WO2018181564A1 - High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe - Google Patents

High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe Download PDF

Info

Publication number
WO2018181564A1
WO2018181564A1 PCT/JP2018/012956 JP2018012956W WO2018181564A1 WO 2018181564 A1 WO2018181564 A1 WO 2018181564A1 JP 2018012956 W JP2018012956 W JP 2018012956W WO 2018181564 A1 WO2018181564 A1 WO 2018181564A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
steel
sour
temperature
Prior art date
Application number
PCT/JP2018/012956
Other languages
French (fr)
Japanese (ja)
Inventor
周作 太田
横田 智之
長谷 和邦
雄太 田村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2019510032A priority Critical patent/JP6844691B2/en
Priority to BR112019020236-6A priority patent/BR112019020236B1/en
Priority to KR1020197030351A priority patent/KR20190129097A/en
Priority to CN201880022412.1A priority patent/CN110475894B/en
Priority to EP18774336.4A priority patent/EP3604592B1/en
Priority to KR1020217029888A priority patent/KR20210118960A/en
Publication of WO2018181564A1 publication Critical patent/WO2018181564A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the present invention is suitable for use in line pipes in the fields of architecture, offshore structures, shipbuilding, civil engineering, and construction industrial machines, and is a high-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacture. It is about the method.
  • the present invention also relates to a high-strength steel pipe using the above-described high-strength steel plate for sour line pipes.
  • a line pipe is manufactured by forming a steel plate manufactured by a thick plate mill or a hot rolling mill into a steel pipe by UOE forming, press bend forming, roll forming, or the like.
  • line pipes used for transporting crude oil and natural gas containing hydrogen sulfide are resistant to hydrogen induced cracking (HIC (Hydrogen Induced Cracking)) and sulfides in addition to strength, toughness and weldability.
  • So-called sour resistance such as stress corrosion cracking resistance (SSCC (Sulfide-Stress-Corrosion-Cracking) resistance) is required.
  • SSCC stress corrosion cracking resistance
  • HIC hydrogen ions from the corrosion reaction are adsorbed on the steel surface, penetrate into the steel as atomic hydrogen, and diffuse and accumulate around non-metallic inclusions such as MnS and hard second-phase structures in the steel.
  • TMCP Thermo-Mechanical Control Process
  • TMCP Thermo-Mechanical Control Process
  • it is effective to increase the cooling rate during controlled cooling.
  • controlled cooling is performed at a high cooling rate, the surface layer portion of the steel sheet is rapidly cooled, so that the hardness of the surface layer portion is higher than that inside the steel plate, and the hardness distribution in the thickness direction varies. Therefore, it becomes a problem from the viewpoint of ensuring the material uniformity in the steel plate.
  • Patent Documents 1 and 2 there is a material difference in the plate thickness direction by interrupting accelerated cooling after rolling, reaccelerating the surface, and then performing accelerated cooling again.
  • a method for manufacturing a small steel sheet is disclosed.
  • Patent Documents 3 and 4 disclose a method for manufacturing a steel plate for a line pipe, which uses a high-frequency induction heating device to heat the steel plate surface after accelerated cooling to a higher temperature from the inside to reduce the hardness of the surface layer portion. Has been.
  • Patent Documents 5 and 6 disclose a method for improving the steel plate shape by reducing the uneven cooling due to the uneven thickness of the scale by performing descaling immediately before the cooling.
  • Japanese Patent No. 3951428 Japanese Patent No. 3951429 JP 2002-327212 A Japanese Patent No. 3711896 JP-A-9-57327 Japanese Patent No. 3796133
  • Patent Documents 5 and 6 improve the steel sheet shape by descaling to reduce surface quality defects due to indentation of the scale during hot correction and to reduce variation in the cooling stop temperature of the steel sheet.
  • the cooling conditions for obtaining a uniform material no consideration is given to the cooling conditions for obtaining a uniform material. That is, in the techniques described in Patent Documents 5 and 6, the cooling rate of the surface layer portion in the accelerated cooling is not considered at all. Therefore, there is a possibility that the hardness of the surface layer portion may not be sufficiently reduced at the cooling rate for securing the tensile properties in the center of the plate thickness, and as a result, the hardness may vary in the plate thickness direction. Concerned.
  • the present invention provides a high-strength steel sheet for sour line pipes that is excellent in HIC resistance and SSCC resistance under a more severe corrosive environment and excellent in hardness uniformity in the thickness direction. It is intended to provide with its advantageous manufacturing method.
  • Another object of the present invention is to propose a high-strength steel pipe using the high-strength steel sheet for sour-resistant pipes.
  • the present inventors repeated numerous experiments and examinations on the component composition, microstructure, and production conditions of the steel material in order to ensure HIC resistance and SSCC resistance under a more severe corrosive environment.
  • the structure of the extreme surface layer portion of the steel sheet specifically the steel sheet surface
  • an increase in hardness can be reduced in the coating process after pipe forming. It was found that the SSCC resistance of the steel pipe was improved as a result.
  • both the thermal history at 0.5 mm below the steel sheet surface in the controlled cooling and the thermal history of the steel sheet average are strictly controlled, and then the excess introduced by the controlled cooling.
  • by performing induction heating under a predetermined condition in consideration of the steel plate surface temperature T 1 at the start of cooling in the controlled cooling and the cooling stop temperature T 2 at the steel plate average temperature the variation in hardness in the plate thickness direction is caused. It was found that it can be significantly reduced.
  • the present invention has been made based on this finding.
  • the gist configuration of the present invention is as follows. [1] By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015% , S: 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, and the CP value obtained by the following formula (1) is 1 0.000 or less, and the balance has a component composition consisting of Fe and inevitable impurities,
  • the steel structure at 0.5 mm below the steel sheet surface is a bainite structure having a dislocation density of 0.5 ⁇ 10 14 to 7.0 ⁇ 10 14 (m ⁇ 2 ),
  • the difference ⁇ HV between the average value of Vickers hardness at 0.5 mm below the steel sheet surface and the average value of Vickers hardness at the center of the steel sheet thickness is 25 HV or less,
  • the component composition was further selected by mass% from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less.
  • the component composition is further selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%.
  • the component composition is further selected by mass% from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less.
  • the component composition is further selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1% and Ti: 0.005 to 0.1% by mass%.
  • TP (T 3 ⁇ T 2 ) ⁇ T 2 / (T 1 ⁇ T 2 ) 2 (2)
  • the high-strength steel plate for sour line pipe and the high-strength steel pipe using the high-strength steel plate for sour line pipe of the present invention are excellent in HIC resistance and SSCC resistance in a more severe corrosion environment, and in the thickness direction. Excellent hardness uniformity. Further, according to the method for producing a high-strength steel sheet for sour line pipes of the present invention, the HIC resistance and SSCC resistance in a more severe corrosive environment are excellent, and the hardness uniformity in the thickness direction is also excellent.
  • a high-strength steel sheet for sour line pipes can be manufactured.
  • C 0.02 to 0.08% C contributes effectively to the improvement of strength, but if the content is less than 0.02%, sufficient strength cannot be secured, while if it exceeds 0.08%, the hardness of the surface layer portion increases during accelerated cooling. , HIC resistance and SSCC resistance deteriorate. In addition, toughness deteriorates. For this reason, the C content is limited to a range of 0.02 to 0.08%.
  • Si 0.01 to 0.50% Si is added for deoxidation, but if the content is less than 0.01%, the deoxidation effect is not sufficient. On the other hand, if it exceeds 0.50%, the toughness and weldability are deteriorated. It is limited to the range of 01 to 0.50%.
  • Mn 0.50 to 1.80% Mn contributes effectively to the improvement of strength and toughness, but if the content is less than 0.50%, the effect of addition is poor, while if it exceeds 1.80%, the hardness of the central segregation part increases during accelerated cooling. Therefore, the HIC resistance is deteriorated. Moreover, weldability also deteriorates. For this reason, the amount of Mn is limited to the range of 0.50 to 1.80%.
  • P 0.001 to 0.015%
  • P is an inevitable impurity element, and deteriorates the weldability and also increases the hardness of the center segregation part to deteriorate the HIC resistance. Since the tendency will become remarkable when it exceeds 0.015%, an upper limit is prescribed
  • S 0.0002 to 0.0015%
  • S is an unavoidable impurity element, and is preferably MnS inclusion in the steel, so that the HIC resistance is degraded. The lower the content, the better, but 0.0002% or more from the viewpoint of refining costs.
  • Al 0.01 to 0.08% Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect of addition. On the other hand, if it exceeds 0.08%, the cleanliness of the steel is lowered and the toughness is deteriorated. It is limited to the range of 01 to 0.08%.
  • Ca 0.0005 to 0.005%
  • Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, but if it is less than 0.0005%, the effect of addition is not sufficient. On the other hand, if it exceeds 0.005%, not only the effect is saturated, but also the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel, so the Ca content is limited to the range of 0.0005 to 0.005%. .
  • the component composition of the present disclosure may be one or more selected from Cu, Ni, Cr, and Mo in order to further improve the strength and toughness of the steel sheet. Can be optionally contained within the following range.
  • Cu 0.50% or less Cu is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, welding is performed. When Cu is added, the upper limit is 0.50%.
  • Ni 0.50% or less
  • Ni is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, it is economical. This is not only disadvantageous, but also the toughness of the weld heat affected zone deteriorates. Therefore, when Ni is added, the upper limit is 0.50%.
  • Cr 0.50% or less Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. To obtain this effect, it is preferable to contain 0.05% or more. If the amount is too large, weldability deteriorates, so when Cr is added, the upper limit is 0.50%.
  • Mo 0.50% or less Mo is an element effective in improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, welding is performed. When the Mo is added, the upper limit is 0.50%.
  • the component composition of the present disclosure may further contain one or more selected from Nb, V and Ti within the following ranges.
  • Nb 0.005 to 0.1%
  • V 0.005 to 0.1%
  • Ti 0.005 to 0.1%
  • Any of Nb, V and Ti Is an element that can be optionally added to increase the strength and toughness of the steel sheet.
  • the content of each element is less than 0.005%, the effect of addition is poor.
  • the content exceeds 0.1% the toughness of the welded portion deteriorates. It is preferable to be in the range.
  • This disclosure discloses a technique for improving the SSCC resistance of a high-strength steel pipe using a high-strength steel plate for sour line pipes.
  • the sour-proof performance is not limited to HIC resistance. Since it is necessary to satisfy simultaneously, CP value calculated
  • the CP value is an expression devised for estimating the material of the center segregation part from the content of each alloy element.
  • the higher the CP value of the above formula (1) the higher the component concentration of the center segregation part. Increases and the hardness of the central segregation part increases. Therefore, it is possible to suppress the occurrence of cracks in the HIC test by setting the CP value obtained in the above equation (1) to 1.00 or less. Further, the lower the CP value, the lower the hardness of the center segregation part. Therefore, when higher HIC resistance is required, the upper limit may be set to 0.95.
  • the steel structure of the high-strength steel sheet for sour line pipes In order to increase the tensile strength of 520 MPa or more, the steel structure needs to be a bainite structure.
  • a hard phase such as martensite or island martensite (MA)
  • the surface layer hardness is increased, the hardness variation in the steel sheet is increased, and the material uniformity is inhibited.
  • the steel structure of the surface layer portion is a bainite structure.
  • the bainite structure includes a structure called bainitic ferrite or granular ferrite that transforms during or after accelerated cooling that contributes to transformation strengthening.
  • bainitic ferrite or granular ferrite that transforms during or after accelerated cooling that contributes to transformation strengthening.
  • different types of structures such as ferrite, martensite, pearlite, island-like martensite, and retained austenite
  • the strength decreases, the toughness deteriorates, and the surface hardness increases.
  • the smaller the fraction the better.
  • the volume fraction of the structure other than the bainite phase is sufficiently low, the influence thereof can be ignored, so that a certain amount is acceptable.
  • the structure of the extreme surface layer portion of the steel sheet specifically, the steel structure of 0.5 mm below the steel sheet surface has a dislocation density of 0. It is important to have a bainite structure of 5 ⁇ 10 14 to 7.0 ⁇ 10 14 (m ⁇ 2 ). Since the dislocation density decreases in the coating process after pipe forming, if the dislocation density 0.5 mm below the steel sheet surface is 7.0 ⁇ 10 14 (m ⁇ 2 ) or less, the increase in hardness due to age hardening is minimized. To the limit.
