth) acrylate, ε-caprolactone modified tris A trifunctional (meth) acrylate compound such as (2- (meth) acryloxyethyl) isocyanurate, tris [2-((meth) acryloyloxy) ethyl] phosphate; pen 4 or more functional groups such as taerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. A (meth) acrylate compound etc. are mentioned.
 上記(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物は、エポキシ(メタ)アクリレート化合物及びウレタン(メタ)アクリレート化合物であってもよい。 The (meth) acrylate compound having two or more (meth) acryloyl groups may be an epoxy (meth) acrylate compound and a urethane (meth) acrylate compound.
 上記重合体Xは、(メタ)アクリル酸エステルを含む重合性成分の重合体であることが好ましい。上記重合体Xは、ポリ(メタ)アクリル酸エステルであることが好ましい。 The polymer X is preferably a polymer of a polymerizable component containing a (meth) acrylic acid ester. The polymer X is preferably a poly (meth) acrylic acid ester.
 上記ポリ(メタ)アクリル酸エステルは特に限定されない。上記ポリ(メタ)アクリル酸エステルとしては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸n-プロピル、ポリ(メタ)アクリル酸i-プロピル、ポリ(メタ)アクリル酸n-ブチル、ポリ(メタ)アクリル酸i-ブチル、ポリ(メタ)アクリル酸t-ブチル、ポリ(メタ)アクリル酸2-エチルヘキシル、ポリ(メタ)アクリル酸2-ヒドロキシエチル、ポリ(メタ)アクリル酸2-ヒドロキシプロピル、ポリ(メタ)アクリル酸4-ヒドロキシブチル、ポリ(メタ)アクリル酸グリシジル、ポリ(メタ)アクリル酸オクチル、ポリ(メタ)アクリル酸プロピル、ポリ(メタ)アクリル酸2-エチルオクチル、ポリ(メタ)アクリル酸ノニル、ポリ(メタ)アクリル酸イソノニル、ポリ(メタ)アクリル酸デシル、ポリ(メタ)アクリル酸イソデシル、ポリ(メタ)アクリル酸ラウリル、ポリ(メタ)アクリル酸イソテトラデシル、ポリ(メタ)アクリル酸シクロヘキシル、ポリ(メタ)アクリル酸イソボルニル、及びポリ(メタ)アクリル酸ベンジル等が挙げられる。また、極性基を有する(メタ)アクリル酸、及び、(メタ)アクリル酸エステルとしては、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル、及び(メタ)アクリル酸グリシジル等が挙げられる。動的粘弾性スペクトルにおいて、tanδの最大値を示す温度を適度な範囲内に容易に制御することができることから、ポリアクリル酸エステルが好ましく、ポリアクリル酸エチル、ポリアクリル酸n-ブチル、ポリアクリル酸2-エチルヘキシル又はポリアクリル酸オクチルがより好ましい。これらの好ましいポリ(メタ)アクリル酸エステルの使用により、成形体の生産性と成形体の特性のバランスとがより一層良好になる。上記ポリ(メタ)アクリル酸エステルは1種のみが用いられてもよく、2種以上が併用されてもよい。 The poly (meth) acrylic acid ester is not particularly limited. Examples of the poly (meth) acrylic acid ester include poly (meth) acrylate methyl, poly (meth) ethyl acrylate, poly (meth) acrylate n-propyl, poly (meth) acrylate i-propyl, poly N-butyl (meth) acrylate, i-butyl poly (meth) acrylate, t-butyl poly (meth) acrylate, 2-ethylhexyl poly (meth) acrylate, 2-hydroxyethyl poly (meth) acrylate, Poly (meth) acrylate 2-hydroxypropyl, poly (meth) acrylate 4-hydroxybutyl, poly (meth) acrylate glycidyl, poly (meth) acrylate octyl, poly (meth) acrylate propyl, poly (meth) 2-ethyloctyl acrylate, poly (meth) acrylate nonyl, poly (meth) acrylate isononyl, Li (meth) acrylate decyl, poly (meth) acrylate isodecyl, poly (meth) acrylate lauryl, poly (meth) acrylate isotetradecyl, poly (meth) acrylate cyclohexyl, poly (meth) acrylate isobornyl, And poly (meth) acrylate benzyl. Examples of (meth) acrylic acid having a polar group and (meth) acrylic acid ester include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and Examples include glycidyl (meth) acrylate. In the dynamic viscoelastic spectrum, since the temperature at which the maximum value of tan δ can be easily controlled within an appropriate range, polyacrylate is preferred, and polyethyl acrylate, poly (n-butyl acrylate), poly (acrylic acid) are preferred. 2-ethylhexyl acid or octyl polyacrylate is more preferred. By using these preferable poly (meth) acrylic acid esters, the productivity of the molded body and the balance of the characteristics of the molded body are further improved. As for the said poly (meth) acrylic acid ester, only 1 type may be used and 2 or more types may be used together.
 上記ポリビニルアセタール樹脂と上記重合体Xとが架橋していることが好ましい。上記成形体は、上記ポリビニルアセタール樹脂と上記重合体Xとを、上記ポリビニルアセタール樹脂と上記重合体Xとが架橋した架橋物として含んでいてもよい。上記熱可塑性樹脂は架橋構造を有してもよい。上記架橋構造により、せん断貯蔵弾性率を制御でき、優れた可撓性と高い強度とを併せ持つ成形体を作製することができる。 It is preferable that the polyvinyl acetal resin and the polymer X are cross-linked. The said molded object may contain the said polyvinyl acetal resin and the said polymer X as a crosslinked material which the said polyvinyl acetal resin and the said polymer X bridge | crosslinked. The thermoplastic resin may have a crosslinked structure. With the cross-linked structure, the shear storage elastic modulus can be controlled, and a molded article having both excellent flexibility and high strength can be produced.
 樹脂を架橋させる方法としては、以下の方法等が挙げられる。樹脂のポリマー構造中に互いに反応する官能基を導入しておき、架橋を形成させる方法。樹脂のポリマー構造中に存在する官能基に対して反応する官能基を2つ以上有する架橋剤を用いて架橋させる方法。過酸化物等の水素引き抜き能を有するラジカル発生剤を用いてポリマーを架橋させる方法。電子線照射により架橋させる方法。せん断貯蔵弾性率を制御しやすく、成形体の生産性が高くなることから、樹脂のポリマー構造中に互いに反応する官能基を導入しておき、架橋を形成させる方法が好適である。 The following methods may be mentioned as methods for crosslinking the resin. A method in which crosslinks are formed by introducing functional groups that react with each other into the polymer structure of the resin. A method of crosslinking using a crosslinking agent having two or more functional groups that react with a functional group present in the polymer structure of the resin. A method of crosslinking a polymer by using a radical generator having a hydrogen abstraction ability such as peroxide. A method of crosslinking by electron beam irradiation. Since it is easy to control the shear storage elastic modulus and the productivity of the molded body is high, a method of forming crosslinks by introducing functional groups that react with each other into the polymer structure of the resin is preferable.
 成形体が上記ポリビニルアセタール樹脂と上記重合体Xとの架橋物を含む場合に、ポリビニルアセタール樹脂の存在下で、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物を含む重合性成分を重合させることにより重合体Xを形成し、成形体を得る工程が行われることが好ましい。この工程により、上記ポリビニルアセタール樹脂と上記重合体Xとが架橋している構造が形成される。 When the molded product contains a crosslinked product of the polyvinyl acetal resin and the polymer X, a polymerizable component containing a (meth) acrylate compound having two or more (meth) acryloyl groups in the presence of the polyvinyl acetal resin It is preferable that a step of forming a polymer X by polymerization to obtain a molded body is performed. By this step, a structure in which the polyvinyl acetal resin and the polymer X are cross-linked is formed.
 上記第1の層(単層の成形体を含む)は、熱可塑性樹脂(以下、熱可塑性樹脂(1)と記載することがある)を含むことが好ましい。上記第1の層は、熱可塑性樹脂(1)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(1)と記載することがある)を含むことが好ましい。上記第1の層のみの単層の成形体である場合に、成形体は、ポリビニルアセタール樹脂(1)を含む。上記第2の層は、熱可塑性樹脂(以下、熱可塑性樹脂(2)と記載することがある)を含むことが好ましい。上記第2の層は、熱可塑性樹脂(2)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(2)と記載することがある)を含むことが好ましい。上記第3の層は、熱可塑性樹脂(以下、熱可塑性樹脂(3)と記載することがある)を含むことが好ましい。上記第3の層は、熱可塑性樹脂(3)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(3)と記載することがある)を含むことが好ましい。上記ポリビニルアセタール樹脂(1)と上記ポリビニルアセタール樹脂(2)と上記ポリビニルアセタール樹脂(3)とは、同一であってもよく、異なっていてもよい。遮音性がより一層高くなることから、上記ポリビニルアセタール樹脂(1)は、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)と異なっていることが好ましい。上記熱可塑性樹脂(1)と上記熱可塑性樹脂(2)と上記熱可塑性樹脂(3)とは、同一であってもよく、異なっていてもよい。上記ポリビニルアセタール樹脂(1)、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。上記熱可塑性樹脂(1)、上記熱可塑性樹脂(2)及び上記熱可塑性樹脂(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。 The first layer (including a single-layer molded body) preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (1)). The first layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (1)) as the thermoplastic resin (1). In the case of the single-layer molded body having only the first layer, the molded body contains the polyvinyl acetal resin (1). The second layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (2)). The second layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (2)) as the thermoplastic resin (2). The third layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (3)). The third layer preferably contains a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (3)) as the thermoplastic resin (3). The polyvinyl acetal resin (1), the polyvinyl acetal resin (2), and the polyvinyl acetal resin (3) may be the same or different. Since the sound insulation is further enhanced, the polyvinyl acetal resin (1) is preferably different from the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3). The thermoplastic resin (1), the thermoplastic resin (2), and the thermoplastic resin (3) may be the same or different. As for the said polyvinyl acetal resin (1), the said polyvinyl acetal resin (2), and the said polyvinyl acetal resin (3), only 1 type may respectively be used and 2 or more types may be used together. As for the said thermoplastic resin (1), the said thermoplastic resin (2), and the said thermoplastic resin (3), only 1 type may respectively be used and 2 or more types may be used together.
 上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、ポリアクリル樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル酸共重合体樹脂、ポリウレタン樹脂及びポリビニルアルコール樹脂等が挙げられる。これら以外の熱可塑性樹脂を用いてもよい。 Examples of the thermoplastic resin include polyvinyl acetal resin, polyacrylic resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, and polyvinyl alcohol resin. Thermoplastic resins other than these may be used.
 上記ポリビニルアセタール樹脂は、ポリビニルアルコールのアセタール化物であることが好ましい。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に70~99.9モル%である。 The polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol. The polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate. The saponification degree of the polyvinyl alcohol is generally 70 to 99.9 mol%.
 上記ポリビニルアルコール(PVA)の平均重合度は、好ましくは200以上、より好ましくは500以上、より一層好ましくは1500以上、更に好ましくは1600以上、特に好ましくは2600以上、最も好ましくは2700以上、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3500以下である。上記平均重合度が上記下限以上であると、合わせガラスの耐貫通性と曲げ剛性とがより一層高くなる。上記平均重合度が上記上限以下であると、成形体の成形が容易になる。 The average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, particularly preferably 2600 or more, most preferably 2700 or more, preferably It is 5000 or less, more preferably 4000 or less, and still more preferably 3500 or less. When the average degree of polymerization is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased. When the average degree of polymerization is not more than the above upper limit, the molded article can be easily molded.
 上記ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。 The average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
 上記ポリビニルアセタール樹脂におけるアセタール基の炭素数は2~10であることが好ましく、2~5であることがより好ましく、2、3又は4であることが更に好ましい。また、上記ポリビニルアセタール樹脂におけるアセタール基の炭素数が2又は4であることが好ましく、この場合には、ポリビニルアセタール樹脂の生産が効率的である。 In the polyvinyl acetal resin, the carbon number of the acetal group is preferably 2 to 10, more preferably 2 to 5, and further preferably 2, 3 or 4. The carbon number of the acetal group in the polyvinyl acetal resin is preferably 2 or 4, and in this case, the production of the polyvinyl acetal resin is efficient.
 アルデヒドとして、一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、クミンアルデヒド、及びベンズアルデヒド等が挙げられる。アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましい。アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド又はn-バレルアルデヒドがより好ましく、アセトアルデヒド、n-ブチルアルデヒド又はn-バレルアルデヒドが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。 In general, an aldehyde having 1 to 10 carbon atoms is suitably used as the aldehyde. Examples of the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, Examples include n-nonyl aldehyde, n-decyl aldehyde, cumin aldehyde, and benzaldehyde. Acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde are preferred. Acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde or n-valeraldehyde is more preferred, and acetaldehyde, n-butyraldehyde or n-valeraldehyde is still more preferred. As for the said aldehyde, only 1 type may be used and 2 or more types may be used together.
