WO2018181653A1 - Polarizer protection film, polarizing plate and image display device - Google Patents

Polarizer protection film, polarizing plate and image display device Download PDF

Info

Publication number
WO2018181653A1
WO2018181653A1 PCT/JP2018/013099 JP2018013099W WO2018181653A1 WO 2018181653 A1 WO2018181653 A1 WO 2018181653A1 JP 2018013099 W JP2018013099 W JP 2018013099W WO 2018181653 A1 WO2018181653 A1 WO 2018181653A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizer
protective film
polarizer protective
polarizing plate
Prior art date
Application number
PCT/JP2018/013099
Other languages
French (fr)
Japanese (ja)
Inventor
達郎 山下
村田 浩一
章太 早川
佐々木 靖
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020197028107A priority Critical patent/KR102303171B1/en
Priority to JP2019510093A priority patent/JP7143842B2/en
Priority to CN202210522600.9A priority patent/CN114966913A/en
Priority to CN201880016099.0A priority patent/CN110383122B/en
Publication of WO2018181653A1 publication Critical patent/WO2018181653A1/en
Priority to JP2022103054A priority patent/JP7327594B2/en
Priority to JP2022103055A priority patent/JP2022132306A/en
Priority to JP2023165229A priority patent/JP2023171426A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polarizer protective film, a polarizing plate, an image display device such as a liquid crystal display device and an organic EL display. Specifically, the present invention relates to a polarizer protective film, a polarizing plate, and an image display device (liquid crystal display device, organic EL display, etc.) that have good visibility and are suitable for thinning.
  • a polarizing plate used in a liquid crystal display usually has a configuration in which a polarizer in which iodine is dyed on polyvinyl alcohol (PVA) or the like is sandwiched between two polarizer protective films.
  • a triacetyl cellulose (TAC) film is usually used.
  • TAC film used as the protective film is reduced for this purpose, sufficient mechanical strength cannot be obtained and moisture permeability deteriorates. Further, TAC films are very expensive, and there is a strong demand for inexpensive alternative materials.
  • the polyester film is superior to the TAC film in durability, but unlike the TAC film, it has birefringence. Therefore, when it is used as a polarizer protective film, there is a problem that the image quality is deteriorated due to optical distortion. That is, since the polyester film having birefringence has a predetermined optical anisotropy (retardation), when used as a polarizer protective film, a rainbow-like color spot is generated when observed from an oblique direction, and the image quality is deteriorated. . Therefore, in patent document 1, the countermeasure against a rainbow-like color spot is made
  • An object of the present invention in one embodiment is to cope with the thinning of an image display device such as a liquid crystal display device or an organic EL display (that is, has sufficient mechanical strength) and is visually recognized by a rainbow-like color spot. It is providing the polarizer protective film, polarizing plate, and image display apparatus (a liquid crystal display device, an organic EL display, etc.) by which deterioration of property was suppressed.
  • the representative present invention is as follows.
  • Term A1. A polarizer protective film including a polyester film, The slow axis direction of the polyester film is substantially parallel to the MD direction, In-plane birefringence ⁇ Nxy of the polyester film is 0.06 or more and 0.20 or less, The refractive index in the fast axis direction of the polyester film is 1.580 or more and 1.630 or less, Polarizer protective film.
  • Term A2. The polarizer protective film according to Item A1, wherein the smaller value of the tear strength by the right-angled tearing method in the slow axis direction and the fast axis direction of the polyester film is 250 N / mm or more.
  • Term A4 The polarizer protective film according to any one of Items A1 to A3, wherein the retardation of the polyester film is 1500 nm or more and 30000 nm or less.
  • Term A5. The polarizer protective film according to any one of Items A1 to A4, wherein the polyester film has a thickness of 25 to 60 ⁇ m.
  • Term A7 The polarizer protective film according to Item A1 or A2, wherein the polyester film has an NZ coefficient of 1.5 or more and 2.5 or less.
  • Term A4 The polarizer protective film according to any one of Items A1 to A3, wherein the retardation of the polyester film is 1500 nm or more and 30000 n
  • Term A8. A polarizing plate comprising the polarizer protective film according to any one of Items A1 to A7 laminated on at least one surface of the polarizer.
  • Term A9. A polarizing plate in which the polarizer protective film according to any one of Items A1 to A7 is laminated on one side of the polarizer and the film is not laminated on the other side of the polarizer. Term A10.
  • Term A11 An image display device comprising the polarizing plate according to any one of Items A8 to A10.
  • Term A12 A liquid crystal display device comprising the polarizing plate according to item A8 or A9.
  • An organic EL display comprising the polarizing plate according to any one of Items A8 to A10.
  • a QLED display comprising the polarizing plate according to any one of Items A8 to A10.
  • Term B4 The polarizer protective film according to any one of Items B1 to B3, wherein the polyester film has a thickness of 25 to 60 ⁇ m.
  • Term B5. The polarizer protective film according to any one of Items B1 to B4, wherein an angle formed between the slow axis direction of the polyester film and the MD direction is within 3 degrees.
  • Term B6 The polarizer protective film according to any one of Items B1 to B5, wherein the elastic modulus in the MD direction of the polyester film is 3000 MPa or more.
  • Term B7 A polarizing plate in which the polarizer protective film according to any one of Items B1 to B6 is laminated on at least one surface of the polarizer.
  • Term B9. A polarizing plate in which the polarizer protective film according to any one of Items B1 to B6 is laminated on one side of the polarizer and a quarter-wave plate is laminated on the other side of the polarizer.
  • An image display device comprising the polarizing plate according to any one of Items B7 to B9.
  • Term B11 A liquid crystal display device comprising the polarizing plate according to item B7 or B8.
  • An organic EL display comprising the polarizing plate according to any one of Items B7 to B9.
  • Term B13. A QLED display comprising the polarizing plate according to any one of Items B7 to B9.
  • Term C2. The polarizer protective film according to Item C1, wherein the polyester film has an NZ coefficient of 1.5 or more and 2.5 or less.
  • Term C3 The polarizer protective film according to Item C1 or C2, wherein the retardation of the polyester film is 1500 nm or more and 30000 nm or less.
  • Term C5. The polarizer protective film according to any one of Items C1 to C4, wherein the elastic modulus in the MD direction of the polyester film is 3000 MPa or more.
  • Term C6. A polarizing plate in which the polarizer protective film according to any one of Items C1 to C5 is laminated on at least one surface of the polarizer.
  • Term C7. A polarizing plate in which the polarizer protective film according to any one of Items C1 to C5 is laminated on one side of the polarizer, and the film is not laminated on the other side of the polarizer.
  • An image display device comprising the polarizing plate according to any one of Items C6 to C8.
  • Term C10 A liquid crystal display device comprising the polarizing plate according to item C6 or C7.
  • Term C11 An organic EL display comprising the polarizing plate according to any one of Items C6 to C8.
  • the polarizer protective film, polarizing plate and image display device (liquid crystal display device, organic EL display, etc.) of the present invention are excellent in that rainbow-like color spots (hereinafter the same as rainbow spots) are suppressed at any observation angle. High visibility can be secured.
  • the polarizing plate and the polarizer protective film of the present invention have mechanical strength suitable for thinning, and can ensure good processing characteristics. According to the present invention, it is possible to provide a polarizer protective film, a polarizing plate, and an image display device in which deterioration of visibility due to rainbow-like color spots is significantly suppressed even when the film is thinned.
  • the polarizer protective film of the present invention is a polarizer protective film including a polyester film, and the slow axis direction of the polyester film is substantially parallel to the MD direction, and the polyester film In-plane birefringence ⁇ Nxy is 0.06 or more and 0.20 or less, and the refractive index in the fast axis direction of the polyester film is 1.580 or more and 1.630 or less.
  • the polarizer protective film of the present invention is a polarizer protective film including a polyester film, the slow axis direction of the polyester film being substantially parallel to the MD direction, Refraction ⁇ Nxy is 0.06 or more and 0.2 or less, and the smaller value of the tear strength of the polyester film by the right-angled tearing method in the slow axis direction and the fast axis direction is 250 N / mm or more.
  • the polarizer protective film of the present invention is a polarizer protective film including a polyester film, the slow axis direction of the polyester film being substantially parallel to the MD direction, Refraction ⁇ Nxy is 0.06 or more and 0.20 or less, and the thickness of the polyester film is 15 to 60 ⁇ m.
  • the problem in this embodiment is to provide a polarizer protective film in which deterioration of visibility due to rainbow-like color spots is significantly suppressed even when the film is thinned, and a thin polarizing plate and an image display device ( A liquid crystal display device, an organic EL display, etc.).
  • the slow axis of the polyester film used as the polarizer protective film of the present invention is preferably substantially parallel to the MD direction (traveling direction during film formation) from the viewpoint of suppressing iridescent color spots.
  • being substantially parallel means that the angle formed by the slow axis direction of the polyester film and the MD direction (traveling direction during film formation) is preferably within 10 degrees, more preferably within 7 degrees, and even more preferably It means within 5 degrees, particularly preferably within 3 degrees, most preferably within 2 degrees.
  • the direction of the slow axis can be determined using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments).
  • the MD direction is a traveling direction during film formation, and may be referred to as a longitudinal direction.
  • the TD direction is the width direction during film formation, and may be referred to as the horizontal direction.
  • the direction of the absorption axis of the polarizer and the slow axis of the polyester film are usually arranged perpendicular to each other. This is due to the following circumstances.
  • the polyvinyl alcohol film which is a polarizer is manufactured by MD uniaxial stretching. Therefore, the polyvinyl alcohol film used as a polarizer is usually a long film in the stretching direction and has an absorption axis in the MD direction.
  • the polyester film as the protective film is usually produced by MD stretching and then TD stretching in many cases, the orientation main axis direction (slow axis direction) of the polyester film is the TD direction. From the viewpoint of production efficiency, these films are usually bonded together by roll-to-roll so that their longitudinal directions are parallel to each other, whereby a polarizing plate is produced. Then, the slow axis of the polyester film and the absorption axis of the polarizer are usually perpendicular.
  • the orientation main axis direction (slow axis direction) of the polyester film is preferably the MD direction.
  • Such a polyester film can be obtained by strongly stretching the polyester film in the MD direction.
  • a polarizing plate is produced by laminating this polyester film and a polarizer produced by MD uniaxial stretching by roll-to-roll so that the longitudinal direction is parallel, the absorption axis of the polarizer and the slow axis of the polyester film The directions are parallel.
  • the polarizer is laminated with the absorption axis of the polarizer and the slow axis of the polyester film being parallel. It has been found that the effect of suppressing iridolysis is better than the case.
  • the polyester film is strongly stretched in the MD direction, and the relationship between the MD direction and the slow axis direction is substantially parallel. It is preferable to use the polyester film which has.
  • the in-plane birefringence ⁇ Nxy of the polyester film used for the polarizer protective film of the present invention is preferably 0.06 or more and 0.2 or less, more preferably 0.07 or more and 0.19 or less, and further preferably 0.08 or more and 0. .18 or less.
  • ⁇ Nxy is less than 0.06, rainbow-like color spots are easily observed when observed from an oblique direction.
  • ⁇ Nxy is larger than 0.2, iridescent color spots are not generated, but since it approaches perfect uniaxiality (uniaxial symmetry), the mechanical strength in the direction parallel to the orientation direction is significantly reduced.
  • the in-plane birefringence ⁇ Nxy is an absolute value of the difference between the refractive index (nx) in the slow axis direction and the refractive index (ny) in the fast axis direction.
  • the measurement wavelength of the refractive index is 589 nm.
  • the refractive index (ny) in the fast axis direction of the polyester film having a relationship in which the slow axis direction is substantially parallel to the MD direction used in the polarizer protective film of the present invention is preferably 1.58 or more. It is 1.63 or less, More preferably, it is 1.584 or more and 1.625 or less, More preferably, it is 1.588 or more and 1.62 or less.
  • the refractive index (ny) in the fast axis direction is less than 1.58, it approaches perfect uniaxiality (uniaxial symmetry), so that the mechanical strength (tear strength) in the direction parallel to the orientation direction is significantly reduced. Further, when the refractive index (ny) in the fast axis direction exceeds 1.63, rainbow-like color spots are easily observed when observed from an oblique direction.
  • the smaller value of the tear strength by the right-angled tearing method in the slow axis direction and the fast axis direction of the polyester film used for the polarizer protective film of the present invention is preferably 250 N / mm or more, more preferably 280 N / mm. As mentioned above, More preferably, it is 300 N / mm or more. In a film having a high ⁇ Nxy value, the tear strength value in the slow axis direction tends to be smaller than in the fast axis direction.
  • the mechanical strength required for processing is insufficient due to the reduced thickness of the film, it has been difficult to meet the demand for thinning, but the slow axis direction and the fast axis direction of the film
  • the smaller value of the tear strength by the right-angled tearing method is 250 N / mm or more, the above problem can be solved. If it is less than 250 N / mm, the film is easily torn, and the stability at the time of film formation and processing decreases.
  • the higher the tear strength the greater the stability during film formation and processing, but the biaxiality (biaxial symmetry) increases and rainbow-like color spots occur.
  • the tear strength is measured according to a right-angled tear method (JIS K-7128-3) to determine the tear strength (N / mm) per film thickness.
  • the NZ coefficient of the polyester film used for the polarizer protective film of the present invention is preferably 1.5 or more and 2.5 or less, more preferably 1.6 or more and 2.3 or less, and further preferably 1.7 or more and 2.1 or less. It is. As the NZ coefficient is smaller, rainbow-like color spots due to the observation angle are less likely to occur. In a perfect uniaxial (uniaxial symmetry) film, the NZ coefficient is 1.0, but as it approaches the perfect uniaxial (uniaxial symmetry) film, the mechanical strength in the direction parallel to the orientation direction tends to decrease. .
  • NZ coefficient can be obtained as follows. Using a molecular orientation meter (Oji Keiki Co., Ltd., MOA-6004 type molecular orientation meter), the orientation principal axis direction (slow axis direction) of the film is obtained, and the orientation principal axis direction and the direction perpendicular to this (fast axis direction) ) Of biaxial refractive index (refractive index nx in the slow axis direction, refractive index ny in the fast axis direction, nx> ny), and refractive index (nz) in the thickness direction (Abago Refractometer) Manufactured, NAR-4T, measurement wavelength 589 nm).
  • a molecular orientation meter Oji Keiki Co., Ltd., MOA-6004 type molecular orientation meter
  • the NZ coefficient can be obtained by substituting nx, ny, and nz obtained in this way into an expression represented by
  • the measurement wavelength of the refractive index is 589 nm.
  • the polyester film used for the polarizer protective film preferably has a retardation of 1500 nm or more and 30000 nm or less.
  • the lower limit of retardation is preferably 2500 nm, and the next lower limit is preferably 3000 nm.
  • the upper limit of retardation is 30000 nm. Even if a polyester film having a retardation of more than that is used, it is not only possible to substantially improve the visibility, but also because the film thickness becomes considerably thick and the handling property as an industrial material is reduced, it is preferable. Absent.
  • the preferable upper limit of retardation is 8000 nm, the more preferable upper limit is 6000 nm, the still more preferable upper limit is 5500 nm, and the particularly preferable upper limit is 5000 nm.
  • the birefringence can be obtained by measuring the refractive index in the biaxial direction, or can be obtained by using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments).
  • the measurement wavelength of the refractive index is 589 nm.
  • the elastic modulus in the MD direction of the polyester film used for the polarizer protective film of the present invention is preferably 3000 MPa or more.
  • the contraction of the polarizing plate is caused by the contraction of the PVA film that is the polarizer (mainly the contraction in the absorption axis direction), and the contraction of the polarizer is preferably controlled by the rigidity of the protective film.
  • a preferable lower limit value of the elastic modulus in the MD direction is 3500 MPa, a more preferable lower limit value is 4000 MPa, and a further preferable lower limit value is 4500 MPa.
  • the polyester used in the polarizer protective film of the present invention may be polyethylene terephthalate or polyethylene naphthalate, but may contain other copolymer components. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the in-plane birefringence can be easily controlled by stretching.
  • polyethylene terephthalate is the most suitable material because it has a large intrinsic birefringence and can easily obtain a large in-plane birefringence.
  • the polarizer protective film of the present invention has a light transmittance of 20% or less at a wavelength of 380 nm.
  • the light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays.
  • the transmittance in the present invention is measured by a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
  • the ultraviolet absorber used in the present invention is a known substance.
  • the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • the organic ultraviolet absorber include benzotriazole, benzophenone, cyclic imino ester, and combinations thereof, but are not particularly limited as long as the absorbance is within the range defined by the present invention.
  • benzotriazole type and cyclic imino ester type are particularly preferable.
  • benzophenone ultraviolet absorber examples include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2 ′.
  • cyclic imino ester UV absorbers examples include 2,2 ′-(1,4-phenylene).
  • additives include inorganic particles, heat resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, and antigelling agents. And surfactants.
  • a polyester film does not contain a particle
  • “Substantially free of particles” means, for example, in the case of inorganic particles, a content that is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. means.
  • the polarizer protective film of the present invention it is also preferable to apply various hard coats on the surface for the purpose of preventing reflection, suppressing glare, and suppressing scratches.
  • the polyester film can be subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the adhesion to the polarizer and various hard coat layers.
  • At least one surface of the film of the present invention has an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin or a polyacrylic resin.
  • the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer.
  • the coating solution used for forming the easy-adhesion layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin, and polyurethane resin.
  • coating solutions include water-soluble or water-dispersible co-polymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982.
  • coating solutions include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
  • the easy-adhesion layer can be obtained by applying a coating solution to at least one of the film surfaces and drying at 100 to 150 ° C. in an arbitrary step during the production process of the polyester film.
  • the final coating amount of the easy adhesion layer is preferably controlled to 0.05 to 0.2 g / m 2 . If the coating amount is significantly less than 0.05 g / m 2 , adhesion with the resulting polarizer may be insufficient. On the other hand, if the coating amount significantly exceeds 0.2 g / m 2 , blocking resistance may be lowered.
  • the application quantity of an easily bonding layer on both surfaces may be the same or different, and can be independently set within the above range.
  • particles it is preferable to add particles to the easy-adhesion layer in order to impart slipperiness. It is preferable to use particles having an average particle size of 2 ⁇ m or less. When the average particle diameter of the particles significantly exceeds 2 ⁇ m, the particles easily fall off from the coating layer.
  • particles to be included in the easy adhesion layer for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride,
  • examples include inorganic particles such as calcium fluoride, and organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone. These may be added alone to the easy-adhesion layer, or may be added in combination of two or more.
  • a known method can be used as a method for applying the coating solution.
  • reverse roll coating method gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc.
  • spray coating method air knife coating method, wire bar coating method, pipe doctor method, etc.
  • wire bar coating method wire bar coating method
  • pipe doctor method etc.
  • the average particle size of the above particles is measured by the following method. Take a picture of the particles with a scanning electron microscope (SEM) and at a magnification such that the size of one smallest particle is 2-5 mm, the maximum diameter of 300-500 particles (between the two most distant points) Distance) is measured, and the average value is taken as the average particle diameter.
  • SEM scanning electron microscope
  • the polyester film can be manufactured according to a general polyester film manufacturing method. For example, there is a method in which a polyester resin is melted, and a non-oriented polyester extruded and formed into a sheet is stretched in the longitudinal direction and the transverse direction at a temperature equal to or higher than the glass transition temperature and subjected to heat treatment.
  • the polyester film of the present invention may be a uniaxially stretched film or a biaxially stretched film, but when the biaxially stretched film is used as a polarizer protective film, it may be observed from directly above the film surface. Although rainbow-like color spots are not seen, caution is necessary because rainbow-like color spots may be observed when observed from an oblique direction.
  • This phenomenon is that a biaxially stretched film is composed of refractive index ellipsoids having different refractive indexes in the running direction, width direction, and thickness direction, and the retardation becomes zero depending on the light transmission direction inside the film (refractive index ellipse). This is because there is a direction in which the body appears to be a perfect circle. Therefore, when the display screen is observed from a specific oblique direction, a point where the retardation is zero may be generated, and a rainbow-like color spot is generated concentrically around the point.
  • the angle ⁇ increases as the birefringence in the film increases, and the rainbow-like color increases. Spots are difficult to see.
  • the biaxially stretched film tends to reduce the angle ⁇ , and therefore the uniaxially stretched film is more preferable because rainbow-like color spots are less visible.
  • the present invention has biaxiality (biaxial symmetry) in a range that does not substantially cause rainbow-like color spots or a range that does not cause rainbow-like color spots in the viewing angle range required for the display screen. It is preferable.
  • the film forming conditions of the polyester film of the present invention may be sequential biaxial stretching or simultaneous biaxial stretching.
  • sequential biaxial stretching since the longitudinal stretching is roll stretching, the film is easily scratched. Therefore, from the viewpoint of preventing scratches during stretching, simultaneous biaxial stretching without using a roll is preferred.
  • the film forming conditions will be specifically described.
  • the longitudinal stretching temperature and the transverse stretching temperature are preferably 80 to 150 ° C., particularly preferably 90 to 140 ° C.
  • the longitudinal draw ratio is preferably 5.5 to 7.5 times, more preferably 6.0 times to 7.0 times, and particularly preferably 6.5 times to 7.0 times. Further, the transverse draw ratio is preferably 1.5 to 3.0 times, particularly preferably 1.8 to 2.8 times.
  • the biaxiality should be moderately biaxial under the condition that ⁇ Nxy satisfies the range specified in the present application rather than a complete uniaxial film. Is preferably given.
  • the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
  • the ⁇ Nxy and NZ coefficients in order to control the ⁇ Nxy and NZ coefficients to a specific range, it can be performed by appropriately setting the draw ratio and the draw temperature. For example, it becomes easier to obtain higher ⁇ Nxy as the stretching ratio is higher and the stretching temperature is lower. Conversely, the lower the draw ratio and the higher the draw temperature, the easier it is to obtain a lower ⁇ Nxy. In addition to controlling ⁇ Nxy and NZ coefficients, it is preferable to set final film forming conditions in consideration of physical properties necessary for processing.
  • the thickness of the polyester film used as the polarizer protective film of the present invention is arbitrary, but is preferably in the range of 15 to 200 ⁇ m, more preferably in the range of 15 to 150 ⁇ m. In a film having a thickness of less than 15 ⁇ m, the mechanical properties of the film are remarkably lowered, and the film tends to be torn, torn, etc., and the utility as an industrial material tends to be remarkably lowered.
  • the lower limit of the preferred thickness is 25 ⁇ m, the more preferred lower limit is 30 ⁇ m, and the still more preferred lower limit is 35 ⁇ m.
  • the upper limit of the thickness of the polarizer protective film exceeds 200 ⁇ m, the thickness of the polarizing plate becomes too thick, which is not preferable.
  • the upper limit of the thickness is preferably 150 ⁇ m, the more preferable upper limit of the thickness is 80 ⁇ m, the more preferable upper limit of the thickness is 60 ⁇ m, and the further preferable upper limit of the thickness is 55 ⁇ m.
  • the upper limit of the more preferable thickness is 50 ⁇ m, and the upper limit of the more preferable thickness is 45 ⁇ m.
  • the polyester used as the film substrate is preferably polyethylene terephthalate.
  • a known method can be used in combination.
  • a preliminarily kneaded extruder is used to blend the dried ultraviolet absorber and the polymer raw material.
  • a master batch can be prepared and blended by, for example, a method of mixing the predetermined master batch and a polymer raw material during film formation.
  • the concentration of the UV absorber in the master batch is preferably 5 to 30% by mass in order to uniformly disperse the UV absorber and mix it economically.
  • a condition for producing the master batch it is preferable to use a kneading extruder and to extrude at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. for 1 to 15 minutes. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. When the extrusion temperature is 1 minute or less, uniform mixing of the UV absorber becomes difficult. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
  • the film has a multilayer structure of at least three layers, and an ultraviolet absorber is added to the intermediate layer of the film.
  • a film having a three-layer structure containing an ultraviolet absorber in the intermediate layer can be specifically produced as follows. Polyester pellets alone for the outer layer, master batches containing UV absorbers for the intermediate layer and polyester pellets are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder, which is slit-shaped. Extruded into a sheet form from a die and cooled and solidified on a casting roll to make an unstretched film.
  • a three-layer manifold or a merging block for example, a merging block having a square merging portion
  • a film layer constituting both outer layers and a film layer constituting an intermediate layer are laminated
  • An unstretched film is formed by extruding a three-layer sheet from the die and cooling with a casting roll.
  • the filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 ⁇ m or less. When the filter particle size of the filter medium significantly exceeds 15 ⁇ m, removal of foreign matters of 20 ⁇ m or more tends to be insufficient.
  • Polarizing plate has a configuration in which a polarizer protective film is laminated on at least one surface of a polarizer in which iodine is dyed on PVA or the like.
  • the polarizer protective film of the present invention having the specific polyester film described above is preferably used as at least one of the polarizer protective films constituting the polarizing plate.
  • the polarizer protective film of the present invention having the above-described specific polyester film is laminated on one side of the polarizer, and a TAC film, norbornene film, acrylic film, etc. on the other side of the polarizer.
  • a polarizer protective film or an optical compensation film having no birefringence is laminated.
  • the polarizer protective film of the present invention including the specific polyester film described above is laminated on one side of the polarizer, and the film is laminated on the other side of the polarizer. No (the film on the other side of the polarizer is not attached to the polarizer as a single unit).
  • a coating layer (a hard coat layer, an antiglare layer, an antireflection layer, a low reflection layer, a moisture resistant layer (organic matter) is provided on the surface opposite to the surface on which the specific polyester film of the polarizer is laminated. Or a layer combining these functions) may be provided.
  • the polarizing plate of the present invention is laminated in such a manner that the absorption axis of the polarizer and the slow axis of the polyester film are substantially parallel from the viewpoint of suppressing rainbow spots and suppressing the warpage of the liquid crystal panel. It is preferable.
  • substantially parallel intends to allow a slight deviation.
  • the angle formed by the absorption axis of the polarizer and the slow axis of the polyester film is preferably within 10 degrees, more preferably within 7 degrees, even more preferably within 5 degrees, particularly preferably within 3 degrees, and most preferably 2 degrees. Within degrees.
  • Image display device includes a liquid crystal display device, an organic EL display, a QLED display, or the like that includes a polarizing plate inside the image display device.
  • a liquid crystal panel includes a rear module, a liquid crystal cell, and a front module in order from the side facing the backlight light source toward the image display side (viewing side).
  • the rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the liquid crystal cell side surface, and a polarizing plate disposed on the opposite side.
  • the polarizing plate is arranged on the side facing the backlight light source in the rear module, and is arranged on the side (viewing side) displaying the image in the front module.
  • the liquid crystal display device includes at least a backlight light source and a liquid crystal cell disposed between two polarizing plates. Moreover, you may have suitably other structures other than these, for example, a color filter, a lens film, a diffusion sheet, an antireflection film etc. suitably.
  • the arrangement of the polarizer protective film of the present invention having a specific polyester film is not particularly limited.
  • the polarizer protective film is arranged on the incident light side (light source side), the liquid crystal cell, and the outgoing light side (viewing side).
  • the child protective film is preferably the polarizer protective film of the present invention having the specific polyester film.
  • a particularly preferable embodiment is an embodiment in which the polarizer protective film on the incident light side of the polarizing plate disposed on the incident light side is the specific polyester film.
  • the polyester film is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since it is not preferable to use the polarizer protective film of the present invention at a place where polarization characteristics are required, it is preferably used as a protective film for a polarizing plate at such a specific position.
  • the configuration of the backlight may be an edge light method using a light guide plate or a reflection plate as a constituent member, or a direct type.
  • the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor.
  • the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor.
  • white light-emitting diodes which are composed of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and are also efficient in light emission. Excellent.
  • the continuous emission spectrum means that there is no wavelength at which the light intensity becomes zero at least in the visible light region.
  • the white LED with low power consumption can be widely used by the method of the present invention, it is possible to achieve an energy saving effect.
  • the backlight source is a white light source having a peak top of the emission spectrum in each wavelength region of 400 nm or more and less than 495 nm (B region), 495 nm or more and less than 600 nm (G region), and 600 nm or more and 780 nm or less (R region). Is also preferable.
  • a white light source using quantum dot technology a phosphor type white LED light source using a phosphor and a blue LED each having an emission peak in the R (red) and G (green) regions by excitation light, and a three-wavelength method
  • White LED light source, white LED light source combining red laser, and other white LED light source using blue LED and fluoride phosphor also referred to as “KSF” whose composition formula is K 2 SiF 6 : Mn 4+ Etc.
  • These white light sources are attracting attention as a backlight light source for liquid crystal display devices that support a wide color gamut, and all of them use a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor that have been used in the past.
  • a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor that have been used in the past.
  • the half width of the peak is narrow.
  • a backlight light source composed of these white light sources compared to a backlight light source composed of a white light emitting diode composed of a light emitting element combining a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor,
  • a polarizer protective film that is a constituent member of a polarizing plate is used as a polyester film having retardation, rainbow spots tend to occur.
  • the polarizer protective film of the present invention is used, the rainbow spots are significantly increased. Can be suppressed.
  • Organic EL Display and QLED Display As the organic EL element, an organic EL element known in the technical field can be appropriately selected and used. Use of the organic EL element is preferable in terms of wide viewing angle, high contrast, and high-speed response.
  • An organic EL element is typically a light emitter (organic electroluminescent light emitter) having a structure in which an anode as a transparent electrode, an organic light emitting layer, and a cathode as a metal electrode are laminated in this order on a transparent substrate. is there.
  • the organic EL cell emits light by recombination of holes injected from the anode and electrons injected from the cathode in the organic light emitting layer when a voltage is applied between the anode and the cathode. To do.
  • the transparent substrate can be selected from the group consisting of a glass substrate, a ceramic substrate, a semiconductor substrate, a metal substrate, and a plastic substrate.
  • the plastic substrate include conventionally used transparent resin films.
  • the transparent substrate may be provided with a surface treatment layer as necessary. Examples of the surface treatment layer include a moisture permeation prevention layer, a gas barrier layer, a hard coat layer, an undercoat layer, and the like.
  • Examples of the material constituting the anode and the cathode include metals, metal oxides, alloys, electrically conductive compounds, and mixtures thereof. More specific materials constituting the anode include conductive transparent materials such as gold, silver, chromium, nickel, copper iodide, indium tin oxide (ITO), tin oxide, and zinc oxide. More specific materials constituting the cathode include magnesium, aluminum, indium, lithium, sodium, cesium, silver, magnesium-silver alloy, magnesium-indium alloy, and lithium-aluminum alloy. *
  • the thickness of the anode and the cathode can be arbitrarily set according to the materials constituting the anode and the cathode.
  • the thickness of the anode can be appropriately set, for example, in the range of 10 nm to 200 nm, preferably 10 nm to 100 nm.
  • the thickness of the cathode is, for example, 10 nm to 1000 nm, and can be appropriately set from the range of 10 nm to 200 nm.
  • the organic light emitting layer is a layer having a function of emitting light by providing a recombination field of holes and electrons when a voltage is applied.
  • the organic light emitting layer contains an organic light emitting material and may have a single layer structure or a laminated structure of two or more layers. In the case of a laminated structure, each layer may emit light with different emission colors.
  • the thickness of the organic light emitting layer is arbitrary, and can be appropriately set within a range of 3 nm to 3 ⁇ m, for example.
  • the organic light emitting material used for the organic light emitting layer can be appropriately selected from arbitrary light emitting materials.
  • olefin-based light emitting materials such as 4,4 ′-(2,2-diphenylvinyl) biphenyl; 9,10-di (2-naphthyl) anthracene, 9,10-bis (3,5-diphenylphenyl) ) Anthracene, 9,10-bis (9,9-dimethylfluorenyl) anthracene, 9,10- (4- (2,2-diphenylvinyl) phenyl) anthracene, 9,10′-bis (2-biphenylyl) -9,9'-bisanthracene, 9,10,9 ', 10'-tetraphenyl-2,2'-bianthryl, 1,4-bis (9-phenyl-10-anthracene) benzene and other anthracene-based luminescent materials
  • Spiro-based luminescent materials
  • the organic EL element includes a sealing member formed so as to cover the organic EL element in order to block the organic EL element including the anode, the organic light emitting layer, and the cathode on the base material from the outside air. Also good.
  • a sealing member By providing the sealing member, it is possible to prevent deterioration of the light emitting characteristics of the organic light emitting layer due to moisture and oxygen in the outside air.
  • the organic EL element may further include an arbitrary member (for example, a hole injection layer, a hole transport layer, an electron injection layer, and / or an electron transport layer) at any appropriate position.
  • an arbitrary member for example, a hole injection layer, a hole transport layer, an electron injection layer, and / or an electron transport layer
  • the display surface of the organic EL display device may look like a mirror surface. is there.
  • the polarizing plate mentioned above can be used, and it is preferable that the polarizer protective film which consists of a polyester film of this invention is laminated
  • a circularly polarizing plate By constructing a circularly polarizing plate by combining these viewing side polarizing plates and quarter-wave plates, external light reflected by the metal electrode of the organic EL cell is shielded by the circularly polarizing plate. A reduction in the visibility of the device can be suppressed. Also.
  • a half-wave plate or the like may be further laminated on the organic EL element side or the polarizer side of the quarter-wave plate.
  • a half-wave plate or the like is laminated on the organic EL element side of the quarter-wave plate with an inclination to each other's optical axis, and disclosed in JP-A-10-68816 and JP-A-2017-97379. Has been.
  • the QLED display is similar to the organic EL in that it uses the fact that the quantum dots themselves emit light when electricity is applied, and is attracting attention as a next-generation display.
  • the biaxial refractive index anisotropy ( ⁇ Nxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), determine the slow axis direction of the film, 4 cm so that the slow axis direction is parallel to the long side of the measurement sample.
  • MOA-6004 type molecular orientation meter manufactured by Oji Scientific Instruments Co., Ltd.
  • a rectangle of ⁇ 2 cm was cut out and used as a measurement sample.
  • the biaxial refractive index orthogonal reffractive index in the slow axis direction: nx
  • the refractive index in the direction perpendicular to the slow axis direction in the plane that is, the refractive index in the fast axis direction
  • ny The refractive index (nz) in the thickness direction is obtained by an Abbe refractometer (Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm), and the absolute value (
  • the thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm.
  • Retardation (Re) was determined from the product ( ⁇ Nxy ⁇ d) of refractive index anisotropy ( ⁇ Nxy) and film thickness d (nm).
  • NZ coefficient The values of nx, ny, and nz measured by the Abbe refractometer in (2) were substituted for
  • the elastic modulus of the polyester film was measured by using a dynamic viscoelasticity measuring device (DMS6100) manufactured by Seiko Instruments Inc. according to JIS-K7244 (DMS) after standing for 168 hours in an environment of 25 ° C. and 50% RH. Evaluation was performed. The temperature dependence of 25 ° C to 120 ° C was measured under the conditions of tensile mode, driving frequency 1 Hz, distance between chucks 5 mm, and heating rate 2 ° C / min. The average storage elastic modulus at 30 ° C to 100 ° C was taken as the elastic modulus. did. The measurement was performed in the MD direction.
  • DMS6100 dynamic viscoelasticity measuring device manufactured by Seiko Instruments Inc. according to JIS-K7244 (DMS) after standing for 168 hours in an environment of 25 ° C. and 50% RH. Evaluation was performed. The temperature dependence of 25 ° C to 120 ° C was measured under the conditions of tensile mode, driving frequency 1 Hz, distance between chucks 5 mm, and heating
  • the obtained polarizing plate is used as a light source (Nichia Chemical Co., NSPW500CS), a light emitting element combining a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor.
  • the polarizing plate on the incident light side was installed so that the polyester film was on the light source side, and the polarizing plate on the outgoing light side was installed on the viewing side so that the polyester film was on the viewing side.
  • Visual observation was performed from the front side and the oblique direction of the polarizing plate of the liquid crystal display device, and the presence or absence of the occurrence of iridescence was determined as follows.
  • No iridium is observed from any direction.
  • When observed from an oblique direction, a thin rainbow spot can be observed depending on the angle.
  • X When observing from an oblique direction, rainbow spots can be clearly observed.
  • the circularly polarizing plate (the circularly polarizing plate disposed on the viewing side from the organic EL element) was removed from the commercially available organic EL display (LG EL organic EL television C6P 55 inch), and the polarized light obtained above was used instead.
  • the plate was placed in an organic EL display so that the PET film was placed on the viewing side.
  • the organic EL was visually observed from the front and oblique directions of the display, and the presence or absence of rainbow spots was determined as follows.
  • No iridium is observed from any direction.
  • When observed from an oblique direction, a thin rainbow spot can be observed depending on the angle.
  • X When observing from an oblique direction, rainbow spots can be clearly observed.
  • a polarizer roll made of iodine and a polyvinyl alcohol film manufactured by uniaxial stretching in the MD direction and a PET film roll of a polarizer protective film described later are parallel to each other in the MD direction.
  • a TAC film roll (manufactured by FUJIFILM Co., Ltd., thickness 40 ⁇ m) is similarly bonded to the other surface of the polarizer by roll-to-roll, and polarized light comprising PET film / polarizer / TAC film.
  • a board was created.
  • a glass plate having a width of 125 mm, a length of 220 mm, and a thickness of 0.4 mm, and the polarizing plate having the same size as the crossed Nicols on both sides of the glass plate (one polarizing plate has an absorption axis parallel to the width direction, One polarizing plate was bonded using PSA so that the absorption axis was parallel to the length direction. At this time, polarizers having the same contraction force were used for the upper and lower polarizing plates.
  • the polarizer protective film of this invention is bonded together so that it may be arrange
  • Tear strength Using a Shimadzu autograph (AG-X plus), the tear strength (N / mm) per film thickness was measured for each film according to the right-angled tear method (JIS K-7128-3). did. The tear strength is measured in two directions parallel to and perpendicular to the orientation direction (slow axis) of the film (ie, the slow axis direction and the fast axis direction), and the smaller value is expressed as the tear strength. 1. In addition, the measurement in the orientation main axis direction (slow axis direction) was performed with a molecular orientation meter (manufactured by Oji Scientific Instruments, MOA-6004 type molecular orientation meter).
  • the number of breaks is less than 3 ⁇ : The number of breaks is 3 or more and less than 6 x: The number of breaks is 6 or more
  • the number of scratches is less than 3 / m 2 ⁇ : The number of scratches is 3 / m 2 or more and less than 6 / m 2 ⁇ : The number of scratches is 6 / m 2 or more
  • the obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. (Hereafter, abbreviated as PET (A).)
  • PET (B) 10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), PET (A) containing no particles (inherent viscosity Was 0.62 dl / g) and 90 parts by mass were mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
  • a transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the total dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared.
  • PET protective film 1 After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. .
  • the unstretched film on which this coating layer has been formed is guided to a simultaneous biaxial stretching machine, and the end of the film is held by a clip, guided to a hot air zone at a temperature of 125 ° C., 6.5 times in the running direction and 2 in the width direction. .2 stretched.
  • the film was treated at a temperature of 225 ° C. for 30 seconds to obtain a biaxially oriented PET film having a film thickness of about 40 ⁇ m. This was wound into a roll and used as a film roll (film roll having a film length in the MD direction of 500 m).
  • the slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 1.
  • (Polarizer protective film 2) A biaxially oriented PET film having a film thickness of about 40 ⁇ m is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and stretched 6.0 times in the running direction and 2.2 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 2.
  • (Polarizer protective film 3) An unstretched film is made in the same manner as the polarizer protective film 1, and is heated to 105 ° C. using a heated roll group and an infrared heater in a sequential biaxial stretching machine, and then in a traveling direction with a roll group having a difference in peripheral speed. Then, the film was drawn into a hot air zone having a temperature of 125 ° C. and stretched 2.2 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds to obtain a biaxially oriented PET film having a film thickness of about 40 ⁇ m. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 5 ° from the running direction. This was designated as a polarizer protective film 3.
  • (Polarizer protective film 4) A uniaxially oriented PET film having a film thickness of about 40 ⁇ m was obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film was changed and the film was stretched 1.0 times in the running direction and 4.0 times in the width direction. . This was wound up into a roll to obtain a film roll. The slow axis of the obtained film was within 4 ° from the width direction. This was designated as a polarizer protective film 4. Since the slow axis of the polarizer protective film 4 was the width direction, a thin rainbow-like color spot was observed depending on the angle when observed from an oblique direction. In addition, the tear strength was low and it was easily torn. For example, when the polarizer protective film 4 was bonded to the polarizer and a polarizing plate was produced by roll-to-roll, it was often cracked in the width direction as compared with other films.
  • (Polarizer protective film 6) A biaxially oriented PET film having a film thickness of about 40 ⁇ m is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and stretched 4.5 times in the running direction and 2.4 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 8 ° from the running direction. Since the obtained film had a low ⁇ Nxy, rainbow-like color spots were observed when observed from an oblique direction.
  • (Polarizer protective film 7) Change the thickness of the unstretched film, heat to 105 ° C using a group of rolls heated sequentially by a biaxial stretching machine and an infrared heater, and then stretch 2.2 times in the running direction with a group of rolls with a difference in peripheral speed Then, it was led to a hot air zone having a temperature of 125 ° C. and stretched 5.5 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds to obtain a biaxially oriented PET film having a film thickness of about 40 ⁇ m. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 6 ° from the width direction. Since the slow axis direction of the obtained film was the width direction, iridescent color spots were observed when observed from an oblique direction.
  • (Polarizer protective film 8) A biaxially oriented PET film having a film thickness of about 40 ⁇ m is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and the film is stretched 6.0 times in the running direction and 1.5 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 8.
  • (Polarizer protective film 9) A biaxially oriented PET film having a film thickness of about 40 ⁇ m is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and stretched 6.5 times in the running direction and 2.7 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 9.
  • Table 1 below shows the results of measurement of rainbow spot observation and tear strength of the polarizer protective films 1 to 9.
  • the LCD can be made thinner and less expensive without reducing visibility due to iridescent color spots.
  • the industrial applicability is extremely high.

