WO2018181624A1 - Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program - Google Patents

Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program Download PDF

Info

Publication number
WO2018181624A1
WO2018181624A1 PCT/JP2018/013057 JP2018013057W WO2018181624A1 WO 2018181624 A1 WO2018181624 A1 WO 2018181624A1 JP 2018013057 W JP2018013057 W JP 2018013057W WO 2018181624 A1 WO2018181624 A1 WO 2018181624A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage value
soc
storage amount
amount
hysteresis
Prior art date
Application number
PCT/JP2018/013057
Other languages
French (fr)
Japanese (ja)
Inventor
南 鵜久森
祐一 池田
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201880023160.4A priority Critical patent/CN110476073B/en
Priority to EP18777306.4A priority patent/EP3605125A4/en
Priority to US16/498,246 priority patent/US20200018798A1/en
Priority claimed from JP2018062289A external-priority patent/JP6409208B1/en
Publication of WO2018181624A1 publication Critical patent/WO2018181624A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage amount estimation device that estimates a storage amount such as SOC (State Of Charge) of a storage element, a storage module including the storage amount estimation device, a storage amount estimation method, and a computer program.
  • SOC State Of Charge
  • High capacity is required for secondary batteries for vehicles used in electric cars, hybrid cars, etc., and for industrial secondary batteries used in power storage devices, solar power generation systems, and the like.
  • Various examinations and improvements have been made so far, and it is difficult to realize a higher capacity only by improving the electrode structure and the like. For this reason, development of a positive electrode material having a higher capacity than the current material is underway.
  • lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure have been studied as positive electrode active materials for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, and non-aqueous electrolyte secondary batteries using LiCoO 2 have been studied. Secondary batteries have been widely used.
  • the discharge capacity of LiCoO 2 was about 120 to 160 mAh / g.
  • the lithium transition metal composite oxide is represented by LiMeO 2 (Me is a transition metal)
  • Mn is included as Me, if the molar ratio Mn / Me in Me exceeds 0.5, the structure changes to a spinel type when charged and the crystal structure cannot be maintained. Cycle performance is extremely inferior.
  • LiMeO 2 type active materials in which the molar ratio Mn / Me in Me is 0.5 or less and the molar ratio Li / Me to Me is approximately 1 have been proposed and put to practical use.
  • the positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 which are lithium transition metal composite oxides has a discharge capacity of 150 to 180 mAh / g. Have.
  • Lithium transition metal composite oxide in which Mn molar ratio Mn / Me in Me exceeds 0.5 and Li composition ratio Li / Me is greater than 1 with respect to the ratio of transition metal (Me) to LiMeO 2 type active material
  • Mn molar ratio Mn / Me in Me exceeds 0.5
  • Li composition ratio Li / Me is greater than 1 with respect to the ratio of transition metal (Me) to LiMeO 2 type active material
  • Li 2 MnO 3 -based active material As the above-described high-capacity positive electrode material, a lithium-excess type Li 2 MnO 3 -based active material has been studied. This material has a property of hysteresis in which a voltage value and electrochemical characteristics with respect to the same SOC (State Of Charge) change depending on a charge history and a discharge history.
  • SOC State Of Charge
  • the OCV method (refer to voltage) for determining the SOC based on the correlation (SOC-OCV curve) in which the OCV (Open Circuit Voltage) of the secondary battery and the SOC correspond one-to-one.
  • a current integration method in which the SOC is determined by integrating the charge / discharge current values of the secondary battery.
  • SOC i SOC i-1 + I i ⁇ ⁇ t i / Q ⁇ 100 (1)
  • SOC i This SOC SOC i-1 : Previous SOC I: current value ⁇ t: time interval Q: battery capacity (available capacity)
  • the relationship between SOC and OCV in the discharging process is stored as discharging OCV information for each switching SOC, which is the SOC when switching from charging to discharging.
  • the secondary battery control device is configured to calculate the SOC in the discharging process of the secondary battery based on the switching SOC at the time of actually switching from charging to discharging and the discharging OCV information.
  • an SOC-OCV curve at the time of discharge is selected from the voltage value reached by charging, and the SOC is estimated based on the SOC-OCV curve and the current voltage value.
  • the SOC cannot be estimated based on the voltage value of the charging process.
  • the present invention relates to a storage amount estimation device capable of estimating a storage amount of a storage element including an active material whose storage amount-voltage value characteristic exhibits hysteresis, a storage module including the storage amount estimation device, a storage amount estimation method, and a computer program.
  • the purpose is to provide.
  • the amount of power storage means SOC, the amount of electric power that can be discharged, and the like.
  • the storage amount estimation apparatus has two or more electrochemical reactions depending on the charge / discharge transition, and the hysteresis of the storage amount-voltage value characteristic when one electrochemical reaction occurs is
  • a storage amount estimation device for estimating a storage amount of a storage element including an active material in at least one of a positive electrode and a negative electrode, which is smaller than the hysteresis when a reaction occurs, wherein the one electrochemical reaction is the other electrochemical reaction
  • An estimator that estimates the charged amount based on the charged amount-voltage value characteristic when more frequently occurs is provided.
  • “when one electrochemical reaction occurs” includes “when an electrochemical reaction occurs as a group simultaneously”.
  • “When another electrochemical reaction occurs” includes “when an electrochemical reaction occurs as a group simultaneously”.
  • the inventors of the present application have found that in a power storage device using an electrode material having hysteresis, a reaction with a large hysteresis and a reaction with a small hysteresis occur substantially independently, and the above configuration is conceived. It came. This knowledge has not been known so far and has been newly found by the present inventors.
  • the charged amount can be estimated based on the voltage value in any process of charging and discharging, and even when charging and discharging are repeated in a complicated pattern. Since the voltage value is used, the amount of stored electricity is not limited to the SOC, and the amount of current energy stored in the battery, such as the amount of power, can be estimated. Based on the charge / discharge curve, the dischargeable energy up to SOC 0% and the charge energy required up to SOC 100% can be predicted.
  • mold active material It is a graph which shows transition of the K absorption edge energy of Ni of the Li excess type active material computed by X-ray absorption spectroscopy measurement (XAFS measurement) with respect to the electric quantity. It is a graph which shows transition of the K absorption edge energy of Ni at the time of charging / discharging. It is a graph which shows the result of having calculated
  • FIG. 13 is a graph showing a difference between when the SOC is estimated by referring to the voltage of the present embodiment and when the SOC is estimated by current integration when charging / discharging shown in FIG. 13 is a graph showing a difference between when an SOC is estimated by voltage reference and when an SOC is estimated by current integration when charging and discharging in a pattern different from that of FIG.
  • FIG. 13 is a graph showing a difference between when an SOC is estimated by voltage reference and when an SOC is estimated by current integration when charging and discharging in a pattern different from that of FIG.
  • FIG. 13 is a graph showing a difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration when the charge / discharge shown in FIG. 12 is performed for a deteriorated battery.
  • FIG. 17 is a graph showing a difference between when a SOC of a deteriorated battery is charged and discharged in the same pattern as in FIG. 16 and when SOC is estimated by voltage reference and when SOC is estimated by current integration.
  • FIG. 18 is a graph showing a difference between when a SOC of a deteriorated battery is charged and discharged in the same pattern as in FIG. 17 and when SOC is estimated by voltage reference and when SOC is estimated by current integration. It is a flowchart which shows the procedure of the SOC estimation process by CPU. It is a flowchart which shows the procedure of the SOC estimation process by CPU.
  • the electrode body of the power storage device includes an active material having a stored power-voltage value characteristic having hysteresis.
  • the active material of the electricity storage element is a Li-rich LiMeO 2 —Li 2 MnO 3 solid solution containing Ni and the amount of electricity stored is SOC will be described as an example.
  • FIG. 1 is a graph showing the results of determining the relationship between the amount of electricity and the charge / discharge voltage value for this Li-excess type active material using a lithium cell of the counter electrode Li.
  • the horizontal axis represents the amount of electricity (mAh / g), and the vertical axis represents the charge / discharge voltage value (VvsLi / Li + : Li / Li + potential difference based on the equilibrium potential).
  • the amount of electricity corresponds to the SOC.
  • the voltage value differs between an increase (charge) and a decrease (discharge) of the SOC. That is, the voltage values for the same SOC are different and have hysteresis. In the case of this active material, the potential difference with respect to the same SOC is smaller in the high SOC region than in the low SOC region, and the hysteresis is small.
  • FIG. 2 is a graph showing the transition of the K absorption edge energy of Ni of the Li-rich active material calculated by X-ray absorption spectroscopy measurement (XAFS measurement) with respect to the amount of electricity.
  • the horizontal axis represents the amount of electricity (mAh / g), and the vertical axis represents the K absorption edge energy E 0 (eV) of Ni.
  • FIG. 3 is a graph showing the transition of the K absorption edge energy of Ni during charging and discharging.
  • the horizontal axis represents the charge / discharge voltage value (VvsLi / Li + ), and the vertical axis represents the K absorption edge energy E 0 (eV) of Ni.
  • the K absorption edge energy transition of Ni in the charge reaction does not coincide with the energy transition of the discharge reaction.
  • the energy transition of the discharge reaction does not coincide with the energy transition of the charge reaction. That is, it can be seen that a redox reaction other than Ni that has hysteresis occurs mainly (this reaction is A reaction).
  • the reaction A is an oxidation reaction in the high SOC region and a reduction reaction in the low SOC region.
  • the K absorption edge energy of Ni in the charge reaction and the discharge reaction changes substantially linearly with respect to the SOC.
  • the K absorption edge energy of Ni is substantially the same between charge and discharge.
  • the valence of Ni is equal, and in this voltage range, the valence change of Ni corresponds to a voltage value of approximately 1: 1, and Ni is reversible. It is thought that it is reacting. That is, in the SOC region, a redox reaction with a small hysteresis indicated by the SOC-OCP characteristic is mainly generated (this reaction is referred to as B reaction).
  • OCP means open circuit potential.
  • the reaction amount of B is larger than the reaction amount of A, and as a result, the hysteresis is smaller than that in the low SOC region.
  • the lower voltage value (lower limit voltage value) in the region where the reaction of B mainly occurs is obtained by experiments.
  • the presence or absence of hysteresis is substantially switched.
  • the oxidation amount and reduction amount of the reaction of B are considered to be small.
  • the SOC is estimated by voltage reference based on the reached voltage value.
  • the description is given focusing on only the oxidation-reduction reaction of Ni, but the reaction of B is not limited to the oxidation-reduction reaction of Ni.
  • the reaction B is a reaction in which the hysteresis of the storage amount-voltage value characteristic is small among one or a group of reactions caused by the active material according to the transition of charge / discharge.
  • FIG. 4 is a graph showing the results of determining the relationship between the amount of electricity and the charge / discharge voltage value using a lithium cell of the counter electrode Li for this power storage element.
  • the horizontal axis represents the amount of electricity (mAh / g), and the vertical axis represents the charge / discharge voltage value (VvsLi / Li + : Li / Li + potential difference based on the equilibrium potential).
  • the amount of electricity corresponds to the SOC.
  • the voltage value differs between the charge curve and the discharge curve. That is, the voltage values for the same SOC are different and have hysteresis. In the case of this active material, the potential difference with respect to the same SOC is smaller in the high SOC region than in the low SOC region, and the hysteresis is small.
  • FIG. 5 is a charge / discharge curve in a case where a region having a large hysteresis and a region having a small hysteresis appear alternately as the SOC (or voltage value) increases.
  • the horizontal axis represents SOC (%), and the vertical axis represents voltage value (V).
  • the positive electrode includes a plurality of Li-rich active materials having different compositions
  • the negative electrode includes a plurality of active materials having a large hysteresis
  • each of the positive electrode and the negative electrode includes an active material having a large hysteresis
  • a region where the hysteresis is large and a region where the hysteresis is small May appear alternately or may overlap.
  • the hysteresis is smaller than in the region (1) where the voltage value is a or less.
  • a reaction of C having a large hysteresis and a reaction of D having a small hysteresis occur. Since the reaction amount of D is large in the region (2), the hysteresis is smaller than that in the region (1) as a result.
  • the hysteresis is smaller than in the region (3) where the voltage value is b to c.
  • the lower limit voltage value a of the region (2) and the lower limit voltage value c of the region (4) are obtained by experiments. When it is determined that the charged state or the discharged state is in the region (2) corresponding to the voltage region above the lower limit voltage value a based on the rise and fall of the voltage value, and the region corresponding to the voltage region above the lower limit voltage value c When it determines with it being in (4), each SOC is estimated by voltage reference based on the ultimate voltage value mentioned later.
  • the voltage value region is not limited to the case where the voltage value region is divided into two or four regions as described above.
  • the SOC is referred by voltage reference. Is estimated.
  • FIG. 6 shows an example of a power storage module.
  • the power storage module 50 includes a plurality of power storage elements 200, a monitoring device 100, and a storage case 300 that stores them.
  • the power storage module 50 may be used as a power source for an electric vehicle (EV) or a plug-in hybrid electric vehicle (PHEV).
  • the power storage element 200 is not limited to a square cell, and may be a cylindrical cell or a pouch cell.
  • the monitoring device 100 may be a circuit board arranged to face the plurality of power storage elements 200. Monitoring device 100 monitors the state of power storage element 200.
  • the monitoring device 100 may be a storage amount estimation device. Alternatively, a computer or server that is wired or wirelessly connected to the monitoring device 100 may execute the storage amount estimation method based on information output from the monitoring device 100.
  • FIG. 7 shows another example of the power storage module.
  • the power storage module (hereinafter referred to as a battery module) 1 may be a 12-volt power source or a 48-volt power source that is suitably mounted on an engine vehicle.
  • 7 is a perspective view of the battery module 1 for 12V power supply
  • FIG. 8 is an exploded perspective view of the battery module 1
  • FIG. 9 is a block diagram of the battery module 1.
  • the battery module 1 has a rectangular parallelepiped case 2.
  • the case 2 houses a plurality of lithium ion secondary batteries (hereinafter referred to as batteries) 3, a plurality of bus bars 4, a BMU (Battery Management Unit) 6, and a current sensor 7.
  • batteries hereinafter referred to as batteries
  • BMU Battery Management Unit
  • the battery 3 includes a rectangular parallelepiped case 31 and a pair of terminals 32 and 32 provided on one side of the case 31 and having different polarities.
  • the case 31 accommodates an electrode body 33 in which a positive electrode plate, a separator, and a negative electrode plate are stacked.
  • At least one of the positive electrode active material included in the positive electrode plate of the electrode body 33 and the negative electrode active material included in the negative electrode plate causes two or more electrochemical reactions depending on the transition of charge / discharge.
  • the hysteresis of the charged amount-voltage value characteristic shown when one electrochemical reaction occurs is smaller than the hysteresis when the other electrochemical reaction occurs.
  • LiMeO 2 -Li 2 MnO 3 solid solution described above, Li 2 O-LiMeO 2 solid solution, Li 3 NbO 4 -LiMeO 2 solid solution, Li 4 WO 5 -LiMeO 2 solid solution, Li 4 TeO 5 -LiMeO 2 solid solution, Li 3 SbO 4 -LiFeO 2 solid solution, Li 2 RuO 3 -LiMeO 2 solid solution, and a Li-excess active material such as Li 2 RuO 3 -Li 2 MeO 3 solid solution.
  • the negative electrode active material examples include metals or alloys such as hard carbon, Si, Sn, Cd, Zn, Al, Bi, Pb, Ge, and Ag, or chalcogenides containing these.
  • An example of a chalcogenide is SiO.
  • the technology of the present invention is applicable as long as at least one of these positive electrode active materials and negative electrode active materials is included.
  • Case 2 is made of synthetic resin.
  • the case 2 includes a case main body 21, a lid portion 22 that closes the opening of the case main body 21, a BMU housing portion 23 provided on the outer surface of the lid portion 22, a cover 24 that covers the BMU housing portion 23, and an inner lid 25 and a partition plate 26.
  • the inner lid 25 and the partition plate 26 may not be provided.
  • the battery 3 is inserted between the partition plates 26 of the case body 21.
  • a plurality of metal bus bars 4 are placed on the inner lid 25.
  • the inner lid 25 is arranged on the terminal surface on which the terminal 32 of the battery 3 is provided, the adjacent terminals 32 of the adjacent batteries 3 are connected by the bus bar 4, and the batteries 3 are connected in series.
  • the BMU accommodating portion 23 has a box shape, and has a protruding portion 23a protruding in a square shape on the outer side at the central portion of the long side surface.
  • a pair of external terminals 5 and 5 made of a metal such as a lead alloy and having different polarities are provided on both sides of the protruding portion 23a of the lid portion 22.
  • the BMU 6 includes an information processing unit 60, a voltage measurement unit 8, and a current measurement unit 9 mounted on a substrate.
  • the battery 3 and the BMU 6 are connected by accommodating the BMU 6 in the BMU accommodating part 23 and covering the BMU accommodating part 23 with the cover 24.
  • the information processing unit 60 includes a CPU 62 and a memory 63.
  • the memory 63 stores an SOC estimation program 63a according to the present embodiment and a table 63b in which a plurality of SOC-OCV curves (data) are stored.
  • the SOC estimation program 63a is provided in a state stored in a computer-readable recording medium 70 such as a CD-ROM, DVD-ROM, or USB memory, and is stored in the memory 63 by being installed in the BMU 6.
  • the SOC estimation program 63a may be acquired from an external computer (not shown) connected to the communication network and stored in the memory 63.
  • the CPU 62 executes an SOC estimation process to be described later in accordance with the SOC estimation program 63a read from the memory 63.
  • the voltage measuring unit 8 is connected to both ends of the battery 3 via voltage detection lines, and measures the voltage value of each battery 3 at predetermined time intervals.
  • the current measuring unit 9 measures the current value flowing through the battery 3 via the current sensor 7 at predetermined time intervals.
  • External terminals 5 and 5 of the battery module 1 are connected to a load 11 such as an engine starter motor and electrical components.
  • the ECU (Electronic Control Unit) 10 is connected to the BMU 6 and the load 11.
  • the lower limit voltage value When OCV can be measured as the lower limit voltage value, the lower limit voltage value may be constant.
  • CCV Current Circuit Voltage
  • CCV Current Circuit Voltage
  • causes of deterioration of the power storage element include an increase in internal resistance and an increase in deviation in capacity balance.
  • the difference in capacity balance is, for example, that a difference occurs between the amount of side reactions other than charge / discharge reactions at the positive electrode and the amount of side reactions other than charge / discharge reactions at the negative electrode, so that one of the positive electrode and the negative electrode is completely Means that the positive and negative electrodes have different capacities in which charged ions can enter and leave the electrode reversibly.
  • a table 63b of the memory 63 stores a plurality of SOC-OCV curves from the lower limit voltage value to a plurality of ultimate voltage values. For example, the SOC-OCV curve b from the lower limit voltage value E0 V to the ultimate voltage value E1 V, the SOC-OCV curve c from the lower limit voltage value E0 V to the ultimate voltage value E2 V, and the lower limit voltage value E0 V to the ultimate voltage value E3 V The SOC-OCV curve d up to is stored.
  • SOC-OCV curves b, c, and d are not shown in the figure, although they are also referred to in a comparative test described later.
  • SOC-OCV curves corresponding to all reached voltage values are stored continuously, not discretely. Instead of storing continuously, based on adjacent SOC-OCV curves, a curve to be positioned between the curves may be obtained by interpolation calculation, and the SOC may be estimated from the voltage value and the curve.
  • a discharge OCV curve and a charge OCV curve are obtained for each SOC (%) where the SOC is 40% to 100% when each SOC (%) is changed from 40% to 100%.
  • the discharge OCV curve can be obtained by passing a minute current in the discharge direction and measuring the voltage value at that time.
  • a voltage value with a stable voltage value is measured by discharging from the charged state to each SOC and stopping.
  • the charging OCV curve can be obtained by performing the above measurement in the charging direction.
  • the active material has a slight hysteresis, it is preferable to use an OCV curve obtained by averaging the discharge OCV curve and the charge OCV curve.
  • a discharge OCV curve and a charge OCV curve, or those obtained by correcting them may be used.
  • the discharge OCP curve and the charge OCP curve may be obtained first, and then corrected to the SOC-OCV curve for battery 3 voltage reference.
  • the SOC-OCV curve may be stored in the table 63b in advance, and may be updated at predetermined time intervals in consideration of deterioration of the battery 3.
  • the SOC-OCV curve is not limited to being stored in the table 63b, and may be stored in the memory 63 as an intermediate expression.
  • 10 and 11 are flowcharts showing the procedure of the SOC estimation process performed by the CPU 62.
  • the CPU 62 repeats the processing from S1 at a predetermined or appropriate time interval.
  • CPU62 acquires the voltage value and electric current value between the terminals of the battery 3 (S1). Since the lower limit voltage value and the ultimate voltage value described later are OCV, it is necessary to correct the acquired voltage value to OCV when the current amount of the battery 3 is large.
  • the correction value to OCV is obtained by estimating the voltage value when the current value is zero using a regression line from a plurality of voltage value and current value data.
  • the acquired voltage value can be regarded as OCV.
  • the CPU62 determines whether the absolute value of an electric current value is more than a threshold value (S2).
  • the threshold value is set in order to determine whether the state of the battery 3 is a charged state, a discharged state, or a resting state. If the CPU 62 determines that the absolute value of the current value is not equal to or greater than the threshold value (S2: NO), the process proceeds to S13.
  • the CPU 62 determines whether the current value is greater than 0 (S3). When the current value is larger than 0, it can be determined that the state of the battery 3 is the charged state. If the CPU 62 determines that the current value is not greater than 0 (S3: NO), the process proceeds to S9.
  • the CPU 62 determines whether the current value is greater than 0 (S3: YES), it determines whether the voltage value is equal to or higher than the lower limit voltage value (S4). If the CPU 62 determines that the voltage value is not greater than or equal to the lower limit voltage value (S4: NO), the process proceeds to S8.
  • the CPU 62 determines that the voltage value is greater than or equal to the lower limit voltage value (S4: YES). If the CPU 62 determines that the voltage value is greater than or equal to the lower limit voltage value (S4: YES), the CPU 62 turns on the voltage reference flag (S5). The CPU 62 determines whether or not the acquired voltage value is larger than the previous reached voltage value (S6). If the CPU 62 determines that the voltage value is not greater than the previous reached voltage value (S6: NO), the process proceeds to S8.