 上記ポリビニルアセタール樹脂(1)を単層の成形体の一部として用いる場合には、上記ポリビニルアセタール樹脂(1)の水酸基の含有率(水酸基量)は、以下の範囲が好ましい。上記ポリビニルアセタール樹脂(1)の水酸基の含有率(水酸基量)は、好ましくは25モル%以上、より好ましくは28モル%以上、より好ましくは30モル%以上、より一層好ましくは31.5モル%以上、更に好ましくは32モル%以上、特に好ましくは33モル%以上である。上記ポリビニルアセタール樹脂(1)の水酸基の含有率(水酸基量)は、好ましくは37モル%以下、より好ましくは36.5モル%以下、更に好ましくは36モル%以下である。上記水酸基の含有率が上記下限以上であると、曲げ剛性がより一層高くなり、成形体の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、成形体の柔軟性が高くなり、成形体の取扱いが容易になる。 When the polyvinyl acetal resin (1) is used as a part of a single-layer molded product, the hydroxyl content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably in the following range. The hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 25 mol% or more, more preferably 28 mol% or more, more preferably 30 mol% or more, and even more preferably 31.5 mol%. More preferably, it is at least 32 mol%, particularly preferably at least 33 mol%. The hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin (1) is preferably not more than 37 mol%, more preferably not more than 36.5 mol%, still more preferably not more than 36 mol%. When the hydroxyl group content is at least the above lower limit, the bending rigidity is further increased, and the adhesive strength of the molded body is further increased. Moreover, the flexibility of a molded object becomes it high that the content rate of the said hydroxyl group is below the said upper limit, and handling of a molded object becomes easy.
 上記ポリビニルアセタール樹脂(1)の水酸基の含有率(水酸基量)は、好ましくは17モル%以上、より好ましくは20モル%以上、更に好ましくは22モル%以上、好ましくは28モル%以下、より好ましくは27モル%以下、更に好ましくは25モル%以下、特に好ましくは24モル%以下である。上記ポリビニルアセタール樹脂(1)を多層の成形体の一部として用いる場合には特に、この水酸基の含有率の下限及び上限を満足することが好ましい。上記水酸基の含有率が上記下限以上であると、成形体の機械強度がより一層高くなる。特に、上記ポリビニルアセタール樹脂(1)の水酸基の含有率が20モル%以上であると反応効率が高く生産性に優れ、また28モル%以下であると、合わせガラスの遮音性がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、成形体の柔軟性が高くなり、成形体の取扱いが容易になる。特に、上記ポリビニルアセタール樹脂(1)の水酸基の含有率が28モル%以下である成形体を用いた合わせガラスは曲げ剛性が低くなる傾向にあるが、本発明の構成によって、曲げ剛性を顕著に改善できる。 The hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 17 mol% or more, more preferably 20 mol% or more, still more preferably 22 mol% or more, preferably 28 mol% or less, more preferably. Is 27 mol% or less, more preferably 25 mol% or less, and particularly preferably 24 mol% or less. In particular, when the polyvinyl acetal resin (1) is used as a part of a multilayer molded article, it is preferable that the lower limit and the upper limit of the hydroxyl group content are satisfied. The mechanical strength of a molded object becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum. In particular, when the hydroxyl group content of the polyvinyl acetal resin (1) is 20 mol% or more, the reaction efficiency is high and the productivity is excellent, and when it is 28 mol% or less, the sound insulation of the laminated glass is further enhanced. . Moreover, the flexibility of a molded object becomes it high that the content rate of the said hydroxyl group is below the said upper limit, and handling of a molded object becomes easy. In particular, a laminated glass using a molded product having a hydroxyl group content of 28 mol% or less in the polyvinyl acetal resin (1) tends to have a low bending rigidity. Can improve.
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の水酸基の各含有率は、好ましくは25モル%以上、より好ましくは28モル%以上、より好ましくは30モル%以上、より一層好ましくは31.5モル%以上、更に好ましくは32モル%以上、特に好ましくは33モル%以上である。上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の水酸基の各含有率は、好ましくは37モル%以下、より好ましくは36.5モル%以下、更に好ましくは36モル%以下である。上記水酸基の含有率が上記下限以上であると、曲げ剛性がより一層高くなり、成形体の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、成形体の柔軟性が高くなり、成形体の取扱いが容易になる。 The content of each hydroxyl group in the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 25 mol% or more, more preferably 28 mol% or more, more preferably 30 mol% or more, and still more preferably. It is 31.5 mol% or more, more preferably 32 mol% or more, and particularly preferably 33 mol% or more. Each content rate of the hydroxyl group of the said polyvinyl acetal resin (2) and the said polyvinyl acetal resin (3) becomes like this. Preferably it is 37 mol% or less, More preferably, it is 36.5 mol% or less, More preferably, it is 36 mol% or less. When the hydroxyl group content is at least the above lower limit, the bending rigidity is further increased, and the adhesive strength of the molded body is further increased. Moreover, the flexibility of a molded object becomes it high that the content rate of the said hydroxyl group is below the said upper limit, and handling of a molded object becomes easy.
 遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率は、上記ポリビニルアセタール樹脂(2)の水酸基の含有率よりも低いことが好ましい。遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率は、上記ポリビニルアセタール樹脂(3)の水酸基の含有率よりも低いことが好ましい。遮音性を更に一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(2)の水酸基の含有率との差の絶対値は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは9モル%以上、特に好ましくは10モル%以上、最も好ましくは12モル%以上である。遮音性を更に一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(3)の水酸基の含有率との差の絶対値は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは9モル%以上、特に好ましくは10モル%以上、最も好ましくは12モル%以上である。上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(2)の水酸基の含有率との差の絶対値は、好ましくは20モル%以下である。上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(3)の水酸基の含有率との差の絶対値は、好ましくは20モル%以下である。 From the viewpoint of further improving sound insulation, the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (2). From the viewpoint of further increasing the sound insulation, the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (3). From the viewpoint of further improving sound insulation, the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 1 mol% or more. More preferably, it is 5 mol% or more, more preferably 9 mol% or more, particularly preferably 10 mol% or more, and most preferably 12 mol% or more. From the viewpoint of further improving sound insulation, the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 1 mol% or more. More preferably, it is 5 mol% or more, more preferably 9 mol% or more, particularly preferably 10 mol% or more, and most preferably 12 mol% or more. The absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 20 mol% or less. The absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 20 mol% or less.
 上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。 The hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage. The amount of the ethylene group to which the hydroxyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
 上記ポリビニルアセタール樹脂(1)のアセチル化度(アセチル基量)は、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、より一層好ましくは7モル%以上、更に好ましくは9モル%以上、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは24モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤や他の熱可塑性樹脂との相溶性が高くなり、遮音性や耐貫通性により一層優れ、長期間に渡り性能がより一層安定する。上記アセチル化度が上記上限以下であると、成形体及び合わせガラスの耐湿性が高くなる。特に、上記ポリビニルアセタール樹脂(1)のアセチル化度が0.1モル%以上、25モル%以下であると、耐貫通性により一層優れる。 The degree of acetylation (acetyl group amount) of the polyvinyl acetal resin (1) is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 7 mol% or more, still more preferably 9 It is at least mol%, preferably at most 30 mol%, more preferably at most 25 mol%, still more preferably at most 24 mol%. When the degree of acetylation is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer or other thermoplastic resin is increased, the sound insulation and penetration resistance are further improved, and the performance is further improved over a long period of time. Stabilize. When the degree of acetylation is not more than the above upper limit, the moisture resistance of the molded body and the laminated glass is increased. In particular, when the degree of acetylation of the polyvinyl acetal resin (1) is 0.1 mol% or more and 25 mol% or less, the penetration resistance is further improved.
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の各アセチル化度は、好ましくは0.01モル%以上、より好ましくは0.5モル%以上、好ましくは10モル%以下、より好ましくは2モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、成形体及び合わせガラスの耐湿性が高くなる。 Each degree of acetylation of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably. Is 2 mol% or less. When the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased. When the degree of acetylation is not more than the above upper limit, the moisture resistance of the molded body and the laminated glass is increased.
 上記アセチル化度は、アセチル基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセチル基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。 The degree of acetylation is a value obtained by dividing the amount of ethylene groups to which the acetyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage. The amount of ethylene group to which the acetyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
 上記ポリビニルアセタール樹脂(1)のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは47モル%以上、より好ましくは60モル%以上、更に好ましくは68モル%以上、好ましくは85モル%以下、より好ましくは80モル%以下、更に好ましくは75モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。 The degree of acetalization of the polyvinyl acetal resin (1) (in the case of polyvinyl butyral resin, the degree of butyralization) is preferably 47 mol% or more, more preferably 60 mol% or more, still more preferably 68 mol% or more, preferably It is 85 mol% or less, More preferably, it is 80 mol% or less, More preferably, it is 75 mol% or less. When the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases. When the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の各アセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは55モル%以上、より好ましくは60モル%以上、好ましくは75モル%以下、より好ましくは71モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。 The degree of acetalization (degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 55 mol% or more, more preferably 60 mol% or more, preferably Is 75 mol% or less, more preferably 71 mol% or less. When the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases. When the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
 上記アセタール化度は、以下のようにして求める。先ず、主鎖の全エチレン基量から、水酸基が結合しているエチレン基量と、アセチル基が結合しているエチレン基量とを差し引いた値を求める。得られた値を、主鎖の全エチレン基量で除算してモル分率を求める。このモル分率を百分率で示した値がアセタール化度である。 The degree of acetalization is obtained as follows. First, a value obtained by subtracting the amount of ethylene groups bonded with hydroxyl groups and the amount of ethylene groups bonded with acetyl groups from the total amount of ethylene groups in the main chain is obtained. The obtained value is divided by the total amount of ethylene groups in the main chain to obtain the mole fraction. A value indicating the mole fraction as a percentage is the degree of acetalization.
 なお、上記水酸基の含有率(水酸基量)、アセタール化度(ブチラール化度)及びアセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することが好ましい。但し、ASTM D1396-92による測定を用いてもよい。ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記水酸基の含有率(水酸基量)、上記アセタール化度(ブチラール化度)及び上記アセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出され得る。 The hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. However, measurement by ASTM D1396-92 may be used. When the polyvinyl acetal resin is a polyvinyl butyral resin, the hydroxyl group content (hydroxyl amount), the acetalization degree (butyralization degree), and the acetylation degree are determined in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the results measured by
 (可塑剤)
 上記成形体は、可塑剤を含むことが好ましい。上記第1の層(単層の成形体を含む)は、可塑剤(以下、可塑剤(1)と記載することがある)を含むことが好ましい。上記第2の層は、可塑剤(以下、可塑剤(2)と記載することがある)を含むことが好ましい。上記第3の層は、可塑剤(以下、可塑剤(3)と記載することがある)を含むことが好ましい。可塑剤の使用により、またポリビニルアセタール樹脂と可塑剤との併用により、耐貫通性により一層優れ、ポリビニルアセタール樹脂と可塑剤とを含む層の合わせガラス部材又は他の層に対する接着力が適度に高くなる。上記可塑剤は特に限定されない。上記可塑剤(1)と上記可塑剤(2)と上記可塑剤(3)とは同一であってもよく、異なっていてもよい。上記可塑剤(1)、上記可塑剤(2)及び上記可塑剤(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Plasticizer)
The molded body preferably contains a plasticizer. The first layer (including a single-layer molded body) preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (1)). The second layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (2)). The third layer preferably contains a plasticizer (hereinafter may be referred to as a plasticizer (3)). By using a plasticizer, and by using a polyvinyl acetal resin and a plasticizer in combination, the penetration resistance is further improved, and the adhesive strength of the layer containing the polyvinyl acetal resin and the plasticizer to the laminated glass member or other layers is moderately high. Become. The plasticizer is not particularly limited. The plasticizer (1), the plasticizer (2), and the plasticizer (3) may be the same or different. As for the said plasticizer (1), the said plasticizer (2), and the said plasticizer (3), only 1 type may respectively be used and 2 or more types may be used together.
 上記可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などの有機リン酸可塑剤等が挙げられる。有機エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。 Examples of the plasticizer include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphate plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. . Organic ester plasticizers are preferred. The plasticizer is preferably a liquid plasticizer.
 上記一塩基性有機酸エステルとしては、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。 Examples of the monobasic organic acid ester include glycol esters obtained by a reaction between glycol and a monobasic organic acid. Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol. Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
 上記多塩基性有機酸エステルとしては、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物等が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。 Examples of the polybasic organic acid ester include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms. Examples of the polybasic organic acid include adipic acid, sebacic acid, and azelaic acid.
 上記有機エステル可塑剤としては、トリエチレングリコールジ-2-エチルプロパノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリレート、ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、マレイン酸ジブチル、アジピン酸ビス(2-ブトキシエチル)、アジピン酸ジブチル、アジピン酸ジイソブチル、アジピン酸2,2―ブトキシエトキシエチル、安息香酸グリコールエステル、アジピン酸1,3-ブチレングリコールポリエステル、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、クエン酸トリブチル、アセチルクエン酸トリブチル、炭酸ジエチル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。上述のアジピン酸エステル以外の他のアジピン酸エステルを用いてもよい。 Examples of the organic ester plasticizer include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Hexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicaprylate, diethylene glycol dibenzoate, dipropylene glycol dibenzoate , Dibutyl maleate, bis (2-butoxyethyl) adipate, dibutyl adipate, diisobutyl adipate, 2,2-butoxyethoxyethyl adipate, glycol benzoate, 1,3-butylene glycol polyester adipate, adipic acid Dihexyl, dioctyl adipate, hexyl cyclohexyl adipate, a mixture of heptyl adipate and nonyl adipate, diisononyl adipate, diisoadipate Sill, Hepuchirunoniru adipic acid, tributyl citrate, acetyl tributyl citrate, diethyl carbonate, dibutyl sebacate, oil-modified sebacic alkyds, and mixtures of phosphoric acid esters and adipic acid esters. Organic ester plasticizers other than these may be used. Other adipic acid esters other than the above-mentioned adipic acid esters may be used.