  • dislocation density of 0.5 mm below the steel sheet surface exceeds 7.0 ⁇ 10 14 (m ⁇ 2 )
  • the dislocation density does not decrease in the coating process after pipe forming, and the hardness increases greatly by age hardening.
  • a preferable range of dislocation density is 6.0 ⁇ 10 14 (m ⁇ 2 ) or less.
  • the dislocation density 0.5 mm below the steel sheet surface is less than 0.5 ⁇ 10 14 (m ⁇ 2 )
  • the strength of the steel sheet cannot be maintained.
  • the dislocation density in the steel structure 0.5 mm below the steel sheet surface is in the above range, the extreme surface layer part in the range of 0.5 mm depth from the steel sheet surface also has an equivalent dislocation density. As a result, the effect of improving the SSCC resistance can be obtained.
  • the HV0.1 at 0.5 mm below the surface is 230 or less. From the viewpoint of securing the SSCC resistance of the steel pipe, it is important to suppress the surface hardness of the steel sheet. However, by setting the HV0.1 at 0.5 mm below the surface of the steel sheet to 230 or less, coating after pipe forming After the process, HV0.1 at 0.5 mm below the surface can be suppressed to 260 or less, and SSCC resistance can be ensured.
  • the material properties at the center of the sheet thickness can be secured while suppressing the hardness of the surface layer.
  • the difference ⁇ HV between the average value of Vickers hardness at 0.5 mm below the steel sheet surface and the average value of Vickers hardness at the center of the steel sheet thickness is 25 HV or less. More preferable ⁇ HV is 20 HV or less.
  • the high-strength steel sheet of the present disclosure is a steel pipe steel sheet having an API 5L X60 grade or higher strength, it has a tensile strength of 520 MPa or higher.
  • slab heating temperature 1000-1300 ° C If the slab heating temperature is less than 1000 ° C., the required strength cannot be obtained due to insufficient solid solution of the carbide. On the other hand, if the slab heating temperature exceeds 1300 ° C., the toughness deteriorates, so the slab heating temperature is set to 1000 to 1300 ° C. This temperature is the furnace temperature of the heating furnace, and the slab is heated to this temperature up to the center.
  • the rolling end temperature at the steel sheet surface temperature is the required base material toughness and rolling. It is necessary to set in consideration of efficiency. From the viewpoint of improving strength and HIC resistance, it is preferable that the rolling end temperature is not less than the Ar 3 transformation point at the steel sheet surface temperature.
  • the Ar 3 transformation point means the ferrite transformation start temperature during cooling, and can be obtained from the steel components by the following formula, for example.
  • austenite non-recrystallization temperature range be 60% or more.
  • surface temperature of a steel plate can be measured with a radiation thermometer or the like.
  • Ar 3 (° C.) 910-310 [% C] -80 [% Mn] -20 [% Cu] -15 [% Cr] -55 [% Ni] -80 [% Mo]
  • [% X] indicates the content (mass%) of element X in steel.
  • Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature at 0.5 mm below the steel plate surface 100 ° C./s or less Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature at 0.5 mm below the steel plate surface is 100 ° C. / If it exceeds s, the dislocation density at 0.5 mm below the steel sheet surface exceeds 7.0 ⁇ 10 14 (m ⁇ 2 ). As a result, HV0.1 of 0.5 mm below the steel sheet surface exceeds 230, and after passing through the coating process after pipe forming, HV0.1 at 0.5 mm below the surface exceeds 260, and the SSCC resistance of the steel pipe deteriorates. To do.
  • the said average cooling rate shall be 100 degrees C / s or less. Preferably it is 80 degrees C / s or less.
  • the lower limit of the average cooling rate is not particularly limited. However, if the cooling rate is excessively small, ferrite and pearlite are generated and the strength becomes insufficient. Therefore, from the viewpoint of preventing this, it is preferably set to 10 ° C./s or more.
  • Average cooling rate from 750 ° C. to 550 ° C. at the average temperature of the steel plate 15 ° C./s or more
  • the average cooling rate from 750 ° C. to 550 ° C. at the average temperature of the steel plate is less than 15 ° C./s, the bainite structure is not obtained and the strength Decrease and deterioration of HIC resistance occur, or the variation in hardness in the thickness direction increases.
  • the cooling rate at the steel plate average temperature is set to 15 ° C./s or more.
  • the average cooling rate of the steel plate is preferably 20 ° C./s or more.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably set to 80 ° C./s or less so that the low temperature transformation product is not excessively generated.
  • the 0.5 mm below the steel plate surface and the average steel plate temperature cannot be physically measured directly, but the surface temperature at the start of cooling measured with a radiation thermometer and the surface temperature at the target cooling stop are also measured.
  • the temperature distribution in the cross section of the plate thickness can be obtained in real time by difference calculation using a process computer.
  • the temperature at 0.5 mm below the steel sheet surface in the temperature distribution is defined as “steel temperature at 0.5 mm below the steel sheet surface” in this specification, and the average value of the temperature in the plate thickness direction in the temperature distribution is “ Average temperature ”.
  • Induction heating temperature T 3 550 to 750 ° C. at the steel sheet surface temperature
  • the dislocation density at 0.5 mm below the steel sheet surface was 7.0 ⁇ 10 14 (m ⁇ 2 ) or less, and excellent SSCC resistance was obtained, and the average of the Vickers hardness at 0.5 mm below the steel sheet surface was obtained.
  • the difference ⁇ HV between the value and the average value of Vickers hardness at the center of the steel plate thickness can be 25 HV or less.
  • the induction heating temperature is lower than 550 ° C., a sufficient tempering effect cannot be obtained, and even if the dislocation density of the surface layer can be 7.0 ⁇ 10 14 (m ⁇ 2 ) or less, ⁇ HV is It cannot be less than 25HV.
  • the induction heating temperature exceeds 750 ° C., the center of the plate thickness is also tempered, and there is a possibility that a predetermined strength cannot be obtained. Therefore, in order to secure the strength at the center of the plate thickness while suppressing deterioration of material uniformity in the steel plate, the ultimate temperature of the on-line induction heating is set to 550 to 750 ° C. at the steel plate surface temperature. In the present embodiment, it is important that only the surface layer portion is tempered without tempering the inside of the steel sheet as much as possible in order to suppress a decrease in strength, and therefore, an online induction heating device is used for heating.
  • TP defined by the following formula (2) satisfies 0.50 or more and 1.50 or less. More preferably, it is 0.60 or more and 1.00 or less.
  • TP (T 3 ⁇ T 2 ) ⁇ T 2 / (T 1 ⁇ T 2 ) 2 (2)
  • TP is a relational expression of tempering with respect to the degree of supercooling of the controlled cooling, and when this satisfies 0.50 or more, the dislocation of the surface layer portion introduced by the accelerated cooling is sufficiently recovered and excessive in the center of the plate thickness. Since tempering is not imitated, it is possible to remarkably suppress variation in hardness in the thickness direction. Specifically, ⁇ HV can be set to 20 or less.
  • High-strength steel pipe The high-strength steel sheet of the present disclosure is formed into a tubular shape by press bend forming, roll forming, UOE forming, etc., and then the butt portion is welded to provide excellent material uniformity in the steel sheet suitable for transporting crude oil and natural gas.
  • High strength steel pipes for sour-resistant pipes UOE steel pipes, ERW steel pipes, spiral steel pipes, etc. can be manufactured.
  • the end of a steel plate is grooved and formed into a steel pipe shape by C press, U press, and O press, and then the butt portion is seam welded by inner surface welding and outer surface welding.
  • Any welding method may be used as long as sufficient joint strength and joint toughness can be obtained, but it is preferable to use submerged arc welding from the viewpoint of excellent welding quality and manufacturing efficiency.
  • Steels (steel types A to I) having the composition shown in Table 1 were made into slabs by a continuous casting method, heated to the temperatures shown in Table 2, and then hot rolled at the rolling end temperatures and reduction rates shown in Table 2. Thus, a steel plate having a thickness shown in Table 2 was obtained. Thereafter, controlled cooling was performed on the steel sheet using a water-cooled control cooling device under the conditions shown in Table 2. Immediately thereafter, the steel sheet was reheated by the method shown in “Heating Method” in Table 2 so that the steel sheet surface temperature became the “maximum temperature during reheating” in Table 2.
  • Dislocation density A sample for X-ray diffraction was collected from a position having an average hardness, the sample surface was polished to remove the scale, and X-ray diffraction measurement was performed at a position 0.5 mm below the steel sheet surface. The dislocation density was converted from the strain obtained from the half width ⁇ of the X-ray diffraction measurement. In the diffraction intensity curve obtained by normal X-ray diffraction, the K ⁇ 1 line and the K ⁇ 2 line having different wavelengths overlap each other, so that they are separated by the Rachinger method. The Williamsson-Hall method shown below is used for distortion extraction.
  • the spread of the half width is affected by the size D of the crystallite and the strain ⁇ , and can be calculated by the following equation as the sum of both factors.
  • 14.4 ⁇ 2 / b 2
  • means the peak angle calculated by the ⁇ -2 ⁇ method of X-ray diffraction
  • means the wavelength of X-rays used in X-ray diffraction
  • b is a Burgers vector of Fe ( ⁇ ), and in this example, it was 0.25 nm.
  • SSCC resistance was evaluated by pipe forming using a part of each of these steel plates. Pipe making is performed after the end of the steel plate is grooved and formed into a steel pipe shape by C-press, U-press and O-press, then the butt part of the inner and outer surfaces is seam welded by submerged arc welding, and the tube is expanded. did. As shown in FIG. 1, after flattening a coupon cut out from the obtained steel pipe, a 5 ⁇ 15 ⁇ 115 mm SSCC test piece was collected from the inner surface of the steel pipe. At this time, the inner surface, which is the test surface, was left with a black skin to leave the outermost layer.
  • the collected SSCC test piece was loaded with 90% of the actual yield strength (0.5% YS) of each steel pipe, and using NACE TM0177 Solution A solution, hydrogen sulfide partial pressure: 1 bar, EFC16 standard
  • NACE TM0177 Solution A solution, hydrogen sulfide partial pressure: 1 bar, EFC16 standard The four-point bending SSCC test was conducted. A case where no crack was observed after immersing for 720 hours was judged as good when the SSCC resistance was good, and a case where a crack occurred was judged as poor and was marked as x.
  • Table 2 The results are shown in Table 2.
  • HIC resistance was evaluated as “Good” when a HIC test was conducted with an immersion time of 96 hours in accordance with NACE Standard TM-02-84. As evaluated. The results are shown in Table 2.
  • the target range of the present invention is that the tensile strength is 520 MPa or more as a high-strength steel plate for sour line pipes, the microstructure is a bainite structure at 0.5 mm below the surface and the t / 2 position, and HV0.1 is 0.5 mm below the surface. Is 230 or less, the absolute value ⁇ HV of the difference between the hardness at 0.5 mm below the surface and the hardness at the center of the plate thickness is 25 or less, and no cracks are observed in the SSCC test in a high-strength steel pipe made using the steel plate In addition, no cracks were observed in the HIC test.
  • No. 1-No. 9 is an invention example in which the component composition and production conditions satisfy the appropriate range of the present invention.
  • the tensile strength of the steel sheet is 520 MPa or more
  • the microstructure is a bainite structure at both the 0.5 mm position and the t / 2 position below the surface
  • the HV0.1 is 0.5 or less
  • the ⁇ HV is 25 or less at 0.5 mm below the surface
  • SSCC resistance and HIC resistance were also good in the high-strength steel pipe made using the steel plate.
  • No. 10-No. No. 16 is a comparative example in which the component composition is within the scope of the present invention but the production conditions are outside the scope of the present invention.
  • the cooling stop temperature was low, so the difference in hardness between the surface layer and the center of the plate thickness was large.
  • the controlled cooling condition was outside the range of the present invention, and the dislocation density was significantly increased in the steel sheet surface layer, so that the surface layer hardness increased and SSCC was generated.
  • No. 13 the average cooling rate of the steel plate was not sufficiently secured, and ferrite was formed at the center of the plate thickness. In No.
  • the heating temperature in the on-line induction heating was not optimal, so that a hardness difference in the plate thickness direction occurred.
  • No. No. 15 is tempered by furnace heating, but has a low strength because the rate of temperature rise is slow and the entire thickness is tempered on average.
  • No. No. 16 is a case in which reheating is not performed, and since the surface layer is not softened by tempering, the dislocation density of the surface layer is high, which causes the occurrence of SSCC. Also, the thickness variation in the thickness direction is large.
  • the component composition of the steel sheet is outside the scope of the present invention, and the HIC resistance is deteriorated.
  • a steel pipe (such as an electric resistance steel pipe, a spiral steel pipe, or a UOE steel pipe) manufactured by cold forming this steel sheet can be suitably used for transporting crude oil or natural gas containing hydrogen sulfide that requires sour resistance. .