  • the CPU 62 determines that the voltage value is larger than the previous ultimate voltage value (S6: YES)
  • the CPU 62 updates the voltage value to the ultimate voltage value in the memory 63 (S7).
  • CPU62 estimates SOC by electric current integration (S8), and complete
  • the CPU 62 determines whether or not the voltage value is less than the lower limit voltage value in S9 (S9). If the CPU 62 determines that the voltage value is not less than the lower limit voltage value (S9: NO), the process proceeds to S12. When the CPU 62 determines that the voltage value is less than the lower limit voltage value (S9: YES), the CPU 62 turns off the voltage reference flag (S10). The CPU 62 resets the ultimate voltage value (S11). The CPU 62 estimates the SOC by current integration (S12) and ends the process.
  • the CPU 62 determines whether or not the voltage reference flag is on (S13). If the CPU 62 determines that the voltage reference flag is not on (S13: NO), the process proceeds to S16.
  • the CPU 62 determines whether or not the set time has elapsed since it was determined to be in the dormant state in the previous S2 (S14). As the set time, a sufficient time for considering the acquired voltage value as the OCV is obtained in advance by an experiment. It is determined whether or not the time has been exceeded based on the number of acquisitions and the acquisition interval of the current value after determining that it is in a resting state. Thereby, the SOC can be estimated with higher accuracy in the resting state. If the CPU 62 determines that the set time has not elapsed (S14: NO), the process proceeds to S16. In S16, the CPU 62 estimates the SOC by current integration and ends the process.
  • the CPU 62 determines that the set time has elapsed (S14: YES), the acquired voltage value can be regarded as the OCV, and the SOC is estimated by referring to the voltage (S15), and the process is terminated.
  • the CPU 62 selects one SOC-OCV curve from the table 63b based on the ultimate voltage value stored in the memory 63.
  • the voltage value rises and falls, that is, the high inflection point among the inflection points switched from charging to discharging is set to the ultimate voltage value.
  • the SOC corresponding to the voltage value acquired in S1 is read.
  • the voltage value acquired by the CPU 62 from the voltage measuring unit 8 varies somewhat depending on the current value. Therefore, the voltage value can be corrected by obtaining a correction coefficient through experiments.
  • FIG. 12 is a graph showing the transition of the voltage value with respect to time during charging and discharging.
  • the horizontal axis represents time (seconds), and the vertical axis represents the charge / discharge voltage value (VvsLi / Li + ).
  • the present Example since the present Example is performing charging / discharging by a very small electric current, it has confirmed that the voltage value during electricity supply shows the substantially same value as OCV.
  • the first discharge was performed.
  • the voltage value reached E1 V the second discharge was performed.
  • E3V is stored as the first reached voltage value.
  • the reached voltage value is updated when it exceeds E3 ⁇ ⁇ V in the second charge.
  • the SOC-OCV curve d is used until E3 V is reached in the first discharge and the second charge.
  • Another SOC-OCV curve stored in the table 63b is used between E3 V and E1 V in the second charge.
  • the SOC-OCV curve b is used between E1 V of the second discharge and the lower limit voltage value E0 V.
  • FIG. 13 shows the transition of the SOC calculated by voltage reference during the first discharge and the second charge until E3 V is reached, and between the second discharge E3 V and the lower limit voltage E0 V.
  • FIG. 14 shows the transition of the SOC when the SOC is calculated by current integration in the transition of the charge / discharge voltage value of FIG.
  • FIG. 15 shows the difference between when the SOC is estimated by referring to the voltage of the present embodiment and when the SOC is estimated by conventional current integration when the charge / discharge shown in FIG. It is a graph which shows.
  • the horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
  • the estimation of the SOC by current integration as a control confirms the discharge capacity in advance and uses a highly accurate ammeter, so the discharge capacity of Q and the current value of I in equation (1) are accurate. is there. It is thought that it approximates the true value.
  • e is a transition of SOC obtained by current integration
  • f is a transition of SOC obtained by voltage reference using the SOC-OCV curves d and b
  • g is a difference.
  • the difference was obtained by (SOC calculated by voltage reference) ⁇ (SOC calculated by current integration).
  • FIG. 15 shows that the difference is less than about ⁇ 4% and is small.
  • FIG. 16 is a graph showing a difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration when the battery 3 of the initial product is charged and discharged in a pattern different from that of FIG. is there.
  • the horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
  • e is a transition of SOC obtained by current integration
  • f is a transition of SOC obtained by voltage reference using the SOC-OCV curves c and b
  • g is a difference. It can be seen from FIG. 16 that the difference is less than about ⁇ 3% and is small.
  • FIG. 17 is a graph showing the difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration when the battery 3 of the initial product is charged and discharged in a pattern different from that of FIG. is there.
  • the horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
  • e is a transition of SOC obtained by current integration
  • f is a transition of SOC obtained by voltage reference using the SOC-OCV curve b
  • g is a difference.
  • FIG. 17 shows that the difference is less than about ⁇ 5% and is small. From the above, it was confirmed that the SOC estimation based on the voltage reference of the present embodiment has a small error and high accuracy from the SOC estimation based on the current integration of the control.
  • FIG. 18 is a graph showing a difference between when the SOC is estimated by referring to the voltage and when the SOC is estimated by current integration when the charge / discharge shown in FIG. 12 is performed for the deteriorated battery 3.
  • the horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
  • an SOC-OCV curve of a deteriorated product is also obtained by experiment and stored. Alternatively, as described above, the SOC-OCV curve is updated at predetermined time intervals.
  • e is a transition of SOC obtained by current integration
  • f is a transition of SOC obtained by voltage reference using a SOC-OCV curve of a deteriorated product
  • g is a difference.
  • FIG. 18 shows that the difference is less than about ⁇ 4% and is small.
  • FIG. 19 is a graph showing the difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration, when charging and discharging the same pattern as in FIG. It is.
  • the horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
  • e is a transition of SOC obtained by current integration
  • f is a transition of SOC obtained by voltage reference using a SOC-OCV curve of a deteriorated product
  • g is a difference.
  • FIG. 19 shows that the difference is less than about ⁇ 4% and is small.
  • FIG. 20 is a graph showing a difference between when the SOC is estimated based on voltage reference and when the SOC is estimated by current integration when charging / discharging in the same pattern as in FIG. It is.
  • the horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
  • e is a transition of SOC obtained by current integration
  • f is a transition of SOC obtained by voltage reference using a SOC-OCV curve of a deteriorated product
  • g is a difference.
  • FIG. 20 shows that the difference is less than about ⁇ 5% and is small. From the above, it was confirmed that the SOC estimation based on the voltage reference of the present embodiment has a small error and high accuracy even in the deteriorated battery 3 with the SOC estimation based on the current integration of the control.
  • the hysteresis is small (substantially no hysteresis), and the SOC is calculated based on the SOC-OCV curve and the current voltage value in the range from the lower limit voltage value to the reached voltage value. Since the estimation is performed, the accuracy of the estimation of the SOC is good. Therefore, the OCV reset can be performed with high accuracy.
  • the SOC can be estimated in both charging and discharging. By selecting the SOC-OCV curve based on the set reached voltage value, when charging / discharging is repeated in a complicated pattern, the SOC can be estimated based only on the voltage value history. Further, only when the acquired voltage value exceeds the previous reached voltage value, the reached voltage value is updated, so that the SOC-OCV curve is selected based on the final voltage value at the time of charging with higher accuracy. The SOC can be estimated.
  • the amount of electricity stored is not limited to SOC, and the amount of current energy stored in the battery 3 such as the amount of power can be estimated.
  • the SOC-OCV curve corresponding to different ultimate voltage values are used.
  • the SOC-OCV curve corresponding to all the reached voltage values is continuously stored in the table 63b, or the SOC-OCV curve between the curves is calculated by interpolation, thereby calculating the SOC.
  • the SOC can be estimated with high accuracy.
  • 21 and 22 are flowcharts showing the procedure of the SOC estimation process performed by the CPU 62.
  • the CPU 62 repeats the processing from S21 at a predetermined interval.
  • CPU62 acquires the voltage value and electric current value between the terminals of the battery 3 (S21).
  • CPU62 determines whether the absolute value of an electric current value is more than a threshold value (S22).
  • the threshold value is set in order to determine whether the state of the battery 3 is a charged state, a discharged state, or a resting state. If the CPU 62 determines that the absolute value of the current value is not equal to or greater than the threshold value (S22: NO), the process proceeds to S33.
  • the CPU 62 determines whether the current value is greater than 0 (S23). When the current value is larger than 0, the battery 3 is in a charged state. If the CPU 62 determines that the current value is not greater than 0 (S23: NO), the process proceeds to S29. When determining that the current value is larger than 0 (S23: YES), the CPU 62 determines whether or not the voltage value is larger than the previous reached voltage value (S24). If the CPU 62 determines that the voltage value is not greater than the previous voltage value (S24: NO), the process proceeds to S26.
  • the CPU 62 determines whether the voltage value is larger than the previous reached voltage value (S24: YES). If the CPU 62 determines that the voltage value is larger than the previous reached voltage value (S24: YES), the CPU 62 updates the voltage value to the reached voltage value (S25). CPU62 determines whether a voltage value is more than a lower limit voltage value (S26). If the CPU 62 determines that the voltage value is not greater than or equal to the lower limit voltage value (S26: NO), the CPU 62 estimates the SOC by current integration (S28) and ends the process.
  • the CPU 62 determines that the voltage value is equal to or higher than the lower limit voltage value (S26: YES), the CPU 62 estimates the SOC by referring to the voltage (S27), and ends the process.
  • the table 63b stores a plurality of SOC-OCV curves from the lower limit voltage to a plurality of ultimate voltages.
  • the CPU 62 selects an SOC-OCV curve corresponding to the stored reached voltage value, and reads the SOC from the current OCV in the SOC-OCV curve.
  • the CPU 62 calculates the current OCV from the voltage value and current value acquired in S21.
  • the OCV can be calculated by estimating a voltage value when the current value is zero using a regression line from a plurality of voltage value and current value data. When the current value is as small as the dark current value, the acquired voltage value can be read as OCV.
  • the CPU 62 determines whether or not the voltage value is equal to or higher than the lower limit voltage value in S29 (S29).
  • the CPU 62 determines that the voltage value is equal to or higher than the lower limit voltage value (S29: YES)
  • the CPU 62 estimates the SOC by referring to the voltage in the same manner as described above (S30).
  • the CPU 62 determines that the voltage value is not equal to or higher than the lower limit voltage value (S29: NO)
  • the CPU 62 resets the ultimate voltage value (S31).
  • the CPU 62 estimates the SOC by current integration (S32) and ends the process.
  • the CPU 62 determines whether or not the voltage value is equal to or higher than the lower limit voltage value (S33). If the CPU 62 determines that the voltage value is not greater than or equal to the lower limit voltage value (S33: NO), the process proceeds to S36. When the CPU 62 determines that the voltage value is equal to or higher than the lower limit voltage value (S33: YES), the CPU 62 determines whether or not the set time has elapsed since the last time that it was determined to be in the dormant state in S22 (S34).
  • the CPU 62 determines that the set time has not elapsed (S34: NO), the process proceeds to S36.
  • the CPU 62 estimates the SOC by current integration (S36) and ends the process.
  • the acquired voltage value can be regarded as an OCV, and the SOC is estimated by referring to the voltage in the same manner as described above (S35), and the process ends.
  • the SOC can be estimated in real time during charge / discharge.
  • the SOC is estimated based on the SOC-OCV curve and the current voltage value in the range from the lower limit voltage value to the ultimate voltage value that is substantially free of hysteresis. Therefore, the accuracy of SOC estimation is good.
  • the SOC can be estimated in both charging and discharging. Even when charging / discharging is repeated in a complicated pattern, the SOC can be estimated only from the history of the voltage value. Since the voltage value can be used, the amount of stored electricity is not limited to the SOC, and the amount of current energy stored in the battery 3 such as the amount of power can be estimated.
  • a storage amount estimation device that estimates a storage amount of a storage element that includes an active material in at least one of a positive electrode and a negative electrode that is smaller than the hysteresis, and when the one electrochemical reaction occurs more than the other electrochemical reaction And an estimation unit for estimating the storage amount based on the storage amount-voltage value characteristic.
  • the storage amount estimation device is a storage amount-voltage in the case where one electrochemical reaction occurs more (mainly) than the other electrochemical reaction in which the change in voltage value with respect to the storage amount is substantially the same between charge and discharge.
  • the amount of stored electricity is estimated based on the value characteristics. Therefore, the accuracy of estimating the amount of stored electricity is good. It is possible to satisfactorily estimate the amount of electricity stored in an electricity storage element having an active material having a high capacity and having an electricity storage amount-voltage value characteristic showing hysteresis. In both charging and discharging, the charged amount can be estimated. Even when charging / discharging is repeated in a complicated pattern, the amount of stored electricity can be estimated only from the history of voltage values.
  • the amount of electricity stored is not limited to the SOC, and the amount of current energy stored in the electricity storage element such as the amount of power can be estimated. Based on the charge / discharge curve, the dischargeable energy up to SOC 0% and the charge energy required up to SOC 100% can be predicted.
  • the power storage amount-voltage value characteristic includes a first region where the power storage amount is relatively high and a second region where the power storage amount is relatively low
  • the estimation unit includes: It is preferable that the charged amount is estimated based on a charged amount-voltage value characteristic of the first region.
  • the amount of charge is estimated based on the amount of charge-voltage value characteristic of the first region on the side where the amount of charge is relatively high, so the estimation accuracy is good.
  • the storage amount estimation device is a storage amount estimation device that estimates a storage amount of a storage element including an active material whose storage amount-voltage value characteristic exhibits hysteresis, and a plurality of lower limit voltage values at which the presence or absence of the hysteresis is substantially switched.
  • a holding unit that holds a plurality of stored charge amount-voltage value characteristics up to the ultimate voltage value
  • a voltage acquisition unit that acquires a voltage value of the storage element, and a voltage value acquired by the voltage acquisition unit sets the lower limit voltage value
  • a setting unit for setting the reached voltage value after exceeding
  • a selection unit for selecting one storage amount-voltage value characteristic based on the reaching voltage value set by the setting unit, and the one storage amount-voltage
  • An estimation unit configured to estimate a storage amount based on a value characteristic and a voltage value acquired by the voltage acquisition unit.
  • the storage amount estimation device estimates the storage amount based on the storage amount-voltage value characteristic and the acquired voltage value in the range from the lower limit voltage value to the ultimate voltage value that is substantially free of hysteresis.
  • a reaction having a large hysteresis and a reaction having substantially no hysteresis (small hysteresis) occur substantially independently. These reactions do not interfere with each other.
  • charging and discharging are performed along a unique curve between the lower limit voltage value and the ultimate voltage value. Therefore, the accuracy of estimating the amount of stored electricity is good. In both charging and discharging, the charged amount can be estimated.
  • the reached voltage value is set based on the rise and fall of the voltage value, and the storage amount-voltage value characteristic is selected. Even when charging / discharging is repeated in a complicated pattern, the amount of stored electricity can be estimated based only on the history of voltage values. Since the voltage value can be used, the amount of stored electricity is not limited to the SOC, and the amount of current energy stored in the storage element such as the amount of power can be estimated.
  • the setting unit stores the reached voltage value in a storage unit, and when the voltage value acquired by the voltage acquisition unit is greater than the reached voltage value previously stored in the storage unit, It is preferable to update the acquired voltage value to the ultimate voltage value.
  • the power storage amount estimation device can accurately estimate the power storage amount based on the acquired voltage value by selecting a power storage amount-voltage value characteristic based on a larger ultimate voltage value (updated ultimate voltage value). it can.
  • the voltage value may be an open-circuit voltage value.
  • the storage amount can be easily estimated based on the open-circuit voltage value and the storage amount-open-circuit voltage characteristic.
  • the current value at the time of energization is large, by correcting the voltage value to the open-circuit voltage value, the charged amount can be estimated by referring to the voltage even during energization.
  • the voltage value may be a voltage value when a minute current flows through the storage element.
  • the stored amount can be easily estimated from the voltage value, and the stored amount can be estimated even during charging and discharging of the storage element.
  • the storage amount is preferably SOC.
  • the storage amount estimation device can accurately estimate the state of charge of a storage element using an electrode material having hysteresis, in which OCV and SOC do not correspond one to one, without requiring a special sensor or additional parts. it can.
  • the power storage module includes a plurality of power storage elements and any one of the above-described power storage amount estimation devices.
  • a vehicle power storage module and an industrial power storage module typically have a plurality of power storage elements connected in series.
  • a plurality of power storage elements may be connected in series and in parallel.
  • the power storage module is suitably used as a power source for EVs and PHEVs, which have a particularly high demand for high capacity.
  • the storage amount estimation method is a storage amount estimation method for estimating a storage amount of a storage element including an active material whose storage amount-voltage value characteristic exhibits hysteresis, and a plurality of lower limit voltage values at which the presence or absence of the hysteresis is substantially switched.
  • a plurality of stored charge amount-voltage value characteristics up to the ultimate voltage value are set, an ultimate voltage value after the acquired voltage value exceeds the lower limit voltage value is set, and based on the set ultimate voltage value, one A storage amount-voltage value characteristic is selected, and the storage amount is estimated based on the one storage amount-voltage value characteristic and the acquired voltage value.
  • the storage amount is estimated on the basis of the storage amount-voltage value characteristic and the acquired voltage value in the range from the lower limit voltage value to the ultimate voltage value substantially free of hysteresis. Therefore, the accuracy of estimating the amount of stored electricity is good. It is possible to satisfactorily estimate the amount of electricity stored in an electricity storage element having an active material having a high capacity and having an electricity storage amount-voltage value characteristic showing hysteresis. In both charging and discharging, the charged amount can be estimated. The inflection point related to the rise and fall of the voltage value is set to the ultimate voltage value, and the charged amount-voltage value characteristic is selected.
  • the amount of stored electricity can be estimated only from the history of voltage values. Since the voltage value can be used, the amount of electricity stored is not limited to the SOC, and the amount of current energy stored in the electricity storage element such as the amount of power can be estimated.
  • the computer program obtains the voltage value of the power storage element in a computer that estimates the power storage amount of the power storage element including an active material whose power storage amount-voltage value characteristic shows hysteresis, and the acquired voltage value is substantially the presence or absence of hysteresis. It is determined whether or not the lower limit voltage value to be switched automatically is exceeded, and when it is determined that the voltage value exceeds the lower limit voltage value, an ultimate voltage value is set, and the lower limit voltage is set based on the set ultimate voltage value.
  • One charge amount-voltage value characteristic is selected by referring to a plurality of charge amount-voltage value characteristics from a value to a plurality of reached voltage values, and the one charge amount-voltage value characteristic is obtained and the acquired voltage value is selected. Based on this, the amount of stored electricity is estimated.
  • the present invention is not limited to the contents of the above-described embodiments, and various modifications can be made within the scope of the claims. That is, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
  • the power storage amount estimation device according to the present invention is not limited to the case where it is applied to a vehicle-mounted lithium ion secondary battery, and can also be applied to other power storage modules such as a railway regenerative power storage device and a solar power generation system.
  • the voltage value between the positive electrode terminal and the negative electrode terminal of the power storage element or the voltage value between the positive electrode terminal and the negative electrode terminal of the power storage module can be regarded as OCV.
  • the power storage element is not limited to a lithium ion secondary battery, and may be another secondary battery or an electrochemical cell having hysteresis characteristics.
  • a CMU Cell Monitoring Unit
  • the power storage amount estimation device may be a part of a power storage module in which the monitoring device 100 or the like is incorporated.
  • the power storage amount estimation device may be configured separately from a power storage element and a power storage module, and may be connected to a power storage module including a power storage element whose heat storage amount is to be estimated when the heat storage amount is estimated.
  • the heat storage amount estimation device may remotely monitor the power storage element and the power storage module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The objective of the present invention is to provide a stored electricity amount estimating device, an electricity storage module provided with said stored electricity amount estimating device, a stored electricity amount estimating method and a computer program with which it is possible to estimate an amount of electricity stored in an electricity storage element including an active material having a stored electricity amount - voltage value characteristic that exhibits hysteresis. A stored electricity amount estimating device (6) estimates a stored electricity amount of an electricity storage element (3) containing an active material in which at least two electrochemical reactions occur in accordance with a transition of charging and discharging, wherein hysteresis in a stored electricity amount - voltage value characteristic when one electrochemical reaction occurs is smaller than the hysteresis when the other electrochemical reaction occurs. The stored electricity amount estimating device (6) is provided with an estimating unit (62) which estimates the stored electricity amount on the basis of the stored electricity amount - voltage value characteristic if one of the electrochemical reactions occurs more frequently than the other electrochemical reaction.