 上記有機リン酸可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート、トリクレジルホスフェート及びトリイソプロピルホスフェート等が挙げられる。 Examples of the organic phosphate plasticizer include tributoxyethyl phosphate, isodecylphenyl phosphate, tricresyl phosphate, triisopropyl phosphate, and the like.
 上記可塑剤は、下記式(1)で表されるジエステル可塑剤であることが好ましい。 The plasticizer is preferably a diester plasticizer represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ、炭素数2~10の有機基を表し、R3は、エチレン基、イソプロピレン基又はn-プロピレン基を表し、pは3~10の整数を表す。上記式(1)中のR1及びR2はそれぞれ、炭素数5~10の有機基であることが好ましく、炭素数6~10の有機基であることがより好ましい。 In the above formula (1), R1 and R2 each represent an organic group having 2 to 10 carbon atoms, R3 represents an ethylene group, an isopropylene group or an n-propylene group, and p represents an integer of 3 to 10 . R1 and R2 in the above formula (1) are each preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
 上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)又はトリエチレングリコールジ-2-エチルプロパノエートを含むことが好ましい。上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート又はトリエチレングリコールジ-2-エチルブチレートを含むことがより好ましく、トリエチレングリコールジ-2-エチルヘキサノエートを含むことが更に好ましい。 The plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. . The plasticizer preferably includes triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and further includes triethylene glycol di-2-ethylhexanoate. preferable.
 低温かつ高速での破断伸度及び破断強度をより一層高める観点からは、上記成形体は、可塑剤を含まないか、又は、上記ポリビニルアセタール樹脂と上記重合体との合計100重量部に対して可塑剤を10重量部以下(好ましくは5重量部以下)で含むことが好ましい。耐貫通性をより一層高める観点からは、上記成形体は、可塑剤を含むことが好ましく、上記ポリビニルアセタール樹脂と上記重合体との合計100重量部に対して可塑剤を0.01重量部以上(好ましくは0.1重量部以上)で含むことが好ましい。 From the viewpoint of further increasing the breaking elongation and breaking strength at low temperature and high speed, the molded article does not contain a plasticizer, or the total of 100 parts by weight of the polyvinyl acetal resin and the polymer. The plasticizer is preferably contained in an amount of 10 parts by weight or less (preferably 5 parts by weight or less). From the viewpoint of further improving penetration resistance, the molded body preferably contains a plasticizer, and the plasticizer is added in an amount of 0.01 parts by weight or more with respect to a total of 100 parts by weight of the polyvinyl acetal resin and the polymer. (Preferably 0.1 parts by weight or more).
 上記第2の層において、上記熱可塑性樹脂(2)100重量部(熱可塑性樹脂(2)がポリビニルアセタール樹脂(2)である場合には、ポリビニルアセタール樹脂(2)100重量部)に対する上記可塑剤(2)の含有量を、含有量(2)とする。上記第3の層において、上記熱可塑性樹脂(3)100重量部(熱可塑性樹脂(3)がポリビニルアセタール樹脂(3)である場合には、ポリビニルアセタール樹脂(3)100重量部)に対する上記可塑剤(3)の含有量を、含有量(3)とする。上記含有量(2)及び上記含有量(3)はそれぞれ、好ましくは10重量部以上、より好ましくは15重量部以上、好ましくは40重量部以下、より好ましくは35重量部以下、更に好ましくは32重量部以下、特に好ましくは30重量部以下である。上記含有量(2)及び上記含有量(3)が上記下限以上であると、成形体の柔軟性が高くなり、成形体の取扱いが容易になる。上記含有量(2)及び上記含有量(3)が上記上限以下であると、曲げ剛性がより一層高くなる。 In the second layer, the plastic with respect to 100 parts by weight of the thermoplastic resin (2) (when the thermoplastic resin (2) is a polyvinyl acetal resin (2), 100 parts by weight of the polyvinyl acetal resin (2)). Let content of an agent (2) be content (2). In the third layer, the plastic relative to 100 parts by weight of the thermoplastic resin (3) (when the thermoplastic resin (3) is a polyvinyl acetal resin (3), 100 parts by weight of the polyvinyl acetal resin (3)). Let content of an agent (3) be content (3). The content (2) and the content (3) are each preferably 10 parts by weight or more, more preferably 15 parts by weight or more, preferably 40 parts by weight or less, more preferably 35 parts by weight or less, and still more preferably 32 parts. It is 30 parts by weight or less, particularly preferably 30 parts by weight or less. When the content (2) and the content (3) are equal to or more than the lower limit, the flexibility of the molded body is increased and the molded body is easily handled. When the content (2) and the content (3) are equal to or lower than the upper limit, the bending rigidity is further increased.
 上記第1の層において、上記熱可塑性樹脂(1)100重量部(熱可塑性樹脂(1)がポリビニルアセタール樹脂(1)である場合には、ポリビニルアセタール樹脂(1)100重量部)に対する上記可塑剤(1)の含有量を、含有量(1)とする。上記含有量(1)は、好ましくは1重量部以上、より好ましくは2重量部以上、より一層好ましくは3重量部以上、更に好ましくは5重量部以上、好ましくは90重量部以下、より好ましくは85重量部以下、更に好ましくは80重量部以下である。上記含有量(1)が上記下限以上であると、成形体の柔軟性が高くなり、成形体の取扱いが容易になる。上記含有量(1)が上記上限以下であると、合わせガラスの耐貫通性がより一層高くなる。上記含有量(1)は、50重量部以上であってもよく、55重量部以上であってもよく、60重量部以上であってもよい。上記含有量(1)は、30重量部以下であってもよく、20重量部以下であってもよく、10重量部以下であってもよい。 In the first layer, the plastic relative to 100 parts by weight of the thermoplastic resin (1) (or 100 parts by weight of the polyvinyl acetal resin (1) when the thermoplastic resin (1) is a polyvinyl acetal resin (1)). Let content of an agent (1) be content (1). The content (1) is preferably 1 part by weight or more, more preferably 2 parts by weight or more, still more preferably 3 parts by weight or more, still more preferably 5 parts by weight or more, preferably 90 parts by weight or less, more preferably 85 parts by weight or less, more preferably 80 parts by weight or less. When the content (1) is not less than the above lower limit, the flexibility of the molded body is increased and the molded body is easily handled. When the content (1) is not more than the above upper limit, the penetration resistance of the laminated glass is further enhanced. The content (1) may be 50 parts by weight or more, 55 parts by weight or more, or 60 parts by weight or more. The content (1) may be 30 parts by weight or less, 20 parts by weight or less, or 10 parts by weight or less.
 上記成形体が2層以上である場合には、合わせガラスの遮音性を高めるために、上記含有量(1)は上記含有量(2)よりも多いことが好ましく、上記含有量(1)は上記含有量(3)よりも多いことが好ましい。特に、上記含有量(1)が55重量部以上である成形体を用いた合わせガラスは曲げ剛性が低くなる傾向にあるが、本発明の構成により、曲げ剛性を顕著に改善できる。 When the molded body has two or more layers, the content (1) is preferably larger than the content (2) in order to enhance the sound insulation of the laminated glass, and the content (1) is It is preferable that there is more than the said content (3). In particular, the laminated glass using the molded body having the content (1) of 55 parts by weight or more tends to have low bending rigidity, but the structure of the present invention can remarkably improve the bending rigidity.
 合わせガラスの遮音性をより一層高める観点からは、上記含有量(2)と上記含有量(1)との差の絶対値、並びに上記含有量(3)と上記含有量(1)との差の絶対値はそれぞれ、好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上である。上記含有量(2)と上記含有量(1)との差の絶対値、並びに上記含有量(3)と上記含有量(1)との差の絶対値はそれぞれ、好ましくは80重量部以下、より好ましくは75重量部以下、更に好ましくは70重量部以下である。 From the viewpoint of further improving the sound insulation of the laminated glass, the absolute value of the difference between the content (2) and the content (1), and the difference between the content (3) and the content (1). Is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and still more preferably 20 parts by weight or more. The absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are each preferably 80 parts by weight or less. More preferably, it is 75 weight part or less, More preferably, it is 70 weight part or less.
 (遮熱性物質)
 上記成形体は、遮熱性物質(遮熱性化合物)を含むことが好ましい。上記第1の層は、遮熱性物質を含むことが好ましい。上記第2の層は、遮熱性物質を含むことが好ましい。上記第3の層は、遮熱性物質を含むことが好ましい。上記遮熱性物質は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Heat shielding material)
The molded body preferably contains a heat shielding material (heat shielding compound). The first layer preferably contains a heat shielding material. The second layer preferably includes a heat shielding material. The third layer preferably contains a heat shielding material. As for the said heat-shielding substance, only 1 type may be used and 2 or more types may be used together.
 上記遮熱性物質は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むか、又は遮熱粒子を含むことが好ましい。この場合に、上記成分Xと上記遮熱粒子との双方を含んでいてもよい。 The heat-insulating substance preferably contains at least one component X of phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds, or contains heat-shielding particles. In this case, both the component X and the heat shielding particles may be included.
 成分X:
 上記成形体は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むことが好ましい。上記第1の層は、上記成分Xを含むことが好ましい。上記第2の層は、上記成分Xを含むことが好ましい。上記第3の層は、上記成分Xを含むことが好ましい。上記成分Xは遮熱性物質である。上記成分Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
Component X:
The molded body preferably contains at least one component X of a phthalocyanine compound, a naphthalocyanine compound, and an anthracocyanine compound. The first layer preferably contains the component X. The second layer preferably contains the component X. The third layer preferably contains the component X. The component X is a heat shielding material. As for the said component X, only 1 type may be used and 2 or more types may be used together.
 上記成分Xは特に限定されない。成分Xとして、従来公知のフタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物を用いることができる。 The component X is not particularly limited. As component X, conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds can be used.
 成形体及び合わせガラスの遮熱性をより一層高くする観点からは、上記成分Xは、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン及びナフタロシアニンの誘導体からなる群から選択される少なくとも1種であることが好ましく、フタロシアニン及びフタロシアニンの誘導体の内の少なくとも1種であることがより好ましい。 From the viewpoint of further enhancing the heat shielding properties of the molded article and the laminated glass, the component X is preferably at least one selected from the group consisting of phthalocyanine, a derivative of phthalocyanine, naphthalocyanine, and a derivative of naphthalocyanine. More preferably, it is at least one of phthalocyanine and phthalocyanine derivatives.
 遮熱性を効果的に高め、かつ長期間にわたり可視光線透過率をより一層高いレベルで維持する観点からは、上記成分Xは、バナジウム原子又は銅原子を含有することが好ましい。上記成分Xは、バナジウム原子を含有することが好ましく、銅原子を含有することも好ましい。上記成分Xは、バナジウム原子又は銅原子を含有するフタロシアニン及びバナジウム原子又は銅原子を含有するフタロシアニンの誘導体の内の少なくとも1種であることがより好ましい。成形体及び合わせガラスの遮熱性を更に一層高くする観点からは、上記成分Xは、バナジウム原子に酸素原子が結合した構造単位を有することが好ましい。 From the viewpoint of effectively increasing the heat shielding property and maintaining the visible light transmittance at a higher level over a long period of time, the component X preferably contains a vanadium atom or a copper atom. The component X preferably contains a vanadium atom, and preferably contains a copper atom. The component X is more preferably at least one of a phthalocyanine containing a vanadium atom or a copper atom and a phthalocyanine derivative containing a vanadium atom or a copper atom. From the viewpoint of further increasing the heat shielding properties of the molded body and the laminated glass, the component X preferably has a structural unit in which an oxygen atom is bonded to a vanadium atom.
 上記成分Xを含む層(第1の層、第2の層又は第3の層)100重量%中、上記成分Xの含有量は、好ましくは0.001重量%以上、より好ましくは0.005重量%以上、更に好ましくは0.01重量%以上、特に好ましくは0.02重量%以上である。上記成分Xを含む層(第1の層、第2の層又は第3の層)100重量%中、上記成分Xの含有量は、好ましくは0.2重量%以下、より好ましくは0.1重量%以下、更に好ましくは0.05重量%以下、特に好ましくは0.04重量%以下である。上記成分Xの含有量が上記下限以上及び上記上限以下であると、遮熱性が充分に高くなり、かつ可視光線透過率が充分に高くなる。例えば、可視光線透過率を70%以上にすることが可能である。 In 100% by weight of the layer containing the component X (first layer, second layer or third layer), the content of the component X is preferably 0.001% by weight or more, more preferably 0.005. % By weight or more, more preferably 0.01% by weight or more, particularly preferably 0.02% by weight or more. In 100% by weight of the layer containing the component X (first layer, second layer, or third layer), the content of the component X is preferably 0.2% by weight or less, more preferably 0.1%. % By weight or less, more preferably 0.05% by weight or less, particularly preferably 0.04% by weight or less. When the content of the component X is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high. For example, the visible light transmittance can be 70% or more.