Abstract

A polarizer protection film including a polyester film, wherein the slow axis direction of the polyester film is approximately parallel to an MD direction, the in-plane birefringence ΔNxy of the polyester film is 0.06-0.20 inclusive, and the following (A) or (B) is satisfied: (A) the refractive index of the fast axis direction of the polyester film is 1.580-1.630 inclusive; and (B) the smaller value out of tear strengths by a right angle tear method in the slow axis direction and the fast axis direction of the polyester film is 250 N/mm or more.

Description

偏光子保護フィルム、偏光板及び画像表示装置Polarizer protective film, polarizing plate, and image display device
 本発明は、偏光子保護フィルム、偏光板及び液晶表示装置や有機ELディスプレイ等の画像表示装置に関する。詳しくは、視認性が良好で、薄型化に適した偏光子保護フィルム、偏光板及び画像表示装置(液晶表示装置や有機ELディスプレイ等)に関する。 The present invention relates to a polarizer protective film, a polarizing plate, an image display device such as a liquid crystal display device and an organic EL display. Specifically, the present invention relates to a polarizer protective film, a polarizing plate, and an image display device (liquid crystal display device, organic EL display, etc.) that have good visibility and are suitable for thinning.
 液晶表示装置(LCD)に使用される偏光板は、通常ポリビニルアルコール(PVA)などにヨウ素を染着させた偏光子を2枚の偏光子保護フィルムで挟んだ構成となっていて、偏光子保護フィルムとしては通常トリアセチルセルロース(TAC)フィルムが用いられている。近年、LCDの薄型化、コストダウンに伴い、偏光板の薄層化が求められるようになっている。しかし、このために保護フィルムとして用いられているTACフィルムの厚みを薄くすると、充分な機械強度を得ることが出来ず、また透湿性が悪化するという問題が発生する。また、TACフィルムは非常に高価であり、安価な代替素材が強く求められている。 A polarizing plate used in a liquid crystal display (LCD) usually has a configuration in which a polarizer in which iodine is dyed on polyvinyl alcohol (PVA) or the like is sandwiched between two polarizer protective films. As the film, a triacetyl cellulose (TAC) film is usually used. In recent years, with the thinning and cost reduction of LCDs, there has been a demand for thinner polarizing plates. However, if the thickness of the TAC film used as the protective film is reduced for this purpose, sufficient mechanical strength cannot be obtained and moisture permeability deteriorates. Further, TAC films are very expensive, and there is a strong demand for inexpensive alternative materials.
 ポリエステルフィルムは、TACフィルムに比べ耐久性に優れるが、TACフィルムと異なり複屈折性を有するため、これを偏光子保護フィルムとして用いた場合、光学的歪みにより画質が低下するという問題があった。すなわち、複屈折性を有するポリエステルフィルムは所定の光学異方性(リタデーション)を有することから、偏光子保護フィルムとして用いた場合、斜め方向から観察すると虹状の色斑が生じ、画質が低下する。そのため、特許文献1では、ポリエステルフィルムの面内リタデーションを特定の範囲に制御することで虹状の色斑への対策がなされている。 The polyester film is superior to the TAC film in durability, but unlike the TAC film, it has birefringence. Therefore, when it is used as a polarizer protective film, there is a problem that the image quality is deteriorated due to optical distortion. That is, since the polyester film having birefringence has a predetermined optical anisotropy (retardation), when used as a polarizer protective film, a rainbow-like color spot is generated when observed from an oblique direction, and the image quality is deteriorated. . Therefore, in patent document 1, the countermeasure against a rainbow-like color spot is made | formed by controlling the in-plane retardation of a polyester film to a specific range.
WO2011-162198WO2011-162198
 しかしながら、市場においては、液晶表示装置等の画像表示装置の一層の薄型が求められており、偏光子保護フィルムの薄膜化が進んだ場合、虹状の色斑を十分に抑制するだけのリタデーションを確保することが困難であった。さらに、フィルムの厚みが薄くなることで加工に必要な機械的強度が不足するため、薄膜化の要望へ対応することが難しいこともあった。 However, in the market, there is a demand for further thinning of image display devices such as liquid crystal display devices, and when the thickness of the polarizer protective film is reduced, the retardation is sufficient to sufficiently suppress rainbow-like color spots. It was difficult to secure. Furthermore, since the mechanical strength required for processing becomes insufficient due to the thin film, it may be difficult to meet the demand for thinning the film.
 一実施形態における本発明の課題は、液晶表示装置や有機ELディスプレイ等の画像表示装置の薄型化に対応可能(即ち、十分な機械的強度を有する)であり、且つ虹状の色斑による視認性の悪化が抑制された、偏光子保護フィルム、偏光板および画像表示装置(液晶表示装置や有機ELディスプレイ等)を提供することである。 An object of the present invention in one embodiment is to cope with the thinning of an image display device such as a liquid crystal display device or an organic EL display (that is, has sufficient mechanical strength) and is visually recognized by a rainbow-like color spot. It is providing the polarizer protective film, polarizing plate, and image display apparatus (a liquid crystal display device, an organic EL display, etc.) by which deterioration of property was suppressed.
 代表的な本発明は以下の通りである。
項A1.
ポリエステルフィルムを含む偏光子保護フィルムであって、
前記ポリエステルフィルムの遅相軸方向はMD方向と略平行であり、
前記ポリエステルフィルムの面内複屈折ΔNxyが0.06以上0.20以下であり、
前記ポリエステルフィルムの進相軸方向の屈折率が1.580以上1.630以下である、
偏光子保護フィルム。
項A2.
前記ポリエステルフィルムの遅相軸方向及び進相軸方向の直角形引裂き法による引裂き強度のうち小さいほうの値が250N/mm以上である、項A1に記載の偏光子保護フィルム。
項A3.
前記ポリエステルフィルムのNZ係数が1.5以上2.5以下である、項A1又はA2に記載の偏光子保護フィルム。
項A4.
前記ポリエステルフィルムのリタデーションが1500nm以上30000nm以下である、項A1~A3のいずれかに記載の偏光子保護フィルム。
項A5.
前記ポリエステルフィルムの厚みが25~60μmである、項A1~A4のいずれかに記載の偏光子保護フィルム。
項A6.
ポリエステルフィルムの遅相軸方向とMD方向のなす角度が3度以内である、項A1~A5のいずれかに記載の偏光子保護フィルム。
項A7.
ポリエステルフィルムのMD方向の弾性率が3000MPa以上である、項A1~A6のいずれかに記載の偏光子保護フィルム。
項A8.
偏光子の少なくとも一方の面に項A1~A7のいずれかに記載の偏光子保護フィルムが積層された偏光板。
項A9.
偏光子の片面に、項A1~A7のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面にはフィルムが積層されていない偏光板。
項A10.
偏光子の片面に、項A1~A7のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面に1/4波長板が積層された偏光板。
項A11.
項A8~A10のいずれかに記載の偏光板を含む画像表示装置。
項A12.
項A8又はA9に記載の偏光板を含む液晶表示装置。
項A13.
項A8~A10のいずれかに記載の偏光板を含む有機ELディスプレイ。
項A14.
項A8~A10のいずれかに記載の偏光板を含むQLEDディスプレイ。
The representative present invention is as follows.
Term A1.
A polarizer protective film including a polyester film,
The slow axis direction of the polyester film is substantially parallel to the MD direction,
In-plane birefringence ΔNxy of the polyester film is 0.06 or more and 0.20 or less,
The refractive index in the fast axis direction of the polyester film is 1.580 or more and 1.630 or less,
Polarizer protective film.
Term A2.
The polarizer protective film according to Item A1, wherein the smaller value of the tear strength by the right-angled tearing method in the slow axis direction and the fast axis direction of the polyester film is 250 N / mm or more.
Term A3.
The polarizer protective film according to Item A1 or A2, wherein the polyester film has an NZ coefficient of 1.5 or more and 2.5 or less.
Term A4.
The polarizer protective film according to any one of Items A1 to A3, wherein the retardation of the polyester film is 1500 nm or more and 30000 nm or less.
Term A5.
The polarizer protective film according to any one of Items A1 to A4, wherein the polyester film has a thickness of 25 to 60 μm.
Term A6.
The polarizer protective film according to any one of Items A1 to A5, wherein an angle formed by the slow axis direction of the polyester film and the MD direction is within 3 degrees.
Term A7.
The polarizer protective film according to any one of Items A1 to A6, wherein the elastic modulus in the MD direction of the polyester film is 3000 MPa or more.
Term A8.
A polarizing plate comprising the polarizer protective film according to any one of Items A1 to A7 laminated on at least one surface of the polarizer.
Term A9.
A polarizing plate in which the polarizer protective film according to any one of Items A1 to A7 is laminated on one side of the polarizer and the film is not laminated on the other side of the polarizer.
Term A10.
A polarizing plate in which the polarizer protective film according to any one of Items A1 to A7 is laminated on one side of the polarizer, and a quarter-wave plate is laminated on the other side of the polarizer.
Term A11.
An image display device comprising the polarizing plate according to any one of Items A8 to A10.
Term A12.
A liquid crystal display device comprising the polarizing plate according to item A8 or A9.
Term A13.
An organic EL display comprising the polarizing plate according to any one of Items A8 to A10.
Term A14.
A QLED display comprising the polarizing plate according to any one of Items A8 to A10.
項B1.
ポリエステルフィルムを含む偏光子保護フィルムであって、
前記ポリエステルフィルムの遅相軸方向はMD方向と略平行であり、
前記ポリエステルフィルムの面内複屈折ΔNxyが0.06以上0.2以下であり、
前記ポリエステルフィルムの遅相軸方向及び進相軸方向の直角形引裂き法による引裂き強度のうち小さいほうの値が250N/mm以上である、
偏光子保護フィルム。
項B2.
前記ポリエステルフィルムのNZ係数が1.5以上2.5以下である、項B1に記載の偏光子保護フィルム。
項B3.
前記ポリエステルフィルムのリタデーションが1500nm以上30000nm以下である、項B1又はB2に記載の偏光子保護フィルム。
項B4.
前記ポリエステルフィルムの厚みが25~60μmである、項B1~B3のいずれかに記載の偏光子保護フィルム。
項B5.
ポリエステルフィルムの遅相軸方向とMD方向のなす角度が3度以内である、項B1~B4のいずれかに記載の偏光子保護フィルム。
項B6.
ポリエステルフィルムのMD方向の弾性率が3000MPa以上である、項B1~B5のいずれかに記載の偏光子保護フィルム。
項B7.
偏光子の少なくとも一方の面に項B1~B6のいずれかに記載の偏光子保護フィルムが積層された偏光板。
項B8.
偏光子の片面に、項B1~B6のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面にはフィルムが積層されていない偏光板。
項B9.
偏光子の片面に、項B1~B6のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面に1/4波長板が積層された偏光板。
項B10.
項B7~B9のいずれかに記載の偏光板を含む画像表示装置。
項B11.
項B7又はB8に記載の偏光板を含む液晶表示装置。
項B12.
項B7~B9のいずれかに記載の偏光板を含む有機ELディスプレイ。
項B13.
項B7~B9のいずれかに記載の偏光板を含むQLEDディスプレイ。
Term B1.
A polarizer protective film including a polyester film,
The slow axis direction of the polyester film is substantially parallel to the MD direction,
The in-plane birefringence ΔNxy of the polyester film is 0.06 or more and 0.2 or less,
The smaller value of the tear strength by the right-angled tearing method in the slow axis direction and the fast axis direction of the polyester film is 250 N / mm or more.
Polarizer protective film.
Term B2.
The polarizer protective film according to Item B1, wherein the polyester film has an NZ coefficient of 1.5 or more and 2.5 or less.
Term B3.
The polarizer protective film according to Item B1 or B2, wherein the retardation of the polyester film is 1500 nm or more and 30000 nm or less.
Term B4.
The polarizer protective film according to any one of Items B1 to B3, wherein the polyester film has a thickness of 25 to 60 μm.
Term B5.
The polarizer protective film according to any one of Items B1 to B4, wherein an angle formed between the slow axis direction of the polyester film and the MD direction is within 3 degrees.
Term B6.
The polarizer protective film according to any one of Items B1 to B5, wherein the elastic modulus in the MD direction of the polyester film is 3000 MPa or more.
Term B7.
A polarizing plate in which the polarizer protective film according to any one of Items B1 to B6 is laminated on at least one surface of the polarizer.
Term B8.
A polarizing plate in which the polarizer protective film according to any one of Items B1 to B6 is laminated on one side of the polarizer, and the film is not laminated on the other side of the polarizer.
Term B9.
A polarizing plate in which the polarizer protective film according to any one of Items B1 to B6 is laminated on one side of the polarizer and a quarter-wave plate is laminated on the other side of the polarizer.
Term B10.
An image display device comprising the polarizing plate according to any one of Items B7 to B9.
Term B11.
A liquid crystal display device comprising the polarizing plate according to item B7 or B8.
Term B12.
An organic EL display comprising the polarizing plate according to any one of Items B7 to B9.
Term B13.
A QLED display comprising the polarizing plate according to any one of Items B7 to B9.
項C1.
ポリエステルフィルムを含む偏光子保護フィルムであって、
前記ポリエステルフィルムの遅相軸方向はMD方向と略平行であり、
前記ポリエステルフィルムの面内複屈折ΔNxyが0.06以上0.2以下であり、
前記ポリエステルフィルムの厚みが15~60μmである、
偏光子保護フィルム。
項C2.
前記ポリエステルフィルムのNZ係数が1.5以上2.5以下である、項C1に記載の偏光子保護フィルム。
項C3.
前記ポリエステルフィルムのリタデーションが1500nm以上30000nm以下である、項C1又はC2に記載の偏光子保護フィルム。
項C4.
ポリエステルフィルムの遅相軸方向とMD方向のなす角度が3度以内である、項C1~C3のいずれかに記載の偏光子保護フィルム。
項C5.
ポリエステルフィルムのMD方向の弾性率が3000MPa以上である、項C1~C4のいずれかに記載の偏光子保護フィルム。
項C6.
偏光子の少なくとも一方の面に、項C1~C5のいずれかに記載の偏光子保護フィルムが積層された偏光板。
項C7.
偏光子の片面に、項C1~C5のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面にはフィルムが積層されていない偏光板。
項C8.
偏光子の片面に、項C1~C5のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面に1/4波長板が積層された偏光板。
項C9.
項C6~C8のいずれかに記載の偏光板を含む画像表示装置。
項C10.
項C6又はC7に記載の偏光板を含む液晶表示装置。
項C11.
項C6~C8のいずれかに記載の偏光板を含む有機ELディスプレイ。
項C12.
項C6~C8のいずれかに記載の偏光板を含むQLEDディスプレイ。
Term C1.
A polarizer protective film including a polyester film,
The slow axis direction of the polyester film is substantially parallel to the MD direction,
The in-plane birefringence ΔNxy of the polyester film is 0.06 or more and 0.2 or less,
The polyester film has a thickness of 15 to 60 μm.
Polarizer protective film.
Term C2.
The polarizer protective film according to Item C1, wherein the polyester film has an NZ coefficient of 1.5 or more and 2.5 or less.
Term C3.
The polarizer protective film according to Item C1 or C2, wherein the retardation of the polyester film is 1500 nm or more and 30000 nm or less.
Term C4.
The polarizer protective film according to any one of Items C1 to C3, wherein an angle formed between the slow axis direction of the polyester film and the MD direction is 3 degrees or less.
Term C5.
The polarizer protective film according to any one of Items C1 to C4, wherein the elastic modulus in the MD direction of the polyester film is 3000 MPa or more.
Term C6.
A polarizing plate in which the polarizer protective film according to any one of Items C1 to C5 is laminated on at least one surface of the polarizer.
Term C7.
A polarizing plate in which the polarizer protective film according to any one of Items C1 to C5 is laminated on one side of the polarizer, and the film is not laminated on the other side of the polarizer.
Term C8.
A polarizing plate in which the polarizer protective film according to any one of Items C1 to C5 is laminated on one side of the polarizer, and a quarter-wave plate is laminated on the other side of the polarizer.
Term C9.
An image display device comprising the polarizing plate according to any one of Items C6 to C8.
Term C10.
A liquid crystal display device comprising the polarizing plate according to item C6 or C7.
Term C11.
An organic EL display comprising the polarizing plate according to any one of Items C6 to C8.
Term C12.
A QLED display comprising the polarizing plate according to any one of Items C6 to C8.
 本発明の偏光子保護フィルム、偏光板及び画像表示装置(液晶表示装置や有機ELディスプレイ等)は、いずれの観察角度においても虹状の色斑(以下、虹斑と同じ)が抑制された良好な視認性を確保することができる。また、本発明の偏光板および偏光子保護フィルムは、薄膜化に適した機械強度を備えており、良好な加工特性を確保することができる。本発明によれば、フィルムを薄膜化した際にも虹状の色斑による視認性の悪化が有意に抑制された偏光子保護フィルム、偏光板および画像表示装置を提供することができる。 The polarizer protective film, polarizing plate and image display device (liquid crystal display device, organic EL display, etc.) of the present invention are excellent in that rainbow-like color spots (hereinafter the same as rainbow spots) are suppressed at any observation angle. High visibility can be secured. In addition, the polarizing plate and the polarizer protective film of the present invention have mechanical strength suitable for thinning, and can ensure good processing characteristics. According to the present invention, it is possible to provide a polarizer protective film, a polarizing plate, and an image display device in which deterioration of visibility due to rainbow-like color spots is significantly suppressed even when the film is thinned.
1.偏光子保護フィルム
 一実施形態において、本発明の偏光子保護フィルムは、ポリエステルフィルムを含む偏光子保護フィルムであって、前記ポリエステルフィルムの遅相軸方向はMD方向と略平行であり、前記ポリエステルフィルムの面内複屈折ΔNxyが0.06以上0.20以下であり、前記ポリエステルフィルムの進相軸方向の屈折率が1.580以上1.630以下である。
1. Polarizer Protective Film In one embodiment, the polarizer protective film of the present invention is a polarizer protective film including a polyester film, and the slow axis direction of the polyester film is substantially parallel to the MD direction, and the polyester film In-plane birefringence ΔNxy is 0.06 or more and 0.20 or less, and the refractive index in the fast axis direction of the polyester film is 1.580 or more and 1.630 or less.
 一実施形態において、本発明の偏光子保護フィルムは、ポリエステルフィルムを含む偏光子保護フィルムであって、前記ポリエステルフィルムの遅相軸方向はMD方向と略平行であり、前記ポリエステルフィルムの面内複屈折ΔNxyが0.06以上0.2以下であり、前記ポリエステルフィルムの遅相軸方向及び進相軸方向の直角形引裂き法による引裂き強度のうち、小さいほうの値が250N/mm以上である。 In one embodiment, the polarizer protective film of the present invention is a polarizer protective film including a polyester film, the slow axis direction of the polyester film being substantially parallel to the MD direction, Refraction ΔNxy is 0.06 or more and 0.2 or less, and the smaller value of the tear strength of the polyester film by the right-angled tearing method in the slow axis direction and the fast axis direction is 250 N / mm or more.
 一実施形態において、本発明の偏光子保護フィルムは、ポリエステルフィルムを含む偏光子保護フィルムであって、前記ポリエステルフィルムの遅相軸方向はMD方向と略平行であり、前記ポリエステルフィルムの面内複屈折ΔNxyが0.06以上0.20以下であり、前記ポリエステルフィルムの厚みが15~60μmである。この実施形態における課題は、フィルムを薄膜化した際にも虹状の色斑による視認性の悪化を有意に抑制された偏光子保護フィルムを提供し、薄型化された偏光板および画像表示装置(液晶表示装置や有機ELディスプレイ等)を提供することである。 In one embodiment, the polarizer protective film of the present invention is a polarizer protective film including a polyester film, the slow axis direction of the polyester film being substantially parallel to the MD direction, Refraction ΔNxy is 0.06 or more and 0.20 or less, and the thickness of the polyester film is 15 to 60 μm. The problem in this embodiment is to provide a polarizer protective film in which deterioration of visibility due to rainbow-like color spots is significantly suppressed even when the film is thinned, and a thin polarizing plate and an image display device ( A liquid crystal display device, an organic EL display, etc.).
 本発明の偏光子保護フィルムとして用いるポリエステルフィルムの遅相軸は、虹状の色斑を抑制する観点からMD方向(製膜時の走行方向)に略平行であることが好ましい。ここで略平行であるとは、ポリエステルフィルムの遅相軸方向とMD方向(製膜時の走行方向)とのなす角度が、好ましくは10度以内、より好ましくは7度以内、さらにより好ましくは5度以内、特に好ましくは3度以内、最も好ましくは2度以内であることを意味する。 The slow axis of the polyester film used as the polarizer protective film of the present invention is preferably substantially parallel to the MD direction (traveling direction during film formation) from the viewpoint of suppressing iridescent color spots. Here, being substantially parallel means that the angle formed by the slow axis direction of the polyester film and the MD direction (traveling direction during film formation) is preferably within 10 degrees, more preferably within 7 degrees, and even more preferably It means within 5 degrees, particularly preferably within 3 degrees, most preferably within 2 degrees.
 遅相軸の方向は、分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて求めることができる。 The direction of the slow axis can be determined using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments).
 本明細書において、MD方向は、フィルム製膜時の走行方向のことであり、縦方向と呼ぶこともある。また、TD方向とは、フィルム製膜時の幅方向のことであり、横方向と呼ぶこともある。 In the present specification, the MD direction is a traveling direction during film formation, and may be referred to as a longitudinal direction. The TD direction is the width direction during film formation, and may be referred to as the horizontal direction.
 偏光子保護フィルムとしてポリエステルフィルムを用いた偏光板を用いて画像表示装置(液晶表示装置や有機ELディスプレイ等)を工業的に生産する場合、偏光子の吸収軸とポリエステルフィルムの遅相軸の方向は、通常互いに垂直になるように配置される。これは、次のような事情による。偏光子であるポリビニルアルコールフィルムは、MD一軸延伸をして製造される。よって、偏光子として使用するポリビニルアルコールフィルムは、通常延伸方向に長いフィルムであり、MD方向に吸収軸を有する。一方、その保護フィルムであるポリエステルフィルムは、通常、多くの場合、MD延伸した後、TD延伸をして製造されるため、ポリエステルフィルムの配向主軸方向(遅相軸方向)はTD方向となる。これらのフィルムは、製造効率の観点から通常互いの長手方向が平行になるように、ロールツーロールで貼り合わせられ、偏光板が製造される。そうすると、ポリエステルフィルムの遅相軸と偏光子の吸収軸は通常垂直方向となる。 When industrially producing an image display device (liquid crystal display device, organic EL display, etc.) using a polarizing plate using a polyester film as a polarizer protective film, the direction of the absorption axis of the polarizer and the slow axis of the polyester film Are usually arranged perpendicular to each other. This is due to the following circumstances. The polyvinyl alcohol film which is a polarizer is manufactured by MD uniaxial stretching. Therefore, the polyvinyl alcohol film used as a polarizer is usually a long film in the stretching direction and has an absorption axis in the MD direction. On the other hand, since the polyester film as the protective film is usually produced by MD stretching and then TD stretching in many cases, the orientation main axis direction (slow axis direction) of the polyester film is the TD direction. From the viewpoint of production efficiency, these films are usually bonded together by roll-to-roll so that their longitudinal directions are parallel to each other, whereby a polarizing plate is produced. Then, the slow axis of the polyester film and the absorption axis of the polarizer are usually perpendicular.