Description

蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラムStorage amount estimation device, storage module, storage amount estimation method, and computer program
 本発明は、蓄電素子のSOC(State Of Charge)等の蓄電量を推定する蓄電量推定装置、該蓄電量推定装置を含む蓄電モジュール、蓄電量推定方法、及びコンピュータプログラムに関する。 The present invention relates to a storage amount estimation device that estimates a storage amount such as SOC (State Of Charge) of a storage element, a storage module including the storage amount estimation device, a storage amount estimation method, and a computer program.
 電気自動車、ハイブリッド車等に用いられる車両用の二次電池や、電力貯蔵装置、太陽光発電システム等に用いられる産業用の二次電池においては、高容量化が求められている。これまで様々な検討と改良が行われてきて、電極構造等の改良のみで更なる高容量化を実現することは困難な傾向にある。その為、現行の材料より高容量である正極材料の開発が進められている。 High capacity is required for secondary batteries for vehicles used in electric cars, hybrid cars, etc., and for industrial secondary batteries used in power storage devices, solar power generation systems, and the like. Various examinations and improvements have been made so far, and it is difficult to realize a higher capacity only by improving the electrode structure and the like. For this reason, development of a positive electrode material having a higher capacity than the current material is underway.
 従来、リチウムイオン二次電池等の非水電解質二次電池用の正極活物質として、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物が検討され、LiCoOを用いた非水電解質二次電池が広く実用化されていた。LiCoOの放電容量は120~160mAh/g程度であった。
 リチウム遷移金属複合酸化物をLiMeO(Meは遷移金属)で表したとき、MeとしてMnを用いることが望まれてきた。MeとしてMnを含有させた場合、Me中のMnのモル比Mn/Meが0.5を超える場合には、充電をするとスピネル型へと構造変化が起こり、結晶構造が維持できない為、充放電サイクル性能が著しく劣る。
 Me中のMnのモル比Mn/Meが0.5以下であり、Meに対するLiのモル比Li/Meが略1であるLiMeO型活物質が種々提案され、実用化されている。リチウム遷移金属複合酸化物であるLiNi1/2Mn1/2及びLiNi1/3Co1/3Mn1/3等を含有する正極活物質は150~180mAh/gの放電容量を有する。
Conventionally, lithium transition metal composite oxides having an α-NaFeO 2 type crystal structure have been studied as positive electrode active materials for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, and non-aqueous electrolyte secondary batteries using LiCoO 2 have been studied. Secondary batteries have been widely used. The discharge capacity of LiCoO 2 was about 120 to 160 mAh / g.
When the lithium transition metal composite oxide is represented by LiMeO 2 (Me is a transition metal), it has been desired to use Mn as Me. When Mn is included as Me, if the molar ratio Mn / Me in Me exceeds 0.5, the structure changes to a spinel type when charged and the crystal structure cannot be maintained. Cycle performance is extremely inferior.
Various LiMeO 2 type active materials in which the molar ratio Mn / Me in Me is 0.5 or less and the molar ratio Li / Me to Me is approximately 1 have been proposed and put to practical use. The positive electrode active material containing LiNi 1/2 Mn 1/2 O 2 and LiNi 1/3 Co 1/3 Mn 1/3 O 2 which are lithium transition metal composite oxides has a discharge capacity of 150 to 180 mAh / g. Have.
 LiMeO型活物質に対し、Me中のMnのモル比Mn/Meが0.5を超え、遷移金属(Me)の比率に対するLiの組成比率Li/Meが1より大きいリチウム遷移金属複合酸化物を含む、いわゆるリチウム過剰型活物質も知られている。 Lithium transition metal composite oxide in which Mn molar ratio Mn / Me in Me exceeds 0.5 and Li composition ratio Li / Me is greater than 1 with respect to the ratio of transition metal (Me) to LiMeO 2 type active material A so-called lithium-excess type active material containing is also known.
 上述の高容量の正極材料として、リチウム過剰型であるLiMnO系の活物質が検討されている。この材料は、充電履歴及び放電履歴に依存して、同一のSOC(State Of Charge)に対する電圧値や電気化学的特性が変化する、ヒステリシスという性質を有する。 As the above-described high-capacity positive electrode material, a lithium-excess type Li 2 MnO 3 -based active material has been studied. This material has a property of hysteresis in which a voltage value and electrochemical characteristics with respect to the same SOC (State Of Charge) change depending on a charge history and a discharge history.
 二次電池におけるSOCを推定する方法として、二次電池のOCV(Open Circuit Voltage)とSOCとが一対一対応する相関関係(SOC-OCV曲線)に基づいてSOCを決定するOCV法(電圧参照)と、二次電池の充放電電流値を積算してSOCを決定する電流積算法とがある。 As a method of estimating the SOC in the secondary battery, the OCV method (refer to voltage) for determining the SOC based on the correlation (SOC-OCV curve) in which the OCV (Open Circuit Voltage) of the secondary battery and the SOC correspond one-to-one. And a current integration method in which the SOC is determined by integrating the charge / discharge current values of the secondary battery.
 ヒステリシスを有する電極材料を用いた場合、SOCに対して電圧値が一義的に決まらない為、OCV法によるSOCの推定が困難である。SOC-OCV曲線が一義的に決まらない為、ある時点での放電可能エネルギーを予測することも困難である。 When using an electrode material having hysteresis, it is difficult to estimate the SOC by the OCV method because the voltage value is not uniquely determined with respect to the SOC. Since the SOC-OCV curve is not uniquely determined, it is difficult to predict the dischargeable energy at a certain point.
 電流積算法によってSOCを算出する場合、下記の式(1)を用いる。
 SOC=SOCi-1 +I×Δt/ Q×100…(1)
 SOC:今回のSOC
 SOCi-1 :前回のSOC
 I:電流値
 Δt:時間間隔
 Q:電池容量(available capacity)
When calculating the SOC by the current integration method, the following equation (1) is used.
SOC i = SOC i-1 + I i × Δt i / Q × 100 (1)
SOC i : This SOC
SOC i-1 : Previous SOC
I: current value Δt: time interval Q: battery capacity (available capacity)
 電流積算が長期継続されると、電流センサの計測誤差が蓄積する。また、電池容量は経時的に小さくなる為、電流積算法によって推定されるSOCは、その推定誤差が経時的に大きくなる。従来、電流積算を長期継続した場合にOCV法によりSOCを推定して、誤差の蓄積をリセットするOCVリセットが行われている。 If the current integration is continued for a long time, current sensor measurement errors accumulate. Further, since the battery capacity decreases with time, the estimation error of the SOC estimated by the current integration method increases with time. Conventionally, when current integration is continued for a long time, the SOC is estimated by the OCV method, and OCV reset is performed to reset error accumulation.
 ヒステリシスを有する電極材料を用いた蓄電素子においても、電流積算を継続すると誤差が蓄積する。しかし、SOCに対して電圧値が一義的に決まらない為、OCV法によるSOCの推定を行うこと(OCVリセットを行うこと)は困難である。
 従って、現行のSOC推定技術ではこのような蓄電素子におけるSOCを精度良く推定することが困難である。
Even in a power storage element using an electrode material having hysteresis, errors accumulate when current integration is continued. However, since the voltage value is not uniquely determined with respect to the SOC, it is difficult to estimate the SOC by the OCV method (to perform the OCV reset).
Therefore, it is difficult to accurately estimate the SOC in such a power storage element with the current SOC estimation technology.
 特許文献1に開示の二次電池制御装置においては、充電から放電に切替えた際のSOCである切替時SOCごとに、放電過程におけるSOCとOCVとの関係を放電時OCV情報として記憶する。実際に充電から放電に切替えた際の切替時SOCと、放電時OCV情報とに基づいて、二次電池の放電過程におけるSOCを算出するように、二次電池制御装置は構成されている。 In the secondary battery control device disclosed in Patent Document 1, the relationship between SOC and OCV in the discharging process is stored as discharging OCV information for each switching SOC, which is the SOC when switching from charging to discharging. The secondary battery control device is configured to calculate the SOC in the discharging process of the secondary battery based on the switching SOC at the time of actually switching from charging to discharging and the discharging OCV information.
特開2013-105519号公報JP 2013-105519 A
 特許文献1の二次電池制御装置においては、充電によって到達した電圧値から、放電時のSOC-OCV曲線を選択し、該SOC-OCV曲線及び現時点の電圧値に基づいてSOCを推定する。この二次電池制御装置では、充電過程の電圧値に基づいてSOCを推定することができない。複雑なパターンで、充放電が繰り返された場合に、二次電池を高精度に監視することができない。 In the secondary battery control device of Patent Document 1, an SOC-OCV curve at the time of discharge is selected from the voltage value reached by charging, and the SOC is estimated based on the SOC-OCV curve and the current voltage value. In this secondary battery control device, the SOC cannot be estimated based on the voltage value of the charging process. When charging and discharging are repeated with a complicated pattern, the secondary battery cannot be monitored with high accuracy.
 本発明は、蓄電量-電圧値特性がヒステリシスを示す活物質を含む蓄電素子の蓄電量を推定できる蓄電量推定装置、該蓄電量推定装置を備える蓄電モジュール、蓄電量推定方法、及びコンピュータプログラムを提供することを目的とする。
 ここで、蓄電量とは、SOC、電力放出可能量等を意味する。
The present invention relates to a storage amount estimation device capable of estimating a storage amount of a storage element including an active material whose storage amount-voltage value characteristic exhibits hysteresis, a storage module including the storage amount estimation device, a storage amount estimation method, and a computer program. The purpose is to provide.
Here, the amount of power storage means SOC, the amount of electric power that can be discharged, and the like.
 本発明に係る蓄電量推定装置は、充放電の推移に応じて2以上の電気化学反応を生じ、一の電気化学反応が生じる場合に示す蓄電量-電圧値特性のヒステリシスが、他の電気化学反応が生じる場合の前記ヒステリシスより小さい、活物質を正極及び負極の少なくとも一方に含む蓄電素子の蓄電量を推定する蓄電量推定装置であって、前記一の電気化学反応が前記他の電気化学反応より多く生じる場合に、前記蓄電量-電圧値特性に基づいて蓄電量を推定する推定部を備える。
 ここで、「一の電気化学反応が生じる場合」とは、「同時に一群として電気化学反応が生じる場合」を含む。「他の電気化学反応が生じる場合」とは、「同時に一群として電気化学反応が生じる場合」を含む。
The storage amount estimation apparatus according to the present invention has two or more electrochemical reactions depending on the charge / discharge transition, and the hysteresis of the storage amount-voltage value characteristic when one electrochemical reaction occurs is A storage amount estimation device for estimating a storage amount of a storage element including an active material in at least one of a positive electrode and a negative electrode, which is smaller than the hysteresis when a reaction occurs, wherein the one electrochemical reaction is the other electrochemical reaction An estimator that estimates the charged amount based on the charged amount-voltage value characteristic when more frequently occurs is provided.
Here, “when one electrochemical reaction occurs” includes “when an electrochemical reaction occurs as a group simultaneously”. “When another electrochemical reaction occurs” includes “when an electrochemical reaction occurs as a group simultaneously”.
 本願発明者らは、ヒステリシスを有する電極材料を用いた蓄電素子において、ヒステリシスが大きい反応と、ヒステリシスが小さい反応とが実質的に独立して起きる、ということを見出し、上記の構成を想到するに至った。この知見は、従来知られておらず、本願発明者らにより新規に見出されたものである。
 本発明によれば、充電及び放電のいずれの過程においても、また複雑なパターンで充放電が繰り返された場合においても、電圧値に基づいて、蓄電量を推定できる。
 電圧値を用いるので、蓄電量としてSOCに限定されず、電力量等、電池に蓄えられた現在のエネルギーの量を推定できる。充放電曲線に基づいて、SOC0%までの放電可能なエネルギー及びSOC100%までに必要な充電エネルギーを予測できる。
The inventors of the present application have found that in a power storage device using an electrode material having hysteresis, a reaction with a large hysteresis and a reaction with a small hysteresis occur substantially independently, and the above configuration is conceived. It came. This knowledge has not been known so far and has been newly found by the present inventors.
According to the present invention, the charged amount can be estimated based on the voltage value in any process of charging and discharging, and even when charging and discharging are repeated in a complicated pattern.
Since the voltage value is used, the amount of stored electricity is not limited to the SOC, and the amount of current energy stored in the battery, such as the amount of power, can be estimated. Based on the charge / discharge curve, the dischargeable energy up to SOC 0% and the charge energy required up to SOC 100% can be predicted.
Li過剰型活物質につき、電気量と充放電電圧値との関係を求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the relationship between the amount of electricity and charging / discharging voltage value about Li excess type | mold active material. 電気量に対する、X線吸収分光測定(XAFS測定)によって算出したLi過剰型活物質のNiのK吸収端エネルギーの推移を示すグラフである。It is a graph which shows transition of the K absorption edge energy of Ni of the Li excess type active material computed by X-ray absorption spectroscopy measurement (XAFS measurement) with respect to the electric quantity. 充放電時におけるNiのK吸収端エネルギーの推移を示すグラフである。It is a graph which shows transition of the K absorption edge energy of Ni at the time of charging / discharging. ヒステリシスを示す活物質を含む負極を備える蓄電素子につき、電気量と充放電電圧値との関係を求めた結果を示すグラフである。It is a graph which shows the result of having calculated | required the relationship between an electric charge and a charging / discharging voltage value about an electrical storage element provided with the negative electrode containing the active material which shows hysteresis. SOCが高くなるのに従い、ヒステリシスが大きい領域と小さい領域とが交互に表れる場合の充放電曲線の一例である。It is an example of the charging / discharging curve in the case where a region having a large hysteresis and a region having a small hysteresis appear alternately as the SOC increases. 蓄電モジュールの一例を示す斜視図である。It is a perspective view which shows an example of an electrical storage module. 蓄電モジュールの他の例(電池モジュール)を示す斜視図である。It is a perspective view which shows the other example (battery module) of an electrical storage module. 図7の電池モジュールの分解斜視図である。It is a disassembled perspective view of the battery module of FIG. 電池モジュールのブロック図である。It is a block diagram of a battery module. CPUによるSOC推定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the SOC estimation process by CPU. CPUによるSOC推定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the SOC estimation process by CPU. 充放電時における、時間に対する電圧値の推移を示すグラフである。It is a graph which shows transition of the voltage value with respect to time at the time of charging / discharging. 1回目の放電及び2回目の充電においてE3 Vに達するまでの間、並びに2回目の放電のE1 Vから下限電圧値E0 Vまでの間の、電圧参照により算出されたSOCの推移を示すグラフである。A graph showing the transition of the SOC calculated by voltage reference during the first discharge and the second charge until E3 V is reached, and during the second discharge from E1 V to the lower limit voltage value E0 V. is there. 図12の充放電電圧値の推移において、電流積算によりSOCを算出した場合のSOCの推移を示すグラフである。It is a graph which shows transition of SOC at the time of calculating SOC by electric current integration in transition of the charging / discharging voltage value of FIG. 初期品の電池につき、図12に示す充放電を行った場合の、本実施形態の電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。FIG. 13 is a graph showing a difference between when the SOC is estimated by referring to the voltage of the present embodiment and when the SOC is estimated by current integration when charging / discharging shown in FIG. 初期品の電池につき、図12と異なるパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。13 is a graph showing a difference between when an SOC is estimated by voltage reference and when an SOC is estimated by current integration when charging and discharging in a pattern different from that of FIG. 初期品の電池につき、図12と異なるパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。13 is a graph showing a difference between when an SOC is estimated by voltage reference and when an SOC is estimated by current integration when charging and discharging in a pattern different from that of FIG. 劣化品の電池につき、図12に示す充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。FIG. 13 is a graph showing a difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration when the charge / discharge shown in FIG. 12 is performed for a deteriorated battery. 劣化品の電池につき、図16と同一のパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。FIG. 17 is a graph showing a difference between when a SOC of a deteriorated battery is charged and discharged in the same pattern as in FIG. 16 and when SOC is estimated by voltage reference and when SOC is estimated by current integration. 劣化品の電池につき、図17と同一のパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。FIG. 18 is a graph showing a difference between when a SOC of a deteriorated battery is charged and discharged in the same pattern as in FIG. 17 and when SOC is estimated by voltage reference and when SOC is estimated by current integration. CPUによるSOC推定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the SOC estimation process by CPU. CPUによるSOC推定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the SOC estimation process by CPU.
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(本実施形態の概要)
 本実施形態に係る蓄電素子の電極体は、蓄電量-電圧値特性がヒステリシスを有する活物質を含む。
 以下、蓄電素子の活物質がNiを含むLi過剰型のLiMeO-LiMnO固溶体であり、蓄電量がSOCである場合を例として説明する。
 図1は、このLi過剰型活物質につき、対極Liのリチウムセルを用い、電気量と充放電電圧値との関係を求めた結果を示すグラフである。横軸は電気量(mAh/g)、縦軸は充放電電圧値(VvsLi/Li:Li/Li+平衡電位を基準にしたときの電位差)である。ここで、電気量はSOCに対応する。
 図1に示すように、SOCの増加(充電)と、減少(放電)とで電圧値が異なる。即ち同一SOCに対する電圧値が異なり、ヒステリシスを有する。この活物質の場合、同一SOCに対する電位差は、高SOC領域では低SOC領域より小さく、ヒステリシスが小さい。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
(Outline of this embodiment)
The electrode body of the power storage device according to the present embodiment includes an active material having a stored power-voltage value characteristic having hysteresis.
Hereinafter, the case where the active material of the electricity storage element is a Li-rich LiMeO 2 —Li 2 MnO 3 solid solution containing Ni and the amount of electricity stored is SOC will be described as an example.
FIG. 1 is a graph showing the results of determining the relationship between the amount of electricity and the charge / discharge voltage value for this Li-excess type active material using a lithium cell of the counter electrode Li. The horizontal axis represents the amount of electricity (mAh / g), and the vertical axis represents the charge / discharge voltage value (VvsLi / Li + : Li / Li + potential difference based on the equilibrium potential). Here, the amount of electricity corresponds to the SOC.
As shown in FIG. 1, the voltage value differs between an increase (charge) and a decrease (discharge) of the SOC. That is, the voltage values for the same SOC are different and have hysteresis. In the case of this active material, the potential difference with respect to the same SOC is smaller in the high SOC region than in the low SOC region, and the hysteresis is small.
 本実施形態においては、ヒステリシスが小さく、SOC-OCV曲線を用いて電圧値からSOCを推定することができる領域を判断し、該領域においてSOCを推定する。
 図2は、電気量に対する、X線吸収分光測定(XAFS測定)によって算出したLi過剰型活物質のNiのK吸収端エネルギーの推移を示すグラフである。横軸は電気量(mAh/g)、縦軸はNiのK吸収端エネルギーE(eV)である。
 図3は、充放電時におけるNiのK吸収端エネルギーの推移を示すグラフである。横軸は充放電電圧値(VvsLi/Li)、縦軸はNiのK吸収端エネルギーE(eV)である。
In the present embodiment, an area where the hysteresis is small and the SOC can be estimated from the voltage value using the SOC-OCV curve is determined, and the SOC is estimated in the area.
FIG. 2 is a graph showing the transition of the K absorption edge energy of Ni of the Li-rich active material calculated by X-ray absorption spectroscopy measurement (XAFS measurement) with respect to the amount of electricity. The horizontal axis represents the amount of electricity (mAh / g), and the vertical axis represents the K absorption edge energy E 0 (eV) of Ni.
FIG. 3 is a graph showing the transition of the K absorption edge energy of Ni during charging and discharging. The horizontal axis represents the charge / discharge voltage value (VvsLi / Li + ), and the vertical axis represents the K absorption edge energy E 0 (eV) of Ni.
 図2に示すように、高SOC領域において、充電反応のNiのK吸収端エネルギー推移が放電反応のエネルギー推移と一致しない。低SOC領域において、放電反応のエネルギー推移が充電反応のエネルギー推移と一致しない。即ちヒステリシスを有する、Ni以外のレドックス反応が主として生じていることが分かる(これをAの反応とする)。Aの反応は、高SOC領域においては酸化反応であり、低SOC領域においては還元反応である。
 中間のSOC領域では、充電反応及び放電反応のNiのK吸収端エネルギーがSOCに対して略直線的に変化している。
As shown in FIG. 2, in the high SOC region, the K absorption edge energy transition of Ni in the charge reaction does not coincide with the energy transition of the discharge reaction. In the low SOC region, the energy transition of the discharge reaction does not coincide with the energy transition of the charge reaction. That is, it can be seen that a redox reaction other than Ni that has hysteresis occurs mainly (this reaction is A reaction). The reaction A is an oxidation reaction in the high SOC region and a reduction reaction in the low SOC region.
In the middle SOC region, the K absorption edge energy of Ni in the charge reaction and the discharge reaction changes substantially linearly with respect to the SOC.
 図3に示すように、充放電電圧値が略3.7~4.5Vである高SOC領域において、NiのK吸収端エネルギーは、充電と放電とで略一致している。NiのK吸収端エネルギーが一致している場合、即ちNiの価数等が等しく、この電圧範囲において、Niの価数変化と電圧値とが概ね1:1に対応しており、Niは可逆的に反応していると考えられる。即ち、該SOC領域において、SOC-OCP特性が示すヒステリシスが小さいレドックス反応が主として生じている(これをBの反応とする)。OCPは開放電位を意味する。
 該SOC領域においてBの反応量はAの反応量より多く、結果として、低SOC領域よりヒステリシスが小さい。
As shown in FIG. 3, in the high SOC region where the charge / discharge voltage value is approximately 3.7 to 4.5 V, the K absorption edge energy of Ni is substantially the same between charge and discharge. When the K absorption edge energies of Ni are the same, that is, the valence of Ni is equal, and in this voltage range, the valence change of Ni corresponds to a voltage value of approximately 1: 1, and Ni is reversible. It is thought that it is reacting. That is, in the SOC region, a redox reaction with a small hysteresis indicated by the SOC-OCP characteristic is mainly generated (this reaction is referred to as B reaction). OCP means open circuit potential.
In the SOC region, the reaction amount of B is larger than the reaction amount of A, and as a result, the hysteresis is smaller than that in the low SOC region.
 本実施形態においては、主としてBの反応が生じる領域の低い方の電圧値(下限電圧値)を実験により求める。下限電圧値において、ヒステリシスの有無が実質的に切り替わる。Bの反応の酸化量及び還元量は小さいと考えられる。
 そして、電圧値の昇降に基づいて、充電状態又は放電状態が下限電圧値以上の電圧領域に相当する領域にあると判定した場合、到達電圧値に基づいて電圧参照によりSOCを推定する。
 なお、ここではNiの酸化還元反応だけに注目して説明しているが、Bの反応はNiの酸化還元反応に限定されるものではない。Bの反応は、充放電の推移に応じて活物質により生じる一又は一群の反応のうち、蓄電量-電圧値特性のヒステリシスが小さい反応をいう。
In the present embodiment, the lower voltage value (lower limit voltage value) in the region where the reaction of B mainly occurs is obtained by experiments. At the lower limit voltage value, the presence or absence of hysteresis is substantially switched. The oxidation amount and reduction amount of the reaction of B are considered to be small.
Then, when it is determined that the charged state or the discharged state is in a region corresponding to a voltage region equal to or higher than the lower limit voltage value based on the increase / decrease of the voltage value, the SOC is estimated by voltage reference based on the reached voltage value.