 遮熱粒子:
 上記成形体は、遮熱粒子を含むことが好ましい。上記第1の層(単層の成形体を含む)は、上記遮熱粒子を含むことが好ましい。上記第2の層は、上記遮熱粒子を含むことが好ましい。上記第3の層は、上記遮熱粒子を含むことが好ましい。上記遮熱粒子は遮熱性物質である。遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。上記遮熱粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Thermal barrier particles:
The molded body preferably includes heat shielding particles. The first layer (including a single-layer molded body) preferably includes the heat shielding particles. The second layer preferably includes the heat shielding particles. The third layer preferably contains the heat shielding particles. The heat shielding particles are heat shielding materials. By using heat shielding particles, infrared rays (heat rays) can be effectively blocked. As for the said heat-shielding particle, only 1 type may be used and 2 or more types may be used together.
 合わせガラスの遮熱性をより一層高める観点からは、上記遮熱粒子は、金属酸化物粒子であることがより好ましい。上記遮熱粒子は、金属の酸化物により形成された粒子(金属酸化物粒子)であることが好ましい。 From the viewpoint of further improving the heat shielding property of the laminated glass, the heat shielding particles are more preferably metal oxide particles. The heat shielding particles are preferably particles (metal oxide particles) formed of a metal oxide.
 可視光よりも長い波長780nm以上の赤外線は、紫外線と比較して、エネルギー量が小さい。しかしながら、赤外線は熱的作用が大きく、赤外線が物質に吸収されると熱として放出される。このため、赤外線は一般に熱線と呼ばれている。上記遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。なお、遮熱粒子とは、赤外線を吸収可能な粒子を意味する。 ¡Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays. However, infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays. By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked. The heat shielding particles mean particles that can absorb infrared rays.
 上記遮熱粒子の具体例としては、アルミニウムドープ酸化錫粒子、インジウムドープ酸化錫粒子、アンチモンドープ酸化錫粒子(ATO粒子)、ガリウムドープ酸化亜鉛粒子(GZO粒子)、インジウムドープ酸化亜鉛粒子(IZO粒子)、アルミニウムドープ酸化亜鉛粒子(AZO粒子)、ニオブドープ酸化チタン粒子、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子、ルビジウムドープ酸化タングステン粒子、錫ドープ酸化インジウム粒子(ITO粒子)、錫ドープ酸化亜鉛粒子、珪素ドープ酸化亜鉛粒子等の金属酸化物粒子や、六ホウ化ランタン(LaB)粒子等が挙げられる。これら以外の遮熱粒子を用いてもよい。熱線の遮蔽機能が高いため、金属酸化物粒子が好ましく、ATO粒子、GZO粒子、IZO粒子、ITO粒子又は酸化タングステン粒子がより好ましく、ITO粒子又は酸化タングステン粒子が特に好ましい。特に、熱線の遮蔽機能が高く、かつ入手が容易であるので、錫ドープ酸化インジウム粒子(ITO粒子)が好ましく、酸化タングステン粒子も好ましい。 Specific examples of the heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles). ), Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used. Metal oxide particles are preferred because of their high heat ray shielding function, ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles are more preferred, and ITO particles or tungsten oxide particles are particularly preferred. In particular, tin-doped indium oxide particles (ITO particles) are preferable, and tungsten oxide particles are also preferable because they have a high heat ray shielding function and are easily available.
 成形体及び合わせガラスの遮熱性をより一層高くする観点からは、酸化タングステン粒子は、金属ドープ酸化タングステン粒子であることが好ましい。上記「酸化タングステン粒子」には、金属ドープ酸化タングステン粒子が含まれる。上記金属ドープ酸化タングステン粒子としては、具体的には、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子及びルビジウムドープ酸化タングステン粒子等が挙げられる。 From the viewpoint of further increasing the heat shielding properties of the molded body and the laminated glass, the tungsten oxide particles are preferably metal-doped tungsten oxide particles. The “tungsten oxide particles” include metal-doped tungsten oxide particles. Specific examples of the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, and rubidium-doped tungsten oxide particles.
 成形体及び合わせガラスの遮熱性をより一層高くする観点からは、セシウムドープ酸化タングステン粒子が特に好ましい。成形体及び合わせガラスの遮熱性を更に一層高くする観点からは、該セシウムドープ酸化タングステン粒子は、式:Cs0.33WOで表される酸化タングステン粒子であることが好ましい。 From the viewpoint of further increasing the heat shielding properties of the molded body and the laminated glass, cesium-doped tungsten oxide particles are particularly preferable. From the viewpoint of further increasing the heat shielding properties of the molded body and the laminated glass, the cesium-doped tungsten oxide particles are preferably tungsten oxide particles represented by the formula: Cs 0.33 WO 3 .
 上記遮熱粒子の平均粒子径は好ましくは0.01μm以上、より好ましくは0.02μm以上、好ましくは0.1μm以下、より好ましくは0.05μm以下である。平均粒子径が上記下限以上であると、熱線の遮蔽性が充分に高くなる。平均粒子径が上記上限以下であると、遮熱粒子の分散性が高くなる。 The average particle diameter of the heat shielding particles is preferably 0.01 μm or more, more preferably 0.02 μm or more, preferably 0.1 μm or less, more preferably 0.05 μm or less. When the average particle size is not less than the above lower limit, the heat ray shielding property is sufficiently increased. When the average particle size is not more than the above upper limit, the dispersibility of the heat shielding particles is increased.
 上記「平均粒子径」は、体積平均粒子径を示す。平均粒子径は、粒度分布測定装置(日機装社製「UPA-EX150」)等を用いて測定できる。 The above “average particle diameter” indicates the volume average particle diameter. The average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
 上記遮熱粒子を含む層(第1の層、第2の層又は第3の層)100重量%中、上記遮熱粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、更に好ましくは1重量%以上、特に好ましくは1.5重量%以上である。上記遮熱粒子を含む層(第1の層、第2の層又は第3の層)100重量%中、上記遮熱粒子の含有量は、好ましくは6重量%以下、より好ましくは5.5重量%以下、更に好ましくは4重量%以下、特に好ましくは3.5重量%以下、最も好ましくは3重量%以下である。上記遮熱粒子の含有量が上記下限以上及び上記上限以下であると、遮熱性が充分に高くなり、かつ可視光線透過率が充分に高くなる。 In 100% by weight of the layer containing the heat shielding particles (first layer, second layer or third layer), the content of the heat shielding particles is preferably 0.01% by weight or more, more preferably 0%. .1% by weight or more, more preferably 1% by weight or more, and particularly preferably 1.5% by weight or more. In 100% by weight of the layer containing the heat shielding particles (first layer, second layer or third layer), the content of the heat shielding particles is preferably 6% by weight or less, more preferably 5.5%. % By weight or less, more preferably 4% by weight or less, particularly preferably 3.5% by weight or less, and most preferably 3% by weight or less. When the content of the heat shielding particles is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
 (金属塩)
 上記成形体は、アルカリ金属塩、アルカリ土類金属塩及びマグネシウム塩の内の少なくとも1種の金属塩(以下、金属塩Mと記載することがある)を含むことが好ましい。上記第1の層は、上記金属塩Mを含むことが好ましい。上記第2の層は、上記金属塩Mを含むことが好ましい。上記第3の層は、上記金属塩Mを含むことが好ましい。上記金属塩Mの使用により、成形体と合わせガラス部材との接着性又は成形体における各層間の接着性を制御することが容易になる。上記金属塩Mは、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Metal salt)
The molded body preferably contains at least one metal salt (hereinafter sometimes referred to as metal salt M) among alkali metal salts, alkaline earth metal salts, and magnesium salts. The first layer preferably includes the metal salt M. The second layer preferably contains the metal salt M. The third layer preferably contains the metal salt M. Use of the metal salt M makes it easy to control the adhesion between the molded body and the laminated glass member or the adhesion between the layers in the molded body. As for the said metal salt M, only 1 type may be used and 2 or more types may be used together.
 上記金属塩Mは、Li、Na、K、Rb、Cs、Mg、Ca、Sr及びBaからなる群から選択された少なくとも1種の金属を含むことが好ましい。成形体中に含まれている金属塩は、K及びMgの内の少なくとも1種の金属を含むことが好ましい。 The metal salt M preferably contains at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba. The metal salt contained in the molded body preferably contains at least one metal of K and Mg.
 また、上記金属塩Mは、炭素数2~16の有機酸のアルカリ金属塩、炭素数2~16の有機酸のアルカリ土類金属塩又は炭素数2~16の有機酸のマグネシウム塩であることがより好ましく、炭素数2~16のカルボン酸マグネシウム塩又は炭素数2~16のカルボン酸カリウム塩であることが更に好ましい。 The metal salt M is an alkali metal salt of an organic acid having 2 to 16 carbon atoms, an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms, or a magnesium salt of an organic acid having 2 to 16 carbon atoms. Is more preferable, and it is more preferably a carboxylic acid magnesium salt having 2 to 16 carbon atoms or a carboxylic acid potassium salt having 2 to 16 carbon atoms.
 上記炭素数2~16のカルボン酸マグネシウム塩及び上記炭素数2~16のカルボン酸カリウム塩としては、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチル酪酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム及び2-エチルヘキサン酸カリウム等が挙げられる。 Examples of the C 2-16 carboxylic acid magnesium salt and the C 2-16 carboxylic acid potassium salt include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, 2-ethylbutanoic acid. Examples include potassium, magnesium 2-ethylhexanoate, and potassium 2-ethylhexanoate.
 上記金属塩Mを含む層(第1の層、第2の層又は第3の層)におけるMg及びKの含有量の合計は、好ましくは5ppm以上、より好ましくは10ppm以上、更に好ましくは20ppm以上、好ましくは300ppm以下、より好ましくは250ppm以下、更に好ましくは200ppm以下である。Mg及びKの含有量の合計が上記下限以上及び上記上限以下であると、成形体と合わせガラス部材との接着性又は成形体における各層間の接着性をより一層良好に制御できる。 The total content of Mg and K in the layer containing the metal salt M (first layer, second layer, or third layer) is preferably 5 ppm or more, more preferably 10 ppm or more, and even more preferably 20 ppm or more. , Preferably 300 ppm or less, more preferably 250 ppm or less, still more preferably 200 ppm or less. When the total content of Mg and K is not less than the above lower limit and not more than the above upper limit, the adhesion between the molded body and the laminated glass member or the adhesion between the layers in the molded body can be controlled even better.
 (紫外線遮蔽剤)
 上記成形体は、紫外線遮蔽剤を含むことが好ましい。上記第1の層は、紫外線遮蔽剤を含むことが好ましい。上記第2の層は、紫外線遮蔽剤を含むことが好ましい。上記第3の層は、紫外線遮蔽剤を含むことが好ましい。紫外線遮蔽剤の使用により、成形体及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。上記紫外線遮蔽剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(UV shielding agent)
The molded body preferably contains an ultraviolet shielding agent. The first layer preferably contains an ultraviolet shielding agent. The second layer preferably contains an ultraviolet shielding agent. The third layer preferably contains an ultraviolet shielding agent. By using the ultraviolet shielding agent, even when the molded body and the laminated glass are used for a long period of time, the visible light transmittance is further hardly lowered. As for the said ultraviolet shielding agent, only 1 type may be used and 2 or more types may be used together.
 上記紫外線遮蔽剤には、紫外線吸収剤が含まれる。上記紫外線遮蔽剤は、紫外線吸収剤であることが好ましい。 The ultraviolet shielding agent includes an ultraviolet absorber. The ultraviolet shielding agent is preferably an ultraviolet absorber.
 上記紫外線遮蔽剤としては、例えば、金属原子を含む紫外線遮蔽剤、金属酸化物を含む紫外線遮蔽剤、ベンゾトリアゾール構造を有する紫外線遮蔽剤(ベンゾトリアゾール化合物)、ベンゾフェノン構造を有する紫外線遮蔽剤(ベンゾフェノン化合物)、トリアジン構造を有する紫外線遮蔽剤(トリアジン化合物)、マロン酸エステル構造を有する紫外線遮蔽剤(マロン酸エステル化合物)、シュウ酸アニリド構造を有する紫外線遮蔽剤(シュウ酸アニリド化合物)及びベンゾエート構造を有する紫外線遮蔽剤(ベンゾエート化合物)等が挙げられる。 Examples of the ultraviolet shielding agent include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure (benzotriazole compound), and an ultraviolet shielding agent having a benzophenone structure (benzophenone compound). ), UV screening agent having triazine structure (triazine compound), UV screening agent having malonate ester structure (malonic acid ester compound), UV screening agent having oxalic acid anilide structure (oxalic acid anilide compound) and benzoate structure Examples thereof include an ultraviolet shielding agent (benzoate compound).
 上記金属原子を含む紫外線遮蔽剤としては、例えば、白金粒子、白金粒子の表面をシリカで被覆した粒子、パラジウム粒子及びパラジウム粒子の表面をシリカで被覆した粒子等が挙げられる。紫外線遮蔽剤は、遮熱粒子ではないことが好ましい。 Examples of the ultraviolet shielding agent containing a metal atom include platinum particles, particles having platinum particles coated with silica, palladium particles, and particles having palladium particles coated with silica. The ultraviolet shielding agent is preferably not a heat shielding particle.
