WO2018181595A1 - Charged particle beam treatment device - Google Patents

Charged particle beam treatment device Download PDF

Info

Publication number
WO2018181595A1
WO2018181595A1 PCT/JP2018/013005 JP2018013005W WO2018181595A1 WO 2018181595 A1 WO2018181595 A1 WO 2018181595A1 JP 2018013005 W JP2018013005 W JP 2018013005W WO 2018181595 A1 WO2018181595 A1 WO 2018181595A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
dose
irradiation
collimator
Prior art date
Application number
PCT/JP2018/013005
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 宮下
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2018181595A1 publication Critical patent/WO2018181595A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a charged particle beam therapy apparatus.
  • an apparatus described in Patent Document 1 is known as a charged particle beam treatment apparatus that performs treatment by irradiating an affected area of a patient with a charged particle beam.
  • a charged particle beam accelerated by an accelerator is irradiated from an irradiation unit by a scanning method.
  • a part of unnecessary charged particle beams is shielded using a collimator, and then the charged particle beam is irradiated in an irradiation field that matches the shape of the irradiated object.
  • a part of the charged particle beam irradiated to the peripheral part of the irradiation field is shielded by the collimator, so that the penumbra (cut of dose distribution in the lateral direction) is improved. be able to.
  • shielding the charged particle beam at the periphery of the irradiation field with a collimator reduces the dose at the periphery of the irradiation field, and the flatness of the dose distribution of the charged particle beam with respect to the irradiated object (the dose in the entire irradiation field) There is a problem that the flatness of the distribution is lowered.
  • an object of the present invention is to provide a charged particle beam therapy system capable of achieving both improvement of the penumbra and ensuring flatness of the dose distribution.
  • a charged particle beam therapy system includes an accelerator that accelerates charged particles and emits the charged particle beam, and an irradiation unit that irradiates the irradiated object with the charged particle beam by a scanning method. And a collimator that defines the irradiation field of the charged particle beam according to the shape of the irradiated object, and a control unit that controls the irradiation unit, and the control unit charges the peripheral part of the irradiation field defined by the collimator.
  • irradiating a particle beam it modulates to the charged particle beam of a higher dose than when irradiating the other part in an irradiation field with a charged particle beam.
  • the irradiation field of the charged particle beam irradiated from the irradiation unit to the irradiated object by the scanning method can be defined by a collimator. That is, a part of the charged particle beam irradiated to the peripheral part of the irradiation field can be shielded by the collimator.
  • a collimator can improve the penumbra (cut of dose distribution in the lateral direction).
  • control unit when the control unit irradiates the charged particle beam to the periphery of the irradiation field defined by the collimator, it modulates the charged particle beam to a higher dose than when irradiating the other part of the irradiation field with the charged particle beam. To do. Therefore, at the periphery of the irradiation field, the dose of the charged particle beam itself is increased by the modulation, and the flatness of the dose distribution is reduced while the penumbra is improved.
  • the dose distribution can be flattened by shielding the part with a collimator. As described above, it is possible to achieve both improvement of the penumbra and ensuring flatness of the dose distribution.
  • the position corresponding to the apex of the dose distribution in the modulated dose distribution of the charged particle beam is set as the first position, and the apex of the dose distribution of the charged particle beam irradiated to the other part
  • the collimator is a position on the outer peripheral side of the first position, and the modulated charged particle beam is emitted at a position between the first position and the second position. May be shielded. Thereby, the collimator can shield a part of the charged particle beam modulated at the periphery of the irradiation field at an appropriate position.
  • the present invention it is possible to provide a charged particle beam therapy system capable of achieving both improvement of the penumbra and ensuring of flatness of the dose distribution.
  • FIG. 1 is a schematic configuration diagram of a charged particle beam therapy system according to an embodiment of the present invention. It is a schematic block diagram of the irradiation part vicinity of the charged particle beam therapy apparatus of FIG. It is a figure which shows the layer set with respect to the tumor. It is the figure which looked at the multileaf collimator from the irradiation axis direction. It is a graph which shows the dose distribution of the charged particle beam in the peripheral part vicinity of the irradiation field shown in FIG. It is a graph which shows the dose distribution of the charged particle beam in the peripheral part vicinity of the irradiation field of the charged particle beam therapy apparatus which concerns on a comparative example.
  • a charged particle beam therapy apparatus 1 is an apparatus used for cancer treatment or the like by radiation therapy, and charged particles generated by an ion source (not shown).
  • An accelerator 3 that accelerates and emits a charged particle beam
  • an irradiation unit 2 that irradiates the irradiated body with the charged particle beam
  • a beam transport line 21 that transports the charged particle beam emitted from the accelerator 3 to the irradiation unit 2. It is equipped with.
  • the irradiation unit 2 is attached to a rotating gantry 5 provided so as to surround the treatment table 4.
  • the irradiation unit 2 can be rotated around the treatment table 4 by a rotating gantry 5.
  • FIG. 2 is a schematic configuration diagram of the vicinity of the irradiation unit of the charged particle beam therapy system of FIG.
  • the “Z-axis direction” is a direction in which the base axis AX of the charged particle beam B extends, and is a depth direction of irradiation of the charged particle beam B.
  • the “base axis AX” is an irradiation axis of the charged particle beam B when it is not deflected by a scanning electromagnet 6 described later.
  • FIG. 2 shows a state in which the charged particle beam B is irradiated along the base axis AX.
  • the “X-axis direction” is one direction in a plane orthogonal to the Z-axis direction.
  • the “Y-axis direction” is a direction orthogonal to the X-axis direction in a plane orthogonal to the Z-axis direction.
  • the charged particle beam therapy apparatus 1 is an irradiation apparatus according to a scanning method.
  • the scanning method is not particularly limited, and line scanning, raster scanning, spot scanning, or the like may be employed.
  • the charged particle beam therapy system 1 includes an accelerator 3, an irradiation unit 2, a beam transport line 21, and a control unit 7.
  • the accelerator 3 is a device that accelerates charged particles and emits a charged particle beam B having a preset energy.
  • Examples of the accelerator 3 include a cyclotron, a synchrotron, a synchrocyclotron, a linac, and the like.
  • the energy adjusting unit 20 is used to adjust (decrease) the energy of the charged particle beam sent to the irradiation unit 2. It becomes possible. Since the synchrotron can easily change the energy of the emitted charged particle beam, the energy adjusting unit 20 may be omitted when the synchrotron is used as the accelerator 3.
  • the accelerator 3 is connected to the control unit 7 and the supplied current is controlled.
  • the charged particle beam B generated by the accelerator 3 is transported to the irradiation nozzle 9 by the beam transport line 21.
  • the beam transport line 21 connects the accelerator 3, the energy adjustment unit 20, and the irradiation unit 2, and transports the charged particle beam emitted from the accelerator 3 to the irradiation unit 2.
  • the irradiation unit 2 irradiates the tumor (irradiated body) 14 in the body of the patient 15 with the charged particle beam B.
  • the charged particle beam B is obtained by accelerating charged particles at high speed, and examples thereof include a proton beam, a heavy particle (heavy ion) beam, and an electron beam.
  • the irradiation unit 2 is an apparatus that irradiates the tumor 14 with a charged particle beam B emitted from an accelerator 3 that accelerates charged particles generated by an ion source (not shown) and transported by a beam transport line 21. .
  • the irradiation unit 2 includes a scanning electromagnet 6, a quadrupole electromagnet 8, a profile monitor 11, a dose monitor 12, position monitors 13a and 13b, a multi-leaf collimator 24, and a degrader 30.
  • the scanning electromagnet 6, the monitors 11, 12, 13 a, 13 b, the quadrupole electromagnet 8, and the degrader 30 are accommodated in the irradiation nozzle 9.
  • the irradiation part 2 is comprised by the irradiation nozzle 9 which accommodated each main component in the container.
  • the quadrupole electromagnet 8, the profile monitor 11, the dose monitor 12, the position monitors 13a and 13b, and the degrader 30 may be omitted.
  • the scanning electromagnet 6 includes an X-axis direction scanning electromagnet 6a and a Y-axis direction scanning electromagnet 6b.
  • the X-axis direction scanning electromagnet 6a and the Y-axis direction scanning electromagnet 6b are each composed of a pair of electromagnets, change the magnetic field between the pair of electromagnets according to the current supplied from the control unit 7, and pass between the electromagnets.
  • the charged particle beam B is scanned.
  • the X-axis direction scanning electromagnet 6a scans the charged particle beam B in the X-axis direction
  • the Y-axis direction scanning electromagnet 6b scans the charged particle beam B in the Y-axis direction.
  • the quadrupole electromagnet 8 includes an X-axis direction quadrupole electromagnet 8a and a Y-axis direction quadrupole electromagnet 8b.
  • the X-axis direction quadrupole electromagnet 8 a and the Y-axis direction quadrupole electromagnet 8 b converge and focus the charged particle beam B according to the current supplied from the control unit 7.
  • the X-axis direction quadrupole electromagnet 8a converges the charged particle beam B in the X-axis direction
  • the Y-axis direction quadrupole electromagnet 8b converges the charged particle beam B in the Y-axis direction.
  • the beam size of the charged particle beam B can be changed by changing the current supplied to the quadrupole electromagnet 8 to change the aperture amount (convergence amount).
  • the quadrupole electromagnet 8 is disposed in this order on the base axis AX and between the accelerator 3 and the scanning electromagnet 6.
  • the beam size is the size of the charged particle beam B on the XY plane.
  • the beam shape is the shape of the charged particle beam B on the XY plane.
  • the profile monitor 11 detects the beam shape and position of the charged particle beam B for alignment at the time of initial setting.
  • the profile monitor 11 is disposed on the base axis AX and between the quadrupole electromagnet 8 and the scanning electromagnet 6.
  • the dose monitor 12 detects the dose of the charged particle beam B.
  • the dose monitor 12 is disposed downstream of the scanning electromagnet 6 on the base axis AX.
  • the position monitors 13a and 13b detect and monitor the beam shape and position of the charged particle beam B.
  • the position monitors 13 a and 13 b are disposed on the base axis AX and downstream of the charged particle beam B from the dose monitor 12.
  • Each monitor 11, 12, 13 a, 13 b outputs the detected detection result to the control unit 7.
  • the degrader 30 finely adjusts the energy of the charged particle beam B by reducing the energy of the charged particle beam B passing therethrough.
  • the degrader 30 is provided at the distal end portion 9 a of the irradiation nozzle 9.
  • the tip 9a of the irradiation nozzle 9 is the end on the downstream side of the charged particle beam B.
  • the multi-leaf collimator 24 defines an irradiation field 60 of the charged particle beam B in a plane direction perpendicular to the irradiation axis direction, and includes shielding portions 24a and 24b including a plurality of comb teeth.
  • the shielding portions 24a and 24b are disposed so as to face each other, and an opening 24c is formed between the shielding portions 24a and 24b.
  • the irradiation field 60 is defined by the opening 24c.
  • the multi-leaf collimator 24 allows the charged particle beam B to pass through the opening 24c, thereby shielding the portion of the charged particle beam B irradiated to the peripheral portion of the irradiation field 60.
  • the multi-leaf collimator 24 can change the position and shape of the opening 24c, that is, the irradiation field 60, by moving the shielding portions 24a and 24b back and forth in a direction orthogonal to the Z-axis direction. . Further, the multi-leaf collimator 24 is guided along the irradiation axis direction by the linear guide 28 and is movable along the Z-axis direction. The multi-leaf collimator 24 is disposed on the downstream side of the monitor 4b.
  • the multi-leaf collimator 24 has a pair of leaf groups 31 and 32 that face each other in the X-axis direction.
  • the pair of leaf groups 31 and 32 face each other in the X-axis direction with the reference axis A in between on the XY plane orthogonal to the reference axis A.
  • the pair of leaf groups 31 and 32 includes a leaf member 40 that includes a large number of leaves 41 that can advance and retreat independently in the X-axis direction.
  • the leaf member 40 includes a leaf 41 and a leaf driving unit 43 that moves the leaf 41.
  • the leaf member 40 is disposed along the XY plane so that the leaf 41 of the leaf member 40 included in the leaf group 31 and the leaf 41 of the leaf member 40 included in the leaf group 32 face each other.
  • the leaf 41 is a rectangular plate-like member extending along the X-axis direction. Since the leaf 41 is a member used to shield the charged particle beam B, the leaf 41 is manufactured from a material capable of shielding the charged particle beam B. Examples of the material capable of shielding the charged particle beam B include brass, copper, tantalum, molybdenum, iron, and the like, but brass or iron is preferable from the viewpoint of good workability and cost.
  • the leaf drive unit 43 drives each leaf 41 in the X-axis direction based on a signal from the control unit 7 and arranges the leaf 41 at a requested position.
  • the control unit 7 sets the shape of the opening 24c of the multi-leaf collimator 24 according to the shape of the tumor 14 when viewed from the irradiation axis direction.
  • the charged particle beam B is irradiated by a scanning method. Accordingly, when the multi-leaf collimator 24 performs irradiation of a charged particle beam B to a layer L n described later, the irradiation field having a shape corresponding to the beam trajectory TL (see FIG. 3B) for the layer L n . 60 is formed. Details of the operation of the multi-leaf collimator 24 will be described later.
  • the control unit 7 includes, for example, a CPU, a ROM, a RAM, and the like.
  • the control unit 7 controls the accelerator 3, the scanning electromagnet 6, the quadrupole electromagnet 8, and the multi-leaf collimator 24 based on the detection results output from the monitors 11, 12, 13a, and 13b.
  • control unit 7 of the charged particle beam therapy apparatus 1 is connected to a treatment planning apparatus 100 that performs a treatment plan for charged particle beam therapy.
  • the treatment planning apparatus 100 measures the tumor 14 of the patient 15 by CT or the like before the treatment, and plans a dose distribution (a dose distribution of a charged particle beam to be irradiated) at each position of the tumor 14.
  • the treatment planning apparatus 100 creates a treatment plan map for the tumor 14.