Here, the description is given focusing on only the oxidation-reduction reaction of Ni, but the reaction of B is not limited to the oxidation-reduction reaction of Ni. The reaction B is a reaction in which the hysteresis of the storage amount-voltage value characteristic is small among one or a group of reactions caused by the active material according to the transition of charge / discharge.
 次に、蓄電素子の負極がヒステリシスが大きい活物質を含む場合につき説明する。一例として、負極が活物質としてSiO及びグラファイトを含む場合を挙げる。SiOの電気化学反応が生じるときのヒステリシスは、グラファイトの電気化学反応が生じるときのヒステリシスより大きい。
 図4は、この蓄電素子につき、対極Liのリチウムセルを用い、電気量と充放電電圧値との関係を求めた結果を示すグラフである。横軸は電気量(mAh/g)、縦軸は充放電電圧値(VvsLi/Li:Li/Li+平衡電位を基準にしたときの電位差)である。ここで、電気量はSOCに対応する。
 図4に示すように、充電曲線と、放電曲線とで電圧値が異なる。即ち同一SOCに対する電圧値が異なり、ヒステリシスを有する。この活物質の場合、同一SOCに対する電位差は、高SOC領域では低SOC領域より小さく、ヒステリシスが小さい。
Next, the case where the negative electrode of the power storage element includes an active material having a large hysteresis will be described. As an example, a case where the negative electrode includes SiO and graphite as active materials is given. The hysteresis when the electrochemical reaction of SiO occurs is larger than the hysteresis when the electrochemical reaction of graphite occurs.
FIG. 4 is a graph showing the results of determining the relationship between the amount of electricity and the charge / discharge voltage value using a lithium cell of the counter electrode Li for this power storage element. The horizontal axis represents the amount of electricity (mAh / g), and the vertical axis represents the charge / discharge voltage value (VvsLi / Li + : Li / Li + potential difference based on the equilibrium potential). Here, the amount of electricity corresponds to the SOC.
As shown in FIG. 4, the voltage value differs between the charge curve and the discharge curve. That is, the voltage values for the same SOC are different and have hysteresis. In the case of this active material, the potential difference with respect to the same SOC is smaller in the high SOC region than in the low SOC region, and the hysteresis is small.
 図5は、SOC(又は電圧値)が高くなるのに従い、ヒステリシスが大きい領域と小さい領域とが交互に表れる場合の充放電曲線である。横軸はSOC(%)、縦軸は電圧値(V)である。
 正極が組成の異なるLi過剰型の活物質を複数含む場合、負極がヒステリシスが大きい活物質を複数含む場合、並びに正極及び負極夫々がヒステリシスが大きい活物質を含む場合、ヒステリシスが大きい領域と小さい領域とが交互に表れる、又は、重なって表れることがある。
FIG. 5 is a charge / discharge curve in a case where a region having a large hysteresis and a region having a small hysteresis appear alternately as the SOC (or voltage value) increases. The horizontal axis represents SOC (%), and the vertical axis represents voltage value (V).
When the positive electrode includes a plurality of Li-rich active materials having different compositions, when the negative electrode includes a plurality of active materials having a large hysteresis, and when each of the positive electrode and the negative electrode includes an active material having a large hysteresis, a region where the hysteresis is large and a region where the hysteresis is small May appear alternately or may overlap.
 図5の電圧値がa~bである領域(2)においては、電圧値がa以下である領域(1)よりヒステリシスが小さい。領域(2)においては、ヒステリシスが大きいCの反応とヒステリシスが小さいDの反応とが生じている。領域(2)においてDの反応量が多いので、結果として領域(1)よりヒステリシスが小さい。
 図5の電圧値がc以上である領域(4)においては、電圧値がb~cである領域(3)よりヒステリシスが小さい。領域(4)においては、ヒステリシスが大きいEの反応とヒステリシスが小さいFの反応とが生じている。領域(4)においてEの反応量が多いので、結果として領域(3)よりヒステリシスが小さい。
In the region (2) where the voltage value is a to b in FIG. 5, the hysteresis is smaller than in the region (1) where the voltage value is a or less. In the region (2), a reaction of C having a large hysteresis and a reaction of D having a small hysteresis occur. Since the reaction amount of D is large in the region (2), the hysteresis is smaller than that in the region (1) as a result.
In the region (4) where the voltage value is c or more in FIG. 5, the hysteresis is smaller than in the region (3) where the voltage value is b to c. In the region (4), the reaction of E having a large hysteresis and the reaction of F having a small hysteresis occur. Since the reaction amount of E is large in the region (4), the hysteresis is smaller than that in the region (3) as a result.
 領域(2)の下限電圧値a、及び領域(4)の下限電圧値cを実験により求める。電圧値の昇降に基づいて、充電状態又は放電状態が、下限電圧値a以上の電圧領域に相当する領域(2)にあると判定した場合、及び下限電圧値c以上の電圧領域に相当する領域(4)にあると判定した場合、夫々、後述する到達電圧値に基づき、電圧参照によりSOCを推定する。 The lower limit voltage value a of the region (2) and the lower limit voltage value c of the region (4) are obtained by experiments. When it is determined that the charged state or the discharged state is in the region (2) corresponding to the voltage region above the lower limit voltage value a based on the rise and fall of the voltage value, and the region corresponding to the voltage region above the lower limit voltage value c When it determines with it being in (4), each SOC is estimated by voltage reference based on the ultimate voltage value mentioned later.
 なお、電圧値の領域は上述したように2又は4の領域に分かれる場合には限定されない。正極又は負極の活物質に応じて、複数の電気化学反応が生じ、ヒステリシスが大きい領域と小さい領域とが交互に表れる場合に、SOCが相対的に高く、ヒステリシスが小さい領域において、電圧参照によりSOCを推定する。 The voltage value region is not limited to the case where the voltage value region is divided into two or four regions as described above. Depending on the active material of the positive electrode or the negative electrode, when a plurality of electrochemical reactions occur and a region having a large hysteresis and a region having a small hysteresis appear alternately, in a region where the SOC is relatively high and the hysteresis is small, the SOC is referred by voltage reference. Is estimated.
(実施形態1)
 以下、実施形態1として、車両に搭載される蓄電モジュールを例に挙げて説明する。
 図6は、蓄電モジュールの一例を示す。蓄電モジュール50は、複数の蓄電素子200と、監視装置100と、それらを収容する収容ケース300とを備えている。蓄電モジュール50は、電気自動車(EV)や、プラグインハイブリッド電気自動車(PHEV)の動力源として使用されてもよい。
 蓄電素子200は、角形セルに限定されず、円筒形セルやパウチセルであってもよい。
 監視装置100は、複数の蓄電素子200と対向して配置される回路基板であってもよい。監視装置100は、蓄電素子200の状態を監視する。監視装置100が、蓄電量推定装置であってもよい。代替的に、監視装置100と有線接続または無線接続されるコンピュータやサーバが、監視装置100が出力する情報に基づいて蓄電量推定方法を実行してもよい。
(Embodiment 1)
Hereinafter, as the first embodiment, a power storage module mounted on a vehicle will be described as an example.
FIG. 6 shows an example of a power storage module. The power storage module 50 includes a plurality of power storage elements 200, a monitoring device 100, and a storage case 300 that stores them. The power storage module 50 may be used as a power source for an electric vehicle (EV) or a plug-in hybrid electric vehicle (PHEV).
The power storage element 200 is not limited to a square cell, and may be a cylindrical cell or a pouch cell.
The monitoring device 100 may be a circuit board arranged to face the plurality of power storage elements 200. Monitoring device 100 monitors the state of power storage element 200. The monitoring device 100 may be a storage amount estimation device. Alternatively, a computer or server that is wired or wirelessly connected to the monitoring device 100 may execute the storage amount estimation method based on information output from the monitoring device 100.
 図7は、蓄電モジュールの他の例を示す。蓄電モジュール(以下、電池モジュールという)1は、エンジン車両に好適に搭載される、12ボルト電源や、48ボルト電源であってもよい。図7は12V電源用の電池モジュール1の斜視図、図8は電池モジュール1の分解斜視図、図9は電池モジュール1のブロック図である。
 電池モジュール1は直方体状のケース2を有する。ケース2に複数のリチウムイオン二次電池(以下、電池という)3、複数のバスバー4、BMU(Battery Management Unit)6、電流センサ7が収容される。
FIG. 7 shows another example of the power storage module. The power storage module (hereinafter referred to as a battery module) 1 may be a 12-volt power source or a 48-volt power source that is suitably mounted on an engine vehicle. 7 is a perspective view of the battery module 1 for 12V power supply, FIG. 8 is an exploded perspective view of the battery module 1, and FIG. 9 is a block diagram of the battery module 1.
The battery module 1 has a rectangular parallelepiped case 2. The case 2 houses a plurality of lithium ion secondary batteries (hereinafter referred to as batteries) 3, a plurality of bus bars 4, a BMU (Battery Management Unit) 6, and a current sensor 7.
 電池3は、直方体状のケース31と、ケース31の一側面に設けられた、極性が異なる一対の端子32,32とを備える。ケース31には、正極板、セパレータ、及び負極板を積層した電極体33が収容されている。 The battery 3 includes a rectangular parallelepiped case 31 and a pair of terminals 32 and 32 provided on one side of the case 31 and having different polarities. The case 31 accommodates an electrode body 33 in which a positive electrode plate, a separator, and a negative electrode plate are stacked.
 電極体33の正極板が有する正極活物質及び負極板が有する負極活物質の少なくとも一方は、充放電の推移に応じて2以上の電気化学反応を生じる。一の電気化学反応が生じるときに示す蓄電量-電圧値特性のヒステリシスが、他の電気化学反応が生じるときの前記ヒステリシスより小さい。
 正極活物質としては、上述のLiMeO-LiMnO固溶体、Li2O-LiMeO2固溶体、Li3NbO-LiMeO2固溶体、LiWO-LiMeO2固溶体、LiTeO-LiMeO2固溶体、Li3SbO-LiFeO2固溶体、Li2RuO-LiMeO2固溶体、Li2RuO-LiMeO固溶体等のLi過剰型活物質が挙げられる。負極活物質としては、ハードカーボン、Si、Sn、Cd、Zn、Al、Bi、Pb、Ge、Ag等の金属若しくは合金、又はこれらを含むカルコゲン化物等が挙げられる。カルコゲン化物の一例として、SiOが挙げられる。本発明の技術は、これらの正極活物質及び負極活物質の少なくとも一方が含まれていれば適用可能である。
At least one of the positive electrode active material included in the positive electrode plate of the electrode body 33 and the negative electrode active material included in the negative electrode plate causes two or more electrochemical reactions depending on the transition of charge / discharge. The hysteresis of the charged amount-voltage value characteristic shown when one electrochemical reaction occurs is smaller than the hysteresis when the other electrochemical reaction occurs.
As the positive electrode active material, LiMeO 2 -Li 2 MnO 3 solid solution described above, Li 2 O-LiMeO 2 solid solution, Li 3 NbO 4 -LiMeO 2 solid solution, Li 4 WO 5 -LiMeO 2 solid solution, Li 4 TeO 5 -LiMeO 2 solid solution, Li 3 SbO 4 -LiFeO 2 solid solution, Li 2 RuO 3 -LiMeO 2 solid solution, and a Li-excess active material such as Li 2 RuO 3 -Li 2 MeO 3 solid solution. Examples of the negative electrode active material include metals or alloys such as hard carbon, Si, Sn, Cd, Zn, Al, Bi, Pb, Ge, and Ag, or chalcogenides containing these. An example of a chalcogenide is SiO. The technology of the present invention is applicable as long as at least one of these positive electrode active materials and negative electrode active materials is included.
 ケース2は合成樹脂製である。ケース2は、ケース本体21と、ケース本体21の開口部を閉塞する蓋部22と、蓋部22の外面に設けられたBMU収容部23と、BMU収容部23を覆うカバー24と、中蓋25と、仕切り板26とを備える。中蓋25や仕切板26は、設けられなくてもよい。
 ケース本体21の各仕切り板26の間に、電池3が挿入されている。
Case 2 is made of synthetic resin. The case 2 includes a case main body 21, a lid portion 22 that closes the opening of the case main body 21, a BMU housing portion 23 provided on the outer surface of the lid portion 22, a cover 24 that covers the BMU housing portion 23, and an inner lid 25 and a partition plate 26. The inner lid 25 and the partition plate 26 may not be provided.
The battery 3 is inserted between the partition plates 26 of the case body 21.
 中蓋25には、複数の金属製のバスバー4が載置されている。電池3の端子32が設けられている端子面に中蓋25が配置されて、隣り合う電池3の隣り合う端子32がバスバー4により接続され、電池3が直列に接続されている。 A plurality of metal bus bars 4 are placed on the inner lid 25. The inner lid 25 is arranged on the terminal surface on which the terminal 32 of the battery 3 is provided, the adjacent terminals 32 of the adjacent batteries 3 are connected by the bus bar 4, and the batteries 3 are connected in series.
 BMU収容部23は箱状をなし、一長側面の中央部に、外側に角型に突出した突出部23aを有する。蓋部22における突出部23aの両側には、鉛合金等の金属製で、極性が異なる一対の外部端子5,5が設けられている。BMU6は、基板に情報処理部60、電圧計測部8、及び電流計測部9を実装してなる。BMU収容部23にBMU6を収容し、カバー24によりBMU収容部23を覆うことにより、電池3とBMU6とが接続される。 The BMU accommodating portion 23 has a box shape, and has a protruding portion 23a protruding in a square shape on the outer side at the central portion of the long side surface. A pair of external terminals 5 and 5 made of a metal such as a lead alloy and having different polarities are provided on both sides of the protruding portion 23a of the lid portion 22. The BMU 6 includes an information processing unit 60, a voltage measurement unit 8, and a current measurement unit 9 mounted on a substrate. The battery 3 and the BMU 6 are connected by accommodating the BMU 6 in the BMU accommodating part 23 and covering the BMU accommodating part 23 with the cover 24.
 図9に示すように、情報処理部60は、CPU62と、メモリ63とを備える。
 メモリ63には、本実施形態に係るSOC推定プログラム63aと、複数のSOC-OCV曲線(データ)が格納されたテーブル63bとが記憶されている。SOC推定プログラム63aは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体70に格納された状態で提供され、BMU6にインストールすることによりメモリ63に格納される。また、通信網に接続されている図示しない外部コンピュータからSOC推定プログラム63aを取得し、メモリ63に記憶させることにしてもよい。
 CPU62はメモリ63から読み出したSOC推定プログラム63aに従って、後述するSOC推定処理を実行する。
As illustrated in FIG. 9, the information processing unit 60 includes a CPU 62 and a memory 63.
The memory 63 stores an SOC estimation program 63a according to the present embodiment and a table 63b in which a plurality of SOC-OCV curves (data) are stored. The SOC estimation program 63a is provided in a state stored in a computer-readable recording medium 70 such as a CD-ROM, DVD-ROM, or USB memory, and is stored in the memory 63 by being installed in the BMU 6. Alternatively, the SOC estimation program 63a may be acquired from an external computer (not shown) connected to the communication network and stored in the memory 63.
The CPU 62 executes an SOC estimation process to be described later in accordance with the SOC estimation program 63a read from the memory 63.
 電圧計測部8は、電圧検知線を介して電池3の両端に夫々接続されており、各電池3の電圧値を所定時間間隔で測定する。
 電流計測部9は、電流センサ7を介して電池3に流れる電流値を所定時間間隔で計測する。
 電池モジュール1の外部端子5,5は、エンジン始動用のスターターモータ及び電装品等の負荷11に接続されている。
 ECU(Electronic Control Unit)10は、BMU6及び負荷11に接続されている。
The voltage measuring unit 8 is connected to both ends of the battery 3 via voltage detection lines, and measures the voltage value of each battery 3 at predetermined time intervals.
The current measuring unit 9 measures the current value flowing through the battery 3 via the current sensor 7 at predetermined time intervals.
External terminals 5 and 5 of the battery module 1 are connected to a load 11 such as an engine starter motor and electrical components.
The ECU (Electronic Control Unit) 10 is connected to the BMU 6 and the load 11.
 以下、上述の一の活物質につき、充放電実験により、前記Bの反応がSOC40%以上で多く生じ、これに対応する下限電圧値がE0 Vであることが求められたとして説明する。SOCが40%以上であり、SOCが高い領域が、第1領域に相当する。 Hereinafter, the above-described one active material will be described on the assumption that a large amount of the reaction B occurs at SOC of 40% or more and the corresponding lower limit voltage value is E0V in charge / discharge experiments. A region where the SOC is 40% or more and the SOC is high corresponds to the first region.
 下限電圧値としてOCVを測定できる場合、該下限電圧値は一定であってもよい。下限電圧値としてCCV(Closed Circuit Voltage)を測定する場合、蓄電素子の使用に伴う劣化の程度に対応して、下限電圧値を下げる等、更新してもよい。蓄電素子の劣化の原因として、内部抵抗の上昇、容量バランスのずれの増大等が挙げられる。容量バランスのずれとは、例えば正極における充放電反応以外の副反応の量と、負極における充放電反応以外の副反応の量とに差が生じることによって、正極及び負極のうちの一方が完全には充電されないようになり、正極と負極の、可逆的に電荷イオンが電極から出入りできる容量が相違するようになることをいう。一般的なリチウムイオン電池では、正極における副反応量が、負極における副反応量よりも小さいために、「容量バランスのずれ」が増大すると、負極を完全に充電することができなくなり、蓄電素子から可逆的に取り出せる電気量が減少する。 When OCV can be measured as the lower limit voltage value, the lower limit voltage value may be constant. When CCV (Closed Circuit Voltage) is measured as the lower limit voltage value, it may be updated by lowering the lower limit voltage value in accordance with the degree of deterioration associated with the use of the storage element. Causes of deterioration of the power storage element include an increase in internal resistance and an increase in deviation in capacity balance. The difference in capacity balance is, for example, that a difference occurs between the amount of side reactions other than charge / discharge reactions at the positive electrode and the amount of side reactions other than charge / discharge reactions at the negative electrode, so that one of the positive electrode and the negative electrode is completely Means that the positive and negative electrodes have different capacities in which charged ions can enter and leave the electrode reversibly. In a general lithium ion battery, since the amount of side reaction at the positive electrode is smaller than the amount of side reaction at the negative electrode, if the “displacement of capacity balance” increases, the negative electrode cannot be fully charged and The amount of electricity that can be reversibly taken out decreases.
 充電して電圧値が下限電圧値を超えた後、到達した最大の電圧値を到達電圧値とする。
 メモリ63のテーブル63bには、下限電圧値から複数の到達電圧値までの複数のSOC-OCV曲線が格納されている。例えば下限電圧値E0 Vから到達電圧値E1 VまでのSOC-OCV曲線b、下限電圧値E0 Vから到達電圧値E2 VまでのSOC-OCV曲線c、下限電圧値E0 Vから到達電圧値E3 VまでのSOC-OCV曲線dが格納されている。ここで、E1 >E2 >E3 である。なお、SOC-OCV曲線b,c,dは、後述する比較試験においても参照されるが、図示はしていない。テーブル63bには、離散的ではなく、全ての到達電圧値に対応したSOC-OCV曲線が連続的に格納されている。連続的に格納せず、隣り合うSOC-OCV曲線に基づき、該曲線間に位置すべき曲線を内挿計算により求め、電圧値及び該曲線からSOCを推定してもよい。
After the battery is charged and the voltage value exceeds the lower limit voltage value, the maximum voltage value reached is taken as the reached voltage value.
A table 63b of the memory 63 stores a plurality of SOC-OCV curves from the lower limit voltage value to a plurality of ultimate voltage values. For example, the SOC-OCV curve b from the lower limit voltage value E0 V to the ultimate voltage value E1 V, the SOC-OCV curve c from the lower limit voltage value E0 V to the ultimate voltage value E2 V, and the lower limit voltage value E0 V to the ultimate voltage value E3 V The SOC-OCV curve d up to is stored. Here, E1>E2> E3. Note that the SOC-OCV curves b, c, and d are not shown in the figure, although they are also referred to in a comparative test described later. In the table 63b, SOC-OCV curves corresponding to all reached voltage values are stored continuously, not discretely. Instead of storing continuously, based on adjacent SOC-OCV curves, a curve to be positioned between the curves may be obtained by interpolation calculation, and the SOC may be estimated from the voltage value and the curve.
 以下、電圧参照用のSOC-OCV曲線の求め方について説明する。
 SOCが40%から100%までの各点のSOC(%)につき、各SOC(%)→40%→100%と変化させた場合の放電OCV曲線及び充電OCV曲線を求める。放電OCV曲線は、放電方向に微小な電流を通電させて、その際の電圧値を測定することで取得できる。又は、充電状態から各SOCまで放電し、休止させて電圧値が安定した電圧値を測定する。同様に、充電OCV曲線は、充電方向で上記の測定を実施すれば取得できる。SOC40%以上においても、前記活物質が僅かにヒステリシスを有している為、放電OCV曲線及び充電OCV曲線を平均化したOCV曲線を使用するのが好ましい。放電OCV曲線及び充電OCV曲線、又はそれらを補正したものを用いてもよい。
 なお、始めに放電OCP曲線及び充電OCP曲線を求めた後、電池3の電圧参照用のSOC-OCV曲線に補正してもよい。
 SOC-OCV曲線は予めテーブル63bに格納しておいてもよく、電池3の劣化を考慮し、所定の時間間隔で更新してもよい。
 SOC-OCV曲線はテーブル63bに格納する場合に限定されず、メモリ63に間数式として格納してもよい。
Hereinafter, a method for obtaining the SOC-OCV curve for voltage reference will be described.
A discharge OCV curve and a charge OCV curve are obtained for each SOC (%) where the SOC is 40% to 100% when each SOC (%) is changed from 40% to 100%. The discharge OCV curve can be obtained by passing a minute current in the discharge direction and measuring the voltage value at that time. Alternatively, a voltage value with a stable voltage value is measured by discharging from the charged state to each SOC and stopping. Similarly, the charging OCV curve can be obtained by performing the above measurement in the charging direction. Even when the SOC is 40% or more, since the active material has a slight hysteresis, it is preferable to use an OCV curve obtained by averaging the discharge OCV curve and the charge OCV curve. A discharge OCV curve and a charge OCV curve, or those obtained by correcting them may be used.
Note that the discharge OCP curve and the charge OCP curve may be obtained first, and then corrected to the SOC-OCV curve for battery 3 voltage reference.
The SOC-OCV curve may be stored in the table 63b in advance, and may be updated at predetermined time intervals in consideration of deterioration of the battery 3.
The SOC-OCV curve is not limited to being stored in the table 63b, and may be stored in the memory 63 as an intermediate expression.
 以下、本実施形態に係るSOC推定方法について説明する。
 図10及び図11は、CPU62によるSOC推定処理の手順を示すフローチャートである。CPU62は、所定の、又は適宜の時間間隔でS1からの処理を繰り返す。
 CPU62は、電池3の端子間の電圧値及び電流値を取得する(S1)。後述する下限電圧値及び到達電圧値はOCVであるので、電池3の電流量が大きい場合、取得した電圧値をOCVに補正する必要がある。OCVへの補正値は、複数の電圧値及び電流値のデータから回帰直線を用いて、電流値がゼロである場合の電圧値を推定すること等により得られる。電池3を流れる電流量が暗電流程度に小さい(請求項6の微小電流である)場合、取得した電圧値をOCVとみなすことができる。
Hereinafter, the SOC estimation method according to the present embodiment will be described.
10 and 11 are flowcharts showing the procedure of the SOC estimation process performed by the CPU 62. The CPU 62 repeats the processing from S1 at a predetermined or appropriate time interval.
CPU62 acquires the voltage value and electric current value between the terminals of the battery 3 (S1). Since the lower limit voltage value and the ultimate voltage value described later are OCV, it is necessary to correct the acquired voltage value to OCV when the current amount of the battery 3 is large. The correction value to OCV is obtained by estimating the voltage value when the current value is zero using a regression line from a plurality of voltage value and current value data. When the amount of current flowing through the battery 3 is as small as a dark current (the minute current of claim 6), the acquired voltage value can be regarded as OCV.
 CPU62は、電流値の絶対値が閾値以上であるか否かを判定する(S2)。閾値は、電池3の状態が充電状態又は放電状態と、休止状態とのいずれであるかを判定する為に設定される。CPU62は電流値の絶対値が閾値以上でないと判定した場合(S2:NO)、処理をS13へ進める。 CPU62 determines whether the absolute value of an electric current value is more than a threshold value (S2). The threshold value is set in order to determine whether the state of the battery 3 is a charged state, a discharged state, or a resting state. If the CPU 62 determines that the absolute value of the current value is not equal to or greater than the threshold value (S2: NO), the process proceeds to S13.
 CPU62は、電流値の絶対値が閾値以上であると判定した場合(S2:YES)、電流値が0より大きいか否かを判定する(S3)。電流値が0より大きい場合、電池3の状態は充電状態であると判定できる。CPU62は電流値が0より大きくないと判定した場合(S3:NO)、処理をS9へ進める。 When the CPU 62 determines that the absolute value of the current value is greater than or equal to the threshold (S2: YES), the CPU 62 determines whether the current value is greater than 0 (S3). When the current value is larger than 0, it can be determined that the state of the battery 3 is the charged state. If the CPU 62 determines that the current value is not greater than 0 (S3: NO), the process proceeds to S9.