 一方、本発明においては、ポリエステルフィルムの配向主軸方向(遅相軸方向)はMD方向であることが好ましい。このようなポリエステルフィルムは、ポリエステルフィルムをMD方向に強く延伸することにより得られる。このポリエステルフィルムと、MD一軸延伸して製造された偏光子を長手方向が平行となるようにロールツーロールで積層して偏光板を製造すると、偏光子の吸収軸とポリエステルフィルムの遅相軸の方向は平行となる。本発明者らは、偏光子の吸収軸とポリエステルフィルムの遅相軸が平行な状態で積層された場合のほうが、偏光子の吸収軸とポリエステルフィルムの遅相軸が垂直な状態で積層された場合よりも、虹斑抑制効果に優れることを発見した。虹斑抑制効果に優れた偏光板を、工業的に有利なロールツーロール法で効率よく製造するため、ポリエステルフィルムをMD方向に強く延伸し、MD方向と遅相軸方向が略平行な関係を有するポリエステルフィルムを使用することが好ましい。 On the other hand, in the present invention, the orientation main axis direction (slow axis direction) of the polyester film is preferably the MD direction. Such a polyester film can be obtained by strongly stretching the polyester film in the MD direction. When a polarizing plate is produced by laminating this polyester film and a polarizer produced by MD uniaxial stretching by roll-to-roll so that the longitudinal direction is parallel, the absorption axis of the polarizer and the slow axis of the polyester film The directions are parallel. In the case where the polarizer is laminated with the absorption axis of the polarizer and the slow axis of the polyester film being parallel, the polarizer is laminated with the absorption axis of the polarizer and the slow axis of the polyester film being perpendicular. It has been found that the effect of suppressing iridolysis is better than the case. In order to efficiently produce a polarizing plate excellent in the effect of suppressing rainbow spots by an industrially advantageous roll-to-roll method, the polyester film is strongly stretched in the MD direction, and the relationship between the MD direction and the slow axis direction is substantially parallel. It is preferable to use the polyester film which has.
 本発明の偏光子保護フィルムに用いるポリエステルフィルムの面内複屈折ΔNxyは、好ましくは0.06以上0.2以下、より好ましくは0.07以上0.19以下、さらに好ましくは0.08以上0.18以下である。ΔNxyが0.06未満だと斜め方向から観察した際に虹状の色斑が観察されやすくなる。また、ΔNxyが0.2より大きいフィルムでは虹状の色斑は生じなくなるが、完全な一軸性(一軸対称)に近づくため、配向方向と平行な方向の機械的強度が著しく低下する。面内複屈折ΔNxyは、遅相軸方向の屈折率(nx)と進相軸方向の屈折率(ny)の差の絶対値のことである。なお、屈折率の測定波長は589nmである。 The in-plane birefringence ΔNxy of the polyester film used for the polarizer protective film of the present invention is preferably 0.06 or more and 0.2 or less, more preferably 0.07 or more and 0.19 or less, and further preferably 0.08 or more and 0. .18 or less. When ΔNxy is less than 0.06, rainbow-like color spots are easily observed when observed from an oblique direction. Further, in the case where ΔNxy is larger than 0.2, iridescent color spots are not generated, but since it approaches perfect uniaxiality (uniaxial symmetry), the mechanical strength in the direction parallel to the orientation direction is significantly reduced. The in-plane birefringence ΔNxy is an absolute value of the difference between the refractive index (nx) in the slow axis direction and the refractive index (ny) in the fast axis direction. The measurement wavelength of the refractive index is 589 nm.
 一実施形態において、本発明の偏光子保護フィルムに用いる、遅相軸方向がMD方向と略平行な関係を有するポリエステルフィルムの進相軸方向の屈折率(ny)は、好ましくは1.58以上1.63以下、より好ましくは1.584以上1.625以下、さらに好ましくは1.588以上1.62以下である。進相軸方向の屈折率(ny)が1.58を下回ると完全な一軸性(一軸対称)に近づくため、配向方向と平行な方向の機械的強度(引裂き強度)が著しく低下する。また、進相軸方向の屈折率(ny)が1.63を上回るフィルムでは斜め方向から観察した際に虹状の色斑が観察されやすくなる。 In one embodiment, the refractive index (ny) in the fast axis direction of the polyester film having a relationship in which the slow axis direction is substantially parallel to the MD direction used in the polarizer protective film of the present invention is preferably 1.58 or more. It is 1.63 or less, More preferably, it is 1.584 or more and 1.625 or less, More preferably, it is 1.588 or more and 1.62 or less. When the refractive index (ny) in the fast axis direction is less than 1.58, it approaches perfect uniaxiality (uniaxial symmetry), so that the mechanical strength (tear strength) in the direction parallel to the orientation direction is significantly reduced. Further, when the refractive index (ny) in the fast axis direction exceeds 1.63, rainbow-like color spots are easily observed when observed from an oblique direction.
 本発明の偏光子保護フィルムに用いるポリエステルフィルムの遅相軸方向及び進相軸方向の直角形引裂き法による引裂き強度のうち小さいほうの値は、好ましくは250N/mm以上、より好ましくは280N/mm以上、さらに好ましくは300N/mm以上である。ΔNxyの値が高いフィルムでは、遅相軸方向の引裂き強度の値が、進相軸方向よりも小さくなる傾向にある。従来、フィルムの厚みが薄くなることで加工に必要な機械的強度が不足するため、薄膜化の要望へ対応することが難しいこともあったが、フィルムの遅相軸方向及び進相軸方向の直角形引裂き法による引裂き強度のうち小さいほうの値が250N/mm以上あれば、前記問題を解決することができる。250N/mm未満では容易にフィルムが裂けてしまい、製膜時、加工時の安定性が低下する。一方、引裂き強度が高ければ高いほど製膜時、加工時の安定性は増すが、二軸性(二軸対称性)が高くなり虹状の色斑が生じてしまうため、虹状の色斑が生じない範囲で上記引裂き強度を高くすることが好ましく、現実的には500N/mm以下が好ましい。
なお、引裂き強度は、直角形引裂き法(JIS K-7128-3)に従って測定を行い、フィルム厚み当たりの引裂き強度(N/mm)を求める。
The smaller value of the tear strength by the right-angled tearing method in the slow axis direction and the fast axis direction of the polyester film used for the polarizer protective film of the present invention is preferably 250 N / mm or more, more preferably 280 N / mm. As mentioned above, More preferably, it is 300 N / mm or more. In a film having a high ΔNxy value, the tear strength value in the slow axis direction tends to be smaller than in the fast axis direction. Conventionally, since the mechanical strength required for processing is insufficient due to the reduced thickness of the film, it has been difficult to meet the demand for thinning, but the slow axis direction and the fast axis direction of the film If the smaller value of the tear strength by the right-angled tearing method is 250 N / mm or more, the above problem can be solved. If it is less than 250 N / mm, the film is easily torn, and the stability at the time of film formation and processing decreases. On the other hand, the higher the tear strength, the greater the stability during film formation and processing, but the biaxiality (biaxial symmetry) increases and rainbow-like color spots occur. It is preferable to increase the tear strength within a range in which no occurrence occurs, and in practice, it is preferably 500 N / mm or less.
The tear strength is measured according to a right-angled tear method (JIS K-7128-3) to determine the tear strength (N / mm) per film thickness.
 本発明の偏光子保護フィルムに用いるポリエステルフィルムのNZ係数は、好ましくは1.5以上2.5以下、より好ましくは1.6以上2.3以下、さらに好ましくは1.7以上2.1以下である。NZ係数が小さいほど観察角度による虹状の色斑が生じにくくなる。そして、完全な一軸性(一軸対称)フィルムではNZ係数は1.0となるが、完全な一軸性(一軸対称)フィルムに近づくにつれ配向方向と平行な方向の機械的強度が低下する傾向にある。 The NZ coefficient of the polyester film used for the polarizer protective film of the present invention is preferably 1.5 or more and 2.5 or less, more preferably 1.6 or more and 2.3 or less, and further preferably 1.7 or more and 2.1 or less. It is. As the NZ coefficient is smaller, rainbow-like color spots due to the observation angle are less likely to occur. In a perfect uniaxial (uniaxial symmetry) film, the NZ coefficient is 1.0, but as it approaches the perfect uniaxial (uniaxial symmetry) film, the mechanical strength in the direction parallel to the orientation direction tends to decrease. .
 NZ係数は次のようにして求めることができる。分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いてフィルムの配向主軸方向(遅相軸方向)を求め、配向主軸方向とこれに直交する方向(進相軸方向)の二軸の屈折率(遅相軸方向の屈折率nx、進相軸方向の屈折率ny、但しnx>ny)、及び厚さ方向の屈折率(nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求める。こうして求めたnx、ny、nzを、|nx-nz|/|nx-ny|で表される式に代入して、NZ係数を求めることができる。なお、屈折率の測定波長は589nmである。 NZ coefficient can be obtained as follows. Using a molecular orientation meter (Oji Keiki Co., Ltd., MOA-6004 type molecular orientation meter), the orientation principal axis direction (slow axis direction) of the film is obtained, and the orientation principal axis direction and the direction perpendicular to this (fast axis direction) ) Of biaxial refractive index (refractive index nx in the slow axis direction, refractive index ny in the fast axis direction, nx> ny), and refractive index (nz) in the thickness direction (Abago Refractometer) Manufactured, NAR-4T, measurement wavelength 589 nm). The NZ coefficient can be obtained by substituting nx, ny, and nz obtained in this way into an expression represented by | nx−nz | / | nx−ny |. The measurement wavelength of the refractive index is 589 nm.
 虹斑をより低減する観点から、偏光子保護フィルムに用いられるポリエステルフィルムは、1500nm以上30000nm以下のリタデーションを有することが好ましい。リタデーションの下限値は2500nmが好ましく、次に好ましい下限値は3000nmである。 From the viewpoint of further reducing rainbow spots, the polyester film used for the polarizer protective film preferably has a retardation of 1500 nm or more and 30000 nm or less. The lower limit of retardation is preferably 2500 nm, and the next lower limit is preferably 3000 nm.
 一方、リタデーションの上限は30000nmである。それ以上のリタデーションを有するポリエステルフィルムを用いたとしても更なる視認性の改善効果は実質的に得られないばかりか、フィルムの厚みも相当に厚くなり、工業材料としての取り扱い性が低下するので好ましくない。一実施形態において、リタデーションの好ましい上限値は8000nm、より好ましい上限値は6000nm、更に好ましい上限値は5500nm、特に好ましい上限値は5000nmである。 On the other hand, the upper limit of retardation is 30000 nm. Even if a polyester film having a retardation of more than that is used, it is not only possible to substantially improve the visibility, but also because the film thickness becomes considerably thick and the handling property as an industrial material is reduced, it is preferable. Absent. In one embodiment, the preferable upper limit of retardation is 8000 nm, the more preferable upper limit is 6000 nm, the still more preferable upper limit is 5500 nm, and the particularly preferable upper limit is 5000 nm.
 なお、複屈折は、2軸方向の屈折率を測定して求めることもできるし、KOBRA-21ADH(王子計測機器株式会社)といった市販の自動複屈折測定装置を用いて求めることもできる。なお、屈折率の測定波長は589nmである。 The birefringence can be obtained by measuring the refractive index in the biaxial direction, or can be obtained by using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (Oji Scientific Instruments). The measurement wavelength of the refractive index is 589 nm.
 本発明の偏光子保護フィルムに用いられるポリエステルフィルムのMD方向の弾性率は、3000MPa以上であることが好ましい。近年、LCDの薄膜化に伴い、部材の薄膜化が進行している。こうした中で、液晶パネルに使用されているガラス基板の薄膜化に伴い、偏光板の収縮に起因した液晶パネルの反りの問題が顕在化してきている。偏光板の収縮は、偏光子であるPVAフィルムの収縮(主に吸収軸方向の収縮)に起因しており、偏光子の収縮を保護フィルムの剛直性によって制御することが好ましい。保護フィルムの走行方向の弾性率が3000MPa以上であれば、偏光子の収縮に対して十分な制御力が働き、液晶パネルの反りを防ぐことが可能だが、3000MPaを著しく下回ると、液晶パネルの反りが顕在化するおそれがある。MD方向の弾性率の好ましい下限値は3500MPaであり、より好ましい下限値は4000MPaであり、更に好ましい下限値は4500MPaである。 The elastic modulus in the MD direction of the polyester film used for the polarizer protective film of the present invention is preferably 3000 MPa or more. In recent years, with the thinning of LCDs, the thinning of members has progressed. Under such circumstances, with the thinning of the glass substrate used in the liquid crystal panel, the problem of warpage of the liquid crystal panel due to the contraction of the polarizing plate has become apparent. The contraction of the polarizing plate is caused by the contraction of the PVA film that is the polarizer (mainly the contraction in the absorption axis direction), and the contraction of the polarizer is preferably controlled by the rigidity of the protective film. If the elastic modulus in the running direction of the protective film is 3000 MPa or more, a sufficient control force can be exerted on the contraction of the polarizer to prevent the liquid crystal panel from warping. May become apparent. A preferable lower limit value of the elastic modulus in the MD direction is 3500 MPa, a more preferable lower limit value is 4000 MPa, and a further preferable lower limit value is 4500 MPa.
 本発明の偏光子保護フィルムに用いられるポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートを用いることができるが、他の共重合成分を含んでも構わない。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易に面内複屈折を制御することができる。特に、ポリエチレンテレフタレートは固有複屈折が大きく、比較的容易に大きな面内複屈折が得られるので、最も好適な素材である。 The polyester used in the polarizer protective film of the present invention may be polyethylene terephthalate or polyethylene naphthalate, but may contain other copolymer components. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the in-plane birefringence can be easily controlled by stretching. In particular, polyethylene terephthalate is the most suitable material because it has a large intrinsic birefringence and can easily obtain a large in-plane birefringence.
 また、ヨウ素色素などの光学機能性色素の劣化を抑制することを目的として、本発明の偏光子保護フィルムは、波長380nmの光線透過率が20%以下であることが望ましい。380nmの光線透過率は15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。前記光線透過率が20%以下であれば、光学機能性色素の紫外線による変質を抑制することができる。なお、本発明における透過率は、フィルムの平面に対して垂直方法に測定したものであり、分光光度計(例えば、日立U-3500型)を用いて測定することができる。 Also, for the purpose of suppressing deterioration of optical functional dyes such as iodine dyes, it is desirable that the polarizer protective film of the present invention has a light transmittance of 20% or less at a wavelength of 380 nm. The light transmittance at 380 nm is more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less. If the light transmittance is 20% or less, the optical functional dye can be prevented from being deteriorated by ultraviolet rays. The transmittance in the present invention is measured by a method perpendicular to the plane of the film, and can be measured using a spectrophotometer (for example, Hitachi U-3500 type).
 本発明の偏光子保護フィルムの波長380nmの透過率を20%以下にするためには、紫外線吸収剤の種類、濃度、及びフィルムの厚みを適宜調節することが望ましい。本発明で使用される紫外線吸収剤は公知の物質である。紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤が挙げられるが、透明性の観点から有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、環状イミノエステル系等、及びその組み合わせが挙げられるが本発明の規定する吸光度の範囲であれば特に限定されない。しかし、耐久性の観点からはベンゾトリアゾール系、環状イミノエステル系が特に好ましい。2種以上の紫外線吸収剤を併用した場合には、別々の波長の紫外線を同時に吸収させることができるので、より紫外線吸収効果を改善することができる。 In order to reduce the transmittance at a wavelength of 380 nm of the polarizer protective film of the present invention to 20% or less, it is desirable to appropriately adjust the type, concentration and thickness of the ultraviolet absorber. The ultraviolet absorber used in the present invention is a known substance. Examples of the ultraviolet absorber include an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Examples of the organic ultraviolet absorber include benzotriazole, benzophenone, cyclic imino ester, and combinations thereof, but are not particularly limited as long as the absorbance is within the range defined by the present invention. However, from the viewpoint of durability, benzotriazole type and cyclic imino ester type are particularly preferable. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be further improved.
 ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤としては例えば2-[2'-ヒドロキシ-5' -(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2' -ヒドロキシ-5' -(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2,2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノン、2,2',4,4'-テトラヒドロキシベンゾフェノン、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾール、2-(5-クロロ(2H)-ベンゾトリアゾール-2-イル)-4-メチル-6-(tert-ブチル)フェノール、2,2'-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノールなどが挙げられる。環状イミノエステル系紫外線吸収剤としては例えば2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オンなどが挙げられる。しかし特にこれらに限定されるものではない。 Examples of the benzophenone ultraviolet absorber, benzotriazole ultraviolet absorber and acrylonitrile ultraviolet absorber include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2 ′. -Hydroxy-5 '-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2' -hydroxy-5 '-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2,2'-dihydroxy- 4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol, 2- ( 2'-hydroxy-3'-tert-butyl-5'-methylphenyl) 5-chlorobenzotriazole, 2- (5-chloro (2H) -benzotriazol-2-yl) -4-methyl-6- (tert-butyl) phenol, 2,2′-methylenebis (4- (1,1 , 3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol, etc. Examples of cyclic imino ester UV absorbers include 2,2 ′-(1,4-phenylene). Bis (4H-3,1-benzoxazinon-4-one), 2-methyl-3,1-benzoxazin-4-one, 2-butyl-3,1-benzoxazin-4-one, 2-phenyl -3,4-benzoxazin-4-one, etc., but is not particularly limited thereto.
 また、紫外線吸収剤以外に、本発明の効果を妨げない範囲で、触媒以外の各種の添加剤を含有させることも好ましい様態である。添加剤として、例えば、無機粒子、耐熱性高分子粒子、アルカリ金属化合物、アルカリ土類金属化合物、リン化合物、帯電防止剤、耐光剤、難燃剤、熱安定剤、酸化防止剤、ゲル化防止剤、界面活性剤等が挙げられる。また、高い透明性を奏するためにはポリエステルフィルムに実質的に粒子を含有しないことも好ましい。「粒子を実質的に含有させない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、特に好ましくは検出限界以下となる含有量を意味する。 In addition to the ultraviolet absorber, it is also preferable to include various additives other than the catalyst as long as the effects of the present invention are not hindered. Examples of additives include inorganic particles, heat resistant polymer particles, alkali metal compounds, alkaline earth metal compounds, phosphorus compounds, antistatic agents, light proofing agents, flame retardants, thermal stabilizers, antioxidants, and antigelling agents. And surfactants. Moreover, in order to show high transparency, it is also preferable that a polyester film does not contain a particle | grain substantially. “Substantially free of particles” means, for example, in the case of inorganic particles, a content that is 50 ppm or less, preferably 10 ppm or less, particularly preferably the detection limit or less when inorganic elements are quantified by fluorescent X-ray analysis. means.
 本発明の偏光子保護フィルムには、写り込み防止やギラツキ抑制、キズ抑制などを目的として、種々のハードコートを表面に塗布することも好ましい様態である。 In the polarizer protective film of the present invention, it is also preferable to apply various hard coats on the surface for the purpose of preventing reflection, suppressing glare, and suppressing scratches.
 さらに、本発明において、ポリエステルフィルムには、偏光子や種々のハードコート層との接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。 Furthermore, in the present invention, the polyester film can be subjected to corona treatment, coating treatment, flame treatment, etc. in order to improve the adhesion to the polarizer and various hard coat layers.
 本発明においては、偏光子との接着性を改良のために、本発明のフィルムの少なくとも片面に、ポリエステル樹脂、ポリウレタン樹脂またはポリアクリル樹脂の少なくとも1種類を主成分とする易接着層を有することが好ましい。ここで、「主成分」とは易接着層を構成する固形成分のうち50質量%以上である成分をいう。本発明の易接着層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂の内、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に開示された水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。 In the present invention, in order to improve the adhesion to the polarizer, at least one surface of the film of the present invention has an easy-adhesion layer mainly composed of at least one of a polyester resin, a polyurethane resin or a polyacrylic resin. Is preferred. Here, the “main component” refers to a component that is 50% by mass or more of the solid components constituting the easy-adhesion layer. The coating solution used for forming the easy-adhesion layer of the present invention is preferably an aqueous coating solution containing at least one of water-soluble or water-dispersible copolymerized polyester resin, acrylic resin, and polyurethane resin. Examples of these coating solutions include water-soluble or water-dispersible co-polymers disclosed in Japanese Patent No. 3567927, Japanese Patent No. 3589232, Japanese Patent No. 3589233, Japanese Patent No. 3900191, and Japanese Patent No. 4150982. Examples thereof include a polymerized polyester resin solution, an acrylic resin solution, and a polyurethane resin solution.
 易接着層は、ポリエステルフィルム製造工程中の任意の工程において、塗布液をフィルム面の少なくとも一方に塗布した後、100~150℃で乾燥させることで得ることができる。最終的な易接着層の塗布量は、0.05~0.2g/mに管理することが好ましい。塗布量が0.05g/mを著しく下回るであると、得られる偏光子との接着性が不十分となる場合がある。一方、塗布量が0.2g/mを著しく超えると、耐ブロッキング性が低下する場合がある。ポリエステルフィルムの両面に易接着層を設ける場合は、両面の易接着層の塗布量は、同じであっても異なっていてもよく、それぞれ独立して上記範囲内で設定することができる。 The easy-adhesion layer can be obtained by applying a coating solution to at least one of the film surfaces and drying at 100 to 150 ° C. in an arbitrary step during the production process of the polyester film. The final coating amount of the easy adhesion layer is preferably controlled to 0.05 to 0.2 g / m 2 . If the coating amount is significantly less than 0.05 g / m 2 , adhesion with the resulting polarizer may be insufficient. On the other hand, if the coating amount significantly exceeds 0.2 g / m 2 , blocking resistance may be lowered. When providing an easily bonding layer on both surfaces of a polyester film, the application quantity of an easily bonding layer on both surfaces may be the same or different, and can be independently set within the above range.