  • the treatment planning apparatus 100 transmits the created treatment plan map to the control unit 7.
  • the tumor 14 is virtually divided into a plurality of layers in the Z-axis direction, and the charged particle beam is scanned in one layer so as to follow the scanning path determined in the treatment plan. Irradiate. Then, after the irradiation of the charged particle beam in the one layer is completed, the charged particle beam B is irradiated in the next adjacent layer.
  • the quadrupole electromagnet 8 is turned on (ON) so that the passing charged particle beam B converges.
  • the charged particle beam B is emitted from the accelerator 3.
  • the emitted charged particle beam B is scanned so as to follow the scanning path determined in the treatment plan by the control of the scanning electromagnet 6. Accordingly, the charged particle beam B is irradiated while being scanned within the irradiation range in one layer set in the Z-axis direction with respect to the tumor 14. Further, the multi-leaf collimator 24 forms an opening 24 c so as to shield a part of the charged particle beam B that is scanning the peripheral portion of the scanning path based on the control signal of the control unit 7. When the irradiation of one layer is completed, the charged particle beam B is irradiated to the next layer.
  • FIGS. 3A shows an irradiation object virtually sliced into a plurality of layers in the depth direction
  • FIG. 3B shows a scanning image of a charged particle beam in one layer viewed from the depth direction.
  • the irradiated object is virtually sliced into a plurality of layers in the irradiation depth direction, and in this example, from the deep layer (the range of the charged particle beam B is long).
  • the layers are virtually sliced into a layer L 1 , a layer L 2 ,..., A layer L n ⁇ 1 , a layer L n , a layer L n + 1 , a layer L N ⁇ 1 , a layer L N and an N layer.
  • the charged particle beam B follows the beam trajectory TL of the layer L n in the case of continuous irradiation (line scanning or raster scanning) while drawing the beam trajectory TL (scanning path).
  • the detail of the control content by the control part 7 is demonstrated.
  • the peripheral edge portions 61 and 62 extending in the X-axis direction and the peripheral edge portions 63 and 64 extending in the Y-axis direction of the irradiation field 60 both extend straight.
  • the peripheral edge portions 61 and 62 extending in the X-axis direction are defined by side edge portions of the leaf 41 extending in the X-axis direction.
  • the peripheral edge portions 63 and 64 extending in the Y-axis direction are defined by a plurality of end portions in the X-axis direction of the leaf 41 being arranged in a straight line.
  • the beam trajectory TL is configured by combining a plurality of beam lines extending straight in the X-axis direction and beam lines for moving one spot of the charged particle beam B in the Y-axis direction. Shall be.
  • the negative end of the beam trajectory TL in the Y-axis direction has an X-axis beam line BLx1 extending along the peripheral edge 61 in the X-axis direction.
  • the beam trajectory TL has an X-axis beam line BLx2 at a position spaced at a predetermined pitch in the Y-axis direction on the positive side in the Y-axis direction with respect to the X-axis beam line BLx1, and further predetermined on the positive side in the Y-axis direction.
  • X-axis beam lines BLx3 are provided at positions separated by a pitch of ⁇ , and thereafter, X-axis beam lines BLxn having the same meaning are provided.
  • the beam trajectory TL has an X-axis beam line BLxN extending in the X-axis direction along the peripheral edge 62 at the positive end in the Y-axis direction.
  • the beam trajectory TL extends along the peripheral edge 63 from the positive end of the X-axis beam line BLx1 in the X-axis direction toward the positive end of the X-axis beam line BLx2 in the X-axis direction. It has a Y-axis beam line BLy1 extending to the positive side in the axial direction. Further, the beam trajectory TL extends along the peripheral edge 64 from the negative end portion of the X-axis beam line BLx2 in the X-axis direction toward the negative end portion of the X-axis beam line BLx3 in the X-axis direction. It has a Y-axis beam line BLy2 extending to the positive side in the axial direction. The beam trajectory TL has Y-axis beam lines BLy1 and BLy2 having the same meaning at other positions in the Y-axis direction.
  • the control unit 7 drives the multi-leaf collimator 24 to regulate the shape of the opening 24c in order to define the irradiation field 60 corresponding to the beam trajectory TL.
  • the arrangement is as shown in FIG. And when the control part 7 irradiates the peripheral part 61,62,63,64 of the irradiation field 60 with the charged particle beam B, it is higher than when irradiating the other part in the irradiation field 60 with the charged particle beam B. Modulate to a dose of charged particle beam B.
  • “when the charged particle beam is irradiated to the peripheral portion of the irradiation field” means that the charged particle beam B is irradiated to the X axis beam lines BLx1 and BLxN, and the Y axis beam line BLy1. This is when the charged particle beam B is irradiated to BLy2.
  • “when irradiating a charged particle beam to another part in the irradiation field” means that the charged particle beam B is irradiated from the X-axis beam line BLx2 to the X-axis beam line BLx (N ⁇ 1). It is time to do.
  • the dose distribution of the charged particle beam B irradiated to the position corresponding to the broken line SL extending in the Y-axis direction as shown in FIG. 4 will be described with reference to FIG.
  • the horizontal axis of FIG. 5 indicates the position in the Y-axis direction
  • the vertical axis indicates the dose of the charged particle beam B.
  • the dose distribution in FIG. 5 indicates the dose distribution on the upper surface of the multi-leaf collimator 24.
  • the dose distribution of the charged particle beam B is acquired at the positions of the various monitors 12, 13a, 13b.
  • control unit 7 calculates the dose distribution at the position of the multi-leaf collimator 24 based on the detection results of the various monitors 12, 13a, and 13b, and then controls the multi-leaf collimator 24 and a charged particle beam described later. Control for modulating the dose of B may be performed. Alternatively, the control unit 7 performs a predetermined calculation using the dose distribution at the positions of the various monitors 12, 13a, and 13b, thereby controlling the multi-leaf collimator 24 and controlling the dose of the charged particle beam B described later. May be done.
  • the dose distribution of the charged particle beam B with respect to the X-axis beam line BLx1 is indicated by “M1”
  • the dose distribution of the charged particle beam B with respect to the X-axis beam line BLx2 is indicated by “M2”
  • the X-axis beam line is indicated by “M3”.
  • the vertex TP1 of the dose distribution M1 is located at a position P1 on the negative side in the Y-axis direction by a predetermined pitch from the vertex TP2 of the dose distribution M2. Further, the dose ST1 at the vertex TP1 of the dose distribution M1 (that is, the dose peak of the dose distribution M1) is larger than the dose ST2 at the vertex TP2 of the dose distribution M2.
  • the vertex TP3 of the dose distribution M3 is the same distribution as the dose distribution M2 except that the vertex TP3 of the dose distribution M3 is positioned on the positive side in the Y-axis direction by a predetermined pitch from the vertex TP2 of the dose distribution M2.
  • the dose at the apex TP3 of the dose distribution M3 is the dose ST2 as in the dose distribution M2.
  • the dose distribution of the charged particle beam B with respect to the X-axis beam lines after the X-axis beam line BLx3 is a distribution having the same shape as the dose distributions M2 and M3, except that the vertex positions are different.
  • the charged particle beam B irradiated to the peripheral portion 61 of the irradiation field 60 (hereinafter sometimes referred to as “modulated charged particle beam”) is different from other parts in the irradiation field 60. Therefore, the dose distribution M1 is modulated to a higher dose than the charged particle beam B (hereinafter sometimes referred to as “normally charged particle beam”), so that the dose distribution M1 is higher than the other dose distributions M2 and M3.
  • the distribution is large and the dose at the peak is large.
  • the magnitude of the dose peak of the modulated charged particle beam B is not particularly limited.
  • the dose peak may be modulated with a magnitude of about 105 to 200% of the peak dose of the charged particle beam B in a normal state.
  • the total dose distribution TM obtained by summing up the individual dose distributions has a local peak before descending in the vicinity of the periphery. (Shown as A in FIGS. 5 and 6).
  • a position corresponding to the vertex TP1 of the dose distribution M1 is defined as a first position P1.
  • a position corresponding to the same dose ST2 as the vertices TP2 and TP3 of the dose distributions M2 and M3 of the charged particle beam B irradiated to other portions is set as a second position P2.
  • the second position P2 is set on the positive side and the negative side in the Y-axis direction, but here, the second position P2 indicates a position set on the negative side (that is, on the outer peripheral side).
  • the multi-leaf collimator 24 is a charged particle beam modulated at a position on the outer peripheral side from the first position P1 and between the first position P1 and the second position P2.
  • Shield B That is, when the area between the first position P1 and the second position P2 is the area E1, the side edge of the leaf 41 is disposed at any position in the area E1.
  • the position of the side edge of the leaf 41 is the position PC, the dose in the region E2 on the negative side of the position PC in the dose distribution TM is shielded.
  • control part 7 adjusts the shape of the opening part 24c of the multileaf collimator 24 so that the leaf 41 may be arrange
  • control unit 7 may finely adjust the position of the X-axis beam line BLx1 so that the leaf 41 is disposed at the position.
  • the control unit 7 changes the velocity of the charged particle beam B moving on the X-axis beam line BLx1 to other beams in the case of continuous irradiation (line scanning or raster scanning). It may be slower than the line. As a result, the time during which the charged particle beam B is applied to the X-axis beam line BLx1 is longer than that of the other beam lines, and a large dose distribution can be obtained.
  • the control unit 7 may modulate the dose of the charged particle beam B by increasing the irradiation time at each irradiation spot set on the X-axis beam line BLx1.
  • the dose of the charged particle beam B may be modulated by increasing the amount of ions output from the ion source.
  • the dose distribution in the vicinity of the peripheral portion 61 of the irradiation field 60 has been described as an example. However, the same control is performed on the peripheral portion 62. In the vicinity of the peripheral portions 63 and 64, the control unit 7 determines that the dose of the charged particle beam B with respect to the Y-axis beam lines BLy1 and BLy2 is higher than that of the charged particle beam B with respect to the X-axis beam lines BLx2 to BLx (N ⁇ 1). Modulate to increase.
  • a charged particle beam therapy apparatus that does not have a collimator and that does not modulate the dose of the charged particle beam B at the periphery of the irradiation field will be described.
  • the dose distributions M1, M2, and M3 at any irradiation position have the same shape.
  • the total dose distribution TM draws a graph that gradually decreases near the periphery of the irradiation field. Therefore, there arises a problem that a penumbra (indicated by “T2” in the figure) indicating a break in the dose distribution in the lateral direction becomes large.
  • a charged particle beam therapy apparatus in which an irradiation field is defined by a collimator, but the dose of the charged particle beam B is not modulated at the periphery of the irradiation field.
  • the total dose distribution TM in the region E2 on the outer peripheral side of the position PC of the side edge of the collimator is shielded.
  • the dose rapidly decreases in the vicinity of the peripheral portion, so that the penampula can be decreased.
  • the charged particle beam irradiation apparatus As the charged particle beam irradiation apparatus according to Comparative Example 3, an apparatus that modulates the dose of the charged particle beam B at the periphery of the irradiation field without defining the irradiation field with the collimator will be described.
  • the dose distribution M1 with respect to the peripheral portion becomes large, so that the total dose distribution TM rises rapidly in the vicinity of the peripheral portion, thereby reducing the penumbra. (Indicated by “T1” in the figure).
  • the dose distribution TM related to the sum may have a peak (indicated by A in the figure) near the periphery. As a result, the flatness of the dose distribution may decrease due to a locally large dose.
  • the irradiation field 60 of the charged particle beam B irradiated from the irradiation unit 2 to the tumor 14 by the scanning method can be defined by the multi-leaf collimator 24. That is, a part of the charged particle beam B irradiated to the peripheral portion of the irradiation field 60 can be shielded by the collimator.
  • the penumbra cut of dose distribution in the lateral direction
  • the control unit 7 irradiates the charged particle beam B to the peripheral portion of the irradiation field 60 defined by the multi-leaf collimator 24, the control unit 7 irradiates the other part of the irradiation field 60 with the charged particle beam B. Modulate to a high dose of charged particle beam B. Therefore, at the peripheral portion of the irradiation field 60, the dose of the charged particle beam B itself is increased due to the modulation, so that the flatness of the dose distribution is reduced while the penumbra is improved, but the charged particle beam at the peripheral portion of the irradiation field is reduced.
  • the dose distribution can be flattened by shielding a part of B with the multi-leaf collimator 24. As described above, it is possible to achieve both improvement of the penumbra and ensuring flatness of the dose distribution.
  • the position corresponding to the vertex TP1 of the dose distribution M1 is set as the first position P1, and the charged particle beam irradiated to other portions.
  • a position corresponding to the same dose ST2 as the vertices TP2 and TP3 of the dose distributions M2 and M3 of B is defined as a second position P2.
  • the multi-leaf collimator 24 shields the modulated charged particle beam B at a position on the outer peripheral side from the first position P1 and between the first position P1 and the second position P2. .
  • the multi-leaf collimator 24 can shield a part of the charged particle beam B modulated at the periphery of the irradiation field 60 at an appropriate position.
  • the present invention is not limited to the embodiment described above.
  • the shape of the irradiation field shown in FIG. 4 is merely an example, and irradiation fields of any shape may be defined in accordance with the shape of the tumor 14.
  • the structure of the multi-leaf collimator shown in FIG. 4 is merely an example, and any type of collimator may be adopted as long as the irradiation field can be defined.
  • the position where the dose of the charged particle beam is increased by modulating the dose is not limited to the outermost position of the irradiation field, and the doses at a plurality of positions inside the irradiation field may be increased.
  • the dose of the dose distribution M2 instead of increasing the dose of only the dose distribution M1 shown in FIG. 5, the dose of the dose distribution M2, for example, may be increased.
  • SYMBOLS 1 Charged particle beam therapy apparatus, 2 ... Irradiation part, 3 ... Accelerator, 7 ... Control part, 14 ... Tumor (irradiated body), 24 ... Multi-leaf collimator.