Abstract

The present invention provides a high strength steel sheet for a sour-resistant line pipe, the high strength steel sheet having excellent HIC resistance and SSCC resistance under extremely severe corrosive environments, and having excellent hardness uniformity in the thickness direction. This high strength steel sheet for a sour-resistant line pipe has a predetermined component composition, and is characterized in that the steel structure 0.5 mm below the surface of the steel sheet is a bainite structure having a dislocation density of 0.5×1014-7.0×1014 (m-2), the difference ΔHV between the average Vickers hardness value 0.5 mm below the surface of the steel sheet and the average Vickers hardness value at the center with respect to the thickness of the steel sheet is 25 HV or less, and the tensile strength of the steel sheet is at least 520 MPa.

Description

耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
 本発明は、建築、海洋構造物、造船、土木、建設産業用機械の分野のラインパイプに使用して好適な、鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板およびその製造方法に関するものである。また、本発明は、上記の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管に関するものである。 The present invention is suitable for use in line pipes in the fields of architecture, offshore structures, shipbuilding, civil engineering, and construction industrial machines, and is a high-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacture. It is about the method. The present invention also relates to a high-strength steel pipe using the above-described high-strength steel plate for sour line pipes.
 一般に、ラインパイプは、厚板ミルや熱延ミルによって製造された鋼板を、UOE成形、プレスベンド成形およびロール成形等によって、鋼管に成形することで製造される。 Generally, a line pipe is manufactured by forming a steel plate manufactured by a thick plate mill or a hot rolling mill into a steel pipe by UOE forming, press bend forming, roll forming, or the like.
 ここに、硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性などの他に、耐水素誘起割れ性(耐HIC(Hydrogen Induced Cracking)性)や耐硫化物応力腐食割れ性(耐SSCC(Sulfide Stress Corrosion Cracking)性)といった、いわゆる耐サワー性が必要とされる。中でもHICは、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積して、分子状の水素となり、その内圧により割れを生ずるもので、油井管に対して比較的強度レベルの低いラインパイプにおいて問題とされ、多くの対策技術が開示されてきた。一方、SSCCに関しては、一般的に油井用高強度継目無鋼管や、溶接部の高硬度域で発生することが知られており、比較的硬さが低いラインパイプではあまり問題視されてこなかった。ところが近年、原油や天然ガスの採掘環境がますます厳しさを増し、硫化水素分圧の高い、あるいはpHが低い環境において、ラインパイプの母材部においてもSSCCが生じることが報告されており、鋼管内面表層部の硬さをコントロールして、より厳しい腐食環境下での耐SSCC性を向上させることの重要性が指摘されている。 Here, line pipes used for transporting crude oil and natural gas containing hydrogen sulfide are resistant to hydrogen induced cracking (HIC (Hydrogen Induced Cracking)) and sulfides in addition to strength, toughness and weldability. So-called sour resistance such as stress corrosion cracking resistance (SSCC (Sulfide-Stress-Corrosion-Cracking) resistance) is required. In particular, in HIC, hydrogen ions from the corrosion reaction are adsorbed on the steel surface, penetrate into the steel as atomic hydrogen, and diffuse and accumulate around non-metallic inclusions such as MnS and hard second-phase structures in the steel. As a result, it becomes molecular hydrogen and cracks are caused by the internal pressure thereof, which is a problem in a line pipe having a relatively low strength level with respect to an oil well pipe, and many countermeasure techniques have been disclosed. On the other hand, SSCC is generally known to occur in high-strength seamless steel pipes for oil wells and high hardness regions of welds, and has not been regarded as a problem for line pipes with relatively low hardness. . However, in recent years, it has been reported that the mining environment for crude oil and natural gas has become increasingly severe, and SSCC also occurs in the base material of the line pipe in an environment where the hydrogen sulfide partial pressure is high or the pH is low. The importance of improving the SSCC resistance in a more severe corrosive environment by controlling the hardness of the steel pipe inner surface layer has been pointed out.
 通常、ラインパイプ用高強度鋼板の製造に際しては、制御圧延と制御冷却を組み合わせた、いわゆるTMCP(Thermo-Mechanical Control Process)技術が適用されている。このTMCP技術を用いて鋼材の高強度化を行うには、制御冷却時の冷却速度を大きくすることが有効である。しかしながら、高冷却速度で制御冷却した場合、鋼板表層部が急冷されるため、鋼板内部に比べて表層部の硬さが高くなり、板厚方向の硬さ分布にばらつきが生じる。従って、鋼板内の材質均一性を確保する観点で問題となる。 Usually, when manufacturing high-strength steel sheets for line pipes, so-called TMCP (Thermo-Mechanical Control Process) technology, which combines controlled rolling and controlled cooling, is applied. In order to increase the strength of steel using this TMCP technology, it is effective to increase the cooling rate during controlled cooling. However, when controlled cooling is performed at a high cooling rate, the surface layer portion of the steel sheet is rapidly cooled, so that the hardness of the surface layer portion is higher than that inside the steel plate, and the hardness distribution in the thickness direction varies. Therefore, it becomes a problem from the viewpoint of ensuring the material uniformity in the steel plate.
 上記の問題を解決するために、例えば特許文献1,2には、圧延後の加速冷却を中断し、表面を復熱させた後に再度加速冷却を実施することによる、板厚方向の材質差が小さい鋼板の製造方法が開示されている。また、特許文献3,4には、高周波誘導加熱装置を用いて、加速冷却後の鋼板表面を内部より高温に加熱して表層部の硬さを低減した、ラインパイプ用鋼板の製造方法が開示されている。 In order to solve the above problem, for example, in Patent Documents 1 and 2, there is a material difference in the plate thickness direction by interrupting accelerated cooling after rolling, reaccelerating the surface, and then performing accelerated cooling again. A method for manufacturing a small steel sheet is disclosed. Patent Documents 3 and 4 disclose a method for manufacturing a steel plate for a line pipe, which uses a high-frequency induction heating device to heat the steel plate surface after accelerated cooling to a higher temperature from the inside to reduce the hardness of the surface layer portion. Has been.
 他方、鋼板表面のスケール厚さにむらがあった場合、冷却時にその下部の鋼板の冷却速度にもばらつきが生じ、鋼板内の局所的な冷却停止温度のばらつきが問題となる。その結果、スケール厚さのむらによって板幅方向に鋼板材質のばらつきが生じることになる。これに対し、特許文献5,6には、冷却直前にデスケーリングを行うことにより、スケール厚さむらに起因した冷却むらを低減して、鋼板形状を改善する方法が開示されている。 On the other hand, if there is unevenness in the scale thickness on the surface of the steel plate, the cooling rate of the steel plate underneath will also vary during cooling, causing local variations in the cooling stop temperature within the steel plate. As a result, the unevenness of the scale thickness causes variations in the steel plate material in the plate width direction. On the other hand, Patent Documents 5 and 6 disclose a method for improving the steel plate shape by reducing the uneven cooling due to the uneven thickness of the scale by performing descaling immediately before the cooling.
特許第3951428号公報Japanese Patent No. 3951428 特許第3951429号公報Japanese Patent No. 3951429 特開2002-327212号公報JP 2002-327212 A 特許第3711896号公報Japanese Patent No. 3711896 特開平9-57327号公報JP-A-9-57327 特許第3796133号公報Japanese Patent No. 3796133
 しかしながら、本発明者らの検討によると、上記特許文献1~6に記載の製造方法で得られる高強度鋼板では、より厳しい腐食環境下での耐HIC性及び耐SSCC性という観点で改善の余地があることが判明した。その理由としては、以下のようなものが考えられる。 However, according to the study by the present inventors, there is room for improvement in terms of HIC resistance and SSCC resistance in a more severe corrosive environment in the high-strength steel sheets obtained by the production methods described in Patent Documents 1 to 6 above. Turned out to be. The reason is as follows.
 特許文献1,2に記載の製造方法では、鋼板の成分により変態挙動が異なると、復熱による十分な材質均質化の効果が得られない場合がある。 In the production methods described in Patent Documents 1 and 2, if the transformation behavior differs depending on the steel plate components, the effect of sufficient material homogenization by recuperation may not be obtained.
 特許文献3,4に記載の製造方法は、加速冷却における表層部の冷却速度が大きいため、鋼板表面の加熱だけでは表層部の硬さを十分に低減できない場合がある。 In the manufacturing methods described in Patent Documents 3 and 4, since the cooling rate of the surface layer portion in accelerated cooling is large, the hardness of the surface layer portion may not be sufficiently reduced only by heating the steel sheet surface.
 他方、特許文献5,6に記載の方法では、デスケーリングにより、熱間矯正時のスケールの押し込み疵による表面性状不良の低減や、鋼板の冷却停止温度のばらつきを低減して鋼板形状を改善しているが、均一な材質を得るための冷却条件に関しては何ら配慮がなされていない。すなわち、特許文献5,6に記載の技術では、加速冷却における表層部の冷却速度が何ら考慮されていない。そのため、板厚中央における引張特性を確保するための冷却速度では、表層部の硬さを十分には低減できていない可能性があり、その結果として板厚方向に硬さのばらつきが生じることが懸念される。 On the other hand, the methods described in Patent Documents 5 and 6 improve the steel sheet shape by descaling to reduce surface quality defects due to indentation of the scale during hot correction and to reduce variation in the cooling stop temperature of the steel sheet. However, no consideration is given to the cooling conditions for obtaining a uniform material. That is, in the techniques described in Patent Documents 5 and 6, the cooling rate of the surface layer portion in the accelerated cooling is not considered at all. Therefore, there is a possibility that the hardness of the surface layer portion may not be sufficiently reduced at the cooling rate for securing the tensile properties in the center of the plate thickness, and as a result, the hardness may vary in the plate thickness direction. Concerned.
 そこで本発明は、上記課題に鑑み、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れ、かつ板厚方向の硬さ均一性にも優れた耐サワーラインパイプ用高強度鋼板を、その有利な製造方法と共に提供することを目的とする。また、本発明は、上記耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管を提案することを目的とする。 Therefore, in view of the above problems, the present invention provides a high-strength steel sheet for sour line pipes that is excellent in HIC resistance and SSCC resistance under a more severe corrosive environment and excellent in hardness uniformity in the thickness direction. It is intended to provide with its advantageous manufacturing method. Another object of the present invention is to propose a high-strength steel pipe using the high-strength steel sheet for sour-resistant pipes.
 本発明者らは、より厳しい腐食環境下での耐HIC性及び耐SSCC性を確保するべく、鋼材の成分組成、ミクロ組織および製造条件について、数多くの実験と検討を繰り返した。その結果、高強度鋼管の耐SSCC性をさらに向上させるためには、従来知見どおり単に表層硬さを抑えることだけでは不十分であり、特に鋼板の極表層部の組織、具体的には鋼板表面下0.5mmの鋼組織を、転位密度0.5×1014~7.0×1014(m-2)のベイナイト組織とすることで、造管後のコーティング過程において硬さの上昇代を抑えることができ、結果として鋼管の耐SSCC特性が向上することを知見した。 The present inventors repeated numerous experiments and examinations on the component composition, microstructure, and production conditions of the steel material in order to ensure HIC resistance and SSCC resistance under a more severe corrosive environment. As a result, in order to further improve the SSCC resistance of high-strength steel pipes, it is not sufficient to simply suppress the surface layer hardness as in the past. In particular, the structure of the extreme surface layer portion of the steel sheet, specifically the steel sheet surface By making the steel structure of 0.5 mm below into a bainite structure with a dislocation density of 0.5 × 10 14 to 7.0 × 10 14 (m −2 ), an increase in hardness can be reduced in the coating process after pipe forming. It was found that the SSCC resistance of the steel pipe was improved as a result.
 さらに、このような鋼組織を実現するためには、制御冷却における鋼板表面下0.5mmにおける熱履歴と鋼板平均の熱履歴の両方を厳密にコントロールしたうえで、その後制御冷却によって導入された過剰な転位を誘導加熱により減少させることが重要であることを見出した。また、誘導加熱を、制御冷却における冷却開始時の鋼板表面温度Tと、鋼板平均温度で冷却停止温度Tとを考慮した所定条件下で行うことによって、板厚方向に硬さのばらつきを顕著に低減できることを見出した。本発明は、この知見をもとになされたものである。 Furthermore, in order to realize such a steel structure, both the thermal history at 0.5 mm below the steel sheet surface in the controlled cooling and the thermal history of the steel sheet average are strictly controlled, and then the excess introduced by the controlled cooling. We found that it is important to reduce the dislocations by induction heating. Further, by performing induction heating under a predetermined condition in consideration of the steel plate surface temperature T 1 at the start of cooling in the controlled cooling and the cooling stop temperature T 2 at the steel plate average temperature, the variation in hardness in the plate thickness direction is caused. It was found that it can be significantly reduced. The present invention has been made based on this finding.