 上記紫外線遮蔽剤は、好ましくはベンゾトリアゾール構造を有する紫外線遮蔽剤、ベンゾフェノン構造を有する紫外線遮蔽剤、トリアジン構造を有する紫外線遮蔽剤又はベンゾエート構造を有する紫外線遮蔽剤である。上記紫外線遮蔽剤は、より好ましくはベンゾトリアゾール構造を有する紫外線遮蔽剤又はベンゾフェノン構造を有する紫外線遮蔽剤であり、更に好ましくはベンゾトリアゾール構造を有する紫外線遮蔽剤である。 The ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure, an ultraviolet shielding agent having a benzophenone structure, an ultraviolet shielding agent having a triazine structure, or an ultraviolet shielding agent having a benzoate structure. The ultraviolet shielding agent is more preferably an ultraviolet shielding agent having a benzotriazole structure or an ultraviolet shielding agent having a benzophenone structure, and more preferably an ultraviolet shielding agent having a benzotriazole structure.
 上記金属酸化物を含む紫外線遮蔽剤としては、例えば、酸化亜鉛、酸化チタン及び酸化セリウム等が挙げられる。さらに、上記金属酸化物を含む紫外線遮蔽剤に関して、表面が被覆されていてもよい。上記金属酸化物を含む紫外線遮蔽剤の表面の被覆材料としては、絶縁性金属酸化物、加水分解性有機ケイ素化合物及びシリコーン化合物等が挙げられる。 Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat | covered regarding the ultraviolet-ray shielding agent containing the said metal oxide. Examples of the coating material on the surface of the ultraviolet shielding agent containing the metal oxide include insulating metal oxides, hydrolyzable organosilicon compounds, and silicone compounds.
 上記ベンゾトリアゾール構造を有する紫外線遮蔽剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(BASF社製「TinuvinP」)、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin320」)、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)、及び2-(2’-ヒドロキシ-3’,5’-ジ-アミルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin328」)等が挙げられる。紫外線を吸収する性能に優れることから、上記紫外線遮蔽剤は、ハロゲン原子を含むベンゾトリアゾール構造を有する紫外線遮蔽剤であることが好ましく、塩素原子を含むベンゾトリアゾール構造を有する紫外線遮蔽剤であることがより好ましい。 Examples of the ultraviolet screening agent having the benzotriazole structure include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole (“Tinvin 320” manufactured by BASF), 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) And “Tinuvin 326” manufactured by BASF, etc.) and the like. Since the performance of absorbing ultraviolet rays is excellent, the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure containing a halogen atom, and may be an ultraviolet shielding agent having a benzotriazole structure containing a chlorine atom. More preferred.
 上記ベンゾフェノン構造を有する紫外線遮蔽剤としては、例えば、オクタベンゾン(BASF社製「Chimassorb81」)等が挙げられる。 Examples of the ultraviolet shielding agent having the benzophenone structure include octabenzone (“Chimasorb 81” manufactured by BASF).
 上記トリアジン構造を有する紫外線遮蔽剤としては、例えば、ADEKA社製「LA-F70」及び2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF社製「Tinuvin1577FF」)等が挙げられる。 Examples of the ultraviolet shielding agent having the triazine structure include “LA-F70” manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl). Oxy] -phenol (“Tinuvin 1577FF” manufactured by BASF) and the like.
 上記マロン酸エステル構造を有する紫外線遮蔽剤としては、2-(p-メトキシベンジリデン)マロン酸ジメチル、テトラエチル-2,2-(1,4-フェニレンジメチリデン)ビスマロネート、2-(p-メトキシベンジリデン)-ビス(1,2,2,6,6-ペンタメチル4-ピペリジニル)マロネート等が挙げられる。 Examples of the UV screening agent having a malonic ester structure include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene). -Bis (1,2,2,6,6-pentamethyl 4-piperidinyl) malonate and the like.
 上記マロン酸エステル構造を有する紫外線遮蔽剤の市販品としては、Hostavin B-CAP、Hostavin PR-25、Hostavin PR-31(いずれもクラリアント社製)が挙げられる。 Examples of commercially available ultraviolet screening agents having a malonic ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
 上記シュウ酸アニリド構造を有する紫外線遮蔽剤としては、N-(2-エチルフェニル)-N’-(2-エトキシ-5-t-ブチルフェニル)シュウ酸ジアミド、N-(2-エチルフェニル)-N’-(2-エトキシ-フェニル)シュウ酸ジアミド、2-エチル-2’-エトキシ-オキシアニリド(クラリアント社製「SanduvorVSU」)などの窒素原子上に置換されたアリール基などを有するシュウ酸ジアミド類が挙げられる。 Examples of the ultraviolet shielding agent having the oxalic anilide structure include N- (2-ethylphenyl) -N ′-(2-ethoxy-5-tert-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl)- Oxalic acid diamides having an aryl group substituted on the nitrogen atom such as N ′-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2′-ethoxy-oxyanilide (“SlandorVSU” manufactured by Clariant) Kind.
 上記ベンゾエート構造を有する紫外線遮蔽剤としては、例えば、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(BASF社製「Tinuvin120」)等が挙げられる。 Examples of the ultraviolet shielding agent having the benzoate structure include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF). .
 上記紫外線遮蔽剤を含む層(第1の層、第2の層又は第3の層)100重量%中、上記紫外線遮蔽剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、更に好ましくは0.3重量%以上、特に好ましくは0.5重量%以上である。上記紫外線遮蔽剤を含む層(第1の層、第2の層又は第3の層)100重量%中、上記紫外線遮蔽剤の含有量は、好ましくは2.5重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下、特に好ましくは0.8重量%以下である。上記紫外線遮蔽剤の含有量が上記下限以上及び上記上限以下であると、期間経過後の可視光線透過率の低下をより一層抑制することができる。特に、上記紫外線遮蔽剤を含む層100重量%中、上記紫外線遮蔽剤の含有量が0.2重量%以上であることにより、成形体及び合わせガラスの期間経過後の可視光線透過率の低下を顕著に抑制できる。 In 100% by weight of the layer containing the ultraviolet screening agent (first layer, second layer or third layer), the content of the ultraviolet screening agent is preferably 0.1% by weight or more, more preferably 0%. .2% by weight or more, more preferably 0.3% by weight or more, and particularly preferably 0.5% by weight or more. In 100% by weight of the layer containing the ultraviolet shielding agent (first layer, second layer or third layer), the content of the ultraviolet shielding agent is preferably 2.5% by weight or less, more preferably 2%. % By weight or less, more preferably 1% by weight or less, particularly preferably 0.8% by weight or less. When the content of the ultraviolet shielding agent is not less than the above lower limit and not more than the above upper limit, a decrease in visible light transmittance after a lapse of time can be further suppressed. In particular, in 100% by weight of the layer containing the ultraviolet shielding agent, the content of the ultraviolet shielding agent is 0.2% by weight or more, thereby reducing the visible light transmittance after the passage of the molded body and the laminated glass. Remarkably suppressed.
 (酸化防止剤)
 上記成形体は、酸化防止剤を含むことが好ましい。上記第1の層は、酸化防止剤を含むことが好ましい。上記第2の層は、酸化防止剤を含むことが好ましい。上記第3の層は、酸化防止剤を含むことが好ましい。上記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Antioxidant)
The molded body preferably contains an antioxidant. The first layer preferably contains an antioxidant. The second layer preferably contains an antioxidant. The third layer preferably contains an antioxidant. As for the said antioxidant, only 1 type may be used and 2 or more types may be used together.
 上記酸化防止剤としては、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。上記フェノール系酸化防止剤はフェノール骨格を有する酸化防止剤である。上記硫黄系酸化防止剤は硫黄原子を含有する酸化防止剤である。上記リン系酸化防止剤はリン原子を含有する酸化防止剤である。 Examples of the antioxidant include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants. The phenolic antioxidant is an antioxidant having a phenol skeleton. The sulfur-based antioxidant is an antioxidant containing a sulfur atom. The phosphorus antioxidant is an antioxidant containing a phosphorus atom.
 上記酸化防止剤は、フェノール系酸化防止剤又はリン系酸化防止剤であることが好ましい。 The antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
 上記フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチルヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びビス(3-t-ブチル-4-ヒドロキシ-5-メチルベンゼンプロパン酸)エチレンビス(オキシエチレン)等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。 Examples of the phenolic antioxidant include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis- (4-methyl-6-butylphenol), 2,2′-methylenebis- (4-ethyl-6) -T-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane Tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydro) Loxy-5-t-butylphenol) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, bis (3,3'- and t-butylphenol) butyric acid glycol ester and bis (3-t-butyl-4-hydroxy-5-methylbenzenepropanoic acid) ethylenebis (oxyethylene). One or more of these antioxidants are preferably used.
 上記リン系酸化防止剤としては、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルエステル亜リン酸、及び2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。 Examples of the phosphorus antioxidant include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos. Phyto, tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butyl-6-methylphenyl) ethyl ester phosphorous acid, and 2,2′-methylenebis (4 , 6-di-t-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus and the like. One or more of these antioxidants are preferably used.
 上記酸化防止剤の市販品としては、例えばBASF社製「IRGANOX 245」、BASF社製「IRGAFOS 168」、BASF社製「IRGAFOS 38」、住友化学工業社製「スミライザーBHT」、堺化学工業社製「H-BHT」、並びにBASF社製「IRGANOX 1010」等が挙げられる。 Examples of commercially available antioxidants include “IRGANOX 245” manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Smilizer BHT” manufactured by Sumitomo Chemical Co., Ltd., and Sakai Chemical Industry Examples thereof include “H-BHT” and “IRGANOX 1010” manufactured by BASF.
 成形体及び合わせガラスの高い可視光線透過率を長期間に渡り維持するために、上記成形体100重量%中又は酸化防止剤を含む層(第1の層、第2の層又は第3の層)100重量%中、上記酸化防止剤の含有量は0.1重量%以上であることが好ましい。また、酸化防止剤の添加効果が飽和するので、上記成形体100重量%中又は上記酸化防止剤を含む層100重量%中、上記酸化防止剤の含有量は2重量%以下であることが好ましい。 In order to maintain a high visible light transmittance of the molded body and the laminated glass for a long period of time, a layer (first layer, second layer or third layer) in 100% by weight of the molded body or containing an antioxidant. ) In 100% by weight, the content of the antioxidant is preferably 0.1% by weight or more. Further, since the effect of adding the antioxidant is saturated, the content of the antioxidant is preferably 2% by weight or less in 100% by weight of the molded body or 100% by weight of the layer containing the antioxidant. .
 (他の成分)
 上記成形体、上記第1の層、上記第2の層及び上記第3の層はそれぞれ、必要に応じて、ケイ素、アルミニウム又はチタンを含むカップリング剤、分散剤、界面活性剤、難燃剤、帯電防止剤、フィラー、顔料、染料、接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含んでいてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Other ingredients)
The molded body, the first layer, the second layer, and the third layer are respectively a coupling agent containing silicon, aluminum, or titanium, a dispersant, a surfactant, a flame retardant, Additives such as antistatic agents, fillers, pigments, dyes, adhesive strength modifiers, moisture-proofing agents, fluorescent brighteners and infrared absorbers may be included. As for these additives, only 1 type may be used and 2 or more types may be used together.
 せん断貯蔵弾性率を好適な範囲に制御するために、成形体、第1の層、第2の層及び第3の層は、フィラーを含んでいてもよい。上記フィラーとしては、炭酸カルシウム粒子、及びシリカ粒子等が挙げられる。曲げ剛性及を効果的に高め、透明性の低下を効果的に抑える観点からは、シリカ粒子が好ましい。 In order to control the shear storage modulus within a suitable range, the molded body, the first layer, the second layer, and the third layer may contain a filler. Examples of the filler include calcium carbonate particles and silica particles. Silica particles are preferable from the viewpoint of effectively increasing the bending rigidity and effectively suppressing the decrease in transparency.
 フィラーを含む層(第1の層、第2の層又は第3の層)100重量%中、上記フィラーの含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、更に好ましくは10重量部以上、好ましくは60重量%以下、より好ましくは50重量%以下である。 In 100% by weight of the layer containing the filler (first layer, second layer or third layer), the content of the filler is preferably 1% by weight or more, more preferably 5% by weight or more, and still more preferably. It is 10 weight part or more, Preferably it is 60 weight% or less, More preferably, it is 50 weight% or less.
 (成形体の他の詳細)
 上記成形体の厚みは特に限定されない。実用面の観点、並びに合わせガラスの耐貫通性及び曲げ剛性を充分に高める観点からは、成形体の厚みは、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。成形体の厚みが上記下限以上であると、合わせガラスの耐貫通性及び曲げ剛性がより一層高くなる。成形体の厚みが上記上限以下であると、成形体の透明性がより一層良好になる。
(Other details of the molded body)
The thickness of the molded body is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently increasing the penetration resistance and bending rigidity of the laminated glass, the thickness of the molded body is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more Preferably it is 1.5 mm or less. When the thickness of the molded body is not less than the above lower limit, the penetration resistance and bending rigidity of the laminated glass are further increased. When the thickness of the molded body is not more than the above upper limit, the transparency of the molded body is further improved.