Abstract

This charged particle beam treatment device is provided with: an accelerator which accelerates charged particles and emits a charged particle beam; a radiating unit which uses a scanning method to radiate the charged particle beam toward an object to be irradiated; a collimator which defines a radiation field of the charged particle beam to match the shape of the object to be irradiated; and a control unit which controls the radiating unit. When radiating the charged particle beam at a peripheral edge portion of the radiation field defined by the collimator, the control unit modulates the charged particle beam to have a higher dose than when radiating the charged particle beam at other parts of the radiation field.

Description

荷電粒子線治療装置Charged particle beam therapy system
 本発明は、荷電粒子線治療装置に関する。 The present invention relates to a charged particle beam therapy apparatus.
 従来、患者の患部に荷電粒子線を照射することによって治療を行う荷電粒子線治療装置として、例えば、特許文献1に記載された装置が知られている。特許文献1に記載の荷電粒子線治療装置では、加速器で加速された荷電粒子線を照射部からスキャニング方式によって照射している。この荷電粒子線治療装置は、コリメータを用いて一部の不要な荷電粒子線を遮蔽した上で、被照射体の形状に合わせた照射野にて荷電粒子線の照射を行っている。 Conventionally, for example, an apparatus described in Patent Document 1 is known as a charged particle beam treatment apparatus that performs treatment by irradiating an affected area of a patient with a charged particle beam. In the charged particle beam therapy apparatus described in Patent Document 1, a charged particle beam accelerated by an accelerator is irradiated from an irradiation unit by a scanning method. In this charged particle beam therapy apparatus, a part of unnecessary charged particle beams is shielded using a collimator, and then the charged particle beam is irradiated in an irradiation field that matches the shape of the irradiated object.
特開2014-208307号公報JP 2014-208307 A
 ここで、上述のような荷電粒子線治療装置においては、照射野の周縁部に照射される荷電粒子線の一部をコリメータで遮蔽するため、ペナンブラ(横方向の線量分布の切れ)を改善することができる。その一方、コリメータで照射野の周縁部における荷電粒子線を遮蔽することで、照射野の周縁部における線量が低下し、被照射体に対する荷電粒子線の線量分布の平坦度(照射野全体における線量分布の平坦度)が低下するという問題がある。 Here, in the charged particle beam therapy system as described above, a part of the charged particle beam irradiated to the peripheral part of the irradiation field is shielded by the collimator, so that the penumbra (cut of dose distribution in the lateral direction) is improved. be able to. On the other hand, shielding the charged particle beam at the periphery of the irradiation field with a collimator reduces the dose at the periphery of the irradiation field, and the flatness of the dose distribution of the charged particle beam with respect to the irradiated object (the dose in the entire irradiation field) There is a problem that the flatness of the distribution is lowered.
 そこで本発明は、ペナンブラの改善と、線量分布の平坦度の確保を両立することができる荷電粒子線治療装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a charged particle beam therapy system capable of achieving both improvement of the penumbra and ensuring flatness of the dose distribution.
 上記課題を解決するため、本発明に係る荷電粒子線治療装置は、荷電粒子を加速して荷電粒子線を出射する加速器と、被照射体に対してスキャニング方式により荷電粒子線を照射する照射部と、被照射体の形状に合わせて荷電粒子線の照射野を規定するコリメータと、照射部を制御する制御部と、を備え、制御部は、コリメータで規定された照射野の周縁部に荷電粒子線を照射するときは、照射野における他の部分に荷電粒子線を照射するときよりも高い線量の荷電粒子線に変調する。 In order to solve the above problems, a charged particle beam therapy system according to the present invention includes an accelerator that accelerates charged particles and emits the charged particle beam, and an irradiation unit that irradiates the irradiated object with the charged particle beam by a scanning method. And a collimator that defines the irradiation field of the charged particle beam according to the shape of the irradiated object, and a control unit that controls the irradiation unit, and the control unit charges the peripheral part of the irradiation field defined by the collimator. When irradiating a particle beam, it modulates to the charged particle beam of a higher dose than when irradiating the other part in an irradiation field with a charged particle beam.
 本発明の一形態に係る荷電粒子線治療装置では、照射部から被照射体に対してスキャニング方式により照射される荷電粒子線の照射野をコリメータで規定することができる。すなわち、照射野の周縁部に照射される荷電粒子線の一部をコリメータで遮蔽することができる。このように、コリメータを用いることにより、ペナンブラ(横方向の線量分布の切れ)を改善することができる。更に、制御部は、コリメータで規定された照射野の周縁部に荷電粒子線を照射するときは、照射野における他の部分に荷電粒子線を照射するときよりも高い線量の荷電粒子線に変調する。従って、照射野の周縁部では、変調によって荷電粒子線自体の線量が高くなっているためペナンブラが改善されながらも線量分布の平坦度が低下するが、照射野の周縁部の荷電粒子線の一部をコリメータで遮蔽することで線量分布を平坦化させることができる。以上により、ペナンブラの改善と、線量分布の平坦度の確保を両立することができる。 In the charged particle beam therapy system according to one embodiment of the present invention, the irradiation field of the charged particle beam irradiated from the irradiation unit to the irradiated object by the scanning method can be defined by a collimator. That is, a part of the charged particle beam irradiated to the peripheral part of the irradiation field can be shielded by the collimator. Thus, the use of a collimator can improve the penumbra (cut of dose distribution in the lateral direction). In addition, when the control unit irradiates the charged particle beam to the periphery of the irradiation field defined by the collimator, it modulates the charged particle beam to a higher dose than when irradiating the other part of the irradiation field with the charged particle beam. To do. Therefore, at the periphery of the irradiation field, the dose of the charged particle beam itself is increased by the modulation, and the flatness of the dose distribution is reduced while the penumbra is improved. The dose distribution can be flattened by shielding the part with a collimator. As described above, it is possible to achieve both improvement of the penumbra and ensuring flatness of the dose distribution.
 荷電粒子線治療装置において、変調された荷電粒子線の線量分布において、当該線量分布の頂点に対応する位置を第1の位置とし、他の部分に照射される荷電粒子線の線量分布の頂点と同じ線量に対応する位置を第2の位置とした場合、コリメータは、第1の位置より外周側の位置であって、第1の位置と第2の間の位置で、変調した荷電粒子線を遮蔽してよい。これにより、コリメータは、照射野の周縁部にて変調された荷電粒子線の一部を適切な位置にて遮蔽することができる。 In the charged particle beam therapy system, the position corresponding to the apex of the dose distribution in the modulated dose distribution of the charged particle beam is set as the first position, and the apex of the dose distribution of the charged particle beam irradiated to the other part When the position corresponding to the same dose is the second position, the collimator is a position on the outer peripheral side of the first position, and the modulated charged particle beam is emitted at a position between the first position and the second position. May be shielded. Thereby, the collimator can shield a part of the charged particle beam modulated at the periphery of the irradiation field at an appropriate position.
 本発明によれば、ペナンブラの改善と、線量分布の平坦度の確保を両立することができる荷電粒子線治療装置を提供することができる。 According to the present invention, it is possible to provide a charged particle beam therapy system capable of achieving both improvement of the penumbra and ensuring of flatness of the dose distribution.
本発明の一実施形態に係る荷電粒子線治療装置の概略構成図である。1 is a schematic configuration diagram of a charged particle beam therapy system according to an embodiment of the present invention. 図1の荷電粒子線治療装置の照射部付近の概略構成図である。It is a schematic block diagram of the irradiation part vicinity of the charged particle beam therapy apparatus of FIG. 腫瘍に対して設定された層を示す図である。It is a figure which shows the layer set with respect to the tumor. マルチリーフコリメータを照射軸方向から見た図である。It is the figure which looked at the multileaf collimator from the irradiation axis direction. 図4に示す照射野の周縁部付近での荷電粒子線の線量分布を示すグラフである。It is a graph which shows the dose distribution of the charged particle beam in the peripheral part vicinity of the irradiation field shown in FIG. 比較例に係る荷電粒子線治療装置の照射野の周縁部付近での荷電粒子線の線量分布を示すグラフである。It is a graph which shows the dose distribution of the charged particle beam in the peripheral part vicinity of the irradiation field of the charged particle beam therapy apparatus which concerns on a comparative example.
 以下、添付図面を参照しながら本発明の一実施形態に係る荷電粒子線治療装置について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, a charged particle beam therapy system according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示されるように、本発明の一実施形態に係る荷電粒子線治療装置1は、放射線療法によるがん治療等に利用される装置であり、イオン源(不図示)で生成した荷電粒子を加速して荷電粒子線として出射する加速器3と、荷電粒子線を被照射体へ照射する照射部2と、加速器3から出射された荷電粒子線を照射部2へ輸送するビーム輸送ライン21と、を備えている。照射部2は、治療台4を取り囲むように設けられた回転ガントリ5に取り付けられている。照射部2は、回転ガントリ5によって治療台4の周りに回転可能とされている。 As shown in FIG. 1, a charged particle beam therapy apparatus 1 according to an embodiment of the present invention is an apparatus used for cancer treatment or the like by radiation therapy, and charged particles generated by an ion source (not shown). An accelerator 3 that accelerates and emits a charged particle beam, an irradiation unit 2 that irradiates the irradiated body with the charged particle beam, and a beam transport line 21 that transports the charged particle beam emitted from the accelerator 3 to the irradiation unit 2. It is equipped with. The irradiation unit 2 is attached to a rotating gantry 5 provided so as to surround the treatment table 4. The irradiation unit 2 can be rotated around the treatment table 4 by a rotating gantry 5.
 図2は、図1の荷電粒子線治療装置の照射部付近の概略構成図である。なお、以下の説明においては、「X軸方向」、「Y軸方向」、「Z軸方向」という語を用いて説明する。「Z軸方向」とは、荷電粒子線Bの基軸AXが延びる方向であり、荷電粒子線Bの照射の深さ方向である。なお、「基軸AX」とは、後述の走査電磁石6で偏向しなかった場合の荷電粒子線Bの照射軸とする。図2では、基軸AXに沿って荷電粒子線Bが照射されている様子を示している。「X軸方向」とは、Z軸方向と直交する平面内における一の方向である。「Y軸方向」とは、Z軸方向と直交する平面内においてX軸方向と直交する方向である。 FIG. 2 is a schematic configuration diagram of the vicinity of the irradiation unit of the charged particle beam therapy system of FIG. In the following description, the terms “X-axis direction”, “Y-axis direction”, and “Z-axis direction” will be used. The “Z-axis direction” is a direction in which the base axis AX of the charged particle beam B extends, and is a depth direction of irradiation of the charged particle beam B. The “base axis AX” is an irradiation axis of the charged particle beam B when it is not deflected by a scanning electromagnet 6 described later. FIG. 2 shows a state in which the charged particle beam B is irradiated along the base axis AX. The “X-axis direction” is one direction in a plane orthogonal to the Z-axis direction. The “Y-axis direction” is a direction orthogonal to the X-axis direction in a plane orthogonal to the Z-axis direction.
 まず、図2を参照して、本実施形態に係る荷電粒子線治療装置1の概略構成について説明する。荷電粒子線治療装置1はスキャニング法に係る照射装置である。なお、スキャニング方式は特に限定されず、ラインスキャニング、ラスタースキャニング、スポットスキャニング等を採用してよい。図2に示されるように、荷電粒子線治療装置1は、加速器3と、照射部2と、ビーム輸送ライン21と、制御部7と、を備えている。 First, a schematic configuration of the charged particle beam therapy system 1 according to the present embodiment will be described with reference to FIG. The charged particle beam therapy apparatus 1 is an irradiation apparatus according to a scanning method. The scanning method is not particularly limited, and line scanning, raster scanning, spot scanning, or the like may be employed. As shown in FIG. 2, the charged particle beam therapy system 1 includes an accelerator 3, an irradiation unit 2, a beam transport line 21, and a control unit 7.
 加速器3は、荷電粒子を加速して予め設定されたエネルギーの荷電粒子線Bを出射する装置である。加速器3として、例えば、サイクロトロン、シンクロトロン、シンクロサイクロトロン、ライナック等が挙げられる。なお、加速器3として予め定めたエネルギーの荷電粒子線Bを出射するサイクロトロンを採用する場合、エネルギー調整部20を採用することで、照射部2へ送られる荷電粒子線のエネルギーを調整(低下)させることが可能となる。なお、シンクロトロンは出射する荷電粒子線のエネルギーを容易に変更できるため、加速器3としてシンクロトロンを採用する場合には、エネルギー調整部20を省略してもよい。この加速器3は、制御部7に接続されており、供給される電流が制御される。加速器3で発生した荷電粒子線Bは、ビーム輸送ライン21によって照射ノズル9へ輸送される。ビーム輸送ライン21は、加速器3と、エネルギー調整部20と、照射部2と、を接続し、加速器3から出射された荷電粒子線を照射部2へ輸送する。 The accelerator 3 is a device that accelerates charged particles and emits a charged particle beam B having a preset energy. Examples of the accelerator 3 include a cyclotron, a synchrotron, a synchrocyclotron, a linac, and the like. When a cyclotron that emits a charged particle beam B having a predetermined energy is used as the accelerator 3, the energy adjusting unit 20 is used to adjust (decrease) the energy of the charged particle beam sent to the irradiation unit 2. It becomes possible. Since the synchrotron can easily change the energy of the emitted charged particle beam, the energy adjusting unit 20 may be omitted when the synchrotron is used as the accelerator 3. The accelerator 3 is connected to the control unit 7 and the supplied current is controlled. The charged particle beam B generated by the accelerator 3 is transported to the irradiation nozzle 9 by the beam transport line 21. The beam transport line 21 connects the accelerator 3, the energy adjustment unit 20, and the irradiation unit 2, and transports the charged particle beam emitted from the accelerator 3 to the irradiation unit 2.