 すなわち、本発明の要旨構成は次のとおりである。
 [1]質量%で、C:0.02~0.08%、Si:0.01~0.50%、Mn:0.50~1.80%、P:0.001~0.015%、S:0.0002~0.0015%、Al:0.01~0.08%およびCa:0.0005~0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物からなる成分組成を有し、
 鋼板表面下0.5mmにおける鋼組織が、転位密度0.5×1014~7.0×1014(m-2)のベイナイト組織であり、
 鋼板表面下0.5mmにおけるビッカース硬さの平均値と鋼板板厚中央におけるビッカース硬さの平均値との差ΔHVが25HV以下であり、
 520MPa以上の引張強さを有する
ことを特徴とする耐サワーラインパイプ用高強度鋼板。
 CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P]  ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
That is, the gist configuration of the present invention is as follows.
[1] By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015% , S: 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, and the CP value obtained by the following formula (1) is 1 0.000 or less, and the balance has a component composition consisting of Fe and inevitable impurities,
The steel structure at 0.5 mm below the steel sheet surface is a bainite structure having a dislocation density of 0.5 × 10 14 to 7.0 × 10 14 (m −2 ),
The difference ΔHV between the average value of Vickers hardness at 0.5 mm below the steel sheet surface and the average value of Vickers hardness at the center of the steel sheet thickness is 25 HV or less,
A high-strength steel sheet for sour line pipes, characterized by having a tensile strength of 520 MPa or more.
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo) ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
However, [% X] indicates the content (mass%) of element X in steel.
 [2]前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、上記[1]に記載の耐サワーラインパイプ用高強度鋼板。 [2] The component composition was further selected by mass% from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less. The high-strength steel sheet for sour-resistant pipes according to [1] above, containing one or more kinds.
 [3]前記成分組成が、さらに、質量%で、Nb:0.005~0.1%、V:0.005~0.1%およびTi:0.005~0.1%のうちから選んだ1種又は2種以上を含有する、上記[1]または[2]に記載の耐サワーラインパイプ用高強度鋼板。 [3] The component composition is further selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%. The high-strength steel sheet for sour-resistant pipes according to the above [1] or [2], containing one or more kinds.
 [4]質量%で、C:0.02~0.08%、Si:0.01~0.50%、Mn:0.50~1.80%、P:0.001~0.015%、S:0.0002~0.0015%、Al:0.01~0.08%およびCa:0.0005~0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物の成分組成を有する鋼片を、1000~1300℃の温度に加熱したのち、熱間圧延して鋼板とし、
 その後前記鋼板に対して、
  冷却開始時の鋼板表面温度T:(Ar-10℃)以上、
  鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度:100℃/s以下、
  鋼板平均温度で750℃から550℃までの平均冷却速度:15℃/s以上、および
  鋼板平均温度で冷却停止温度T:250~550℃
の条件で制御冷却を行い、
 その後、誘導加熱により、鋼板平均温度が前記冷却停止温度T以上であって、かつ鋼板表面温度が550~750℃の加熱温度Tとなるように前記鋼板を再加熱することを特徴とする耐サワーラインパイプ用高強度鋼板の製造方法。
 CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P]  ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
[4] By mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015% , S: 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, and the CP value obtained by the following formula (1) is 1 A steel slab having a component composition of Fe and unavoidable impurities in the balance is heated to 1000-1300 ° C., and then hot-rolled into a steel plate,
After that,
Steel sheet surface temperature T 1 at the start of cooling: (Ar 3 −10 ° C.) or more,
Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature at 0.5 mm below the steel plate surface: 100 ° C./s or less,
Average cooling rate from 750 ° C. to 550 ° C. at the steel plate average temperature: 15 ° C./s or more, and cooling stop temperature T 2 at the steel plate average temperature: 250 to 550 ° C.
Controlled cooling under the conditions of
Thereafter, the steel sheet is reheated by induction heating so that the average temperature of the steel sheet is equal to or higher than the cooling stop temperature T 2 and the steel sheet surface temperature is a heating temperature T 3 of 550 to 750 ° C. Manufacturing method of high strength steel plate for sour line pipes.
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo) ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
However, [% X] indicates the content (mass%) of element X in steel.
 [5]前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、上記[4]に記載の耐サワーラインパイプ用高強度鋼板の製造方法。 [5] The component composition is further selected by mass% from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less. The method for producing a high-strength steel sheet for sour-resistant pipes according to [4] above, which contains one or more kinds.
 [6]前記成分組成が、さらに、質量%で、Nb:0.005~0.1%、V:0.005~0.1%およびTi:0.005~0.1%のうちから選んだ1種又は2種以上を含有する、上記[4]または[5]に記載の耐サワーラインパイプ用高強度鋼板の製造方法。 [6] The component composition is further selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1% and Ti: 0.005 to 0.1% by mass%. The manufacturing method of the high strength steel plate for sour-resistant pipes as described in said [4] or [5] containing 1 type (s) or 2 or more types.
 [7]前記再加熱は、以下の式(2)で定義されるTPが0.50以上となる条件を満たすように行う、上記[4]~[6]のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板の製造方法。
  TP=(T-T)×T/(T-T  ・・・(2)
[7] The reheating is performed so as to satisfy a condition that a TP defined by the following formula (2) is 0.50 or more, according to any one of the above [4] to [6]. Manufacturing method of high strength steel plate for sour line pipe.
TP = (T 3 −T 2 ) × T 2 / (T 1 −T 2 ) 2 (2)
 [8]上記[1]~[3]のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管。 [8] A high-strength steel pipe using the high-strength steel plate for sour-resistant pipes according to any one of [1] to [3] above.
 本発明の耐サワーラインパイプ用高強度鋼板および該耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管は、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れ、かつ板厚方向の硬さ均一性にも優れる。また、本発明の耐サワーラインパイプ用高強度鋼板の製造方法によれば、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れ、かつ板厚方向の硬さ均一性にも優れた耐サワーラインパイプ用高強度鋼板を製造することができる。 The high-strength steel plate for sour line pipe and the high-strength steel pipe using the high-strength steel plate for sour line pipe of the present invention are excellent in HIC resistance and SSCC resistance in a more severe corrosion environment, and in the thickness direction. Excellent hardness uniformity. Further, according to the method for producing a high-strength steel sheet for sour line pipes of the present invention, the HIC resistance and SSCC resistance in a more severe corrosive environment are excellent, and the hardness uniformity in the thickness direction is also excellent. A high-strength steel sheet for sour line pipes can be manufactured.
実施例における耐SSCC性の評価のための試験片の採取方法を説明する模式図である。It is a schematic diagram explaining the sampling method of the test piece for evaluation of SSCC resistance in an Example.
 以下、本開示の耐サワーラインパイプ用高強度鋼板について、具体的に説明する。 Hereinafter, the high-strength steel sheet for sour-resistant pipes according to the present disclosure will be specifically described.
 [成分組成]
 まず、本開示による高強度鋼板の成分組成とその限定理由について説明する。以下の説明において%で示す単位は全て質量%である。
[Ingredient composition]
First, the component composition of the high-strength steel sheet according to the present disclosure and the reason for limitation will be described. In the following description, all units represented by% are mass%.
 C:0.02~0.08%
 Cは、強度の向上に有効に寄与するが、含有量が0.02%未満では十分な強度が確保できず、一方0.08%を超えると加速冷却時に表層部の硬さが上昇するため、耐HIC性および耐SSCC性が劣化する。また、靭性も劣化する。このため、C量は0.02~0.08%の範囲に限定する。
C: 0.02 to 0.08%
C contributes effectively to the improvement of strength, but if the content is less than 0.02%, sufficient strength cannot be secured, while if it exceeds 0.08%, the hardness of the surface layer portion increases during accelerated cooling. , HIC resistance and SSCC resistance deteriorate. In addition, toughness deteriorates. For this reason, the C content is limited to a range of 0.02 to 0.08%.
 Si:0.01~0.50%
 Siは、脱酸のため添加するが、含有量が0.01%未満では脱酸効果が十分でなく、一方0.50%を超えると靭性や溶接性を劣化させるため、Si量は0.01~0.50%の範囲に限定する。
Si: 0.01 to 0.50%
Si is added for deoxidation, but if the content is less than 0.01%, the deoxidation effect is not sufficient. On the other hand, if it exceeds 0.50%, the toughness and weldability are deteriorated. It is limited to the range of 01 to 0.50%.
 Mn:0.50~1.80%
 Mnは、強度、靭性の向上に有効に寄与するが、含有量が0.50%未満ではその添加効果に乏しく、一方1.80%を超えると加速冷却時に中心偏析部の硬さが上昇するため、耐HIC性が劣化する。また、溶接性も劣化する。このため、Mn量は0.50~1.80%の範囲に限定する。
Mn: 0.50 to 1.80%
Mn contributes effectively to the improvement of strength and toughness, but if the content is less than 0.50%, the effect of addition is poor, while if it exceeds 1.80%, the hardness of the central segregation part increases during accelerated cooling. Therefore, the HIC resistance is deteriorated. Moreover, weldability also deteriorates. For this reason, the amount of Mn is limited to the range of 0.50 to 1.80%.
 P:0.001~0.015%
 Pは、不可避不純物元素であり、溶接性を劣化させるとともに、中心偏析部の硬さを上昇させることで耐HIC性を劣化させる。0.015%を超えるとその傾向が顕著となるため、上限を0.015%に規定する。好ましくは0.008%以下である。含有量は低いほどよいが、精錬コストの観点から0.001%以上とする。
P: 0.001 to 0.015%
P is an inevitable impurity element, and deteriorates the weldability and also increases the hardness of the center segregation part to deteriorate the HIC resistance. Since the tendency will become remarkable when it exceeds 0.015%, an upper limit is prescribed | regulated to 0.015%. Preferably it is 0.008% or less. The lower the content, the better, but 0.001% or more from the viewpoint of refining costs.
 S:0.0002~0.0015%
 Sは、不可避不純物元素であり、鋼中においてはMnS介在物となり耐HIC性を劣化させるため少ないことが好ましいが、0.0015%までは許容される。含有量は低いほどよいが、精錬コストの観点から0.0002%以上とする。
S: 0.0002 to 0.0015%
S is an unavoidable impurity element, and is preferably MnS inclusion in the steel, so that the HIC resistance is degraded. The lower the content, the better, but 0.0002% or more from the viewpoint of refining costs.
 Al:0.01~0.08%
 Alは、脱酸剤として添加するが、0.01%未満では添加効果がなく、一方、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al量は0.01~0.08%の範囲に限定する。
Al: 0.01 to 0.08%
Al is added as a deoxidizer, but if it is less than 0.01%, there is no effect of addition. On the other hand, if it exceeds 0.08%, the cleanliness of the steel is lowered and the toughness is deteriorated. It is limited to the range of 01 to 0.08%.
 Ca:0.0005~0.005%
 Caは、硫化物系介在物の形態制御による耐HIC性向上に有効な元素であるが、0.0005%未満ではその添加効果が十分でない。一方、0.005%を超えた場合、効果が飽和するだけでなく、鋼の清浄度の低下により耐HIC性を劣化させるので、Ca量は0.0005~0.005%の範囲に限定する。
Ca: 0.0005 to 0.005%
Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, but if it is less than 0.0005%, the effect of addition is not sufficient. On the other hand, if it exceeds 0.005%, not only the effect is saturated, but also the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel, so the Ca content is limited to the range of 0.0005 to 0.005%. .
 以上、本開示の基本成分について説明したが、本開示の成分組成は、鋼板の強度や靱性の一層の改善のために、Cu,Ni,CrおよびMoのうちから選んだ1種又は2種以上を、以下の範囲で任意に含有させることができる。 The basic components of the present disclosure have been described above. However, the component composition of the present disclosure may be one or more selected from Cu, Ni, Cr, and Mo in order to further improve the strength and toughness of the steel sheet. Can be optionally contained within the following range.
 Cu:0.50%以下
 Cuは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Cuを添加する場合は0.50%を上限とする。