 易接着層には易滑性を付与するために粒子を添加することが好ましい。微粒子の平均粒径は2μm以下の粒子を用いることが好ましい。粒子の平均粒径が2μmを著しく超えると、粒子が被覆層から脱落しやすくなる。易接着層に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。これらは、単独で易接着層に添加されてもよく、2種以上を組合せて添加することもできる。 It is preferable to add particles to the easy-adhesion layer in order to impart slipperiness. It is preferable to use particles having an average particle size of 2 μm or less. When the average particle diameter of the particles significantly exceeds 2 μm, the particles easily fall off from the coating layer. As particles to be included in the easy adhesion layer, for example, titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, Examples include inorganic particles such as calcium fluoride, and organic polymer particles such as styrene, acrylic, melamine, benzoguanamine, and silicone. These may be added alone to the easy-adhesion layer, or may be added in combination of two or more.
 また、塗布液を塗布する方法としては、公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。 Further, as a method for applying the coating solution, a known method can be used. For example, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire bar coating method, pipe doctor method, etc. can be mentioned. Or it can carry out in combination.
 なお、上記の粒子の平均粒径の測定は次方法により行う。粒子を走査型電子顕微鏡(SEM)で写真を撮り、最も小さい粒子1個の大きさが2~5mmとなるような倍率で、300~500個の粒子の最大径(最も離れた2点間の距離)を測定し、その平均値を平均粒径とする。 The average particle size of the above particles is measured by the following method. Take a picture of the particles with a scanning electron microscope (SEM) and at a magnification such that the size of one smallest particle is 2-5 mm, the maximum diameter of 300-500 particles (between the two most distant points) Distance) is measured, and the average value is taken as the average particle diameter.
 ポリエステルフィルムは、一般的なポリエステルフィルムの製造方法に従って製造することができる。例えば、ポリエステル樹脂を溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度において、縦方向及び横方向に延伸し、熱処理を施す方法が挙げられる。 The polyester film can be manufactured according to a general polyester film manufacturing method. For example, there is a method in which a polyester resin is melted, and a non-oriented polyester extruded and formed into a sheet is stretched in the longitudinal direction and the transverse direction at a temperature equal to or higher than the glass transition temperature and subjected to heat treatment.
 本発明のポリエステルフィルムは一軸延伸フィルムであっても、二軸延伸フィルムであってもかまわないが、二軸延伸フィルムを偏光子保護フィルムとして用いた場合、フィルム面の真上から観察しても虹状の色斑が見られないが、斜め方向から観察した時に虹状の色斑が観察される場合があるので注意が必要である。 The polyester film of the present invention may be a uniaxially stretched film or a biaxially stretched film, but when the biaxially stretched film is used as a polarizer protective film, it may be observed from directly above the film surface. Although rainbow-like color spots are not seen, caution is necessary because rainbow-like color spots may be observed when observed from an oblique direction.
 この現象は、二軸延伸フィルムが、走行方向、幅方向、厚さ方向で異なる屈折率を有する屈折率楕円体からなり、フィルム内部での光の透過方向によりリタデーションがゼロになる(屈折率楕円体が真円に見える)方向が存在するためである。従って、表示画面を斜め方向の特定の方向から観察すると、リタデーションがゼロになる点を生じる場合があり、その点を中心として虹状の色斑が同心円状に生じることとなる。そして、フィルム面の真上(法線方向)から虹状の色斑が見える位置までの角度をθとすると、この角度θは、フィルム面内の複屈折が大きいほど大きくなり、虹状の色斑は見え難くなる。二軸延伸フィルムでは角度θが小さくなる傾向があるため、一軸延伸フィルムのほうが虹状の色斑は見え難くなり好ましい。 This phenomenon is that a biaxially stretched film is composed of refractive index ellipsoids having different refractive indexes in the running direction, width direction, and thickness direction, and the retardation becomes zero depending on the light transmission direction inside the film (refractive index ellipse). This is because there is a direction in which the body appears to be a perfect circle. Therefore, when the display screen is observed from a specific oblique direction, a point where the retardation is zero may be generated, and a rainbow-like color spot is generated concentrically around the point. When the angle from the position directly above the film surface (normal direction) to the position where the rainbow-like color spots are visible is θ, the angle θ increases as the birefringence in the film increases, and the rainbow-like color increases. Spots are difficult to see. The biaxially stretched film tends to reduce the angle θ, and therefore the uniaxially stretched film is more preferable because rainbow-like color spots are less visible.
 しかしながら、完全な一軸性(一軸対称)フィルムでは配向方向と平行な方向の機械的強度が著しく低下するので好ましくない。本発明は、実質的に虹状の色斑を生じない範囲、または表示画面に求められる視野角範囲において虹状の色斑を生じない範囲で、二軸性(二軸対称性)を有していることが好ましい。 However, a perfect uniaxial (uniaxial symmetry) film is not preferable because the mechanical strength in the direction parallel to the orientation direction is significantly reduced. The present invention has biaxiality (biaxial symmetry) in a range that does not substantially cause rainbow-like color spots or a range that does not cause rainbow-like color spots in the viewing angle range required for the display screen. It is preferable.
 本発明のポリエステルフィルムの製膜条件は、逐次二軸延伸でも同時二軸延伸でもよいが、一般的な逐次二軸延伸では縦延伸はロール延伸となるため、フィルムにキズがつきやすい。したがって、延伸時のキズ防止の観点から、ロールを介さない同時二軸延伸のほうが好ましい。製膜条件を具体的に説明すると、縦延伸温度、横延伸温度は80~150℃が好ましく、特に好ましくは90~140℃である。縦延伸倍率は5.5~7.5倍が好ましく、より好ましくは6.0倍~7.0倍であり、特に好ましくは6.5倍~7.0倍である。また、横延伸倍率は1.5~3.0倍が好ましく、特に好ましくは1.8~2.8倍である。遅相軸の方向、ΔNxy、進相軸方向の屈折率の値、NZ係数および引裂き強度を上記範囲に制御するためには、縦延伸倍率と横延伸倍率のそれぞれの倍率を制御することが好ましい。縦横の延伸倍率の差が小さすぎるとΔNxyを高くすることが難しくなり好ましくない。また、延伸温度を低く設定することもΔNxyを高くする上では好ましい対応である。 The film forming conditions of the polyester film of the present invention may be sequential biaxial stretching or simultaneous biaxial stretching. However, in general sequential biaxial stretching, since the longitudinal stretching is roll stretching, the film is easily scratched. Therefore, from the viewpoint of preventing scratches during stretching, simultaneous biaxial stretching without using a roll is preferred. The film forming conditions will be specifically described. The longitudinal stretching temperature and the transverse stretching temperature are preferably 80 to 150 ° C., particularly preferably 90 to 140 ° C. The longitudinal draw ratio is preferably 5.5 to 7.5 times, more preferably 6.0 times to 7.0 times, and particularly preferably 6.5 times to 7.0 times. Further, the transverse draw ratio is preferably 1.5 to 3.0 times, particularly preferably 1.8 to 2.8 times. In order to control the slow axis direction, ΔNxy, the refractive index value in the fast axis direction, the NZ coefficient, and the tear strength within the above ranges, it is preferable to control the respective ratios of the longitudinal draw ratio and the transverse draw ratio. . If the difference between the vertical and horizontal draw ratios is too small, it is difficult to increase ΔNxy, which is not preferable. Also, setting the stretching temperature low is a preferable measure for increasing ΔNxy.
 進相軸方向の屈折率の値を前述の範囲とし、引裂き強度を高くするためには、完全な一軸性フィルムよりも、ΔNxyが本願で規定する範囲を満たす条件下で、適度に二軸性が付与されていることが好ましい。続く熱処理においては、処理温度は100~250℃が好ましく、特に好ましくは180~245℃である。 In order to set the refractive index value in the fast axis direction to the above range and increase the tear strength, the biaxiality should be moderately biaxial under the condition that ΔNxy satisfies the range specified in the present application rather than a complete uniaxial film. Is preferably given. In the subsequent heat treatment, the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
 前述のように、ΔNxy、NZ係数を特定範囲に制御する為には、延伸倍率や延伸温度を適宜設定することにより行なうことができる。例えば、延伸倍率が高いほど、延伸温度が低いほど高いΔNxyを得やすくなる。逆に、延伸倍率が低いほど、延伸温度が高いほど低いΔNxyを得やすくなる。また、ΔNxy、NZ係数の制御に加えて、加工に必要な物性等を勘案して最終的な製膜条件を設定することが好ましい。 As described above, in order to control the ΔNxy and NZ coefficients to a specific range, it can be performed by appropriately setting the draw ratio and the draw temperature. For example, it becomes easier to obtain higher ΔNxy as the stretching ratio is higher and the stretching temperature is lower. Conversely, the lower the draw ratio and the higher the draw temperature, the easier it is to obtain a lower ΔNxy. In addition to controlling ΔNxy and NZ coefficients, it is preferable to set final film forming conditions in consideration of physical properties necessary for processing.
 本発明の偏光子保護フィルムとして用いるポリエステルフィルムの厚みは任意であるが、15~200μmの範囲が好ましく、より好ましくは15~150μmの範囲である。15μmを下回る厚みのフィルムでは、フィルムの力学特性の低下が顕著となり、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下する傾向にある。好ましい厚みの下限は25μmであり、より好ましい下限は30μm、更に好ましい下限は35μmである。一方、偏光子保護フィルムの厚みの上限は、200μmを超えると偏光板の厚みが厚くなりすぎてしまい好ましくない。偏光子保護フィルムとしての実用性の観点からは厚みの上限は150μmが好ましく、より好ましい厚みの上限は80μmであり、更に好ましい厚みの上限は60μmであり、更に好ましい厚みの上限は55μmであり、更に好ましい厚みの上限は50μmであり、更に好ましい厚みの上限は45μmである。上記厚み範囲においてもΔNxy、NZ係数と引裂き強度を本発明の範囲に制御するために、フィルム基材として用いるポリエステルはポリエチレンタレフタレートが好適である。 The thickness of the polyester film used as the polarizer protective film of the present invention is arbitrary, but is preferably in the range of 15 to 200 μm, more preferably in the range of 15 to 150 μm. In a film having a thickness of less than 15 μm, the mechanical properties of the film are remarkably lowered, and the film tends to be torn, torn, etc., and the utility as an industrial material tends to be remarkably lowered. The lower limit of the preferred thickness is 25 μm, the more preferred lower limit is 30 μm, and the still more preferred lower limit is 35 μm. On the other hand, if the upper limit of the thickness of the polarizer protective film exceeds 200 μm, the thickness of the polarizing plate becomes too thick, which is not preferable. From the viewpoint of practicality as a polarizer protective film, the upper limit of the thickness is preferably 150 μm, the more preferable upper limit of the thickness is 80 μm, the more preferable upper limit of the thickness is 60 μm, and the further preferable upper limit of the thickness is 55 μm. The upper limit of the more preferable thickness is 50 μm, and the upper limit of the more preferable thickness is 45 μm. In the above thickness range, in order to control the ΔNxy, NZ coefficient and tear strength within the range of the present invention, the polyester used as the film substrate is preferably polyethylene terephthalate.
 また、本発明におけるポリエステルフィルムに紫外線吸収剤を配合する方法としては、公知の方法を組み合わせて採用し得るが、例えば予め混練押出機を用い、乾燥させた紫外線吸収剤とポリマー原料とをブレンドしマスターバッチを作製しておき、フィルム製膜時に所定の該マスターバッチとポリマー原料を混合する方法などによって配合することができる。 In addition, as a method of blending the ultraviolet absorber with the polyester film in the present invention, a known method can be used in combination. For example, a preliminarily kneaded extruder is used to blend the dried ultraviolet absorber and the polymer raw material. A master batch can be prepared and blended by, for example, a method of mixing the predetermined master batch and a polymer raw material during film formation.
 この時マスターバッチの紫外線吸収剤濃度は紫外線吸収剤を均一に分散させ、且つ経済的に配合するために5~30質量%の濃度にするのが好ましい。マスターバッチを作製する条件としては混練押出機を用い、押し出し温度はポリエステル原料の融点以上、290℃以下の温度で1~15分間で押し出すのが好ましい。290℃以上では紫外線吸収剤の減量が大きく、また、マスターバッチの粘度低下が大きくなる。押し出し温度1分以下では紫外線吸収剤の均一な混合が困難となる。この時、必要に応じて安定剤、色調調整剤、帯電防止剤を添加しても良い。 At this time, the concentration of the UV absorber in the master batch is preferably 5 to 30% by mass in order to uniformly disperse the UV absorber and mix it economically. As a condition for producing the master batch, it is preferable to use a kneading extruder and to extrude at a temperature not lower than the melting point of the polyester raw material and not higher than 290 ° C. for 1 to 15 minutes. Above 290 ° C, the weight loss of the UV absorber is large, and the viscosity of the master batch is greatly reduced. When the extrusion temperature is 1 minute or less, uniform mixing of the UV absorber becomes difficult. At this time, if necessary, a stabilizer, a color tone adjusting agent, and an antistatic agent may be added.
 また、本発明ではフィルムを少なくとも3層以上の多層構造とし、フィルムの中間層に紫外線吸収剤を添加することが好ましい。中間層に紫外線吸収剤を含む3層構造のフィルムは、具体的には次のように作製することができる。外層用としてポリエステルのペレット単独、中間層用として紫外線吸収剤を含有したマスターバッチとポリエステルのペレットを所定の割合で混合し、乾燥したのち、公知の溶融積層用押出機に供給し、スリット状のダイからシート状に押出し、キャスティングロール上で冷却固化せしめて未延伸フィルムを作る。すなわち、2台以上の押出機、3層のマニホールドまたは合流ブロック(例えば角型合流部を有する合流ブロック)を用いて、両外層を構成するフィルム層、中間層を構成するフィルム層を積層し、口金から3層のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを作る。なお、本発明では、光学欠点の原因となる、原料のポリエステル中に含まれている異物を除去するため、溶融押し出しの際に高精度濾過を行うことが好ましい。溶融樹脂の高精度濾過に用いる濾材の濾過粒子サイズ(初期濾過効率95%)は、15μm以下が好ましい。濾材の濾過粒子サイズが15μmを著しく超えると、20μm以上の異物の除去が不十分となりやすい。 In the present invention, it is preferable that the film has a multilayer structure of at least three layers, and an ultraviolet absorber is added to the intermediate layer of the film. A film having a three-layer structure containing an ultraviolet absorber in the intermediate layer can be specifically produced as follows. Polyester pellets alone for the outer layer, master batches containing UV absorbers for the intermediate layer and polyester pellets are mixed at a predetermined ratio, dried, and then supplied to a known melt laminating extruder, which is slit-shaped. Extruded into a sheet form from a die and cooled and solidified on a casting roll to make an unstretched film. That is, using two or more extruders, a three-layer manifold or a merging block (for example, a merging block having a square merging portion), a film layer constituting both outer layers and a film layer constituting an intermediate layer are laminated, An unstretched film is formed by extruding a three-layer sheet from the die and cooling with a casting roll. In the present invention, it is preferable to perform high-precision filtration during melt extrusion in order to remove foreign substances contained in the raw material polyester, which cause optical defects. The filter particle size (initial filtration efficiency 95%) of the filter medium used for high-precision filtration of the molten resin is preferably 15 μm or less. When the filter particle size of the filter medium significantly exceeds 15 μm, removal of foreign matters of 20 μm or more tends to be insufficient.
 2.偏光板
 偏光板は、PVAなどにヨウ素を染着させた偏光子の少なくとも一方の面に偏光子保護フィルムが積層された構成を有する。本発明の偏光板は、偏光板を構成する偏光子保護フィルムの少なくとも1つとして、上述した特定のポリエステルフィルムを有する本発明の偏光子保護フィルムを用いることが好ましい。好ましい一態様としては、偏光子の片面に前述した特定のポリエステルフィルムを有する本発明の偏光子保護フィルムが積層されており、偏光子のもう一方の面にはTACフィルムやノルボルネンフィルムやアクリルフィルム等の複屈折のない偏光子保護フィルム又は光学補償フィルムが積層されている。また、別の好ましい一態様としては、偏光子の片面に前述した特定のポリエステルフィルムを含む本発明の偏光子保護フィルムが積層されており、偏光子のもう一方の面にはフィルムが積層されていない(偏光子のもう一方の面には単体として独立した状態のフィルムが偏光子に貼り付けられていない)。なお、上記別の好ましい一態様において、偏光子の特定のポリエステルフィルムが積層された面とは反対面に塗布層(ハードコート層、防眩層、反射防止層、低反射層、耐湿層(有機物からなるものであっても、無機物からなるものであってもよい)、もしくはこれらの機能を組み合わせた層)が設けられていてもよい。
2. Polarizing plate The polarizing plate has a configuration in which a polarizer protective film is laminated on at least one surface of a polarizer in which iodine is dyed on PVA or the like. In the polarizing plate of the present invention, the polarizer protective film of the present invention having the specific polyester film described above is preferably used as at least one of the polarizer protective films constituting the polarizing plate. As a preferred embodiment, the polarizer protective film of the present invention having the above-described specific polyester film is laminated on one side of the polarizer, and a TAC film, norbornene film, acrylic film, etc. on the other side of the polarizer. A polarizer protective film or an optical compensation film having no birefringence is laminated. As another preferred embodiment, the polarizer protective film of the present invention including the specific polyester film described above is laminated on one side of the polarizer, and the film is laminated on the other side of the polarizer. No (the film on the other side of the polarizer is not attached to the polarizer as a single unit). In another preferred embodiment described above, a coating layer (a hard coat layer, an antiglare layer, an antireflection layer, a low reflection layer, a moisture resistant layer (organic matter) is provided on the surface opposite to the surface on which the specific polyester film of the polarizer is laminated. Or a layer combining these functions) may be provided.
 本発明の偏光板は、前述したように、虹斑抑制の観点、及び、液晶パネルの反りを抑制する観点から、偏光子の吸収軸とポリエステルフィルムの遅相軸が略平行な関係に積層されることが好ましい。ここで、略平行とは、若干のズレを許容することを意図している。偏光子の吸収軸とポリエステルフィルムの遅相軸とのなす角度が、好ましくは10度以内、より好ましくは7度以内、さらにより好ましくは5度以内、特に好ましくは3度以内、最も好ましくは2度以内である。 As described above, the polarizing plate of the present invention is laminated in such a manner that the absorption axis of the polarizer and the slow axis of the polyester film are substantially parallel from the viewpoint of suppressing rainbow spots and suppressing the warpage of the liquid crystal panel. It is preferable. Here, “substantially parallel” intends to allow a slight deviation. The angle formed by the absorption axis of the polarizer and the slow axis of the polyester film is preferably within 10 degrees, more preferably within 7 degrees, even more preferably within 5 degrees, particularly preferably within 3 degrees, and most preferably 2 degrees. Within degrees.
 3.画像表示装置
 画像表示装置には、液晶表示装置、有機ELディスプレイ、QLEDディスプレイ等、画像表示装置の内部に偏光板を含むものが含まれる。
3. Image display device The image display device includes a liquid crystal display device, an organic EL display, a QLED display, or the like that includes a polarizing plate inside the image display device.
 4.液晶表示装置
 一般に、液晶パネルは、バックライト光源に対向する側から画像を表示する側(視認側)に向かう順に、後面モジュール、液晶セルおよび前面モジュールから構成されている。後面モジュールおよび前面モジュールは、一般に、透明基板と、その液晶セル側表面に形成された透明導電膜と、その反対側に配置された偏光板とから構成されている。ここで、偏光板は、後面モジュールでは、バックライト光源に対向する側に配置され、前面モジュールでは、画像を表示する側(視認側)に配置されている。
4). 2. Liquid Crystal Display Device Generally, a liquid crystal panel includes a rear module, a liquid crystal cell, and a front module in order from the side facing the backlight light source toward the image display side (viewing side). The rear module and the front module are generally composed of a transparent substrate, a transparent conductive film formed on the liquid crystal cell side surface, and a polarizing plate disposed on the opposite side. Here, the polarizing plate is arranged on the side facing the backlight light source in the rear module, and is arranged on the side (viewing side) displaying the image in the front module.
 液晶表示装置は少なくとも、バックライト光源と、2つの偏光板の間に配された液晶セルとを構成部材とする。また、これら以外の他の構成、例えばカラーフィルター、レンズフィルム、拡散シート、反射防止フィルムなどを適宜有しても構わない。 The liquid crystal display device includes at least a backlight light source and a liquid crystal cell disposed between two polarizing plates. Moreover, you may have suitably other structures other than these, for example, a color filter, a lens film, a diffusion sheet, an antireflection film etc. suitably.
 特定のポリエステルフィルムを有する本発明の偏光子保護フィルムの配置は特に限定されないが、入射光側(光源側)に配される偏光板と、液晶セルと、出射光側(視認側)に配される偏光板とを配された液晶表示装置の場合、入射光側に配される偏光板の入射光側の偏光子保護フィルム及び/又は出射光側に配される偏光板の射出光側の偏光子保護フィルムが当該特定のポリエステルフィルムを有する本発明の偏光子保護フィルムであることが好ましい。特に好ましい態様は、入射光側に配される偏光板の入射光側の偏光子保護フィルムを当該特定のポリエステルフィルムとする態様である。上記以外の位置にポリエステルフィルムを配する場合は、液晶セルの偏光特性を変化させてしまう場合がある。偏光特性が必要とされる箇所には本発明の偏光子保護フィルムを用いることは好ましくない為、このような特定の位置の偏光板の保護フィルムとして使用されることが好ましい。 The arrangement of the polarizer protective film of the present invention having a specific polyester film is not particularly limited. However, the polarizer protective film is arranged on the incident light side (light source side), the liquid crystal cell, and the outgoing light side (viewing side). In the case of a liquid crystal display device provided with a polarizing plate, the polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side and / or the polarized light on the outgoing light side of the polarizing plate arranged on the outgoing light side The child protective film is preferably the polarizer protective film of the present invention having the specific polyester film. A particularly preferable embodiment is an embodiment in which the polarizer protective film on the incident light side of the polarizing plate disposed on the incident light side is the specific polyester film. When the polyester film is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since it is not preferable to use the polarizer protective film of the present invention at a place where polarization characteristics are required, it is preferably used as a protective film for a polarizing plate at such a specific position.
 バックライトの構成としては、導光板や反射板などを構成部材とするエッジライト方式であっても、直下型方式であっても構わない。 The configuration of the backlight may be an edge light method using a light guide plate or a reflection plate as a constituent member, or a direct type.