 照射部2は、患者15の体内の腫瘍(被照射体)14に対し、荷電粒子線Bを照射するものである。荷電粒子線Bとは、電荷をもった粒子を高速に加速したものであり、例えば陽子線、重粒子(重イオン)線、電子線等が挙げられる。具体的に、照射部2は、イオン源(不図示)で生成した荷電粒子を加速する加速器3から出射されてビーム輸送ライン21で輸送された荷電粒子線Bを腫瘍14へ照射する装置である。照射部2は、走査電磁石6、四極電磁石8、プロファイルモニタ11、ドーズモニタ12、ポジションモニタ13a,13b、マルチリーフコリメータ24、及びディグレーダ30を備えている。走査電磁石6、各モニタ11,12,13a,13b、四極電磁石8、及びディグレーダ30は、照射ノズル9に収容されている。このように、収容体に各主構成要素を収容した照射ノズル9によって照射部2が構成されている。なお、四極電磁石8、プロファイルモニタ11、ドーズモニタ12、ポジションモニタ13a,13b、及びディグレーダ30は省略してもよい。 The irradiation unit 2 irradiates the tumor (irradiated body) 14 in the body of the patient 15 with the charged particle beam B. The charged particle beam B is obtained by accelerating charged particles at high speed, and examples thereof include a proton beam, a heavy particle (heavy ion) beam, and an electron beam. Specifically, the irradiation unit 2 is an apparatus that irradiates the tumor 14 with a charged particle beam B emitted from an accelerator 3 that accelerates charged particles generated by an ion source (not shown) and transported by a beam transport line 21. . The irradiation unit 2 includes a scanning electromagnet 6, a quadrupole electromagnet 8, a profile monitor 11, a dose monitor 12, position monitors 13a and 13b, a multi-leaf collimator 24, and a degrader 30. The scanning electromagnet 6, the monitors 11, 12, 13 a, 13 b, the quadrupole electromagnet 8, and the degrader 30 are accommodated in the irradiation nozzle 9. Thus, the irradiation part 2 is comprised by the irradiation nozzle 9 which accommodated each main component in the container. The quadrupole electromagnet 8, the profile monitor 11, the dose monitor 12, the position monitors 13a and 13b, and the degrader 30 may be omitted.
 走査電磁石6は、X軸方向走査電磁石6a及びY軸方向走査電磁石6bを含む。X軸方向走査電磁石6a及びY軸方向走査電磁石6bは、それぞれ一対の電磁石から構成され、制御部7から供給される電流に応じて一対の電磁石間の磁場を変化させ、当該電磁石間を通過する荷電粒子線Bを走査する。X軸方向走査電磁石6aは、X軸方向に荷電粒子線Bを走査し、Y軸方向走査電磁石6bは、Y軸方向に荷電粒子線Bを走査する。これらの走査電磁石6は、基軸AX上であって、加速器3よりも荷電粒子線Bの下流側にこの順で配置されている。 The scanning electromagnet 6 includes an X-axis direction scanning electromagnet 6a and a Y-axis direction scanning electromagnet 6b. The X-axis direction scanning electromagnet 6a and the Y-axis direction scanning electromagnet 6b are each composed of a pair of electromagnets, change the magnetic field between the pair of electromagnets according to the current supplied from the control unit 7, and pass between the electromagnets. The charged particle beam B is scanned. The X-axis direction scanning electromagnet 6a scans the charged particle beam B in the X-axis direction, and the Y-axis direction scanning electromagnet 6b scans the charged particle beam B in the Y-axis direction. These scanning electromagnets 6 are arranged in this order on the base axis AX and downstream of the accelerator 3 from the charged particle beam B.
 四極電磁石8は、X軸方向四極電磁石8a及びY軸方向四極電磁石8bを含む。X軸方向四極電磁石8a及びY軸方向四極電磁石8bは、制御部7から供給される電流に応じて荷電粒子線Bを絞って収束させる。X軸方向四極電磁石8aは、X軸方向において荷電粒子線Bを収束させ、Y軸方向四極電磁石8bは、Y軸方向において荷電粒子線Bを収束させる。四極電磁石8に供給する電流を変化させて絞り量(収束量)を変化させることにより、荷電粒子線Bのビームサイズを変化させることができる。四極電磁石8は、基軸AX上であって加速器3と走査電磁石6との間にこの順で配置されている。なお、ビームサイズとは、XY平面における荷電粒子線Bの大きさである。また、ビーム形状とは、XY平面における荷電粒子線Bの形状である。 The quadrupole electromagnet 8 includes an X-axis direction quadrupole electromagnet 8a and a Y-axis direction quadrupole electromagnet 8b. The X-axis direction quadrupole electromagnet 8 a and the Y-axis direction quadrupole electromagnet 8 b converge and focus the charged particle beam B according to the current supplied from the control unit 7. The X-axis direction quadrupole electromagnet 8a converges the charged particle beam B in the X-axis direction, and the Y-axis direction quadrupole electromagnet 8b converges the charged particle beam B in the Y-axis direction. The beam size of the charged particle beam B can be changed by changing the current supplied to the quadrupole electromagnet 8 to change the aperture amount (convergence amount). The quadrupole electromagnet 8 is disposed in this order on the base axis AX and between the accelerator 3 and the scanning electromagnet 6. The beam size is the size of the charged particle beam B on the XY plane. The beam shape is the shape of the charged particle beam B on the XY plane.
 プロファイルモニタ11は、初期設定の際の位置合わせのために、荷電粒子線Bのビーム形状及び位置を検出する。プロファイルモニタ11は、基軸AX上であって四極電磁石8と走査電磁石6との間に配置されている。ドーズモニタ12は、荷電粒子線Bの線量を検出する。ドーズモニタ12は、基軸AX上であって走査電磁石6に対して下流側に配置されている。ポジションモニタ13a,13bは、荷電粒子線Bのビーム形状及び位置を検出監視する。ポジションモニタ13a,13bは、基軸AX上であって、ドーズモニタ12よりも荷電粒子線Bの下流側に配置されている。各モニタ11,12,13a,13bは、検出した検出結果を制御部7に出力する。 The profile monitor 11 detects the beam shape and position of the charged particle beam B for alignment at the time of initial setting. The profile monitor 11 is disposed on the base axis AX and between the quadrupole electromagnet 8 and the scanning electromagnet 6. The dose monitor 12 detects the dose of the charged particle beam B. The dose monitor 12 is disposed downstream of the scanning electromagnet 6 on the base axis AX. The position monitors 13a and 13b detect and monitor the beam shape and position of the charged particle beam B. The position monitors 13 a and 13 b are disposed on the base axis AX and downstream of the charged particle beam B from the dose monitor 12. Each monitor 11, 12, 13 a, 13 b outputs the detected detection result to the control unit 7.
 ディグレーダ30は、通過する荷電粒子線Bのエネルギーを低下させて当該荷電粒子線Bのエネルギーの微調整を行う。本実施形態では、ディグレーダ30は、照射ノズル9の先端部9aに設けられている。なお、照射ノズル9の先端部9aとは、荷電粒子線Bの下流側の端部である。 The degrader 30 finely adjusts the energy of the charged particle beam B by reducing the energy of the charged particle beam B passing therethrough. In the present embodiment, the degrader 30 is provided at the distal end portion 9 a of the irradiation nozzle 9. The tip 9a of the irradiation nozzle 9 is the end on the downstream side of the charged particle beam B.
 マルチリーフコリメータ24は、照射軸方向と垂直な平面方向における荷電粒子線Bの照射野60を規定するものであり、複数の櫛歯を含む遮線部24a,24bを有している。遮線部24a,24bは、互いに突き合わせるように配置されており、これらの遮線部24a,24b間には、開口部24cが形成されている。当該開口部24cによって照射野60が規定される。マルチリーフコリメータ24は、開口部24cに荷電粒子線Bを通過させることで、荷電粒子線Bのうち、照射野60の周縁部に照射された部分を遮蔽する。 The multi-leaf collimator 24 defines an irradiation field 60 of the charged particle beam B in a plane direction perpendicular to the irradiation axis direction, and includes shielding portions 24a and 24b including a plurality of comb teeth. The shielding portions 24a and 24b are disposed so as to face each other, and an opening 24c is formed between the shielding portions 24a and 24b. The irradiation field 60 is defined by the opening 24c. The multi-leaf collimator 24 allows the charged particle beam B to pass through the opening 24c, thereby shielding the portion of the charged particle beam B irradiated to the peripheral portion of the irradiation field 60.
 また、マルチリーフコリメータ24は、Z軸方向と直交する方向に遮線部24a,24bを進退させることで、開口部24c、すなわち照射野60の位置及び形状を変化することが可能となっている。さらに、マルチリーフコリメータ24は、リニアガイド28で照射軸方向に沿って案内されており、Z軸方向に沿って移動可能になっている。このマルチリーフコリメータ24は、モニタ4bの下流側に配置されている。 Further, the multi-leaf collimator 24 can change the position and shape of the opening 24c, that is, the irradiation field 60, by moving the shielding portions 24a and 24b back and forth in a direction orthogonal to the Z-axis direction. . Further, the multi-leaf collimator 24 is guided along the irradiation axis direction by the linear guide 28 and is movable along the Z-axis direction. The multi-leaf collimator 24 is disposed on the downstream side of the monitor 4b.
 より具体的には、図4に示すように、マルチリーフコリメータ24は、X軸方向で対向する一対のリーフ群31,32を有している。一対のリーフ群31,32は、基準軸Aに直交するXY平面において、基準軸Aを挟んでX軸方向で対向する。一対のリーフ群31,32は、それぞれX軸方向に独立して進退可能な多数のリーフ41を含むリーフ部材40から構成されている。 More specifically, as shown in FIG. 4, the multi-leaf collimator 24 has a pair of leaf groups 31 and 32 that face each other in the X-axis direction. The pair of leaf groups 31 and 32 face each other in the X-axis direction with the reference axis A in between on the XY plane orthogonal to the reference axis A. The pair of leaf groups 31 and 32 includes a leaf member 40 that includes a large number of leaves 41 that can advance and retreat independently in the X-axis direction.
 リーフ部材40は、リーフ41と、リーフ41を移動させるリーフ駆動部43と、を有する。リーフ部材40は、リーフ群31に含まれるリーフ部材40のリーフ41と、リーフ群32に含まれるリーフ部材40のリーフ41と、が互いに対向するように、XY平面に沿って配置される。 The leaf member 40 includes a leaf 41 and a leaf driving unit 43 that moves the leaf 41. The leaf member 40 is disposed along the XY plane so that the leaf 41 of the leaf member 40 included in the leaf group 31 and the leaf 41 of the leaf member 40 included in the leaf group 32 face each other.
 リーフ41は、X軸方向に沿って延びる長方形板状の部材である。リーフ41は、荷電粒子線Bの遮蔽に用いられる部材であることから、荷電粒子線Bを遮蔽可能な材料により製造される。荷電粒子線Bを遮蔽可能な材料としては、真鍮、銅、タンタル、モリブデン、鉄等が挙げられるが、加工性の良さやコストの観点から真鍮又は鉄製とすることが好ましい。 The leaf 41 is a rectangular plate-like member extending along the X-axis direction. Since the leaf 41 is a member used to shield the charged particle beam B, the leaf 41 is manufactured from a material capable of shielding the charged particle beam B. Examples of the material capable of shielding the charged particle beam B include brass, copper, tantalum, molybdenum, iron, and the like, but brass or iron is preferable from the viewpoint of good workability and cost.
 リーフ駆動部43は、制御部7からの信号に基づいて、各リーフ41をX軸方向に駆動させて、要求された位置に配置させる。制御部7は、照射軸方向から見た場合の腫瘍14の形状に合わせて、マルチリーフコリメータ24の開口部24cの形状を設定する。本実施形態では、スキャニング法によって荷電粒子線Bが照射される。従って、マルチリーフコリメータ24は、後述の層Lに対する荷電粒子線Bの照射を行っているときは、当該層Lに対するビーム軌道TL(図3(b)参照)に対応する形状の照射野60を形成する。なお、マルチリーフコリメータ24の動作の詳細については、後述する。 The leaf drive unit 43 drives each leaf 41 in the X-axis direction based on a signal from the control unit 7 and arranges the leaf 41 at a requested position. The control unit 7 sets the shape of the opening 24c of the multi-leaf collimator 24 according to the shape of the tumor 14 when viewed from the irradiation axis direction. In this embodiment, the charged particle beam B is irradiated by a scanning method. Accordingly, when the multi-leaf collimator 24 performs irradiation of a charged particle beam B to a layer L n described later, the irradiation field having a shape corresponding to the beam trajectory TL (see FIG. 3B) for the layer L n . 60 is formed. Details of the operation of the multi-leaf collimator 24 will be described later.
 制御部7は、例えばCPU、ROM、及びRAM等により構成されている。この制御部7は、各モニタ11,12,13a,13bから出力された検出結果に基づいて、加速器3、走査電磁石6、四極電磁石8、及びマルチリーフコリメータ24を制御する。 The control unit 7 includes, for example, a CPU, a ROM, a RAM, and the like. The control unit 7 controls the accelerator 3, the scanning electromagnet 6, the quadrupole electromagnet 8, and the multi-leaf collimator 24 based on the detection results output from the monitors 11, 12, 13a, and 13b.
 また、荷電粒子線治療装置1の制御部7は、荷電粒子線治療の治療計画を行う治療計画装置100と接続されている。治療計画装置100は、治療前に患者15の腫瘍14をCT等で測定し、腫瘍14の各位置における線量分布(照射すべき荷電粒子線の線量分布)を計画する。具体的には、治療計画装置100は、腫瘍14に対して治療計画マップを作成する。治療計画装置100は、作成した治療計画マップを制御部7へ送信する。 Further, the control unit 7 of the charged particle beam therapy apparatus 1 is connected to a treatment planning apparatus 100 that performs a treatment plan for charged particle beam therapy. The treatment planning apparatus 100 measures the tumor 14 of the patient 15 by CT or the like before the treatment, and plans a dose distribution (a dose distribution of a charged particle beam to be irradiated) at each position of the tumor 14. Specifically, the treatment planning apparatus 100 creates a treatment plan map for the tumor 14. The treatment planning apparatus 100 transmits the created treatment plan map to the control unit 7.
 スキャニング法による荷電粒子線の照射を行う場合、腫瘍14をZ軸方向に複数の層に仮想的に分割し、一の層において荷電粒子線を治療計画において定めた走査経路に従うように走査して照射する。そして、当該一の層における荷電粒子線の照射が完了した後に、隣接する次の層における荷電粒子線Bの照射を行う。 When performing charged particle beam irradiation by the scanning method, the tumor 14 is virtually divided into a plurality of layers in the Z-axis direction, and the charged particle beam is scanned in one layer so as to follow the scanning path determined in the treatment plan. Irradiate. Then, after the irradiation of the charged particle beam in the one layer is completed, the charged particle beam B is irradiated in the next adjacent layer.
 図2に示す荷電粒子線治療装置1により、スキャニング法によって荷電粒子線Bの照射を行う場合、通過する荷電粒子線Bが収束するように四極電磁石8を作動状態(ON)とする。 When the charged particle beam treatment apparatus 1 shown in FIG. 2 irradiates the charged particle beam B by the scanning method, the quadrupole electromagnet 8 is turned on (ON) so that the passing charged particle beam B converges.
 続いて、加速器3から荷電粒子線Bを出射する。出射された荷電粒子線Bは、走査電磁石6の制御によって治療計画において定めた走査経路に従うように走査される。これにより、荷電粒子線Bは、腫瘍14に対してZ軸方向に設定された一の層における照射範囲内を走査されつつ照射されることとなる。また、マルチリーフコリメータ24は、制御部7の制御信号に基づき、走査経路の周縁部を走査している荷電粒子線Bの一部を遮蔽するように、開口部24cを形成する。一の層に対する照射が完了したら、次の層へ荷電粒子線Bを照射する。 Subsequently, the charged particle beam B is emitted from the accelerator 3. The emitted charged particle beam B is scanned so as to follow the scanning path determined in the treatment plan by the control of the scanning electromagnet 6. Accordingly, the charged particle beam B is irradiated while being scanned within the irradiation range in one layer set in the Z-axis direction with respect to the tumor 14. Further, the multi-leaf collimator 24 forms an opening 24 c so as to shield a part of the charged particle beam B that is scanning the peripheral portion of the scanning path based on the control signal of the control unit 7. When the irradiation of one layer is completed, the charged particle beam B is irradiated to the next layer.