Cu: 0.50% or less Cu is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, welding is performed. When Cu is added, the upper limit is 0.50%.
 Ni:0.50%以下
 Niは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると経済的に不利なだけでなく、溶接熱影響部の靱性が劣化するため、Niを添加する場合は0.50%を上限とする。
Ni: 0.50% or less Ni is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, it is economical. This is not only disadvantageous, but also the toughness of the weld heat affected zone deteriorates. Therefore, when Ni is added, the upper limit is 0.50%.
 Cr:0.50%以下
 Crは、Mnと同様、低Cでも十分な強度を得るために有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Crを添加する場合は0.50%を上限とする。
Cr: 0.50% or less Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. To obtain this effect, it is preferable to contain 0.05% or more. If the amount is too large, weldability deteriorates, so when Cr is added, the upper limit is 0.50%.
 Mo:0.50%以下
 Moは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Moを添加する場合は0.50%を上限とする。
Mo: 0.50% or less Mo is an element effective in improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more, but if the content is too large, welding is performed. When the Mo is added, the upper limit is 0.50%.
 本開示の成分組成は、さらに、Nb,VおよびTiのうちから選んだ1種又は2種以上を、以下の範囲で任意に含有させることもできる。 The component composition of the present disclosure may further contain one or more selected from Nb, V and Ti within the following ranges.
 Nb:0.005~0.1%、V:0.005~0.1%およびTi:0.005~0.1%のうちから選んだ1種又は2種以上
 Nb,VおよびTiはいずれも、鋼板の強度および靭性を高めるために任意に添加することができる元素である。各元素とも、含有量が0.005%未満ではその添加効果に乏しく、一方0.1%を超えると溶接部の靭性が劣化するので、添加する場合はいずれも0.005~0.1%の範囲とするのが好ましい。
One or more selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1% and Ti: 0.005 to 0.1% Any of Nb, V and Ti Is an element that can be optionally added to increase the strength and toughness of the steel sheet. When the content of each element is less than 0.005%, the effect of addition is poor. On the other hand, when the content exceeds 0.1%, the toughness of the welded portion deteriorates. It is preferable to be in the range.
 本開示は、耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管の耐SSCC性を改善するための技術を開示するものであるが、耐サワー性能として、いうまでもなく、耐HIC性を同時に満足することが必要であるので、下記(1)式によって求められるCP値を、1.00以下とする。なお、添加しない元素は0を代入すれば良い。
 CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P]  ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
This disclosure discloses a technique for improving the SSCC resistance of a high-strength steel pipe using a high-strength steel plate for sour line pipes. Needless to say, the sour-proof performance is not limited to HIC resistance. Since it is necessary to satisfy simultaneously, CP value calculated | required by the following (1) formula shall be 1.00 or less. Note that 0 may be substituted for elements not added.
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo) ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
However, [% X] indicates the content (mass%) of element X in steel.
 ここに、上記CP値は、各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、上掲(1)式のCP値が高いほど中心偏析部の成分濃度が高くなり、中心偏析部の硬さが上昇する。従って、上記の(1)式において求められるCP値を1.00以下とすることで、HIC試験での割れ発生を抑制することが可能となる。また、CP値が低いほど中心偏析部の硬さが低くなるため、さらに高い耐HIC性が求められる場合は、その上限を0.95とすれば良い。 Here, the CP value is an expression devised for estimating the material of the center segregation part from the content of each alloy element. The higher the CP value of the above formula (1), the higher the component concentration of the center segregation part. Increases and the hardness of the central segregation part increases. Therefore, it is possible to suppress the occurrence of cracks in the HIC test by setting the CP value obtained in the above equation (1) to 1.00 or less. Further, the lower the CP value, the lower the hardness of the center segregation part. Therefore, when higher HIC resistance is required, the upper limit may be set to 0.95.
 なお、上記した元素以外の残部は、Feおよび不可避的不純物からなる。ただし、本発明の作用効果を害しない限り、他の微量元素の含有を妨げない。 Note that the balance other than the above-described elements is composed of Fe and inevitable impurities. However, the content of other trace elements is not hindered unless the effects of the present invention are impaired.
 [鋼板の組織]
 次に、本開示の耐サワーラインパイプ用高強度鋼板の鋼組織について説明する。引張強さが520MPa以上の高強度化を図るために、鋼組織は、ベイナイト組織とする必要がある。特に、表層部は、マルテンサイトや島状マルテンサイト(MA)等の硬質相が生成した場合、表層硬さが上昇し、鋼板内の硬さのばらつきが増大して材質均一性が阻害される。表層硬さの上昇を抑制するために、表層部の鋼組織についてはベイナイト組織とする。ここで、ベイナイト組織は、変態強化に寄与する加速冷却時あるいは加速冷却後に変態するベイニティックフェライトまたはグラニュラーフェライトと称される組織を含むものとする。ベイナイト組織中に、フェライトやマルテンサイト、パーライト、島状マルテンサイト、残留オーステナイトなどの異種組織が混在すると、強度の低下や靭性の劣化、表層硬さの上昇などが生じるため、ベイナイト相以外の組織分率は少ない程良い。ただし、ベイナイト相以外の組織の体積分率が十分に低い場合には、それらの影響が無視できるので、ある程度の量であれば許容される。具体的に、本開示では、ベイナイト以外の鋼組織(フェライト、マルテンサイト、パーライト、島状マルテンサイト、残留オーステナイト等)の合計が体積分率で5%未満であれば、大きな影響がないので許容されるものとする。
[Structure of steel sheet]
Next, the steel structure of the high-strength steel sheet for sour line pipes according to the present disclosure will be described. In order to increase the tensile strength of 520 MPa or more, the steel structure needs to be a bainite structure. In particular, in the surface layer portion, when a hard phase such as martensite or island martensite (MA) is generated, the surface layer hardness is increased, the hardness variation in the steel sheet is increased, and the material uniformity is inhibited. . In order to suppress the increase in surface hardness, the steel structure of the surface layer portion is a bainite structure. Here, the bainite structure includes a structure called bainitic ferrite or granular ferrite that transforms during or after accelerated cooling that contributes to transformation strengthening. When different types of structures such as ferrite, martensite, pearlite, island-like martensite, and retained austenite are mixed in the bainite structure, the strength decreases, the toughness deteriorates, and the surface hardness increases. The smaller the fraction, the better. However, when the volume fraction of the structure other than the bainite phase is sufficiently low, the influence thereof can be ignored, so that a certain amount is acceptable. Specifically, in the present disclosure, if the sum of the steel structures other than bainite (ferrite, martensite, pearlite, island martensite, residual austenite, etc.) is less than 5% in volume fraction, there is no significant influence, so Shall be.
 また、ベイナイト組織にも冷却速度に応じた種々の形態があるが、本開示においては、鋼板の極表層部の組織、具体的には鋼板表面下0.5mmの鋼組織を、転位密度0.5×1014~7.0×1014(m-2)のベイナイト組織とすることが肝要である。造管後のコーティング過程において転位密度が減少するため、鋼板表面下0.5mmの転位密度が7.0×1014(m-2)以下であれば、時効硬化による硬さの上昇代を最小限に抑えることができる。逆に、鋼板表面下0.5mmの転位密度が7.0×1014(m-2)を超えると、造管後のコーティング過程において転位密度が減少せず、時効硬化で硬度が大きく上昇して耐SSCC性を劣化させる。造管後に良好な耐SSCC性を得るために好ましい転位密度の範囲は6.0×1014(m-2)以下である。一方、鋼板表面下0.5mmの転位密度が0.5×1014(m-2)未満では鋼板として強度を維持できなくなる。X65グレードの強度を確保するため、1.0×1014(m-2)以上の転位密度を有することが好ましい。なお、本開示の高強度鋼板においては、鋼板表面下0.5mmの鋼組織における転位密度が上記範囲であれば、鋼板表面から深さ0.5mmの範囲の極表層部も同等の転位密度を有し、その結果、上記耐SSCC性向上の効果が得られるものである。 Further, although there are various forms of bainite structure depending on the cooling rate, in the present disclosure, the structure of the extreme surface layer portion of the steel sheet, specifically, the steel structure of 0.5 mm below the steel sheet surface has a dislocation density of 0. It is important to have a bainite structure of 5 × 10 14 to 7.0 × 10 14 (m −2 ). Since the dislocation density decreases in the coating process after pipe forming, if the dislocation density 0.5 mm below the steel sheet surface is 7.0 × 10 14 (m −2 ) or less, the increase in hardness due to age hardening is minimized. To the limit. Conversely, when the dislocation density of 0.5 mm below the steel sheet surface exceeds 7.0 × 10 14 (m −2 ), the dislocation density does not decrease in the coating process after pipe forming, and the hardness increases greatly by age hardening. To deteriorate the SSCC resistance. In order to obtain good SSCC resistance after pipe forming, a preferable range of dislocation density is 6.0 × 10 14 (m −2 ) or less. On the other hand, if the dislocation density 0.5 mm below the steel sheet surface is less than 0.5 × 10 14 (m −2 ), the strength of the steel sheet cannot be maintained. In order to ensure the strength of the X65 grade, it is preferable to have a dislocation density of 1.0 × 10 14 (m −2 ) or more. In the high-strength steel sheet of the present disclosure, if the dislocation density in the steel structure 0.5 mm below the steel sheet surface is in the above range, the extreme surface layer part in the range of 0.5 mm depth from the steel sheet surface also has an equivalent dislocation density. As a result, the effect of improving the SSCC resistance can be obtained.
 なお、鋼板表面下0.5mmでの転位密度を7.0×1014(m-2)以下とすると、表面下0.5mmでのHV0.1が230以下となる。鋼管の耐SSCC性を確保する観点から、鋼板の表層硬さを抑制することが重要であるが、鋼板の表面下0.5mmでのHV0.1を230以下にすることで、造管後コーティング過程を経たのちの、表面下0.5mmでのHV0.1を260以下に抑えることができ、耐SSCC性を確保することができる。 When the dislocation density at 0.5 mm below the surface of the steel sheet is 7.0 × 10 14 (m −2 ) or less, the HV0.1 at 0.5 mm below the surface is 230 or less. From the viewpoint of securing the SSCC resistance of the steel pipe, it is important to suppress the surface hardness of the steel sheet. However, by setting the HV0.1 at 0.5 mm below the surface of the steel sheet to 230 or less, coating after pipe forming After the process, HV0.1 at 0.5 mm below the surface can be suppressed to 260 or less, and SSCC resistance can be ensured.
 また、本開示の高強度鋼板では、鋼板表面下0.5mmにおけるビッカース硬さの平均値が230HV以下であることに加えて、表層の硬さを抑えつつ、板厚中央における材料特性の確保の観点から、鋼板表面下0.5mmにおけるビッカース硬さの平均値と鋼板板厚中央におけるビッカース硬さの平均値との差ΔHVが25HV以下であることも重要である。より好ましいΔHVは20HV以下である。 Moreover, in the high-strength steel sheet of the present disclosure, in addition to the average value of Vickers hardness at 0.5 mm below the steel sheet surface being 230 HV or less, the material properties at the center of the sheet thickness can be secured while suppressing the hardness of the surface layer. From the viewpoint, it is also important that the difference ΔHV between the average value of Vickers hardness at 0.5 mm below the steel sheet surface and the average value of Vickers hardness at the center of the steel sheet thickness is 25 HV or less. More preferable ΔHV is 20 HV or less.
 本開示の高強度鋼板は、API 5LのX60グレード以上の強度を有する鋼管用の鋼板であるので、520MPa以上の引張強さを有するものとする。 Since the high-strength steel sheet of the present disclosure is a steel pipe steel sheet having an API 5L X60 grade or higher strength, it has a tensile strength of 520 MPa or higher.
 [製造方法]
 以下、上記耐サワーラインパイプ用高強度鋼板を製造するための製造方法および製造条件について、具体的に説明する。本開示の製造方法は、上記成分組成を有する鋼片の加熱したのち、熱間圧延して鋼板とし、その後当該鋼板に対して所定条件下での制御冷却を行い、その後鋼板を誘導加熱により再加熱する。
[Production method]
Hereinafter, the manufacturing method and manufacturing conditions for manufacturing the high-strength steel sheet for sour-resistant pipes will be specifically described. In the manufacturing method of the present disclosure, after heating a steel slab having the above composition, it is hot-rolled into a steel plate, and then the steel plate is subjected to controlled cooling under a predetermined condition, and then the steel plate is re-induced by induction heating. Heat.
 〔スラブ加熱温度〕
 スラブ加熱温度:1000~1300℃
 スラブ加熱温度が1000℃未満では、炭化物の固溶が不十分で必要な強度が得られず、一方1300℃を超えると靭性が劣化するため、スラブ加熱温度は1000~1300℃とする。なお、この温度は加熱炉の炉内温度であり、スラブは中心部までこの温度に加熱されるものとする。
[Slab heating temperature]
Slab heating temperature: 1000-1300 ° C