 CPU62は電流値が0より大きいと判定した場合(S3:YES)、電圧値が下限電圧値以上であるか否かを判定する(S4)。CPU62は電圧値が下限電圧値以上でないと判定した場合(S4:NO)、処理をS8へ進める。 When the CPU 62 determines that the current value is greater than 0 (S3: YES), it determines whether the voltage value is equal to or higher than the lower limit voltage value (S4). If the CPU 62 determines that the voltage value is not greater than or equal to the lower limit voltage value (S4: NO), the process proceeds to S8.
 CPU62は電圧値が下限電圧値以上であると判定した場合(S4:YES)、電圧参照のフラグをオンにする(S5)。
 CPU62は、取得した電圧値が前回の到達電圧値より大きいか否かを判定する(S6)。CPU62は電圧値が前回の到達電圧値より大きくないと判定した場合(S6:NO)、処理をS8へ進める。
If the CPU 62 determines that the voltage value is greater than or equal to the lower limit voltage value (S4: YES), the CPU 62 turns on the voltage reference flag (S5).
The CPU 62 determines whether or not the acquired voltage value is larger than the previous reached voltage value (S6). If the CPU 62 determines that the voltage value is not greater than the previous reached voltage value (S6: NO), the process proceeds to S8.
 CPU62は電圧値が前回の到達電圧値より大きいと判定した場合(S6:YES)、メモリ63において、電圧値を到達電圧値に更新する(S7)。
 CPU62は、電流積算によりSOCを推定し(S8)、処理を終了する。
When the CPU 62 determines that the voltage value is larger than the previous ultimate voltage value (S6: YES), the CPU 62 updates the voltage value to the ultimate voltage value in the memory 63 (S7).
CPU62 estimates SOC by electric current integration (S8), and complete | finishes a process.
 CPU62は電流値が0より小さく、電池3の状態が放電状態であると判定した場合、S9において、電圧値が下限電圧値未満であるか否かを判定する(S9)。CPU62は電圧値が下限電圧値未満でないと判定した場合(S9:NO)、処理をS12へ進める。
 CPU62は電圧値が下限電圧値未満であると判定した場合(S9:YES)、電圧参照のフラグをオフする(S10)。
 CPU62は到達電圧値をリセットする(S11)。
 CPU62は、電流積算によりSOCを推定し(S12)、処理を終了する。
If the CPU 62 determines that the current value is less than 0 and the state of the battery 3 is a discharged state, it determines whether or not the voltage value is less than the lower limit voltage value in S9 (S9). If the CPU 62 determines that the voltage value is not less than the lower limit voltage value (S9: NO), the process proceeds to S12.
When the CPU 62 determines that the voltage value is less than the lower limit voltage value (S9: YES), the CPU 62 turns off the voltage reference flag (S10).
The CPU 62 resets the ultimate voltage value (S11).
The CPU 62 estimates the SOC by current integration (S12) and ends the process.
 CPU62は電流値の絶対値が閾値未満であり、電池3の状態が休止状態であると判定した場合、電圧参照のフラグがオンであるか否かを判定する(S13)。CPU62は電圧参照フラグがオンでないと判定した場合(S13:NO)、処理をS16へ進める。 When the CPU 62 determines that the absolute value of the current value is less than the threshold value and the battery 3 is in the resting state, the CPU 62 determines whether or not the voltage reference flag is on (S13). If the CPU 62 determines that the voltage reference flag is not on (S13: NO), the process proceeds to S16.
 CPU62は電圧参照のフラグがオンであると判定した場合(S13:YES)、前回のS2で休止状態であると判定してから設定時間が経過したか否かを判定する(S14)。設定時間は、取得した電圧値をOCVとみなす為に十分な時間を予め実験により求める。休止状態であると判定してからの電流値の取得回数及び取得間隔に基づき、前記時間を超えたか否かを判定する。これにより、休止状態において、より高精度にSOCを推定することができる。
 CPU62は設定時間が経過していないと判定した場合(S14:NO)、処理をS16へ進める。
 CPU62はS16において、電流積算によりSOCを推定し、処理を終了する。
When the CPU 62 determines that the voltage reference flag is on (S13: YES), the CPU 62 determines whether or not the set time has elapsed since it was determined to be in the dormant state in the previous S2 (S14). As the set time, a sufficient time for considering the acquired voltage value as the OCV is obtained in advance by an experiment. It is determined whether or not the time has been exceeded based on the number of acquisitions and the acquisition interval of the current value after determining that it is in a resting state. Thereby, the SOC can be estimated with higher accuracy in the resting state.
If the CPU 62 determines that the set time has not elapsed (S14: NO), the process proceeds to S16.
In S16, the CPU 62 estimates the SOC by current integration and ends the process.
 CPU62は設定時間が経過したと判定した場合(S14:YES)、取得した電圧値はOCVとみなすことができ、電圧参照によりSOCを推定し(S15)、処理を終了する。CPU62は、メモリ63に記憶された到達電圧値に基づいて、テーブル63bから一のSOC-OCV曲線を選択する。充放電が繰り返された場合、電圧値が昇降し、即ち充電から放電へ切り換わった変曲点のうち高い変曲点が到達電圧値に設定される。該SOC-OCV曲線において、S1で取得した電圧値に対応するSOCを読み取る。 When the CPU 62 determines that the set time has elapsed (S14: YES), the acquired voltage value can be regarded as the OCV, and the SOC is estimated by referring to the voltage (S15), and the process is terminated. The CPU 62 selects one SOC-OCV curve from the table 63b based on the ultimate voltage value stored in the memory 63. When charging / discharging is repeated, the voltage value rises and falls, that is, the high inflection point among the inflection points switched from charging to discharging is set to the ultimate voltage value. In the SOC-OCV curve, the SOC corresponding to the voltage value acquired in S1 is read.
 なお、CPU62が電圧計測部8から取得する電圧値は、電流値により多少変動するので、実験により補正係数を求めて電圧値を補正することもできる。 Note that the voltage value acquired by the CPU 62 from the voltage measuring unit 8 varies somewhat depending on the current value. Therefore, the voltage value can be corrected by obtaining a correction coefficient through experiments.
 以下、充放電を繰り返した場合の、本実施形態に係る電圧参照によるSOC推定と、従来の電流積算によるSOC推定との差異を比較した結果について説明する。
 図12は、充放電時における、時間に対する電圧値の推移を示すグラフである。横軸は時間(秒)、縦軸は充放電電圧値(VvsLi/Li)である。なお、本実施例は微小電流により充放電を実施している為、通電中の電圧値は、OCVとほぼ同じ値を示すことを確認している。
 図12に示すように、1回目の充電が行われて電圧値が下限電圧値E0 Vを超え、E3 Vに到達した後、1回目の放電が行われた。電圧値がE0 Vに達した後、2回目の充電が行われ、電圧値はE1 Vに達し、その後、2回目の放電が行われた。
Hereinafter, the result of comparing the difference between the SOC estimation based on the voltage reference according to the present embodiment and the SOC estimation based on the conventional current integration when charging / discharging is repeated will be described.
FIG. 12 is a graph showing the transition of the voltage value with respect to time during charging and discharging. The horizontal axis represents time (seconds), and the vertical axis represents the charge / discharge voltage value (VvsLi / Li + ). In addition, since the present Example is performing charging / discharging by a very small electric current, it has confirmed that the voltage value during electricity supply shows the substantially same value as OCV.
As shown in FIG. 12, after the first charge was performed and the voltage value exceeded the lower limit voltage value E0 V and reached E3 V, the first discharge was performed. After the voltage value reached E0 V, the second charge was performed, the voltage value reached E1 V, and then the second discharge was performed.
 メモリ63には、1回目の到達電圧値としてE3 Vが記憶される。2回目の充電でE3 Vを超えた時点で到達電圧値が更新される。1回目の放電及び2回目の充電においてE3 Vに達するまでの間は、前記SOC-OCV曲線dが使用される。2回目の充電のE3 VからE1 Vまでの間はテーブル63bに記憶された別のSOC-OCV曲線が使用される。2回目の放電のE1 Vから下限電圧値のE0 Vまでの間は前記SOC-OCV曲線bが使用される。 In the memory 63, E3V is stored as the first reached voltage value. The reached voltage value is updated when it exceeds E3 超 え V in the second charge. The SOC-OCV curve d is used until E3 V is reached in the first discharge and the second charge. Another SOC-OCV curve stored in the table 63b is used between E3 V and E1 V in the second charge. The SOC-OCV curve b is used between E1 V of the second discharge and the lower limit voltage value E0 V.
 1回目の放電及び2回目の充電においてE3 Vに達するまでの間、並びに2回目の放電のE3 Vから下限電圧値のE0 Vまでの間の、電圧参照により算出されたSOCの推移を図13に示す。
 図14は図12の充放電電圧値の推移において、電流積算によりSOCを算出した場合のSOCの推移を示す。
FIG. 13 shows the transition of the SOC calculated by voltage reference during the first discharge and the second charge until E3 V is reached, and between the second discharge E3 V and the lower limit voltage E0 V. Shown in
FIG. 14 shows the transition of the SOC when the SOC is calculated by current integration in the transition of the charge / discharge voltage value of FIG.
 図15は、初期品の電池3につき、図12に示す充放電を行った場合の、本実施形態の電圧参照によりSOCを推定したときと、従来の電流積算によりSOCを推定したときとの差異を示すグラフである。横軸は時間(秒)、左側の縦軸はSOC(%)、右側の縦軸は前記差異(%)である。対照としての電流積算によるSOCの推定は、事前に放電容量を確認し、かつ精度の高い電流計を使用している為、式(1)中のQの放電容量及びIの電流値が正確である。真値に近似していると考えられる。
 図中、eは電流積算により求めたSOCの推移、fは、前記SOC-OCV曲線d及びbを用いて電圧参照により求めたSOCの推移、gは差異である。差異は、(電圧参照により算出したSOC)-(電流積算により算出したSOC)により求めた。
 図15より差異は略±4%未満であり、小さいことが分かる。
FIG. 15 shows the difference between when the SOC is estimated by referring to the voltage of the present embodiment and when the SOC is estimated by conventional current integration when the charge / discharge shown in FIG. It is a graph which shows. The horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%). The estimation of the SOC by current integration as a control confirms the discharge capacity in advance and uses a highly accurate ammeter, so the discharge capacity of Q and the current value of I in equation (1) are accurate. is there. It is thought that it approximates the true value.
In the figure, e is a transition of SOC obtained by current integration, f is a transition of SOC obtained by voltage reference using the SOC-OCV curves d and b, and g is a difference. The difference was obtained by (SOC calculated by voltage reference) − (SOC calculated by current integration).
FIG. 15 shows that the difference is less than about ± 4% and is small.
 図16は、初期品の電池3につき、図12と異なるパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。横軸は時間(秒)、左側の縦軸はSOC(%)、右側の縦軸は前記差異(%)である。
 図中、eは電流積算により求めたSOCの推移、fは、前記SOC-OCV曲線c及びbを用いて電圧参照により求めたSOCの推移、gは差異である。
 図16より差異は略±3%未満であり、小さいことが分かる。
FIG. 16 is a graph showing a difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration when the battery 3 of the initial product is charged and discharged in a pattern different from that of FIG. is there. The horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
In the figure, e is a transition of SOC obtained by current integration, f is a transition of SOC obtained by voltage reference using the SOC-OCV curves c and b, and g is a difference.
It can be seen from FIG. 16 that the difference is less than about ± 3% and is small.
 図17は、初期品の電池3につき、図12と異なるパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。横軸は時間(秒)、左側の縦軸はSOC(%)、右側の縦軸は前記差異(%)である。
 図中、eは電流積算により求めたSOCの推移、fは、前記SOC-OCV曲線bを用いて電圧参照により求めたSOCの推移、gは差異である。
 図17より差異は略±5%未満であり、小さいことが分かる。
 以上より、本実施形態の電圧参照によるSOCの推定は、対照の電流積算によるSOCの推定との誤差が小さく、精度が高いことが確認された。
FIG. 17 is a graph showing the difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration when the battery 3 of the initial product is charged and discharged in a pattern different from that of FIG. is there. The horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
In the figure, e is a transition of SOC obtained by current integration, f is a transition of SOC obtained by voltage reference using the SOC-OCV curve b, and g is a difference.
FIG. 17 shows that the difference is less than about ± 5% and is small.
From the above, it was confirmed that the SOC estimation based on the voltage reference of the present embodiment has a small error and high accuracy from the SOC estimation based on the current integration of the control.
 図18は、劣化品の電池3につき、図12に示す充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。横軸は時間(秒)、左側の縦軸はSOC(%)、右側の縦軸は前記差異(%)である。テーブル63bには、実験により劣化品のSOC-OCV曲線も求めて格納されている。又は、上述したように、SOC-OCV曲線は所定時間間隔で更新されている。
 図中、eは電流積算により求めたSOCの推移、fは、劣化品のSOC-OCV曲線を用いて電圧参照により求めたSOCの推移、gは差異である。
 図18より差異は略±4%未満であり、小さいことが分かる。
FIG. 18 is a graph showing a difference between when the SOC is estimated by referring to the voltage and when the SOC is estimated by current integration when the charge / discharge shown in FIG. 12 is performed for the deteriorated battery 3. The horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%). In the table 63b, an SOC-OCV curve of a deteriorated product is also obtained by experiment and stored. Alternatively, as described above, the SOC-OCV curve is updated at predetermined time intervals.
In the figure, e is a transition of SOC obtained by current integration, f is a transition of SOC obtained by voltage reference using a SOC-OCV curve of a deteriorated product, and g is a difference.
FIG. 18 shows that the difference is less than about ± 4% and is small.
 図19は、劣化品の電池3につき、図16と同一のパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。横軸は時間(秒)、左側の縦軸はSOC(%)、右側の縦軸は前記差異(%)である。
 図中、eは電流積算により求めたSOCの推移、fは、劣化品のSOC-OCV曲線を用いて電圧参照により求めたSOCの推移、gは差異である。
 図19より差異は略±4%未満であり、小さいことが分かる。
FIG. 19 is a graph showing the difference between when the SOC is estimated by voltage reference and when the SOC is estimated by current integration, when charging and discharging the same pattern as in FIG. It is. The horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
In the figure, e is a transition of SOC obtained by current integration, f is a transition of SOC obtained by voltage reference using a SOC-OCV curve of a deteriorated product, and g is a difference.
FIG. 19 shows that the difference is less than about ± 4% and is small.
 図20は、劣化品の電池3につき、図17と同一のパターンの充放電を行った場合の、電圧参照によりSOCを推定したときと、電流積算によりSOCを推定したときとの差異を示すグラフである。横軸は時間(秒)、左側の縦軸はSOC(%)、右側の縦軸は前記差異(%)である。
 図中、eは電流積算により求めたSOCの推移、fは、劣化品のSOC-OCV曲線を用いて電圧参照により求めたSOCの推移、gは差異である。
 図20より差異は略±5%未満であり、小さいことが分かる。
 以上より、本実施形態の電圧参照によるSOCの推定は、劣化品の電池3においても、対照の電流積算によるSOCの推定との誤差が小さく、精度が高いことが確認された。
FIG. 20 is a graph showing a difference between when the SOC is estimated based on voltage reference and when the SOC is estimated by current integration when charging / discharging in the same pattern as in FIG. It is. The horizontal axis represents time (seconds), the left vertical axis represents SOC (%), and the right vertical axis represents the difference (%).
In the figure, e is a transition of SOC obtained by current integration, f is a transition of SOC obtained by voltage reference using a SOC-OCV curve of a deteriorated product, and g is a difference.
FIG. 20 shows that the difference is less than about ± 5% and is small.
From the above, it was confirmed that the SOC estimation based on the voltage reference of the present embodiment has a small error and high accuracy even in the deteriorated battery 3 with the SOC estimation based on the current integration of the control.
 以上のように、本実施形態においては、ヒステリシスが小さい(ヒステリシスが実質的にない)、下限電圧値から到達電圧値までの範囲において、SOC-OCV曲線、及び現時点の電圧値に基づいてSOCを推定するので、SOCの推定の精度が良好である。従って、高精度にOCVリセットを行うことができる。
 充電及び放電のいずれにおいても、SOCを推定することができる。設定した到達電圧値に基づいてSOC-OCV曲線を選択することで、複雑なパターンで、充放電が繰り返された場合に、電圧値の履歴のみにより、SOCを推定できる。また、取得した電圧値が前回の到達電圧値を超えた場合のみ、到達電圧値を更新することで、充電時の最終の電圧値に基づきSOC-OCV曲線を選択する特許文献1より高精度にSOCを推定できる。
As described above, in the present embodiment, the hysteresis is small (substantially no hysteresis), and the SOC is calculated based on the SOC-OCV curve and the current voltage value in the range from the lower limit voltage value to the reached voltage value. Since the estimation is performed, the accuracy of the estimation of the SOC is good. Therefore, the OCV reset can be performed with high accuracy.
The SOC can be estimated in both charging and discharging. By selecting the SOC-OCV curve based on the set reached voltage value, when charging / discharging is repeated in a complicated pattern, the SOC can be estimated based only on the voltage value history. Further, only when the acquired voltage value exceeds the previous reached voltage value, the reached voltage value is updated, so that the SOC-OCV curve is selected based on the final voltage value at the time of charging with higher accuracy. The SOC can be estimated.
 SOC-OCV曲線から推定できる為、蓄電量としてSOCに限定されるものではなく、電力量等、電池3に蓄えられた現在のエネルギーの量を推定することができる。
 上述の比較試験では、異なる到達電圧値に対応する、3つのSOC-OCV曲線のみを使用している。到達電圧値からSOC100%の電圧値まで充電するとき、SOCを電圧参照により算出できていない。上述のように、全ての到達電圧値に対応したSOC-OCV曲線を連続的にテーブル63bに格納することで、又は、曲線間のSOC-OCV曲線を内挿計算により算出することで、前記SOCも電圧参照により推定できる。
Since it can be estimated from the SOC-OCV curve, the amount of electricity stored is not limited to SOC, and the amount of current energy stored in the battery 3 such as the amount of power can be estimated.
In the comparative test described above, only three SOC-OCV curves corresponding to different ultimate voltage values are used. When charging from the ultimate voltage value to a voltage value of SOC 100%, the SOC cannot be calculated by voltage reference. As described above, the SOC-OCV curve corresponding to all the reached voltage values is continuously stored in the table 63b, or the SOC-OCV curve between the curves is calculated by interpolation, thereby calculating the SOC. Can also be estimated by voltage reference.
 S1の電圧値及び電流値の取得の間隔が低頻度である場合、多くのSOC-OCV曲線を必要とせず、曲線間のSOC-OCV曲線を算出することで、SOCを推定できる。
 S1の電圧値及び電流値の取得の間隔が高頻度である場合、多くのSOC-OCV曲線をテーブル63bに格納しておくのが好ましい。この場合、高精度にSOCを推定できる。
When the interval of acquiring the voltage value and current value of S1 is low, it is possible to estimate the SOC by calculating the SOC-OCV curve between the curves without requiring many SOC-OCV curves.
When the interval of acquiring the voltage value and current value of S1 is high, it is preferable to store many SOC-OCV curves in the table 63b. In this case, the SOC can be estimated with high accuracy.
(実施形態2)
 実施形態2においては、リアルタイムにSOCを推定する場合について説明する。CPU62によるSOC推定処理が異なること以外は、実施形態1と同様の構成を有する。
 以下、本実施形態のCPU62によるSOC推定処理について説明する。
(Embodiment 2)
In the second embodiment, a case where the SOC is estimated in real time will be described. The configuration is the same as that of the first embodiment except that the SOC estimation process by the CPU 62 is different.
Hereinafter, the SOC estimation process by the CPU 62 of the present embodiment will be described.
 図21及び図22は、CPU62によるSOC推定処理の手順を示すフローチャートである。CPU62は、所定の間隔でS21からの処理を繰り返す。
 CPU62は、電池3の端子間の電圧値及び電流値を取得する(S21)。
 CPU62は、電流値の絶対値が閾値以上であるか否かを判定する(S22)。閾値は、電池3の状態が充電状態又は放電状態と、休止状態とのいずれであるかを判定する為に設定される。CPU62は電流値の絶対値が閾値以上でないと判定した場合(S22:NO)、処理をS33へ進める。
21 and 22 are flowcharts showing the procedure of the SOC estimation process performed by the CPU 62. The CPU 62 repeats the processing from S21 at a predetermined interval.
CPU62 acquires the voltage value and electric current value between the terminals of the battery 3 (S21).
CPU62 determines whether the absolute value of an electric current value is more than a threshold value (S22). The threshold value is set in order to determine whether the state of the battery 3 is a charged state, a discharged state, or a resting state. If the CPU 62 determines that the absolute value of the current value is not equal to or greater than the threshold value (S22: NO), the process proceeds to S33.
 CPU62は、電流値の絶対値が閾値以上であると判定した場合(S22:YES)、電流値が0より大きいか否かを判定する(S23)。電流値が0より大きい場合、電池3の状態は充電状態である。CPU62は電流値が0より大きくないと判定した場合(S23:NO)、処理をS29へ進める。
 CPU62は電流値が0より大きいと判定した場合(S23:YES)、電圧値が前回の到達電圧値より大きいか否かを判定する(S24)。CPU62は電圧値が前回の到達電圧値より大きくないと判定した場合(S24:NO)、処理をS26へ進める。
When the CPU 62 determines that the absolute value of the current value is equal to or greater than the threshold value (S22: YES), the CPU 62 determines whether the current value is greater than 0 (S23). When the current value is larger than 0, the battery 3 is in a charged state. If the CPU 62 determines that the current value is not greater than 0 (S23: NO), the process proceeds to S29.
When determining that the current value is larger than 0 (S23: YES), the CPU 62 determines whether or not the voltage value is larger than the previous reached voltage value (S24). If the CPU 62 determines that the voltage value is not greater than the previous voltage value (S24: NO), the process proceeds to S26.
 CPU62は電圧値が前回の到達電圧値より大きいと判定した場合(S24:YES)、電圧値を到達電圧値に更新する(S25)。
 CPU62は、電圧値が下限電圧値以上であるか否かを判定する(S26)。CPU62は電圧値が下限電圧値以上でないと判定した場合(S26:NO)、電流積算によりSOCを推定し(S28)、処理を終了する。
When the CPU 62 determines that the voltage value is larger than the previous reached voltage value (S24: YES), the CPU 62 updates the voltage value to the reached voltage value (S25).
CPU62 determines whether a voltage value is more than a lower limit voltage value (S26). If the CPU 62 determines that the voltage value is not greater than or equal to the lower limit voltage value (S26: NO), the CPU 62 estimates the SOC by current integration (S28) and ends the process.
 CPU62は電圧値が下限電圧値以上であると判定した場合(S26:YES)、電圧参照によりSOCを推定し(S27)、処理を終了する。 When the CPU 62 determines that the voltage value is equal to or higher than the lower limit voltage value (S26: YES), the CPU 62 estimates the SOC by referring to the voltage (S27), and ends the process.
 テーブル63bには、下限電圧から複数の到達電圧までの複数のSOC-OCV曲線が格納されている。CPU62は、記憶された到達電圧値に対応するSOC-OCV曲線を選択し、該SOC-OCV曲線において、現時点のOCVからSOCを読み取る。CPU62は、S21で取得した電圧値及び電流値から現時点のOCVを算出する。OCVの算出は、複数の電圧値及び電流値のデータから回帰直線を用いて、電流値がゼロである場合の電圧値を推定すること等により得られる。また、電流値が暗電流の電流値のように小さい場合は、取得した電圧値をOCVに読み替えることもできる。 The table 63b stores a plurality of SOC-OCV curves from the lower limit voltage to a plurality of ultimate voltages. The CPU 62 selects an SOC-OCV curve corresponding to the stored reached voltage value, and reads the SOC from the current OCV in the SOC-OCV curve. The CPU 62 calculates the current OCV from the voltage value and current value acquired in S21. The OCV can be calculated by estimating a voltage value when the current value is zero using a regression line from a plurality of voltage value and current value data. When the current value is as small as the dark current value, the acquired voltage value can be read as OCV.
 CPU62は電流値が0より小さく、電池3の状態が放電状態であると判定した場合、S29において、電圧値が下限電圧値以上であるか否かを判定する(S29)。
 CPU62は電圧値が下限電圧値以上であると判定した場合(S29:YES)、上記と同様にして電圧参照によりSOCを推定する(S30)。
 CPU62は電圧値が下限電圧値以上でないと判定した場合(S29:NO)、到達電圧値をリセットする(S31)。
 CPU62は電流積算によりSOCを推定し(S32)、処理を終了する。
If the CPU 62 determines that the current value is smaller than 0 and the state of the battery 3 is a discharged state, it determines whether or not the voltage value is equal to or higher than the lower limit voltage value in S29 (S29).
When the CPU 62 determines that the voltage value is equal to or higher than the lower limit voltage value (S29: YES), the CPU 62 estimates the SOC by referring to the voltage in the same manner as described above (S30).