 制御部7の制御に応じた走査電磁石6の荷電粒子線照射イメージについて、図3(a)及び(b)を参照して説明する。図3(a)は、深さ方向において複数の層に仮想的にスライスされた被照射体を、図3(b)は、深さ方向から見た一の層における荷電粒子線の走査イメージを、それぞれ示している。 The charged particle beam irradiation image of the scanning electromagnet 6 according to the control of the control unit 7 will be described with reference to FIGS. 3A shows an irradiation object virtually sliced into a plurality of layers in the depth direction, and FIG. 3B shows a scanning image of a charged particle beam in one layer viewed from the depth direction. , Respectively.
 図3(a)に示すように、被照射体は照射の深さ方向において複数の層に仮想的にスライスされており、本例では、深い(荷電粒子線Bの飛程が長い)層から順に、層L、層L、…層Ln-1、層L、層Ln+1、…層LN-1、層LとN層に仮想的にスライスされている。また、図3(b)に示すように、荷電粒子線Bは、ビーム軌道TL(走査経路)を描きながら、連続照射(ラインスキャニング又はラスタースキャニング)の場合は層Lのビーム軌道TLに沿って連続的に照射され、スポットスキャニングの場合は層Lの複数の照射スポットに対して照射される。すなわち、制御部7に制御された照射ノズル9から出射した荷電粒子線Bは、ビーム軌道TL上を移動する。 As shown in FIG. 3A, the irradiated object is virtually sliced into a plurality of layers in the irradiation depth direction, and in this example, from the deep layer (the range of the charged particle beam B is long). In order, the layers are virtually sliced into a layer L 1 , a layer L 2 ,..., A layer L n−1 , a layer L n , a layer L n + 1 , a layer L N−1 , a layer L N and an N layer. As shown in FIG. 3B, the charged particle beam B follows the beam trajectory TL of the layer L n in the case of continuous irradiation (line scanning or raster scanning) while drawing the beam trajectory TL (scanning path). continuously irradiated Te, in the case of spot scanning is irradiated to a plurality of irradiation spots of the layer L n. That is, the charged particle beam B emitted from the irradiation nozzle 9 controlled by the control unit 7 moves on the beam trajectory TL.
 次に、図4及び図5を参照して、制御部7による制御内容の詳細について説明する。なお、理解を容易とするために、図4では照射対象に係る層Lのビーム軌道TLに対応する照射野60を長方形状にしている。すなわち、照射野60のX軸方向に延びる周縁部61,62と、Y軸方向に延びる周縁部63,64は、いずれも真っ直ぐに延びている。X軸方向に延びる周縁部61,62は、リーフ41のX軸方向に延びる側縁部によって規定される。Y軸方向に延びる周縁部63,64は、リーフ41のX軸方向における端部が、真っ直ぐに複数個並べられることによって規定される。また、本実施形態では、ビーム軌道TLは、X軸方向に真っ直ぐに延びるビームラインと、Y軸方向に荷電粒子線Bのスポット一つ分移動するためのビームラインと、を複数組み合わせることで構成されるものとする。 Next, with reference to FIG.4 and FIG.5, the detail of the control content by the control part 7 is demonstrated. In order to facilitate understanding, and the irradiation field 60 corresponding to the beam trajectory TL layer L n of the irradiation target in FIG. 4 in a rectangular shape. That is, the peripheral edge portions 61 and 62 extending in the X-axis direction and the peripheral edge portions 63 and 64 extending in the Y-axis direction of the irradiation field 60 both extend straight. The peripheral edge portions 61 and 62 extending in the X-axis direction are defined by side edge portions of the leaf 41 extending in the X-axis direction. The peripheral edge portions 63 and 64 extending in the Y-axis direction are defined by a plurality of end portions in the X-axis direction of the leaf 41 being arranged in a straight line. In the present embodiment, the beam trajectory TL is configured by combining a plurality of beam lines extending straight in the X-axis direction and beam lines for moving one spot of the charged particle beam B in the Y-axis direction. Shall be.
 具体的には、図4に示すように、ビーム軌道TLにおけるY軸方向の負側の端部には、周縁部61に沿ってX軸方向に延びるX軸ビームラインBLx1を有する。また、ビーム軌道TLは、X軸ビームラインBLx1に対してY軸方向の正側へ所定のピッチで離間した位置には、X軸ビームラインBLx2を有し、更にY軸方向の正側へ所定のピッチで離間した位置にはX軸ビームラインBLx3を有し、それ以降、同趣旨のX軸ビームラインBLxnを有する。そして、ビーム軌道TLは、Y軸方向の正側の端部には、周縁部62に沿ってX軸方向に延びるX軸ビームラインBLxNを有する。 Specifically, as shown in FIG. 4, the negative end of the beam trajectory TL in the Y-axis direction has an X-axis beam line BLx1 extending along the peripheral edge 61 in the X-axis direction. Further, the beam trajectory TL has an X-axis beam line BLx2 at a position spaced at a predetermined pitch in the Y-axis direction on the positive side in the Y-axis direction with respect to the X-axis beam line BLx1, and further predetermined on the positive side in the Y-axis direction. X-axis beam lines BLx3 are provided at positions separated by a pitch of λ, and thereafter, X-axis beam lines BLxn having the same meaning are provided. The beam trajectory TL has an X-axis beam line BLxN extending in the X-axis direction along the peripheral edge 62 at the positive end in the Y-axis direction.
 また、ビーム軌道TLは、X軸ビームラインBLx1のX軸方向の正側の端部から、X軸ビームラインBLx2のX軸方向の正側の端部へ向かって、周縁部63に沿ってY軸方向の正側へ延びるY軸ビームラインBLy1を有する。また、ビーム軌道TLは、X軸ビームラインBLx2のX軸方向の負側の端部から、X軸ビームラインBLx3のX軸方向の負側の端部へ向かって、周縁部64に沿ってY軸方向の正側へ延びるY軸ビームラインBLy2を有する。ビーム軌道TLは、Y軸方向の他の位置においても、同趣旨のY軸ビームラインBLy1,BLy2を有している。 Further, the beam trajectory TL extends along the peripheral edge 63 from the positive end of the X-axis beam line BLx1 in the X-axis direction toward the positive end of the X-axis beam line BLx2 in the X-axis direction. It has a Y-axis beam line BLy1 extending to the positive side in the axial direction. Further, the beam trajectory TL extends along the peripheral edge 64 from the negative end portion of the X-axis beam line BLx2 in the X-axis direction toward the negative end portion of the X-axis beam line BLx3 in the X-axis direction. It has a Y-axis beam line BLy2 extending to the positive side in the axial direction. The beam trajectory TL has Y-axis beam lines BLy1 and BLy2 having the same meaning at other positions in the Y-axis direction.
 制御部7は、上述のようなビーム軌道TLを取得したら、当該ビーム軌道TLに対応する照射野60を規定するために、マルチリーフコリメータ24を駆動させて、開口部24cの形状を調整し、図4に示すような配置にする。そして、制御部7は、照射野60の周縁部61,62,63,64に荷電粒子線Bを照射するときは、照射野60における他の部分に荷電粒子線Bを照射するときよりも高い線量の荷電粒子線Bに変調する。「照射野の周縁部に荷電粒子線を照射するとき」とは、上述の例においては、X軸ビームラインBLx1,BLxNに対して荷電粒子線Bを照射するとき、及びY軸ビームラインBLy1,BLy2に対して荷電粒子線Bを照射するときである。「照射野における他の部分に荷電粒子線を照射するとき」とは、上述の例においては、X軸ビームラインBLx2からX軸ビームラインBLx(N-1)に対して荷電粒子線Bを照射するときである。なお、図4では、理解を容易とするために、周縁部61,62,63,64に対して照射される荷電粒子線Bのビーム形状のみを示しているが、他のビームラインに対しても、所定の大きさ・形状に設定された荷電粒子線Bが照射される。 When acquiring the beam trajectory TL as described above, the control unit 7 drives the multi-leaf collimator 24 to regulate the shape of the opening 24c in order to define the irradiation field 60 corresponding to the beam trajectory TL. The arrangement is as shown in FIG. And when the control part 7 irradiates the peripheral part 61,62,63,64 of the irradiation field 60 with the charged particle beam B, it is higher than when irradiating the other part in the irradiation field 60 with the charged particle beam B. Modulate to a dose of charged particle beam B. In the above-described example, “when the charged particle beam is irradiated to the peripheral portion of the irradiation field” means that the charged particle beam B is irradiated to the X axis beam lines BLx1 and BLxN, and the Y axis beam line BLy1. This is when the charged particle beam B is irradiated to BLy2. In the above-mentioned example, “when irradiating a charged particle beam to another part in the irradiation field” means that the charged particle beam B is irradiated from the X-axis beam line BLx2 to the X-axis beam line BLx (N−1). It is time to do. In FIG. 4, only the beam shape of the charged particle beam B irradiated to the peripheral portions 61, 62, 63, and 64 is shown for easy understanding, but with respect to other beam lines. Also, the charged particle beam B set to a predetermined size and shape is irradiated.
 ここで、図5を参照して、図4に示すような、Y軸方向に延びる破線SLに対応する位置に照射される荷電粒子線Bの線量分布について説明する。なお、図5に示す線量分布は、図5の横軸はY軸方向における位置を示し、縦軸は荷電粒子線Bの線量を示す。また、図5の線量分布は、マルチリーフコリメータ24の上面における線量分布を示しているものとする。ただし、実際の荷電粒子線治療装置1の運転時は、各種モニタ12,13a,13bの位置にて、荷電粒子線Bの線量分布が取得される。よって、制御部7は、各種モニタ12,13a,13bの検出結果に基づいて、マルチリーフコリメータ24の位置での線量分布を演算した上で、マルチリーフコリメータ24の制御、及び後述の荷電粒子線Bの線量を変調する制御を行ってよい。または、制御部7は、各種モニタ12,13a,13bの位置における線量分布を用いて所定の演算を行うことで、マルチリーフコリメータ24の制御、及び後述の荷電粒子線Bの線量を変調する制御を行ってよい。 Here, the dose distribution of the charged particle beam B irradiated to the position corresponding to the broken line SL extending in the Y-axis direction as shown in FIG. 4 will be described with reference to FIG. In the dose distribution shown in FIG. 5, the horizontal axis of FIG. 5 indicates the position in the Y-axis direction, and the vertical axis indicates the dose of the charged particle beam B. Further, the dose distribution in FIG. 5 indicates the dose distribution on the upper surface of the multi-leaf collimator 24. However, during the actual operation of the charged particle beam therapy system 1, the dose distribution of the charged particle beam B is acquired at the positions of the various monitors 12, 13a, 13b. Therefore, the control unit 7 calculates the dose distribution at the position of the multi-leaf collimator 24 based on the detection results of the various monitors 12, 13a, and 13b, and then controls the multi-leaf collimator 24 and a charged particle beam described later. Control for modulating the dose of B may be performed. Alternatively, the control unit 7 performs a predetermined calculation using the dose distribution at the positions of the various monitors 12, 13a, and 13b, thereby controlling the multi-leaf collimator 24 and controlling the dose of the charged particle beam B described later. May be done.
 図5において、X軸ビームラインBLx1に対する荷電粒子線Bの線量分布は「M1」で示され、X軸ビームラインBLx2に対する荷電粒子線Bの線量分布は「M2」で示され、X軸ビームラインBLx3に対する荷電粒子線Bの線量分布は「M3」で示されている。 In FIG. 5, the dose distribution of the charged particle beam B with respect to the X-axis beam line BLx1 is indicated by “M1”, the dose distribution of the charged particle beam B with respect to the X-axis beam line BLx2 is indicated by “M2”, and the X-axis beam line The dose distribution of the charged particle beam B with respect to BLx3 is indicated by “M3”.
 線量分布M1の頂点TP1は、線量分布M2の頂点TP2よりも所定のピッチ分だけ、Y軸方向の負側の位置P1に位置している。また、線量分布M1の頂点TP1における線量ST1(すなわち、線量分布M1の線量のピーク)は、線量分布M2の頂点TP2における線量ST2よりも大きい。線量分布M3の頂点TP3は、線量分布M2の頂点TP2よりも所定のピッチ分だけ、Y軸方向の正側に位置している点以外は、線量分布M2と同様の分布となる。すなわち、線量分布M3の頂点TP3における線量は、線量分布M2と同じく線量ST2となる。なお、X軸ビームラインBLx3以降のX軸ビームラインに対する荷電粒子線Bの線量分布は、頂点の位置が異なる点以外は、線量分布M2,M3と同形状の分布となる。 The vertex TP1 of the dose distribution M1 is located at a position P1 on the negative side in the Y-axis direction by a predetermined pitch from the vertex TP2 of the dose distribution M2. Further, the dose ST1 at the vertex TP1 of the dose distribution M1 (that is, the dose peak of the dose distribution M1) is larger than the dose ST2 at the vertex TP2 of the dose distribution M2. The vertex TP3 of the dose distribution M3 is the same distribution as the dose distribution M2 except that the vertex TP3 of the dose distribution M3 is positioned on the positive side in the Y-axis direction by a predetermined pitch from the vertex TP2 of the dose distribution M2. That is, the dose at the apex TP3 of the dose distribution M3 is the dose ST2 as in the dose distribution M2. The dose distribution of the charged particle beam B with respect to the X-axis beam lines after the X-axis beam line BLx3 is a distribution having the same shape as the dose distributions M2 and M3, except that the vertex positions are different.
 以上のように、照射野60の周縁部61に対して照射される荷電粒子線B(以降、「変調された荷電粒子線」と称する場合がある)は、照射野60における他の部分に対して照射される荷電粒子線B(以降、「通常時の荷電粒子線」と称する場合がある)よりも高い線量に変調されているため、線量分布M1は、他の線量分布M2,M3よりも大きな分布となり、ピークにおける線量も大きい。変調された荷電粒子線Bの線量のピークの大きさは特に限定されないが、例えば、通常時の荷電粒子線Bの線量のピークに比べて105~200%程度の大きさで変調されてよい。各ビームラインにおける荷電粒子線Bの線量分布が上述のように設定されることにより、個々の線量分布を合計した全体の線量分布TMは、周縁部付近で下降する前に、局所的にピークを有する(図5及び図6においてAで示す)。 As described above, the charged particle beam B irradiated to the peripheral portion 61 of the irradiation field 60 (hereinafter sometimes referred to as “modulated charged particle beam”) is different from other parts in the irradiation field 60. Therefore, the dose distribution M1 is modulated to a higher dose than the charged particle beam B (hereinafter sometimes referred to as “normally charged particle beam”), so that the dose distribution M1 is higher than the other dose distributions M2 and M3. The distribution is large and the dose at the peak is large. The magnitude of the dose peak of the modulated charged particle beam B is not particularly limited. For example, the dose peak may be modulated with a magnitude of about 105 to 200% of the peak dose of the charged particle beam B in a normal state. By setting the dose distribution of the charged particle beam B in each beam line as described above, the total dose distribution TM obtained by summing up the individual dose distributions has a local peak before descending in the vicinity of the periphery. (Shown as A in FIGS. 5 and 6).