 液晶表示装置のバックライト光源としては、白色発光ダイオード(白色LED)を用いることが好ましい。本発明において、白色LEDとは、蛍光体方式、すなわち化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子のことである。蛍光体としては、イットリウム・アルミニウム・ガーネット系の黄色蛍光体やテルビウム・アルミニウム・ガーネット系の黄色蛍光体等がある。なかでも、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードは、連続的で幅広い発光スペクトルを有しているとともに発光効率にも優れる。なお、ここで発光スペクトルが連続的であるとは、少なくとも可視光の領域において光の強度がゼロとなる波長が存在しないことをいう。また、本発明の方法により消費電力の小さい白色LEDを広汎に利用可能になるので、省エネルギー化の効果も奏することが可能となる。 It is preferable to use a white light emitting diode (white LED) as the backlight source of the liquid crystal display device. In the present invention, the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor. Examples of the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor. In particular, white light-emitting diodes, which are composed of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and are also efficient in light emission. Excellent. Here, the continuous emission spectrum means that there is no wavelength at which the light intensity becomes zero at least in the visible light region. In addition, since the white LED with low power consumption can be widely used by the method of the present invention, it is possible to achieve an energy saving effect.
 また、バックライト光源としては、400nm以上495nm未満(B領域)、495nm以上600nm未満(G領域)、及び600nm以上780nm以下(R領域)の各波長領域にそれぞれ発光スペクトルのピークトップを有する白色光源も好ましい。例えば、量子ドット技術を利用した白色光源、励起光によりR(赤)、G(緑)の領域にそれぞれ発光ピークを有する蛍光体と青色LEDを用いた蛍光体方式の白色LED光源、3波長方式の白色LED光源、赤色レーザーを組み合わせた白色LED光源、その他、例えば組成式がKSiF:Mn4+であるフッ化物蛍光体(「KSF」ともいう)等と青色LEDを用いた白色LED光源等が挙げられる。これらの白色光源は、広色域対応の液晶表示装置のバックライト光源として注目されているものであり、いずれも従来から使用されてきた青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードからなる光源と比較してピークの半値幅が狭い。これらの白色光源からなるバックライト光源を使用した場合、青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードからなるバックライト光源の場合と比較して、リタデーションを有するポリエステルフィルムを偏光板の構成部材である偏光子保護フィルムを用いると虹斑は発生しやすい傾向にあるという問題があったが、本発明の偏光子保護フィルムであれば有意に虹斑を抑制することができる。 The backlight source is a white light source having a peak top of the emission spectrum in each wavelength region of 400 nm or more and less than 495 nm (B region), 495 nm or more and less than 600 nm (G region), and 600 nm or more and 780 nm or less (R region). Is also preferable. For example, a white light source using quantum dot technology, a phosphor type white LED light source using a phosphor and a blue LED each having an emission peak in the R (red) and G (green) regions by excitation light, and a three-wavelength method White LED light source, white LED light source combining red laser, and other white LED light source using blue LED and fluoride phosphor (also referred to as “KSF”) whose composition formula is K 2 SiF 6 : Mn 4+ Etc. These white light sources are attracting attention as a backlight light source for liquid crystal display devices that support a wide color gamut, and all of them use a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor that have been used in the past. Compared to a light source composed of a white light emitting diode composed of a combined light emitting element, the half width of the peak is narrow. When using a backlight light source composed of these white light sources, compared to a backlight light source composed of a white light emitting diode composed of a light emitting element combining a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor, When a polarizer protective film that is a constituent member of a polarizing plate is used as a polyester film having retardation, rainbow spots tend to occur. However, if the polarizer protective film of the present invention is used, the rainbow spots are significantly increased. Can be suppressed.
 5.有機ELディスプレイ及びQLEDディスプレイ
 有機EL素子は、当該技術分野において知られる有機EL素子を適宜選択して使用することができる。有機EL素子の使用は、広視野角、高コントラスト、及び高速応答である点で好ましい。有機EL素子は、典型的には、透明基板上に透明電極である陽極、有機発光層、及び金属電極である陰極をこの順で積層した構造を有する発光体(有機エレクトロルミネセンス発光体)である。有機ELセルは、陽極と陰極との間に電圧が印加されたときに、陽極から注入されたホール(正孔)と陰極から注入された電子とが有機発光層中で再結合することによって発光する。
5. Organic EL Display and QLED Display As the organic EL element, an organic EL element known in the technical field can be appropriately selected and used. Use of the organic EL element is preferable in terms of wide viewing angle, high contrast, and high-speed response. An organic EL element is typically a light emitter (organic electroluminescent light emitter) having a structure in which an anode as a transparent electrode, an organic light emitting layer, and a cathode as a metal electrode are laminated in this order on a transparent substrate. is there. The organic EL cell emits light by recombination of holes injected from the anode and electrons injected from the cathode in the organic light emitting layer when a voltage is applied between the anode and the cathode. To do.
 前記透明基板としては、任意の透明基板を採用し得る。例えば、透明基板は、ガラス基板、セラミックス基板、半導体基板、金属基板、及びプラスチック基板から成る群より選択され得る。具体的なプラスチック基板としては、従来から使用される透明樹脂フィルムを挙げることができる。透明基板は、必要に応じて、表面処理層が設けられていても良い。表面処理層としては、例えば、透湿防止層、ガスバリア層、ハードコート層、アンダーコート層等を挙げることができる。 Any transparent substrate can be adopted as the transparent substrate. For example, the transparent substrate can be selected from the group consisting of a glass substrate, a ceramic substrate, a semiconductor substrate, a metal substrate, and a plastic substrate. Specific examples of the plastic substrate include conventionally used transparent resin films. The transparent substrate may be provided with a surface treatment layer as necessary. Examples of the surface treatment layer include a moisture permeation prevention layer, a gas barrier layer, a hard coat layer, an undercoat layer, and the like.
 陽極及び陰極を構成する材料は、金属、酸化金属、合金、電気伝導性化合物、これらの混合物等を挙げることができる。陽極を構成するより具体的な材料としては、金、銀、クロム、ニッケル、ヨウ化銅、酸化インジウムスズ(ITO)、酸化スズ、酸化亜鉛等の導電性透明材料が挙げられる。陰極を構成するより具体的な材料としては、マグネシウム、アルミニウム、インジウム、リチウム、ナトリウム、セシウム、銀、マグネシウム-銀合金、マグネシウム-インジウム合金、及びリチウム-アルミニウム合金等が挙げられる。    Examples of the material constituting the anode and the cathode include metals, metal oxides, alloys, electrically conductive compounds, and mixtures thereof. More specific materials constituting the anode include conductive transparent materials such as gold, silver, chromium, nickel, copper iodide, indium tin oxide (ITO), tin oxide, and zinc oxide. More specific materials constituting the cathode include magnesium, aluminum, indium, lithium, sodium, cesium, silver, magnesium-silver alloy, magnesium-indium alloy, and lithium-aluminum alloy. *
 陽極及び陰極の厚みは、陽極及び陰極を構成する材料に応じて、任意に設定することができる。陽極の厚みは、例えば、10nm~200nm、好ましくは10nm~100nmの範囲から適宜設定することができる。陰極の厚みは、例えば、10nm~1000nmであり、好ましくは10nm~200nmの範囲から適宜設定することができる。 The thickness of the anode and the cathode can be arbitrarily set according to the materials constituting the anode and the cathode. The thickness of the anode can be appropriately set, for example, in the range of 10 nm to 200 nm, preferably 10 nm to 100 nm. The thickness of the cathode is, for example, 10 nm to 1000 nm, and can be appropriately set from the range of 10 nm to 200 nm.
 有機発光層は、電圧印加時に、正孔と電子の再結合の場を提供して発光させる機能を有する層である。上記有機発光層は、有機発光材料を含み、単層構造であっても、2層以上の積層構造であってもよい。積層構造の場合、それぞれの層が異なる発光色で発光してもよい。上記有機発光層の厚みは、任意であり、例えば、3nm~3μmの範囲で適宜設定することができる。 The organic light emitting layer is a layer having a function of emitting light by providing a recombination field of holes and electrons when a voltage is applied. The organic light emitting layer contains an organic light emitting material and may have a single layer structure or a laminated structure of two or more layers. In the case of a laminated structure, each layer may emit light with different emission colors. The thickness of the organic light emitting layer is arbitrary, and can be appropriately set within a range of 3 nm to 3 μm, for example.
 有機発光層に使用される有機発光材料は、任意の発光材料から適宜選択することができる。具体的には、4,4’-(2,2-ジフェニルビニル)ビフェニル等のオレフィン系発光材料;9,10-ジ(2-ナフチル)アントラセン、9,10-ビス(3,5-ジフェニルフェニル)アントラセン、9,10-ビス(9,9-ジメチルフルオレニル)アントラセン、9,10-(4-(2,2-ジフェニルビニル)フェニル)アントラセン、9,10’-ビス(2-ビフェニリル)-9,9’-ビスアントラセン、9,10、9’、10’-テトラフェニル-2,2’-ビアントリル、1,4-ビス(9-フェニル-10-アントラセン)ベンゼン等のアントラセン系発光材料;2,7,2’,7’-テトラキス(2,2-ジフェニルビニル)スピロビフルオレン等のスピロ系発光材料;4,4’-ジカルバゾルビフェニル、1,3-ジカルバゾリルベンゼン等のカルバゾール系発光材料;1,3,5-トリピレニンベンゼン等のピレン系発光材料等から成る群から適宜選択することができる。 The organic light emitting material used for the organic light emitting layer can be appropriately selected from arbitrary light emitting materials. Specifically, olefin-based light emitting materials such as 4,4 ′-(2,2-diphenylvinyl) biphenyl; 9,10-di (2-naphthyl) anthracene, 9,10-bis (3,5-diphenylphenyl) ) Anthracene, 9,10-bis (9,9-dimethylfluorenyl) anthracene, 9,10- (4- (2,2-diphenylvinyl) phenyl) anthracene, 9,10′-bis (2-biphenylyl) -9,9'-bisanthracene, 9,10,9 ', 10'-tetraphenyl-2,2'-bianthryl, 1,4-bis (9-phenyl-10-anthracene) benzene and other anthracene-based luminescent materials Spiro-based luminescent materials such as 2,7,2 ′, 7′-tetrakis (2,2-diphenylvinyl) spirobifluorene; 4,4′-dicarbazolbiphenyl, 1,3 Can be appropriately selected from the group consisting of pyrene based light emitting material such as 1,3,5-tri pin renin benzene; carbazole luminescent material such as di-carbazolyl benzene.
 有機EL素子は、上記基材上の陽極、有機発光層、及び陰極で構成される有機EL素子を外気から遮断するために、有機EL素子を覆うように形成される封止部材を備えていても良い。封止部材を備えることにより、外気中の水分及び酸素によって有機発光層の発光特性の劣化を防止することができる。 The organic EL element includes a sealing member formed so as to cover the organic EL element in order to block the organic EL element including the anode, the organic light emitting layer, and the cathode on the base material from the outside air. Also good. By providing the sealing member, it is possible to prevent deterioration of the light emitting characteristics of the organic light emitting layer due to moisture and oxygen in the outside air.
 有機EL素子は、任意の部材(例えば、正孔注入層、正孔輸送層、電子注入層、及び/又は電子輸送層)を任意の適切な位置に更に備えていても良い。 The organic EL element may further include an arbitrary member (for example, a hole injection layer, a hole transport layer, an electron injection layer, and / or an electron transport layer) at any appropriate position.
 画像表示セルとして有機ELセルを用いる場合、その視認側に偏光板を有することが好ましい。有機発光層の厚みが10nm程度と薄いために、外光が金属電極で反射して再び視認側へ出射され、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える場合がある。このような外光の鏡面反射を遮蔽するために、有機ELセルの視認側には、偏光板を設け、更に有機ELセルと前記偏光板との間に1/4波長板を設けることが好ましい。偏光板としては、前述した偏光板を用いることができ、偏光子の視認側に本発明のポリエステルフィルムからなる偏光子保護フィルムが積層されていることが好ましい。また、偏光子の有機EL素子側の保護フィルムの代わりに、1/4波長板を偏光子に積層する態様も好ましい。これらの視認側偏光板と1/4波長板との組合せにより円偏光板を構成することにより、有機ELセルの金属電極で鏡面反射した外光が、円偏光板で遮蔽されるため、画像表示装置の視認性の低下を抑制することができる。また。1/4波長板の有機EL素子側又は偏光子側に、さらに1/2波長板等を積層してもよい。好ましくは、1/4波長板の有機EL素子側に、1/2波長板等を互いの光軸に傾きを設けて積層したものであり、特開平10-68816や特開2017-97379に開示されている。 When using an organic EL cell as the image display cell, it is preferable to have a polarizing plate on the viewing side. Since the thickness of the organic light emitting layer is as thin as about 10 nm, external light is reflected by the metal electrode and is emitted again to the viewing side, and when viewed from the outside, the display surface of the organic EL display device may look like a mirror surface. is there. In order to shield such specular reflection of external light, it is preferable to provide a polarizing plate on the viewing side of the organic EL cell, and further provide a quarter wavelength plate between the organic EL cell and the polarizing plate. . As a polarizing plate, the polarizing plate mentioned above can be used, and it is preferable that the polarizer protective film which consists of a polyester film of this invention is laminated | stacked on the visual recognition side of a polarizer. Moreover, the aspect which laminates | stacks a quarter wavelength plate on a polarizer instead of the protective film by the side of the organic EL element of a polarizer is also preferable. By constructing a circularly polarizing plate by combining these viewing side polarizing plates and quarter-wave plates, external light reflected by the metal electrode of the organic EL cell is shielded by the circularly polarizing plate. A reduction in the visibility of the device can be suppressed. Also. A half-wave plate or the like may be further laminated on the organic EL element side or the polarizer side of the quarter-wave plate. Preferably, a half-wave plate or the like is laminated on the organic EL element side of the quarter-wave plate with an inclination to each other's optical axis, and disclosed in JP-A-10-68816 and JP-A-2017-97379. Has been.
 また、QLEDディスプレイは、電気を加えたとき量子ドットが自ら発光することを利用している点で有機ELと類似しており、次世代ディスプレイとして注目されているものである。 Also, the QLED display is similar to the organic EL in that it uses the fact that the quantum dots themselves emit light when electricity is applied, and is attracting attention as a next-generation display.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に含まれる。なお、以下の実施例における物性の評価方法は以下の通りである。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and is implemented with appropriate modifications within a range that can be adapted to the gist of the present invention. These are all included in the technical scope of the present invention. In addition, the evaluation method of the physical property in the following examples is as follows.
 (1)フィルムの遅相軸方向の評価
 フィルムの遅相軸方向の評価は、分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)で測定した。
(1) Evaluation of slow axis direction of film The evaluation of the slow axis direction of the film was measured with a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments).
 (2)ΔNxy及びリタデーション(Re)
 リタデーションとは、フィルム上の直交する二軸の屈折率の異方性(△Nxy=|nx-ny|)とフィルム厚みd(nm)との積(△Nxy×d)で定義されるパラメーターであり、光学的等方性、異方性を示す尺度である。二軸の屈折率の異方性(△Nxy)は、以下の方法により求めた。分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が測定用サンプル長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:nx,面内で遅相軸方向と直交する方向の屈折率(即ち進相軸方向の屈折率):ny)、及び厚さ方向の屈折率(nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求め、前記二軸の屈折率差の絶対値(|nx-ny|)を屈折率の異方性(△Nxy)とした。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。
(2) ΔNxy and retardation (Re)
Retardation is a parameter defined by the product (ΔNxy × d) of the biaxial refractive index anisotropy (ΔNxy = | nx−ny |) on the film and the film thickness d (nm). Yes, it is a scale showing optical isotropy and anisotropy. The biaxial refractive index anisotropy (ΔNxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter, manufactured by Oji Scientific Instruments Co., Ltd.), determine the slow axis direction of the film, 4 cm so that the slow axis direction is parallel to the long side of the measurement sample. A rectangle of × 2 cm was cut out and used as a measurement sample. About this sample, the biaxial refractive index orthogonal (refractive index in the slow axis direction: nx, the refractive index in the direction perpendicular to the slow axis direction in the plane (that is, the refractive index in the fast axis direction): ny), The refractive index (nz) in the thickness direction is obtained by an Abbe refractometer (Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm), and the absolute value (| nx−ny |) of the biaxial refractive index difference is refracted. Anisotropy of rate (ΔNxy). The thickness d (nm) of the film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Retardation (Re) was determined from the product (ΔNxy × d) of refractive index anisotropy (ΔNxy) and film thickness d (nm).
 (3)NZ係数
 (2)でアッベ屈折率計によって測定したnx、ny、nzの値を|nx-nz|/|nx-ny|に代入してNZ係数を求めた。
(3) NZ coefficient The values of nx, ny, and nz measured by the Abbe refractometer in (2) were substituted for | nx-nz | / | nx-ny | to obtain the NZ coefficient.
 (4)弾性率
 ポリエステルフィルムの弾性率は、25℃50%RHの環境で168時間静置後に、JIS-K7244(DMS)にしたがって、セイコーインスツルメンツ社製の動的粘弾性測定装置(DMS6100)を用いて評価を行った。引っ張りモード、駆動周波数1Hz、チャック間距離5mm、昇温速度2℃/minの条件で25℃~120℃の温度依存性を測定し、30℃~100℃の貯蔵弾性率の平均を弾性率とした。測定は、MD方向について実施した。
(4) Elastic modulus The elastic modulus of the polyester film was measured by using a dynamic viscoelasticity measuring device (DMS6100) manufactured by Seiko Instruments Inc. according to JIS-K7244 (DMS) after standing for 168 hours in an environment of 25 ° C. and 50% RH. Evaluation was performed. The temperature dependence of 25 ° C to 120 ° C was measured under the conditions of tensile mode, driving frequency 1 Hz, distance between chucks 5 mm, and heating rate 2 ° C / min. The average storage elastic modulus at 30 ° C to 100 ° C was taken as the elastic modulus. did. The measurement was performed in the MD direction.
 (5-1)虹斑観察(液晶表示装置)
 MD方向に一軸延伸して製造されたヨウ素とポリビニルアルコールフィルムからなる偏光子のロールと、後述する偏光子保護フィルム1~9のPETフィルムロールを、互いにMD方向が平行になるようにロールツーロールで貼り合せた。また、前記偏光子のもう一方の面に、TACフィルムのロール(富士フイルム(株)社製、厚み40μm)を、同様にロールツーロールで貼り合せ、PETフィルム/偏光子/TACフィルムからなる偏光板を作成した。得られた偏光板を、青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色LEDを光源(日亜化学、NSPW500CS)とする液晶表示装置の入射光側、出射光側にそれぞれ、入射光側の偏光板はポリエステルフィルムが光源側になるように、出射光側の偏光板はポリエステルフィルムが視認側になるように設置した。液晶表示装置の偏光板の正面、及び斜め方向から目視観察し、虹斑の発生有無について、以下のように判定した。
(5-1) Iris observation (liquid crystal display)
Roll-to-roll of a polarizer roll made of iodine and polyvinyl alcohol film produced by uniaxial stretching in the MD direction and a PET film roll of polarizer protective films 1 to 9 described later so that the MD directions are parallel to each other We pasted together. Further, a TAC film roll (manufactured by FUJIFILM Co., Ltd., thickness 40 μm) is similarly bonded to the other surface of the polarizer by roll-to-roll, and polarized light comprising PET film / polarizer / TAC film. A board was created. The obtained polarizing plate is used as a light source (Nichia Chemical Co., NSPW500CS), a light emitting element combining a blue light emitting diode and a yttrium / aluminum / garnet yellow phosphor. The polarizing plate on the incident light side was installed so that the polyester film was on the light source side, and the polarizing plate on the outgoing light side was installed on the viewing side so that the polyester film was on the viewing side. Visual observation was performed from the front side and the oblique direction of the polarizing plate of the liquid crystal display device, and the presence or absence of the occurrence of iridescence was determined as follows.
○ : いずれの方向からも観察しても虹斑は観察されない。
△ : 斜め方向から観察した時に、角度によっては薄い虹斑が観察できる。
× : 斜め方向から観察した時に、明確に虹斑が観察できる。
○: No iridium is observed from any direction.
Δ: When observed from an oblique direction, a thin rainbow spot can be observed depending on the angle.
X: When observing from an oblique direction, rainbow spots can be clearly observed.
 (5-2)虹斑観察(有機ELディスプレイ)
 MD方向に一軸延伸して製造されたヨウ素とポリビニルアルコールフィルムからなる偏光子のロールと、後述する偏光子保護フィルム1~9のPETフィルムロールを、互いにMD方向が平行になるようにロールツーロールで貼り合せた。また、前記偏光子のもう一方の面に、1/4波長板のロールを、同様にロールツーロールで貼り合せ、PETフィルム/偏光子/(1/4波長板)からなる偏光板を作成した。市販の有機ELディスプレイ(LG社製有機ELテレビ C6P 55インチ)から、円偏光板(有機EL素子より視認側に配置された円偏光板)を除去し、代わりに、上述して得られた偏光板をPETフィルムが視認側に配置されるよう、有機ELディスプレイ内に配置した。有機ELでディスプレイの正面、及び斜め方向から目視観察し、虹斑の発生有無について、以下のように判定した。
(5-2) Iridescent observation (organic EL display)
Roll-to-roll of a polarizer roll made of iodine and polyvinyl alcohol film produced by uniaxial stretching in the MD direction and a PET film roll of polarizer protective films 1 to 9 described later so that the MD directions are parallel to each other We pasted together. In addition, a quarter wave plate roll was similarly bonded to the other surface of the polarizer using a roll-to-roll process to create a polarizing plate made of PET film / polarizer / (1/4 wave plate). . The circularly polarizing plate (the circularly polarizing plate disposed on the viewing side from the organic EL element) was removed from the commercially available organic EL display (LG EL organic EL television C6P 55 inch), and the polarized light obtained above was used instead. The plate was placed in an organic EL display so that the PET film was placed on the viewing side. The organic EL was visually observed from the front and oblique directions of the display, and the presence or absence of rainbow spots was determined as follows.
○ : いずれの方向からも観察しても虹斑は観察されない。
△ : 斜め方向から観察した時に、角度によっては薄い虹斑が観察できる。
× : 斜め方向から観察した時に、明確に虹斑が観察できる。
○: No iridium is observed from any direction.
Δ: When observed from an oblique direction, a thin rainbow spot can be observed depending on the angle.
X: When observing from an oblique direction, rainbow spots can be clearly observed.
 (6)液晶パネルの反り評価
 MD方向に一軸延伸して製造されたヨウ素とポリビニルアルコールフィルムからなる偏光子のロールと、後述する偏光子保護フィルムのPETフィルムロールを、互いにMD方向が平行になるようにロールツーロールで貼り合せた。また、前記偏光子のもう一方の面に、TACフィルムのロール(富士フイルム(株)社製、厚み40μm)を、同様にロールツーロールで貼り合せ、PETフィルム/偏光子/TACフィルムからなる偏光板を作成した。次に、幅125mm、長さ220mm、厚み0.4mmのガラス板に、同じサイズの上記偏光板をガラス板の両面にクロスニコルの関係(一方の偏光板は吸収軸が幅方向と平行、もう一方の偏光板は吸収軸が長さ方向と平行)になるように、PSAを用いて貼り合せた。このとき、上下の偏光板は収縮力が同じ偏光子を用いた。また、本発明の偏光子保護フィルムは、外側に配置されるようにして貼り合せている。次に、100℃に設定したギアオーブンを用いて30分間の熱処理を行い、その後、室温25℃に設定された環境で10分間冷却した後に、4隅の高さをメジャーで計測し、最大値を読み取った。また、測定値が5mm以下を良好な範囲とした。