 成形体が中間膜である場合に、中間膜の厚みをTとする。上記第1の層の厚みは、好ましくは0.035T以上、より好ましくは0.0625T以上、更に好ましくは0.1T以上、好ましくは0.4T以下、より好ましくは0.375T以下、更に好ましくは0.25T以下、特に好ましくは0.15T以下である。上記第1の層の厚みが0.4T以下であると、曲げ剛性がより一層良好になる。 When the molded body is an intermediate film, the thickness of the intermediate film is T. The thickness of the first layer is preferably 0.035T or more, more preferably 0.0625T or more, further preferably 0.1T or more, preferably 0.4T or less, more preferably 0.375T or less, and still more preferably. It is 0.25 T or less, particularly preferably 0.15 T or less. When the thickness of the first layer is 0.4 T or less, the bending rigidity is further improved.
 上記第2の層及び上記第3の層の各厚みは、好ましくは0.3T以上、より好ましくは0.3125T以上、更に好ましくは0.375T以上、好ましくは0.97T以下、より好ましくは0.9375T以下、更に好ましくは0.9T以下である。上記第2の層及び上記第3の層の各厚みは、0.46875T以下であってもよく、0.45T以下であってもよい。また、上記第2の層及び上記第3の層の各厚みが上記下限以上及び上記上限以下であると、合わせガラスの剛性と遮音性がより一層高くなる。 Each thickness of the second layer and the third layer is preferably 0.3 T or more, more preferably 0.3125 T or more, still more preferably 0.375 T or more, preferably 0.97 T or less, more preferably 0. 9375T or less, more preferably 0.9T or less. Each thickness of the second layer and the third layer may be 0.46875T or less, or 0.45T or less. Further, when the thicknesses of the second layer and the third layer are not less than the lower limit and not more than the upper limit, the rigidity and sound insulation of the laminated glass are further enhanced.
 上記第2の層及び上記第3の層の合計の厚みは、好ましくは0.625T以上、より好ましくは0.75T以上、更に好ましくは0.85T以上、好ましくは0.97T以下、より好ましくは0.9375T以下、更に好ましくは0.9T以下である。また、上記第2の層及び上記第3の層の合計の厚みが上記下限以上及び上記上限以下であると、合わせガラスの剛性と遮音性がより一層高くなる。 The total thickness of the second layer and the third layer is preferably 0.625 T or more, more preferably 0.75 T or more, still more preferably 0.85 T or more, preferably 0.97 T or less, more preferably 0.9375T or less, more preferably 0.9T or less. Further, when the total thickness of the second layer and the third layer is not less than the above lower limit and not more than the above upper limit, the rigidity and sound insulation of the laminated glass are further enhanced.
 上記中間膜は、厚みが均一な中間膜であってもよく、厚みが変化している中間膜であってもよい。上記中間膜の断面形状は矩形であってもよく、楔形であってもよい。 The intermediate film may be an intermediate film having a uniform thickness or an intermediate film having a changed thickness. The cross-sectional shape of the intermediate film may be rectangular or wedge-shaped.
 本発明に係る成形体の製造方法は特に限定されない。本発明に係る成形体の製造方法としては、単層の成形体の場合に、樹脂組成物を押出機を用いて押出する方法が挙げられる。本発明に係る成形体の製造方法としては、多層の成形体の場合に、例えば、各層を形成するための各樹脂組成物を用いて各層をそれぞれ形成した後に、得られた各層を積層する方法、並びに各層を形成するための各樹脂組成物を押出機を用いて共押出することにより、各層を積層する方法等が挙げられる。連続的な生産に適しているため、押出成形する製造方法が好ましい。 The method for producing the molded body according to the present invention is not particularly limited. Examples of the method for producing a molded body according to the present invention include a method of extruding a resin composition using an extruder in the case of a single-layer molded body. As a method for producing a molded body according to the present invention, in the case of a multilayer molded body, for example, a method of laminating each obtained layer after forming each layer using each resin composition for forming each layer In addition, a method of laminating each layer by coextruding each resin composition for forming each layer using an extruder may be used. Since it is suitable for continuous production, an extrusion method is preferred.
 成形体の製造効率が優れることから、上記第2の層と上記第3の層とに、同一のポリビニルアセタール樹脂が含まれていることが好ましい。中間膜の製造効率が優れることから、上記第2の層と上記第3の層とに、同一のポリビニルアセタール樹脂及び同一の可塑剤が含まれていることがより好ましい。中間膜の製造効率が優れることから、上記第2の層と上記第3の層とが同一の樹脂組成物により形成されていることが更に好ましい。 It is preferable that the same polyvinyl acetal resin is contained in the second layer and the third layer because the production efficiency of the molded body is excellent. Since the production efficiency of the intermediate film is excellent, it is more preferable that the same polyvinyl acetal resin and the same plasticizer are contained in the second layer and the third layer. Since the production efficiency of the intermediate film is excellent, it is more preferable that the second layer and the third layer are formed of the same resin composition.
 上記成形体は、両側の表面の内の少なくとも一方の表面に凹凸形状を有することが好ましい。上記成形体は、両側の表面に凹凸形状を有することがより好ましい。上記の凹凸形状を形成する方法としては特に限定されず、例えば、リップエンボス法、エンボスロール法、カレンダーロール法、及び異形押出法等が挙げられる。定量的に一定の凹凸模様である多数の凹凸形状のエンボスを形成することができることから、エンボスロール法が好ましい。 The molded body preferably has an uneven shape on at least one of the surfaces on both sides. It is more preferable that the molded body has an uneven shape on both surfaces. It does not specifically limit as a method of forming said uneven | corrugated shape, For example, the lip embossing method, the embossing roll method, the calender roll method, a profile extrusion method, etc. are mentioned. The embossing roll method is preferable because it can form a large number of concavo-convex embossments that are quantitatively constant.
 (合わせガラス)
 図3は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。
(Laminated glass)
FIG. 3 is a cross-sectional view schematically showing an example of a laminated glass using the laminated glass interlayer film shown in FIG.
 図3に示す合わせガラス31は、第1の合わせガラス部材21と、第2の合わせガラス部材22と、中間膜11とを備える。中間膜11は、第1の合わせガラス部材21と第2の合わせガラス部材22との間に配置されており、挟み込まれている。 3 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11. The intermediate film 11 is disposed between the first laminated glass member 21 and the second laminated glass member 22 and is sandwiched.
 中間膜11の第1の表面11aに、第1の合わせガラス部材21が積層されている。中間膜11の第1の表面11aとは反対の第2の表面11bに、第2の合わせガラス部材22が積層されている。第2の層2の外側の表面2aに第1の合わせガラス部材21が積層されている。第3の層3の外側の表面3aに第2の合わせガラス部材22が積層されている。 The first laminated glass member 21 is laminated on the first surface 11 a of the intermediate film 11. A second laminated glass member 22 is laminated on the second surface 11 b opposite to the first surface 11 a of the intermediate film 11. A first laminated glass member 21 is laminated on the outer surface 2 a of the second layer 2. A second laminated glass member 22 is laminated on the outer surface 3 a of the third layer 3.
 図4は、図2に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
 図4に示す合わせガラス31Aは、第1の合わせガラス部材21と、第2の合わせガラス部材22と、中間膜11Aとを備える。中間膜11Aは、第1の合わせガラス部材21と第2の合わせガラス部材22との間に配置されており、挟み込まれている。 A laminated glass 31A shown in FIG. 4 includes a first laminated glass member 21, a second laminated glass member 22, and an intermediate film 11A. 11 A of intermediate films are arrange | positioned between the 1st laminated glass member 21 and the 2nd laminated glass member 22, and are inserted | pinched.
 中間膜11Aの第1の表面11aに、第1の合わせガラス部材21が積層されている。中間膜11Aの第1の表面11aとは反対の第2の表面11bに、第2の合わせガラス部材22が積層されている。 The first laminated glass member 21 is laminated on the first surface 11a of the intermediate film 11A. A second laminated glass member 22 is laminated on the second surface 11b opposite to the first surface 11a of the intermediate film 11A.
 このように、本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、成形体(中間膜)とを備えており、該成形体(中間膜)が、本発明に係る成形体である。本発明に係る合わせガラスでは、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上記成形体が配置されている。 Thus, the laminated glass which concerns on this invention is equipped with the 1st laminated glass member, the 2nd laminated glass member, and a molded object (intermediate film), and this molded object (intermediate film) is this book. It is the molded object which concerns on invention. In the laminated glass which concerns on this invention, the said molded object is arrange | positioned between the said 1st laminated glass member and the said 2nd laminated glass member.
 上記第1の合わせガラス部材は、第1のガラス板であることが好ましい。上記第2の合わせガラス部材は、第2のガラス板であることが好ましい。 The first laminated glass member is preferably a first glass plate. The second laminated glass member is preferably a second glass plate.
 上記合わせガラス部材としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。合わせガラスには、2枚のガラス板の間に成形体が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に成形体が挟み込まれている合わせガラスも含まれる。上記合わせガラスは、ガラス板を備えた積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。上記第1の合わせガラス部材及び上記第2の合わせガラス部材がそれぞれ、ガラス板又はPETフィルムであり、かつ上記合わせガラスは、上記第1の合わせガラス部材及び上記第2の合わせガラス部材の内の少なくとも一方として、ガラス板を備えることが好ましい。 Examples of the laminated glass member include a glass plate and a PET (polyethylene terephthalate) film. The laminated glass includes not only laminated glass in which a molded body is sandwiched between two glass plates, but also laminated glass in which a molded body is sandwiched between a glass plate and a PET film or the like. The laminated glass is a laminate including a glass plate, and preferably at least one glass plate is used. Each of the first laminated glass member and the second laminated glass member is a glass plate or a PET film, and the laminated glass is one of the first laminated glass member and the second laminated glass member. It is preferable to provide a glass plate as at least one.
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、及び線入り板ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代わる合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。 Examples of the glass plate include inorganic glass and organic glass. Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, and wire-containing plate glass. The organic glass is a synthetic resin glass that replaces the inorganic glass. Examples of the organic glass include polycarbonate plates and poly (meth) acrylic resin plates. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
 上記合わせガラス部材の厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。また、上記合わせガラス部材がガラス板である場合に、該ガラス板の厚みは、好ましくは0.5mm以上、より好ましくは0.7mm以上、好ましくは5mm以下、より好ましくは3mm以下である。上記合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、好ましくは0.03mm以上、好ましくは0.5mm以下である。 The thickness of the laminated glass member is preferably 1 mm or more, preferably 5 mm or less, more preferably 3 mm or less. When the laminated glass member is a glass plate, the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less, more preferably 3 mm or less. When the laminated glass member is a PET film, the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
 本発明に係る成形体の使用により、合わせガラスの厚みが薄くても、合わせガラスの曲げ剛性を高く維持することができる。上記ガラス板の厚みは、好ましくは2mm以下、より好ましくは1.8mm以下、より一層好ましくは1.6mm以下、より一層好ましくは1.5mm以下、更に好ましくは1.4mm以下、更に好ましくは1.3mm以下、更に一層好ましくは1.0mm以下、特に好ましくは0.7mm以下である。この場合には、合わせガラスを軽量化したり、合わせガラスの材料を少なくして環境負荷を低減したり、合わせガラスの軽量化によって自動車の燃費を向上させて環境負荷を低減したりすることができる。上記第1のガラス板の厚みと上記第2のガラス板の厚みとの合計は、好ましくは3.5mm以下、より好ましくは3.2mm以下、更に好ましくは3mm以下、特に好ましくは2.8mm以下である。この場合には、合わせガラスを軽量化したり、合わせガラスの材料を少なくして環境負荷を低減したり、合わせガラスの軽量化によって自動車の燃費を向上させて環境負荷を低減したりすることができる。 The use of the molded body according to the present invention can maintain the bending rigidity of the laminated glass high even if the laminated glass is thin. The thickness of the glass plate is preferably 2 mm or less, more preferably 1.8 mm or less, even more preferably 1.6 mm or less, still more preferably 1.5 mm or less, still more preferably 1.4 mm or less, and even more preferably 1. 0.3 mm or less, still more preferably 1.0 mm or less, and particularly preferably 0.7 mm or less. In this case, the laminated glass can be reduced in weight, the environmental load can be reduced by reducing the material of the laminated glass, and the environmental load can be reduced by improving the fuel efficiency of the automobile by reducing the weight of the laminated glass. . The total thickness of the first glass plate and the second glass plate is preferably 3.5 mm or less, more preferably 3.2 mm or less, still more preferably 3 mm or less, particularly preferably 2.8 mm or less. It is. In this case, the laminated glass can be reduced in weight, the environmental load can be reduced by reducing the material of the laminated glass, and the environmental load can be reduced by improving the fuel efficiency of the automobile by reducing the weight of the laminated glass. .