 上述のような線量分布を描く荷電粒子線Bに対するマルチリーフコリメータ24の配置について説明する。図5において、変調された荷電粒子線Bの線量分布M1において、当該線量分布M1の頂点TP1に対応する位置を第1の位置P1とする。線量分布M1において、他の部分に照射される荷電粒子線Bの線量分布M2,M3の頂点TP2,TP3と同じ線量ST2に対応する位置を第2の位置P2とする。なお、第2の位置P2は、Y軸方向の正側と負側にそれぞれ設定されるが、ここでは負側(すなわち外周側の位置)に設定されるものを指すものとする。このように規定した場合、マルチリーフコリメータ24は、第1の位置P1より外周側の位置であって、第1の位置P1と第2の位置P2との間の位置で、変調した荷電粒子線Bを遮蔽する。すなわち、第1の位置P1と第2の位置P2との間の領域を領域E1とした場合、リーフ41の側縁部は、領域E1の何れかの位置に配置される。リーフ41の側縁部の位置を位置PCとした場合、線量分布TMのうち、当該位置PCよりも負側の領域E2の線量は遮蔽される。また、制御部7は、当該位置にリーフ41が配置されるように、マルチリーフコリメータ24の開口部24cの形状を調整する。あるいは、制御部7は、当該位置にリーフ41が配置されるように、X軸ビームラインBLx1の位置を微調整してもよい。 The arrangement of the multi-leaf collimator 24 with respect to the charged particle beam B that draws the dose distribution as described above will be described. In FIG. 5, in the modulated dose distribution M1 of the charged particle beam B, a position corresponding to the vertex TP1 of the dose distribution M1 is defined as a first position P1. In the dose distribution M1, a position corresponding to the same dose ST2 as the vertices TP2 and TP3 of the dose distributions M2 and M3 of the charged particle beam B irradiated to other portions is set as a second position P2. Note that the second position P2 is set on the positive side and the negative side in the Y-axis direction, but here, the second position P2 indicates a position set on the negative side (that is, on the outer peripheral side). In such a case, the multi-leaf collimator 24 is a charged particle beam modulated at a position on the outer peripheral side from the first position P1 and between the first position P1 and the second position P2. Shield B. That is, when the area between the first position P1 and the second position P2 is the area E1, the side edge of the leaf 41 is disposed at any position in the area E1. When the position of the side edge of the leaf 41 is the position PC, the dose in the region E2 on the negative side of the position PC in the dose distribution TM is shielded. Moreover, the control part 7 adjusts the shape of the opening part 24c of the multileaf collimator 24 so that the leaf 41 may be arrange | positioned in the said position. Alternatively, the control unit 7 may finely adjust the position of the X-axis beam line BLx1 so that the leaf 41 is disposed at the position.
 制御部7は、荷電粒子線Bの線量の変調を行うとき、連続照射(ラインスキャニング又はラスタースキャニング)の場合は、X軸ビームラインBLx1上を移動する荷電粒子線Bの速度を、他のビームラインに比して遅くすればよい。これによって、X軸ビームラインBLx1に荷電粒子線Bが照射される時間が、他のビームラインに比して長くなり、大きな線量分布を得ることができる。また、制御部7は、スポットスキャニングの場合は、X軸ビームラインBLx1上に設定された各照射スポットでの照射時間を長くすることで、荷電粒子線Bの線量の変調を行ってよい。その他、イオン源から出力するイオンの量を増やすことによって荷電粒子線Bの線量の変調を行ってもよい。 When the dose of the charged particle beam B is modulated, the control unit 7 changes the velocity of the charged particle beam B moving on the X-axis beam line BLx1 to other beams in the case of continuous irradiation (line scanning or raster scanning). It may be slower than the line. As a result, the time during which the charged particle beam B is applied to the X-axis beam line BLx1 is longer than that of the other beam lines, and a large dose distribution can be obtained. In the case of spot scanning, the control unit 7 may modulate the dose of the charged particle beam B by increasing the irradiation time at each irradiation spot set on the X-axis beam line BLx1. In addition, the dose of the charged particle beam B may be modulated by increasing the amount of ions output from the ion source.
 なお、図5では、照射野60のうち周縁部61付近での線量分布を例にして説明したが、周縁部62においても同趣旨の制御が行われる。また、周縁部63,64付近では、制御部7は、Y軸ビームラインBLy1,BLy2に対する荷電粒子線Bの線量が、X軸ビームラインBLx2~BLx(N-1)に対する荷電粒子線Bよりも高くなるように変調を行う。 In FIG. 5, the dose distribution in the vicinity of the peripheral portion 61 of the irradiation field 60 has been described as an example. However, the same control is performed on the peripheral portion 62. In the vicinity of the peripheral portions 63 and 64, the control unit 7 determines that the dose of the charged particle beam B with respect to the Y-axis beam lines BLy1 and BLy2 is higher than that of the charged particle beam B with respect to the X-axis beam lines BLx2 to BLx (N−1). Modulate to increase.
 次に、本実施形態に係る荷電粒子線治療装置1の作用・効果について説明する。 Next, functions and effects of the charged particle beam therapy system 1 according to this embodiment will be described.
 まず、比較例1に係る荷電粒子線治療装置として、コリメータを有さず、且つ、照射野の周縁部で荷電粒子線Bの線量の変調を行わないものについて説明する。このような比較例1に係る荷電粒子線治療装置では、図6(b)に示すように、いずれの照射位置における線量分布M1,M2,M3も同様な形状となる。この場合、合計の線量分布TMは、照射野の周縁部付近において、緩やかに低下して行くようなグラフを描く。従って、横方向の線量分布の切れを示すペナンブラ(図において「T2」で示す)が大きくなるという問題が生じる。 First, a charged particle beam therapy apparatus according to Comparative Example 1 that does not have a collimator and that does not modulate the dose of the charged particle beam B at the periphery of the irradiation field will be described. In such a charged particle beam therapy system according to Comparative Example 1, as shown in FIG. 6B, the dose distributions M1, M2, and M3 at any irradiation position have the same shape. In this case, the total dose distribution TM draws a graph that gradually decreases near the periphery of the irradiation field. Therefore, there arises a problem that a penumbra (indicated by “T2” in the figure) indicating a break in the dose distribution in the lateral direction becomes large.
 これに対し、比較例2に係る荷電粒子線治療装置として、コリメータで照射野を規定するが、照射野の周縁部で荷電粒子線Bの線量の変調を行わないものについて説明する。この場合、図6(b)に示すように、コリメータの側縁部の位置PCよりも外周側の領域E2における合計の線量分布TMが遮蔽される。これによって、周縁部付近で急激に線量が低下するので、ペナンプラを低下させることができる。しかしながら、このような比較例2に係る荷電粒子線治療装置では、周縁部付近の線量が遮蔽されるため、当該箇所で急激に線量が低下することに起因して、照射野に対する線量分布の平坦度が低下してしまう場合がある。すなわち、コリメータの位置で荷電粒子線Bを遮蔽した後も、コリメータを通過した当該荷電粒子線Bは、下流側まで進行して、腫瘍の層Lへ照射される。このとき、照射対象となる層Lの周縁部付近での線量分布が、コリメータでの遮蔽に起因して落ち込むことにより、線量分布の平坦度が低下する場合がある。 In contrast, a charged particle beam therapy apparatus according to Comparative Example 2 will be described in which an irradiation field is defined by a collimator, but the dose of the charged particle beam B is not modulated at the periphery of the irradiation field. In this case, as shown in FIG. 6B, the total dose distribution TM in the region E2 on the outer peripheral side of the position PC of the side edge of the collimator is shielded. As a result, the dose rapidly decreases in the vicinity of the peripheral portion, so that the penampula can be decreased. However, in such a charged particle beam therapy system according to Comparative Example 2, since the dose in the vicinity of the peripheral portion is shielded, the dose distribution with respect to the irradiation field is flattened due to a sudden drop in the dose at the location. The degree may decrease. That is, even after the charged particle beam B is shielded at the collimator position, the charged particle beam B that has passed through the collimator travels to the downstream side and is irradiated onto the tumor layer L n . At this time, the dose distribution in the vicinity of the periphery of the layer L n of the irradiation target, by fall due to shielding of the collimator, there is a case where the flatness of the dose distribution is reduced.
 また、比較例3に係る荷電粒子線照射装置として、コリメータでの照射野の規定を行わず、照射野の周縁部で荷電粒子線Bの線量の変調を行うものについて説明する。この場合、図6(a)に示すように、周縁部に対する線量分布M1が大きくなることで、合計に係る線量分布TMが、周縁部付近で急激に立ち上がることで、ペナンブラを低下させることができる(図において「T1」で示す)。その一方、合計に係る線量分布TMが周縁部付近でピーク(図においてAで示す)を有する場合がある。これによって、局所的に線量が大きくなることに起因して、線量分布の平坦度が低下する場合がある。 Further, as the charged particle beam irradiation apparatus according to Comparative Example 3, an apparatus that modulates the dose of the charged particle beam B at the periphery of the irradiation field without defining the irradiation field with the collimator will be described. In this case, as shown in FIG. 6 (a), the dose distribution M1 with respect to the peripheral portion becomes large, so that the total dose distribution TM rises rapidly in the vicinity of the peripheral portion, thereby reducing the penumbra. (Indicated by “T1” in the figure). On the other hand, the dose distribution TM related to the sum may have a peak (indicated by A in the figure) near the periphery. As a result, the flatness of the dose distribution may decrease due to a locally large dose.
 一方、本実施形態に係る荷電粒子線治療装置1では、照射部2から腫瘍14に対してスキャニング方式により照射される荷電粒子線Bの照射野60をマルチリーフコリメータ24で規定することができる。すなわち、照射野60の周縁部に照射される荷電粒子線Bの一部をコリメータで遮蔽することができる。このように、マルチリーフコリメータ24を用いることにより、ペナンブラ(横方向の線量分布の切れ)を改善することができる。更に、制御部7は、マルチリーフコリメータ24で規定された照射野60の周縁部に荷電粒子線Bを照射するときは、照射野60における他の部分に荷電粒子線Bを照射するときよりも高い線量の荷電粒子線Bに変調する。従って、照射野60の周縁部では、変調によって荷電粒子線B自体の線量が高くなっているためペナンブラが改善されながらも線量分布の平坦度が低下するが、照射野の周縁部の荷電粒子線Bの一部をマルチリーフコリメータ24で遮蔽することで線量分布を平坦化させることができる。以上により、ペナンブラの改善と、線量分布の平坦度の確保を両立することができる。 On the other hand, in the charged particle beam therapy apparatus 1 according to this embodiment, the irradiation field 60 of the charged particle beam B irradiated from the irradiation unit 2 to the tumor 14 by the scanning method can be defined by the multi-leaf collimator 24. That is, a part of the charged particle beam B irradiated to the peripheral portion of the irradiation field 60 can be shielded by the collimator. Thus, by using the multi-leaf collimator 24, the penumbra (cut of dose distribution in the lateral direction) can be improved. Furthermore, when the control unit 7 irradiates the charged particle beam B to the peripheral portion of the irradiation field 60 defined by the multi-leaf collimator 24, the control unit 7 irradiates the other part of the irradiation field 60 with the charged particle beam B. Modulate to a high dose of charged particle beam B. Therefore, at the peripheral portion of the irradiation field 60, the dose of the charged particle beam B itself is increased due to the modulation, so that the flatness of the dose distribution is reduced while the penumbra is improved, but the charged particle beam at the peripheral portion of the irradiation field is reduced. The dose distribution can be flattened by shielding a part of B with the multi-leaf collimator 24. As described above, it is possible to achieve both improvement of the penumbra and ensuring flatness of the dose distribution.
 荷電粒子線治療装置1において、変調された荷電粒子線Bの線量分布M1において、当該線量分布M1の頂点TP1に対応する位置を第1の位置P1とし、他の部分に照射される荷電粒子線Bの線量分布M2,M3の頂点TP2,TP3と同じ線量ST2に対応する位置を第2の位置P2とする。この場合、マルチリーフコリメータ24は、第1の位置P1より外周側の位置であって、第1の位置P1と第2の位置P2との間の位置で、変調した荷電粒子線Bを遮蔽する。例えば、位置P1よりも内周側で荷電粒子線Bの遮蔽を行う場合、線量分布M1の頂点TP1の線量も遮蔽することとなる。この場合、荷電粒子線Bを変調したことによる効果が低減する。また、第2の位置P2よりも外周側で荷電粒子線Bの遮蔽を行う場合、遮蔽される線量の量が少なくなりすぎることで、マルチリーフコリメータ24を用いる事による効果が減少する。従って、第1の位置P1と第2の位置P2との間の位置で、変調した荷電粒子線Bを遮蔽することで、荷電粒子線Bの変調による効果、及びマルチリーフコリメータ24を用いることによる効果を両立させることが可能になる。以上により、マルチリーフコリメータ24は、照射野60の周縁部にて変調された荷電粒子線Bの一部を適切な位置にて遮蔽することができる。 In the charged particle beam therapy system 1, in the modulated dose distribution M1 of the charged particle beam B, the position corresponding to the vertex TP1 of the dose distribution M1 is set as the first position P1, and the charged particle beam irradiated to other portions. A position corresponding to the same dose ST2 as the vertices TP2 and TP3 of the dose distributions M2 and M3 of B is defined as a second position P2. In this case, the multi-leaf collimator 24 shields the modulated charged particle beam B at a position on the outer peripheral side from the first position P1 and between the first position P1 and the second position P2. . For example, when the charged particle beam B is shielded on the inner peripheral side from the position P1, the dose at the vertex TP1 of the dose distribution M1 is also shielded. In this case, the effect of modulating the charged particle beam B is reduced. Further, when the charged particle beam B is shielded on the outer peripheral side from the second position P2, the effect of using the multi-leaf collimator 24 is reduced because the amount of the shielded dose is too small. Therefore, by blocking the modulated charged particle beam B at a position between the first position P1 and the second position P2, the effect of modulation of the charged particle beam B and the use of the multi-leaf collimator 24 are achieved. It is possible to achieve both effects. As described above, the multi-leaf collimator 24 can shield a part of the charged particle beam B modulated at the periphery of the irradiation field 60 at an appropriate position.
 本発明は上述の実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 例えば、図4に示す照射野の形状は一例に過ぎず、腫瘍14の形状に合わせてあらゆる形状の照射野が規定されてよい。 For example, the shape of the irradiation field shown in FIG. 4 is merely an example, and irradiation fields of any shape may be defined in accordance with the shape of the tumor 14.
 また、図4に示すマルチリーフコリメータの構造は一例に過ぎず、照射野を規定できるものであれば、あらゆるタイプのコリメータを採用してもよい。 Further, the structure of the multi-leaf collimator shown in FIG. 4 is merely an example, and any type of collimator may be adopted as long as the irradiation field can be defined.
 なお、線量の変調によって荷電粒子線の線量を高くする位置は、照射野の最も外側の位置に限らず、照射野の内側の複数の位置における線量を高くしてもよい。例えば、図5に示す線量分布M1のみの線量を高くするのではなく、例えば線量分布M2などの線量を高くしてもよい。 In addition, the position where the dose of the charged particle beam is increased by modulating the dose is not limited to the outermost position of the irradiation field, and the doses at a plurality of positions inside the irradiation field may be increased. For example, instead of increasing the dose of only the dose distribution M1 shown in FIG. 5, the dose of the dose distribution M2, for example, may be increased.
 1…荷電粒子線治療装置、2…照射部、3…加速器、7…制御部、14…腫瘍(被照射体)、24…マルチリーフコリメータ。 DESCRIPTION OF SYMBOLS 1 ... Charged particle beam therapy apparatus, 2 ... Irradiation part, 3 ... Accelerator, 7 ... Control part, 14 ... Tumor (irradiated body), 24 ... Multi-leaf collimator.