(6) Warpage Evaluation of Liquid Crystal Panel A polarizer roll made of iodine and a polyvinyl alcohol film manufactured by uniaxial stretching in the MD direction and a PET film roll of a polarizer protective film described later are parallel to each other in the MD direction. As shown in FIG. Further, a TAC film roll (manufactured by FUJIFILM Co., Ltd., thickness 40 μm) is similarly bonded to the other surface of the polarizer by roll-to-roll, and polarized light comprising PET film / polarizer / TAC film. A board was created. Next, a glass plate having a width of 125 mm, a length of 220 mm, and a thickness of 0.4 mm, and the polarizing plate having the same size as the crossed Nicols on both sides of the glass plate (one polarizing plate has an absorption axis parallel to the width direction, One polarizing plate was bonded using PSA so that the absorption axis was parallel to the length direction. At this time, polarizers having the same contraction force were used for the upper and lower polarizing plates. Moreover, the polarizer protective film of this invention is bonded together so that it may be arrange | positioned on the outer side. Next, heat treatment is performed for 30 minutes using a gear oven set at 100 ° C., and after cooling for 10 minutes in an environment set at a room temperature of 25 ° C., the heights of the four corners are measured with a measure to obtain the maximum value. I read. Moreover, the measured value made 5 mm or less into the favorable range.
 (7)引裂き強度
 島津製作所製オートグラフ(AG-X plus)を用いて、直角形引裂き法(JIS K-7128-3)に従い、各フィルムについてフィルム厚み当たりの引裂き強度(N/mm)を測定した。フィルムの配向主軸(遅相軸)方向に対して平行と垂直の2方向(すなわち遅相軸方向、進相軸方向の2方向)について引裂き強度を測定し、小さいほうの数値を引裂き強度として表1に記載した。なお、配向主軸方向(遅相軸方向)の測定は分子配向計(王子計測器株式会社製、MOA-6004型分子配向計)で測定した。
(7) Tear strength Using a Shimadzu autograph (AG-X plus), the tear strength (N / mm) per film thickness was measured for each film according to the right-angled tear method (JIS K-7128-3). did. The tear strength is measured in two directions parallel to and perpendicular to the orientation direction (slow axis) of the film (ie, the slow axis direction and the fast axis direction), and the smaller value is expressed as the tear strength. 1. In addition, the measurement in the orientation main axis direction (slow axis direction) was performed with a molecular orientation meter (manufactured by Oji Scientific Instruments, MOA-6004 type molecular orientation meter).
 (8)製膜性
 製膜開始1時間後をスタートとし、そこから1時間の破断回数を比較し、製膜性について以下のように判定した。
(8) Film-forming property Starting 1 hour after the start of film-forming, the number of breaks for 1 hour was compared, and the film-forming property was determined as follows.
○ : 破断回数が3回未満
△ : 破断回数が3回以上6回未満
× : 破断回数が6回以上
○: The number of breaks is less than 3 △: The number of breaks is 3 or more and less than 6 x: The number of breaks is 6 or more
 (9)キズの評価方法
 製膜開始1時間後のフィルムを欠点検査装置で検査し、レーザー顕微鏡(オリンパス株式会社製、OLS4100)で測定したキズ部分の最大高さSzが0.6μm以上のキズの個数について以下のように判定した。
(9) Scratch Evaluation Method Scratches with a maximum height Sz of 0.6 μm or more measured by a laser microscope (OLS4100, manufactured by Olympus Corporation) after inspecting the film one hour after the start of film formation with a defect inspection apparatus The number of these was determined as follows.
○ : キズの個数が3個/m未満
△ : キズの個数が3個/m以上6個/m未満
× : キズの個数が6個/m以上
○: The number of scratches is less than 3 / m 2 Δ: The number of scratches is 3 / m 2 or more and less than 6 / m 2 ×: The number of scratches is 6 / m 2 or more
 (製造例1-ポリエステルA)
 エステル化反応缶を昇温し200℃に到達した時点で、テレフタル酸を86.4質量部およびエチレングリコール64.6質量部を仕込み、撹拌しながら触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を仕込んだ。ついで、加圧昇温を行いゲージ圧0.34MPa、240℃の条件で加圧エステル化反応を行った後、エステル化反応缶を常圧に戻し、リン酸0.014質量部を添加した。さらに、15分かけて260℃に昇温し、リン酸トリメチル0.012質量部を添加した。次いで15分後に、高圧分散機で分散処理を行い、15分後、得られたエステル化反応生成物を重縮合反応缶に移送し、280℃で減圧下重縮合反応を行った。
(Production Example 1-Polyester A)
When the temperature of the esterification reactor was raised to 200 ° C., 86.4 parts by mass of terephthalic acid and 64.6 parts by mass of ethylene glycol were charged and 0.017 parts by mass of antimony trioxide as a catalyst while stirring. 0.064 parts by mass of magnesium acetate tetrahydrate and 0.16 parts by mass of triethylamine were charged. Subsequently, the pressure was raised and the esterification reaction was performed under the conditions of a gauge pressure of 0.34 MPa and 240 ° C., and then the esterification reaction vessel was returned to normal pressure, and 0.014 parts by mass of phosphoric acid was added. Furthermore, it heated up to 260 degreeC over 15 minutes, and 0.012 mass part of trimethyl phosphate was added. Then, after 15 minutes, dispersion treatment was performed with a high-pressure disperser, and after 15 minutes, the obtained esterification reaction product was transferred to a polycondensation reaction can and subjected to polycondensation reaction at 280 ° C. under reduced pressure.
 重縮合反応終了後、95%カット径が5μmのナスロン製フィルターで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った冷却水を用いて冷却、固化させ、ペレット状にカットした。得られたポリエチレンテレフタレート樹脂(A)の固有粘度は0.62dl/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。(以後、PET(A)と略す。) After completion of the polycondensation reaction, it is filtered through a NASRON filter with a 95% cut diameter of 5 μm, extruded into a strand from a nozzle, and cooled and solidified using cooling water that has been filtered (pore diameter: 1 μm or less) in advance. And cut into pellets. The obtained polyethylene terephthalate resin (A) had an intrinsic viscosity of 0.62 dl / g and contained substantially no inert particles and internally precipitated particles. (Hereafter, abbreviated as PET (A).)
 (製造例2-ポリエステルB)
 乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)10質量部、粒子を含有しないPET(A)(固有粘度が0.62dl/g)90質量部を混合し、混練押出機を用い、紫外線吸収剤含有するポリエチレンテレフタレート樹脂(B)を得た。(以後、PET(B)と略す。)
(Production Example 2-Polyester B)
10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), PET (A) containing no particles (inherent viscosity Was 0.62 dl / g) and 90 parts by mass were mixed, and a polyethylene terephthalate resin (B) containing an ultraviolet absorber was obtained using a kneading extruder (hereinafter abbreviated as PET (B)).
 (製造例3-接着性改質塗布液の調整)
 常法によりエステル交換反応および重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%および5-スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%およびネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質塗布液を得た。
(Production Example 3-Adjustment of Adhesive Modification Coating Solution)
A transesterification reaction and a polycondensation reaction were carried out by a conventional method, and as a dicarboxylic acid component (based on the total dicarboxylic acid component) 46 mol% terephthalic acid, 46 mol% isophthalic acid and 8 mol% sodium 5-sulfonatoisophthalate, A water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as a glycol component (based on the entire glycol component) was prepared. Next, 51.4 parts by mass of water, 38 parts by mass of isopropyl alcohol, 5 parts by mass of n-butyl cellosolve, 0.06 parts by mass of a nonionic surfactant were mixed and then heated and stirred. After adding 5 parts by mass of a water-dispersible sulfonic acid metal base-containing copolymer polyester resin and continuing to stir until the resin is no longer agglomerated, the resin water dispersion is cooled to room temperature to obtain a solid content concentration of 5.0% by mass. A uniform water-dispersible copolymerized polyester resin liquid was obtained. Furthermore, after dispersing 3 parts by mass of aggregated silica particles (Silicia 310, manufactured by Fuji Silysia Co., Ltd.) in 50 parts by mass of water, 99.46 parts by mass of the water-dispersible copolyester resin solution was mixed with 99.46 parts by mass of the silicia 310. 0.54 parts by mass of the aqueous dispersion was added, and 20 parts by mass of water was added with stirring to obtain an adhesive modified coating solution.
 (偏光子保護フィルム1)
 基材フィルム中間層用原料として粒子を含有しないPET(A)樹脂ペレット90質量部と紫外線吸収剤を含有したPET(B)樹脂ペレット10質量部を135℃で6時間減圧乾燥(1Torr)した後、押出機2(中間層II層用)に供給し、また、PET(A)を常法により乾燥して押出機1(外層I層および外層III用)にそれぞれ供給し、285℃で溶解した。この2種のポリマーを、それぞれステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、2種3層合流ブロックにて、積層し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化し、未延伸フィルムを作った。この時、I層、II層、III層の厚さの比は10:80:10となるように各押し出し機の吐出量を調整した。
(Polarizer protective film 1)
After drying 90 parts by mass of PET (A) resin pellets containing no particles as a raw material for the base film intermediate layer and 10 parts by mass of PET (B) resin pellets containing an ultraviolet absorber at 135 ° C. for 6 hours under reduced pressure (1 Torr) , And supplied to the extruder 2 (for the intermediate layer II layer). Also, the PET (A) was dried by an ordinary method and supplied to the extruder 1 (for the outer layer I layer and the outer layer III), and dissolved at 285 ° C. . After filtering these two kinds of polymers with a filter medium made of a sintered stainless steel (nominal filtration accuracy of 10 μm particles 95% cut), laminating them in a two-kind / three-layer confluence block, and extruding them into a sheet form from a die, The film was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method, and then cooled and solidified to produce an unstretched film. At this time, the discharge amount of each extruder was adjusted so that the thickness ratio of the I layer, the II layer, and the III layer was 10:80:10.
 次いで、リバースロール法によりこの未延伸PETフィルムの両面に乾燥後の塗布量が0.08g/mになるように、上記接着性改質塗布液を塗布した後、80℃で20秒間乾燥した。 Next, after applying the adhesive property-modifying coating solution on the both sides of this unstretched PET film by a reverse roll method so that the coating amount after drying was 0.08 g / m 2 , the coating was dried at 80 ° C. for 20 seconds. .
 この塗布層を形成した未延伸フィルムを同時二軸延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、走行方向に6.5倍、幅方向に2.2倍延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、フィルム厚み約40μmの二軸配向PETフィルムを得た。これをロール状に巻き取りフィルムロール(MD方向のフィルム長さが500mのフィルムロール)とした。得られたフィルムの遅相軸は走行方向から3°以内であった。これを偏光子保護フィルム1とした。 The unstretched film on which this coating layer has been formed is guided to a simultaneous biaxial stretching machine, and the end of the film is held by a clip, guided to a hot air zone at a temperature of 125 ° C., 6.5 times in the running direction and 2 in the width direction. .2 stretched. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds to obtain a biaxially oriented PET film having a film thickness of about 40 μm. This was wound into a roll and used as a film roll (film roll having a film length in the MD direction of 500 m). The slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 1.
 (偏光子保護フィルム2)
 未延伸フィルムの厚みを変更し、走行方向に6.0倍、幅方向に2.2倍延伸した以外は偏光子保護フィルム1と同様にして、フィルム厚み約40μmの二軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロール(MD方向の長さが500mのフィルムロール)とした。得られたフィルムの遅相軸は走行方向から3°以内であった。これを偏光子保護フィルム2とした。
(Polarizer protective film 2)
A biaxially oriented PET film having a film thickness of about 40 μm is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and stretched 6.0 times in the running direction and 2.2 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 2.
 (偏光子保護フィルム3)
 偏光子保護フィルム1と同様に未延伸フィルムを作り、逐次二軸延伸機にて、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に6.5倍延伸した後、温度125℃の熱風ゾーンに導き、幅方向に2.2倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、フィルム厚み約40μmの二軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロール(MD方向の長さが500mのフィルムロール)とした。得られたフィルムの遅相軸は走行方向から5°以内であった。これを偏光子保護フィルム3とした。
(Polarizer protective film 3)
An unstretched film is made in the same manner as the polarizer protective film 1, and is heated to 105 ° C. using a heated roll group and an infrared heater in a sequential biaxial stretching machine, and then in a traveling direction with a roll group having a difference in peripheral speed. Then, the film was drawn into a hot air zone having a temperature of 125 ° C. and stretched 2.2 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds to obtain a biaxially oriented PET film having a film thickness of about 40 μm. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 5 ° from the running direction. This was designated as a polarizer protective film 3.
 (偏光子保護フィルム4)
 未延伸フィルムの厚みを変更し、走行方向に1.0倍、幅方向に4.0倍延伸した以外は偏光子保護フィルム1と同様にして、フィルム厚み約40μmの一軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロールとした。得られたフィルムの遅相軸は幅方向から4°以内であった。これを偏光子保護フィルム4とした。偏光子保護フィルム4は、遅相軸が幅方向であるため、斜め方向から観察したときに角度によっては薄い虹状の色斑が観察された。また、引裂き強度が低く容易に裂けてしまった。例えば、偏光子保護フィルム4を偏光子と貼り合せてロールツーロールで偏光板を製造したときは、他のフィルムよりも、幅方向に割れることが多かった。
(Polarizer protective film 4)
A uniaxially oriented PET film having a film thickness of about 40 μm was obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film was changed and the film was stretched 1.0 times in the running direction and 4.0 times in the width direction. . This was wound up into a roll to obtain a film roll. The slow axis of the obtained film was within 4 ° from the width direction. This was designated as a polarizer protective film 4. Since the slow axis of the polarizer protective film 4 was the width direction, a thin rainbow-like color spot was observed depending on the angle when observed from an oblique direction. In addition, the tear strength was low and it was easily torn. For example, when the polarizer protective film 4 was bonded to the polarizer and a polarizing plate was produced by roll-to-roll, it was often cracked in the width direction as compared with other films.
 (偏光子保護フィルム5)
 未延伸フィルムの厚みを変更し、加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に4.0倍延伸した後、温度125℃の熱風ゾーンに導き、幅方向に1.0倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、フィルム厚み約40μmの一軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロールとした。得られたフィルムの遅相軸は走行方向から8°以内であった。これを偏光子保護フィルム5とした。偏光子保護フィルム5は虹状の色斑は観察されなかったが、引裂き強度が低く容易に裂けてしまった。
(Polarizer protective film 5)
The thickness of the unstretched film was changed, heated to 105 ° C using a heated roll group and an infrared heater, and then stretched 4.0 times in the running direction with a roll group having a difference in peripheral speed, and then the temperature was 125 ° C. It led to the hot air zone and extended | stretched 1.0 time in the width direction. Next, the film was processed at a temperature of 225 ° C. for 30 seconds while maintaining the width stretched in the width direction, to obtain a uniaxially oriented PET film having a film thickness of about 40 μm. This was wound up into a roll to obtain a film roll. The slow axis of the obtained film was within 8 ° from the running direction. This was designated as a polarizer protective film 5. In the polarizer protective film 5, no rainbow-like color spots were observed, but the tear strength was low and the film was easily torn.
 (偏光子保護フィルム6)
 未延伸フィルムの厚みを変更し、走行方向に4.5倍、幅方向に2.4倍延伸した以外は偏光子保護フィルム1と同様にして、フィルム厚み約40μmの二軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロール(MD方向の長さが500mのフィルムロール)とした。得られたフィルムの遅相軸は走行方向から8°以内であった。得られたフィルムはΔNxyが低いため、斜め方向から観察したときに虹状の色斑が観察された。
(Polarizer protective film 6)
A biaxially oriented PET film having a film thickness of about 40 μm is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and stretched 4.5 times in the running direction and 2.4 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 8 ° from the running direction. Since the obtained film had a low ΔNxy, rainbow-like color spots were observed when observed from an oblique direction.
 (偏光子保護フィルム7)
 未延伸フィルムの厚みを変更し、逐次二軸延伸機にて加熱されたロール群及び赤外線ヒーターを用いて105℃に加熱し、その後周速差のあるロール群で走行方向に2.2倍延伸した後、温度125℃の熱風ゾーンに導き、幅方向に5.5倍に延伸した。次に、幅方向に延伸された幅を保ったまま、温度225℃、30秒間で処理し、フィルム厚み約40μmの二軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロール(MD方向の長さが500mのフィルムロール)とした。得られたフィルムの遅相軸は幅方向から6°以内であった。得られたフィルムの遅相軸方向は幅方向であるため、斜め方向から観察したときに虹状の色斑が観察された。
(Polarizer protective film 7)
Change the thickness of the unstretched film, heat to 105 ° C using a group of rolls heated sequentially by a biaxial stretching machine and an infrared heater, and then stretch 2.2 times in the running direction with a group of rolls with a difference in peripheral speed Then, it was led to a hot air zone having a temperature of 125 ° C. and stretched 5.5 times in the width direction. Next, while maintaining the width stretched in the width direction, the film was treated at a temperature of 225 ° C. for 30 seconds to obtain a biaxially oriented PET film having a film thickness of about 40 μm. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 6 ° from the width direction. Since the slow axis direction of the obtained film was the width direction, iridescent color spots were observed when observed from an oblique direction.
 (偏光子保護フィルム8)
 未延伸フィルムの厚みを変更し、走行方向に6.0倍、幅方向に1.5倍延伸した以外は偏光子保護フィルム1と同様にして、フィルム厚み約40μmの二軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロール(MD方向の長さが500mのフィルムロール)とした。得られたフィルムの遅相軸は走行方向から3°以内であった。これを偏光子保護フィルム8とした。
(Polarizer protective film 8)
A biaxially oriented PET film having a film thickness of about 40 μm is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and the film is stretched 6.0 times in the running direction and 1.5 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 8.
 (偏光子保護フィルム9)
 未延伸フィルムの厚みを変更し、走行方向に6.5倍、幅方向に2.7倍延伸した以外は偏光子保護フィルム1と同様にして、フィルム厚み約40μmの二軸配向PETフィルムを得た。これをロール状に巻き取り、フィルムロール(MD方向の長さが500mのフィルムロール)とした。得られたフィルムの遅相軸は走行方向から3°以内であった。これを偏光子保護フィルム9とした。
(Polarizer protective film 9)
A biaxially oriented PET film having a film thickness of about 40 μm is obtained in the same manner as the polarizer protective film 1 except that the thickness of the unstretched film is changed and stretched 6.5 times in the running direction and 2.7 times in the width direction. It was. This was wound up into a roll to obtain a film roll (film roll having a length in the MD direction of 500 m). The slow axis of the obtained film was within 3 ° from the running direction. This was designated as a polarizer protective film 9.
 偏光子保護フィルム1~9について虹斑観察及び引裂き強度等を測定した結果を以下の表1に示す。 Table 1 below shows the results of measurement of rainbow spot observation and tear strength of the polarizer protective films 1 to 9.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、偏光子保護フィルム1~3、5、8、9のフィルムを用いて虹斑観察を行ったところ、正面、斜め方向のいずれから観察した場合も虹斑は観察されなかった。一方、偏光子保護フィルム4については、斜めから観察した場合に部分的に薄い虹斑が観察された。また、偏光子保護フィルム5は、虹斑は観察されなかったものの引裂き強度が低く製膜が不安定であった。また、偏光子保護フィルム6及び7は、斜めから観察した際に明らかな虹斑が観られた。 また、前述の(5-1)虹斑観察の項目において、偏光子にTACフィルムは積層せずにPETフィルムだけ積層させたPETフィルム/偏光子からなる偏光板を用いたこと以外は同様にして液晶表示装置を製造し、虹斑観察を同様に行ったところ、表1で示す虹斑観察結果と同じ結果が得られた。また、偏光子保護フィルム1~3、5、8、9を用いて、前記(6)に記載の方法で液晶パネルの反り評価を行ったところ、測定値は5mm以下であり、いずれも良好な結果であった。 As shown in Table 1, when rainbow spots were observed using the polarizer protective films 1 to 3, 5, 8, and 9, the rainbow spots were observed when observed from either the front or oblique directions. There wasn't. On the other hand, about the polarizer protective film 4, when observed from the diagonal, the thin rainbow was observed partially. Further, the polarizer protective film 5 had no tear, but had low tear strength and unstable film formation. In addition, when the polarizer protective films 6 and 7 were observed from an oblique direction, clear rainbow spots were observed. In addition, in the item (5-1) Iridescent observation described above, a polarizing plate made of a PET film / polarizer obtained by laminating only a PET film without laminating a TAC film on the polarizer was used in the same manner. When a liquid crystal display device was manufactured and rainbow spots were observed in the same manner, the same results as the rainbow spot observation results shown in Table 1 were obtained. Further, when the warpage of the liquid crystal panel was evaluated by the method described in (6) above using the polarizer protective films 1 to 3, 5, 8, and 9, the measured value was 5 mm or less, and all were good. It was a result.
 本発明の偏光子保護フィルム、偏光板および画像表示装置(液晶表示装置や有機ELディスプレイ等)を用いることで、虹状の色斑により視認性を低下させること無く、LCDの薄型化、低コスト化に寄与することが可能となり、産業上の利用可能性は極めて高い。 By using the polarizer protective film, polarizing plate and image display device (liquid crystal display device, organic EL display, etc.) of the present invention, the LCD can be made thinner and less expensive without reducing visibility due to iridescent color spots. The industrial applicability is extremely high.