When the CPU 62 determines that the voltage value is not equal to or higher than the lower limit voltage value (S29: NO), the CPU 62 resets the ultimate voltage value (S31).
The CPU 62 estimates the SOC by current integration (S32) and ends the process.
 CPU62は電流値の絶対値が閾値未満であり、電池3の状態が休止状態であると判定した場合、電圧値が下限電圧値以上であるか否かを判定する(S33)。CPU62は電圧値が下限電圧値以上でないと判定した場合(S33:NO)、処理をS36へ進める。
 CPU62は電圧値が下限電圧値以上であると判定した場合(S33:YES)、前回、S22で休止状態であると判定してから設定時間が経過したか否かを判定する(S34)。設定時間は、取得した電圧値をOCVとみなす為に十分な時間を予め実験により求める。
 CPU62は設定時間が経過していないと判定した場合(S34:NO)、処理をS36へ進める。
 CPU62は電流積算によりSOCを推定し(S36)、処理を終了する。
When the CPU 62 determines that the absolute value of the current value is less than the threshold value and the battery 3 is in the resting state, the CPU 62 determines whether or not the voltage value is equal to or higher than the lower limit voltage value (S33). If the CPU 62 determines that the voltage value is not greater than or equal to the lower limit voltage value (S33: NO), the process proceeds to S36.
When the CPU 62 determines that the voltage value is equal to or higher than the lower limit voltage value (S33: YES), the CPU 62 determines whether or not the set time has elapsed since the last time that it was determined to be in the dormant state in S22 (S34). As the set time, a sufficient time for considering the acquired voltage value as the OCV is obtained in advance by an experiment.
If the CPU 62 determines that the set time has not elapsed (S34: NO), the process proceeds to S36.
The CPU 62 estimates the SOC by current integration (S36) and ends the process.
 CPU62は設定時間が経過したと判定した場合(S34:YES)、取得した電圧値はOCVとみなすことができ、上記と同様にして電圧参照によりSOCを推定し(S35)、処理を終了する。 When the CPU 62 determines that the set time has elapsed (S34: YES), the acquired voltage value can be regarded as an OCV, and the SOC is estimated by referring to the voltage in the same manner as described above (S35), and the process ends.
 本実施形態においては、充放電時にリアルタイムにSOCを推定することができる。
 本実施形態においては、ヒステリシスが実質的にない、下限電圧値から到達電圧値までの範囲において、SOC-OCV曲線、及び現時点の電圧値に基づいてSOCを推定する。従って、SOCの推定の精度が良好である。
 充電及び放電のいずれにおいても、SOCを推定できる。複雑なパターンで、充放電が繰り返された場合においても、電圧値の履歴のみにより、SOCを推定できる。
 電圧値を用いることができるので、蓄電量としてSOCに限定されず、電力量等、電池3に蓄えられた現在のエネルギーの量を推定することができる。
In the present embodiment, the SOC can be estimated in real time during charge / discharge.
In the present embodiment, the SOC is estimated based on the SOC-OCV curve and the current voltage value in the range from the lower limit voltage value to the ultimate voltage value that is substantially free of hysteresis. Therefore, the accuracy of SOC estimation is good.
The SOC can be estimated in both charging and discharging. Even when charging / discharging is repeated in a complicated pattern, the SOC can be estimated only from the history of the voltage value.
Since the voltage value can be used, the amount of stored electricity is not limited to the SOC, and the amount of current energy stored in the battery 3 such as the amount of power can be estimated.
 以上のように、充放電の推移に応じて2以上の電気化学反応を生じ、一の電気化学反応が生じる場合に示す蓄電量-電圧値特性のヒステリシスが、他の電気化学反応が生じる場合の前記ヒステリシスより小さい、活物質を正極及び負極の少なくとも一方に含む蓄電素子の蓄電量を推定する蓄電量推定装置であって、前記一の電気化学反応が前記他の電気化学反応より多く生じる場合に、前記蓄電量-電圧値特性に基づいて蓄電量を推定する推定部を備える。 As described above, two or more electrochemical reactions occur according to the charge / discharge transition, and the hysteresis of the storage amount-voltage value characteristic shown when one electrochemical reaction occurs is the case where another electrochemical reaction occurs. A storage amount estimation device that estimates a storage amount of a storage element that includes an active material in at least one of a positive electrode and a negative electrode that is smaller than the hysteresis, and when the one electrochemical reaction occurs more than the other electrochemical reaction And an estimation unit for estimating the storage amount based on the storage amount-voltage value characteristic.
 蓄電量推定装置は、充電と放電とで、蓄電量に対する電圧値の変化が略一致している、一の電気化学反応が他の電気化学反応より多く(主として)生じる場合に、蓄電量-電圧値特性に基づいて蓄電量を推定する。従って、蓄電量の推定の精度が良好である。高容量で、蓄電量-電圧値特性がヒステリシスを示す活物質を有する蓄電素子の蓄電量を良好に推定できる。
 充電及び放電のいずれにおいても、蓄電量を推定することができる。複雑なパターンで、充放電が繰り返された場合においても、電圧値の履歴のみにより、蓄電量を推定できる。
 電圧値を用いることができるので、蓄電量としてSOCに限定されず、電力量等、蓄電素子に蓄えられた現在のエネルギーの量を推定できる。充放電曲線に基づいて、SOC0%までの放電可能なエネルギー、及びSOC100%までに必要な充電エネルギーを予測することができる。
The storage amount estimation device is a storage amount-voltage in the case where one electrochemical reaction occurs more (mainly) than the other electrochemical reaction in which the change in voltage value with respect to the storage amount is substantially the same between charge and discharge. The amount of stored electricity is estimated based on the value characteristics. Therefore, the accuracy of estimating the amount of stored electricity is good. It is possible to satisfactorily estimate the amount of electricity stored in an electricity storage element having an active material having a high capacity and having an electricity storage amount-voltage value characteristic showing hysteresis.
In both charging and discharging, the charged amount can be estimated. Even when charging / discharging is repeated in a complicated pattern, the amount of stored electricity can be estimated only from the history of voltage values.
Since the voltage value can be used, the amount of electricity stored is not limited to the SOC, and the amount of current energy stored in the electricity storage element such as the amount of power can be estimated. Based on the charge / discharge curve, the dischargeable energy up to SOC 0% and the charge energy required up to SOC 100% can be predicted.
 上述の蓄電量推定装置において、前記蓄電量-電圧値特性は、前記蓄電量が相対的に高い側の第1領域と相対的に低い側の第2領域とを有し、前記推定部は、前記第1領域の蓄電量-電圧値特性に基づいて前記蓄電量を推定することが好ましい。 In the power storage amount estimation device described above, the power storage amount-voltage value characteristic includes a first region where the power storage amount is relatively high and a second region where the power storage amount is relatively low, and the estimation unit includes: It is preferable that the charged amount is estimated based on a charged amount-voltage value characteristic of the first region.
 蓄電量が相対的に低い側の第2領域においては、前記他の電気化学反応が生じ易く、蓄電量-電圧値特性がヒステリシスを示す。上記構成においては、蓄電量が相対的に高い側の第1領域の蓄電量-電圧値特性に基づいて蓄電量を推定するので、推定の精度が良好である。 In the second region where the storage amount is relatively low, the other electrochemical reaction is likely to occur, and the storage amount-voltage value characteristic shows hysteresis. In the above configuration, the amount of charge is estimated based on the amount of charge-voltage value characteristic of the first region on the side where the amount of charge is relatively high, so the estimation accuracy is good.
 蓄電量推定装置は、蓄電量-電圧値特性がヒステリシスを示す活物質を含む蓄電素子の蓄電量を推定する蓄電量推定装置であって、前記ヒステリシスの有無が実質的に切り替わる下限電圧値から複数の到達電圧値までの複数の蓄電量-電圧値特性を保持する保持部と、前記蓄電素子の電圧値を取得する電圧取得部と、該電圧取得部が取得した電圧値が前記下限電圧値を超えた後の到達電圧値を設定する設定部と、該設定部により設定した前記到達電圧値に基づいて、一の蓄電量-電圧値特性を選択する選択部と、前記一の蓄電量-電圧値特性、及び前記電圧取得部により取得した電圧値に基づいて蓄電量を推定する推定部とを備える。 The storage amount estimation device is a storage amount estimation device that estimates a storage amount of a storage element including an active material whose storage amount-voltage value characteristic exhibits hysteresis, and a plurality of lower limit voltage values at which the presence or absence of the hysteresis is substantially switched. A holding unit that holds a plurality of stored charge amount-voltage value characteristics up to the ultimate voltage value, a voltage acquisition unit that acquires a voltage value of the storage element, and a voltage value acquired by the voltage acquisition unit sets the lower limit voltage value A setting unit for setting the reached voltage value after exceeding, a selection unit for selecting one storage amount-voltage value characteristic based on the reaching voltage value set by the setting unit, and the one storage amount-voltage An estimation unit configured to estimate a storage amount based on a value characteristic and a voltage value acquired by the voltage acquisition unit.
 蓄電量推定装置は、ヒステリシスが実質的にない、下限電圧値から到達電圧値までの範囲において、蓄電量-電圧値特性、及び取得した電圧値に基づいて蓄電量を推定する。ヒステリシスを有する電極材料を用いた蓄電素子において、ヒステリシスが大きい反応と、ヒステリシスが実質的にない(ヒステリシスが小さい)反応とは実質的に独立して起きる。これらの反応は、互いに干渉しない。到達電圧値を超えない限り、下限電圧値とその到達電圧値との間の一義的な曲線に沿って充電及び放電が行われる。従って、蓄電量の推定の精度が良好である。
 充電及び放電のいずれにおいても、蓄電量を推定することができる。電圧値の昇降に基づき到達電圧値を設定して蓄電量-電圧値特性を選択する。複雑なパターンで、充放電が繰り返された場合においても、電圧値の履歴のみにより、蓄電量を推定することができる。
 電圧値を用いることができるので、蓄電量としてSOCに限定されず、電力量等、蓄電素子に蓄えられた現在のエネルギーの量を推定することができる。
The storage amount estimation device estimates the storage amount based on the storage amount-voltage value characteristic and the acquired voltage value in the range from the lower limit voltage value to the ultimate voltage value that is substantially free of hysteresis. In an electricity storage device using an electrode material having hysteresis, a reaction having a large hysteresis and a reaction having substantially no hysteresis (small hysteresis) occur substantially independently. These reactions do not interfere with each other. As long as the ultimate voltage value is not exceeded, charging and discharging are performed along a unique curve between the lower limit voltage value and the ultimate voltage value. Therefore, the accuracy of estimating the amount of stored electricity is good.
In both charging and discharging, the charged amount can be estimated. The reached voltage value is set based on the rise and fall of the voltage value, and the storage amount-voltage value characteristic is selected. Even when charging / discharging is repeated in a complicated pattern, the amount of stored electricity can be estimated based only on the history of voltage values.
Since the voltage value can be used, the amount of stored electricity is not limited to the SOC, and the amount of current energy stored in the storage element such as the amount of power can be estimated.
 上述の蓄電量推定装置において、前記設定部は、前記到達電圧値を記憶部に記憶し、前記電圧取得部が取得した電圧値が前記記憶部に前回記憶された到達電圧値より大きい場合に、取得した電圧値を到達電圧値に更新することが好ましい。 In the above-described storage amount estimation device, the setting unit stores the reached voltage value in a storage unit, and when the voltage value acquired by the voltage acquisition unit is greater than the reached voltage value previously stored in the storage unit, It is preferable to update the acquired voltage value to the ultimate voltage value.
 蓄電量推定装置は、より大きい到達電圧値(更新された到達電圧値)に基づいて蓄電量-電圧値特性を選択することで、取得した電圧値に基づいて精度良く蓄電量を推定することができる。 The power storage amount estimation device can accurately estimate the power storage amount based on the acquired voltage value by selecting a power storage amount-voltage value characteristic based on a larger ultimate voltage value (updated ultimate voltage value). it can.
 上述の蓄電量推定装置において、前記電圧値は開放電圧値であってもよい。 In the above-described power storage amount estimation device, the voltage value may be an open-circuit voltage value.
 例えば蓄電素子が休止中であり、開放電圧値を取得できる場合等において、該開放電圧値及び蓄電量-開放電圧特性に基づいて、容易に蓄電量を推定できる。通電時の電流値が大きい場合、電圧値を開放電圧値に補正することで、通電中においても、電圧参照により蓄電量を推定することができる。 For example, when the storage element is at rest and the open-circuit voltage value can be acquired, the storage amount can be easily estimated based on the open-circuit voltage value and the storage amount-open-circuit voltage characteristic. When the current value at the time of energization is large, by correcting the voltage value to the open-circuit voltage value, the charged amount can be estimated by referring to the voltage even during energization.
 上述の蓄電量推定装置において、前記電圧値は、前記蓄電素子を微小電流が流れる場合の電圧値であってもよい。 In the above-described storage amount estimation device, the voltage value may be a voltage value when a minute current flows through the storage element.
 電流値が小さいときの電圧値を開放電圧値とみなすことで、容易に電圧値から蓄電量を推定することができ、蓄電素子の充放電中においても、蓄電量を推定できる。 By regarding the voltage value when the current value is small as the open-circuit voltage value, the stored amount can be easily estimated from the voltage value, and the stored amount can be estimated even during charging and discharging of the storage element.
 上述の蓄電量推定装置において、前記蓄電量はSOCであることが好ましい。 In the above-described storage amount estimation device, the storage amount is preferably SOC.
 高容量材料についてSOCを推定することで、既存の制御システムへの適用性が向上する。SOCに基づいて、放電可能エネルギーのような蓄電量を容易に算出することができる。蓄電量推定装置は、OCVとSOCとが一対一対応しない、ヒステリシスを有する電極材料を用いた蓄電素子の充電状態を、特別なセンサや追加の部品を要することなく、高精度に推定することができる。 適用 By estimating the SOC for high-capacity materials, the applicability to existing control systems is improved. Based on the SOC, the amount of electricity stored such as dischargeable energy can be easily calculated. The storage amount estimation device can accurately estimate the state of charge of a storage element using an electrode material having hysteresis, in which OCV and SOC do not correspond one to one, without requiring a special sensor or additional parts. it can.
 蓄電モジュールは、複数の蓄電素子と、上述のいずれかの蓄電量推定装置とを備える。 The power storage module includes a plurality of power storage elements and any one of the above-described power storage amount estimation devices.
 車両用の蓄電モジュールや産業用の蓄電モジュールは、典型的には複数の蓄電素子が直列に接続される。複数の蓄電素子が直列及び並列に接続される場合もある。蓄電モジュールの性能を発揮するためには、各蓄電素子のSOCを精度良く推定し、複数の蓄電素子間でSOCのばらつきが生じた時にはバランシング処理を行う必要がある。たとえ各蓄電素子が高容量であっても、複数の蓄電素子間のSOCのばらつきを検出できなければ、蓄電モジュールの性能を使い切ることができない。上述の蓄電量推定装置によって各蓄電素子のSOCを高精度に推定できるので、蓄電モジュールの性能を最大限発揮することが出来る。蓄電モジュールは、特に高容量に対する要求が高い、EVやPHEVの動力源として好適に使用される。 A vehicle power storage module and an industrial power storage module typically have a plurality of power storage elements connected in series. A plurality of power storage elements may be connected in series and in parallel. In order to exhibit the performance of the power storage module, it is necessary to accurately estimate the SOC of each power storage element, and to perform balancing processing when the SOC varies among the plurality of power storage elements. Even if each storage element has a high capacity, the performance of the storage module cannot be used up unless the variation in SOC between the plurality of storage elements can be detected. Since the SOC of each storage element can be estimated with high accuracy by the above-described storage amount estimation device, the performance of the storage module can be maximized. The power storage module is suitably used as a power source for EVs and PHEVs, which have a particularly high demand for high capacity.
 蓄電量推定方法は、蓄電量-電圧値特性がヒステリシスを示す活物質を含む蓄電素子の蓄電量を推定する蓄電量推定方法であって、前記ヒステリシスの有無が実質的に切り替わる下限電圧値から複数の到達電圧値までの複数の蓄電量-電圧値特性を保持し、取得する電圧値が前記下限電圧値を超えた後の到達電圧値を設定し、設定した到達電圧値に基づいて、一の蓄電量-電圧値特性を選択し、前記一の蓄電量-電圧値特性、及び取得した電圧値に基づいて蓄電量を推定する。 The storage amount estimation method is a storage amount estimation method for estimating a storage amount of a storage element including an active material whose storage amount-voltage value characteristic exhibits hysteresis, and a plurality of lower limit voltage values at which the presence or absence of the hysteresis is substantially switched. A plurality of stored charge amount-voltage value characteristics up to the ultimate voltage value are set, an ultimate voltage value after the acquired voltage value exceeds the lower limit voltage value is set, and based on the set ultimate voltage value, one A storage amount-voltage value characteristic is selected, and the storage amount is estimated based on the one storage amount-voltage value characteristic and the acquired voltage value.
 上記方法においては、ヒステリシスが実質的にない、下限電圧値から到達電圧値までの範囲において、蓄電量-電圧値特性、及び取得した電圧値に基づいて蓄電量を推定する。従って、蓄電量の推定の精度が良好である。高容量で、蓄電量-電圧値特性がヒステリシスを示す活物質を有する蓄電素子の蓄電量を良好に推定できる。
 充電及び放電のいずれにおいても、蓄電量を推定することができる。電圧値の昇降に係る変曲点を到達電圧値に設定して蓄電量-電圧値特性を選択する。複雑なパターンで、充放電が繰り返された場合においても、電圧値の履歴のみにより、蓄電量を推定できる。
 電圧値を用いることができるので、蓄電量としてSOCに限定されず、電力量等、蓄電素子に蓄えられた現在のエネルギーの量を推定できる。
In the above method, the storage amount is estimated on the basis of the storage amount-voltage value characteristic and the acquired voltage value in the range from the lower limit voltage value to the ultimate voltage value substantially free of hysteresis. Therefore, the accuracy of estimating the amount of stored electricity is good. It is possible to satisfactorily estimate the amount of electricity stored in an electricity storage element having an active material having a high capacity and having an electricity storage amount-voltage value characteristic showing hysteresis.
In both charging and discharging, the charged amount can be estimated. The inflection point related to the rise and fall of the voltage value is set to the ultimate voltage value, and the charged amount-voltage value characteristic is selected. Even when charging / discharging is repeated in a complicated pattern, the amount of stored electricity can be estimated only from the history of voltage values.
Since the voltage value can be used, the amount of electricity stored is not limited to the SOC, and the amount of current energy stored in the electricity storage element such as the amount of power can be estimated.
 コンピュータプログラムは、蓄電量-電圧値特性がヒステリシスを示す活物質を含む蓄電素子の蓄電量を推定するコンピュータに、前記蓄電素子の電圧値を取得し、取得した電圧値が、ヒステリシスの有無が実質的に切り替わる下限電圧値を超えたか否かを判定し、前記電圧値が前記下限電圧値を超えたと判定した場合に、到達電圧値を設定し、設定した前記到達電圧値に基づき、前記下限電圧値から複数の到達電圧値までの複数の蓄電量-電圧値特性を参照して、一の蓄電量-電圧値特性を選択し、前記一の蓄電量-電圧値特性、及び取得した電圧値に基づいて蓄電量を推定する。 The computer program obtains the voltage value of the power storage element in a computer that estimates the power storage amount of the power storage element including an active material whose power storage amount-voltage value characteristic shows hysteresis, and the acquired voltage value is substantially the presence or absence of hysteresis. It is determined whether or not the lower limit voltage value to be switched automatically is exceeded, and when it is determined that the voltage value exceeds the lower limit voltage value, an ultimate voltage value is set, and the lower limit voltage is set based on the set ultimate voltage value. One charge amount-voltage value characteristic is selected by referring to a plurality of charge amount-voltage value characteristics from a value to a plurality of reached voltage values, and the one charge amount-voltage value characteristic is obtained and the acquired voltage value is selected. Based on this, the amount of stored electricity is estimated.
 本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
 本発明に係る蓄電量推定装置は、車載用のリチウムイオン二次電池に適用される場合に限定されず、鉄道用回生電力貯蔵装置、太陽光発電システム等の他の蓄電モジュールにも適用できる。微小電流が流れる蓄電モジュールにおいては、蓄電素子の正極端子・負極端子間の電圧値、又は、蓄電モジュールの正極端子・負極端子間の電圧値をOCVとみなすことができる。
 蓄電素子は、リチウムイオン二次電池に限定されるものではなく、ヒステリシス特性を有する他の二次電池や電気化学セルであってもよい。
The present invention is not limited to the contents of the above-described embodiments, and various modifications can be made within the scope of the claims. That is, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
The power storage amount estimation device according to the present invention is not limited to the case where it is applied to a vehicle-mounted lithium ion secondary battery, and can also be applied to other power storage modules such as a railway regenerative power storage device and a solar power generation system. In a power storage module through which a minute current flows, the voltage value between the positive electrode terminal and the negative electrode terminal of the power storage element or the voltage value between the positive electrode terminal and the negative electrode terminal of the power storage module can be regarded as OCV.
The power storage element is not limited to a lithium ion secondary battery, and may be another secondary battery or an electrochemical cell having hysteresis characteristics.
 監視装置100又はBMU6が蓄電量推定装置である場合に限定されない。CMU(Cell Monitoring Unit)が蓄電量推定装置であってもよい。蓄電量推定装置は、監視装置100等が組み込まれた蓄電モジュールの一部であってもよい。蓄電量推定装置は、蓄電素子や蓄電モジュールとは別個に構成されて、蓄熱量推定対象の蓄電素子を含む蓄電モジュールに、蓄熱量の推定時に接続されてもよい。蓄熱量推定装置は、蓄電素子や蓄電モジュールを遠隔監視してもよい。 * It is not limited to when the monitoring apparatus 100 or BMU6 is an electrical storage amount estimation apparatus. A CMU (Cell Monitoring Unit) may be a storage amount estimation device. The power storage amount estimation device may be a part of a power storage module in which the monitoring device 100 or the like is incorporated. The power storage amount estimation device may be configured separately from a power storage element and a power storage module, and may be connected to a power storage module including a power storage element whose heat storage amount is to be estimated when the heat storage amount is estimated. The heat storage amount estimation device may remotely monitor the power storage element and the power storage module.
 1、50 電池モジュール(蓄電モジュール)
 2 ケース
 21 ケース本体
 22 蓋部
 23 BMU収容部
 24 カバー
 25 中蓋
 26 仕切り板
 3、200 電池(蓄電素子)
 31 ケース
 32 端子
 33 電極体
 4 バスバー
 5 外部端子
 6 BMU(蓄電量推定装置)
 60 情報処理部
 62 CPU(推定部、電圧取得部、設定部、選択部)
 63 メモリ(保持部、記憶部)
 63a SOC推定プログラム
 63b テーブル
 7 電流センサ
 8 電圧計測部
 9 電流計測部
 10 ECU
 70 記録媒体
 100 監視装置(蓄電量推定装置)
 300 収容ケース
1, 50 Battery module (storage module)
2 Case 21 Case body 22 Lid portion 23 BMU accommodating portion 24 Cover 25 Middle lid 26 Partition plate 3,200 Battery (power storage element)
31 Case 32 Terminal 33 Electrode body 4 Bus bar 5 External terminal 6 BMU (Battery amount estimation device)
60 Information processing unit 62 CPU (estimation unit, voltage acquisition unit, setting unit, selection unit)
63 Memory (holding unit, storage unit)
63a SOC estimation program 63b Table 7 Current sensor 8 Voltage measurement unit 9 Current measurement unit 10 ECU
70 Recording medium 100 Monitoring device (power storage amount estimation device)
300 containment case