 上記合わせガラスの製造方法は特に限定されない。先ず、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、成形体を挟んで、積層体を得る。次に、例えば、得られた積層体を押圧ロールに通したり又はゴムバッグに入れて減圧吸引したりすることにより、上記第1の合わせガラス部材と上記第2の合わせガラス部材と成形体との間に残留する空気を脱気する。その後、約70~110℃で予備接着して予備圧着された積層体を得る。次に、予備圧着された積層体をオートクレーブに入れたり、又はプレスしたりして、約120~150℃及び1~1.5MPaの圧力で圧着する。このようにして、合わせガラスを得ることができる。上記合わせガラスの製造時に、第1の層と第2の層と第3の層とを積層してもよい。 The method for producing the laminated glass is not particularly limited. First, a molded body is sandwiched between the first laminated glass member and the second laminated glass member to obtain a laminate. Next, for example, the obtained laminated body is passed through a pressing roll or put in a rubber bag and sucked under reduced pressure, whereby the first laminated glass member, the second laminated glass member, and the molded body. The remaining air is deaerated. Thereafter, pre-bonding is performed at about 70 to 110 ° C. to obtain a pre-bonded laminate. Next, the pre-pressed laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained. You may laminate | stack a 1st layer, a 2nd layer, and a 3rd layer at the time of manufacture of the said laminated glass.
 上記成形体及び上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。上記成形体及び上記合わせガラスは、これらの用途以外にも使用できる。上記成形体及び上記合わせガラスは、車両用又は建築用の成形体及び合わせガラスであることが好ましく、車両用の中間膜及び合わせガラスであることがより好ましい。上記成形体及び上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。上記成形体及び上記合わせガラスは、自動車に好適に用いられる。上記成形体は、自動車の合わせガラスを得るために用いられる。 The molded body and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like. The said molded object and the said laminated glass can be used besides these uses. The molded body and the laminated glass are preferably a molded body and laminated glass for vehicles or buildings, and more preferably an interlayer film and laminated glass for vehicles. The said molded object and the said laminated glass can be used for the windshield, side glass, rear glass, roof glass, etc. of a motor vehicle. The said molded object and the said laminated glass are used suitably for a motor vehicle. The said molded object is used in order to obtain the laminated glass of a motor vehicle.
 以下に実施例及び比較例を掲げて本発明を更に詳しく説明する。本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited to these examples.
 以下の材料を用意した。 The following materials were prepared.
 (ポリビニルアセタール樹脂)
 下記の表1~3に示すポリビニルアセタール樹脂を適宜用いた。
(Polyvinyl acetal resin)
Polyvinyl acetal resins shown in Tables 1 to 3 below were appropriately used.
 ポリビニルアセタール樹脂に関しては、アセタール化度、アセチル化度及び水酸基の含有率はJIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定した。なお、ASTM D1396-92により測定した場合も、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法と同様の数値を示した。また、アセタールの種類がアセトアセタール、ベンジルアセタール又はクミンアセタールである場合には、アセタール化度は、同様に、アセチル化度、水酸基の含有率を測定し、得られた測定結果からモル分率を算出し、次いで、100モル%からアセチル化度及び水酸基の含有率を引くことにより、算出される。 Regarding the polyvinyl acetal resin, the degree of acetalization, the degree of acetylation, and the hydroxyl group content were measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. In addition, when measured by ASTM D1396-92, the same numerical value as the method based on JIS K6728 “Testing method for polyvinyl butyral” was shown. Further, when the type of acetal is acetoacetal, benzyl acetal or cumin acetal, the degree of acetal is similarly measured for the degree of acetylation and the content of hydroxyl groups, and the molar fraction is determined from the obtained measurement results. Calculated, and then calculated by subtracting the degree of acetylation and the hydroxyl group content from 100 mol%.
 (第2の樹脂)
 下記の表1~3に示すアクリル重合体を適宜用いた。
(Second resin)
The acrylic polymers shown in the following Tables 1 to 3 were appropriately used.
 下記の表1~3に示すアクリル重合体は、以下の化合物を下記の表1~3に示す含有量で含む重合性成分を重合させたアクリル重合体である。 The acrylic polymers shown in Tables 1 to 3 below are acrylic polymers obtained by polymerizing polymerizable components containing the following compounds in the contents shown in Tables 1 to 3 below.
 アクリル酸エチル
 アクリル酸ブチル
 アクリル酸ベンジル
 アクリル酸2-ヒドロキシエチル
 アクリル酸
 メタクリル酸グリシジル
 トリプロピレングリコールジアクリレート(新中村化学社製「APG-200」)
 ポリプロピレングリコール#400ジアクリレート(新中村化学社製「APG-400」)
 ポリプロピレングリコール(#700)ジアクリレート(新中村化学社製「APG-700」)
 エトキシ化ビスフェノールAジアクリレート(新中村化学社製「A-BPE-20」)
 ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(新中村化学社製「A-9300-1CL」)
 リン酸トリス[2-(アクリロイルオキシ)エチル]
 エトキシ化ペンタエリスリトールテトラアクリレート(新中村化学社製「ATM-35E」)
Ethyl acrylate butyl acrylate benzyl acrylate 2-hydroxyethyl acrylate acrylic acid glycidyl methacrylate tripropylene glycol diacrylate (“APG-200” manufactured by Shin-Nakamura Chemical Co., Ltd.)
Polypropylene glycol # 400 diacrylate (“APG-400” manufactured by Shin-Nakamura Chemical Co., Ltd.)
Polypropylene glycol (# 700) diacrylate (“APG-700” manufactured by Shin-Nakamura Chemical Co., Ltd.)
Ethoxylated bisphenol A diacrylate (“A-BPE-20” manufactured by Shin-Nakamura Chemical Co., Ltd.)
ε-Caprolactone-modified tris- (2-acryloxyethyl) isocyanurate (“A-9300-1CL” manufactured by Shin-Nakamura Chemical Co., Ltd.)
Tris phosphate [2- (acryloyloxy) ethyl]
Ethoxylated pentaerythritol tetraacrylate (Shin-Nakamura Chemical "ATM-35E")
 (可塑剤)
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)
(Plasticizer)
Triethylene glycol di-2-ethylhexanoate (3GO)
 (実施例1)
 ポリビニルアセタール樹脂(平均重合度560、アセタール化度74.0モル%、水酸基の含有率25.0モル%、アセチル化度0.9モル%)を用意した。重合性成分100重量部(アクリル酸エチル60重量部、アクリル酸ブチル14.2重量部、アクリル酸ベンジル25.2重量部、トリプロピレングリコールジアクリレート0.6重量部)を用意した。温度計、攪拌機、窒素導入管、冷却管を備えた反応容器内に、原料となる上記ポリビニルアセタール樹脂100重量部と、上記重合性成分100重量部と、重合溶媒として酢酸エチル300重量部とを加え、撹拌しながらポリビニルアセタール樹脂を溶解させた。次に、窒素ガスを30分間吹き込んで反応容器内を窒素置換した後、反応容器内を撹拌しながら80℃に加熱した。30分後、重合開始剤としてのt-ブチルパーオキシ-2-エチルヘキサノエート(1時間半減期温度:92.1℃、10時間半減期温度:72.1℃)0.5重量部を酢酸エチル5重量部で希釈して得られた重合開始剤溶液を、反応容器内に6時間かけて滴下した。その後、更に80℃にて6時間反応させた後、反応液を冷却することにより、変性ポリビニルアセタール樹脂を含有する溶液を得た。
Example 1
A polyvinyl acetal resin (average polymerization degree 560, acetalization degree 74.0 mol%, hydroxyl group content 25.0 mol%, acetylation degree 0.9 mol%) was prepared. 100 parts by weight of a polymerizable component (60 parts by weight of ethyl acrylate, 14.2 parts by weight of butyl acrylate, 25.2 parts by weight of benzyl acrylate, and 0.6 parts by weight of tripropylene glycol diacrylate) were prepared. In a reaction vessel equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube, 100 parts by weight of the polyvinyl acetal resin as a raw material, 100 parts by weight of the polymerizable component, and 300 parts by weight of ethyl acetate as a polymerization solvent. In addition, the polyvinyl acetal resin was dissolved while stirring. Next, nitrogen gas was blown for 30 minutes to replace the inside of the reaction vessel with nitrogen, and then the reaction vessel was heated to 80 ° C. while stirring. After 30 minutes, 0.5 part by weight of t-butylperoxy-2-ethylhexanoate (1 hour half-life temperature: 92.1 ° C., 10 hour half-life temperature: 72.1 ° C.) as a polymerization initiator was added. A polymerization initiator solution obtained by diluting with 5 parts by weight of ethyl acetate was dropped into the reaction vessel over 6 hours. Then, after further reacting at 80 ° C. for 6 hours, the reaction solution was cooled to obtain a solution containing a modified polyvinyl acetal resin.
 得られた溶液にポリビニルアセタール樹脂及び重合体(第2の樹脂)の合計100重量部に対し、可塑剤として3GOを5重量部加え、希釈溶剤(メタノールとトルエンとの混合溶剤、メタノールとトルエンとの重量比率は1:2)により希釈し、固形分20重量%の溶液を得た。次に、この溶液をコーターを用いて乾燥後の厚みが50μmとなるように離型処理したPETフィルム上に塗布し、80℃で1時間乾燥させ、中間膜を得た。得られた厚み50μmの中間膜を重ね合わせ、150℃、20MPaで加熱圧着させることで、厚み400μmの中間膜を得た。 5 parts by weight of 3GO as a plasticizer is added to 100 parts by weight of the total amount of polyvinyl acetal resin and polymer (second resin) in the resulting solution, and diluted solvent (mixed solvent of methanol and toluene, methanol and toluene, Was diluted 1: 2) to obtain a solution having a solid content of 20% by weight. Next, this solution was applied onto a PET film that had been subjected to a mold release treatment using a coater so that the thickness after drying was 50 μm, and dried at 80 ° C. for 1 hour to obtain an intermediate film. The obtained intermediate film having a thickness of 50 μm was superposed and subjected to thermocompression bonding at 150 ° C. and 20 MPa to obtain an intermediate film having a thickness of 400 μm.
 (実施例2~20及び比較例1~9)
 中間膜を形成するための組成物の組成を下記の表1~3に示すように設定したこと以外は実施例1と同様にして、中間膜及び合わせガラスを得た。
(Examples 2 to 20 and Comparative Examples 1 to 9)
An interlayer film and a laminated glass were obtained in the same manner as in Example 1 except that the composition of the composition for forming the interlayer film was set as shown in Tables 1 to 3 below.
 (評価)
 (1)ゲル分率
 中間膜0.2gをテトラヒドロフラン40gに浸漬し、23℃で24時間振蘯浸漬させた。その後、遠心分離機(KUBOTA社製、高速大容量冷却遠心分離機7780)により、10℃及び10000rpmで遠心を行った後、上澄み液を除去した。容器内の残存物を110℃で1時間加熱し乾燥させた。その後、残存物の重量を測定した。上記式(X)によりゲル分率の算出を行った。
(Evaluation)
(1) Gel fraction 0.2 g of the intermediate film was immersed in 40 g of tetrahydrofuran and shaken and immersed at 23 ° C. for 24 hours. Then, after centrifuging at 10 ° C. and 10,000 rpm with a centrifuge (manufactured by KUBOTA, high-speed, large-capacity cooled centrifuge 7780), the supernatant was removed. The residue in the container was dried by heating at 110 ° C. for 1 hour. Thereafter, the weight of the residue was measured. The gel fraction was calculated by the above formula (X).
 (2)相構造観察
 得られた中間膜をマイクロトームで処理することにより、厚さ100nmの切片を作製した。得られた切片を四酸化オスミウムにて染色し、透過型電子顕微鏡で観察した。相分離構造の有無を判断した。
(2) Phase structure observation The obtained intermediate film was treated with a microtome to prepare a slice having a thickness of 100 nm. The obtained sections were stained with osmium tetroxide and observed with a transmission electron microscope. The presence or absence of a phase separation structure was judged.
 [相分離構造の有無の判定基準]
 ○:相分離構造あり
 ×:相分離構造なし
[Judgment criteria for presence or absence of phase separation structure]
○: With phase separation structure ×: Without phase separation structure
 さらに、相分離構造がありかつマトリックスがある場合に、マトリックス及び島部(ドメイン)を構成する樹脂成分が、ポリビニルアセタール樹脂であるか、第2の樹脂であるかを確認した。 Furthermore, when there was a phase separation structure and there was a matrix, it was confirmed whether the resin component constituting the matrix and islands (domains) was a polyvinyl acetal resin or a second resin.
 [マトリックス及び島部を構成する樹脂成分の判定基準]
 A:マトリックスを構成する成分がポリビニルアセタール樹脂かつ島部を構成する成分が第2の樹脂
 B:マトリックスを構成する成分が第2の樹脂かつ島部を構成する成分がポリビニルアセタール樹脂
[Judgment criteria for resin components constituting the matrix and island]
A: The component constituting the matrix is the polyvinyl acetal resin and the component constituting the island portion is the second resin B: The component constituting the matrix is the second resin and the component constituting the island portion is the polyvinyl acetal resin
 さらに、相分離構造がありかつ島部(ドメイン)がある場合に、島部の径(最大径)を3000倍又は5000倍で観察し、平均値を求めた。島部の径の平均を以下の基準で判定した。 Furthermore, when there was a phase separation structure and there was an island part (domain), the diameter (maximum diameter) of the island part was observed at 3000 times or 5000 times, and the average value was obtained. The average diameter of the islands was determined according to the following criteria.