If the slab heating temperature is less than 1000 ° C., the required strength cannot be obtained due to insufficient solid solution of the carbide. On the other hand, if the slab heating temperature exceeds 1300 ° C., the toughness deteriorates, so the slab heating temperature is set to 1000 to 1300 ° C. This temperature is the furnace temperature of the heating furnace, and the slab is heated to this temperature up to the center.
 〔圧延終了温度〕
 熱間圧延工程において、高い母材靱性を得るには、圧延終了温度は低いほどよいが、その反面、圧延能率が低下するため、鋼板表面温度における圧延終了温度は、必要な母材靱性と圧延能率を勘案して設定する必要がある。強度および耐HIC性を向上させる観点からは、圧延終了温度を、鋼板表面温度でAr3変態点以上とすることが好ましい。ここで、Ar変態点とは、冷却中におけるフェライト変態開始温度を意味し、例えば、鋼の成分から以下の式で求めることができる。また、高い母材靱性を得るためにはオーステナイト未再結晶温度域に相当する950℃以下の温度域での圧下率を60%以上とすることが望ましい。なお、鋼板の表面温度は放射温度計等で測定することができる。
Ar(℃)=910-310[%C]-80[%Mn]-20[%Cu]-15[%Cr]-55[%Ni]-80[%Mo]
 ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
[Rolling end temperature]
In the hot rolling process, in order to obtain a high base metal toughness, the lower the rolling end temperature, the better. However, on the other hand, the rolling efficiency decreases, so the rolling end temperature at the steel sheet surface temperature is the required base material toughness and rolling. It is necessary to set in consideration of efficiency. From the viewpoint of improving strength and HIC resistance, it is preferable that the rolling end temperature is not less than the Ar 3 transformation point at the steel sheet surface temperature. Here, the Ar 3 transformation point means the ferrite transformation start temperature during cooling, and can be obtained from the steel components by the following formula, for example. In order to obtain high base metal toughness, it is desirable that the rolling reduction in a temperature range of 950 ° C. or lower corresponding to the austenite non-recrystallization temperature range be 60% or more. In addition, the surface temperature of a steel plate can be measured with a radiation thermometer or the like.
Ar 3 (° C.) = 910-310 [% C] -80 [% Mn] -20 [% Cu] -15 [% Cr] -55 [% Ni] -80 [% Mo]
However, [% X] indicates the content (mass%) of element X in steel.
 〔制御冷却の冷却開始温度〕
 冷却開始時の鋼板表面温度T:(Ar-10℃)以上
 冷却開始時の鋼板表面温度が低いと、制御冷却前のフェライト生成量が多くなり、特にAr3変態点からの温度降下量が10℃を超えると体積分率で5%を超えるフェライトが生成して、強度低下が大きくなると共に耐HIC性が劣化するため、冷却開始時の鋼板表面温度は(Ar3-10℃)以上とする。
[Cooling start temperature of control cooling]
Steel plate surface temperature T 1 at the start of cooling: (Ar 3 −10 ° C.) or more When the steel plate surface temperature at the start of cooling is low, the amount of ferrite produced before controlled cooling increases, and in particular, the temperature drop from the Ar 3 transformation point When the temperature exceeds 10 ° C., ferrite with a volume fraction exceeding 5% is generated, and the strength drop increases and the HIC resistance deteriorates. Therefore, the steel sheet surface temperature at the start of cooling is (Ar 3 −10 ° C.) or more. And
 〔制御冷却の冷却速度〕
 高強度化を図りつつ、鋼板内の硬さのばらつきを低減し、材質均一性を向上させるためには、表層(具体的には鋼板表面下0.5mmの深さ)での冷却速度を抑制しつつ、板厚中心の変態温度区間での冷却速度を確保する必要がある。
[Cooling rate of controlled cooling]
Suppressing the cooling rate on the surface layer (specifically, a depth of 0.5 mm below the surface of the steel sheet) in order to reduce the hardness variation in the steel sheet and improve the material uniformity while increasing the strength However, it is necessary to ensure the cooling rate in the transformation temperature section centered on the plate thickness.
 鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度:100℃/s以下
 鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度が100℃/sを超えると、鋼板表面下0.5mmにおける転位密度7.0×1014(m-2)超えとなってしまう。その結果、鋼板表面下0.5mmのHV0.1が230を超え、造管後のコーティング過程を経たのち、表面下0.5mmでのHV0.1が260を超え、鋼管の耐SSCC性が劣化する。そのため、当該平均冷却速度は100℃/s以下とする。好ましくは80℃/s以下である。当該平均冷却速度の下限は特に限定されないが、冷却速度が過度に小さくなるとフェライトやパーライトが生成して強度不足となるため、これを防ぐ観点から、10℃/s以上とすることが好ましい。
Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature at 0.5 mm below the steel plate surface: 100 ° C./s or less Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature at 0.5 mm below the steel plate surface is 100 ° C. / If it exceeds s, the dislocation density at 0.5 mm below the steel sheet surface exceeds 7.0 × 10 14 (m −2 ). As a result, HV0.1 of 0.5 mm below the steel sheet surface exceeds 230, and after passing through the coating process after pipe forming, HV0.1 at 0.5 mm below the surface exceeds 260, and the SSCC resistance of the steel pipe deteriorates. To do. Therefore, the said average cooling rate shall be 100 degrees C / s or less. Preferably it is 80 degrees C / s or less. The lower limit of the average cooling rate is not particularly limited. However, if the cooling rate is excessively small, ferrite and pearlite are generated and the strength becomes insufficient. Therefore, from the viewpoint of preventing this, it is preferably set to 10 ° C./s or more.
 鋼板平均温度で750℃から550℃までの平均冷却速度:15℃/s以上
 鋼板平均温度で750℃から550℃までの平均冷却速度が15℃/s未満では、ベイナイト組織が得られずに強度低下や耐HIC性の劣化が生じたり、板厚方向の硬さのばらつきが大きくなったりする。このため、鋼板平均温度での冷却速度は15℃/s以上とする。鋼板強度と硬さのばらつきの観点からは、鋼板平均の冷却速度は20℃/s以上とすることが好ましい。当該平均冷却速度の上限は特に限定されないが、低温変態生成物が過剰に生成しないように、80℃/s以下とすることが好ましい。
Average cooling rate from 750 ° C. to 550 ° C. at the average temperature of the steel plate: 15 ° C./s or more When the average cooling rate from 750 ° C. to 550 ° C. at the average temperature of the steel plate is less than 15 ° C./s, the bainite structure is not obtained and the strength Decrease and deterioration of HIC resistance occur, or the variation in hardness in the thickness direction increases. For this reason, the cooling rate at the steel plate average temperature is set to 15 ° C./s or more. From the viewpoint of variations in steel plate strength and hardness, the average cooling rate of the steel plate is preferably 20 ° C./s or more. The upper limit of the average cooling rate is not particularly limited, but is preferably set to 80 ° C./s or less so that the low temperature transformation product is not excessively generated.
 なお、鋼板表面下0.5mmおよび鋼板平均温度は、物理的に直接測定することはできないが、放射温度計にて測定された冷却開始時の表面温度と目標の冷却停止時の表面温度をもとに、例えばプロセスコンピューターを用いて差分計算により板厚断面内の温度分布をリアルタイムに求めることができる。当該温度分布における鋼板表面下0.5mmでの温度を本明細書における「鋼板表面下0.5mmにおける鋼板温度」とし、当該温度分布における板厚方向の温度の平均値を本明細書における「鋼板平均温度」とする。 Note that the 0.5 mm below the steel plate surface and the average steel plate temperature cannot be physically measured directly, but the surface temperature at the start of cooling measured with a radiation thermometer and the surface temperature at the target cooling stop are also measured. In addition, for example, the temperature distribution in the cross section of the plate thickness can be obtained in real time by difference calculation using a process computer. The temperature at 0.5 mm below the steel sheet surface in the temperature distribution is defined as “steel temperature at 0.5 mm below the steel sheet surface” in this specification, and the average value of the temperature in the plate thickness direction in the temperature distribution is “ Average temperature ”.
 〔冷却停止温度〕
 鋼板平均温度で冷却停止温度T:250~550℃
 圧延終了後、制御冷却でベイナイト変態の温度域である250~550℃まで急冷することにより、ベイナイト相を生成させる。冷却停止温度が550℃を超えると、ベイナイト変態が不完全であり、十分な強度が得られない。また、冷却停止温度が250℃未満では、マルテンサイトや島状マルテンサイト(MA)が生成し、特に板厚方向の硬さのばらつきが大きくなる。そこで、鋼板内の材質均一性の劣化を抑制するため、制御冷却の冷却停止温度は鋼板平均温度で250~550℃とする。
[Cooling stop temperature]
Steel sheet average temperature and cooling stop temperature T 2 : 250 to 550 ° C
After rolling, the bainite phase is generated by quenching to 250 to 550 ° C., which is the temperature range of bainite transformation, by controlled cooling. When the cooling stop temperature exceeds 550 ° C., the bainite transformation is incomplete and sufficient strength cannot be obtained. In addition, when the cooling stop temperature is less than 250 ° C., martensite and island martensite (MA) are generated, and in particular, the variation in hardness in the thickness direction becomes large. Therefore, in order to suppress deterioration of material uniformity in the steel plate, the cooling stop temperature of the controlled cooling is set to 250 to 550 ° C. as the steel plate average temperature.
 〔誘導加熱条件〕
 誘導加熱温度T:鋼板表面温度で550~750℃
 本実施形態では、制御冷却後、制御冷却でベイナイト中に導入された高密度の転位を焼戻すことが重要である。これにより、鋼板表面下0.5mmにおける転位密度が7.0×1014(m-2)以下となり、優れた耐SSCC性が得られ、また、鋼板表面下0.5mmにおけるビッカース硬さの平均値と鋼板板厚中央におけるビッカース硬さの平均値との差ΔHVを25HV以下とすることができる。ここで、誘導加熱温度が550℃を下回ると、十分な焼き戻し効果が得られず、表層の転位密度を7.0×1014(m-2)以下とすることができても、ΔHVを25HV以下とすることはできない。また、誘導加熱温度が750℃を超えると、板厚中央も焼戻され、所定の強度を得られなくなる恐れがある。そこで、鋼板内の材質均一性の劣化を抑制しつつ板厚中央の強度を確保するため、オンライン誘導加熱の到達温度は鋼板表面温度で550~750℃とする。なお、本実施形態では、強度低下を抑えるために鋼板内部はなるべく焼き戻すことなく、表層部のみを焼き戻すことが肝要であり、そのため、加熱はオンライン誘導加熱装置を用いる。
[Induction heating conditions]
Induction heating temperature T 3 : 550 to 750 ° C. at the steel sheet surface temperature
In this embodiment, after the controlled cooling, it is important to temper the high-density dislocations introduced into the bainite by the controlled cooling. Thereby, the dislocation density at 0.5 mm below the steel sheet surface was 7.0 × 10 14 (m −2 ) or less, and excellent SSCC resistance was obtained, and the average of the Vickers hardness at 0.5 mm below the steel sheet surface was obtained. The difference ΔHV between the value and the average value of Vickers hardness at the center of the steel plate thickness can be 25 HV or less. Here, if the induction heating temperature is lower than 550 ° C., a sufficient tempering effect cannot be obtained, and even if the dislocation density of the surface layer can be 7.0 × 10 14 (m −2 ) or less, ΔHV is It cannot be less than 25HV. If the induction heating temperature exceeds 750 ° C., the center of the plate thickness is also tempered, and there is a possibility that a predetermined strength cannot be obtained. Therefore, in order to secure the strength at the center of the plate thickness while suppressing deterioration of material uniformity in the steel plate, the ultimate temperature of the on-line induction heating is set to 550 to 750 ° C. at the steel plate surface temperature. In the present embodiment, it is important that only the surface layer portion is tempered without tempering the inside of the steel sheet as much as possible in order to suppress a decrease in strength, and therefore, an online induction heating device is used for heating.
 再加熱条件に関しては以下に示す式(2)で定義されるTPが0.50以上1.50以下を満たすことが好ましい。さらに好ましくは0.60以上1.00以下である。
  TP=(T-T)×T/(T-T  ・・・(2)
 TPは制御冷却の過冷度に対する焼き戻しの関係式であり、これが0.50以上を満たすことで、加速冷却で導入された表層部分の転位を十分に回復しつつ板厚中央での過度の焼き戻しをまねかないため、板厚方向における硬さのばらつきを顕著に抑制することが可能となる。具体的には、ΔHVを20以下とすることができる。
Regarding reheating conditions, it is preferable that TP defined by the following formula (2) satisfies 0.50 or more and 1.50 or less. More preferably, it is 0.60 or more and 1.00 or less.
TP = (T 3 −T 2 ) × T 2 / (T 1 −T 2 ) 2 (2)
TP is a relational expression of tempering with respect to the degree of supercooling of the controlled cooling, and when this satisfies 0.50 or more, the dislocation of the surface layer portion introduced by the accelerated cooling is sufficiently recovered and excessive in the center of the plate thickness. Since tempering is not imitated, it is possible to remarkably suppress variation in hardness in the thickness direction. Specifically, ΔHV can be set to 20 or less.
 [高強度鋼管]
 本開示の高強度鋼板を、プレスベンド成形、ロール成形、UOE成形等で管状に成形した後、突き合わせ部を溶接することにより、原油や天然ガスの輸送に好適な鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼管(UOE鋼管、電縫鋼管、スパイラル鋼管等)を製造することができる。
[High-strength steel pipe]