Claims (9)

  1.  充放電の推移に応じて2以上の電気化学反応を生じ、一の電気化学反応が生じる場合に示す蓄電量-電圧値特性のヒステリシスが、他の電気化学反応が生じる場合の前記ヒステリシスより小さい、活物質を正極及び負極の少なくとも一方に含む蓄電素子の蓄電量を推定する蓄電量推定装置であって、
     前記一の電気化学反応が前記他の電気化学反応より多く生じる場合に、前記蓄電量-電圧値特性に基づいて蓄電量を推定する推定部を備える、蓄電量推定装置。
    Two or more electrochemical reactions occur according to the transition of charge and discharge, and the hysteresis of the storage amount-voltage value characteristic shown when one electrochemical reaction occurs is smaller than the hysteresis when the other electrochemical reaction occurs. A power storage amount estimation device that estimates a power storage amount of a power storage element including an active material in at least one of a positive electrode and a negative electrode,
    A storage amount estimation device comprising: an estimation unit that estimates a storage amount based on the storage amount-voltage value characteristic when the one electrochemical reaction occurs more than the other electrochemical reaction.
  2.  前記蓄電量-電圧値特性は、前記蓄電量が相対的に高い側の第1領域と相対的に低い側の第2領域とを有し、
     前記推定部は、前記第1領域の蓄電量-電圧値特性に基づいて前記蓄電量を推定する、請求項1に記載の蓄電量推定装置。
    The charged amount-voltage value characteristic has a first region where the charged amount is relatively high and a second region where the charged amount is relatively low,
    The storage amount estimation device according to claim 1, wherein the estimation unit estimates the storage amount based on a storage amount-voltage value characteristic of the first region.
  3.  蓄電量-電圧値特性がヒステリシスを示す活物質を含む蓄電素子の蓄電量を推定する蓄電量推定装置であって、
     前記ヒステリシスの有無が実質的に切り替わる下限電圧値から複数の到達電圧値までの複数の蓄電量-電圧値特性を保持する保持部と、
     前記蓄電素子の電圧値を取得する電圧取得部と、
     該電圧取得部が取得した電圧値が前記下限電圧値を超えた後の到達電圧値を設定する設定部と、
     該設定部により設定した前記到達電圧値に基づいて、一の蓄電量-電圧値特性を選択する選択部と、
     前記一の蓄電量-電圧値特性、及び前記電圧取得部により取得した電圧値に基づいて蓄電量を推定する推定部と
     を備える、蓄電量推定装置。
    A storage amount estimation device for estimating a storage amount of a storage element including an active material having a storage amount-voltage value characteristic showing hysteresis,
    A holding unit that holds a plurality of charged amount-voltage value characteristics from a lower limit voltage value at which the presence or absence of hysteresis substantially switches to a plurality of reached voltage values;
    A voltage acquisition unit for acquiring a voltage value of the storage element;
    A setting unit for setting an ultimate voltage value after the voltage value acquired by the voltage acquisition unit exceeds the lower limit voltage value;
    A selection unit that selects one storage amount-voltage value characteristic based on the reached voltage value set by the setting unit;
    A storage amount estimation device comprising: the one storage amount-voltage value characteristic; and an estimation unit that estimates a storage amount based on the voltage value acquired by the voltage acquisition unit.
  4.  前記設定部は、
     前記到達電圧値を記憶部に記憶し、
     前記電圧取得部が取得した電圧値が前記記憶部に前回記憶された到達電圧値より大きい場合に、取得した電圧値を到達電圧値に更新する、請求項3に記載の蓄電量推定装置。
    The setting unit
    Storing the ultimate voltage value in a storage unit;
    The storage amount estimation device according to claim 3, wherein when the voltage value acquired by the voltage acquisition unit is larger than the ultimate voltage value stored in the storage unit last time, the acquired voltage value is updated to the ultimate voltage value.
  5.  前記電圧値は開放電圧値である、請求項1から4までのいずれか1項に記載の蓄電量推定装置。 The storage amount estimation device according to any one of claims 1 to 4, wherein the voltage value is an open-circuit voltage value.
  6.  前記電圧値は、前記蓄電素子を微小電流が流れる場合の電圧値である、請求項1から4までのいずれか1項に記載の蓄電量推定装置。 The storage amount estimation device according to any one of claims 1 to 4, wherein the voltage value is a voltage value when a minute current flows through the storage element.
  7.  複数の蓄電素子と、
     請求項1から6までのいずれか1項に記載の蓄電量推定装置と
     を備える、蓄電モジュール。
    A plurality of power storage elements;
    A power storage module comprising: the power storage amount estimation device according to any one of claims 1 to 6.
  8.  蓄電量-電圧値特性がヒステリシスを示す活物質を含む蓄電素子の蓄電量を推定する蓄電量推定方法であって、
     前記ヒステリシスの有無が実質的に切り替わる下限電圧値から複数の到達電圧値までの複数の蓄電量-電圧値特性を保持し、
     取得する電圧値が前記下限電圧値を超えた後の到達電圧値を設定し、
     設定した到達電圧値に基づいて、一の蓄電量-電圧値特性を選択し、
     前記一の蓄電量-電圧値特性、及び取得した電圧値に基づいて蓄電量を推定する、
     蓄電量推定方法。
    A storage amount estimation method for estimating a storage amount of a storage element including an active material having a storage amount-voltage value characteristic showing hysteresis,
    Holds a plurality of stored amount-voltage value characteristics from a lower limit voltage value at which the presence or absence of hysteresis substantially switches to a plurality of reached voltage values,
    Set the reached voltage value after the acquired voltage value exceeds the lower limit voltage value,
    Based on the set ultimate voltage value, select one charge amount-voltage value characteristic,
    Estimating the storage amount based on the one storage amount-voltage value characteristic and the acquired voltage value;
    A method for estimating the amount of stored electricity.
  9.  蓄電量-電圧値特性がヒステリシスを示す活物質を含む蓄電素子の蓄電量を推定するコンピュータに、
     前記蓄電素子の電圧値を取得し、
     取得した電圧値が、ヒステリシスの有無が実質的に切り替わる下限電圧値を超えたか否かを判定し、
     前記電圧値が前記下限電圧値を超えたと判定した場合に、到達電圧値を設定し、
     設定した前記到達電圧値に基づき、前記下限電圧値から複数の到達電圧値までの複数の蓄電量-電圧値特性を参照して、一の蓄電量-電圧値特性を選択し、
     前記一の蓄電量-電圧値特性、及び取得した電圧値に基づいて蓄電量を推定する
     処理を実行させる、コンピュータプログラム。
     