 [島部の径の平均の判定基準]
 A:島部の径の平均が、10nm以上1μm以下
 B:Aの基準に相当しない
[Criteria for average diameter of islands]
A: The average diameter of the islands is 10 nm or more and 1 μm or less. B: Does not correspond to the standard of A.
 (3)引張特性
 5cm×1cmにカットした中間膜(厚み400μm)を用意した。中間膜の破断伸度及び破断強度(最大応力)の測定を、引張試験機で、-20℃の低温、かつ、500mm/分の高速で行った。引張伸度及び破断強度について、以下の基準で評価した。
(3) Tensile properties An intermediate film (thickness 400 μm) cut to 5 cm × 1 cm was prepared. The elongation at break and the breaking strength (maximum stress) of the interlayer film were measured with a tensile tester at a low temperature of −20 ° C. and at a high speed of 500 mm / min. The tensile elongation and breaking strength were evaluated according to the following criteria.
 [破断伸度の判定基準]
 ○○:引張伸度が180%以上
 ○:引張伸度が150%以上180%未満
 △:引張伸度が110%以上150%未満
 ×:引張伸度が110%未満
[Criteria for breaking elongation]
◯: Tensile elongation is 180% or more ○: Tensile elongation is 150% or more and less than 180% △: Tensile elongation is 110% or more and less than 150% ×: Tensile elongation is less than 110%
 [破断強度(最大応力の判定基準]
 ○○:破断強度が40MPa以上
 ○:破断強度が30MPa以上40MPa未満
 △:破断強度が20MPa以上30MPa未満
 ×:破断強度が20MPa未満
[Breaking strength (judgment criteria for maximum stress]
◯: Break strength is 40 MPa or more ○: Break strength is 30 MPa or more and less than 40 MPa Δ: Break strength is 20 MPa or more and less than 30 MPa ×: Break strength is less than 20 MPa
 詳細及び結果を下記の表1~3に示す。 Details and results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 1…第1の層
 1a…第1の表面
 1b…第2の表面
 2…第2の層
 2a…外側の表面
 3…第3の層
 3a…外側の表面
 11…中間膜
 11A…中間膜(第1の層)
 11a…第1の表面
 11b…第2の表面
 21…第1の合わせガラス部材
 22…第2の合わせガラス部材
 31…合わせガラス
 31A…合わせガラス
DESCRIPTION OF SYMBOLS 1 ... 1st layer 1a ... 1st surface 1b ... 2nd surface 2 ... 2nd layer 2a ... Outer surface 3 ... 3rd layer 3a ... Outer surface 11 ... Intermediate film 11A ... Intermediate film (1st 1 layer)
DESCRIPTION OF SYMBOLS 11a ... 1st surface 11b ... 2nd surface 21 ... 1st laminated glass member 22 ... 2nd laminated glass member 31 ... Laminated glass 31A ... Laminated glass

Claims (14)

  1.  ポリビニルアセタール樹脂と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物を含む重合性成分の重合体とを含み、
     前記ポリビニルアセタール樹脂100重量部に対して、前記重合体の含有量が85重量部以上180重量部以下であり、
     相分離構造を有する、成形体。
    A polyvinyl acetal resin and a polymer of a polymerizable component containing a (meth) acrylate compound having two or more (meth) acryloyl groups,
    The content of the polymer is 85 parts by weight or more and 180 parts by weight or less with respect to 100 parts by weight of the polyvinyl acetal resin.
    A molded article having a phase separation structure.
  2.  前記重合体を構成する重合性成分100重量%中、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート化合物以外の(メタ)アクリロイル基を有する重合性化合物との合計の量が50重量%以上であり、
     前記重合体が、アクリル重合体である、請求項1に記載の成形体。
    (Meth) acrylate compound having two or more (meth) acryloyl groups and (meth) acrylate compound other than (meth) acrylate compounds having two or more (meth) acryloyl groups in 100% by weight of the polymerizable component constituting the polymer. ) The total amount of the polymerizable compound having an acryloyl group is 50% by weight or more,
    The molded object according to claim 1, wherein the polymer is an acrylic polymer.
  3.  可塑剤を含まないか、又は、前記ポリビニルアセタール樹脂と前記重合体との合計100重量部に対して可塑剤を10重量部以下で含む、請求項1又は2に記載の成形体。 The molded article according to claim 1 or 2, which does not contain a plasticizer or contains 10 parts by weight or less of a plasticizer with respect to a total of 100 parts by weight of the polyvinyl acetal resin and the polymer.
  4.  可塑剤を含まないか、又は、前記ポリビニルアセタール樹脂と前記重合体との合計100重量部に対して可塑剤を5重量部以下で含む、請求項1又は2に記載の成形体。 The molded article according to claim 1 or 2, which does not contain a plasticizer or contains 5 parts by weight or less of a plasticizer with respect to a total of 100 parts by weight of the polyvinyl acetal resin and the polymer.
  5.  可塑剤を含む、請求項1~4のいずれか1項に記載の成形体。 The molded article according to any one of claims 1 to 4, comprising a plasticizer.
  6.  下記式(X)により求められるゲル分率が0重量%以上50重量%以下である、請求項1~5のいずれか1項に記載の成形体。
     ゲル分率(重量%)=W2/W1×100 ・・・式(X)
     W1:成形体を23℃のテトラヒドロフランに浸漬する前の成形体の重量
     W2:成形体を23℃のテトラヒドロフランに浸漬した後に取り出し、乾燥した後の成形体の重量
    The molded article according to any one of claims 1 to 5, wherein the gel fraction determined by the following formula (X) is 0 wt% or more and 50 wt% or less.
    Gel fraction (% by weight) = W2 / W1 × 100 Formula (X)
    W1: Weight of the molded body before immersing the molded body in tetrahydrofuran at 23 ° C. W2: Weight of the molded body after taking out the molded body after immersing in tetrahydrofuran at 23 ° C. and drying
  7.  前記ポリビニルアセタール樹脂と前記重合体とが架橋している、請求項1~6のいずれか1項に記載の成形体。 The molded article according to any one of claims 1 to 6, wherein the polyvinyl acetal resin and the polymer are crosslinked.
  8.  合わせガラス用中間膜である、請求項1~7のいずれか1項に記載の成形体。 The molded article according to any one of claims 1 to 7, which is an interlayer film for laminated glass.
  9.  厚みが3mm以下である、請求項1~8のいずれか1項に記載の成形体。 The molded article according to any one of claims 1 to 8, wherein the thickness is 3 mm or less.
  10.  厚みが1.6mm以下である第1のガラス板を用いて、前記第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられる、請求項1~9のいずれか1項に記載の成形体。 The first glass plate having a thickness of 1.6 mm or less is used between the first glass plate and the second glass plate and used to obtain a laminated glass. The molded product according to any one of 9.
  11.  第1のガラス板と第2のガラス板との間に配置されて、合わせガラスを得るために用いられ、
     前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である、請求項1~10のいずれか1項に記載の成形体。
    Arranged between the first glass plate and the second glass plate, used to obtain laminated glass,
    The molded body according to any one of claims 1 to 10, wherein the total thickness of the first glass plate and the thickness of the second glass plate is 3.5 mm or less.
  12.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項1~11のいずれか1項に記載の成形体とを備え、
     前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記成形体が配置されている、合わせガラス。
    A first laminated glass member;
    A second laminated glass member;
    A molded body according to any one of claims 1 to 11,
    Laminated glass in which the molded body is disposed between the first laminated glass member and the second laminated glass member.
  13.  前記第1の合わせガラス部材が第1のガラス板であり、
     前記第1のガラス板の厚みが1.6mm以下である、請求項12に記載の合わせガラス。
    The first laminated glass member is a first glass plate;
    The laminated glass of Claim 12 whose thickness of a said 1st glass plate is 1.6 mm or less.
  14.  前記第1の合わせガラス部材が第1のガラス板であり、
     前記第2の合わせガラス部材が第2のガラス板であり、
     前記第1のガラス板の厚みと前記第2のガラス板の厚みとの合計が3.5mm以下である、請求項12又は13に記載の合わせガラス。
    The first laminated glass member is a first glass plate;
    The second laminated glass member is a second glass plate;
    The laminated glass of Claim 12 or 13 whose sum total of the thickness of a said 1st glass plate and the thickness of a said 2nd glass plate is 3.5 mm or less.
PCT/JP2018/013336 2017-03-31 2018-03-29 Moulded body and laminated glass WO2018181755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519981A JP6985259B2 (en) 2017-03-31 2018-03-29 Molded body and laminated glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072901 2017-03-31
JP2017-072901 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181755A1 true WO2018181755A1 (en) 2018-10-04

Family

ID=63676203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013336 WO2018181755A1 (en) 2017-03-31 2018-03-29 Moulded body and laminated glass

Country Status (3)

Country Link
JP (1) JP6985259B2 (en)
TW (1) TW201842039A (en)
WO (1) WO2018181755A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155725A (en) * 2020-03-27 2021-10-07 積水化学工業株式会社 Polyvinyl acetal resin
JPWO2020111153A1 (en) * 2018-11-30 2021-11-04 昭和電工マテリアルズ株式会社 Laminated glass for vehicles
KR20220019695A (en) 2019-06-11 2022-02-17 세키스이가가쿠 고교가부시키가이샤 A resin composition, a resin film, and a glass laminated body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265170A (en) * 2008-12-22 2010-11-25 Sekisui Chem Co Ltd Laminate for laminated glass and interlayer for laminated glass
WO2015046583A1 (en) * 2013-09-30 2015-04-02 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
WO2016094277A1 (en) * 2014-12-08 2016-06-16 3M Innovative Properties Company Acrylic polyvinyl acetal films & composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219542A (en) * 1999-01-27 2000-08-08 Fujicopian Co Ltd Transfer material for laminated glass and production of laminated glass using the transfer material
DE60238346D1 (en) * 2001-10-16 2010-12-30 Sekisui Chemical Co Ltd METHOD FOR PRODUCING MODIFIED POLYMER, DEVICE FOR PRODUCING MODIFIED POLYMER AND MODIFIED POLYMER
JP2014132043A (en) * 2011-04-15 2014-07-17 Nissha Printing Co Ltd Hard coating resin composition having good adhesiveness to pattern layer
US9512310B2 (en) * 2012-09-28 2016-12-06 Sekisui Chemical Co., Ltd. Polyvinyl acetal-based resin composition
JP6300149B2 (en) * 2014-02-17 2018-03-28 株式会社クラレ Photocurable resin composition
JP6364215B2 (en) * 2014-03-31 2018-07-25 積水化学工業株式会社 Modified polyvinyl acetal resin
JP6581464B2 (en) * 2015-10-22 2019-09-25 積水化学工業株式会社 Adhesive composition and polarizing plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265170A (en) * 2008-12-22 2010-11-25 Sekisui Chem Co Ltd Laminate for laminated glass and interlayer for laminated glass
WO2015046583A1 (en) * 2013-09-30 2015-04-02 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass
WO2016094277A1 (en) * 2014-12-08 2016-06-16 3M Innovative Properties Company Acrylic polyvinyl acetal films & composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020111153A1 (en) * 2018-11-30 2021-11-04 昭和電工マテリアルズ株式会社 Laminated glass for vehicles
KR20220019695A (en) 2019-06-11 2022-02-17 세키스이가가쿠 고교가부시키가이샤 A resin composition, a resin film, and a glass laminated body
EP3985068A4 (en) * 2019-06-11 2023-07-05 Sekisui Chemical Co., Ltd. Resin composition, resin film, and glass laminate
JP2021155725A (en) * 2020-03-27 2021-10-07 積水化学工業株式会社 Polyvinyl acetal resin

Also Published As

Publication number Publication date
TW201842039A (en) 2018-12-01
JP6985259B2 (en) 2021-12-22
JPWO2018181755A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6147421B2 (en) Laminated glass interlayer film and laminated glass
JP6163259B2 (en) Laminated glass interlayer film and laminated glass
WO2018181758A1 (en) Interlayer for laminated glass, and laminated glass
WO2018181755A1 (en) Moulded body and laminated glass
JP7036716B2 (en) Laminated glass interlayer film and laminated glass
JP6985258B2 (en) Laminated glass interlayer film and laminated glass
JP6985257B2 (en) Laminated glass interlayer film and laminated glass
WO2017171042A1 (en) Polyvinyl acetal ionomer resin film, and laminated glass
JP6949757B2 (en) Laminated glass interlayer film and laminated glass manufacturing method
WO2018181747A1 (en) Intermediate film for laminated glass, and laminated glass
JP7028769B2 (en) Laminated glass interlayer film and laminated glass
WO2017171041A1 (en) Polyvinyl acetal ionomer resin material, polyvinyl acetal ionomer resin film, and laminated glass
JP6949836B2 (en) Laminated glass interlayer film and laminated glass
JP6974212B2 (en) Laminated glass interlayer film and laminated glass
JP7188889B2 (en) Interlayer film for laminated glass and laminated glass
JP2019147707A (en) Interlayer for glass laminate and glass laminate
JP2019147706A (en) Interlayer for glass laminate and glass laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519981

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775508

Country of ref document: EP

Kind code of ref document: A1