The high-strength steel sheet of the present disclosure is formed into a tubular shape by press bend forming, roll forming, UOE forming, etc., and then the butt portion is welded to provide excellent material uniformity in the steel sheet suitable for transporting crude oil and natural gas. High strength steel pipes for sour-resistant pipes (UOE steel pipes, ERW steel pipes, spiral steel pipes, etc.) can be manufactured.
 例えば、UOE鋼管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面溶接および外面溶接で突き合わせ部をシーム溶接し、さらに必要に応じて拡管工程を経て製造される。また、溶接方法は十分な継手強度と継手靭性が得られる方法であれば、いずれの方法でも良いが、優れた溶接品質と製造能率の観点から、サブマージアーク溶接を用いることが好ましい。 For example, in UOE steel pipe, the end of a steel plate is grooved and formed into a steel pipe shape by C press, U press, and O press, and then the butt portion is seam welded by inner surface welding and outer surface welding. Manufactured through a tube expansion process. Any welding method may be used as long as sufficient joint strength and joint toughness can be obtained, but it is preferable to use submerged arc welding from the viewpoint of excellent welding quality and manufacturing efficiency.
 表1に示す成分組成になる鋼(鋼種A~I)を、連続鋳造法によりスラブとし、表2に示す温度に加熱したのち、表2に示す圧延終了温度および圧下率の熱間圧延をして、表2に示す板厚の鋼板とした。その後、鋼板に対して、表2に示す条件下で水冷型の制御冷却装置を用いて、制御冷却を行った。その後直ちに、表2の「加熱方法」に示す方法で、鋼板表面温度が表2の「再加熱時最高温度」となるように、鋼板を再加熱した。 Steels (steel types A to I) having the composition shown in Table 1 were made into slabs by a continuous casting method, heated to the temperatures shown in Table 2, and then hot rolled at the rolling end temperatures and reduction rates shown in Table 2. Thus, a steel plate having a thickness shown in Table 2 was obtained. Thereafter, controlled cooling was performed on the steel sheet using a water-cooled control cooling device under the conditions shown in Table 2. Immediately thereafter, the steel sheet was reheated by the method shown in “Heating Method” in Table 2 so that the steel sheet surface temperature became the “maximum temperature during reheating” in Table 2.
 [組織の特定]
 得られた鋼板のミクロ組織を、光学顕微鏡および走査型電子顕微鏡により観察した。鋼板表面下0.5mmの位置での組織と、板厚中央での組織を、表2に示す。
[Identify organization]
The microstructure of the obtained steel sheet was observed with an optical microscope and a scanning electron microscope. Table 2 shows the structure at a position 0.5 mm below the surface of the steel sheet and the structure at the center of the plate thickness.
 [引張強度の測定]
 圧延方向に直角な方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。結果を表2に示す。
[Measurement of tensile strength]
A tensile test was performed using a full-thickness test piece in a direction perpendicular to the rolling direction as a tensile test piece, and the tensile strength was measured. The results are shown in Table 2.
 [ビッカース硬さの測定]
 圧延方向に直角な断面について、JIS Z 2244に準拠して、鋼板表面下0.5mmの位置において20点のビッカース硬さ(HV0.1)を測定し、その平均値を求めた。また、板厚中央においても同様に20点のビッカース硬さ(HV0.1)を測定し、その平均値を求めた。そして、両者の差の絶対値ΔHVを求めた。ここで、通常用いられるHV10に代えてHV0.1で測定したのは、HV0.1で測定することにより圧痕が小さくなるので、より表面に近い位置での硬さ情報や、よりミクロ組織に敏感な硬さ情報をすることが可能となるからである。
[Measurement of Vickers hardness]
With respect to the cross section perpendicular to the rolling direction, 20 points of Vickers hardness (HV0.1) were measured at a position 0.5 mm below the steel sheet surface in accordance with JIS Z 2244, and the average value was obtained. Similarly, 20 points of Vickers hardness (HV0.1) were measured at the center of the plate thickness, and the average value was obtained. And the absolute value (DELTA) HV of the difference of both was calculated | required. Here, instead of the normally used HV10, the measurement was performed with HV0.1, because the indentation is reduced by measuring with HV0.1, so the hardness information at a position closer to the surface and more sensitive to the microstructure This is because it is possible to perform accurate hardness information.
 [転位密度]
 平均的な硬度を有する位置からX線回折用のサンプルを採取、サンプル表面を研磨してスケールを除去し、鋼板表面下0.5mmの位置においてX線回折測定を行った。転位密度はX線回折測定の半価幅βから求める歪みから換算する手法を用いた。通常のX線回折により得られる回折強度曲線では、波長の異なるKα1線とKα2線の2つが重なっているため、Rachingerの方法により分離する。歪みの抽出には、以下に示すWilliamsson-Hall法を用いる。半価幅の広がりは結晶子のサイズDとひずみεが影響し、両因子の和として次式で計算できる。β=β1+β2=(0.9λ/(D×cosθ))+2ε×tanθとなる。さらにこの式を変形し、βcosθ/λ=0.9λ/D+2ε×sinθ/λとなる。sinθ/λに対してβcosθ/λをプロットすることにより、直線の傾きからひずみεが算出される。なお、算出に用いる回折線は(110)、(211)、および(220)とする。ひずみεから転位密度の換算はρ=14.4ε/bを用いた。なお、θはX線回折のθ‐2θ法より算出されるピーク角度を意味し、λはX線回折で使用するX線の波長を意味する。bはFe(α)のバーガース・ベクトルで、本実施例においては、0.25nmとした。
[Dislocation density]
A sample for X-ray diffraction was collected from a position having an average hardness, the sample surface was polished to remove the scale, and X-ray diffraction measurement was performed at a position 0.5 mm below the steel sheet surface. The dislocation density was converted from the strain obtained from the half width β of the X-ray diffraction measurement. In the diffraction intensity curve obtained by normal X-ray diffraction, the Kα1 line and the Kα2 line having different wavelengths overlap each other, so that they are separated by the Rachinger method. The Williamsson-Hall method shown below is used for distortion extraction. The spread of the half width is affected by the size D of the crystallite and the strain ε, and can be calculated by the following equation as the sum of both factors. β = β1 + β2 = (0.9λ / (D × cos θ)) + 2ε × tan θ. Further, this equation is transformed to βcos θ / λ = 0.9λ / D + 2ε × sin θ / λ. By plotting β cos θ / λ against sin θ / λ, the strain ε is calculated from the slope of the straight line. The diffraction lines used for the calculation are (110), (211), and (220). For the conversion of the dislocation density from the strain ε, ρ = 14.4ε 2 / b 2 was used. Here, θ means the peak angle calculated by the θ-2θ method of X-ray diffraction, and λ means the wavelength of X-rays used in X-ray diffraction. b is a Burgers vector of Fe (α), and in this example, it was 0.25 nm.
 [耐SSCC性の評価]
 耐SSCC性は、これら各鋼板の一部を用いて造管して評価した。造管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面および外面の突き合わせ部をサブマージアーク溶接でシーム溶接し、拡管工程を経て製造した。図1に示すように、得られた鋼管から切り出したクーポンをフラットニングした後、5×15×115mmのSSCC試験片を鋼管内面より採取した。このとき、被検面である内面は、最表層の状態を残すために黒皮付きのままとした。採取したSSCC試験片に、各鋼管の実際の降伏強度(0.5%YS)の90%の応力を負荷し、NACE規格 TM0177 Solution A溶液を用い、硫化水素分圧:1barにて、EFC16規格の4点曲げSSCC試験に準拠して行った。720時間の浸漬後に、割れが認められない場合を耐SSCC性が良好と判断して○、また割れが発生した場合を不良と判断して×とした。結果を表2に示す。
[Evaluation of SSCC resistance]
SSCC resistance was evaluated by pipe forming using a part of each of these steel plates. Pipe making is performed after the end of the steel plate is grooved and formed into a steel pipe shape by C-press, U-press and O-press, then the butt part of the inner and outer surfaces is seam welded by submerged arc welding, and the tube is expanded. did. As shown in FIG. 1, after flattening a coupon cut out from the obtained steel pipe, a 5 × 15 × 115 mm SSCC test piece was collected from the inner surface of the steel pipe. At this time, the inner surface, which is the test surface, was left with a black skin to leave the outermost layer. The collected SSCC test piece was loaded with 90% of the actual yield strength (0.5% YS) of each steel pipe, and using NACE TM0177 Solution A solution, hydrogen sulfide partial pressure: 1 bar, EFC16 standard The four-point bending SSCC test was conducted. A case where no crack was observed after immersing for 720 hours was judged as good when the SSCC resistance was good, and a case where a crack occurred was judged as poor and was marked as x. The results are shown in Table 2.
 [耐HIC性の評価]
 耐HIC性は、NACE Standard TM-02-84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を耐HIC性良好と判断して○で、割れが発生した場合を×として評価した。結果を表2に示す。
[Evaluation of HIC resistance]
The HIC resistance was evaluated as “Good” when a HIC test was conducted with an immersion time of 96 hours in accordance with NACE Standard TM-02-84. As evaluated. The results are shown in Table 2.
 本発明の目標範囲は、耐サワーラインパイプ用高強度鋼板として引張強度:520MPa以上、表面下0.5mm位置とt/2位置ともミクロ組織はベイナイト組織、表面下0.5mmでのHV0.1が230以下、表面下0.5mmでの硬さと板厚中央の硬さの差の絶対値ΔHVが25以下、その鋼板を用いて造管した高強度鋼管においてSSCC試験で割れが認められないこと、およびHIC試験による割れが認められないこととした。 The target range of the present invention is that the tensile strength is 520 MPa or more as a high-strength steel plate for sour line pipes, the microstructure is a bainite structure at 0.5 mm below the surface and the t / 2 position, and HV0.1 is 0.5 mm below the surface. Is 230 or less, the absolute value ΔHV of the difference between the hardness at 0.5 mm below the surface and the hardness at the center of the plate thickness is 25 or less, and no cracks are observed in the SSCC test in a high-strength steel pipe made using the steel plate In addition, no cracks were observed in the HIC test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、No.1~No.9は、成分組成および製造条件が本発明の適正範囲を満足する発明例である。いずれも、鋼板として引張強度:520MPa以上、表面下0.5mm位置とt/2位置ともミクロ組織はベイナイト組織、表面下0.5mmでのHV0.1が230以下かつΔHVが25以下であり、その鋼板を用いて造管した高強度鋼管において耐SSCC性および耐HIC性も良好であった。 As shown in Table 2, No. 1-No. 9 is an invention example in which the component composition and production conditions satisfy the appropriate range of the present invention. In either case, the tensile strength of the steel sheet is 520 MPa or more, the microstructure is a bainite structure at both the 0.5 mm position and the t / 2 position below the surface, the HV0.1 is 0.5 or less and the ΔHV is 25 or less at 0.5 mm below the surface, SSCC resistance and HIC resistance were also good in the high-strength steel pipe made using the steel plate.
 これに対し、No.10~No.16は、成分組成は本発明の範囲内であるが、製造条件が本発明の範囲外の比較例である。No.10は、冷却停止温度が低かったため、表層と板厚中央との硬さの差が大きくなっている。No.11および12は、制御冷却条件が本発明範囲外で、鋼板表層において転位密度が顕著に増大したため、表層硬さが増大し、SSCCの発生を招いた。No.13は、鋼板平均での冷却速度が十分確保されず、板厚中央でフェライトを形成したため、強度の低下を招いた。No.14は、オンライン誘導加熱での加熱温度が最適ではなかったため、板厚方向の硬度差が生じるに至っている。No.15は炉加熱により焼き戻しを実施しているが、昇温速度が遅く板厚全体が平均して焼戻されるため、強度が低い値となっている。No.16は再加熱を実施しない場合であり、焼き戻しによる表層軟化がなされていないため、表層の転位密度が高く、SSCCの発生を招いている。また、板厚方向硬さばらつきも大きい。No.17~No.20は、鋼板の成分組成が本発明の範囲外であり、耐HIC性の劣化を生じている。 On the other hand, No. 10-No. No. 16 is a comparative example in which the component composition is within the scope of the present invention but the production conditions are outside the scope of the present invention. No. In No. 10, the cooling stop temperature was low, so the difference in hardness between the surface layer and the center of the plate thickness was large. In Nos. 11 and 12, the controlled cooling condition was outside the range of the present invention, and the dislocation density was significantly increased in the steel sheet surface layer, so that the surface layer hardness increased and SSCC was generated. No. In No. 13, the average cooling rate of the steel plate was not sufficiently secured, and ferrite was formed at the center of the plate thickness. In No. 14, the heating temperature in the on-line induction heating was not optimal, so that a hardness difference in the plate thickness direction occurred. No. No. 15 is tempered by furnace heating, but has a low strength because the rate of temperature rise is slow and the entire thickness is tempered on average. No. No. 16 is a case in which reheating is not performed, and since the surface layer is not softened by tempering, the dislocation density of the surface layer is high, which causes the occurrence of SSCC. Also, the thickness variation in the thickness direction is large. In No. 17 to No. 20, the component composition of the steel sheet is outside the scope of the present invention, and the HIC resistance is deteriorated.
 本発明によれば、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れ、かつ板厚方向の硬さ均一性にも優れた耐サワーラインパイプ用高強度鋼板を供給することができる。よって、この鋼板を冷間成形して製造した鋼管(電縫鋼管、スパイラル鋼管、UOE鋼管等)は、耐サワー性を要する硫化水素を含む原油や天然ガスの輸送に好適に使用することができる。
 