Claims (15)

  1. ポリエステルフィルムを含む偏光子保護フィルムであって、
    前記ポリエステルフィルムの遅相軸方向はMD方向と略平行であり、
    前記ポリエステルフィルムの面内複屈折ΔNxyが0.06以上0.20以下であり、
    更に、下記(A)又は(B)を満たす、偏光子保護フィルム:
    (A)前記ポリエステルフィルムの進相軸方向の屈折率が1.580以上1.630以下である;
    (B)前記ポリエステルフィルムの遅相軸方向及び進相軸方向の直角形引裂き法による引裂き強度のうち小さいほうの値が250N/mm以上である。
    A polarizer protective film including a polyester film,
    The slow axis direction of the polyester film is substantially parallel to the MD direction,
    In-plane birefringence ΔNxy of the polyester film is 0.06 or more and 0.20 or less,
    Furthermore, a polarizer protective film satisfying the following (A) or (B):
    (A) The refractive index in the fast axis direction of the polyester film is 1.580 or more and 1.630 or less;
    (B) The smaller value of the tear strength by the right-angled tearing method in the slow axis direction and the fast axis direction of the polyester film is 250 N / mm or more.
  2. 前記ポリエステルフィルムの進相軸方向の屈折率が1.580以上1.630以下である、請求項1に記載の偏光子保護フィルム。 The polarizer protective film of Claim 1 whose refractive index of the fast axis direction of the said polyester film is 1.580 or more and 1.630 or less.
  3. 前記ポリエステルフィルムの遅相軸方向及び進相軸方向の直角形引裂き法による引裂き強度のうち小さいほうの値が250N/mm以上である、請求項1又は2に記載の偏光子保護フィルム。 The polarizer protective film according to claim 1 or 2, wherein the smaller value of the tear strength by the right-angled tearing method in the slow axis direction and the fast axis direction of the polyester film is 250 N / mm or more.
  4. 前記ポリエステルフィルムのNZ係数が1.5以上2.5以下である、請求項1~3のいずれかに記載の偏光子保護フィルム。 The polarizer protective film according to any one of claims 1 to 3, wherein the polyester film has an NZ coefficient of 1.5 or more and 2.5 or less.
  5. 前記ポリエステルフィルムのリタデーションが1500nm以上30000nm以下である、請求項1~4のいずれかに記載の偏光子保護フィルム。 The polarizer protective film according to claim 1, wherein the retardation of the polyester film is 1500 nm or more and 30000 nm or less.
  6. 前記ポリエステルフィルムの厚みが25~60μmである、請求項1~5のいずれかに記載の偏光子保護フィルム。 6. The polarizer protective film according to claim 1, wherein the polyester film has a thickness of 25 to 60 μm.
  7. ポリエステルフィルムの遅相軸方向とMD方向のなす角度が3度以内である、請求項1~6のいずれかに記載の偏光子保護フィルム。 The polarizer protective film according to any one of claims 1 to 6, wherein an angle formed by the slow axis direction of the polyester film and the MD direction is within 3 degrees.
  8. ポリエステルフィルムのMD方向の弾性率が3000MPa以上である、請求項1~7のいずれかに記載の偏光子保護フィルム。 The polarizer protective film according to any one of claims 1 to 7, wherein the elastic modulus in the MD direction of the polyester film is 3000 MPa or more.
  9. 偏光子の少なくとも一方の面に 請求項1~8のいずれかに記載の偏光子保護フィルムが積層された偏光板。 A polarizing plate in which the polarizer protective film according to any one of claims 1 to 8 is laminated on at least one surface of the polarizer.
  10. 偏光子の片面に、請求項1~8のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面にはフィルムが積層されていない偏光板。 A polarizing plate in which the polarizer protective film according to any one of claims 1 to 8 is laminated on one side of the polarizer and the film is not laminated on the other side of the polarizer.
  11. 偏光子の片面に、請求項1~8のいずれかに記載の偏光子保護フィルムが積層され、偏光子のもう一方の面に1/4波長板が積層された偏光板。 A polarizing plate in which the polarizer protective film according to any one of claims 1 to 8 is laminated on one surface of a polarizer and a quarter-wave plate is laminated on the other surface of the polarizer.
  12. 請求項9~11のいずれかに記載の偏光板を含む画像表示装置。 An image display device comprising the polarizing plate according to any one of claims 9 to 11.
  13. 請求項9又は10に記載の偏光板を含む液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to claim 9.
  14. 請求項9~11のいずれかに記載の偏光板を含む有機ELディスプレイ。 An organic EL display comprising the polarizing plate according to any one of claims 9 to 11.
  15. 請求項9~11のいずれかに記載の偏光板を含むQLEDディスプレイ。 A QLED display comprising the polarizing plate according to any one of claims 9 to 11.
PCT/JP2018/013099 2017-03-31 2018-03-29 Polarizer protection film, polarizing plate and image display device WO2018181653A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197028107A KR102303171B1 (en) 2017-03-31 2018-03-29 Polarizer protective film, polarizer and image display device
JP2019510093A JP7143842B2 (en) 2017-03-31 2018-03-29 Polarizer protective film, polarizing plate and image display device
CN202210522600.9A CN114966913A (en) 2017-03-31 2018-03-29 Polarizer protective film, polarizing plate and image display device
CN201880016099.0A CN110383122B (en) 2017-03-31 2018-03-29 Polarizer protective film, polarizing plate and image display device
JP2022103054A JP7327594B2 (en) 2017-03-31 2022-06-27 Polarizer protective film, polarizing plate and image display device
JP2022103055A JP2022132306A (en) 2017-03-31 2022-06-27 Polarizer protection film, polarizing plate and image display device
JP2023165229A JP2023171426A (en) 2017-03-31 2023-09-27 Polarizer protection film, polarizing plate and image display device