    A computer that estimates the amount of electricity stored in an electricity storage device that includes an active material whose amount-voltage value characteristic exhibits hysteresis,
    Obtaining a voltage value of the storage element;
    Determine whether the acquired voltage value exceeds the lower limit voltage value at which the presence or absence of hysteresis substantially switches,
    When it is determined that the voltage value exceeds the lower limit voltage value, an ultimate voltage value is set,
    Based on the set reached voltage value, referring to a plurality of stored charge-voltage value characteristics from the lower limit voltage value to a plurality of reached voltage values, selecting one stored charge-voltage value characteristic,
    A computer program for executing a process of estimating a storage amount based on the one storage amount-voltage value characteristic and an acquired voltage value.
PCT/JP2018/013057 2017-03-29 2018-03-28 Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program WO2018181624A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880023160.4A CN110476073B (en) 2017-03-29 2018-03-28 Storage battery amount estimation device, storage battery module, storage battery amount estimation method, and recording medium
EP18777306.4A EP3605125A4 (en) 2017-03-29 2018-03-28 Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program
US16/498,246 US20200018798A1 (en) 2017-03-29 2018-03-28 Storage amount estimation device, energy storage module, storage amount estimation method, and computer program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017064915 2017-03-29
JP2017-064915 2017-03-29
JP2018062289A JP6409208B1 (en) 2017-03-29 2018-03-28 Storage amount estimation device, storage module, storage amount estimation method, and computer program
JP2018-062289 2018-03-28

Publications (1)

Publication Number Publication Date
WO2018181624A1 true WO2018181624A1 (en) 2018-10-04

Family

ID=63676346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013057 WO2018181624A1 (en) 2017-03-29 2018-03-28 Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program

Country Status (1)

Country Link
WO (1) WO2018181624A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070360A1 (en) * 2022-09-28 2024-04-04 株式会社村田製作所 Secondary battery characteristic acquisition system and secondary battery characteristic acquisition method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090210179A1 (en) * 2008-02-19 2009-08-20 Gm Global Technology Operations, Inc. Model-based estimation of battery hysteresis
JP2013105519A (en) 2011-11-10 2013-05-30 Nissan Motor Co Ltd Device for controlling secondary battery and method for detecting soc thereof
JP2013213808A (en) * 2012-03-08 2013-10-17 Nissan Motor Co Ltd Control device for secondary battery and soc detection method
WO2015162967A1 (en) * 2014-04-23 2015-10-29 三菱電機株式会社 Remaining battery capacity estimation device and remaining battery capacity estimation method
JP2015230193A (en) * 2014-06-04 2015-12-21 ソニー株式会社 Deterioration state estimation device, charge state estimation device, ocv curve calculation/generation device, and electricity storage device
US9500713B1 (en) * 2013-03-05 2016-11-22 Qnovo Inc. Circuitry and techniques for determining an SOC of a battery/cell having a silicon-based anode and a fuel gauge therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090210179A1 (en) * 2008-02-19 2009-08-20 Gm Global Technology Operations, Inc. Model-based estimation of battery hysteresis
JP2013105519A (en) 2011-11-10 2013-05-30 Nissan Motor Co Ltd Device for controlling secondary battery and method for detecting soc thereof
JP2013213808A (en) * 2012-03-08 2013-10-17 Nissan Motor Co Ltd Control device for secondary battery and soc detection method
US9500713B1 (en) * 2013-03-05 2016-11-22 Qnovo Inc. Circuitry and techniques for determining an SOC of a battery/cell having a silicon-based anode and a fuel gauge therefor
WO2015162967A1 (en) * 2014-04-23 2015-10-29 三菱電機株式会社 Remaining battery capacity estimation device and remaining battery capacity estimation method
JP2015230193A (en) * 2014-06-04 2015-12-21 ソニー株式会社 Deterioration state estimation device, charge state estimation device, ocv curve calculation/generation device, and electricity storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070360A1 (en) * 2022-09-28 2024-04-04 株式会社村田製作所 Secondary battery characteristic acquisition system and secondary battery characteristic acquisition method

Similar Documents

Publication Publication Date Title
JP6409208B1 (en) Storage amount estimation device, storage module, storage amount estimation method, and computer program
JP6406468B1 (en) Storage amount estimation device, storage module, storage amount estimation method, and computer program
JP6477957B2 (en) Estimation device, power storage device, estimation method, and computer program
WO2018181620A1 (en) Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program
US11079440B2 (en) Management device, energy storage module, management method, and computer program
CN109791181B (en) SOC estimation device for power storage element, power storage device, and SOC estimation method for power storage element
WO2019240225A1 (en) Estimation device, power storage device, estimation method, and computer program
JP7115345B2 (en) Estimation device, power storage device, estimation method, and computer program
US11237214B2 (en) Estimation device, energy storage apparatus, estimation method, and computer program
JP7556287B2 (en) Deterioration estimation device, deterioration estimation method, and computer program
WO2018181624A1 (en) Stored electricity amount estimating device, electricity storage module, stored electricity amount estimating method, and computer program
WO2019017183A1 (en) Estimation device, power storage device, estimation method, and computer program
JP6406469B1 (en) Storage amount estimation device, storage module, storage amount estimation method, and computer program
JP6406470B1 (en) Management device, power storage module, management method, and computer program
JP7375473B2 (en) Energy storage amount estimating device, energy storage amount estimation method, and computer program
WO2018221514A1 (en) Management device, power storage module, management method, and computer program
WO2022220214A1 (en) Voltage estimation method, voltage estimation device, and voltage estimation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777306

Country of ref document: EP

Effective date: 20191029