According to the present invention, it is possible to supply a high-strength steel sheet for sour line pipes that is excellent in HIC resistance and SSCC resistance in a more severe corrosive environment and excellent in hardness uniformity in the thickness direction. . Therefore, a steel pipe (such as an electric resistance steel pipe, a spiral steel pipe, or a UOE steel pipe) manufactured by cold forming this steel sheet can be suitably used for transporting crude oil or natural gas containing hydrogen sulfide that requires sour resistance. .

Claims (8)

  1.  質量%で、C:0.02~0.08%、Si:0.01~0.50%、Mn:0.50~1.80%、P:0.001~0.015%、S:0.0002~0.0015%、Al:0.01~0.08%およびCa:0.0005~0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物からなる成分組成を有し、
     鋼板表面下0.5mmにおける鋼組織が、転位密度0.5×1014~7.0×1014(m-2)のベイナイト組織であり、
     鋼板表面下0.5mmにおけるビッカース硬さの平均値と鋼板板厚中央におけるビッカース硬さの平均値との差ΔHVが25HV以下であり、
     520MPa以上の引張強さを有する
    ことを特徴とする耐サワーラインパイプ用高強度鋼板。
     CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P]  ・・・(1)
    ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
    C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015%, S: It contains 0.0002 to 0.0015%, Al: 0.01 to 0.08%, and Ca: 0.0005 to 0.005%, and the CP value obtained by the following formula (1) is 1.00 or less And the remainder has a component composition consisting of Fe and inevitable impurities,
    The steel structure at 0.5 mm below the steel sheet surface is a bainite structure having a dislocation density of 0.5 × 10 14 to 7.0 × 10 14 (m −2 ),
    The difference ΔHV between the average value of Vickers hardness at 0.5 mm below the steel sheet surface and the average value of Vickers hardness at the center of the steel sheet thickness is 25 HV or less,
    A high-strength steel sheet for sour line pipes, characterized by having a tensile strength of 520 MPa or more.
    CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo) ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
    However, [% X] indicates the content (mass%) of element X in steel.
  2.  前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、請求項1に記載の耐サワーラインパイプ用高強度鋼板。 In addition, the component composition may be one by mass selected from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less. The high-strength steel sheet for sour-resistant pipes according to claim 1, containing two or more kinds.
  3.  前記成分組成が、さらに、質量%で、Nb:0.005~0.1%、V:0.005~0.1%およびTi:0.005~0.1%のうちから選んだ1種又は2種以上を含有する、請求項1または2に記載の耐サワーラインパイプ用高強度鋼板。 The component composition is further selected by mass% from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1%. Or the high-strength steel plate for sour-resistant pipes of Claim 1 or 2 containing 2 or more types.
  4.  質量%で、C:0.02~0.08%、Si:0.01~0.50%、Mn:0.50~1.80%、P:0.001~0.015%、S:0.0002~0.0015%、Al:0.01~0.08%およびCa:0.0005~0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物の成分組成を有する鋼片を、1000~1300℃の温度に加熱したのち、熱間圧延して鋼板とし、
     その後前記鋼板に対して、
      冷却開始時の鋼板表面温度T:(Ar-10℃)以上、
      鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度:100℃/s以下、
      鋼板平均温度で750℃から550℃までの平均冷却速度:15℃/s以上、および
      鋼板平均温度で冷却停止温度T:250~550℃
    の条件で制御冷却を行い、
     その後、誘導加熱により、鋼板平均温度が前記冷却停止温度T以上であって、かつ鋼板表面温度が550~750℃の加熱温度Tとなるように前記鋼板を再加熱することを特徴とする耐サワーラインパイプ用高強度鋼板の製造方法。
     CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P]  ・・・(1)
    ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
    C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015%, S: It contains 0.0002 to 0.0015%, Al: 0.01 to 0.08%, and Ca: 0.0005 to 0.005%, and the CP value obtained by the following formula (1) is 1.00 or less And the balance of the steel slab having the composition of Fe and inevitable impurities is heated to a temperature of 1000 to 1300 ° C. and then hot-rolled into a steel sheet,
    After that,
    Steel sheet surface temperature T 1 at the start of cooling: (Ar 3 −10 ° C.) or more,
    Average cooling rate from 750 ° C. to 550 ° C. at a steel plate temperature at 0.5 mm below the steel plate surface: 100 ° C./s or less,
    Average cooling rate from 750 ° C. to 550 ° C. at the steel plate average temperature: 15 ° C./s or more, and cooling stop temperature T 2 at the steel plate average temperature: 250 to 550 ° C.
    Controlled cooling under the conditions of
    Thereafter, the steel sheet is reheated by induction heating so that the average temperature of the steel sheet is equal to or higher than the cooling stop temperature T 2 and the steel sheet surface temperature is a heating temperature T 3 of 550 to 750 ° C. Manufacturing method of high strength steel plate for sour line pipes.
    CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo) ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
    However, [% X] indicates the content (mass%) of element X in steel.
  5.  前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、請求項4に記載の耐サワーラインパイプ用高強度鋼板の製造方法。 In addition, the component composition may be one by mass selected from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less. The manufacturing method of the high strength steel plate for sour-resistant pipes of Claim 4 containing 2 or more types.
  6.  前記成分組成が、さらに、質量%で、Nb:0.005~0.1%、V:0.005~0.1%およびTi:0.005~0.1%のうちから選んだ1種又は2種以上を含有する、請求項4または5に記載の耐サワーラインパイプ用高強度鋼板の製造方法。 The component composition is further selected by mass% from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1%. Or the manufacturing method of the high strength steel plate for sour-proof pipes of Claim 4 or 5 containing 2 or more types.
  7.  前記再加熱は、以下の式(2)で定義されるTPが0.50以上となる条件を満たすように行う、請求項4~6のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板の製造方法。
      TP=(T-T)×T/(T-T  ・・・(2)
    The high strength for a sour line pipe according to any one of claims 4 to 6, wherein the reheating is performed so as to satisfy a condition that TP defined by the following formula (2) is 0.50 or more. A method of manufacturing a steel sheet.
    TP = (T 3 −T 2 ) × T 2 / (T 1 −T 2 ) 2 (2)
  8.  請求項1~3のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管。
     
    A high-strength steel pipe using the high-strength steel sheet for sour-resistant pipes according to any one of claims 1 to 3.
PCT/JP2018/012956 2017-03-30 2018-03-28 High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe WO2018181564A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019510032A JP6844691B2 (en) 2017-03-30 2018-03-28 High-strength steel sheets for sour-resistant pipes and their manufacturing methods, and high-strength steel pipes using high-strength steel sheets for sour-resistant pipes
BR112019020236-6A BR112019020236B1 (en) 2017-03-30 2018-03-28 HIGH STRENGTH STEEL SHEET FOR ACIDITY RESISTANT LINE TUBE, METHOD FOR MANUFACTURING THE SAME, AND HIGH STRENGTH STEEL TUBE
KR1020197030351A KR20190129097A (en) 2017-03-30 2018-03-28 High strength steel sheet for internal sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel sheet for internal sour line pipe
CN201880022412.1A CN110475894B (en) 2017-03-30 2018-03-28 High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
EP18774336.4A EP3604592B1 (en) 2017-03-30 2018-03-28 High strength steel plate for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
KR1020217029888A KR20210118960A (en) 2017-03-30 2018-03-28 High strength steel plate for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017068431 2017-03-30
JP2017-068431 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018181564A1 true WO2018181564A1 (en) 2018-10-04

Family

ID=63677523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012956 WO2018181564A1 (en) 2017-03-30 2018-03-28 High strength steel sheet for sour-resistant line pipe, method for manufacturing same, and high strength steel pipe using high strength steel sheet for sour-resistant line pipe

Country Status (5)

Country Link
EP (1) EP3604592B1 (en)
JP (1) JP6844691B2 (en)
KR (2) KR20210118960A (en)
CN (1) CN110475894B (en)
WO (1) WO2018181564A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067209A1 (en) * 2018-09-28 2020-04-02 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
WO2020067210A1 (en) * 2018-09-28 2020-04-02 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
WO2021020220A1 (en) * 2019-07-31 2021-02-04 Jfeスチール株式会社 High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
WO2021161366A1 (en) * 2020-02-10 2021-08-19 日本製鉄株式会社 Line pipe-use electric resistance welded steel pipe
EP3872219A4 (en) * 2018-10-26 2021-12-15 Posco High-strength steel having excellent resistance to sulfide stress cracking, and method for manufacturing same
RU2788419C1 (en) * 2019-07-31 2023-01-19 ДжФЕ СТИЛ КОРПОРЕЙШН High-strength steel sheet for hydrogen sulfide-resistant main pipe, the method for its manufacture and high-strength steel pipe obtained using high-strength steel sheet for hydrogen sulfide-resistant main pipe
WO2023162571A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Steel plate and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220145392A (en) * 2020-04-02 2022-10-28 제이에프이 스틸 가부시키가이샤 Electric resistance welded pipe and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957327A (en) 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JP2002327212A (en) 2001-02-28 2002-11-15 Nkk Corp Method for manufacturing sour resistant steel sheet for line pipe
JP2005060820A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk High strength steel sheet for line pipe excellent in anti-hic (hydrogen induced cracking) characteristic and its manufacturing method
JP3711896B2 (en) 2001-06-26 2005-11-02 Jfeスチール株式会社 Manufacturing method of steel sheets for high-strength line pipes
JP3796133B2 (en) 2000-04-18 2006-07-12 新日本製鐵株式会社 Thick steel plate cooling method and apparatus
JP3951429B2 (en) 1998-03-30 2007-08-01 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with small material difference in thickness direction
JP3951428B2 (en) 1998-03-30 2007-08-01 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with small material difference in thickness direction
JP2008056962A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor
JP2013139630A (en) * 2011-12-09 2013-07-18 Jfe Steel Corp High strength steel sheet for sour-resistant line pipe excellent in material uniformity in the steel sheet and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317499B2 (en) * 2003-10-03 2009-08-19 新日本製鐵株式会社 High tensile strength steel sheet having a low acoustic anisotropy and excellent weldability and having a tensile strength of 570 MPa or higher, and a method for producing the same
JP5223511B2 (en) * 2007-07-31 2013-06-26 Jfeスチール株式会社 Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP5672916B2 (en) * 2010-09-30 2015-02-18 Jfeスチール株式会社 High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP5516784B2 (en) * 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
WO2014115549A1 (en) * 2013-01-24 2014-07-31 Jfeスチール株式会社 Hot-rolled steel plate for high-strength line pipe
JP5950045B2 (en) * 2013-12-12 2016-07-13 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
WO2017018108A1 (en) * 2015-07-27 2017-02-02 新日鐵住金株式会社 Steel pipe for line pipe and method for manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957327A (en) 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JP3951429B2 (en) 1998-03-30 2007-08-01 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with small material difference in thickness direction
JP3951428B2 (en) 1998-03-30 2007-08-01 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with small material difference in thickness direction
JP3796133B2 (en) 2000-04-18 2006-07-12 新日本製鐵株式会社 Thick steel plate cooling method and apparatus
JP2002327212A (en) 2001-02-28 2002-11-15 Nkk Corp Method for manufacturing sour resistant steel sheet for line pipe
JP3711896B2 (en) 2001-06-26 2005-11-02 Jfeスチール株式会社 Manufacturing method of steel sheets for high-strength line pipes
JP2005060820A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk High strength steel sheet for line pipe excellent in anti-hic (hydrogen induced cracking) characteristic and its manufacturing method
JP2008056962A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor
JP2013139630A (en) * 2011-12-09 2013-07-18 Jfe Steel Corp High strength steel sheet for sour-resistant line pipe excellent in material uniformity in the steel sheet and method for producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020067210A1 (en) * 2018-09-28 2021-02-15 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
WO2020067210A1 (en) * 2018-09-28 2020-04-02 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
WO2020067209A1 (en) * 2018-09-28 2020-04-02 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
JPWO2020067209A1 (en) * 2018-09-28 2021-02-15 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
EP3872219A4 (en) * 2018-10-26 2021-12-15 Posco High-strength steel having excellent resistance to sulfide stress cracking, and method for manufacturing same
JP2022505840A (en) * 2018-10-26 2022-01-14 ポスコ High-strength steel with excellent sulfide stress corrosion cracking resistance and its manufacturing method
JP7344962B2 (en) 2018-10-26 2023-09-14 ポスコ カンパニー リミテッド High-strength steel material with excellent sulfide stress corrosion cracking resistance and method for producing the same
JPWO2021020220A1 (en) * 2019-07-31 2021-02-04
WO2021020220A1 (en) * 2019-07-31 2021-02-04 Jfeスチール株式会社 High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
CN114174547A (en) * 2019-07-31 2022-03-11 杰富意钢铁株式会社 High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
EP4006180A4 (en) * 2019-07-31 2022-10-12 JFE Steel Corporation High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
RU2788419C1 (en) * 2019-07-31 2023-01-19 ДжФЕ СТИЛ КОРПОРЕЙШН High-strength steel sheet for hydrogen sulfide-resistant main pipe, the method for its manufacture and high-strength steel pipe obtained using high-strength steel sheet for hydrogen sulfide-resistant main pipe
JP7272442B2 (en) 2019-07-31 2023-05-12 Jfeスチール株式会社 High-strength steel plate for sour-resistant linepipe, manufacturing method thereof, and high-strength steel pipe using high-strength steel plate for sour-resistant linepipe
WO2021161366A1 (en) * 2020-02-10 2021-08-19 日本製鉄株式会社 Line pipe-use electric resistance welded steel pipe
JPWO2021161366A1 (en) * 2020-02-10 2021-08-19
JP7226595B2 (en) 2020-02-10 2023-02-21 日本製鉄株式会社 Electric resistance welded steel pipes for line pipes
WO2023162571A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Steel plate and method for manufacturing same

Also Published As

Publication number Publication date
EP3604592A4 (en) 2020-03-04
EP3604592A1 (en) 2020-02-05
JP6844691B2 (en) 2021-03-17
JPWO2018181564A1 (en) 2019-12-12
KR20210118960A (en) 2021-10-01
KR20190129097A (en) 2019-11-19
BR112019020236A2 (en) 2020-04-22
EP3604592B1 (en) 2022-03-23
CN110475894B (en) 2022-03-22
CN110475894A (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6844691B2 (en) High-strength steel sheets for sour-resistant pipes and their manufacturing methods, and high-strength steel pipes using high-strength steel sheets for sour-resistant pipes
JP6521197B2 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP6825748B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
WO2015151469A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP6825749B2 (en) High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
WO2021020220A1 (en) High-strength steel sheet for sour resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour resistant line pipe
JP6665822B2 (en) High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe
WO2021193383A1 (en) High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe
JP6866855B2 (en) Manufacturing method of high-strength steel plate for sour line pipe, high-strength steel pipe for sour line pipe, and high-strength steel pipe using high-strength steel plate for sour line pipe
JP6521196B1 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
RU2805165C1 (en) High-strength steel sheet for acid-resistant main pipe and method of its manufacture, and high-strength steel pipe using high-strength steel sheet for acid-resistant main pipe
JP7396551B1 (en) High-strength steel plate for sour-resistant line pipe and its manufacturing method, and high-strength steel pipe using high-strength steel plate for sour-resistant line pipe
WO2023248638A1 (en) High-strength steel sheet for sour-resistant line pipe and method for manufacturing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020236

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197030351

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018774336

Country of ref document: EP

Effective date: 20191030

ENP Entry into the national phase

Ref document number: 112019020236

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190927