Claims (2)

  1.  荷電粒子を加速して荷電粒子線を出射する加速器と、
     被照射体に対してスキャニング方式により前記荷電粒子線を照射する照射部と、
     前記被照射体の形状に合わせて前記荷電粒子線の照射野を規定するコリメータと、
     前記照射部を制御する制御部と、を備え、
     前記制御部は、前記コリメータで規定された前記照射野の周縁部に前記荷電粒子線を照射するときは、前記照射野における他の部分に前記荷電粒子線を照射するときよりも高い線量の前記荷電粒子線に変調する、荷電粒子線治療装置。
    An accelerator that accelerates charged particles and emits charged particle beams;
    An irradiating unit for irradiating the charged object with the charged particle beam by a scanning method;
    A collimator for defining an irradiation field of the charged particle beam according to the shape of the irradiated object;
    A control unit for controlling the irradiation unit,
    When the control unit irradiates the charged particle beam to the peripheral portion of the irradiation field defined by the collimator, the control unit has a higher dose than when the other part of the irradiation field is irradiated with the charged particle beam. A charged particle beam therapy device that modulates a charged particle beam.
  2.  変調された前記荷電粒子線の線量分布において、当該線量分布の頂点に対応する位置を第1の位置とし、前記他の部分に照射される前記荷電粒子線の線量分布の頂点と同じ線量に対応する位置を第2の位置とした場合、
     前記コリメータは、前記第1の位置より外周側の位置であって、前記第1の位置と前記第2の位置との間の位置で、変調した前記荷電粒子線を遮蔽する、請求項1に記載の荷電粒子線治療装置。
    In the modulated dose distribution of the charged particle beam, the position corresponding to the apex of the dose distribution is the first position, and the dose corresponds to the same dose as the apex of the dose distribution of the charged particle beam irradiated to the other part. When the position to be used is the second position,
    The collimator shields the modulated charged particle beam at a position on the outer peripheral side from the first position and between the first position and the second position. The charged particle beam therapy apparatus of description.
PCT/JP2018/013005 2017-03-31 2018-03-28 Charged particle beam treatment device WO2018181595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070937 2017-03-31
JP2017070937A JP2020096647A (en) 2017-03-31 2017-03-31 Charged particle ray treatment device