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2017-070532 2017-03-31
JP2017070532 2017-03-31
JP2017070533 2017-03-31
JP2017-070533 2017-03-31
JP2017114232 2017-06-09
JP2017-114232 2017-06-09
JP2017190246 2017-09-29
JP2017190245 2017-09-29
JP2017-190246 2017-09-29
JP2017-190244 2017-09-29
JP2017190244 2017-09-29
JP2017-190245 2017-09-29
JP2018030005 2018-02-22
JP2018-030004 2018-02-22
JP2018-030005 2018-02-22
JP2018030004 2018-02-22
JP2018030003 2018-02-22
JP2018-030003 2018-02-22

Publications (1)

Publication Number Publication Date
WO2018181653A1 true WO2018181653A1 (en) 2018-10-04

Family

ID=63676000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013099 WO2018181653A1 (en) 2017-03-31 2018-03-29 Polarizer protection film, polarizing plate and image display device

Country Status (5)

Country Link
JP (4) JP7143842B2 (en)
KR (1) KR102303171B1 (en)
CN (2) CN110383122B (en)
TW (1) TWI770153B (en)
WO (1) WO2018181653A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366353A (en) * 2019-01-31 2021-09-07 日东电工株式会社 Polyester film and polarizing plate comprising same
JP2021157068A (en) * 2020-03-27 2021-10-07 日東電工株式会社 Polyester film and polarizing plate comprising the same
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
JP2023081987A (en) * 2019-02-19 2023-06-13 東洋紡株式会社 Manufacturing method of polarizing plate
WO2023210443A1 (en) * 2022-04-27 2023-11-02 東洋紡株式会社 Poly(ethylene terephthalate)-based resin film, polarizing plate including same, transparent electroconductive film, touch panel, and image display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11934226B2 (en) 2019-02-08 2024-03-19 Toyobo Co., Ltd. Foldable display and portable terminal device
KR20200113498A (en) * 2019-03-25 2020-10-07 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
CN113874191B (en) 2019-05-28 2024-03-12 东洋纺株式会社 Polyester film and use thereof
WO2020241279A1 (en) 2019-05-28 2020-12-03 東洋紡株式会社 Polyester film, laminated film, and use thereof
US11939499B2 (en) 2019-05-28 2024-03-26 Toyobo Co., Ltd. Multilayer film and use of same
JPWO2020241312A1 (en) * 2019-05-30 2020-12-03
KR102486599B1 (en) * 2019-12-31 2023-01-09 삼성에스디아이 주식회사 Protective film for polarizer, polarizing plate comprising the same and optical display apparatus comprising the same
CN112162344B (en) * 2020-09-04 2022-05-17 中国科学技术大学 Polymer film for polarizer protective film, preparation method thereof and display device
CN116264843A (en) * 2021-03-24 2023-06-16 东洋纺株式会社 Image display device and method for selecting combination of backlight light source and polarizing plate in liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272465A (en) * 2009-05-25 2010-12-02 Canon Inc Light emitting element and light emitting device having the same
JP2013047844A (en) * 2007-12-06 2013-03-07 Nitto Denko Corp Method of manufacturing image display device
WO2013118408A1 (en) * 2012-02-10 2013-08-15 日東電工株式会社 Protective film
JP2015111208A (en) * 2013-12-06 2015-06-18 東洋紡株式会社 Polarizer protective film, polarizing plate, and liquid crystal display device
JP2016200817A (en) * 2015-04-10 2016-12-01 東洋紡株式会社 Liquid crystal display

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100500746C (en) * 2001-05-30 2009-06-17 柯尼卡美能达精密光学株式会社 Cellulose ester film, its manufacturing method, phase displacement film, optical compensation sheet, elliptic polarizing plate, and display
JP2007316366A (en) * 2006-05-26 2007-12-06 Nippon Shokubai Co Ltd Polarizer protective film, polarizing plate and image display device
WO2009072470A1 (en) * 2007-12-06 2009-06-11 Nitto Denko Corporation Method for manufacturing image display device
CN107656332B (en) 2010-06-22 2021-10-15 东洋纺株式会社 Liquid crystal display device, polarizing plate, and polarizer protective film
CN103033984B (en) * 2011-09-30 2015-04-08 大日本印刷株式会社 Liquid crystal display device and polarizer protective film
JP5775831B2 (en) * 2012-02-10 2015-09-09 日東電工株式会社 Polylactic acid film or sheet, and adhesive tape or sheet
JP5304939B1 (en) * 2012-05-31 2013-10-02 大日本印刷株式会社 Optical laminate, polarizing plate, method for manufacturing polarizing plate, image display device, method for manufacturing image display device, and method for improving visibility of image display device
CN105143967B (en) * 2013-04-19 2019-02-19 东洋纺株式会社 Liquid crystal display device, polarizer and polaroid protective film
KR102057611B1 (en) * 2013-05-27 2019-12-20 삼성전자주식회사 Inverse dispertion phase retardation film and display having the same
CN104377231B (en) * 2014-12-03 2019-12-31 京东方科技集团股份有限公司 Double-sided OLED display panel and display device
JP6108036B1 (en) * 2015-05-27 2017-04-05 三菱レイヨン株式会社 Resin composition and film comprising resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047844A (en) * 2007-12-06 2013-03-07 Nitto Denko Corp Method of manufacturing image display device
JP2010272465A (en) * 2009-05-25 2010-12-02 Canon Inc Light emitting element and light emitting device having the same
WO2013118408A1 (en) * 2012-02-10 2013-08-15 日東電工株式会社 Protective film
JP2015111208A (en) * 2013-12-06 2015-06-18 東洋紡株式会社 Polarizer protective film, polarizing plate, and liquid crystal display device
JP2016200817A (en) * 2015-04-10 2016-12-01 東洋紡株式会社 Liquid crystal display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
CN113366353A (en) * 2019-01-31 2021-09-07 日东电工株式会社 Polyester film and polarizing plate comprising same
CN113474689A (en) * 2019-01-31 2021-10-01 日东电工株式会社 Polyester film and polarizing plate comprising same
JPWO2020158112A1 (en) * 2019-01-31 2021-10-21 日東電工株式会社 Polyester film and polarizing plate containing the polyester film
JPWO2020158114A1 (en) * 2019-01-31 2021-10-21 日東電工株式会社 Polyester film and polarizing plate containing the polyester film
JPWO2020158113A1 (en) * 2019-01-31 2021-10-21 日東電工株式会社 Polyester film and polarizing plate containing the polyester film
TWI822910B (en) * 2019-01-31 2023-11-21 日商日東電工股份有限公司 Polyester film and polarizing plate containing the polyester film
JP2023081987A (en) * 2019-02-19 2023-06-13 東洋紡株式会社 Manufacturing method of polarizing plate
JP2021157068A (en) * 2020-03-27 2021-10-07 日東電工株式会社 Polyester film and polarizing plate comprising the same
WO2023210443A1 (en) * 2022-04-27 2023-11-02 東洋紡株式会社 Poly(ethylene terephthalate)-based resin film, polarizing plate including same, transparent electroconductive film, touch panel, and image display device

Also Published As

Publication number Publication date
JP2022132306A (en) 2022-09-08
TW201839476A (en) 2018-11-01
JPWO2018181653A1 (en) 2020-02-06
JP2022132305A (en) 2022-09-08
JP7143842B2 (en) 2022-09-29
CN110383122B (en) 2022-05-27
JP7327594B2 (en) 2023-08-16
KR20190128653A (en) 2019-11-18
TWI770153B (en) 2022-07-11
JP2023171426A (en) 2023-12-01
CN110383122A (en) 2019-10-25
CN114966913A (en) 2022-08-30
KR102303171B1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP7327594B2 (en) Polarizer protective film, polarizing plate and image display device
JP5664718B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP6179548B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP6443048B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP5614506B2 (en) Liquid crystal display device, polarizing plate and polarizer protective film
JP7243126B2 (en) Polarizer protective film, polarizing plate and image display device
WO2018110625A1 (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP6337481B2 (en) Polarizer protective film, polarizing plate and liquid crystal display device
JP7318298B2 (en) Polyester film, polarizing plate using the same, and image display device
JP6337474B2 (en) Polarizer protective film, polarizing plate, and liquid crystal display device
JP2015079129A (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP2016099553A (en) Liquid crystal display device and polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019510093

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20197028107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775114

Country of ref document: EP

Kind code of ref document: A1