Publications (1)

Publication Number Publication Date
WO2018181595A1 true WO2018181595A1 (en) 2018-10-04

Family

ID=63676256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013005 WO2018181595A1 (en) 2017-03-31 2018-03-28 Charged particle beam treatment device

Country Status (3)

Country Link
JP (1) JP2020096647A (en)
TW (1) TWI658847B (en)
WO (1) WO2018181595A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017202A (en) * 2008-07-08 2010-01-28 Hitachi Medical Corp Radiation irradiation apparatus
US20100034357A1 (en) * 2006-12-19 2010-02-11 C-Rad Innovation Ab Collimator
JP2012223259A (en) * 2011-04-18 2012-11-15 Hitachi Ltd Particle therapy planning apparatus and particle therapy system
WO2013054788A1 (en) * 2011-10-14 2013-04-18 住友重機械工業株式会社 Charged particle beam irradiation system, and charged particle beam irradiation planning method
WO2015104828A1 (en) * 2014-01-10 2015-07-16 三菱電機株式会社 Particle beam irradiation apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834336B2 (en) * 2008-05-28 2010-11-16 Varian Medical Systems, Inc. Treatment of patient tumors by charged particle therapy
DE102011056339B3 (en) * 2011-12-13 2013-06-06 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Creation of an irradiation plan with moving target volume without motion compensation
US9881711B2 (en) * 2014-09-12 2018-01-30 Mitsubishi Electric Corporation Beam transport system and particle beam therapy system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034357A1 (en) * 2006-12-19 2010-02-11 C-Rad Innovation Ab Collimator
JP2010017202A (en) * 2008-07-08 2010-01-28 Hitachi Medical Corp Radiation irradiation apparatus
JP2012223259A (en) * 2011-04-18 2012-11-15 Hitachi Ltd Particle therapy planning apparatus and particle therapy system
WO2013054788A1 (en) * 2011-10-14 2013-04-18 住友重機械工業株式会社 Charged particle beam irradiation system, and charged particle beam irradiation planning method
WO2015104828A1 (en) * 2014-01-10 2015-07-16 三菱電機株式会社 Particle beam irradiation apparatus

Also Published As

Publication number Publication date
TW201836666A (en) 2018-10-16
TWI658847B (en) 2019-05-11
JP2020096647A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US8822965B2 (en) Charged particle beam irradiation apparatus
US8153989B2 (en) Charged particle beam irradiating apparatus
US9142385B1 (en) Charged particle beam treatment apparatus and method of adjusting path length of charged particle beam
TWI771964B (en) Charged particle beam irradiation device
JP6657015B2 (en) Charged particle beam therapy system
US11183370B2 (en) Charged particle beam treatment apparatus
US20210031056A1 (en) Charged particle beam treatment apparatus
WO2018181595A1 (en) Charged particle beam treatment device
US20190030373A1 (en) Charged particle beam treatment system
CN107427694B (en) Charged particle beam therapy device
JP6830290B1 (en) Charged particle beam irradiation device
JP6755208B2 (en) Charged particle beam therapy device
JP6787771B2 (en) Charged particle beam therapy device
JP2018196625A (en) Charged particle beam treatment apparatus
JP7233179B2 (en) Charged particle beam therapy system
JP7165499B2 (en) Charged particle beam therapy system
JP6815231B2 (en) Charged particle beam therapy device
US10381195B2 (en) Charged particle beam treatment apparatus
JP6640997B2 (en) Particle therapy equipment
JP2022152591A (en) Particle beam medical treatment device and accelerator
JP2022134356A (en) Charged particle beam irradiation system
WO2018211576A1 (en) Particle beam irradiation apparatus
JP2018166934A (en) Charged particle beam treatment device and power supply device
JP2018143591A (en) Charged particle beam treatment device
JP2015160084A (en) Charged particle radiotherapy device and control method for charged particle radiotherapy device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP