WO2018181473A1 - Rotation control device - Google Patents

Rotation control device Download PDF

Info

Publication number
WO2018181473A1
WO2018181473A1 PCT/JP2018/012758 JP2018012758W WO2018181473A1 WO 2018181473 A1 WO2018181473 A1 WO 2018181473A1 JP 2018012758 W JP2018012758 W JP 2018012758W WO 2018181473 A1 WO2018181473 A1 WO 2018181473A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
rotation control
operation target
main surface
shaft
Prior art date
Application number
PCT/JP2018/012758
Other languages
French (fr)
Japanese (ja)
Inventor
浩昭 成田
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Priority to CN201880021224.7A priority Critical patent/CN110476040B/en
Priority to KR1020197028091A priority patent/KR102147922B1/en
Publication of WO2018181473A1 publication Critical patent/WO2018181473A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • G01D5/165Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track

Definitions

  • the present invention relates to a rotation control device that controls rotation of an operation target shaft, for example, a rotation control device that uses a valve shaft of a control valve as an operation target shaft.
  • a rotation control device that controls the rotation of an operation target shaft such as a valve shaft detects a mechanical displacement in the rotation direction of the operation target shaft by a position sensor, and determines an operation amount of the shaft based on the detection result. Yes.
  • an electric operating device actuator
  • a potentiometer including a variable resistor is used as a position sensor, and the rotational direction of the valve shaft detected by the potentiometer is adjusted.
  • the valve shaft is controlled based on the mechanical displacement amount (see Patent Document 1).
  • the position of the measurement target shaft in the rotation direction is used.
  • a non-contact type position sensor that detects non-contact.
  • the non-contact position sensor outputs an absolute position sensor that outputs a signal corresponding to the angular position of the detection target axis, and a signal corresponding to the rotation angle of the detection target axis, that is, the amount of change in the angular position.
  • a relative position sensor that detects a signal corresponding to the angular position of the detection target axis.
  • an absolute rotary encoder that outputs a code signal corresponding to the absolute angular position of the detection target axis is used.
  • a detection target is used.
  • Incremental rotary encoders that output pulses corresponding to the rotation angle of the shaft are known (see Patent Document 2).
  • a potentiometer is a sensor that outputs a change in resistance value by mechanically operating a slider, its durability is low and its product life tends to be short.
  • an absolute rotary encoder as an absolute non-contact position sensor is used instead of a potentiometer, the unit price is generally high and a battery for driving the absolute rotary encoder is required. As a result, the product cost increases.
  • the present inventor uses a non-contact type relative position sensor such as a rotary encoder and an ON / OFF sensor that outputs a detection signal when the operation target axis reaches a predetermined position, instead of the potentiometer.
  • a new rotation control device Japanese Patent Application No. 2017-0334014.
  • the ON / OFF sensors 3_1 to 3_5 are provided in the vicinity of the operation target shaft 301, and the main board of the printed circuit board 300 on which the IC chip 302 for performing various arithmetic processes is mounted.
  • An electrode 321 is disposed on the surface 300a.
  • the short plate 303 connected to the operation target shaft 301 is brought into contact with any one of the electrodes 321 to detect the absolute position of the operation target shaft 301 although it is discontinuous.
  • a position sensor that detects the absolute position of the operation target axis by using such an ON / OFF sensor may be referred to as a “discontinuous absolute position sensor”.
  • the present invention has been made in view of the above problems, and an object of the present invention is to perform rotation control that measures the position of the operation target shaft in the rotation direction by using a non-contact type relative position sensor and an ON / OFF sensor.
  • the object is to improve the durability and reliability of the apparatus while realizing it at a lower cost.
  • the rotation control device (100) for controlling the rotation of the operation target shaft (200) includes a relative position sensor (1) for detecting the mechanical displacement in the rotation direction of the operation target shaft in a non-contact manner, and the operation.
  • a relative position sensor (1) for detecting the mechanical displacement in the rotation direction of the operation target shaft in a non-contact manner, and the operation.
  • a rotatable range (SR) from the first position (Pc) to the second position (Po) in the rotation direction of the target axis, at least one predetermined intermediate position (Pa, excluding the first position and the second position) Pm, Pb) ON / OFF sensors (2_1 to 2_n) that output a detection signal when the operation target axis arrives, and mechanical displacement detected by the relative position sensor after the detection signal is output
  • an absolute position in the rotation direction of the operation target shaft is calculated.
  • Position calculator (3 And the operation amount (MV) of the operation target axis based on the information on the target position (SP) in the rotation direction of the operation target axis and the absolute position (PV) of the operation target axis calculated by the position calculation unit. Based on the operation amount calculated by the operation amount calculation unit (4), and the operation amount calculated by the operation amount calculation unit, within the rotatable range from the first position to the second position in the rotation direction of the operation target axis An operation unit (5) for operating the shaft, and the ON / OFF sensor is provided around the operation target axis, and has a main surface (20a, 20b) perpendicular to the axis of the operation target axis, and a substrate (20) The at least one electrode (21a, 21b) arranged on the main surface of the substrate and one end are fixed to the operation target shaft, extend in the radial direction of the operation target shaft, and the operation target shaft is at a predetermined intermediate position.
  • One part of the other end contacts one of the electrodes Contacts (201a, 201b), a detection circuit (23_i) that outputs a detection signal when the contact contacts one of the electrodes, and an operation target axis at a predetermined intermediate position.
  • a detection circuit (23_i) that outputs a detection signal when the contact contacts one of the electrodes, and an operation target axis at a predetermined intermediate position.
  • Cam members (24a, 24b) that move the other end of the contact in a direction away from the main surface when there is no contact.
  • the electrodes (21a, 21b) are arranged at positions corresponding to predetermined intermediate positions on the main surface, and the cam members (24a, 24b) have a circumference around the axis of the operation target shaft. It may be arranged along (C2), and the height from the main surface may decrease as it approaches a position corresponding to a predetermined intermediate position on the main surface along the circumference.
  • the electrodes (21a, 21b) and the cam members (24a, 24b) each have a first circumference (C1) having different radii around the axis of the operation target shaft on the main surface.
  • the opposite end portions of two cam members that are arranged along the second circumference (C2) and are adjacent on the main surface of the cam members may be separated from each other on the main surface.
  • the electrodes (21a, 21b) and the cam members (24a, 24b) are arranged on the same circumference (C1) centering on the axis of the operation target shaft on the main surface, and the cam members (24a, 24b) are each formed of an insulating material, and the opposite end portions of two cam members adjacent to each other on the main surface of the cam member respectively cover a part of the electrode (21) and The electrodes may be separated from each other.
  • the contacts (201a, 201b) are elastically deformable plate-like members, and the width of the portion that contacts the electrode when the operation target shaft is at a predetermined intermediate position is on the main surface. It may be narrower than the interval between the ends of the two adjacent cam members facing each other.
  • the substrate has, as main surfaces, a first main surface (20a) and a second main surface (20b) opposite to the first main surface, and the electrodes are on the first main surface.
  • At least one first electrode (21a) disposed on the second main surface and at least one second electrode (21b) disposed on the second main surface, and one end of the contact is fixed to the operation target shaft,
  • the second contactor (201b) is in contact with one of the second electrodes, and the cam member is disposed on the first main surface of the substrate.
  • a detection signal may be output when a part of the other end of the child contacts the first electrode and a part of the other end of the second contact contacts the second electrode.
  • the rotation control device further includes a reversal number counting unit (6) that counts the number of times the rotation direction of the operation target axis is reversed, and the operation amount calculating unit (4A) counts the number of reversals without outputting a detection signal. Calculating an operation amount for moving the operation target axis to any one of the first position, the second position, and the predetermined intermediate position when the value counted by the unit exceeds a predetermined threshold value; In (5), the operation target axis may be operated based on the operation amount calculated by the operation amount calculation unit.
  • the rotation control device further includes an absolute value integration unit (7) that integrates the absolute value of the mechanical displacement in the rotation direction of the operation target shaft, and the operation amount calculation unit (4B) does not output a detection signal.
  • an absolute value integration unit (7) that integrates the absolute value of the mechanical displacement in the rotation direction of the operation target shaft, and the operation amount calculation unit (4B) does not output a detection signal.
  • the rotation control device further includes a timer (8) for accumulating the time elapsed without outputting the detection signal, and the operation amount calculation unit (4C) has a predetermined time elapsed without outputting the detection signal.
  • the operation unit (5) calculates the operation amount.
  • the operation target axis may be operated based on the operation amount calculated by the unit.
  • the rotation control device further includes an activation number counting unit (9) that counts the number of times the operation target axis starts to move, and the operation amount calculation unit (4D) is counted by the activation number counting unit without outputting a detection signal.
  • an operation amount for moving the operation target axis to any one of the first position, the second position, and the predetermined intermediate position is calculated, and an operation unit ( In 5), the operation target axis may be operated based on the operation amount calculated by the operation amount calculation unit.
  • the position calculation unit (3) includes a reference value update unit (32) that resets an integrated value of the mechanical displacement detected by the relative position sensor when a detection signal is output. Also good.
  • FIG. 1 is a diagram illustrating a configuration of a rotation control device according to the first embodiment.
  • FIG. 2 is a diagram for explaining the concept of a discontinuous absolute position sensor.
  • FIG. 3A is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor.
  • FIG. 3B is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor.
  • FIG. 3C is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor.
  • FIG. 3D is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor.
  • FIG. 3E is a diagram illustrating a relationship between an electrode and a cam member in an example of a configuration of a discontinuous absolute position sensor.
  • FIG. 3A is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor.
  • FIG. 3B is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor.
  • FIG. 3C is
  • FIG. 4 is a flowchart for explaining the operation in the origin return operation mode of the rotation control device according to the first embodiment.
  • FIG. 5 is a flowchart for explaining the operation in the normal operation mode of the rotation control device according to the first embodiment.
  • FIG. 6A is a diagram illustrating another configuration example of a discontinuous absolute position sensor.
  • FIG. 6B is a diagram illustrating the relationship between the electrode and the cam member in another configuration example of the discontinuous absolute position sensor.
  • FIG. 7A is a diagram showing a modification of the discontinuous absolute position sensor.
  • FIG. 7B is a diagram for explaining the relationship between the electrode and the cam member in a modification of the discontinuous absolute position sensor.
  • FIG. 7C is a diagram showing a modification of the discontinuous absolute position sensor.
  • FIG. 7D is a diagram showing a modification of the discontinuous absolute position sensor.
  • FIG. 8 is a diagram illustrating a configuration of the rotation control device according to the second embodiment.
  • FIG. 9A is a flowchart for explaining the operation of the rotation control device according to the second embodiment.
  • FIG. 9B is a flowchart for explaining the operation of the rotation control device according to the second embodiment.
  • FIG. 10 is a diagram illustrating a configuration of the rotation control device according to the third embodiment.
  • FIG. 11A is a flowchart for explaining the operation of the rotation control device according to the third embodiment.
  • FIG. 11B is a flowchart for explaining the operation of the rotation control device according to the third embodiment.
  • FIG. 12 is a diagram illustrating a configuration of the rotation control device according to the fourth embodiment.
  • FIG. 13A is a flowchart for explaining the operation of the rotation control device according to the fourth embodiment.
  • FIG. 13B is a flowchart for explaining the operation of the rotation control device according to the fourth embodiment.
  • FIG. 14 is a diagram illustrating a configuration of the rotation control device according to the fifth embodiment.
  • FIG. 15A is a flowchart for explaining the operation of the rotation control device according to the fifth embodiment.
  • FIG. 15B is a flowchart for explaining the operation of the rotation control device according to the fifth embodiment.
  • FIG. 16A is a diagram illustrating another arrangement example of discontinuous absolute position sensors.
  • FIG. 16B is a diagram illustrating another configuration example of the discontinuous absolute position sensor.
  • FIG. 17A is a diagram illustrating another arrangement example of discontinuous absolute position sensors.
  • FIG. 17B is a diagram illustrating another configuration example of the discontinuous absolute position sensor.
  • FIG. 18 is a diagram for explaining an example of the configuration of a discontinuous absolute position sensor in the prior application.
  • FIG. 1 is a diagram illustrating a configuration of a rotation control device 100 according to the first embodiment.
  • the rotation control device 100 shown in the figure is an electric operating device that controls the rotation of a valve shaft (operation target shaft) of a rotary control valve such as a ball valve used for flow rate process control in a plant or the like. It is.
  • the rotation control device 100 includes a target value (set value) SP of the valve opening of the control valve and an actually measured value of the valve opening of the control valve (hereinafter referred to as “actual opening”) given from a host device (not shown). Also referred to as “degree”.) Deviation ⁇ P from PV is calculated. Then, the rotation control device 100 controls the valve opening of the control valve so as to become the target value SP by driving the valve shaft 200 so that the deviation ⁇ P becomes zero.
  • the rotation control device 100 includes a relative position sensor 1, a plurality of ON / OFF sensors 2_1 to 2_n (n is an integer of 2 or more), a position calculation unit 3, an operation amount calculation unit 4, and An operation unit 5 is provided.
  • the plurality of ON / OFF sensors 2_1 to 2_n constitute discontinuous absolute position sensors.
  • the rotation control device 100 transmits and receives data to and from a display unit (for example, a liquid crystal display) and an external device for presenting various types of information such as the valve opening of the control valve to the user in addition to the above-described functional unit.
  • a communication circuit or the like may be provided.
  • the discontinuous absolute position sensor including the relative position sensor 1 and the ON / OFF sensors 2_1 to 2_n for measuring the actual opening of the control valve, that is, the position of the valve shaft 200 in the rotation direction will be described.
  • the relative position sensor 1 is a functional unit that detects a mechanical displacement Md in the rotation direction of the valve shaft 200 as an operation target shaft of the rotation control device 100 in a non-contact manner.
  • An example of the relative position sensor 1 is an incremental rotary encoder that outputs a pulse corresponding to the rotation angle of the detection target shaft (valve shaft 200). In the present embodiment, the relative position sensor 1 will be described as an incremental rotary encoder.
  • the discontinuous absolute position sensor includes ON / OFF sensors 2_1 to 2_n, and corresponds to the predetermined position when the valve shaft 200 which is the operation target shaft reaches a predetermined position in the rotation direction.
  • the provided ON / OFF sensors 2_1 to 2_n output detection signals P1 to Pn, respectively.
  • the ON / OFF sensors 2_1 to 2_n may be any component that can output an electric signal indicating that the valve shaft 200 has reached a specific position in the rotation direction.
  • limit switches can be used as the ON / OFF sensors 2_1 to 2_n.
  • the electrical signal may be a signal indicating that the valve shaft 200 has reached a specific position in the rotation direction, and is, for example, an on / off signal (a signal indicating a state, for example, a digital signal).
  • the ON / OFF sensors 2_1 to 2_5 are provided corresponding to a plurality of different positions within the rotatable range SR of the valve shaft 200, and the valve shaft 200 reaches the corresponding position.
  • Detection signals P1 to Pn are output.
  • the rotatable range SR is a rotatable range in the rotation direction of the valve shaft 200. For example, from the fully closed position Pc where the valve opening degree as the first position in the rotation direction is 0%, The range up to the fully open position Po where the valve opening as the position is 100% is shown.
  • the ON / OFF sensors 2_1 to 2_5 are provided corresponding to any position in the range of the valve opening from 0% to 100%.
  • the ON / OFF sensor 2_1 is provided corresponding to the fully closed position Pc where the valve opening degree is 0%.
  • the ON / OFF sensor 2_2 is provided corresponding to the position Pa where the valve opening degree is 20%.
  • the ON / OFF sensor 2_3 is provided corresponding to the position Pm at which the valve opening is 50%.
  • the ON / OFF sensor 2_4 is provided corresponding to the position Pb at which the valve opening is 70%.
  • the ON / OFF sensor 2_5 is provided corresponding to the fully open position Po where the valve opening degree is 100%.
  • the position Pa where the valve opening is 20% and the valve opening is 50 %
  • Position Pm and the position Pb where the valve opening degree is 70% correspond to the “predetermined intermediate position” in the present invention.
  • the ON / OFF sensor 2_1 outputs the detection signal P1 when the valve shaft 200 reaches the fully closed position Pc.
  • the ON / OFF sensor 2_2 outputs a detection signal P2 when the valve shaft 200 reaches the position Pa (valve opening: 20%).
  • the ON / OFF sensor 2_3 outputs a detection signal P3 when the valve shaft 200 reaches the position Pm (valve opening: 50%).
  • the ON / OFF sensor 2_4 outputs a detection signal P4 when the valve shaft 200 reaches the position Pb (valve opening: 70%).
  • the ON / OFF sensor 2_5 outputs a detection signal P5 when the valve shaft 200 reaches the fully open position Po (valve opening degree: 100%).
  • the ON / OFF sensors 2_1 to 2_n are provided around the valve shaft 200.
  • the ON / OFF sensors 2_1 to 2_n include a printed circuit board 20 having a first main surface 20a and a second main surface 20b orthogonal to the axis of the valve shaft 200, and the first main surface 20a and the second main surface 20b of the printed circuit board.
  • a plurality of first electrodes 21 a and second electrodes 21 b respectively disposed on the top, a short plate 201 fixed to the side surface of the valve shaft 200, and a plurality of first contacts 201 a and second contacts 201 b of the short plate 201.
  • a detection circuit 23_i that outputs a detection signal Pi when it contacts one of the first electrode 21a and the second electrode 21b, and a plurality of first cam members 24a disposed on the first main surface 20a of the printed circuit board 20; And a plurality of second cam members 24b disposed on the second main surface 20b.
  • first main surface 20a and the second main surface 20b of the printed circuit board 20 may be collectively referred to as “main surfaces 20a, 20b”.
  • the first electrode 21a and the second electrode 21b may be collectively referred to as “electrodes 21a, 21b”.
  • the first contact 201a and the second contact 201b of the short plate 201 may be collectively referred to as “contacts 201a and 201b”.
  • the first cam member 24a and the second cam member 24b may be collectively referred to as “cam members 24a, 24b”.
  • valve shaft 200 is in the fully closed position Pc, position Pa (valve opening: 20%), position Pm (valve opening: 50%), and position Pb (valve opening: 70%) and a fully open position Po (valve opening degree: 100%) in a state where the ON / OFF sensors 2_1 to 2_n have been reached.
  • 3C and 3D are a plan view schematically showing the structure of the ON / OFF sensors 2_1 to 2_n when the valve shaft 200 has not reached any of the predetermined positions, and II-II, respectively. It is line sectional drawing.
  • FIG. 3E is a side view schematically showing the structure of the ON / OFF sensors 2_1 to 2_n.
  • each ON / OFF sensor 2_i (1 ⁇ i ⁇ n) is connected to a resistor R and an electrode 21a on a printed circuit board 20 provided around the valve shaft 200, as shown in FIGS. 3A to 3E.
  • This can be realized by arranging 21b and providing a short plate 201 on the valve shaft 200.
  • the first electrode 21a is formed on the first main surface 20a of the printed circuit board 20, and a resistor R is connected between the first electrode 21a and the power supply line Vcc to which the power supply voltage is supplied.
  • the second electrode 21b is formed on the second main surface 20b of the printed circuit board 20, and the second electrode 21b is connected to a ground line GND to which a ground voltage is supplied.
  • the plurality of electrodes 21 a and 21 b formed on the two main surfaces 20 a and 20 b of the printed circuit board 20 are arranged along a circumference C ⁇ b> 1 centering on the axis of the valve shaft 200.
  • the resistor R may be disposed on the first main surface 20a of the printed circuit board 20, for example.
  • the power supply line Vcc may be formed on the first main surface 20a of the printed circuit board 20, for example, and the ground line GND may be formed on the second main surface 20b of the printed circuit board 20, for example.
  • an IC chip 30 including a program processing device such as a microcontroller or a CPU that functions as a position calculation unit 3 and an operation amount calculation unit 4 described later is disposed.
  • the node na to which the resistor R and the electrode 21 a are connected is connected to one input terminal of the IC chip 30.
  • the valve shaft 200 is inserted through a through hole 20 c provided in the printed circuit board 20.
  • the axis of the valve shaft 200 and the principal surfaces 20a, 20b of the printed circuit board 20 are orthogonal to each other.
  • a short plate 201 is joined to the outer peripheral surface of the valve shaft 200.
  • the short plate 201 is formed, for example, in a “U” shape in a side view.
  • the short plate 201 may be formed, for example, by bending a strip-shaped plate member made of a metal such as brass or stainless steel into a “U” shape in a side view.
  • Such a short plate 201 is fixed to the side surface of the valve shaft 200 with a screw or the like.
  • the short plate 201 is electrically connected to the first contact 201a, one end of which is fixed to the valve shaft 200 and extending in the radial direction of the valve shaft 200, and the first contact 201a.
  • one end of the short plate 201 is fixed to the valve shaft 200 to provide the second contactor 201b extending in the radial direction of the valve shaft 200.
  • Both the first contact 201a and the second contact 201b are plate-like members that can be elastically deformed.
  • the printed circuit board 20 is disposed between the pair of contacts 201a and 201b. In this state, the contacts 201a 'and 201b' of these contacts 201a and 201b are urged in the direction of the two main surfaces 20a and 20b on the front and back sides of the printed circuit board 20, respectively. Therefore, the short plate 201 fixed to the valve shaft 200 rotates together with the valve shaft 200 in a state where the pair of opposed contacts 201 a and 201 b sandwich the printed circuit board 20.
  • the valve shaft 200 is in the fully closed position Pc, the position Pa where the valve opening is 20%, the position Pm where the valve opening is 50%, the position Pb where the valve opening is 70%, and the fully opened position Po.
  • the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b arranged at positions corresponding to these predetermined positions. For example, as shown in FIG. 3A, when the valve shaft 200 rotates and the short plate 201 reaches the position of the ON / OFF sensor 2_3, the contact 201a ′ of the short plate 201 is connected to the electrode 21a of the ON / OFF sensor 2_3. Contact.
  • the contact 201b 'of the short plate 201 is in contact with the electrode 21b of the ON / OFF sensor 2_3. At this time, a current path is formed from the power supply line Vcc to the ground line GND through the resistor R, the electrode 21a, the short plate 201, and the electrode 21b, and the potential of the node na becomes 0 V (ground potential).
  • the resistor R having one end connected to the power supply line Vcc, the electrode 21a connected to the other end of the resistor R, and the electrode 21b connected to the ground line GND are contactors 201a and 201b of the short plate 201.
  • the detection circuit 23_i that outputs the detection signal Pi is configured when a part of the other end of the electrode contacts one of the electrodes 21a and 21b.
  • the ON / OFF sensors 2_1 to 2_5 include a cam member 24a disposed on the first main surface 20a of the printed circuit board 20, and a cam member 24b disposed on the second main surface 20b. It has. As shown in FIGS. 3A and 3C, these cam members 24 a and 24 b are arranged on the two principal surfaces 20 a and 20 b of the printed circuit board 20 along a circumference C ⁇ b> 2 centering on the axis of the valve shaft 200. Has been.
  • the cam members 24a and 24b are made of a material such as plastic, and each approach a position corresponding to a predetermined intermediate position on the main surface along the circumference C2, that is, a position where the electrodes 21a and 21b are disposed. It has a shape in which the height from the main surface is reduced. The mutually opposing ends of the two cam members adjacent to each other on the two main surfaces 20a and 20b are separated from each other. In order to fix the cam members 24a and 24b to the printed circuit board 20 with an adhesive, an adhesive or a screw may be used. Instead of mounting the cam members 24a and 24b on the printed circuit board 20, the cam members 24a and 24b may be formed on a structure such as a resin case (not shown).
  • 3D shows a discontinuous absolute position when the valve shaft 200 is not in a predetermined position, that is, the fully closed position Pc, the position Pa, the position Pm, the position Pb, or the fully opened position Po shown in FIG. It is a figure explaining the mode of a sensor.
  • the contacts 201a and 201b of the short plate 201 are cams provided on both main surfaces 20a and 20b of the printed circuit board 20, respectively. It contacts the members 24a and 24b. Then, the other ends of the contacts 201a and 201b move in a direction away from both the main surfaces 20a and 20b of the printed circuit board 20.
  • the contacts 201a ′ and 201b ′ of the contacts 201a and 201b do not contact the main surfaces 20a and 20b of the printed circuit board 20.
  • the valve shaft 200 is in one of the predetermined positions, as shown in FIG. 3B, the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b.
  • the position calculation unit 3 is a functional unit that calculates the absolute position of the valve shaft 200.
  • the position calculation unit 3 outputs the integrated value RP of the mechanical displacement Md detected by the relative position sensor 1 after the detection signals P1 to Pn of the ON / OFF sensors 2_1 to 2_n are output, and the detection signals P1 to Pn.
  • the absolute position in the rotation direction of the operation target shaft is calculated.
  • the position calculation unit 3 can be realized by program processing by a program processing device such as a microcontroller or CPU. In the case of the above-described example, this is realized by the IC chip 30 placed on the printed circuit board 20.
  • the position calculation unit 3 includes a reference value update unit 32, a relative position information acquisition unit 31, and a position determination unit 33.
  • the reference value updating unit 32 is a functional unit that updates the reference value AP and outputs the reset signal RST when the detection signals P1 to Pn are output from the ON / OFF sensors 2_1 to 2_n.
  • the reference value AP is a value indicating an absolute position within the rotatable range SR, and serves as a reference when calculating the absolute position of the valve shaft 200 in the rotation direction.
  • the reference value update unit 32 corresponds to the reference value AP to the ON / OFF sensors 2_1 to 2_n that output the detection signals.
  • the reference value update unit No. 32 sets the reference value AP to a value indicating the position Pa corresponding to the ON / OFF sensor 2_2.
  • the reference value update unit 32 The value AP is changed from a value indicating the position Pa to a value indicating the position Pm corresponding to the ON / OFF sensor 2_3.
  • the relative position information acquisition unit 31 is a functional unit that acquires the mechanical displacement Md in the rotational direction of the valve shaft 200 detected by the relative position sensor 1 and calculates an integrated value RP of the mechanical displacement Md.
  • the relative position information acquisition unit 31 counts pulses output from an incremental rotary encoder as the relative position sensor 1 and calculates an integrated value RP of the number of pulses.
  • the relative position information acquisition unit 31 resets the integrated value RP of the number of pulses counted so far. After reset, the relative position information acquisition unit 31 resumes the pulse counting operation.
  • the relative position information acquisition unit 31 resets the integrated value RP every time a detection signal is output from any of the ON / OFF sensors 2_1 to 2_n. Therefore, the integrated value RP calculated by the relative position information acquisition unit 31 is an accumulation of the number of pulses output from the rotary encoder from when the reference value AP is updated immediately before the reference value AP is updated next time. Value.
  • the position determination unit 33 is a mechanical displacement amount in the rotational direction of the valve shaft 200 based on the reference value AP generated by the reference value update unit 32 and the integrated value RP of the number of pulses calculated by the relative position information acquisition unit 31. And the absolute position of the valve shaft 200 in the rotatable range SR is calculated. The position determination unit 33 converts the calculated absolute position of the valve shaft 200 into a valve opening, and outputs the converted value as the actual opening PV.
  • the operation amount calculation unit 4 is based on the target value SP of the valve opening as the target position in the rotation direction of the valve shaft 200 and the actual opening PV calculated by the position calculation unit 3. Is a functional unit for calculating
  • the operation amount calculation unit 4 can be realized, for example, by program processing by a program processing device such as a microcontroller or CPU, similarly to the position calculation unit 3. In the case of the above-described example, this is realized by the IC chip 30 placed on the printed circuit board 20.
  • the operation amount calculation unit 4 includes a target value acquisition unit 41, a deviation calculation unit 42, and an operation amount determination unit 43.
  • the target value acquisition unit 41 is a functional unit that acquires the target value SP of the valve opening given from, for example, a host device (not shown) in the valve control system.
  • the target value SP is set by communication from an external controller or an analog signal of 4-20 mA, for example.
  • the deviation calculating unit 42 is a functional unit that calculates a deviation ⁇ P between the target value SP of the valve opening acquired by the target value acquiring unit 41 and the actual opening PV calculated by the position calculating unit 3.
  • the operation amount determination unit 43 calculates the operation amount MV necessary until the valve shaft 200 reaches the target position in the rotation direction based on the target value SP, based on the deviation ⁇ P calculated by the deviation calculation unit 42.
  • the operation unit 5 is a functional unit that operates the valve shaft 200 within the rotatable range SR based on the operation amount MV calculated by the operation amount calculation unit 4.
  • the operation unit 5 includes an electric motor 52, an electric motor drive unit 51, and a speed reducer 53.
  • the electric motor 52 is a component that generates a rotational force for operating the valve shaft 200.
  • Examples of the electric motor 52 include a brushless motor, a stepping motor, and a synchronous motor.
  • the electric motor drive unit 51 is a functional unit that drives the electric motor 52. Specifically, the electric motor drive unit 51 rotates the output shaft of the electric motor 52 by applying a current (or voltage) corresponding to the operation amount MV calculated by the operation amount calculation unit 4 to the electric motor 52. .
  • the speed reducer 53 is a power transmission mechanism that reduces the rotational force generated by the electric motor 52 and transmits it to the valve shaft 200.
  • the speed reducer 53 is configured by various gear mechanisms such as a planetary gear mechanism. By connecting the output shaft of the speed reducer 53 to the valve shaft 200, the valve shaft 200 can be rotated by the rotational force obtained by reducing the rotational force of the electric motor 52 with a predetermined reduction ratio.
  • FIG. 4 is a diagram showing an operation flow in the origin return operation mode of the rotation control device 100 according to the first embodiment.
  • the case where the valve shaft 200 has reached the position where the valve opening degree becomes 80% when the power of the rotation control device 100 is turned on will be described as an example.
  • the rotation control device 100 When the rotation control device 100 is powered on, the rotation control device 100 starts operation in an origin return operation mode in which the origin return process of the relative position sensor 1 is performed. In the origin return operation mode, the rotation control device 100 drives the electric motor 52 in the direction to close the control valve (S11). Specifically, the electric motor drive unit 51 drives the electric motor 52 based on the operation amount MV calculated by the operation amount determination unit 43 so that the valve opening degree becomes 0%.
  • the rotation control device 100 determines whether or not a detection signal is output from the ON / OFF sensors 2_1 to 2_n (S12). If no detection signal is output from the ON / OFF sensors 2_1 to 2_n in step S12, the rotation control device 100 continues to drive the electric motor 52 so that the valve opening degree becomes 0%.
  • the rotation control device 100 sets the position corresponding to the ON / OFF sensors 2_1 to 2_n that output the detection signal to the valve shaft.
  • a reference value AP (initial point) for calculating the absolute position of 200 is set (S13).
  • the valve shaft 200 rotates in the direction of 0% from the position where the valve opening degree becomes 80% in step S11, and then the valve shaft moves to the position Pb where the valve opening degree becomes 70%.
  • the detection signal P4 is output from the ON / OFF sensor 2_4.
  • the reference value update unit 32 in the position calculation unit 3 sets a value indicating the position Pb corresponding to the ON / OFF sensor 2_4 that has output the detection signal P4 as the reference value AP, and outputs a reset signal RST.
  • the relative position information acquisition unit 31 that has received the reset signal RST from the reference value update unit 32 resets the integrated value RP of the number of pulses counted so far (S14).
  • FIG. 5 is a flowchart showing an operation flow in the normal operation mode of the rotation control device according to the first embodiment.
  • the rotation control device 100 shifts to the normal operation mode when the origin return operation mode ends.
  • the rotation control device 100 stands by until an instruction to change the target value SP of the valve opening degree is given from the host device (S20).
  • the deviation calculating unit 42 of the rotation control device 100 performs the actual opening PV based on the absolute position of the valve shaft 200 calculated by the position calculating unit 3. Is larger than the target value SP instructed from the host device (S21).
  • step S21 when the actual opening PV is larger than the target value SP, the rotation control device 100 drives the electric motor 52 in a direction to close the control valve (S22a).
  • the operation amount determination unit 43 calculates the operation amount MV so that the valve opening becomes the target value SP based on the deviation ⁇ P calculated by the deviation calculation unit 42, and the electric motor drive unit 51 The electric motor 52 is driven based on the operation amount MV.
  • the rotation control device 100 drives the electric motor 52 in a direction to open the control valve (S22b).
  • the operation amount determination unit 43 calculates the operation amount MV based on the deviation ⁇ P calculated by the deviation calculation unit 42 so that the valve opening becomes the target value SP.
  • the electric motor drive unit 51 drives the electric motor 52 based on the operation amount MV.
  • step S22a or step S22b the rotation control device 100 determines whether or not a detection signal is output from one of the ON / OFF sensors 2_1 to 2_n (S23).
  • the rotation control device 100 acquires the reference value AP set by the reference value update unit 32 immediately before and the relative position information. Based on the mechanical displacement of the valve shaft 200 based on the integrated value RP of the number of output pulses from the relative position sensor 1 calculated by the unit 31, the actual opening PV (the absolute position of the valve shaft 200) is calculated. Calculate (S26).
  • the reference value AP in the above example, the position at which the valve opening is 70%
  • the reference value AP is based on the integrated value RP calculated by the relative position information acquisition unit 31.
  • the actual opening PV is calculated by adding the mechanical displacement of the valve shaft 200.
  • the rotation control device 100 updates the reference value AP (S24). Specifically, the reference value update unit 32 sets the position corresponding to the ON / OFF sensors 2_1 to 2_n that output the detection signal as a new reference value AP. For example, in the above-described origin return operation mode, the detection signal P3 is output from the ON / OFF sensor 2_3 in step S23 immediately after the reference value AP is set to a value indicating the position Pb (valve opening: 70%). To do.
  • the reference value updating unit 32 changes the reference value AP from a value indicating the position Pb (valve opening: 70%) to a value indicating the position Pm (valve opening: 50%). At this time, the reference value update unit 32 also outputs a reset signal RST.
  • the relative position information acquisition unit 31 that has received the reset signal RST from the reference value update unit 32 resets the integrated value RP of the number of output pulses of the relative position sensor 1 that has been counted so far (S25).
  • the rotation control device 100 is based on the reference value AP set by the reference value update unit 32 in step S24 and the integrated value RP counted by the relative position information acquisition unit 31 after being reset in step S25.
  • the actual opening PV absolute position of the valve shaft 200
  • the reference value AP is changed to a value indicating the position Pm (valve opening: 50%) in step S24
  • the reference value AP is counted by the relative position information acquisition unit 31 after step S25.
  • the mechanical displacement amount of the valve shaft 200 based on the integrated value RP is added.
  • the rotation control apparatus 100 calculates the absolute position of the valve shaft 200, and calculates the actual opening PV from the position.
  • rotation control device 100 determines whether or not actual opening PV calculated in step S26 matches target value SP (S27).
  • step S27 when the actual opening PV does not coincide with the target value SP, the process returns to step S21, and the rotation control device 100 performs the above-described processing (S21 to S26) again.
  • the rotation control device 100 ends a series of processes for setting the valve opening to the target value SP.
  • the valve shaft 200 is fully closed in addition to the non-contact type relative position sensor 1 as a position sensor for measuring the position of the valve shaft 200 in the rotation direction.
  • ON / OFF sensors 2_2 to 2_4 are provided that output detection signals when reaching third positions (Pa, Pm, Pb) excluding the position Pc and the fully open position Po.
  • the rotation control device 100 includes a reference value AP indicating a position corresponding to the ON / OFF sensors 2_2 to 2_4 that output the detection signal, and a mechanical position detected by the relative position sensor 1 after the detection signal is output. Based on the integrated value RP of the displacement Md, the absolute position of the valve shaft 200 in the rotational direction is calculated.
  • the third position can be regarded as a reference point in the position measurement of the valve shaft 200, that is, the “origin”. For this reason, it is possible to reduce the time required for the origin return process compared to the case where only the fully closed position Pc or the fully open position Po is set as the origin.
  • Tf is the time (full stroke time) required for the valve shaft 200 to move from the fully open position to the fully closed position.
  • the time required for returning the origin of the valve shaft 200 required when the relative position sensor 1 such as the incremental rotary encoder is used can be shortened. Is possible. That is, in a rotation control device that measures the position of the operation target axis in the rotation direction using a non-contact type relative position sensor, the time required for the return of the origin of the operation target axis is shortened, and the position measurement error of the operation target axis is reduced. Can be reduced.
  • the rotation control device 100 is operated for a long time, the above-described accumulation of backlash of the gears constituting the speed reducer 53 and the like, and the electric motor 52 as an electric motor such as a stepping motor and a synchronous motor.
  • the measurement error of the mechanical displacement amount of the valve shaft 200 by the relative position sensor 1 due to the step-out of the electric motor when the motor is used in an open loop and the fluctuation of the power supply frequency when the synchronous motor is used is reduced. can do. Thereby, it becomes possible to perform the valve opening degree control of the control valve more accurately.
  • the rotation control device 100 by providing a plurality of ON / OFF sensors 2_1 to 2_n, even if one of the ON / OFF sensors 2_1 to 2_n fails, the other ON / OFF sensors 2_1 to 2_n Thus, the valve opening degree control can be continued. Thereby, the reliability as the rotation control apparatus 100 can be improved.
  • FIG. 6A is a diagram showing another configuration example of a discontinuous absolute position sensor.
  • FIG. 6B is a diagram schematically showing a part of a cross section at the circumference C1 in FIG. 6A.
  • 6A and 6B are diagrams illustrating the relationship between the electrode and the cam member in this other configuration example.
  • the electrodes 21a (21b) of the ON / OFF sensors 2_1 to 2_5 are centered on the axis of the valve shaft 200 on the main surface 20a (20b) of the printed circuit board 20. They are arranged on the same circumference C1.
  • the configuration example shown in FIG. 6A is in common with the discontinuous absolute position sensor shown in FIGS. 3A to 3E.
  • one cam member 34 a (34 b) formed in an arc shape in plan view is on a circumference C 2 centering on the axis of the valve shaft 200 on the main surface 20 a (20 b) of the printed circuit board 20. Has been placed.
  • the configuration example shown in FIG. 6A is different from the discontinuous absolute position sensor shown in FIGS. 3A to 3E.
  • the cam members 34a and 34b are each formed of an insulating material.
  • the surfaces of the cam members 34a and 34b are each formed in a wave shape along the circumference C2.
  • the cam members 34a and 34b are respectively disposed on the two main surfaces 20a and 20b of the printed circuit board 20, the portions corresponding to the wavy bottoms in the radial direction centered on the valve shaft 200 are the ON / OFF sensors 2_1 to. It corresponds to the electrodes 21a and 21b of 2_5.
  • the contacts 201a and 201b of the short plate 201 move in the circumferential direction while being in contact with the cam members 34a and 34b, and when the valve shaft 200 is not in any of the predetermined positions, the cam members 34a and 34b are contacted.
  • the other end sides of 201a and 201b are moved away from both main surfaces 20a and 20b.
  • the contacts 201 a ′ and 201 b ′ of the contacts 201 a and 201 b do not contact the main surfaces 20 a and 20 b of the printed circuit board 20.
  • valve shaft 200 when the valve shaft 200 is in any one of the predetermined positions, the heights of the cam members 34a and 34b from both the main surfaces 20a and 20b of the printed circuit board 20 are reduced. Therefore, the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b.
  • the range in which the contacts 201a and 201b of the short plate 201 can contact the electrodes 21a and 21b along the circumference C1 is set.
  • W is desirable. More specifically, it is desirable that the distance W be in a range that is slightly wider than the width of the contact portions 201a and 201b that are in contact with the electrodes 21a and 21b, and as close as possible to the width of the contacts 201a and 201b. The reason is as follows.
  • the rotation angle of the valve shaft 200 and the detection circuit 23_i of the detection circuit 23_i depend on the direction when reaching the position. So-called hysteresis occurs in which the relationship with the output is different.
  • the surface shape of the cam members 34a and 34b is devised to limit the range in which the electrodes 21a and 21b and the contacts 201a and 201b can be in electrical contact to the interval W. Thus, the hysteresis can be reduced.
  • the discontinuous absolute position sensor has hysteresis because the electrodes 21a and 21b of the ON / OFF sensors 2_1 to 2_5 have a width in the circumferential C1 direction. Therefore, a modification of the discontinuous absolute position sensor having a configuration for reducing this hysteresis will be described.
  • FIG. 7A is a diagram showing a modification of the discontinuous absolute position sensor.
  • FIG. 7B is a diagram schematically showing a part of a cross section at the circumference C1 in FIG. 7A.
  • FIG. 7C is a view showing a cross section taken along line III-III shown in FIG. 7A.
  • 7A to 7C are views for explaining the relationship between the electrode and the cam member in this modification.
  • the discontinuous absolute position sensor according to this modification includes electrodes 21a and 21b and cam members 44a and 44b on the main surfaces 20a and 20b of the printed circuit board 20, respectively. Are arranged on the same circumference C ⁇ b> 1 centered on the axis. In this respect, the discontinuous absolute position sensor according to this modification is different from that shown in FIGS. 3A to 3E.
  • the cam members 44a and 44b are each formed of an insulating material. As shown in FIG. 7B, each of the cam members 44a and 44b extends between the adjacent electrodes 21a and 21b. As shown in FIGS. 7A and 7B, of the cam members 44a and 44b, the two cam members adjacent to each other on the main surfaces 20a and 20b are opposite to each other, respectively, of the electrodes 21a and 21b. Covers the part. End portions of the two cam members adjacent to each other on the main surfaces 20a and 20b are separated from each other on the electrodes 21a and 21b.
  • FIG. 7B illustrates that two adjacent first cam members 44a arranged on the first main surface 20a are arranged along the circumference C1 with an interval Wg therebetween.
  • the second cam members 44b adjacent to each other on the second main surface 20b are also arranged with a gap Wg along the circumference C1. Therefore, the electrodes 21a and 21b are exposed over the interval Wg along the direction in which the contacts 201a and 201b of the short plate 201 move, that is, along the circumference C1, and the other portions are covered by the cam members 44a and 44b. It has been broken.
  • the contacts 201a and 201b of the short plate 201 come into contact with the cam members 44a and 44b, respectively, and from both main surfaces 20a and 20b of the printed circuit board 20. Move in the direction of separation.
  • the contacts 201a ′ and 201b ′ of the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b, respectively. Then, a detection signal is output. At this time, as shown in FIG.
  • the end portions of the cam members 44a and 44b cover a part of the electrodes 21a and 21b, and the range in which the electrodes 21a and 21b and the contacts 201a and 201b can be electrically contacted is the distance Wg. It is limited to. Therefore, the accuracy of position detection of the valve shaft 200 can be increased and the hysteresis can be reduced.
  • the cam members 44a and 44b in this modified example have grooves formed along the circumference C1 in a state of being disposed on the main surfaces 20a and 20b of the printed circuit board 20. Therefore, as shown in FIG. 7A, when the valve shaft 200 is not in a predetermined position and the contacts 201a and 201b of the short plate 201 are positioned between the electrodes in plan view, the contacts 201a and 201b are The cam members 44a and 44b are contacted at positions other than the contacts 201a ′ and 201b ′. Therefore, as shown in FIG. 7C, the contacts 201a ′ and 201b ′ do not contact the cam members 44a and 44b by the grooves.
  • FIG. 7C an example in which grooves are provided in the cam members 44a and 44b has been described.
  • FIG. 7D the thickness of the cam members 44a ′ and 44b ′ or the height from the main surfaces 20a and 20b of the printed circuit board 20 is radially outward from the valve shaft 200.
  • the cam members 44 a ′ and 44 b ′ may be formed in a shape that becomes lower as going to.
  • the accuracy can be improved by making the interval Wg as narrow as possible.
  • the cam members 44 a and 44 b may be provided with grooves, or may have surfaces inclined with respect to the main surfaces 20 a and 20 b of the printed circuit board 20. With such a configuration, the contacts 201a ′ and 201b ′ of the contacts 201a and 201b do not come into contact with the cam member or other members other than the electrode 21a. Therefore, the lifetime and reliability of the ON / OFF sensor can be improved.
  • FIG. 8 is a diagram illustrating a configuration of the rotation control device according to the second embodiment.
  • the rotation control device 100A according to the second embodiment counts the number of times that the rotation direction of the valve shaft 200 is reversed, and detects the relative position sensor 31 by operating the valve shaft 200 when the count value exceeds a threshold value.
  • rotation control device 100A has a forced reset function based on the so-called number of reversals in the rotational direction of the valve shaft 200, which resets the integrated value RP of the mechanical displacement Md.
  • rotation control device 100A is different from rotation control device 100 according to the first embodiment. Since the other configuration including the configuration of the ON / OFF sensor is the same as that of the first embodiment described above, the common components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the rotation control device 100A further includes a reversal count unit 6.
  • the inversion number counting unit 6 counts the number of times that the rotation direction of the valve shaft 200 as the operation target shaft is inverted, and holds the count value.
  • the inversion number counting unit 6 can be realized by, for example, a counter and a program built in the microcontroller.
  • the reversal number counting unit 6 stores the direction in which the valve shaft 200 has been rotated immediately before, and then reverses when the direction in which the valve shaft 200 is rotated is different from the direction in which the valve shaft 200 has been rotated immediately before. The number of times Rc is incremented. On the other hand, when the direction in which the valve shaft is rotated next coincides with the direction in which the valve shaft 200 has been rotated immediately before, the inversion number counting unit 6 does not increment the inversion number Rc.
  • the inversion number counting unit 6 resets the inversion number Rc when the detection signals are output from the ON / OFF sensors 2_1 to 2_n. For example, the inversion number counting unit 6 receives the reset signal RST output from the reference value update unit 32 and resets the inversion number Rc.
  • the operation amount calculation unit 4A turns on the valve shaft 200 by operating the valve shaft 200 via the operation unit 5 when the number of inversions Rc counted by the inversion number counting unit 6 exceeds a predetermined threshold value Rt. / Rotate to a position corresponding to any one of the OFF sensors 2_1 to 2_n.
  • the operation amount determination unit 43A in the operation amount calculation unit 4A monitors the number of inversions Rc by the inversion number counting unit 6. When the inversion number Rc exceeds the threshold value Rt, the operation amount determination unit 43A rotates the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n, and resets the integrated value RP. Process (forced reset process).
  • the position of the valve shaft 200 is turned ON / OFF closest to the position of the valve shaft 200 (short plate 201) at the time when the count value of the inversion counter 6 exceeds the threshold value. It is preferable to move to a position corresponding to the sensors 2_1 to 2_n.
  • the valve may be moved in a closing direction or an opening direction depending on the use of the valve.
  • the operation amount determination unit 43A determines the operation amount MV based on the deviation ⁇ P calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
  • FIGS. 9A and 9B are flowcharts showing a flow of operations in the normal operation mode of the rotation control device 100A according to the second embodiment.
  • the rotation control device 100A shifts to the normal operation mode when the origin return operation mode ends.
  • rotation control device 100A waits until a change in target value SP of the valve opening is instructed from the host device (S20).
  • step S20 when an instruction to change the valve opening target value SP is given, in the second embodiment, a forced reset process (S3) based on the number of times the rotation direction of the valve shaft 200 is reversed is executed.
  • FIG. 9B shows the procedure of forced reset processing based on the number of times of inversion.
  • the inversion number counting unit 6 of the rotation control device 100A determines whether or not the valve shaft 200 is inverted, that is, whether or not the direction in which the valve shaft 200 is rotated next is opposite to the direction in which the valve shaft 200 is rotated immediately before. It is determined whether or not (S30).
  • step S30 When it is determined in step S30 that the valve shaft 200 does not reverse, the rotation control device 100A ends the forced reset process (S3) based on the number of reversals, returns to the main routine, and performs the processes of steps S21 to S27. Execute. Note that a series of processing from step S21 to S27 is the same as that of the rotation control device 100 according to the first embodiment, and thus detailed description thereof is omitted.
  • step S30 if it is determined in step S30 that the valve shaft 200 is reversed, the reversal number counting unit 6 increments the reversal number Rc (S31).
  • the operation amount determination unit 43A determines whether or not the number of inversions Rc counted by the inversion number counting unit 6 is larger than the threshold value Rt (S32).
  • the rotation control device 100A ends the forced reset process (S3) based on the number of inversions, returns to the main routine, and rotates according to the first embodiment. Similar to the control device 100, the processes of steps S21 to S27 are executed.
  • the operation amount calculation unit 4A calculates ( ⁇ h ⁇ ) and ( ⁇ l), respectively, and ( ⁇ l) ⁇ ( ⁇ h It is determined whether or not ⁇ ) (S33).
  • ⁇ h indicates an opening corresponding to any of the ON / OFF sensors 2_1 to 2_n that is larger than the current valve opening ⁇ and closest to the current valve opening ⁇ .
  • ⁇ h indicates an opening corresponding to any of the ON / OFF sensors 2_1 to 2_n that is larger than the current valve opening ⁇ and closest to the current valve opening ⁇ .
  • ⁇ h indicates an opening corresponding to any of the ON / OFF sensors 2_1 to 2_n that is smaller than the current valve opening ⁇ and closest to the current valve opening ⁇ .
  • the current valve opening ⁇ is 60%, ⁇ l is 50% (Pm, 2_3).
  • step S33 If the result of determination in step S33 is ( ⁇ 1) ⁇ ( ⁇ h ⁇ ), the operation amount calculation unit 4A moves the valve shaft 200 in the direction to close the control valve (S34a). On the other hand, when ( ⁇ l)> ( ⁇ h ⁇ ), the operation amount calculation unit 4A moves the valve shaft 200 in the direction to open the control valve (S34b).
  • step S34a or step S34b the rotation control device 100 determines whether a detection signal is output from the ON / OFF sensors 2_1 to 2_n (S35). If no detection signal is output from the ON / OFF sensors 2_1 to 2_n in step S35, the rotation control device 100 returns to step S33 and performs the above-described processing (S33 to S35) again.
  • the rotation control device 100 stops the electric motor (S36) and updates the reference value AP. (S37). Specifically, the reference value update unit 32 sets the position corresponding to the ON / OFF sensors 2_1 to 2_n that output the detection signal as a new reference value AP. At this time, the reference value update unit 32 also outputs a reset signal RST.
  • the relative position information acquisition unit 31 receives the reset signal RST from the reference value update unit 32, and resets the integrated value RP of the number of output pulses from the relative position sensor 1 counted so far (S38). .
  • the inversion number counting unit 6 receives the reset signal RST from the reference value updating unit 32 and resets the inversion number Rc that has been counted so far (S39).
  • step S3 when the integrated value RP is reset, the inversion number Rc by the inversion number counting unit 6 is similarly reset (step S39 in FIG. 9A).
  • the valve shaft 200 may not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n for a long time.
  • the situation where the valve shaft 200 moves back and forth between the position corresponding to the ON / OFF sensor 2_2 (valve opening: 20%) and the position corresponding to the ON / OFF sensor 2_3 (valve opening: 50%) is long. May last for hours. In this case, backlash accumulates, and an error may occur in the measurement result by the relative position sensor 1 (for example, an incremental rotary encoder).
  • integrated value RP is forcibly reset when the number of inversions Rc exceeds a predetermined number (threshold value Rt). It becomes possible to suppress measurement errors caused by rush accumulation.
  • the rotation control device 100B according to the third embodiment aims to reduce a measurement error associated with the accumulation of backlash similarly to the rotation control device 100A according to the second embodiment.
  • the rotation control device 100A according to the second embodiment integrates the mechanical displacement Md detected by the relative position sensor 31 by forcibly operating the valve shaft 200 based on the number of reversals in the rotation direction of the valve shaft 200. Configured to reset the value RP.
  • the rotation control device 100B according to the third embodiment forcibly operates the valve shaft 200 based on the integrated value of the movement distance of the valve shaft 200, and detects the machine detected by the relative position sensor 31.
  • FIG. 10 is a diagram illustrating a configuration of a rotation control device 100B according to the third embodiment.
  • the rotation control device 100B according to the third embodiment integrates the movement distance of the valve shaft 200 when the valve shaft 200 does not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n for a long time. Then, when the integrated value exceeds the threshold value, the valve shaft 200 is operated to reset the integrated value RP of the mechanical displacement Md detected by the relative position sensor 31, so-called integrated value of the movement distance of the valve shaft 200.
  • the rotation control device 100B according to the third embodiment is different from the rotation control device 100 according to the first embodiment and the rotation control device 100A according to the second embodiment.
  • the configuration including the configurations of the ON / OFF sensors 2_1 to 2_n other than the forced reset process is the same as that in the first embodiment and the second embodiment described above. Therefore, in the following, common constituent elements are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the rotation control device 100B further includes an absolute value integration unit 7.
  • the absolute value integration unit 7 integrates the movement distance in the rotation direction of the valve shaft 200 as the operation target shaft, and holds the integrated value. More specifically, the absolute value integration unit 7 integrates the absolute value
  • Such an absolute value integration unit 7 can be realized by, for example, a counter and a program built in the microcontroller.
  • the absolute value integration unit 7 resets the integrated value of the movement distance of the valve shaft 200 when detection signals are output from the ON / OFF sensors 2_1 to 2_n. For example, the absolute value integrating unit 7 receives the reset signal RST output from the reference value updating unit 32 and resets the integrated value of the movement distance of the valve shaft 200 in the rotation direction.
  • the operation amount calculation unit 4B operates the valve shaft 200 via the operation unit 5 when the integrated value of the movement distance in the rotational direction of the valve shaft 200 accumulated by the absolute value accumulation unit 7 exceeds a predetermined threshold value.
  • the valve shaft 200 is rotated to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n.
  • the operation amount determination unit 43B in the operation amount calculation unit 4B monitors the integrated value of the movement distance of the valve shaft 200, which is stored in the absolute value integration unit 7. When the integrated value of the movement distance of the valve shaft 200 exceeds a predetermined threshold, the operation amount determination unit 43B moves the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n. A process of rotating and resetting the integrated value RP (forced reset process) is performed.
  • the operation amount determination unit 43B determines the operation amount MV based on the deviation ⁇ P calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
  • FIG. 11A and FIG. 11B are flowcharts showing an operation flow in the normal operation mode of rotation control device 100B according to the third embodiment.
  • the rotation control device 100B shifts to the normal operation mode when the origin return operation mode ends.
  • steps S20 to S22a and S22b for driving the electric motor are the same as those in the first embodiment, and thus description thereof is omitted.
  • the rotation control device 100B executes a forced reset process (S4) based on the integrated value of the movement distance.
  • the procedure of the forced reset process based on the integrated value of the movement distance of the valve shaft 200 is shown in FIG. 11B.
  • the absolute value of the mechanical displacement Md caused by the rotation of the valve shaft 200 by the operation unit 5, that is, the moving distance is integrated (S41).
  • S42 it is determined whether or not the integrated value of the movement distance integrated by the absolute value integrating unit 7 is larger than a predetermined threshold (S42).
  • step S42 when the integrated value of the movement distance does not exceed the threshold value, the rotation control device 100B ends the forced reset process (S4) based on the integrated value of the movement distance and returns to the main routine. Thereafter, similarly to the rotation control device 100 according to the first embodiment, the processes of steps S23 to S27 are executed.
  • the operation amount calculation unit 4B performs the forced reset process according to steps S33 to S38, similarly to the operation amount calculation unit 4A in the second embodiment. Execute. Since the procedure steps S33 to S38 of the forced reset process are the same as those in the second embodiment, description thereof is omitted.
  • the absolute value integrating unit 7 receives the reset signal RST from the reference value updating unit 32, and the valve shaft 200 up to that time is received.
  • the integrated value of the movement distance is reset (S49).
  • the forced reset process (S4) based on the moving distance is completed, and the process returns to the main routine. Thereafter, the rotation control device 100B performs the processing of steps S23 to S27, similar to the rotation control device 100 according to the first embodiment. Execute. When the integrated value RP is reset in step S25, the integrated value of the movement distance stored in the absolute value integrating unit 7 is similarly reset (step S49 in FIG. 11A).
  • the integrated value of the movement distance of the valve shaft 200 is obtained in a situation where the valve shaft 200 does not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n for a long time.
  • the integrated value RP is forcibly reset. For this reason, it is possible to suppress measurement errors caused by the accumulation of backlash.
  • FIG. 12 is a diagram illustrating a configuration of a rotation control device 100C according to the fourth embodiment.
  • the rotation control device 100C according to the second embodiment is configured when the valve shaft 200 does not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n and the elapsed time without outputting the detection signal exceeds the threshold value.
  • the rotation control device 100C according to the fourth embodiment is different from the rotation control device according to the first to third embodiments.
  • the configuration including the configuration of the ON / OFF sensors 2_1 to 2_n other than the forced reset processing is the same as that of the first, second, and third embodiments described above, and thus the same components are denoted by the same reference numerals. Detailed description thereof will be omitted.
  • the time that has elapsed without the valve shaft 200 reaching the position corresponding to the ON / OFF sensors 2_1 to 2_n and the detection signal being output may be referred to as “dwell time”.
  • the rotation control device 100 ⁇ / b> C has a timer 8.
  • the timer 8 counts the time that the valve shaft 200 as the operation target shaft has not reached the position corresponding to the ON / OFF sensors 2_1 to 2_n and the detection signal is not output, that is, the residence time, and the count Holds the value.
  • the timer 8 can be realized by, for example, a clock circuit, a counter, and a program built in the microcontroller.
  • the timer 8 is reset once and counts the time elapsed from that time as the residence time.
  • the operation amount calculation unit 4C operates the valve shaft 200 via the operation unit 5 when the residence time counted by the timer 8 exceeds a predetermined threshold value, thereby turning the valve shaft 200 on / off sensor 2_1 ⁇ . Rotate to a position corresponding to any one of 2_n.
  • the operation amount determination unit 43C in the operation amount calculation unit 4C monitors the residence time counted by the timer 8. When the residence time exceeds a predetermined threshold value, the operation amount determination unit 43C rotates the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n, and the integrated value RP Performs processing to reset (forced reset processing).
  • the operation amount determination unit 43A determines the operation amount MV based on the deviation ⁇ P calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
  • FIG. 13A and FIG. 13B are flowcharts showing the operation flow in the normal operation mode of rotation control apparatus 100C according to the fourth embodiment.
  • the rotation control device 100C shifts to the normal operation mode when the origin return operation mode ends.
  • rotation control device 100C waits until a change in target value SP of the valve opening is instructed from the host device (S20).
  • step S20 when the change of the target value SP of the valve opening degree is instructed, in the fourth embodiment, the forced reset process (S5) based on the residence time is executed.
  • FIG. 13B shows a procedure for forced reset processing based on the residence time.
  • the operation amount determination unit 43C reads the residence time stored in the timer 8 (S51), and determines whether or not the residence time is greater than a threshold value (S52).
  • step S52 when the residence time does not exceed the threshold value, rotation control device 100C ends the forced reset process (S5), returns to the main routine, and is similar to rotation control device 100 according to the first embodiment. Then, the processes of steps S21 to S27 are executed.
  • the operation amount calculation unit 4C executes the forced reset process according to steps S33 to S38, as in the operation amount calculation unit 4A in the second embodiment. . Since the procedure steps S33 to S38 of the forced reset process are the same as those in the second embodiment, description thereof is omitted.
  • the timer 8 receives the reset signal RST from the reference value update unit 32 and calculates the residence time counted so far. Reset (S59).
  • the forced reset process (S3) based on the number of inversions is completed as described above, and the process returns to the main routine.
  • the rotation control device 100C performs steps S21 to S27 in the same manner as the rotation control device 100 according to the first embodiment. Execute.
  • the integrated value RP is reset in step S25, the dwell time that the timer 8 has counted so far is similarly reset (step S59 in FIG. 13A).
  • the integrated value RP is forcibly reset when the number of inversions Rc exceeds a predetermined number (threshold value Rt). It becomes possible to suppress measurement errors caused by rush accumulation.
  • the rotation control device 100D according to the fifth embodiment aims to reduce a measurement error due to the accumulation of backlash.
  • the rotation control device 100A according to the second embodiment is configured to perform a forced reset process based on the number of reversals in the rotation direction of the valve shaft 200.
  • the rotation control device 100D according to the fifth embodiment is compulsory based on the number of times the valve shaft 200 starts moving (hereinafter also referred to as “the number of times of activation”) regardless of the rotation direction of the valve shaft 200. It differs from rotation control apparatus 100A of the second embodiment in that it is configured to perform reset processing.
  • FIG. 14 is a diagram illustrating a configuration of a rotation control device 100D according to the fifth embodiment.
  • the rotation control device 100D further includes an activation number counting unit 9, and when the activation number counted by the activation number counting unit 9 exceeds a predetermined threshold Rt, an operation amount calculation unit 4D that executes a forced reset process.
  • the other configuration including the configuration of the ON / OFF sensor is the same as that of the above-described first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted. .
  • the activation number counting unit 9 counts the number of times that the valve shaft 200 as the operation target shaft starts to move, and holds the value Rs. Specifically, since the valve shaft 200 rotates each time the target value SP is changed, the number of times the target value SP is changed may be counted as the number of activations.
  • Such an activation number counting unit 9 can be realized by a counter and a program built in the microcontroller, for example. When the detection signal is output from any of the ON / OFF sensors 2_1 to 2_n, the activation number counting unit 9 is reset by the reset signal RST output from the reference value update unit 32 of the position calculation unit 3.
  • the operation amount calculation unit 4D is configured to control the valve opening based on the target value SP of the valve opening as the target position in the rotation direction of the valve shaft 200 and the actual opening PV calculated by the position calculation unit 3. An operation amount MV of the shaft 200 is calculated.
  • the valve shaft 200 is rotated to the position corresponding to any one of the ON / OFF sensors 2_1 to 2_n by operating the valve shaft 200 via the operation unit 5.
  • the operation amount determination unit 43D monitors the number of activations counted by the activation number counting unit 9. When the number of activations exceeds the threshold, the operation amount determination unit 43D resets the integrated value RP by rotating the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n. Processing (forced reset processing) is performed.
  • the position of the valve shaft 200 is turned ON / OFF closest to the position of the valve shaft 200 (short plate 201) when the count value of the activation number counting unit 9 exceeds the threshold value. It is preferable to move to a position corresponding to the sensors 2_1 to 2_n.
  • the valve may be moved in a closing direction or an opening direction depending on the use of the valve.
  • the operation amount determination unit 43D determines the operation amount MV based on the deviation ⁇ P calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
  • FIG. 15A and FIG. 15B are flowcharts showing an operation flow in the normal operation mode of rotation control device 100D according to the fifth embodiment.
  • the rotation control device 100D shifts to the normal operation mode when the origin return operation mode ends.
  • the rotation control device 100D stands by until a change in the target value SP of the valve opening is instructed from the host device (S20).
  • Step S20 when an instruction to change the target value SP of the valve opening degree is given, a forced reset process (S6) based on the number of activations of the valve shaft 200 is executed.
  • FIG. 15B shows the procedure of forced reset processing based on the number of activations.
  • the activation number counting unit 9 of the rotation control device 100D increments the activation number (S61).
  • step S62 when the number of activations does not exceed the threshold value, rotation control device 100D ends the forced reset process (S6) based on the number of inversions and returns to the main routine.
  • the operation amount calculation unit 4B executes the forced reset process according to steps S33 to S38, similarly to the operation amount calculation unit 4A in the second embodiment. . Since the procedure steps S33 to S38 of the forced reset process are the same as those in the second embodiment, description thereof is omitted.
  • the activation number counting unit 9 receives the reset signal RST from the reference value update unit 32 and resets the activation number up to that time. (S69).
  • step S6 The forced reset process (S6) based on the number of activations is thus completed, and the process returns to the main routine.
  • rotation control apparatus 100D executes the processes of steps S23 to S27, as in rotation control apparatus 100 according to the first embodiment. Note that a series of processing from step S21 to S27 is the same as that of the rotation control device 100 according to the first embodiment, and thus detailed description thereof is omitted. Further, when the integrated value RP is reset in step S25, the number of activations stored in the activation number counting unit 9 is similarly reset (step S69 in FIG. 15A).
  • the electrodes 21 a and 21 b and the cam member 24 a are respectively provided on the two main surfaces 20 a and 20 b of the printed board 20. , 24b has been described.
  • the electrode 21 and the cam member 24 may be disposed only on the printed circuit board 20, for example, only on the first main surface 20 a.
  • the valve shaft 200 is in the fully closed position Pc, the position Pa at which the valve opening is 20%, the position Pm at which the valve opening is 50%, and the valve opening is 70%.
  • the case where the five ON / OFF sensors 2_1 to 2_5 are respectively installed at the five positions Pb and the fully opened position Po is shown.
  • the position and number of the ON / OFF sensors 2_1 to 2_n to be installed are not limited to this.
  • another arrangement example of the ON / OFF sensors 2_1 to 2_n will be described.
  • FIG. 16A is a diagram illustrating another arrangement example of the ON / OFF sensors 2_1 to 2_n.
  • the valve shaft 200 has a fully closed position Pc at which the valve opening degree is 0%, an intermediate point between the fully closed position Pc and the fully open position Po, that is, an intermediate position at which the valve opening degree is 50%.
  • FIG. 16B is a diagram showing an arrangement example of the electrode 21 and the cam member 24 of the absolute position sensor corresponding to the arrangement example shown in FIG. 16A. As shown in FIG. 16B, a cam member 24 is provided between the electrodes 21 constituting the ON / OFF sensors 2_1, 2_2, and 2_3 in the circumferential direction.
  • the origin return (update of the reference value AP) is performed. Is done. Therefore, compared with the case where only the fully closed position Pc or the fully open position Po is set as the origin of the valve shaft 200, it is possible to reduce the time required for returning to the origin and the measurement error of the mechanical displacement amount by the relative position sensor 1. It becomes. Moreover, it becomes possible to suppress the additional cost by installing the ON / OFF sensor.
  • the ON / OFF sensors 2_1 to 2_n are not both the fully closed position Pc where the valve opening degree is 0% and the fully open position Po where the valve opening degree is 100%. You may arrange in.
  • FIG. 17A is a diagram showing still another arrangement example of the ON / OFF sensors 2_1 to 2_n.
  • a case where one ON / OFF sensor 2 for detecting that the valve shaft 200 has reached the intermediate position Pm at which the valve opening degree is 50% is provided is shown.
  • cam members 24 are arranged on both sides of the electrode 21 constituting the ON / OFF sensor 2. These cam members 24 are arranged along the track of the contact point of the short plate 201 between the fully closed position Pc and the intermediate position Pm and between the intermediate position Pm and the fully open position Po.
  • the origin return is performed at the position Pm which is an intermediate point between the fully closed position Pc and the fully opened position Po. Therefore, compared with the case where only the fully closed position Pc or the fully open position Po is set as the origin, it is possible to reduce the time required for the origin return and the measurement error of the mechanical displacement amount by the relative position sensor 1. In addition, since only one ON / OFF sensor is required, it is possible to further suppress the additional cost due to the installation of the ON / OFF sensor.
  • an incremental rotary encoder is used as the relative position sensor 1 as the relative position sensor 1 as long as it can detect the mechanical displacement Md in the rotation direction of the operation target shaft without contact.
  • a brushless motor is used as the electric motor 52
  • a signal output from a Hall element (Hall IC) constituting the brushless motor can be used as the relative position sensor 1.
  • the position calculation unit 3 counts the pulse signal for driving the stepping motor without providing the relative position sensor 1 separately. It is also possible to calculate the mechanical displacement amount in the rotation direction.
  • the mechanical displacement amount in the rotation direction of the operation target shaft can be calculated without providing the relative position sensor 1 separately.
  • the driving time for driving the synchronous motor is T [s]
  • the rotation speed is N [rpm]
  • the reduction ratio of the speed reducer 53 is 1 / G
  • the rotation angle ⁇ [°] is (T ⁇ N ⁇ 360) / (60 ⁇ G). Therefore, the position calculation unit 3 can calculate the mechanical displacement amount in the rotation direction of the operation target shaft by performing the above calculation.
  • the rotation control device 100 is applied as an electric operating device that operates the valve shaft 200 of the control valve.
  • the operation target shaft operated by the rotation control device 100 is not limited to the valve shaft, and can be applied to any opening degree measurement system that uses a relative position sensor in the rotation control device.
  • the rotation control device 100 can be applied as a damper operating device that operates the damper shaft.
  • valve shaft 200 is inserted through the through hole 20c formed in the printed circuit board 20
  • the present invention is not limited to the illustrated configuration.
  • a cutout portion 20d having a semicircular shape in plan view may be provided on one side of the printed circuit board 20, and the valve shaft 200 may be disposed in the cutout portion 20d.
  • the electrode 21a may be disposed around the notch 20d in the main surface 20a of the printed circuit board 20.
  • SYMBOLS 100 Rotation control apparatus (operator), 200 ... Valve shaft, 1 ... Relative position sensor, 2, 2_1 to 2_n ... ON / OFF sensor, 3 ... Position calculation part, 4, 4A ... Manipulation amount calculation part, 5 ... Operation unit, 6 ... Inversion count counting unit, 7 ... Absolute value integration unit, 8 ... Timer, 9 ... Activation count counting unit, 20 ... Printed circuit board, 20a, 20b ... Main surface, 21a, 21b ... Electrode, 201 ... Short plate , 201a, 201b ... contact, 23_i ... detection circuit, 24a, 24b ... cam member, 31 ...
  • relative position information acquisition unit 32 ... reference value update unit, 33 ... position determination unit, 41 ... target value acquisition unit, 42 ... Deviation calculation unit, 43 ... Operation amount determination unit, 51 ... Electric motor drive unit, 52 ... Electric motor, 53 ... Reduction gear, SP ... Target value, PV ... Actual opening, ⁇ P ... Deviation, MV ... Operation amount, RP ... integrated value, AP ... reference value, ST ... reset signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A rotation control device is provided with a relative position sensor (1) for detecting mechanical displacement in the rotation direction of an operation object shaft in non-contact fashion, and ON/OFF sensors (2_1-2_n) for outputting a sensing signal when the operation object shaft reaches predetermined intermediate positions (Pa, Pm, Pb) in the rotation direction of the operation object shaft, the ON/OFF sensors being provided with: a substrate (20) having principal surfaces (20a, 20b) orthogonal to the axis of the operation object shaft; electrodes (21a, 21b) disposed on the principal surfaces of the substrate; contactors (201a, 201b), other-end sides of which contact a single electrode when the operation object shaft is in a predetermined intermediate position; a detection circuit (23_i) for outputting a sensing signal when the contactors contact the electrode; and a plurality of cam members (24a, 24b) for moving the other ends of the contactors away from the principal surfaces when the operation object shaft is not in a predetermined intermediate position, the cam members (24a, 24b) being disposed on the principal surfaces of the substrate.

Description

回転制御装置Rotation control device
 本発明は、操作対象軸の回転を制御する回転制御装置に関し、例えば調節弁の弁軸を操作対象軸とする回転制御装置に関する。 The present invention relates to a rotation control device that controls rotation of an operation target shaft, for example, a rotation control device that uses a valve shaft of a control valve as an operation target shaft.
 一般に、弁軸などの操作対象軸の回転を制御する回転制御装置は、操作対象軸の回転方向の機械的変位を位置センサによって検出し、その検出結果に基づいて軸の操作量を決定している。例えば、ボール弁等のロータリ式の調節弁の弁軸を操作する電動式の操作器(アクチュエータ)では、位置センサとして可変抵抗器から成るポテンショメータを用い、そのポテンショメータによって検出した弁軸の回転方向の機械的変位量に基づいて、弁軸を制御している(特許文献1参照)。 In general, a rotation control device that controls the rotation of an operation target shaft such as a valve shaft detects a mechanical displacement in the rotation direction of the operation target shaft by a position sensor, and determines an operation amount of the shaft based on the detection result. Yes. For example, in an electric operating device (actuator) that operates a valve shaft of a rotary control valve such as a ball valve, a potentiometer including a variable resistor is used as a position sensor, and the rotational direction of the valve shaft detected by the potentiometer is adjusted. The valve shaft is controlled based on the mechanical displacement amount (see Patent Document 1).
 また、軸の回転方向の機械的変位量を測定するための位置センサとしては、ポテンショメータに代表される接触式の位置センサの他に、ロータリエンコーダのように、測定対象の軸の回転方向の位置を非接触で検出する非接触式の位置センサがある。さらに、非接触式の位置センサには、検出対象軸の角度位置に対応した信号を出力する絶対的位置センサと、検出対象軸の回転角度、すなわち角度位置の変化量に応じた信号を出力する相対的位置センサとがある。例えば、非接触式の絶対的位置センサとしては、検出対象軸の絶対的な角度位置に対応したコード信号を出力するアブソリュート型のロータリエンコーダが、非接触式の相対的位置センサとしては、検出対象軸の回転角度に対応してパルスを出力するインクリメンタル型のロータリエンコーダが、夫々知られている(特許文献2参照)。 As a position sensor for measuring the amount of mechanical displacement in the rotation direction of the shaft, in addition to a contact type position sensor represented by a potentiometer, the position of the measurement target shaft in the rotation direction, such as a rotary encoder, is used. There is a non-contact type position sensor that detects non-contact. Further, the non-contact position sensor outputs an absolute position sensor that outputs a signal corresponding to the angular position of the detection target axis, and a signal corresponding to the rotation angle of the detection target axis, that is, the amount of change in the angular position. There is a relative position sensor. For example, as a non-contact type absolute position sensor, an absolute rotary encoder that outputs a code signal corresponding to the absolute angular position of the detection target axis is used. As a non-contact type relative position sensor, a detection target is used. Incremental rotary encoders that output pulses corresponding to the rotation angle of the shaft are known (see Patent Document 2).
特開2011-074935号公報JP2011-074935A 特開2010-286444号公報JP 2010-286444 A
 一般に、ポテンショメータは、摺動子を機械的に操作することによる抵抗値の変化を出力するセンサであるため、耐久性が低く、製品寿命が短い傾向がある。また、ポテンショメータの代わりに、絶対的非接触位置センサとしてのアブソリュート型のロータリエンコーダを用いた場合、一般に部品単価が高い上に、アブソリュート型のロータリエンコーダを駆動するためのバッテリが別途必要になることから、製品コストが増大してしまう。 Generally, since a potentiometer is a sensor that outputs a change in resistance value by mechanically operating a slider, its durability is low and its product life tends to be short. In addition, when an absolute rotary encoder as an absolute non-contact position sensor is used instead of a potentiometer, the unit price is generally high and a battery for driving the absolute rotary encoder is required. As a result, the product cost increases.
 そこで、本発明者は、ポテンショメータの代わりに、ロータリエンコーダ等の非接触式の相対的位置センサと、所定の位置に操作対象軸が到達したときに検知信号を出力するON/OFFセンサとを用いた新たな回転制御装置を提案した(特願2017-034014)。この回転制御装置において、例えば、図18に示すように、ON/OFFセンサ3_1~3_5は、操作対象軸301の近傍に設けられ、各種演算処理を行うICチップ302を搭載したプリント基板300の主面300aに電極321を配置する。そして、操作対象軸301に連結されたショートプレート303を電極321のいずれかと接触させて、不連続ながらも操作対象軸301の絶対的な位置を検出する。以下、このようなON/OFFセンサを用いて、不連続ながらも操作対象軸の絶対的な位置を検出する位置センサを「不連続な絶対的位置センサ」ということがある。 Therefore, the present inventor uses a non-contact type relative position sensor such as a rotary encoder and an ON / OFF sensor that outputs a detection signal when the operation target axis reaches a predetermined position, instead of the potentiometer. Proposed a new rotation control device (Japanese Patent Application No. 2017-0334014). In this rotation control device, for example, as shown in FIG. 18, the ON / OFF sensors 3_1 to 3_5 are provided in the vicinity of the operation target shaft 301, and the main board of the printed circuit board 300 on which the IC chip 302 for performing various arithmetic processes is mounted. An electrode 321 is disposed on the surface 300a. Then, the short plate 303 connected to the operation target shaft 301 is brought into contact with any one of the electrodes 321 to detect the absolute position of the operation target shaft 301 although it is discontinuous. Hereinafter, a position sensor that detects the absolute position of the operation target axis by using such an ON / OFF sensor may be referred to as a “discontinuous absolute position sensor”.
 しかしながら、このような構成では、ショートプレート303をプリント基板300に接触させないようとすると、ショートプレート303とプリント基板300との間隔の微妙な調整が必要となる。このことは、コスト上昇の原因となるばかりか、実現も容易ではない。また、ショートプレート303のバネ性の経年変化による、接触抵抗の信頼性にも問題がある。逆に、ショートプレート303がプリント基板300の主面300aを摺動させてしまうと、プリント基板300に悪影響を与える恐れがあり、ポテンショメータと同じく、耐久性および製品寿命の問題が生じてしまう。 However, in such a configuration, if the short plate 303 is not brought into contact with the printed circuit board 300, fine adjustment of the distance between the short plate 303 and the printed circuit board 300 is required. This not only causes an increase in cost, but is not easy to realize. Further, there is a problem in the reliability of contact resistance due to the secular change of the spring property of the short plate 303. On the contrary, if the short plate 303 slides on the main surface 300a of the printed circuit board 300, the printed circuit board 300 may be adversely affected. As with the potentiometer, problems of durability and product life will occur.
 本発明は、上記の問題に鑑みてなされたものであり、本発明の目的は、非接触式の相対的位置センサとON/OFFセンサとによって操作対象軸の回転方向の位置を測定する回転制御装置をより低コストで実現しつつ、その耐久性と信頼性を向上させることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to perform rotation control that measures the position of the operation target shaft in the rotation direction by using a non-contact type relative position sensor and an ON / OFF sensor. The object is to improve the durability and reliability of the apparatus while realizing it at a lower cost.
 本発明に係る、操作対象軸(200)の回転を制御する回転制御装置(100)は、操作対象軸の回転方向の機械的変位を非接触で検出する相対的位置センサ(1)と、操作対象軸の回転方向における第1位置(Pc)から第2位置(Po)までの回転可能な範囲(SR)において、第1位置と第2位置とを除く少なくとも1つの所定の中間位置(Pa,Pm,Pb)に操作対象軸が到達したときに検知信号を出力するON/OFFセンサ(2_1~2_n)と、検知信号が出力されてからの、相対的位置センサによって検出された機械的変位の積算値(RP)と、その検知信号を出力したON/OFFセンサに対応する所定の中間位置を示す基準値(AP)とに基づいて、操作対象軸の回転方向の絶対的な位置を算出する位置算出部(3)と、操作対象軸の回転方向の目標位置(SP)の情報と、位置算出部によって算出された操作対象軸の絶対的な位置(PV)とに基づいて、操作対象軸の操作量(MV)を算出する操作量算出部(4)と、操作量算出部によって算出された操作量に基づいて、操作対象軸の回転方向における第1位置から第2位置までの回転可能な範囲内において操作対象軸を操作する操作部(5)とを備え、ON/OFFセンサは、操作対象軸の周りに設けられ、操作対象軸の軸線と直交する主面(20a、20b)を有する基板(20)と、基板の主面上に配置された少なくとも1つの電極(21a、21b)と、一端が操作対象軸に固定され、操作対象軸の径方向に延在し、操作対象軸が所定の中間位置にあるときに他端側の一部が電極の1つに接触する接触子(201a、201b)と、接触子が電極の1つに接触すると検知信号を出力する検出回路(23_i)と、基板の主面上に配置され、操作対象軸が所定の中間位置にないときに接触子の他端を主面から離間させる方向に移動させるカム部材(24a、24b)と、を備える。 The rotation control device (100) for controlling the rotation of the operation target shaft (200) according to the present invention includes a relative position sensor (1) for detecting the mechanical displacement in the rotation direction of the operation target shaft in a non-contact manner, and the operation. In a rotatable range (SR) from the first position (Pc) to the second position (Po) in the rotation direction of the target axis, at least one predetermined intermediate position (Pa, excluding the first position and the second position) Pm, Pb) ON / OFF sensors (2_1 to 2_n) that output a detection signal when the operation target axis arrives, and mechanical displacement detected by the relative position sensor after the detection signal is output Based on the integrated value (RP) and a reference value (AP) indicating a predetermined intermediate position corresponding to the ON / OFF sensor that outputs the detection signal, an absolute position in the rotation direction of the operation target shaft is calculated. Position calculator (3 And the operation amount (MV) of the operation target axis based on the information on the target position (SP) in the rotation direction of the operation target axis and the absolute position (PV) of the operation target axis calculated by the position calculation unit. Based on the operation amount calculated by the operation amount calculation unit (4), and the operation amount calculated by the operation amount calculation unit, within the rotatable range from the first position to the second position in the rotation direction of the operation target axis An operation unit (5) for operating the shaft, and the ON / OFF sensor is provided around the operation target axis, and has a main surface (20a, 20b) perpendicular to the axis of the operation target axis, and a substrate (20) The at least one electrode (21a, 21b) arranged on the main surface of the substrate and one end are fixed to the operation target shaft, extend in the radial direction of the operation target shaft, and the operation target shaft is at a predetermined intermediate position. One part of the other end contacts one of the electrodes Contacts (201a, 201b), a detection circuit (23_i) that outputs a detection signal when the contact contacts one of the electrodes, and an operation target axis at a predetermined intermediate position. Cam members (24a, 24b) that move the other end of the contact in a direction away from the main surface when there is no contact.
 上記回転制御装置において、電極(21a、21b)は、主面上の所定の中間位置に対応する位置に配置され、カム部材(24a、24b)は、操作対象軸の軸線を中心とする円周(C2)に沿って配置され、それぞれ、円周に沿って主面上の所定の中間位置に対応する位置に近づくにつれて主面からの高さが低くなるようにしてもよい。 In the rotation control device, the electrodes (21a, 21b) are arranged at positions corresponding to predetermined intermediate positions on the main surface, and the cam members (24a, 24b) have a circumference around the axis of the operation target shaft. It may be arranged along (C2), and the height from the main surface may decrease as it approaches a position corresponding to a predetermined intermediate position on the main surface along the circumference.
 上記回転制御装置において、電極(21a、21b)とカム部材(24a、24b)とは、それぞれ、主面上の操作対象軸の軸を中心として互いに異なる半径を有する第1円周(C1)と第2円周(C2)とに沿って配置され、カム部材のうち主面上で隣り合う2つのカム部材の互いに対向する端部は、主面上で互いに離間するようにしてもよい。 In the rotation control device, the electrodes (21a, 21b) and the cam members (24a, 24b) each have a first circumference (C1) having different radii around the axis of the operation target shaft on the main surface. The opposite end portions of two cam members that are arranged along the second circumference (C2) and are adjacent on the main surface of the cam members may be separated from each other on the main surface.
 上記回転制御装置において、電極(21a、21b)とカム部材(24a、24b)とは、主面上の操作対象軸の軸を中心とする同一の円周(C1)上に配置され、カム部材(24a、24b)は、それぞれ絶縁性を有する材料から形成され、カム部材のうち主面上で隣り合う2つのカム部材の互いに対向する端部は、それぞれ電極(21)の一部を覆いかつ電極上で互いに離間するようにしてもよい。 In the rotation control device, the electrodes (21a, 21b) and the cam members (24a, 24b) are arranged on the same circumference (C1) centering on the axis of the operation target shaft on the main surface, and the cam members (24a, 24b) are each formed of an insulating material, and the opposite end portions of two cam members adjacent to each other on the main surface of the cam member respectively cover a part of the electrode (21) and The electrodes may be separated from each other.
 上記回転制御装置において、接触子(201a、201b)は、弾性変形可能な板状の部材であり、操作対象軸が所定の中間位置にあるときに電極に接触する部分の幅は、主面上で隣り合う2つのカム部材の互いに対向する端部同士の間隔より狭くしてもよい。 In the rotation control device, the contacts (201a, 201b) are elastically deformable plate-like members, and the width of the portion that contacts the electrode when the operation target shaft is at a predetermined intermediate position is on the main surface. It may be narrower than the interval between the ends of the two adjacent cam members facing each other.
 上記回転制御装置において、基板は、主面として、第1主面(20a)とこの第1主面と反対側の第2主面(20b)とを有し、電極は、第1主面上に配置された少なくとも1つの第1電極(21a)と、第2主面上に配置された少なくとも1つの第2電極(21b)とからなり、接触子は、一端が操作対象軸に固定され、操作対象軸の径方向に延在し、操作対象軸が所定の中間位置にあるときに他端側の一部が第1電極の1つに接触する第1接触子(201a)と、第1接触子と電気的に接続されるとともに、一端が操作対象軸に固定され、操作対象軸の径方向に延在し、操作対象軸が所定の中間位置にあるときに他端側の一部が第2電極の1つに接触する第2接触子(201b)とからなり、カム部材は、基板の第1主面上に配置され、操作対象軸が所定の中間位置にないときに第1接触子の他端を主面から離間させる方向に移動させる複数の第1カム部材(24a)と、基板の第2主面上に配置され、操作対象軸が所定の中間位置にないときに第2接触子の他端を主面から離間させる方向に移動させる複数の第2カム部材(24b)とを含み、検出回路は、第1接触子の他端側の一部が第1電極に接触し、かつ第2接触子の他端側の一部が第2電極に接触すると検知信号を出力するようにしてもよい。 In the rotation control device, the substrate has, as main surfaces, a first main surface (20a) and a second main surface (20b) opposite to the first main surface, and the electrodes are on the first main surface. At least one first electrode (21a) disposed on the second main surface and at least one second electrode (21b) disposed on the second main surface, and one end of the contact is fixed to the operation target shaft, A first contact (201a) that extends in a radial direction of the operation target shaft and has a part on the other end contacting one of the first electrodes when the operation target shaft is at a predetermined intermediate position; While electrically connected to the contact, one end is fixed to the operation target shaft, extends in the radial direction of the operation target shaft, and a part on the other end side is located when the operation target shaft is at a predetermined intermediate position. The second contactor (201b) is in contact with one of the second electrodes, and the cam member is disposed on the first main surface of the substrate. A plurality of first cam members (24a) for moving the other end of the first contact member away from the main surface when the operation target shaft is not at a predetermined intermediate position, and a second main surface of the substrate. A plurality of second cam members (24b) that move the other end of the second contactor away from the main surface when the operation target shaft is not at a predetermined intermediate position, and the detection circuit includes the first contact A detection signal may be output when a part of the other end of the child contacts the first electrode and a part of the other end of the second contact contacts the second electrode.
 上記回転制御装置において、操作対象軸の回転方向が反転した回数をカウントする反転回数カウント部(6)をさらに備え、操作量算出部(4A)は、検知信号が出力されることなく反転回数カウント部によってカウントされた値が所定の閾値を超えた場合に、操作対象軸を第1位置、第2位置および所定の中間位置のいずれか一つまで移動させるための操作量を算出し、操作部(5)は、操作量算出部によって算出された操作量に基づいて操作対象軸を操作するようにしてもよい。 The rotation control device further includes a reversal number counting unit (6) that counts the number of times the rotation direction of the operation target axis is reversed, and the operation amount calculating unit (4A) counts the number of reversals without outputting a detection signal. Calculating an operation amount for moving the operation target axis to any one of the first position, the second position, and the predetermined intermediate position when the value counted by the unit exceeds a predetermined threshold value; In (5), the operation target axis may be operated based on the operation amount calculated by the operation amount calculation unit.
 上記回転制御装置において、操作対象軸の回転方向の機械的変位の絶対値を積算する絶対値積算部(7)をさらに備え、操作量算出部(4B)は、検知信号が出力されることなく絶対値積算部によって積算された値が所定の閾値を超えた場合に、操作対象軸を第1位置、第2位置および所定の中間位置のいずれか一つまで移動させるための操作量を算出し、操作部(5)は、操作量算出部によって算出された操作量に基づいて操作対象軸を操作するようにしてもよい。 The rotation control device further includes an absolute value integration unit (7) that integrates the absolute value of the mechanical displacement in the rotation direction of the operation target shaft, and the operation amount calculation unit (4B) does not output a detection signal. When the value accumulated by the absolute value accumulation unit exceeds a predetermined threshold value, an operation amount for moving the operation target axis to any one of the first position, the second position, and the predetermined intermediate position is calculated. The operation unit (5) may operate the operation target axis based on the operation amount calculated by the operation amount calculation unit.
 上記回転制御装置において、検知信号が出力されることなく経過した時間を積算するタイマ(8)をさらに備え、操作量算出部(4C)は、検知信号が出力されることなく経過した時間が所定の閾値を超えた場合に、操作対象軸を第1位置、第2位置および所定の中間位置のいずれか一つまで移動させるための操作量を算出し、操作部(5)は、操作量算出部によって算出された操作量に基づいて操作対象軸を操作するようにしてもよい。 The rotation control device further includes a timer (8) for accumulating the time elapsed without outputting the detection signal, and the operation amount calculation unit (4C) has a predetermined time elapsed without outputting the detection signal. When the threshold value is exceeded, an operation amount for moving the operation target axis to any one of the first position, the second position, and the predetermined intermediate position is calculated, and the operation unit (5) calculates the operation amount. The operation target axis may be operated based on the operation amount calculated by the unit.
 上記回転制御装置において、操作対象軸の動き出した回数をカウントする起動回数カウント部(9)をさらに備え、操作量算出部(4D)は、検知信号が出力されることなく起動回数カウント部によってカウントされた値が所定の閾値を超えた場合に、操作対象軸を第1位置、前記第2位置および前記所定の中間位置のいずれか一つまで移動させるための操作量を算出し、操作部(5)は、操作量算出部によって算出された操作量に基づいて操作対象軸を操作するようにしてもよい。 The rotation control device further includes an activation number counting unit (9) that counts the number of times the operation target axis starts to move, and the operation amount calculation unit (4D) is counted by the activation number counting unit without outputting a detection signal. When the calculated value exceeds a predetermined threshold, an operation amount for moving the operation target axis to any one of the first position, the second position, and the predetermined intermediate position is calculated, and an operation unit ( In 5), the operation target axis may be operated based on the operation amount calculated by the operation amount calculation unit.
 上記回転制御装置において、位置算出部(3)は、検知信号が出力されると、相対的位置センサによって検出された機械的変位の積算値をリセットする基準値更新部(32)を備えていてもよい。 In the rotation control device, the position calculation unit (3) includes a reference value update unit (32) that resets an integrated value of the mechanical displacement detected by the relative position sensor when a detection signal is output. Also good.
 なお、上記説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。 In the above description, as an example, reference numerals on the drawing corresponding to the components of the invention are shown in parentheses.
 以上説明したことにより、本発明によれば、非接触式の相対的位置センサとON/OFFセンサとによって操作対象軸の回転方向の位置の測定を行う回転制御装置をより低コストで実現しつつ、その耐久性と信頼性を向上させることができる。 As described above, according to the present invention, while realizing a rotation control device that measures the position of the operation target shaft in the rotation direction by using a non-contact type relative position sensor and an ON / OFF sensor, it can be realized at lower cost. , Its durability and reliability can be improved.
図1は、実施の形態1に係る回転制御装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a rotation control device according to the first embodiment. 図2は、不連続な絶対的位置センサの概念を説明する図である。FIG. 2 is a diagram for explaining the concept of a discontinuous absolute position sensor. 図3Aは、不連続な絶対的位置センサの構成の一例を示す図である。FIG. 3A is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor. 図3Bは、不連続な絶対的位置センサの構成の一例を示す図である。FIG. 3B is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor. 図3Cは、不連続な絶対的位置センサの構成の一例を示す図である。FIG. 3C is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor. 図3Dは、不連続な絶対的位置センサの構成の一例を示す図である。FIG. 3D is a diagram illustrating an example of a configuration of a discontinuous absolute position sensor. 図3Eは、不連続な絶対的位置センサの構成の一例における電極とカム部材との関係を説明する図である。FIG. 3E is a diagram illustrating a relationship between an electrode and a cam member in an example of a configuration of a discontinuous absolute position sensor. 図4は、実施の形態1に係る回転制御装置の原点復帰動作モードにおける動作を説明するフロー図である。FIG. 4 is a flowchart for explaining the operation in the origin return operation mode of the rotation control device according to the first embodiment. 図5は、実施の形態1に係る回転制御装置の通常動作モードにおける動作を説明するフロー図である。FIG. 5 is a flowchart for explaining the operation in the normal operation mode of the rotation control device according to the first embodiment. 図6Aは、不連続な絶対的位置センサの他の構成例を示す図である。FIG. 6A is a diagram illustrating another configuration example of a discontinuous absolute position sensor. 図6Bは、不連続な絶対的位置センサの他の構成例における電極とカム部材との関係を説明する図である。FIG. 6B is a diagram illustrating the relationship between the electrode and the cam member in another configuration example of the discontinuous absolute position sensor. 図7Aは、不連続な絶対的位置センサの変形例を示す図である。FIG. 7A is a diagram showing a modification of the discontinuous absolute position sensor. 図7Bは、不連続な絶対的位置センサの変形例における電極とカム部材との関係を説明する図である。FIG. 7B is a diagram for explaining the relationship between the electrode and the cam member in a modification of the discontinuous absolute position sensor. 図7Cは、不連続な絶対的位置センサの変形例を示す図である。FIG. 7C is a diagram showing a modification of the discontinuous absolute position sensor. 図7Dは、不連続な絶対的位置センサの変形例を示す図である。FIG. 7D is a diagram showing a modification of the discontinuous absolute position sensor. 図8は、実施の形態2に係る回転制御装置の構成を示す図である。FIG. 8 is a diagram illustrating a configuration of the rotation control device according to the second embodiment. 図9Aは、実施の形態2に係る回転制御装置の動作を説明するフロー図である。FIG. 9A is a flowchart for explaining the operation of the rotation control device according to the second embodiment. 図9Bは、実施の形態2に係る回転制御装置の動作を説明するフロー図である。FIG. 9B is a flowchart for explaining the operation of the rotation control device according to the second embodiment. 図10は、実施の形態3に係る回転制御装置の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of the rotation control device according to the third embodiment. 図11Aは、実施の形態3に係る回転制御装置の動作を説明するフロー図である。FIG. 11A is a flowchart for explaining the operation of the rotation control device according to the third embodiment. 図11Bは、実施の形態3に係る回転制御装置の動作を説明するフロー図である。FIG. 11B is a flowchart for explaining the operation of the rotation control device according to the third embodiment. 図12は、実施の形態4に係る回転制御装置の構成を示す図である。FIG. 12 is a diagram illustrating a configuration of the rotation control device according to the fourth embodiment. 図13Aは、実施の形態4に係る回転制御装置の動作を説明するフロー図である。FIG. 13A is a flowchart for explaining the operation of the rotation control device according to the fourth embodiment. 図13Bは、実施の形態4に係る回転制御装置の動作を説明するフロー図である。FIG. 13B is a flowchart for explaining the operation of the rotation control device according to the fourth embodiment. 図14は、実施の形態5に係る回転制御装置の構成を示す図である。FIG. 14 is a diagram illustrating a configuration of the rotation control device according to the fifth embodiment. 図15Aは、実施の形態5に係る回転制御装置の動作を説明するフロー図である。FIG. 15A is a flowchart for explaining the operation of the rotation control device according to the fifth embodiment. 図15Bは、実施の形態5に係る回転制御装置の動作を説明するフロー図である。FIG. 15B is a flowchart for explaining the operation of the rotation control device according to the fifth embodiment. 図16Aは、不連続な絶対的位置センサの別の配置例を示す図である。FIG. 16A is a diagram illustrating another arrangement example of discontinuous absolute position sensors. 図16Bは、不連続な絶対的位置センサの別の構成例を示す図である。FIG. 16B is a diagram illustrating another configuration example of the discontinuous absolute position sensor. 図17Aは、不連続な絶対的位置センサの別の配置例を示す図である。FIG. 17A is a diagram illustrating another arrangement example of discontinuous absolute position sensors. 図17Bは、不連続な絶対的位置センサの別の構成例を示す図である。FIG. 17B is a diagram illustrating another configuration example of the discontinuous absolute position sensor. 図18は、先願における不連続な絶対的位置センサの構成の一例を説明する図である。FIG. 18 is a diagram for explaining an example of the configuration of a discontinuous absolute position sensor in the prior application.
 以下、本発明の実施の形態について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are given to components common to the respective embodiments, and repeated description is omitted.
 <実施の形態1>
 ≪回転制御装置の構成≫
 図1は、実施の形態1に係る回転制御装置100の構成を示す図である。
 同図に示される回転制御装置100は、例えば、プラント等において流量のプロセス制御に用いられるボール弁等のロータリ式の調節弁の弁軸(操作対象軸)の回転を制御する電動式の操作器である。
<Embodiment 1>
≪Configuration of rotation control device≫
FIG. 1 is a diagram illustrating a configuration of a rotation control device 100 according to the first embodiment.
The rotation control device 100 shown in the figure is an electric operating device that controls the rotation of a valve shaft (operation target shaft) of a rotary control valve such as a ball valve used for flow rate process control in a plant or the like. It is.
 具体的に、回転制御装置100は、図示されていない上位装置から与えられた調節弁の弁開度の目標値(設定値)SPと調節弁の弁開度の実測値(以下、「実開度」とも称する。)PVとの偏差ΔPを算出する。そして、回転制御装置100は、その偏差ΔPが0になるように弁軸200を駆動することにより、調節弁の弁開度が目標値SPとなるように制御する。 Specifically, the rotation control device 100 includes a target value (set value) SP of the valve opening of the control valve and an actually measured value of the valve opening of the control valve (hereinafter referred to as “actual opening”) given from a host device (not shown). Also referred to as “degree”.) Deviation ΔP from PV is calculated. Then, the rotation control device 100 controls the valve opening of the control valve so as to become the target value SP by driving the valve shaft 200 so that the deviation ΔP becomes zero.
 以下、回転制御装置100の具体的な構成について説明する。
 図1に示すように、回転制御装置100は、相対的位置センサ1、複数のON/OFFセンサ2_1~2_n(nは、2以上の整数)、位置算出部3、操作量算出部4、および操作部5を備えている。複数のON/OFFセンサ2_1~2_nは、不連続な絶対的位置センサを構成する。
Hereinafter, a specific configuration of the rotation control device 100 will be described.
As shown in FIG. 1, the rotation control device 100 includes a relative position sensor 1, a plurality of ON / OFF sensors 2_1 to 2_n (n is an integer of 2 or more), a position calculation unit 3, an operation amount calculation unit 4, and An operation unit 5 is provided. The plurality of ON / OFF sensors 2_1 to 2_n constitute discontinuous absolute position sensors.
 これらの構成要素は、例えば金属材料から成る筐体内部に収容される。なお、回転制御装置100は、上述した機能部に加えて、調節弁の弁開度等の各種情報をユーザに提示するための表示部(例えば液晶ディスプレイ)や外部機器との間でデータの送受信を行うための通信回路等を備えていてもよい。 These components are accommodated in a housing made of, for example, a metal material. The rotation control device 100 transmits and receives data to and from a display unit (for example, a liquid crystal display) and an external device for presenting various types of information such as the valve opening of the control valve to the user in addition to the above-described functional unit. A communication circuit or the like may be provided.
 先ず、調節弁の実開度、すなわち弁軸200の回転方向の位置を測定するための相対的位置センサ1およびON/OFFセンサ2_1~2_nを含む不連続な絶対的位置センサについて説明する。 First, the discontinuous absolute position sensor including the relative position sensor 1 and the ON / OFF sensors 2_1 to 2_n for measuring the actual opening of the control valve, that is, the position of the valve shaft 200 in the rotation direction will be described.
 相対的位置センサ1は、回転制御装置100の操作対象軸としての弁軸200の回転方向の機械的変位Mdを非接触で検出する機能部である。相対的位置センサ1としては、検出対象軸(弁軸200)の回転角度に対応してパルスを出力するインクリメンタル型のロータリエンコーダを例示することができる。本実施の形態では、相対的位置センサ1が、インクリメンタル型のロータリエンコーダであるとして説明する。 The relative position sensor 1 is a functional unit that detects a mechanical displacement Md in the rotation direction of the valve shaft 200 as an operation target shaft of the rotation control device 100 in a non-contact manner. An example of the relative position sensor 1 is an incremental rotary encoder that outputs a pulse corresponding to the rotation angle of the detection target shaft (valve shaft 200). In the present embodiment, the relative position sensor 1 will be described as an incremental rotary encoder.
 一方、不連続な絶対的位置センサは、ON/OFFセンサ2_1~2_nを含み、操作対象軸である弁軸200が回転方向における所定の位置に到達したときに、その所定の位置に対応して設けられた各ON/OFFセンサ2_1~2_nはそれぞれ検知信号P1~Pnを出力する。ON/OFFセンサ2_1~2_nは、弁軸200が回転方向において特定の位置に到達したことを示す電気信号を出力することが可能な部品であればよい。具体的には、ON/OFFセンサ2_1~2_nとして、例えば、リミットスイッチを用いることができる。ここで、上記電気信号は、弁軸200が回転方向において特定の位置に到達したことを示す信号であればよく、例えばオン・オフ信号(状態を表す信号、例えばデジタル信号)である。 On the other hand, the discontinuous absolute position sensor includes ON / OFF sensors 2_1 to 2_n, and corresponds to the predetermined position when the valve shaft 200 which is the operation target shaft reaches a predetermined position in the rotation direction. The provided ON / OFF sensors 2_1 to 2_n output detection signals P1 to Pn, respectively. The ON / OFF sensors 2_1 to 2_n may be any component that can output an electric signal indicating that the valve shaft 200 has reached a specific position in the rotation direction. Specifically, for example, limit switches can be used as the ON / OFF sensors 2_1 to 2_n. Here, the electrical signal may be a signal indicating that the valve shaft 200 has reached a specific position in the rotation direction, and is, for example, an on / off signal (a signal indicating a state, for example, a digital signal).
 図2を参照して、ON/OFFセンサ2_1~2_nの配置について説明する。図2には、n=5とした場合のON/OFFセンサ2_1~2_5の配置例が示されている。 The arrangement of the ON / OFF sensors 2_1 to 2_n will be described with reference to FIG. FIG. 2 shows an arrangement example of the ON / OFF sensors 2_1 to 2_5 when n = 5.
 図2に示すように、ON/OFFセンサ2_1~2_5は、弁軸200の回転可能範囲SR内において、互いに異なる複数の位置毎に対応して設けられ、弁軸200がその対応する位置に到達したときに検知信号P1~Pnを夫々出力する。 As shown in FIG. 2, the ON / OFF sensors 2_1 to 2_5 are provided corresponding to a plurality of different positions within the rotatable range SR of the valve shaft 200, and the valve shaft 200 reaches the corresponding position. Detection signals P1 to Pn are output.
 ここで、回転可能範囲SRとは、弁軸200の回転方向における回転可能な範囲であり、例えば、回転方向における第1位置としての弁開度が0%となる全閉位置Pcから、第2位置としての弁開度が100%となる全開位置Poまでの範囲を示す。 Here, the rotatable range SR is a rotatable range in the rotation direction of the valve shaft 200. For example, from the fully closed position Pc where the valve opening degree as the first position in the rotation direction is 0%, The range up to the fully open position Po where the valve opening as the position is 100% is shown.
 回転制御装置100において、ON/OFFセンサ2_1~2_5は、弁開度が0%から100%までの範囲における何れかの位置に対応して設けられている。例えば、図2に示す配置例の場合、ON/OFFセンサ2_1は、弁開度が0%となる全閉位置Pcに対応して設けられている。ON/OFFセンサ2_2は、弁開度が20%となる位置Paに対応して設けられている。ON/OFFセンサ2_3は、弁開度が50%となる位置Pmに対応して設けられている。ON/OFFセンサ2_4は、弁開度が70%となる位置Pbに対応して設けられている。さらに、ON/OFFセンサ2_5は、弁開度が100%となる全開位置Poに対応して設けられている。
 弁軸200において、弁開度が0%となる全閉位置Pcと弁開度が100%となる全開位置Poとを除いた、弁開度が20%となる位置Pa、弁開度が50%となる位置Pm、弁開度が70%となる位置Pbは、それぞれ本発明における「所定の中間位置」に該当する。
In the rotation control device 100, the ON / OFF sensors 2_1 to 2_5 are provided corresponding to any position in the range of the valve opening from 0% to 100%. For example, in the arrangement example shown in FIG. 2, the ON / OFF sensor 2_1 is provided corresponding to the fully closed position Pc where the valve opening degree is 0%. The ON / OFF sensor 2_2 is provided corresponding to the position Pa where the valve opening degree is 20%. The ON / OFF sensor 2_3 is provided corresponding to the position Pm at which the valve opening is 50%. The ON / OFF sensor 2_4 is provided corresponding to the position Pb at which the valve opening is 70%. Furthermore, the ON / OFF sensor 2_5 is provided corresponding to the fully open position Po where the valve opening degree is 100%.
In the valve shaft 200, except for the fully closed position Pc where the valve opening is 0% and the fully opened position Po where the valve opening is 100%, the position Pa where the valve opening is 20% and the valve opening is 50 % Position Pm and the position Pb where the valve opening degree is 70% correspond to the “predetermined intermediate position” in the present invention.
 図2に示す配置例の場合、ON/OFFセンサ2_1は、弁軸200が全閉位置Pcに到達したときに検知信号P1を出力する。ON/OFFセンサ2_2は、弁軸200が位置Pa(弁開度:20%)に到達したときに検知信号P2を出力する。ON/OFFセンサ2_3は、弁軸200が位置Pm(弁開度:50%)に到達したときに検知信号P3を出力する。ON/OFFセンサ2_4は、弁軸200が位置Pb(弁開度:70%)に到達したときに検知信号P4を出力する。ON/OFFセンサ2_5は、弁軸200が全開位置Po(弁開度:100%)に到達したときに検知信号P5を出力する。 2, the ON / OFF sensor 2_1 outputs the detection signal P1 when the valve shaft 200 reaches the fully closed position Pc. The ON / OFF sensor 2_2 outputs a detection signal P2 when the valve shaft 200 reaches the position Pa (valve opening: 20%). The ON / OFF sensor 2_3 outputs a detection signal P3 when the valve shaft 200 reaches the position Pm (valve opening: 50%). The ON / OFF sensor 2_4 outputs a detection signal P4 when the valve shaft 200 reaches the position Pb (valve opening: 70%). The ON / OFF sensor 2_5 outputs a detection signal P5 when the valve shaft 200 reaches the fully open position Po (valve opening degree: 100%).
 次に、ON/OFFセンサ2_1~2_nの具体的な構造について説明する。
 ON/OFFセンサ2_1~2_nは、弁軸200の周りに設けられている。ON/OFFセンサ2_1~2_nは、弁軸200の軸線と直交する第1主面20aおよび第2主面20bを有するプリント基板20と、このプリント基板の第1主面20aおよび第2主面20b上にそれぞれ配置された複数の第1電極21aおよび第2電極21bと、弁軸200の側面に固定されたショートプレート201と、ショートプレート201の第1接触子201aおよび第2接触子201bが複数の第1電極21aおよび第2電極21bの1つにそれぞれ接触すると検知信号Piを出力する検出回路23_iと、プリント基板20の第1主面20a上に配置された複数の第1カム部材24aと、第2主面20b上に配置された複数の第2カム部材24bとを備えている。
Next, a specific structure of the ON / OFF sensors 2_1 to 2_n will be described.
The ON / OFF sensors 2_1 to 2_n are provided around the valve shaft 200. The ON / OFF sensors 2_1 to 2_n include a printed circuit board 20 having a first main surface 20a and a second main surface 20b orthogonal to the axis of the valve shaft 200, and the first main surface 20a and the second main surface 20b of the printed circuit board. A plurality of first electrodes 21 a and second electrodes 21 b respectively disposed on the top, a short plate 201 fixed to the side surface of the valve shaft 200, and a plurality of first contacts 201 a and second contacts 201 b of the short plate 201. A detection circuit 23_i that outputs a detection signal Pi when it contacts one of the first electrode 21a and the second electrode 21b, and a plurality of first cam members 24a disposed on the first main surface 20a of the printed circuit board 20; And a plurality of second cam members 24b disposed on the second main surface 20b.
 以下、プリント基板20の第1主面20aおよび第2主面20bをあわせて「主面20a、20b」ということがある。また、第1電極21aおよび第2電極21bをあわせて「電極21a、21b」ということがある。また、ショートプレート201の第1接触子201aおよび第2接触子201bをあわせて「接触子201a、201b」ということがある。また、第1カム部材24aと第2カム部材24bとをあわせて「カム部材24a、24b」ということがある。 Hereinafter, the first main surface 20a and the second main surface 20b of the printed circuit board 20 may be collectively referred to as “ main surfaces 20a, 20b”. The first electrode 21a and the second electrode 21b may be collectively referred to as “ electrodes 21a, 21b”. Further, the first contact 201a and the second contact 201b of the short plate 201 may be collectively referred to as “ contacts 201a and 201b”. The first cam member 24a and the second cam member 24b may be collectively referred to as “ cam members 24a, 24b”.
 図3A~3Eは、ON/OFFセンサ2_1~2_nの具体的な構造の一例を示す図である。ここでは、n=5とした場合が図示されている。 3A to 3E are diagrams showing an example of a specific structure of the ON / OFF sensors 2_1 to 2_n. Here, the case where n = 5 is illustrated.
 ここで、図3Aおよび図3Bは、それぞれ、弁軸200が全閉位置Pc、位置Pa(弁開度:20%)、位置Pm(弁開度:50%)、位置Pb(弁開度:70%)、全開位置Po(弁開度:100%)の何れかに到達した状態におけるON/OFFセンサ2_1~2_nの構造を模式的に示す平面図およびI-I線断面図である。また、図3Cおよび図3Dは、それぞれ、弁軸200が上記の所定の位置の何れにも到達していないときのON/OFFセンサ2_1~2_nの構造を模式的に示す平面図およびII-II線断面図である。また、図3Eは、ON/OFFセンサ2_1~2_nの構造を模式的に示す側面図である。 3A and 3B, the valve shaft 200 is in the fully closed position Pc, position Pa (valve opening: 20%), position Pm (valve opening: 50%), and position Pb (valve opening: 70%) and a fully open position Po (valve opening degree: 100%) in a state where the ON / OFF sensors 2_1 to 2_n have been reached. 3C and 3D are a plan view schematically showing the structure of the ON / OFF sensors 2_1 to 2_n when the valve shaft 200 has not reached any of the predetermined positions, and II-II, respectively. It is line sectional drawing. FIG. 3E is a side view schematically showing the structure of the ON / OFF sensors 2_1 to 2_n.
 この例において、個々のON/OFFセンサ2_i(1≦i≦n)は、図3A~3Eに示されるように、弁軸200の周りに設けられるプリント基板20上に、抵抗Rと電極21a、21bを配置し、弁軸200にショートプレート201を設けることによって実現することができる。 In this example, each ON / OFF sensor 2_i (1 ≦ i ≦ n) is connected to a resistor R and an electrode 21a on a printed circuit board 20 provided around the valve shaft 200, as shown in FIGS. 3A to 3E. This can be realized by arranging 21b and providing a short plate 201 on the valve shaft 200.
 具体的には、プリント基板20の第1主面20aに第1電極21aを形成するとともに、第1電極21aと電源電圧が供給される電源ラインVccとの間に抵抗Rを接続する。また、プリント基板20の第2主面20bに第2電極21bを形成するとともに、第2電極21bを、グラウンド電圧が供給されるグラウンドラインGNDに接続する。プリント基板20の二つの主面20a、20bにそれぞれ形成される複数の電極21a、21bは、弁軸200の軸を中心とする円周C1に沿って配置されている。ここで、抵抗Rは、例えば、プリント基板20の第1主面20aに配置すればよい。また、電源ラインVccは、例えば、プリント基板20の第1主面20aに形成し、グラウンドラインGNDは、例えば、プリント基板20の第2主面20bに形成すればよい。 Specifically, the first electrode 21a is formed on the first main surface 20a of the printed circuit board 20, and a resistor R is connected between the first electrode 21a and the power supply line Vcc to which the power supply voltage is supplied. Further, the second electrode 21b is formed on the second main surface 20b of the printed circuit board 20, and the second electrode 21b is connected to a ground line GND to which a ground voltage is supplied. The plurality of electrodes 21 a and 21 b formed on the two main surfaces 20 a and 20 b of the printed circuit board 20 are arranged along a circumference C <b> 1 centering on the axis of the valve shaft 200. Here, the resistor R may be disposed on the first main surface 20a of the printed circuit board 20, for example. The power supply line Vcc may be formed on the first main surface 20a of the printed circuit board 20, for example, and the ground line GND may be formed on the second main surface 20b of the printed circuit board 20, for example.
 プリント基板20の第1主面20aには、後述する位置算出部3および操作量算出部4として機能するマイクロコントローラやCPU等のプログラム処理装置を含むICチップ30が配置される。ここで、上述した抵抗Rと電極21aとが接続されるノードnaは、ICチップ30の何れか一つの入力端子に接続される。 On the first main surface 20 a of the printed circuit board 20, an IC chip 30 including a program processing device such as a microcontroller or a CPU that functions as a position calculation unit 3 and an operation amount calculation unit 4 described later is disposed. Here, the node na to which the resistor R and the electrode 21 a are connected is connected to one input terminal of the IC chip 30.
 弁軸200は、プリント基板20に設けられた貫通孔20cに挿通されている。弁軸200の軸線とプリント基板20の主面20a、20bとは互いに直交する。弁軸200の外周面には、ショートプレート201が接合されている。 The valve shaft 200 is inserted through a through hole 20 c provided in the printed circuit board 20. The axis of the valve shaft 200 and the principal surfaces 20a, 20b of the printed circuit board 20 are orthogonal to each other. A short plate 201 is joined to the outer peripheral surface of the valve shaft 200.
 図3B,3Dに示されるように、ショートプレート201は、例えば側面視「コ」字状に形成されている。ショートプレート201は、例えば、真鍮やステンレス等の金属から成る短冊状の板部材を曲げ加工して側面視「コ」字状に形成すればよい。このようなショートプレート201を弁軸200の側面にネジ等で固定する。これにより、ショートプレート201は、一端が弁軸200に固定されてこの弁軸200の径方向に延在する第1接触子201aと、この第1接触子201aと電気的に接続される。また、ショートプレート201の一端が弁軸200に固定されてこの弁軸200の径方向に延在する第2接触子201bを提供することとなる。第1接触子201aと第2接触子201bとは、ともに弾性変形可能な板状の部材である。プリント基板20は、これら一対の接触子201a、201bの間に配置される。この状態でこれらの接触子201a、201bの接点201a’、201b’がプリント基板20の表と裏の2つの主面20a、20bの方向にそれぞれ付勢されている。したがって、弁軸200に固定されたショートプレート201は、対向する一対の接触子201a,201bがプリント基板20を挟み込んだ状態で弁軸200とともに回転する。 3B and 3D, the short plate 201 is formed, for example, in a “U” shape in a side view. The short plate 201 may be formed, for example, by bending a strip-shaped plate member made of a metal such as brass or stainless steel into a “U” shape in a side view. Such a short plate 201 is fixed to the side surface of the valve shaft 200 with a screw or the like. As a result, the short plate 201 is electrically connected to the first contact 201a, one end of which is fixed to the valve shaft 200 and extending in the radial direction of the valve shaft 200, and the first contact 201a. In addition, one end of the short plate 201 is fixed to the valve shaft 200 to provide the second contactor 201b extending in the radial direction of the valve shaft 200. Both the first contact 201a and the second contact 201b are plate-like members that can be elastically deformed. The printed circuit board 20 is disposed between the pair of contacts 201a and 201b. In this state, the contacts 201a 'and 201b' of these contacts 201a and 201b are urged in the direction of the two main surfaces 20a and 20b on the front and back sides of the printed circuit board 20, respectively. Therefore, the short plate 201 fixed to the valve shaft 200 rotates together with the valve shaft 200 in a state where the pair of opposed contacts 201 a and 201 b sandwich the printed circuit board 20.
 ここで、弁軸200が、全閉位置Pc、弁開度が20%となる位置Pa、弁開度が50%となる位置Pm、弁開度が70%となる位置Pb、および全開位置Poの何れかの位置に到達した場合を考える。この場合、ショートプレート201の接触子201a、201bは、これらの所定の位置に対応する位置に配置された電極21a、21bと接触する。例えば、図3Aに示すように、弁軸200が回転して、ショートプレート201がON/OFFセンサ2_3の位置に到達したとき、ショートプレート201の接点201a’がON/OFFセンサ2_3の電極21aと接触する。さらに、ショートプレート201の接点201b’がON/OFFセンサ2_3の電極21bと接触する。このとき、電源ラインVccから、抵抗R、電極21a、ショートプレート201、および電極21bを介してグラウンドラインGNDに至る電流経路が形成され、ノードnaの電位が0V(グラウンド電位)となる。 Here, the valve shaft 200 is in the fully closed position Pc, the position Pa where the valve opening is 20%, the position Pm where the valve opening is 50%, the position Pb where the valve opening is 70%, and the fully opened position Po. Let us consider a case in which any of the positions is reached. In this case, the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b arranged at positions corresponding to these predetermined positions. For example, as shown in FIG. 3A, when the valve shaft 200 rotates and the short plate 201 reaches the position of the ON / OFF sensor 2_3, the contact 201a ′ of the short plate 201 is connected to the electrode 21a of the ON / OFF sensor 2_3. Contact. Further, the contact 201b 'of the short plate 201 is in contact with the electrode 21b of the ON / OFF sensor 2_3. At this time, a current path is formed from the power supply line Vcc to the ground line GND through the resistor R, the electrode 21a, the short plate 201, and the electrode 21b, and the potential of the node na becomes 0 V (ground potential).
 一方、図3Cに示すように、ショートプレート201がON/OFFセンサ2_1とON/OFFセンサ2_2との間にあるとき、すなわち、弁軸200が所定の中間位置にない場合を考える。この場合、ショートプレート201の接点201a’,201b’は、何れのON/OFFセンサ2_1~2_5の電極21a,21bにも接触しない状態となる。これにより、各ON/OFFセンサ2_1~2_5のノードnaの電位がVcc(電源電圧)となる。 On the other hand, as shown in FIG. 3C, consider a case where the short plate 201 is between the ON / OFF sensor 2_1 and the ON / OFF sensor 2_2, that is, the valve shaft 200 is not at a predetermined intermediate position. In this case, the contacts 201a 'and 201b' of the short plate 201 are not in contact with any of the electrodes 21a and 21b of the ON / OFF sensors 2_1 to 2_5. As a result, the potential of the node na of each of the ON / OFF sensors 2_1 to 2_5 becomes Vcc (power supply voltage).
 このように、各ON/OFFセンサ2_1~2_5のノードnaの電圧変化を検出信号としてICチップ30に入力することにより、弁軸200が回転方向における所定の位置に到達したことを検出することが可能となる。したがって、一端が電源ラインVccに接続された抵抗Rと、この抵抗Rの他端に接続された電極21aと、グラウンドラインGNDに接続された電極21bとは、ショートプレート201の接触子201a、201bの他端側の一部が、複数の電極21a、21bのうち1つにそれぞれ接触すると検知信号Piを出力する検出回路23_iを構成する。 In this way, by detecting the voltage change at the node na of each of the ON / OFF sensors 2_1 to 2_5 as a detection signal to the IC chip 30, it is possible to detect that the valve shaft 200 has reached a predetermined position in the rotation direction. It becomes possible. Therefore, the resistor R having one end connected to the power supply line Vcc, the electrode 21a connected to the other end of the resistor R, and the electrode 21b connected to the ground line GND are contactors 201a and 201b of the short plate 201. The detection circuit 23_i that outputs the detection signal Pi is configured when a part of the other end of the electrode contacts one of the electrodes 21a and 21b.
 さらに本実施の形態においては、ON/OFFセンサ2_1~2_5は、プリント基板20の第1主面20a上に配置されたカム部材24aと、第2主面20b上に配置されたカム部材24bとを備えている。図3Aおよび図3Cに示すように、これらのカム部材24a、24bは、それぞれプリント基板20の2つの主面20a、20b上において、弁軸200の軸線を中心とする円周C2に沿って配置されている。 Further, in the present embodiment, the ON / OFF sensors 2_1 to 2_5 include a cam member 24a disposed on the first main surface 20a of the printed circuit board 20, and a cam member 24b disposed on the second main surface 20b. It has. As shown in FIGS. 3A and 3C, these cam members 24 a and 24 b are arranged on the two principal surfaces 20 a and 20 b of the printed circuit board 20 along a circumference C <b> 2 centering on the axis of the valve shaft 200. Has been.
 カム部材24a、24bは、プラスチック等の材料から構成され、それぞれ、円周C2に沿って主面上の所定の中間位置に対応する位置、すなわち電極21a、21bが配置されている位置に近づくにつれて主面からの高さが低くなる形状を有している。2つの主面20a、20bのそれぞれで隣り合う2つのカム部材の互いに対向する端部は、互いに離間している。
 これらのカム部材24a、24bを接着剤でプリント基板20に固定するには、接着剤やネジを用いればよい。なお、カム部材24a、24bをプリント基板20上に実装する代わりに、図示しない樹脂ケース等の構造物上にカム部材24a、24bを形成してもよい。
The cam members 24a and 24b are made of a material such as plastic, and each approach a position corresponding to a predetermined intermediate position on the main surface along the circumference C2, that is, a position where the electrodes 21a and 21b are disposed. It has a shape in which the height from the main surface is reduced. The mutually opposing ends of the two cam members adjacent to each other on the two main surfaces 20a and 20b are separated from each other.
In order to fix the cam members 24a and 24b to the printed circuit board 20 with an adhesive, an adhesive or a screw may be used. Instead of mounting the cam members 24a and 24b on the printed circuit board 20, the cam members 24a and 24b may be formed on a structure such as a resin case (not shown).
 図3Dは、弁軸200が所定の位置、すなわち、図2に示した全閉位置Pc、位置Pa、位置Pm、位置Pb、および全開位置Poのいずれかにないときの不連続な絶対的位置センサの様子を説明する図である。図3Dに示すように、弁軸200が所定の位置のいずれにもないときに、ショートプレート201の接触子201a、201bは、プリント基板20の両主面20a、20b上にそれぞれ設けられたカム部材24a、24bと接触する。そして、接触子201a、201bの他端側はプリント基板20の両主面20a、20bから離間する方向に移動する。したがって、この場合は、接触子201a、201bの接点201a’、201b’はプリント基板20の主面20a、20bとは接触しない。
 これに対し、弁軸200が所定の位置のいずれかにあるときは、図3Bに示すように、ショートプレート201の接触子201a、201bは電極21a、21bに接触する。
3D shows a discontinuous absolute position when the valve shaft 200 is not in a predetermined position, that is, the fully closed position Pc, the position Pa, the position Pm, the position Pb, or the fully opened position Po shown in FIG. It is a figure explaining the mode of a sensor. As shown in FIG. 3D, when the valve shaft 200 is not in any of the predetermined positions, the contacts 201a and 201b of the short plate 201 are cams provided on both main surfaces 20a and 20b of the printed circuit board 20, respectively. It contacts the members 24a and 24b. Then, the other ends of the contacts 201a and 201b move in a direction away from both the main surfaces 20a and 20b of the printed circuit board 20. Therefore, in this case, the contacts 201a ′ and 201b ′ of the contacts 201a and 201b do not contact the main surfaces 20a and 20b of the printed circuit board 20.
On the other hand, when the valve shaft 200 is in one of the predetermined positions, as shown in FIG. 3B, the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b.
 次に、位置算出部3、操作量算出部4、および操作部5について説明する。 Next, the position calculation unit 3, the operation amount calculation unit 4, and the operation unit 5 will be described.
 位置算出部3は、弁軸200の絶対的な位置を算出する機能部である。位置算出部3は、ON/OFFセンサ2_1~2_nの検知信号P1~Pnが出力されてからの、相対的位置センサ1によって検出された機械的変位Mdの積算値RPと、その検知信号P1~Pnを出力したON/OFFセンサ2_1~2_nに対応する位置を示す基準値APとに基づいて、操作対象軸の回転方向の絶対的な位置を算出する。 The position calculation unit 3 is a functional unit that calculates the absolute position of the valve shaft 200. The position calculation unit 3 outputs the integrated value RP of the mechanical displacement Md detected by the relative position sensor 1 after the detection signals P1 to Pn of the ON / OFF sensors 2_1 to 2_n are output, and the detection signals P1 to Pn. Based on the reference value AP indicating the position corresponding to the ON / OFF sensors 2_1 to 2_n that output Pn, the absolute position in the rotation direction of the operation target shaft is calculated.
 位置算出部3は、例えば、マイクロコントローラやCPU等のプログラム処理装置によるプログラム処理によって実現することができる。上述の例の場合、プリント基板20に載置されたICチップ30によって実現される。 The position calculation unit 3 can be realized by program processing by a program processing device such as a microcontroller or CPU. In the case of the above-described example, this is realized by the IC chip 30 placed on the printed circuit board 20.
 より具体的には、位置算出部3は、基準値更新部32、相対的位置情報取得部31、および位置決定部33を含む。 More specifically, the position calculation unit 3 includes a reference value update unit 32, a relative position information acquisition unit 31, and a position determination unit 33.
 基準値更新部32は、ON/OFFセンサ2_1~2_nから検知信号P1~Pnが出力された場合に、基準値APを更新するとともにリセット信号RSTを出力する機能部である。 The reference value updating unit 32 is a functional unit that updates the reference value AP and outputs the reset signal RST when the detection signals P1 to Pn are output from the ON / OFF sensors 2_1 to 2_n.
 ここで、基準値APは、回転可能範囲SR内における絶対的な位置を示す値であり、弁軸200の回転方向の絶対的な位置を算出する際の基準となる。 Here, the reference value AP is a value indicating an absolute position within the rotatable range SR, and serves as a reference when calculating the absolute position of the valve shaft 200 in the rotation direction.
 具体的に、基準値更新部32は、ON/OFFセンサ2_1~2_nが検知信号P1~Pnを出力する度に、基準値APを、その検知信号を出力したON/OFFセンサ2_1~2_nに対応する位置を示す値に設定する。例えば、図2の例の場合、先ず、弁軸200が回転して弁開度が20%となる位置Paに到達し、ON/OFFセンサ2_2が検知信号P2を出力した場合、基準値更新部32は、基準値APを、ON/OFFセンサ2_2に対応する位置Paを示す値に設定する。その後、弁軸200が更に回転し、弁開度が50%となる位置Pmに弁軸200が到達してON/OFFセンサ2_3が検知信号P3を出力した場合、基準値更新部32は、基準値APを、位置Paを示す値からON/OFFセンサ2_3に対応する位置Pmを示す値に変更する。 Specifically, each time the ON / OFF sensors 2_1 to 2_n output the detection signals P1 to Pn, the reference value update unit 32 corresponds to the reference value AP to the ON / OFF sensors 2_1 to 2_n that output the detection signals. Set to a value that indicates the position to perform. For example, in the example of FIG. 2, first, when the valve shaft 200 rotates and reaches the position Pa where the valve opening degree becomes 20%, and the ON / OFF sensor 2_2 outputs the detection signal P2, the reference value update unit No. 32 sets the reference value AP to a value indicating the position Pa corresponding to the ON / OFF sensor 2_2. Thereafter, when the valve shaft 200 further rotates and the valve shaft 200 reaches the position Pm at which the valve opening degree is 50% and the ON / OFF sensor 2_3 outputs the detection signal P3, the reference value update unit 32 The value AP is changed from a value indicating the position Pa to a value indicating the position Pm corresponding to the ON / OFF sensor 2_3.
 相対的位置情報取得部31は、相対的位置センサ1によって検出された弁軸200の回転方向の機械的変位Mdを取得し、その機械的変位Mdの積算値RPを算出する機能部である。例えば、相対的位置情報取得部31は、相対的位置センサ1としてのインクリメンタル型のロータリエンコーダから出力されるパルスをカウントし、そのパルス数の積算値RPを算出する。 The relative position information acquisition unit 31 is a functional unit that acquires the mechanical displacement Md in the rotational direction of the valve shaft 200 detected by the relative position sensor 1 and calculates an integrated value RP of the mechanical displacement Md. For example, the relative position information acquisition unit 31 counts pulses output from an incremental rotary encoder as the relative position sensor 1 and calculates an integrated value RP of the number of pulses.
 また、相対的位置情報取得部31は、基準値更新部32からリセット信号RSTが出力された場合に、それまでにカウントしていたパルス数の積算値RPをリセットする。リセット後、相対的位置情報取得部31は、パルスのカウント動作を再開する。 Further, when the reset signal RST is output from the reference value update unit 32, the relative position information acquisition unit 31 resets the integrated value RP of the number of pulses counted so far. After reset, the relative position information acquisition unit 31 resumes the pulse counting operation.
 すなわち、相対的位置情報取得部31は、ON/OFFセンサ2_1~2_nのいずれかから検知信号が出力される度に、積算値RPをリセットする。したがって、相対的位置情報取得部31によって算出される積算値RPは、直前に基準値APが更新されてから次に基準値APが更新されるまでに、ロータリエンコーダから出力されたパルス数の累積値となる。 That is, the relative position information acquisition unit 31 resets the integrated value RP every time a detection signal is output from any of the ON / OFF sensors 2_1 to 2_n. Therefore, the integrated value RP calculated by the relative position information acquisition unit 31 is an accumulation of the number of pulses output from the rotary encoder from when the reference value AP is updated immediately before the reference value AP is updated next time. Value.
 位置決定部33は、基準値更新部32によって生成された基準値APと、相対的位置情報取得部31によって算出されたパルス数の積算値RPに基づく弁軸200の回転方向の機械的変位量とを加算して、回転可能範囲SRにおける弁軸200の絶対的な位置を算出する。位置決定部33は、算出した弁軸200の絶対的な位置を弁開度に換算し、換算した値を実開度PVとして出力する。 The position determination unit 33 is a mechanical displacement amount in the rotational direction of the valve shaft 200 based on the reference value AP generated by the reference value update unit 32 and the integrated value RP of the number of pulses calculated by the relative position information acquisition unit 31. And the absolute position of the valve shaft 200 in the rotatable range SR is calculated. The position determination unit 33 converts the calculated absolute position of the valve shaft 200 into a valve opening, and outputs the converted value as the actual opening PV.
 操作量算出部4は、弁軸200の回転方向の目標位置としての弁開度の目標値SPと、位置算出部3によって算出された実開度PVとに基づいて、弁軸200の操作量を算出する機能部である。操作量算出部4は、例えば、位置算出部3と同様に、マイクロコントローラやCPU等のプログラム処理装置によるプログラム処理によって実現することができる。上述の例の場合、プリント基板20に載置されたICチップ30によって実現される。 The operation amount calculation unit 4 is based on the target value SP of the valve opening as the target position in the rotation direction of the valve shaft 200 and the actual opening PV calculated by the position calculation unit 3. Is a functional unit for calculating The operation amount calculation unit 4 can be realized, for example, by program processing by a program processing device such as a microcontroller or CPU, similarly to the position calculation unit 3. In the case of the above-described example, this is realized by the IC chip 30 placed on the printed circuit board 20.
 具体的には、操作量算出部4は、目標値取得部41、偏差算出部42、および操作量決定部43を含む。 Specifically, the operation amount calculation unit 4 includes a target value acquisition unit 41, a deviation calculation unit 42, and an operation amount determination unit 43.
 目標値取得部41は、例えばバルブ制御システムにおける上位装置(図示せず)から与えられた弁開度の目標値SPを取得する機能部である。目標値SPは、外部コントローラから通信や、例えば4-20mAのアナログ信号によって設定される。 The target value acquisition unit 41 is a functional unit that acquires the target value SP of the valve opening given from, for example, a host device (not shown) in the valve control system. The target value SP is set by communication from an external controller or an analog signal of 4-20 mA, for example.
 偏差算出部42は、目標値取得部41によって取得された弁開度の目標値SPと、位置算出部3によって算出された実開度PVとの偏差ΔPを算出する機能部である。 The deviation calculating unit 42 is a functional unit that calculates a deviation ΔP between the target value SP of the valve opening acquired by the target value acquiring unit 41 and the actual opening PV calculated by the position calculating unit 3.
 操作量決定部43は、偏差算出部42によって算出された偏差ΔPに基づいて、弁軸200が目標値SPに基づく回転方向の目標位置に到達するまでに必要な操作量MVを算出する。 The operation amount determination unit 43 calculates the operation amount MV necessary until the valve shaft 200 reaches the target position in the rotation direction based on the target value SP, based on the deviation ΔP calculated by the deviation calculation unit 42.
 操作部5は、操作量算出部4によって算出された操作量MVに基づいて、弁軸200を回転可能範囲SR内で操作する機能部である。具体的に、操作部5は、電動モータ52、電動モータ駆動部51、および減速機53を含む。 The operation unit 5 is a functional unit that operates the valve shaft 200 within the rotatable range SR based on the operation amount MV calculated by the operation amount calculation unit 4. Specifically, the operation unit 5 includes an electric motor 52, an electric motor drive unit 51, and a speed reducer 53.
 電動モータ52は、弁軸200を操作するための回転力を発生させる部品である。電動モータ52としては、ブラシレスモータやステッピングモータ、同期モータ等を例示することができる。 The electric motor 52 is a component that generates a rotational force for operating the valve shaft 200. Examples of the electric motor 52 include a brushless motor, a stepping motor, and a synchronous motor.
 電動モータ駆動部51は、電動モータ52を駆動する機能部である。具体的に、電動モータ駆動部51は、操作量算出部4によって算出された操作量MVに応じた電流(または電圧)を電動モータ52に印加することにより、電動モータ52の出力軸を回転させる。 The electric motor drive unit 51 is a functional unit that drives the electric motor 52. Specifically, the electric motor drive unit 51 rotates the output shaft of the electric motor 52 by applying a current (or voltage) corresponding to the operation amount MV calculated by the operation amount calculation unit 4 to the electric motor 52. .
 減速機53は、電動モータ52よって発生した回転力を減速して弁軸200に伝達する動力伝達機構である。例えば、減速機53は、遊星歯車機構等の各種歯車機構によって構成されている。減速機53の出力軸が弁軸200に連結されることにより、電動モータ52の回転力を所定の減速比で減速した回転力によって弁軸200を回転させることができる。 The speed reducer 53 is a power transmission mechanism that reduces the rotational force generated by the electric motor 52 and transmits it to the valve shaft 200. For example, the speed reducer 53 is configured by various gear mechanisms such as a planetary gear mechanism. By connecting the output shaft of the speed reducer 53 to the valve shaft 200, the valve shaft 200 can be rotated by the rotational force obtained by reducing the rotational force of the electric motor 52 with a predetermined reduction ratio.
 ≪実施の形態1に係る回転制御装置100の動作原理≫
 次に、実施の形態1に係る回転制御装置100の動作原理について説明する。
 始めに、回転制御装置100による原点復帰の動作について説明する。
<< Operation Principle of Rotation Control Device 100 according to Embodiment 1 >>
Next, the operation principle of the rotation control device 100 according to the first embodiment will be described.
First, the origin return operation by the rotation control device 100 will be described.
 図4は、実施の形態1に係る回転制御装置100の原点復帰動作モードにおける動作の流れを示す図である。
 ここでは、回転制御装置100の電源投入の時点で、弁軸200が、弁開度が80%となる位置に到達している場合を例にとり、説明する。
FIG. 4 is a diagram showing an operation flow in the origin return operation mode of the rotation control device 100 according to the first embodiment.
Here, the case where the valve shaft 200 has reached the position where the valve opening degree becomes 80% when the power of the rotation control device 100 is turned on will be described as an example.
 回転制御装置100に電源が投入された場合、回転制御装置100は、相対的位置センサ1の原点復帰の処理を行う原点復帰動作モードで動作を開始する。原点復帰動作モードにおいて、回転制御装置100は、調節弁を閉じる方向に電動モータ52を駆動する(S11)。具体的には、電動モータ駆動部51は、操作量決定部43によって弁開度が0%となるように算出された操作量MVに基づいて、電動モータ52を駆動する。 When the rotation control device 100 is powered on, the rotation control device 100 starts operation in an origin return operation mode in which the origin return process of the relative position sensor 1 is performed. In the origin return operation mode, the rotation control device 100 drives the electric motor 52 in the direction to close the control valve (S11). Specifically, the electric motor drive unit 51 drives the electric motor 52 based on the operation amount MV calculated by the operation amount determination unit 43 so that the valve opening degree becomes 0%.
 次に、回転制御装置100は、ON/OFFセンサ2_1~2_nから検知信号が出力されたか否かを判定する(S12)。ステップS12において、ON/OFFセンサ2_1~2_nから検知信号が出力されなかった場合には、回転制御装置100は、引き続き、弁開度が0%になるように電動モータ52を駆動する。 Next, the rotation control device 100 determines whether or not a detection signal is output from the ON / OFF sensors 2_1 to 2_n (S12). If no detection signal is output from the ON / OFF sensors 2_1 to 2_n in step S12, the rotation control device 100 continues to drive the electric motor 52 so that the valve opening degree becomes 0%.
 一方、ステップS12において、ON/OFFセンサ2_1~2_nから検知信号が出力された場合には、回転制御装置100は、検知信号を出力したON/OFFセンサ2_1~2_nに対応する位置を、弁軸200の絶対的な位置を算出する際の基準値AP(初期点)とする(S13)。 On the other hand, when a detection signal is output from the ON / OFF sensors 2_1 to 2_n in step S12, the rotation control device 100 sets the position corresponding to the ON / OFF sensors 2_1 to 2_n that output the detection signal to the valve shaft. A reference value AP (initial point) for calculating the absolute position of 200 is set (S13).
 例えば、図2の例の場合、ステップS11において弁開度が80%となる位置から0%になる方向に弁軸200が回転し、その後、弁開度が70%となる位置Pbに弁軸200が到達したときに、ON/OFFセンサ2_4から検知信号P4が出力される。このとき、位置算出部3における基準値更新部32は、検知信号P4を出力したON/OFFセンサ2_4に対応する位置Pbを示す値を基準値APとして設定するとともに、リセット信号RSTを出力する。 For example, in the case of the example of FIG. 2, the valve shaft 200 rotates in the direction of 0% from the position where the valve opening degree becomes 80% in step S11, and then the valve shaft moves to the position Pb where the valve opening degree becomes 70%. When 200 reaches, the detection signal P4 is output from the ON / OFF sensor 2_4. At this time, the reference value update unit 32 in the position calculation unit 3 sets a value indicating the position Pb corresponding to the ON / OFF sensor 2_4 that has output the detection signal P4 as the reference value AP, and outputs a reset signal RST.
 基準値更新部32からのリセット信号RSTを受けた相対的位置情報取得部31は、それまでにカウントしていたパルス数の積算値RPをリセットする(S14)。 The relative position information acquisition unit 31 that has received the reset signal RST from the reference value update unit 32 resets the integrated value RP of the number of pulses counted so far (S14).
 以上により原点復帰の処理が完了し、回転制御装置100は、原点復帰動作モードから通常動作モードに移行する。 Thus, the origin return process is completed, and the rotation control device 100 shifts from the origin return operation mode to the normal operation mode.
 次に、原点復帰後の通常動作モードにおける回転制御装置100の動作について説明する。
 図5は、実施の形態1に係る回転制御装置の通常動作モードにおける動作の流れを示すフロー図である。
Next, the operation of the rotation control device 100 in the normal operation mode after returning to the origin will be described.
FIG. 5 is a flowchart showing an operation flow in the normal operation mode of the rotation control device according to the first embodiment.
 回転制御装置100は、原点復帰動作モードが終了すると、通常動作モードに移行する。通常動作モードにおいて、回転制御装置100は、上位装置から弁開度の目標値SPの変更が指示されるまで待機する(S20)。弁開度の目標値SPの変更が指示された場合には、回転制御装置100の偏差算出部42が、位置算出部3によって算出された弁軸200の絶対的な位置に基づく実開度PVが上位装置から指示された目標値SPよりも大きいか否かを判定する(S21)。 The rotation control device 100 shifts to the normal operation mode when the origin return operation mode ends. In the normal operation mode, the rotation control device 100 stands by until an instruction to change the target value SP of the valve opening degree is given from the host device (S20). When the change of the target value SP of the valve opening is instructed, the deviation calculating unit 42 of the rotation control device 100 performs the actual opening PV based on the absolute position of the valve shaft 200 calculated by the position calculating unit 3. Is larger than the target value SP instructed from the host device (S21).
 ステップS21において、実開度PVが目標値SPよりも大きい場合、回転制御装置100は、調節弁を閉じる方向に電動モータ52を駆動する(S22a)。具体的には、操作量決定部43が、偏差算出部42によって算出された偏差ΔPに基づいて、弁開度が目標値SPとなるように操作量MVを算出し、電動モータ駆動部51が、その操作量MVに基づいて電動モータ52を駆動する。 In step S21, when the actual opening PV is larger than the target value SP, the rotation control device 100 drives the electric motor 52 in a direction to close the control valve (S22a). Specifically, the operation amount determination unit 43 calculates the operation amount MV so that the valve opening becomes the target value SP based on the deviation ΔP calculated by the deviation calculation unit 42, and the electric motor drive unit 51 The electric motor 52 is driven based on the operation amount MV.
 一方、ステップS21において、実開度PVが目標値SPよりも小さい場合、回転制御装置100は、調節弁を開く方向に電動モータ52を駆動する(S22b)。具体的には、操作量決定部43が、偏差算出部42によって算出された偏差ΔPに基づいて、弁開度が目標値SPとなるように操作量MVを算出する。そして、電動モータ駆動部51が、その操作量MVに基づいて電動モータ52を駆動する。 On the other hand, when the actual opening PV is smaller than the target value SP in step S21, the rotation control device 100 drives the electric motor 52 in a direction to open the control valve (S22b). Specifically, the operation amount determination unit 43 calculates the operation amount MV based on the deviation ΔP calculated by the deviation calculation unit 42 so that the valve opening becomes the target value SP. Then, the electric motor drive unit 51 drives the electric motor 52 based on the operation amount MV.
 ステップS22aまたはステップS22bの後、回転制御装置100は、ON/OFFセンサ2_1~2_nの一つから検知信号が出力されたか否かを判定する(S23)。 After step S22a or step S22b, the rotation control device 100 determines whether or not a detection signal is output from one of the ON / OFF sensors 2_1 to 2_n (S23).
 ステップS23において、ON/OFFセンサ2_1~2_nから検知信号が出力されていない場合には、回転制御装置100は、直前に基準値更新部32によって設定された基準値APと、相対的位置情報取得部31によって算出された相対的位置センサ1からの出力パルス数の積算値RPに基づく弁軸200の機械的変位量とに基づいて、実開度PV(弁軸200の絶対的な位置)を算出する(S26)。 If no detection signal is output from the ON / OFF sensors 2_1 to 2_n in step S23, the rotation control device 100 acquires the reference value AP set by the reference value update unit 32 immediately before and the relative position information. Based on the mechanical displacement of the valve shaft 200 based on the integrated value RP of the number of output pulses from the relative position sensor 1 calculated by the unit 31, the actual opening PV (the absolute position of the valve shaft 200) is calculated. Calculate (S26).
 例えば、上述の原点復帰の処理(ステップS11~S14)の後、ON/OFFセンサ2_1~2_nから検知信号が一度も出力されていない場合を考える。この場合、原点復帰動作モードのステップS13において設定した基準値AP(上記例の場合、弁開度が70%となる位置)に、相対的位置情報取得部31によって算出された積算値RPに基づく弁軸200の機械的変位量を加算することによって、実開度PVを算出する。 For example, consider a case where no detection signal has been output from the ON / OFF sensors 2_1 to 2_n after the above-described origin return processing (steps S11 to S14). In this case, the reference value AP (in the above example, the position at which the valve opening is 70%) set in step S13 of the origin return operation mode is based on the integrated value RP calculated by the relative position information acquisition unit 31. The actual opening PV is calculated by adding the mechanical displacement of the valve shaft 200.
 一方、ステップS23において、ON/OFFセンサ2_1~2_nから検知信号が出力された場合には、回転制御装置100は、基準値APを更新する(S24)。具体的には、基準値更新部32が、検知信号を出力したON/OFFセンサ2_1~2_nに対応する位置を、新たな基準値APに設定する。例えば、上述の原点復帰動作モードにおいて、基準値APが位置Pb(弁開度:70%)を示す値に設定された直後のステップS23において、ON/OFFセンサ2_3から検知信号P3が出力されたとする。この場合、基準値更新部32は、基準値APを、位置Pb(弁開度:70%)を示す値から位置Pm(弁開度:50%)を示す値に変更する。このとき、基準値更新部32は、リセット信号RSTも出力する。 On the other hand, when a detection signal is output from the ON / OFF sensors 2_1 to 2_n in step S23, the rotation control device 100 updates the reference value AP (S24). Specifically, the reference value update unit 32 sets the position corresponding to the ON / OFF sensors 2_1 to 2_n that output the detection signal as a new reference value AP. For example, in the above-described origin return operation mode, the detection signal P3 is output from the ON / OFF sensor 2_3 in step S23 immediately after the reference value AP is set to a value indicating the position Pb (valve opening: 70%). To do. In this case, the reference value updating unit 32 changes the reference value AP from a value indicating the position Pb (valve opening: 70%) to a value indicating the position Pm (valve opening: 50%). At this time, the reference value update unit 32 also outputs a reset signal RST.
 基準値更新部32からのリセット信号RSTを受けた相対的位置情報取得部31は、それまでにカウントしていた相対的位置センサ1の出力パルス数の積算値RPをリセットする(S25)。 The relative position information acquisition unit 31 that has received the reset signal RST from the reference value update unit 32 resets the integrated value RP of the number of output pulses of the relative position sensor 1 that has been counted so far (S25).
 次に、回転制御装置100は、ステップS24において基準値更新部32によって設定された基準値APと、ステップS25でリセットされた後に相対的位置情報取得部31によってカウントされた積算値RPとに基づいて、実開度PV(弁軸200の絶対的な位置)を算出する(S26)。例えば、ステップS24において、基準値APが位置Pm(弁開度:50%)を示す値に変更された場合には、その基準値APに、ステップS25以降に相対的位置情報取得部31によってカウントされた積算値RPに基づく弁軸200の機械的変位量を加算する。これにより、回転制御装置100は弁軸200の絶対的な位置を算出し、その位置から実開度PVを算出する。 Next, the rotation control device 100 is based on the reference value AP set by the reference value update unit 32 in step S24 and the integrated value RP counted by the relative position information acquisition unit 31 after being reset in step S25. The actual opening PV (absolute position of the valve shaft 200) is calculated (S26). For example, when the reference value AP is changed to a value indicating the position Pm (valve opening: 50%) in step S24, the reference value AP is counted by the relative position information acquisition unit 31 after step S25. The mechanical displacement amount of the valve shaft 200 based on the integrated value RP is added. Thereby, the rotation control apparatus 100 calculates the absolute position of the valve shaft 200, and calculates the actual opening PV from the position.
 次に、回転制御装置100は、ステップS26において算出された実開度PVが目標値SPと一致するか否かを判定する(S27)。 Next, rotation control device 100 determines whether or not actual opening PV calculated in step S26 matches target value SP (S27).
 ステップS27において、実開度PVが目標値SPと一致しない場合には、ステップS21に戻り、回転制御装置100は、再度、上述の処理(S21~S26)を行う。一方、ステップS27において、実開度PVが目標値SPと一致した場合には、回転制御装置100は、弁開度を目標値SPに設定する一連の処理を終了する。 In step S27, when the actual opening PV does not coincide with the target value SP, the process returns to step S21, and the rotation control device 100 performs the above-described processing (S21 to S26) again. On the other hand, when the actual opening PV coincides with the target value SP in step S27, the rotation control device 100 ends a series of processes for setting the valve opening to the target value SP.
 ≪実施の形態1に係る回転制御装置100の効果≫
 上述したように、本発明に係る回転制御装置100は、弁軸200の回転方向の位置を測定するための位置センサとして非接触式の相対的位置センサ1に加えて、弁軸200が全閉位置Pcおよび全開位置Poを除く第3位置(Pa,Pm,Pb)に到達したときに検知信号を出力するON/OFFセンサ2_2~2_4を備えている。回転制御装置100は、検知信号を出力したON/OFFセンサ2_2~2_4に対応する位置を示す基準値APと、その検知信号が出力されてからの、相対的位置センサ1によって検出された機械的変位Mdの積算値RPとに基づいて、弁軸200の回転方向の絶対的な位置を算出する。
<< Effect of rotation control device 100 according to Embodiment 1 >>
As described above, in the rotation control device 100 according to the present invention, the valve shaft 200 is fully closed in addition to the non-contact type relative position sensor 1 as a position sensor for measuring the position of the valve shaft 200 in the rotation direction. ON / OFF sensors 2_2 to 2_4 are provided that output detection signals when reaching third positions (Pa, Pm, Pb) excluding the position Pc and the fully open position Po. The rotation control device 100 includes a reference value AP indicating a position corresponding to the ON / OFF sensors 2_2 to 2_4 that output the detection signal, and a mechanical position detected by the relative position sensor 1 after the detection signal is output. Based on the integrated value RP of the displacement Md, the absolute position of the valve shaft 200 in the rotational direction is calculated.
 これによれば、全閉位置Pcおよび全開位置Poだけでなく上記第3位置も、弁軸200の位置測定における基準点、すなわち、“原点”とみなすことができる。そのため、全閉位置Pcまたは全開位置Poのみを原点に設定した場合に比べて、原点復帰の処理に要する時間を短縮することが可能となる。 According to this, not only the fully closed position Pc and the fully opened position Po but also the third position can be regarded as a reference point in the position measurement of the valve shaft 200, that is, the “origin”. For this reason, it is possible to reduce the time required for the origin return process compared to the case where only the fully closed position Pc or the fully open position Po is set as the origin.
 具体的には、回転可能範囲SR内にn個のON/OFFセンサ2_1~2_nを配置した場合に、回転制御装置100の電源投入時に全開位置Poにある弁軸200を原点復帰させるのに要する時間Tは、下記式(1)で表される。ここで、Tfは、弁軸200が全開位置から全閉位置まで移動するのに要する時間(フルストローク時間)である。 Specifically, when n ON / OFF sensors 2_1 to 2_n are arranged in the rotatable range SR, it is necessary to return the origin of the valve shaft 200 in the fully open position Po when the rotation control device 100 is turned on. The time T is represented by the following formula (1). Here, Tf is the time (full stroke time) required for the valve shaft 200 to move from the fully open position to the fully closed position.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、5個(n=5)のON/OFFセンサ2_1~2_5を配置し、フルストローク時間Tfが60〔秒〕である場合、全開位置Poにある弁軸200を原点復帰させるのに要する時間Tは、60/(5-1)=15〔秒〕となる。 For example, when five (n = 5) ON / OFF sensors 2_1 to 2_5 are arranged and the full stroke time Tf is 60 [seconds], the time required to return the valve shaft 200 at the fully open position Po to the origin. T is 60 / (5-1) = 15 [seconds].
 このように、本発明に係る回転制御装置100によれば、インクリメンタル型のロータリエンコーダのような相対的位置センサ1を用いた場合に必要となる弁軸200の原点復帰に要する時間を短縮することが可能となる。
 すなわち、非接触式の相対的位置センサによって操作対象軸の回転方向の位置の測定を行う回転制御装置において、操作対象軸の原点復帰に要する時間を短くし、且つ操作対象軸の位置測定の誤差を小さくすることが可能となる。
As described above, according to the rotation control device 100 according to the present invention, the time required for returning the origin of the valve shaft 200 required when the relative position sensor 1 such as the incremental rotary encoder is used can be shortened. Is possible.
That is, in a rotation control device that measures the position of the operation target axis in the rotation direction using a non-contact type relative position sensor, the time required for the return of the origin of the operation target axis is shortened, and the position measurement error of the operation target axis is reduced. Can be reduced.
 また、本発明に係る回転制御装置100は、弁軸200が全閉位置Pcおよび全開位置Poを除く第3位置を通過する度に原点復帰と同様の処理を行う。具体的には、n=5としたとき、回転制御装置100は、ON/OFFセンサ2_2~2_4から検知信号が出力された場合に、基準値APを、その検知信号を出力したON/OFFセンサ2_2~2_4に対応する位置を示す値に更新するとともに、積算値RPをリセットする。 Further, the rotation control device 100 according to the present invention performs the same process as the return to origin every time the valve shaft 200 passes through the third position excluding the fully closed position Pc and the fully opened position Po. Specifically, when n = 5, the rotation control device 100 outputs the reference value AP as the reference value AP and outputs the detection signal when the detection signal is output from the ON / OFF sensors 2_2 to 2_4. The value is updated to a value indicating a position corresponding to 2_2 to 2_4, and the integrated value RP is reset.
 これによれば、回転制御装置100を長時間運転した場合であっても、上述した、減速機53等を構成する歯車のバックラッシュの累積、電動モータ52としてステッピングモータや同期モータ等の電動モータをオープンループで使用した場合の電動モータの脱調、および同期モータを使用した場合における電源周波数の変動等に起因する、相対的位置センサ1による弁軸200の機械的変位量の測定誤差を小さくすることができる。これにより、調節弁の弁開度制御をより正確に行うことが可能となる。 According to this, even when the rotation control device 100 is operated for a long time, the above-described accumulation of backlash of the gears constituting the speed reducer 53 and the like, and the electric motor 52 as an electric motor such as a stepping motor and a synchronous motor. The measurement error of the mechanical displacement amount of the valve shaft 200 by the relative position sensor 1 due to the step-out of the electric motor when the motor is used in an open loop and the fluctuation of the power supply frequency when the synchronous motor is used is reduced. can do. Thereby, it becomes possible to perform the valve opening degree control of the control valve more accurately.
 また、回転制御装置100によれば、ON/OFFセンサ2_1~2_nを複数設けることにより、ON/OFFセンサ2_1~2_nの1つが故障した場合であっても、その他のON/OFFセンサ2_1~2_nによって弁開度制御を継続することができる。これにより、回転制御装置100としての信頼性を向上させることができる。 Further, according to the rotation control device 100, by providing a plurality of ON / OFF sensors 2_1 to 2_n, even if one of the ON / OFF sensors 2_1 to 2_n fails, the other ON / OFF sensors 2_1 to 2_n Thus, the valve opening degree control can be continued. Thereby, the reliability as the rotation control apparatus 100 can be improved.
 また、回転可能範囲SR内に設置するON/OFFセンサ2_1~2_nの個数を増やすことにより、原点復帰に要する時間と相対的位置センサ1による弁軸200の機械的変位量の測定誤差を更に小さくすることが可能となる。 Further, by increasing the number of ON / OFF sensors 2_1 to 2_n installed in the rotatable range SR, the time required for returning to the origin and the measurement error of the mechanical displacement amount of the valve shaft 200 by the relative position sensor 1 can be further reduced. It becomes possible to do.
<カム部材の他の構成例>
 上述した実施の形態1では、カム部材24a、24bを、それぞれ、プリント基板20の主面20a、20b上に配置した例について説明した。しかし、カム部材24a、24bの配置については、これに限定されるものではない。以下に述べるように、カム部材24a、24bに代えて、例えば、波形の表面を有する一枚の板状部材をプリント基板20の両主面20a、20b上のそれぞれに配置するようにしても良い。このようなカム部材を用いた、不連続な絶対的位置センサの構成の例を図6Aおよび図6Bを参照して説明する。
<Another configuration example of the cam member>
In the first embodiment described above, the example in which the cam members 24a and 24b are arranged on the main surfaces 20a and 20b of the printed circuit board 20 has been described. However, the arrangement of the cam members 24a and 24b is not limited to this. As described below, instead of the cam members 24 a and 24 b, for example, a single plate-like member having a corrugated surface may be disposed on each of the main surfaces 20 a and 20 b of the printed circuit board 20. . An example of the configuration of a discontinuous absolute position sensor using such a cam member will be described with reference to FIGS. 6A and 6B.
 図6Aは、不連続な絶対的位置センサの他の構成例を示す図である。図6Bは、図6Aにおいて円周C1における断面の一部を模式的に表した図である。図6Aおよび図6Bは、この他の構成例における電極とカム部材との関係を説明する図である。 FIG. 6A is a diagram showing another configuration example of a discontinuous absolute position sensor. FIG. 6B is a diagram schematically showing a part of a cross section at the circumference C1 in FIG. 6A. 6A and 6B are diagrams illustrating the relationship between the electrode and the cam member in this other configuration example.
 図6Aに示すように、この他の構成例において、ON/OFFセンサ2_1~2_5の電極21a(21b)がプリント基板20の主面20a(20b)上において、弁軸200の軸を中心とする同一の円周C1上に配置されている。この点において、図6Aに示す構成例は、図3A乃至図3Eに示した不連続な絶対的位置センサと共通する。一方、平面視で円弧状に形成された1枚のカム部材34a(34b)が、それぞれプリント基板20の主面20a(20b)上において、弁軸200の軸を中心とする円周C2上に配置されている。この点において、図6Aに示す構成例は、図3A乃至図3Eに示した不連続な絶対的位置センサと相違する。 As shown in FIG. 6A, in this other configuration example, the electrodes 21a (21b) of the ON / OFF sensors 2_1 to 2_5 are centered on the axis of the valve shaft 200 on the main surface 20a (20b) of the printed circuit board 20. They are arranged on the same circumference C1. In this respect, the configuration example shown in FIG. 6A is in common with the discontinuous absolute position sensor shown in FIGS. 3A to 3E. On the other hand, one cam member 34 a (34 b) formed in an arc shape in plan view is on a circumference C 2 centering on the axis of the valve shaft 200 on the main surface 20 a (20 b) of the printed circuit board 20. Has been placed. In this respect, the configuration example shown in FIG. 6A is different from the discontinuous absolute position sensor shown in FIGS. 3A to 3E.
 この他の構成例では、カム部材34a、34bは、それぞれ絶縁性を有する材料から形成される。カム部材34a、34bの表面は、それぞれ円周C2に沿って波状に形成されている。カム部材34a、34bは、プリント基板20の両主面20a、20bにそれぞれ配置されたときに、弁軸200を中心とする径方向において、波状の底に相当する部分がON/OFFセンサ2_1~2_5の電極21a、21bと一致する。 In other configuration examples, the cam members 34a and 34b are each formed of an insulating material. The surfaces of the cam members 34a and 34b are each formed in a wave shape along the circumference C2. When the cam members 34a and 34b are respectively disposed on the two main surfaces 20a and 20b of the printed circuit board 20, the portions corresponding to the wavy bottoms in the radial direction centered on the valve shaft 200 are the ON / OFF sensors 2_1 to. It corresponds to the electrodes 21a and 21b of 2_5.
 したがって、ショートプレート201の接触子201a、201bはカム部材34a、34bと接触しながら周方向に移動して、弁軸200が所定の位置のいずれにもないときには、カム部材34a、34bが接触子201a、201bの他端側を両主面20a、20bから離間する方向に移動させる。この場合は、接触子201a、201bの接点201a’、201b’はプリント基板20の主面20a、20bとは接触しない。これに対し、弁軸200が所定の位置のいずれかにあるときは、カム部材34a、34bのプリント基板20の両主面20a、20bからの高さが低くなる。そのため、ショートプレート201の接触子201a、201bは電極21a、21bに接触する。 Accordingly, the contacts 201a and 201b of the short plate 201 move in the circumferential direction while being in contact with the cam members 34a and 34b, and when the valve shaft 200 is not in any of the predetermined positions, the cam members 34a and 34b are contacted. The other end sides of 201a and 201b are moved away from both main surfaces 20a and 20b. In this case, the contacts 201 a ′ and 201 b ′ of the contacts 201 a and 201 b do not contact the main surfaces 20 a and 20 b of the printed circuit board 20. On the other hand, when the valve shaft 200 is in any one of the predetermined positions, the heights of the cam members 34a and 34b from both the main surfaces 20a and 20b of the printed circuit board 20 are reduced. Therefore, the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b.
 さらに、図6Bに示すように、カム部材34a、34bの表面形状を工夫することによって、円周C1に沿ってショートプレート201の接触子201a、201bが電極21a、21bに接触できる範囲を、間隔Wとすることが望ましい。より詳細には、接触子201a、201bの電極21a、21bと接触する部分の幅よりも若干広い範囲で、かつ、できるだけ接触子201a、201bの幅に近づけた間隔Wとすることが望ましい。その理由は次の通りである。 Further, as shown in FIG. 6B, by devising the surface shape of the cam members 34a and 34b, the range in which the contacts 201a and 201b of the short plate 201 can contact the electrodes 21a and 21b along the circumference C1 is set. W is desirable. More specifically, it is desirable that the distance W be in a range that is slightly wider than the width of the contact portions 201a and 201b that are in contact with the electrodes 21a and 21b, and as close as possible to the width of the contacts 201a and 201b. The reason is as follows.
 電極21a、21bは、円周C1方向に幅を持つため、弁軸200が同じ位置に到達しても、その位置に到達するときの方向に応じて弁軸200の回転角度と検出回路23_iの出力との関係が相違するという、いわゆるヒステリシスが生じる。これに対し、この他の構成例のように、カム部材34a、34bの表面形状を工夫して、電極21a、21bと接触子201a、201bとが電気的に接触できる範囲を間隔Wに限定することによって、ヒステリシスを低減することができる。 Since the electrodes 21a and 21b have a width in the direction of the circumference C1, even if the valve shaft 200 reaches the same position, the rotation angle of the valve shaft 200 and the detection circuit 23_i of the detection circuit 23_i depend on the direction when reaching the position. So-called hysteresis occurs in which the relationship with the output is different. On the other hand, as in this other configuration example, the surface shape of the cam members 34a and 34b is devised to limit the range in which the electrodes 21a and 21b and the contacts 201a and 201b can be in electrical contact to the interval W. Thus, the hysteresis can be reduced.
<不連続な絶対的位置センサの変形例>
 上述したように、不連続な絶対的位置センサは、ON/OFFセンサ2_1~2_5の電極21a、21bが円周C1方向に幅を持つことによって、ヒステリシスを有する。そこで、このヒステリシスを低減するための構成を有する不連続な絶対的位置センサの変形例について説明する。
<Modified example of discontinuous absolute position sensor>
As described above, the discontinuous absolute position sensor has hysteresis because the electrodes 21a and 21b of the ON / OFF sensors 2_1 to 2_5 have a width in the circumferential C1 direction. Therefore, a modification of the discontinuous absolute position sensor having a configuration for reducing this hysteresis will be described.
 図7Aは、不連続な絶対的位置センサの変形例を示す図である。図7Bは、図7Aにおいて円周C1における断面の一部を模式的に表した図である。図7Cは、図7Aに示すIII-III線における断面を示す図である。図7A~図7Cは、この変形例における電極とカム部材との関係を説明する図である。
 この変形例に係る不連続な絶対的位置センサは、図7Aに示すように、電極21a、21bとカム部材44a、44bとが、それぞれプリント基板20の主面20a、20b上において、弁軸200の軸を中心とする同一の円周C1上に配置されている。この点において、この変形例に係る不連続な絶対的位置センサは、図3A乃至図3Eに示したものと相違する。
FIG. 7A is a diagram showing a modification of the discontinuous absolute position sensor. FIG. 7B is a diagram schematically showing a part of a cross section at the circumference C1 in FIG. 7A. FIG. 7C is a view showing a cross section taken along line III-III shown in FIG. 7A. 7A to 7C are views for explaining the relationship between the electrode and the cam member in this modification.
As shown in FIG. 7A, the discontinuous absolute position sensor according to this modification includes electrodes 21a and 21b and cam members 44a and 44b on the main surfaces 20a and 20b of the printed circuit board 20, respectively. Are arranged on the same circumference C <b> 1 centered on the axis. In this respect, the discontinuous absolute position sensor according to this modification is different from that shown in FIGS. 3A to 3E.
 この他の構成例では、カム部材44a、44bは、それぞれ絶縁性を有する材料から形成される。また、図7Bに示すように、カム部材44a、44bのそれぞれは、隣り合う電極21a、21bの間に延在する。また、図7Aおよび図7Bに示すように、カム部材44a、44bのうち、それぞれ各主面20a、20b上で隣り合う2つのカム部材の互いに対向する端部は、それぞれ電極21a、21bの一部を覆っている。各主面20a、20b上で隣り合う2つのカム部材の互いに対向する端部は、電極21a、21b上で互いに離間している。 In this other configuration example, the cam members 44a and 44b are each formed of an insulating material. As shown in FIG. 7B, each of the cam members 44a and 44b extends between the adjacent electrodes 21a and 21b. As shown in FIGS. 7A and 7B, of the cam members 44a and 44b, the two cam members adjacent to each other on the main surfaces 20a and 20b are opposite to each other, respectively, of the electrodes 21a and 21b. Covers the part. End portions of the two cam members adjacent to each other on the main surfaces 20a and 20b are separated from each other on the electrodes 21a and 21b.
 図7Bは、第1主面20a上に配置された、互いに隣り合う2つの第1カム部材44aが、円周C1に沿って間隔Wgを隔てて配置されていることを図示している。同様に、第2主面20b上で互いに隣り合う第2カム部材44bも円周C1に沿って間隔Wgを隔てて配置されている。したがって、電極21a、21bはそれぞれ、ショートプレート201の接触子201a、201bが移動する方向、すなわち、円周C1に沿って、間隔Wgにわたって露出し、それ以外の部分はカム部材44a、44bに覆われている。 FIG. 7B illustrates that two adjacent first cam members 44a arranged on the first main surface 20a are arranged along the circumference C1 with an interval Wg therebetween. Similarly, the second cam members 44b adjacent to each other on the second main surface 20b are also arranged with a gap Wg along the circumference C1. Therefore, the electrodes 21a and 21b are exposed over the interval Wg along the direction in which the contacts 201a and 201b of the short plate 201 move, that is, along the circumference C1, and the other portions are covered by the cam members 44a and 44b. It has been broken.
 したがって、弁軸200が所定の位置のいずれにもないときは、ショートプレート201の接触子201a、201bは、それぞれカム部材44a、44bと接触して、プリント基板20の両主面20a、20bから離間する方向に移動する。一方、弁軸200が所定の位置のいずれかにあるときには、図7Aおよび図7Bに示すように、ショートプレート201の接触子201a、201bの接点201a’、201b’がそれぞれ電極21a、21bに接触して、検知信号が出力される。
 このとき、図7Bに示すように、カム部材44a、44bの端部が電極21a、21bの一部を覆い、電極21a、21bと接触子201a、201bとが電気的に接触できる範囲が間隔Wgに限定されている。したがって、弁軸200の位置検出の精度を上げられるとともに、ヒステリシスを低減することができる。
Therefore, when the valve shaft 200 is not in any of the predetermined positions, the contacts 201a and 201b of the short plate 201 come into contact with the cam members 44a and 44b, respectively, and from both main surfaces 20a and 20b of the printed circuit board 20. Move in the direction of separation. On the other hand, when the valve shaft 200 is in one of the predetermined positions, as shown in FIGS. 7A and 7B, the contacts 201a ′ and 201b ′ of the contacts 201a and 201b of the short plate 201 are in contact with the electrodes 21a and 21b, respectively. Then, a detection signal is output.
At this time, as shown in FIG. 7B, the end portions of the cam members 44a and 44b cover a part of the electrodes 21a and 21b, and the range in which the electrodes 21a and 21b and the contacts 201a and 201b can be electrically contacted is the distance Wg. It is limited to. Therefore, the accuracy of position detection of the valve shaft 200 can be increased and the hysteresis can be reduced.
 また、この変形例におけるカム部材44a、44bは、プリント基板20の主面20a、20bに配置された状態で円周C1に沿って形成された溝を有している。したがって、図7Aに示すように、弁軸200が所定の位置になく、ショートプレート201の接触子201a、201bが平面視で電極と電極との間に位置する状態では、接触子201a、201bは、接点201a’、201b’以外の位置でカム部材44a、44bと接する。そのため、図7Cに示すように、接点201a’、201b’は、溝によってカム部材44a、44bと接することはない。したがって、接点の摩耗を防ぎ、信頼性と耐久性の向上に寄与することができる。
 なお、この変形例では、図7Cに記載するように、カム部材44a、44bに溝を設けた例を説明した。しかし、溝を設ける代わりに、図7Dに記載するように、カム部材44a’、44b’の厚さ若しくはプリント基板20の主面20a、20bからの高さが弁軸200を中心として径方向外側に行くにつれて低くなるような形状にカム部材44a’、44b’を形成してもよい。
Further, the cam members 44a and 44b in this modified example have grooves formed along the circumference C1 in a state of being disposed on the main surfaces 20a and 20b of the printed circuit board 20. Therefore, as shown in FIG. 7A, when the valve shaft 200 is not in a predetermined position and the contacts 201a and 201b of the short plate 201 are positioned between the electrodes in plan view, the contacts 201a and 201b are The cam members 44a and 44b are contacted at positions other than the contacts 201a ′ and 201b ′. Therefore, as shown in FIG. 7C, the contacts 201a ′ and 201b ′ do not contact the cam members 44a and 44b by the grooves. Therefore, it is possible to prevent wear of the contacts and contribute to improvement in reliability and durability.
In this modification, as shown in FIG. 7C, an example in which grooves are provided in the cam members 44a and 44b has been described. However, instead of providing a groove, as shown in FIG. 7D, the thickness of the cam members 44a ′ and 44b ′ or the height from the main surfaces 20a and 20b of the printed circuit board 20 is radially outward from the valve shaft 200. The cam members 44 a ′ and 44 b ′ may be formed in a shape that becomes lower as going to.
<他の構成例による効果>
 電極21a、21bは、円周C1方向に幅を持つため、弁軸200が同じ位置に到達しても、その位置に到達するときの方向に応じて弁軸200の回転角度と検出回路23_iの出力との関係が相違するという、いわゆるヒステリシスが生じる。これに対し、この他の構成例においては、図7Bに示すように、カム部材44a、44bの端部が電極21a、21bの一部を覆い、電極21a、21bと接触子201a、201bとが電気的に接触できる範囲を間隔Wgに限定する。これにより、弁軸200が所定の位置にあるときにのみ接触子201a、201bと電極21a、21bとが接触する構造に近づけることができる。そのため、位置検出の精度を向上させるとともに、ヒステリシスを低減することができる。
<Effects of other configuration examples>
Since the electrodes 21a and 21b have a width in the direction of the circumference C1, even if the valve shaft 200 reaches the same position, the rotation angle of the valve shaft 200 and the detection circuit 23_i of the detection circuit 23_i depend on the direction when reaching the position. So-called hysteresis occurs in which the relationship with the output is different. On the other hand, in this other configuration example, as shown in FIG. 7B, the ends of the cam members 44a and 44b cover parts of the electrodes 21a and 21b, and the electrodes 21a and 21b and the contacts 201a and 201b The range in which electrical contact can be made is limited to the interval Wg. Thereby, it is possible to approach the structure in which the contacts 201a and 201b and the electrodes 21a and 21b are in contact only when the valve shaft 200 is in a predetermined position. Therefore, the accuracy of position detection can be improved and the hysteresis can be reduced.
 なお、ヒステリシスを低減する観点からは、この間隔Wgをできるだけ狭くすることで精度を上げることができる。
 また、カム部材44a、44bに溝を設けたり、プリント基板20の主面20a、20bに対して傾斜した面を持たせてもよい。このような構成とすると、接触子201a,201bの接点201a’、201b’は、電極21a以外のところでカム部材やその他の部材と接することはない。したがって、ON/OFFセンサの寿命と信頼性を向上させることができる。
From the viewpoint of reducing hysteresis, the accuracy can be improved by making the interval Wg as narrow as possible.
Further, the cam members 44 a and 44 b may be provided with grooves, or may have surfaces inclined with respect to the main surfaces 20 a and 20 b of the printed circuit board 20. With such a configuration, the contacts 201a ′ and 201b ′ of the contacts 201a and 201b do not come into contact with the cam member or other members other than the electrode 21a. Therefore, the lifetime and reliability of the ON / OFF sensor can be improved.
 <実施の形態2>
 実施の形態1に係る回転制御装置を、電源を落とすことなく連続して運転させた場合、原点復帰の処理が長時間行われない。そのため、弁軸の回転方向を切り換えたときに減速機等を構成する歯車において発生するバックラッシュの累積により、ロータリエンコーダの出力パルス数の積算値と実際の弁軸の回転方向における機械的変位量との間にずれが生じ、弁開度の測定結果に誤差が生じる。
 また、ON/OFFセンサを複数配置した場合であっても、隣り合うON/OFFセンサ間で弁軸が移動を繰り返している場合には、バックラッシュが累積することがある。
<Embodiment 2>
When the rotation control device according to the first embodiment is continuously operated without turning off the power, the return-to-origin process is not performed for a long time. Therefore, the accumulated value of the number of output pulses of the rotary encoder and the amount of mechanical displacement in the actual direction of rotation of the valve shaft due to the accumulation of backlash generated in the gears constituting the speed reducer when the rotation direction of the valve shaft is switched. And a difference occurs in the measurement result of the valve opening.
Even when a plurality of ON / OFF sensors are arranged, backlash may accumulate if the valve shaft repeatedly moves between adjacent ON / OFF sensors.
 そこで実施の形態2に係る回転制御装置は、非接触式の相対的位置センサによって操作対象軸の回転方向の位置の測定を行う回転制御装置において、バックラッシュの累積に伴う測定誤差を低減することを目的とする。
 ≪実施の形態2に係る回転制御装置の構成≫
 図8は、実施の形態2に係る回転制御装置の構成を示す図である。
 実施の形態2に係る回転制御装置100Aは、弁軸200の回転方向が反転した回数をカウントし、そのカウント値が閾値を超えた場合に弁軸200を操作して相対的位置センサ31によって検出された機械的変位Mdの積算値RPをリセットする、いわゆる弁軸200の回転方向の反転回数に基づく強制リセット機能を有する。この点において、回転制御装置100Aは、実施の形態1に係る回転制御装置100と相違する。ON/OFFセンサの構成等を含む、それ以外の構成は、上述した実施の形態1と同一であるので、共通する構成要素には同一の符号を付し、その詳細な説明は省略する。
Therefore, the rotation control device according to the second embodiment reduces a measurement error associated with the accumulation of backlash in the rotation control device that measures the position of the operation target shaft in the rotation direction using a non-contact relative position sensor. With the goal.
<< Configuration of Rotation Control Device According to Embodiment 2 >>
FIG. 8 is a diagram illustrating a configuration of the rotation control device according to the second embodiment.
The rotation control device 100A according to the second embodiment counts the number of times that the rotation direction of the valve shaft 200 is reversed, and detects the relative position sensor 31 by operating the valve shaft 200 when the count value exceeds a threshold value. It has a forced reset function based on the so-called number of reversals in the rotational direction of the valve shaft 200, which resets the integrated value RP of the mechanical displacement Md. In this respect, rotation control device 100A is different from rotation control device 100 according to the first embodiment. Since the other configuration including the configuration of the ON / OFF sensor is the same as that of the first embodiment described above, the common components are denoted by the same reference numerals, and detailed description thereof is omitted.
 具体的に、回転制御装置100Aは、反転回数カウント部6を更に有する。反転回数カウント部6は、操作対象軸としての弁軸200の回転方向が反転した回数をカウントし、そのカウント値を保持する。反転回数カウント部6は、例えばマイクロコントローラに内蔵されているカウンタおよびプログラムによって実現することができる。 Specifically, the rotation control device 100A further includes a reversal count unit 6. The inversion number counting unit 6 counts the number of times that the rotation direction of the valve shaft 200 as the operation target shaft is inverted, and holds the count value. The inversion number counting unit 6 can be realized by, for example, a counter and a program built in the microcontroller.
 例えば、反転回数カウント部6は、直前に弁軸200が回転した方向を記憶しておき、次に弁軸200を回転させる方向が直前に弁軸200が回転した方向と異なる場合には、反転回数Rcをインクリメントする。一方、次に弁軸を回転させる方向が直前に弁軸200が回転した方向と一致する場合には、反転回数カウント部6は、反転回数Rcをインクリメントしない。 For example, the reversal number counting unit 6 stores the direction in which the valve shaft 200 has been rotated immediately before, and then reverses when the direction in which the valve shaft 200 is rotated is different from the direction in which the valve shaft 200 has been rotated immediately before. The number of times Rc is incremented. On the other hand, when the direction in which the valve shaft is rotated next coincides with the direction in which the valve shaft 200 has been rotated immediately before, the inversion number counting unit 6 does not increment the inversion number Rc.
 また、反転回数カウント部6は、ON/OFFセンサ2_1~2_nから検知信号が出力された場合には、反転回数Rcをリセットする。例えば、反転回数カウント部6は、基準値更新部32から出力されたリセット信号RSTを受けて、反転回数Rcをリセットする。 Further, the inversion number counting unit 6 resets the inversion number Rc when the detection signals are output from the ON / OFF sensors 2_1 to 2_n. For example, the inversion number counting unit 6 receives the reset signal RST output from the reference value update unit 32 and resets the inversion number Rc.
 操作量算出部4Aは、反転回数カウント部6によってカウントされた反転回数Rcが所定の閾値Rtを超えた場合に、操作部5を介して弁軸200を操作することにより、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させる。 The operation amount calculation unit 4A turns on the valve shaft 200 by operating the valve shaft 200 via the operation unit 5 when the number of inversions Rc counted by the inversion number counting unit 6 exceeds a predetermined threshold value Rt. / Rotate to a position corresponding to any one of the OFF sensors 2_1 to 2_n.
 具体的には、操作量算出部4Aにおける操作量決定部43Aは、反転回数カウント部6による反転回数Rcを監視する。操作量決定部43Aは、反転回数Rcが閾値Rtを超えた場合には、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させて、積算値RPをリセットする処理(強制リセット処理)を行う。 Specifically, the operation amount determination unit 43A in the operation amount calculation unit 4A monitors the number of inversions Rc by the inversion number counting unit 6. When the inversion number Rc exceeds the threshold value Rt, the operation amount determination unit 43A rotates the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n, and resets the integrated value RP. Process (forced reset process).
 強制リセット処理では、時間短縮の観点から、弁軸200の位置を、反転回数カウント部6のカウント値が閾値を超えた時点での弁軸200(ショートプレート201)の位置から最も近いON/OFFセンサ2_1~2_nに対応する位置まで移動させることが好ましい。これに対し、操作対象軸が弁軸の場合は、弁の用途に応じて、弁が閉まる方向、または開く方向に移動させるようにしてもよい。 In the forced reset process, from the viewpoint of time reduction, the position of the valve shaft 200 is turned ON / OFF closest to the position of the valve shaft 200 (short plate 201) at the time when the count value of the inversion counter 6 exceeds the threshold value. It is preferable to move to a position corresponding to the sensors 2_1 to 2_n. On the other hand, when the operation target shaft is a valve shaft, the valve may be moved in a closing direction or an opening direction depending on the use of the valve.
 強制リセット処理後、操作量決定部43Aは、実施の形態1に係る操作量決定部43と同様に、偏差算出部42によって算出された偏差ΔPに基づいて操作量MVを決定する。 After the forced reset process, the operation amount determination unit 43A determines the operation amount MV based on the deviation ΔP calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
 ≪実施の形態2に係る回転制御装置100Aの動作原理≫
 次に、実施の形態2に係る回転制御装置100Aの通常動作モードにおける動作について説明する。
 図9Aおよび図9Bは、実施の形態2に係る回転制御装置100Aの通常動作モードにおける動作の流れを示すフロー図である。
<< Operation Principle of Rotation Control Device 100A according to Embodiment 2 >>
Next, the operation in the normal operation mode of the rotation control device 100A according to the second embodiment will be described.
9A and 9B are flowcharts showing a flow of operations in the normal operation mode of the rotation control device 100A according to the second embodiment.
 先ず、回転制御装置100Aは、実施の形態1に係る回転制御装置100と同様に、原点復帰動作モードが終了すると、通常動作モードに移行する。通常動作モードにおいて、回転制御装置100Aは、上位装置から弁開度の目標値SPの変更が指示されるまで待機する(S20)。 First, similarly to the rotation control device 100 according to the first embodiment, the rotation control device 100A shifts to the normal operation mode when the origin return operation mode ends. In the normal operation mode, rotation control device 100A waits until a change in target value SP of the valve opening is instructed from the host device (S20).
 ステップS20において、弁開度の目標値SPの変更が指示された場合には、実施の形態2においては、弁軸200の回転方向が反転した回数に基づく強制リセット処理(S3)を実行する。この反転した回数に基づく強制リセット処理の手順を図9Bに示す。
 まず、回転制御装置100Aの反転回数カウント部6は、弁軸200が反転するか否か、すなわち次に弁軸200を回転させる方向が直前に弁軸200を回転させた方向と反対であるか否かを判定する(S30)。ステップS30において、弁軸200が反転しないと判定された場合には、回転制御装置100Aは、反転回数に基づく強制リセット処理(S3)を終了してメインルーチンに戻り、ステップS21~S27の処理を実行する。
 なお、ステップS21~S27までの一連の処理は、実施の形態1に係る回転制御装置100と同様であるため、その詳細な説明を省略する。
In step S20, when an instruction to change the valve opening target value SP is given, in the second embodiment, a forced reset process (S3) based on the number of times the rotation direction of the valve shaft 200 is reversed is executed. FIG. 9B shows the procedure of forced reset processing based on the number of times of inversion.
First, the inversion number counting unit 6 of the rotation control device 100A determines whether or not the valve shaft 200 is inverted, that is, whether or not the direction in which the valve shaft 200 is rotated next is opposite to the direction in which the valve shaft 200 is rotated immediately before. It is determined whether or not (S30). When it is determined in step S30 that the valve shaft 200 does not reverse, the rotation control device 100A ends the forced reset process (S3) based on the number of reversals, returns to the main routine, and performs the processes of steps S21 to S27. Execute.
Note that a series of processing from step S21 to S27 is the same as that of the rotation control device 100 according to the first embodiment, and thus detailed description thereof is omitted.
 一方、ステップS30において、弁軸200が反転すると判定された場合には、反転回数カウント部6が、反転回数Rcをインクリメントする(S31)。 On the other hand, if it is determined in step S30 that the valve shaft 200 is reversed, the reversal number counting unit 6 increments the reversal number Rc (S31).
 次に、操作量決定部43Aが、反転回数カウント部6によってカウントされた反転回数Rcが閾値Rtよりも大きいか否かを判定する(S32)。ステップS32において、反転回数Rcが閾値Rtを超えていない場合には、回転制御装置100Aは、反転回数に基づく強制リセット処理(S3)を終了してメインルーチンに戻り、実施の形態1に係る回転制御装置100と同様に、ステップS21~S27の処理を実行する。 Next, the operation amount determination unit 43A determines whether or not the number of inversions Rc counted by the inversion number counting unit 6 is larger than the threshold value Rt (S32). In step S32, when the number of inversions Rc does not exceed the threshold value Rt, the rotation control device 100A ends the forced reset process (S3) based on the number of inversions, returns to the main routine, and rotates according to the first embodiment. Similar to the control device 100, the processes of steps S21 to S27 are executed.
 一方、ステップS32において、反転回数Rcが閾値Rtよりも大きい場合には、操作量算出部4Aは、(φh-φ)と(φ-φl)を夫々算出し、(φ-φl)≦(φh-φ)であるか否かを判定する(S33)。ここで、φhは、現在の弁開度φより大きく、かつ現在の弁開度φに最も近い、いずれかのON/OFFセンサ2_1~2_nに対応する開度を示す。例えば、現在の弁開度φが60%とすれば、φhは70%(Pb、2_4)となる。また、φlは、現在の弁開度φより小さく、かつ現在の弁開度φに最も近い、いずれかのON/OFFセンサ2_1~2_nに対応する開度を示す。例えば、現在の弁開度φが60%とすれば、φlは50%(Pm、2_3)となる。 On the other hand, when the number of inversions Rc is larger than the threshold value Rt in step S32, the operation amount calculation unit 4A calculates (φh−φ) and (φ−φl), respectively, and (φ−φl) ≦ (φh It is determined whether or not −φ) (S33). Here, φh indicates an opening corresponding to any of the ON / OFF sensors 2_1 to 2_n that is larger than the current valve opening φ and closest to the current valve opening φ. For example, if the current valve opening φ is 60%, φh is 70% (Pb, 2_4). Φl indicates an opening corresponding to any of the ON / OFF sensors 2_1 to 2_n that is smaller than the current valve opening φ and closest to the current valve opening φ. For example, if the current valve opening φ is 60%, φl is 50% (Pm, 2_3).
 ステップS33の判定の結果、(φ-φl)≦(φh-φ)の場合には、操作量算出部4Aは、調節弁を閉じる方向に、弁軸200を移動させる(S34a)。一方、(φ-φl)>(φh-φ)の場合には、操作量算出部4Aは、調節弁を開く方向に、弁軸200を移動させる(S34b)。 If the result of determination in step S33 is (φ−φ1) ≦ (φh−φ), the operation amount calculation unit 4A moves the valve shaft 200 in the direction to close the control valve (S34a). On the other hand, when (φ−φl)> (φh−φ), the operation amount calculation unit 4A moves the valve shaft 200 in the direction to open the control valve (S34b).
 ステップS34a又はステップS34bの後、回転制御装置100は、ON/OFFセンサ2_1~2_nから検知信号が出力されたか否かを判定する(S35)。ステップS35において、ON/OFFセンサ2_1~2_nから検知信号が出力されていない場合には、回転制御装置100は、ステップS33に戻り、再度、上述の処理(S33~S35)を行う。 After step S34a or step S34b, the rotation control device 100 determines whether a detection signal is output from the ON / OFF sensors 2_1 to 2_n (S35). If no detection signal is output from the ON / OFF sensors 2_1 to 2_n in step S35, the rotation control device 100 returns to step S33 and performs the above-described processing (S33 to S35) again.
 一方、ステップS35において、ON/OFFセンサ2_1~2_nの何れか一つから検知信号が出力された場合には、回転制御装置100は、電動モータを停止するとともに(S36)、基準値APを更新する(S37)。具体的には、基準値更新部32が、検知信号を出力したON/OFFセンサ2_1~2_nに対応する位置を、新たな基準値APに設定する。このとき、基準値更新部32は、リセット信号RSTも出力する。 On the other hand, when a detection signal is output from any one of the ON / OFF sensors 2_1 to 2_n in step S35, the rotation control device 100 stops the electric motor (S36) and updates the reference value AP. (S37). Specifically, the reference value update unit 32 sets the position corresponding to the ON / OFF sensors 2_1 to 2_n that output the detection signal as a new reference value AP. At this time, the reference value update unit 32 also outputs a reset signal RST.
 相対的位置情報取得部31は、基準値更新部32からのリセット信号RSTを受けて、それまでにカウントしていた相対的位置センサ1からの出力パルス数の積算値RPをリセットする(S38)。 The relative position information acquisition unit 31 receives the reset signal RST from the reference value update unit 32, and resets the integrated value RP of the number of output pulses from the relative position sensor 1 counted so far (S38). .
 また、反転回数カウント部6は、基準値更新部32からのリセット信号RSTを受けて、それまでにカウントしていた反転回数Rcをリセットする(S39)。 Further, the inversion number counting unit 6 receives the reset signal RST from the reference value updating unit 32 and resets the inversion number Rc that has been counted so far (S39).
 以上で反転回数に基づく強制リセット処理(S3)を終了して、メインルーチンに戻る。その後、回転制御装置100Aは、実施の形態1に係る回転制御装置100と同様に、ステップS21~S27の処理を実行する。
 なお、ステップS25おいて、積算値RPがリセットされる際には、反転回数カウント部6による反転回数Rcも同様にリセットされる(図9AのステップS39)。
The forced reset process (S3) based on the number of inversions is completed as described above, and the process returns to the main routine. Thereafter, rotation control apparatus 100A executes the processes of steps S21 to S27, as with rotation control apparatus 100 according to the first embodiment.
In step S25, when the integrated value RP is reset, the inversion number Rc by the inversion number counting unit 6 is similarly reset (step S39 in FIG. 9A).
 ≪実施の形態2に係る回転制御装置100Aの効果≫
 一般的な調節弁の制御システムでは、弁軸200がON/OFFセンサ2_1~2_nに対応する位置に長時間到達しない状況が長時間続く場合がある。例えば、弁軸200がON/OFFセンサ2_2に対応する位置(弁開度:20%)とON/OFFセンサ2_3に対応する位置(弁開度:50%)との間を行き来する状況が長時間続く場合がある。この場合には、バックラッシュが累積し、相対的位置センサ1(例えば、インクリメンタル型のロータリエンコーダ)による測定結果に誤差が生じるおそれがある。
<< Effect of rotation control apparatus 100A according to Embodiment 2 >>
In a general control valve control system, the valve shaft 200 may not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n for a long time. For example, the situation where the valve shaft 200 moves back and forth between the position corresponding to the ON / OFF sensor 2_2 (valve opening: 20%) and the position corresponding to the ON / OFF sensor 2_3 (valve opening: 50%) is long. May last for hours. In this case, backlash accumulates, and an error may occur in the measurement result by the relative position sensor 1 (for example, an incremental rotary encoder).
 これに対し、実施の形態2に係る回転制御装置100Aによれば、反転回数Rcが所定数(閾値Rt)を超えると積算値RPが強制的にリセットされるので、上述した状況においても、バックラッシュの累積に起因する測定誤差を抑えることが可能となる。 On the other hand, according to rotation control device 100A according to the second embodiment, integrated value RP is forcibly reset when the number of inversions Rc exceeds a predetermined number (threshold value Rt). It becomes possible to suppress measurement errors caused by rush accumulation.
 以上、実施の形態2に係る回転制御装置100Aによれば、操作対象軸の位置測定の誤差を更に小さくすることが可能となる。 As described above, according to the rotation control device 100A according to the second embodiment, it is possible to further reduce the error in the position measurement of the operation target axis.
 <実施の形態3>
 実施の形態3に係る回転制御装置100Bは、実施の形態2に係る回転制御装置100Aと同じく、バックラッシュの累積に伴う測定誤差を低減することを目的とする。実施の形態2に係る回転制御装置100Aは、弁軸200の回転方向の反転回数に基づいて、強制的に弁軸200を操作して相対的位置センサ31によって検出された機械的変位Mdの積算値RPをリセットするように構成した。これに対し、実施の形態3に係る回転制御装置100Bは、弁軸200の移動距離の積算値に基づいて、強制的に弁軸200を操作して、相対的位置センサ31によって検出された機械的変位Mdの積算値RPをリセットするように構成する点で実施の形態2に係る回転制御装置100Aとは相違する。
 ≪実施の形態3に係る回転制御装置の構成≫
 図10は、実施の形態3に係る回転制御装置100Bの構成を示す図である。
 実施の形態3に係る回転制御装置100Bは、弁軸200がON/OFFセンサ2_1~2_nに対応する位置に長時間到達しない状況での弁軸200の移動距離を積算する。そして、その積算値が閾値を超えた場合に弁軸200を操作して相対的位置センサ31によって検出された機械的変位Mdの積算値RPをリセットする、いわゆる弁軸200の移動距離の積算値に基づく強制リセット機能を有する。この点において、実施の形態3に係る回転制御装置100Bは、実施の形態1に係る回転制御装置100および実施の形態2に係る回転制御装置100Aと相違する。強制リセット処理以外の、ON/OFFセンサ2_1~2_nの構成等を含む構成は、上述した実施の形態1および実施の形態2と同一である。そのため、以下において、共通する構成要素には同一の符号を付し、その詳細な説明は省略する。
<Embodiment 3>
The rotation control device 100B according to the third embodiment aims to reduce a measurement error associated with the accumulation of backlash similarly to the rotation control device 100A according to the second embodiment. The rotation control device 100A according to the second embodiment integrates the mechanical displacement Md detected by the relative position sensor 31 by forcibly operating the valve shaft 200 based on the number of reversals in the rotation direction of the valve shaft 200. Configured to reset the value RP. In contrast, the rotation control device 100B according to the third embodiment forcibly operates the valve shaft 200 based on the integrated value of the movement distance of the valve shaft 200, and detects the machine detected by the relative position sensor 31. The rotation control device 100A according to the second embodiment is different from the rotation control device 100A according to the second embodiment in that the integrated value RP of the mechanical displacement Md is reset.
<< Configuration of Rotation Control Device According to Embodiment 3 >>
FIG. 10 is a diagram illustrating a configuration of a rotation control device 100B according to the third embodiment.
The rotation control device 100B according to the third embodiment integrates the movement distance of the valve shaft 200 when the valve shaft 200 does not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n for a long time. Then, when the integrated value exceeds the threshold value, the valve shaft 200 is operated to reset the integrated value RP of the mechanical displacement Md detected by the relative position sensor 31, so-called integrated value of the movement distance of the valve shaft 200. A forced reset function based on In this respect, the rotation control device 100B according to the third embodiment is different from the rotation control device 100 according to the first embodiment and the rotation control device 100A according to the second embodiment. The configuration including the configurations of the ON / OFF sensors 2_1 to 2_n other than the forced reset process is the same as that in the first embodiment and the second embodiment described above. Therefore, in the following, common constituent elements are denoted by the same reference numerals, and detailed description thereof is omitted.
 具体的に、回転制御装置100Bは、絶対値積算部7を更に有する。絶対値積算部7は、操作対象軸としての弁軸200の回転方向の移動距離を積算し、その積算値を保持する。より具体的には、絶対値積算部7は、弁軸200の回転方向の機械的変位Mdの絶対値|ΔP|を積算する。例えば、絶対値積算部7は、相対的位置センサ1によって検出された機械的変位Mdの絶対値|ΔP|を積算し、その積算値RPを記憶する。このような絶対値積算部7は、例えばマイクロコントローラに内蔵されているカウンタおよびプログラムによって実現することができる。 Specifically, the rotation control device 100B further includes an absolute value integration unit 7. The absolute value integration unit 7 integrates the movement distance in the rotation direction of the valve shaft 200 as the operation target shaft, and holds the integrated value. More specifically, the absolute value integration unit 7 integrates the absolute value | ΔP | of the mechanical displacement Md in the rotation direction of the valve shaft 200. For example, the absolute value integrating unit 7 integrates the absolute value | ΔP | of the mechanical displacement Md detected by the relative position sensor 1 and stores the integrated value RP. Such an absolute value integration unit 7 can be realized by, for example, a counter and a program built in the microcontroller.
 また、絶対値積算部7は、ON/OFFセンサ2_1~2_nから検知信号が出力された場合には、弁軸200の移動距離の積算値をリセットする。例えば、絶対値積算部7は、基準値更新部32から出力されたリセット信号RSTを受けて、弁軸200の回転方向の移動距離の積算値をリセットする。 The absolute value integration unit 7 resets the integrated value of the movement distance of the valve shaft 200 when detection signals are output from the ON / OFF sensors 2_1 to 2_n. For example, the absolute value integrating unit 7 receives the reset signal RST output from the reference value updating unit 32 and resets the integrated value of the movement distance of the valve shaft 200 in the rotation direction.
 操作量算出部4Bは、絶対値積算部7によって積算された弁軸200の回転方向の移動距離の積算値が所定の閾値を超えた場合に、操作部5を介して弁軸200を操作することにより、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させる。 The operation amount calculation unit 4B operates the valve shaft 200 via the operation unit 5 when the integrated value of the movement distance in the rotational direction of the valve shaft 200 accumulated by the absolute value accumulation unit 7 exceeds a predetermined threshold value. Thus, the valve shaft 200 is rotated to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n.
 具体的には、操作量算出部4Bにおける操作量決定部43Bは、絶対値積算部7に記憶された、弁軸200の移動距離の積算値を監視する。操作量決定部43Bは、弁軸200の移動距離の積算値が予め定められた閾値を超えた場合には、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させて、積算値RPをリセットする処理(強制リセット処理)を行う。 Specifically, the operation amount determination unit 43B in the operation amount calculation unit 4B monitors the integrated value of the movement distance of the valve shaft 200, which is stored in the absolute value integration unit 7. When the integrated value of the movement distance of the valve shaft 200 exceeds a predetermined threshold, the operation amount determination unit 43B moves the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n. A process of rotating and resetting the integrated value RP (forced reset process) is performed.
 強制リセット処理後、操作量決定部43Bは、実施の形態1に係る操作量決定部43と同様に、偏差算出部42によって算出された偏差ΔPに基づいて操作量MVを決定する。 After the forced reset process, the operation amount determination unit 43B determines the operation amount MV based on the deviation ΔP calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
 ≪実施の形態3に係る回転制御装置100Bの動作原理≫
 次に、実施の形態3に係る回転制御装置100Bの通常動作モードにおける動作について説明する。
 図11Aおよび図11Bは、実施の形態3に係る回転制御装置100Bの通常動作モードにおける動作の流れを示すフロー図である。
<< Operation Principle of Rotation Control Device 100B according to Embodiment 3 >>
Next, the operation in the normal operation mode of the rotation control device 100B according to the third embodiment will be described.
FIG. 11A and FIG. 11B are flowcharts showing an operation flow in the normal operation mode of rotation control device 100B according to the third embodiment.
 先ず、回転制御装置100Bは、実施の形態1に係る回転制御装置100と同様に、原点復帰動作モードが終了すると、通常動作モードに移行する。通常動作モードにおいて、ステップS20から電動モータを駆動するステップS22a、S22bまでは、実施の形態1と同一であるので、説明を省略する。 First, similarly to the rotation control device 100 according to the first embodiment, the rotation control device 100B shifts to the normal operation mode when the origin return operation mode ends. In the normal operation mode, steps S20 to S22a and S22b for driving the electric motor are the same as those in the first embodiment, and thus description thereof is omitted.
 操作部5が電動モータ52を駆動して弁軸200を回転させると(ステップS22aまたはS22b)、回転制御装置100Bは、移動距離の積算値に基づく強制リセット処理(S4)を実行する。この弁軸200の移動距離の積算値に基づく強制リセット処理の手順を図11Bに示す。
 図11Bに示すように、まず、操作部5によって弁軸200が回転したことによる機械的変位Mdの絶対値、すなわち移動距離を積算する(S41)。
 次に、絶対値積算部7によって積算された移動距離の積算値が予め定められた閾値よりも大きいか否かを判定する(S42)。ステップS42において、移動距離の積算値が閾値を超えていない場合には、回転制御装置100Bは、移動距離の積算値に基づく強制リセット処理(S4)を終了してメインルーチンに戻る。その後、実施の形態1に係る回転制御装置100と同様に、ステップS23~S27の処理を実行する。
When the operation unit 5 drives the electric motor 52 to rotate the valve shaft 200 (step S22a or S22b), the rotation control device 100B executes a forced reset process (S4) based on the integrated value of the movement distance. The procedure of the forced reset process based on the integrated value of the movement distance of the valve shaft 200 is shown in FIG. 11B.
As shown in FIG. 11B, first, the absolute value of the mechanical displacement Md caused by the rotation of the valve shaft 200 by the operation unit 5, that is, the moving distance is integrated (S41).
Next, it is determined whether or not the integrated value of the movement distance integrated by the absolute value integrating unit 7 is larger than a predetermined threshold (S42). In step S42, when the integrated value of the movement distance does not exceed the threshold value, the rotation control device 100B ends the forced reset process (S4) based on the integrated value of the movement distance and returns to the main routine. Thereafter, similarly to the rotation control device 100 according to the first embodiment, the processes of steps S23 to S27 are executed.
 一方、ステップS42において、移動距離の積算値が閾値よりも大きい場合には、操作量算出部4Bは、実施の形態2における操作量算出部4Aと同様に、ステップS33~S38にしたがって強制リセット処理を実行する。この強制リセット処理の手順ステップS33~S38は、実施の形態2における手順を同一であることから、その説明は省略する。 On the other hand, when the integrated value of the movement distance is larger than the threshold value in step S42, the operation amount calculation unit 4B performs the forced reset process according to steps S33 to S38, similarly to the operation amount calculation unit 4A in the second embodiment. Execute. Since the procedure steps S33 to S38 of the forced reset process are the same as those in the second embodiment, description thereof is omitted.
 また、ON/OFFセンサ2_1~2_nのいずれかから検知信号が出力されたときは、絶対値積算部7は、基準値更新部32からのリセット信号RSTを受けて、それまでの弁軸200の移動距離の積算値をリセットする(S49)。 When the detection signal is output from any of the ON / OFF sensors 2_1 to 2_n, the absolute value integrating unit 7 receives the reset signal RST from the reference value updating unit 32, and the valve shaft 200 up to that time is received. The integrated value of the movement distance is reset (S49).
 以上で移動距離に基づく強制リセット処理(S4)を終了して、メインルーチンに戻り、その後、回転制御装置100Bは、実施の形態1に係る回転制御装置100と同様に、ステップS23~S27の処理を実行する。
 なお、ステップS25おいて、積算値RPがリセットされる際には、絶対値積算部7に記憶された移動距離の積算値も同様にリセットされる(図11AのステップS49)。
Thus, the forced reset process (S4) based on the moving distance is completed, and the process returns to the main routine. Thereafter, the rotation control device 100B performs the processing of steps S23 to S27, similar to the rotation control device 100 according to the first embodiment. Execute.
When the integrated value RP is reset in step S25, the integrated value of the movement distance stored in the absolute value integrating unit 7 is similarly reset (step S49 in FIG. 11A).
 ≪実施の形態3に係る回転制御装置100Bの効果≫
 弁軸200がON/OFFセンサ2_1~2_nに対応する位置に長時間到達しない状況が長時間続くと、バックラッシュが累積し、相対的位置センサ1(例えば、インクリメンタル型のロータリエンコーダ)による測定結果に誤差が生じるおそれがある。
<< Effect of rotation control device 100B according to Embodiment 3 >>
If the valve shaft 200 does not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n for a long time, backlash accumulates, and the measurement result by the relative position sensor 1 (for example, an incremental rotary encoder). There is a risk of errors.
 これに対し、実施の形態3に係る回転制御装置100Bによれば、弁軸200がON/OFFセンサ2_1~2_nに対応する位置に長時間到達しない状況で弁軸200の移動距離の積算値が閾値を超えると積算値RPが強制的にリセットされる。そのため、バックラッシュの累積に起因する測定誤差を抑えることが可能となる。 On the other hand, according to the rotation control device 100B according to the third embodiment, the integrated value of the movement distance of the valve shaft 200 is obtained in a situation where the valve shaft 200 does not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n for a long time. When the threshold value is exceeded, the integrated value RP is forcibly reset. For this reason, it is possible to suppress measurement errors caused by the accumulation of backlash.
 したがって、実施の形態3に係る回転制御装置100Bによれば、操作対象軸の位置測定の誤差を更に小さくすることが可能となる。 Therefore, according to the rotation control device 100B according to the third embodiment, it is possible to further reduce the error in the position measurement of the operation target axis.
 <実施の形態4>
 実施の形態4に係る回転制御装置も、実施の形態2および実施の形態3に係る回転制御装置と同様に、非接触式の相対的位置センサによって操作対象軸の回転方向の位置の測定を行う回転制御装置において、バックラッシュの累積に伴う測定誤差を低減することを目的とする。
 ≪実施の形態4に係る回転制御装置の構成≫
 図12は、実施の形態4に係る回転制御装置100Cの構成を示す図である。
 実施の形態2に係る回転制御装置100Cは、弁軸200がON/OFFセンサ2_1~2_nに対応する位置に到達せず、検知信号が出力されることなく経過した時間が閾値を超えた場合に、弁軸200を強制的に操作して相対的位置センサ31によって検出された機械的変位Mdの積算値RPをリセットする。この点において、実施の形態4に係る回転制御装置100Cは、実施の形態1乃至3に係る回転制御装置と相違する。以下、強制リセット処理以外の、ON/OFFセンサ2_1~2_nの構成等を含む構成は、上述した実施の形態1、2および3と同一であるので、共通する構成要素には同一の符号を付し、その詳細な説明は省略する。なお、弁軸200がON/OFFセンサ2_1~2_nに対応する位置に到達せず、検知信号が出力されることなく経過した時間を「滞留時間」ということがある。
<Embodiment 4>
Similarly to the rotation control devices according to the second and third embodiments, the rotation control device according to the fourth embodiment also measures the position of the operation target shaft in the rotation direction using a non-contact type relative position sensor. An object of the rotation control device is to reduce measurement errors due to accumulation of backlash.
<< Configuration of Rotation Control Device According to Embodiment 4 >>
FIG. 12 is a diagram illustrating a configuration of a rotation control device 100C according to the fourth embodiment.
The rotation control device 100C according to the second embodiment is configured when the valve shaft 200 does not reach the position corresponding to the ON / OFF sensors 2_1 to 2_n and the elapsed time without outputting the detection signal exceeds the threshold value. Then, the integrated value RP of the mechanical displacement Md detected by the relative position sensor 31 is reset by forcibly operating the valve shaft 200. In this regard, the rotation control device 100C according to the fourth embodiment is different from the rotation control device according to the first to third embodiments. In the following, the configuration including the configuration of the ON / OFF sensors 2_1 to 2_n other than the forced reset processing is the same as that of the first, second, and third embodiments described above, and thus the same components are denoted by the same reference numerals. Detailed description thereof will be omitted. The time that has elapsed without the valve shaft 200 reaching the position corresponding to the ON / OFF sensors 2_1 to 2_n and the detection signal being output may be referred to as “dwell time”.
 具体的に、回転制御装置100Cは、タイマ8を有する。タイマ8は、操作対象軸としての弁軸200がON/OFFセンサ2_1~2_nに対応する位置に到達せず、検知信号が出力されることなく経過した時間、すなわち滞留時間をカウントし、そのカウント値を保持する。タイマ8は、例えばマイクロコントローラに内蔵されているクロック回路、カウンタおよびプログラムによって実現することができる。 Specifically, the rotation control device 100 </ b> C has a timer 8. The timer 8 counts the time that the valve shaft 200 as the operation target shaft has not reached the position corresponding to the ON / OFF sensors 2_1 to 2_n and the detection signal is not output, that is, the residence time, and the count Holds the value. The timer 8 can be realized by, for example, a clock circuit, a counter, and a program built in the microcontroller.
 例えば、タイマ8は、弁軸200がON/OFFセンサ2_1~2_nに対応する位置に到達して検知信号が検出されると、一度リセットされ、あらためてそこから経過する時間を滞留時間としてカウントする。 For example, when the valve shaft 200 reaches a position corresponding to the ON / OFF sensors 2_1 to 2_n and a detection signal is detected, the timer 8 is reset once and counts the time elapsed from that time as the residence time.
 操作量算出部4Cは、タイマ8によってカウントされた滞留時間が所定の閾値を超えた場合に、操作部5を介して弁軸200を操作することにより、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させる。 The operation amount calculation unit 4C operates the valve shaft 200 via the operation unit 5 when the residence time counted by the timer 8 exceeds a predetermined threshold value, thereby turning the valve shaft 200 on / off sensor 2_1˜. Rotate to a position corresponding to any one of 2_n.
 具体的には、操作量算出部4Cにおける操作量決定部43Cは、タイマ8によってカウントされた滞留時間を監視する。操作量決定部43Cは、滞留時間が予め定められた閾値を超えた場合には、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させて、積算値RPをリセットする処理(強制リセット処理)を行う。 Specifically, the operation amount determination unit 43C in the operation amount calculation unit 4C monitors the residence time counted by the timer 8. When the residence time exceeds a predetermined threshold value, the operation amount determination unit 43C rotates the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n, and the integrated value RP Performs processing to reset (forced reset processing).
 強制リセット処理後、操作量決定部43Aは、実施の形態1に係る操作量決定部43と同様に、偏差算出部42によって算出された偏差ΔPに基づいて操作量MVを決定する。 After the forced reset process, the operation amount determination unit 43A determines the operation amount MV based on the deviation ΔP calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
 ≪実施の形態4に係る回転制御装置100Cの動作原理≫
 次に、実施の形態4に係る回転制御装置100Cの通常動作モードにおける動作について説明する。
 図13Aおよび図13Bは、実施の形態4に係る回転制御装置100Cの通常動作モードにおける動作の流れを示すフロー図である。
<< Operation Principle of Rotation Control Device 100C according to Embodiment 4 >>
Next, the operation in the normal operation mode of the rotation control device 100C according to the fourth embodiment will be described.
FIG. 13A and FIG. 13B are flowcharts showing the operation flow in the normal operation mode of rotation control apparatus 100C according to the fourth embodiment.
 ます、回転制御装置100Cは、実施の形態1に係る回転制御装置100と同様に、原点復帰動作モードが終了すると、通常動作モードに移行する。通常動作モードにおいて、回転制御装置100Cは、上位装置から弁開度の目標値SPの変更が指示されるまで待機する(S20)。 Furthermore, similarly to the rotation control device 100 according to the first embodiment, the rotation control device 100C shifts to the normal operation mode when the origin return operation mode ends. In the normal operation mode, rotation control device 100C waits until a change in target value SP of the valve opening is instructed from the host device (S20).
 ステップS20において、弁開度の目標値SPの変更が指示された場合には、実施の形態4においては、滞留時間に基づく強制リセット処理(S5)を実行する。この滞留時間に基づく強制リセット処理の手順を図13Bに示す。
 まず、操作量決定部43Cは、タイマ8に記憶された滞留時間を読み出して(S51)、滞留時間が閾値よりも大きいか否かを判定する(S52)。ステップS52において、滞留時間が閾値を超えていない場合には、回転制御装置100Cは、強制リセット処理(S5)を終了してメインルーチンに戻り、実施の形態1に係る回転制御装置100と同様に、ステップS21~S27の処理を実行する。
In step S20, when the change of the target value SP of the valve opening degree is instructed, in the fourth embodiment, the forced reset process (S5) based on the residence time is executed. FIG. 13B shows a procedure for forced reset processing based on the residence time.
First, the operation amount determination unit 43C reads the residence time stored in the timer 8 (S51), and determines whether or not the residence time is greater than a threshold value (S52). In step S52, when the residence time does not exceed the threshold value, rotation control device 100C ends the forced reset process (S5), returns to the main routine, and is similar to rotation control device 100 according to the first embodiment. Then, the processes of steps S21 to S27 are executed.
 一方、ステップS52において、滞留時間が閾値よりも大きい場合には、操作量算出部4Cは、実施の形態2における操作量算出部4Aと同様に、ステップS33~S38にしたがって強制リセット処理を実行する。この強制リセット処理の手順ステップS33~S38は、実施の形態2における手順を同一であることから、その説明は省略する。 On the other hand, when the residence time is larger than the threshold value in step S52, the operation amount calculation unit 4C executes the forced reset process according to steps S33 to S38, as in the operation amount calculation unit 4A in the second embodiment. . Since the procedure steps S33 to S38 of the forced reset process are the same as those in the second embodiment, description thereof is omitted.
 また、ON/OFFセンサ2_1~2_nのいずれかから検知信号が出力されたときは、タイマ8は、基準値更新部32からのリセット信号RSTを受けて、それまでにカウントしていた滞留時間をリセットする(S59)。 In addition, when a detection signal is output from any of the ON / OFF sensors 2_1 to 2_n, the timer 8 receives the reset signal RST from the reference value update unit 32 and calculates the residence time counted so far. Reset (S59).
 以上で反転回数に基づく強制リセット処理(S3)を終了して、メインルーチンに戻り、その後、回転制御装置100Cは、実施の形態1に係る回転制御装置100と同様に、ステップS21~S27の処理を実行する。
 なお、ステップS25おいて、積算値RPがリセットされる際には、それまでにタイマ8がカウントしていた滞留時間も同様にリセットされる(図13AのステップS59)。
The forced reset process (S3) based on the number of inversions is completed as described above, and the process returns to the main routine. After that, the rotation control device 100C performs steps S21 to S27 in the same manner as the rotation control device 100 according to the first embodiment. Execute.
When the integrated value RP is reset in step S25, the dwell time that the timer 8 has counted so far is similarly reset (step S59 in FIG. 13A).
 ≪実施の形態4に係る回転制御装置100Cの効果≫
 これに対し、実施の形態4に係る回転制御装置100Cによれば、反転回数Rcが所定数(閾値Rt)を超えると積算値RPが強制的にリセットされるので、上述した状況においても、バックラッシュの累積に起因する測定誤差を抑えることが可能となる。
<< Effect of rotation control apparatus 100C according to Embodiment 4 >>
On the other hand, according to the rotation control device 100C according to the fourth embodiment, the integrated value RP is forcibly reset when the number of inversions Rc exceeds a predetermined number (threshold value Rt). It becomes possible to suppress measurement errors caused by rush accumulation.
 以上、実施の形態4に係る回転制御装置100Cによれば、操作対象軸の位置測定の誤差を更に小さくすることが可能となる。 As described above, according to the rotation control device 100C according to the fourth embodiment, it is possible to further reduce the error in the position measurement of the operation target axis.
 <実施の形態5>
 実施の形態5に係る回転制御装置100Dは、実施の形態2に係る回転制御装置100Aと同じく、バックラッシュの累積に伴う測定誤差を低減することを目的とする。実施の形態2に係る回転制御装置100Aは、弁軸200の回転方向の反転回数に基づいて、強制リセット処理を行うように構成した。これに対し、実施の形態5に係る回転制御装置100Dは、弁軸200の回転方向に関わらず、弁軸200の動き出した回数(以下、「起動回数」ということがある。)に基づいて強制リセット処理を行うように構成する点で実施の形態2の回転制御装置100Aとは相違する。
<Embodiment 5>
Similar to the rotation control device 100A according to the second embodiment, the rotation control device 100D according to the fifth embodiment aims to reduce a measurement error due to the accumulation of backlash. The rotation control device 100A according to the second embodiment is configured to perform a forced reset process based on the number of reversals in the rotation direction of the valve shaft 200. On the other hand, the rotation control device 100D according to the fifth embodiment is compulsory based on the number of times the valve shaft 200 starts moving (hereinafter also referred to as “the number of times of activation”) regardless of the rotation direction of the valve shaft 200. It differs from rotation control apparatus 100A of the second embodiment in that it is configured to perform reset processing.
 ≪実施の形態5に係る回転制御装置の構成≫
 図14は、実施の形態5に係る回転制御装置100Dの構成を示す図である。この回転制御装置100Dは、起動回数カウント部9を更にし、起動回数カウント部9によってカウントされた起動回数が所定の閾値Rtを超えた場合に、強制リセット処理を実行する操作量算出部4Dを備える。
 なお、ON/OFFセンサの構成等を含む、それ以外の構成は、上述した実施の形態1と同一であるので、共通する構成要素には同一の符号を付し、その詳細な説明は省略する。
<< Configuration of Rotation Control Device According to Embodiment 5 >>
FIG. 14 is a diagram illustrating a configuration of a rotation control device 100D according to the fifth embodiment. The rotation control device 100D further includes an activation number counting unit 9, and when the activation number counted by the activation number counting unit 9 exceeds a predetermined threshold Rt, an operation amount calculation unit 4D that executes a forced reset process. Prepare.
Since the other configuration including the configuration of the ON / OFF sensor is the same as that of the above-described first embodiment, the same components are denoted by the same reference numerals, and detailed description thereof is omitted. .
 起動回数カウント部9は、操作対象軸としての弁軸200の動き出した回数をカウントしてその値Rsを保持する。具体的には、目標値SPが変更されるごとに弁軸200は回転するので、目標値SPが変更された回数を起動回数としてカウントしてもよい。このような起動回数カウント部9は、例えばマイクロコントローラに内蔵されているカウンタおよびプログラムによって実現することができる。
 起動回数カウント部9は、ON/OFFセンサ2_1~2_nのいずれかから検知信号が出力された場合には、位置算出部3の基準値更新部32から出力されたリセット信号RSTによってリセットされる。
The activation number counting unit 9 counts the number of times that the valve shaft 200 as the operation target shaft starts to move, and holds the value Rs. Specifically, since the valve shaft 200 rotates each time the target value SP is changed, the number of times the target value SP is changed may be counted as the number of activations. Such an activation number counting unit 9 can be realized by a counter and a program built in the microcontroller, for example.
When the detection signal is output from any of the ON / OFF sensors 2_1 to 2_n, the activation number counting unit 9 is reset by the reset signal RST output from the reference value update unit 32 of the position calculation unit 3.
 操作量算出部4Dは、通常モードにおいては、弁軸200の回転方向の目標位置としての弁開度の目標値SPと、位置算出部3によって算出された実開度PVとに基づいて、弁軸200の操作量MVを算出する。一方、強制リセット処理を実行するときには、操作部5を介して弁軸200を操作することにより、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させる。 In the normal mode, the operation amount calculation unit 4D is configured to control the valve opening based on the target value SP of the valve opening as the target position in the rotation direction of the valve shaft 200 and the actual opening PV calculated by the position calculation unit 3. An operation amount MV of the shaft 200 is calculated. On the other hand, when the forced reset process is executed, the valve shaft 200 is rotated to the position corresponding to any one of the ON / OFF sensors 2_1 to 2_n by operating the valve shaft 200 via the operation unit 5.
 より具体的には、操作量決定部43Dは、起動回数カウント部9によってカウントされた起動回数を監視する。操作量決定部43Dは、起動回数が閾値を超えた場合には、弁軸200をON/OFFセンサ2_1~2_nの何れか一つに対応する位置まで回転させることによって、積算値RPをリセットする処理(強制リセット処理)を行う。 More specifically, the operation amount determination unit 43D monitors the number of activations counted by the activation number counting unit 9. When the number of activations exceeds the threshold, the operation amount determination unit 43D resets the integrated value RP by rotating the valve shaft 200 to a position corresponding to any one of the ON / OFF sensors 2_1 to 2_n. Processing (forced reset processing) is performed.
 強制リセット処理では、時間短縮の観点から、弁軸200の位置を、起動回数カウント部9のカウント値が閾値を超えた時点での弁軸200(ショートプレート201)の位置から最も近いON/OFFセンサ2_1~2_nに対応する位置まで移動させることが好ましい。これに対し、操作対象軸が弁軸の場合は、弁の用途に応じて、弁が閉まる方向、または開く方向に移動させるようにしてもよい。 In the forced reset process, from the viewpoint of time saving, the position of the valve shaft 200 is turned ON / OFF closest to the position of the valve shaft 200 (short plate 201) when the count value of the activation number counting unit 9 exceeds the threshold value. It is preferable to move to a position corresponding to the sensors 2_1 to 2_n. On the other hand, when the operation target shaft is a valve shaft, the valve may be moved in a closing direction or an opening direction depending on the use of the valve.
 強制リセット処理後、操作量決定部43Dは、実施の形態1に係る操作量決定部43と同様に、偏差算出部42によって算出された偏差ΔPに基づいて操作量MVを決定する。 After the forced reset process, the operation amount determination unit 43D determines the operation amount MV based on the deviation ΔP calculated by the deviation calculation unit 42, similarly to the operation amount determination unit 43 according to the first embodiment.
 ≪実施の形態5に係る回転制御装置100Dの動作原理≫
 次に、実施の形態5に係る回転制御装置100Dの通常動作モードにおける動作について説明する。
 図15Aおよび図15Bは、実施の形態5に係る回転制御装置100Dの通常動作モードにおける動作の流れを示すフロー図である。
<< Operation Principle of Rotation Control Device 100D according to Embodiment 5 >>
Next, the operation in the normal operation mode of the rotation control device 100D according to the fifth embodiment will be described.
FIG. 15A and FIG. 15B are flowcharts showing an operation flow in the normal operation mode of rotation control device 100D according to the fifth embodiment.
 先ず、回転制御装置100Dは、実施の形態1に係る回転制御装置100と同様に、原点復帰動作モードが終了すると、通常動作モードに移行する。通常動作モードにおいて、回転制御装置100Dは、上位装置から弁開度の目標値SPの変更が指示されるまで待機する(S20)。 First, similarly to the rotation control device 100 according to the first embodiment, the rotation control device 100D shifts to the normal operation mode when the origin return operation mode ends. In the normal operation mode, the rotation control device 100D stands by until a change in the target value SP of the valve opening is instructed from the host device (S20).
 ステップS20において、弁開度の目標値SPの変更が指示された場合には、弁軸200の起動回数に基づく強制リセット処理(S6)を実行する。 In Step S20, when an instruction to change the target value SP of the valve opening degree is given, a forced reset process (S6) based on the number of activations of the valve shaft 200 is executed.
この起動回数に基づく強制リセット処理の手順を図15Bに示す。
 まず、回転制御装置100Dの起動回数カウント部9は、起動回数をインクリメントする(S61)。
FIG. 15B shows the procedure of forced reset processing based on the number of activations.
First, the activation number counting unit 9 of the rotation control device 100D increments the activation number (S61).
 次に、操作量決定部43Dが、起動回数カウント部9によってカウントされた起動回数が予め設定された閾値よりも大きいか否かを判定する(S62)。ステップS62において、起動回数が閾値を超えていない場合には、回転制御装置100Dは、反転回数に基づく強制リセット処理(S6)を終了してメインルーチンに戻る。 Next, the operation amount determination unit 43D determines whether or not the number of activations counted by the activation number counting unit 9 is greater than a preset threshold value (S62). In step S62, when the number of activations does not exceed the threshold value, rotation control device 100D ends the forced reset process (S6) based on the number of inversions and returns to the main routine.
 一方、ステップS62において、起動回数が閾値よりも大きい場合には、操作量算出部4Bは、実施の形態2における操作量算出部4Aと同様に、ステップS33~S38にしたがって強制リセット処理を実行する。この強制リセット処理の手順ステップS33~S38は、実施の形態2における手順を同一であることから、その説明は省略する。 On the other hand, when the number of activations is larger than the threshold value in step S62, the operation amount calculation unit 4B executes the forced reset process according to steps S33 to S38, similarly to the operation amount calculation unit 4A in the second embodiment. . Since the procedure steps S33 to S38 of the forced reset process are the same as those in the second embodiment, description thereof is omitted.
 また、ON/OFFセンサ2_1~2_nのいずれかから検知信号が出力されたときは、起動回数カウント部9は、基準値更新部32からのリセット信号RSTを受けて、それまでの起動回数をリセットする(S69)。 Further, when a detection signal is output from any of the ON / OFF sensors 2_1 to 2_n, the activation number counting unit 9 receives the reset signal RST from the reference value update unit 32 and resets the activation number up to that time. (S69).
 以上で起動回数に基づく強制リセット処理(S6)を終了して、メインルーチンに戻る。その後、回転制御装置100Dは、実施の形態1に係る回転制御装置100と同様に、ステップS23~S27の処理を実行する。
 なお、ステップS21~S27までの一連の処理は、実施の形態1に係る回転制御装置100と同様であるため、その詳細な説明を省略する。
 また、ステップS25おいて、積算値RPがリセットされる際には、起動回数カウント部9に記憶された起動回数も同様にリセットされる(図15AのステップS69)。
The forced reset process (S6) based on the number of activations is thus completed, and the process returns to the main routine. Thereafter, rotation control apparatus 100D executes the processes of steps S23 to S27, as in rotation control apparatus 100 according to the first embodiment.
Note that a series of processing from step S21 to S27 is the same as that of the rotation control device 100 according to the first embodiment, and thus detailed description thereof is omitted.
Further, when the integrated value RP is reset in step S25, the number of activations stored in the activation number counting unit 9 is similarly reset (step S69 in FIG. 15A).
 ≪実施の形態5に係る回転制御装置100Dの効果≫
 実施の形態5に係る回転制御装置100Dによれば、起動回数が所定数(閾値)を超えると積算値RPが強制的にリセットされるので、バックラッシュの累積に起因する測定誤差を抑えることが可能となる。
<< Effect of rotation control apparatus 100D according to Embodiment 5 >>
According to rotation control device 100D according to the fifth embodiment, integrated value RP is forcibly reset when the number of activations exceeds a predetermined number (threshold), so that measurement errors due to backlash accumulation can be suppressed. It becomes possible.
 以上、実施の形態5に係る回転制御装置100Dによれば、操作対象軸の位置測定の誤差を更に小さくすることが可能となる。 As described above, according to the rotation control device 100D according to the fifth embodiment, it is possible to further reduce the error in the position measurement of the operation target axis.
 <実施の形態の拡張>
 以上、本発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
<Extension of Embodiment>
Although the invention made by the present inventors has been specifically described based on the embodiments, it is needless to say that the present invention is not limited thereto and can be variously modified without departing from the gist thereof. Yes.
 例えば、上述した実施の形態1においては、側面視略「コ」字状のショートプレート201を使用することから、プリント基板20の2つの主面20a、20bにそれぞれ電極21a、21bおよびカム部材24a、24bを設ける例を説明した。しかし、電極21およびカム部材24をプリント基板20の、例えば第1主面20aのみに配置するようにしてもよい。 For example, in the first embodiment described above, since the short plate 201 having a substantially “U” shape in side view is used, the electrodes 21 a and 21 b and the cam member 24 a are respectively provided on the two main surfaces 20 a and 20 b of the printed board 20. , 24b has been described. However, the electrode 21 and the cam member 24 may be disposed only on the printed circuit board 20, for example, only on the first main surface 20 a.
 また、例えば、上記実施の形態では、弁軸200が、全閉位置Pc、弁開度が20%となる位置Pa、弁開度が50%となる位置Pm、弁開度が70%となる位置Pb、および全開位置Poの5ヶ所に5つのON/OFFセンサ2_1~2_5をそれぞれ設置する場合を示した。しかし、設置するON/OFFセンサ2_1~2_nの位置や個数はこれに限定されない。以下、ON/OFFセンサ2_1~2_nの別の配置例を示す。 Further, for example, in the above embodiment, the valve shaft 200 is in the fully closed position Pc, the position Pa at which the valve opening is 20%, the position Pm at which the valve opening is 50%, and the valve opening is 70%. The case where the five ON / OFF sensors 2_1 to 2_5 are respectively installed at the five positions Pb and the fully opened position Po is shown. However, the position and number of the ON / OFF sensors 2_1 to 2_n to be installed are not limited to this. Hereinafter, another arrangement example of the ON / OFF sensors 2_1 to 2_n will be described.
 図16Aは、ON/OFFセンサ2_1~2_nの別の配置例を示す図である。
 この例では、n=3として、それぞれ弁軸200が、弁開度が0%となる全閉位置Pc、全閉位置Pcと全開位置Poの中間点、すなわち弁開度が50%となる中間位置Pm、弁開度が100%となる全開位置Poに到達したことを検出する3個のON/OFFセンサ2_1、2_2、2_3を設ける場合が示されている。図16Bは、図16Aに示す配置例に対応した、絶対的位置センサの電極21とカム部材24との配置例を示す図である。図16Bに示すように、周方向においてON/OFFセンサ2_1、2_2、2_3をそれぞれ構成する電極21の間に、カム部材24が設けられている。
FIG. 16A is a diagram illustrating another arrangement example of the ON / OFF sensors 2_1 to 2_n.
In this example, assuming that n = 3, the valve shaft 200 has a fully closed position Pc at which the valve opening degree is 0%, an intermediate point between the fully closed position Pc and the fully open position Po, that is, an intermediate position at which the valve opening degree is 50%. The case where three ON / OFF sensors 2_1, 2_2, 2_3 for detecting that the position Pm and the fully open position Po at which the valve opening degree is 100% is reached is shown. FIG. 16B is a diagram showing an arrangement example of the electrode 21 and the cam member 24 of the absolute position sensor corresponding to the arrangement example shown in FIG. 16A. As shown in FIG. 16B, a cam member 24 is provided between the electrodes 21 constituting the ON / OFF sensors 2_1, 2_2, and 2_3 in the circumferential direction.
 これによれば、弁軸200が、全閉位置Pc、全開位置Po、および全閉位置Pcと全開位置Poの中間点の中間位置Pmに到達したときに、原点復帰(基準値APの更新)が行われる。そのため、全閉位置Pcまたは全開位置Poのみを弁軸200の原点に設定した場合に比べて、原点復帰に要する時間と相対的位置センサ1による機械的変位量の測定誤差を小さくすることが可能となる。また、ON/OFFセンサを設置することによる追加のコストを抑えることが可能となる。 According to this, when the valve shaft 200 reaches the fully closed position Pc, the fully opened position Po, and the intermediate position Pm between the fully closed position Pc and the fully opened position Po, the origin return (update of the reference value AP) is performed. Is done. Therefore, compared with the case where only the fully closed position Pc or the fully open position Po is set as the origin of the valve shaft 200, it is possible to reduce the time required for returning to the origin and the measurement error of the mechanical displacement amount by the relative position sensor 1. It becomes. Moreover, it becomes possible to suppress the additional cost by installing the ON / OFF sensor.
 なお、図16Aおよび図16Bにおいて、ON/OFFセンサ2_1~2_nは、弁開度が0%となる全閉位置Pcと弁開度が100%となる全開位置Poの両方ではなく、何れか一方に配置してもよい。 In FIG. 16A and FIG. 16B, the ON / OFF sensors 2_1 to 2_n are not both the fully closed position Pc where the valve opening degree is 0% and the fully open position Po where the valve opening degree is 100%. You may arrange in.
 また、図17Aは、ON/OFFセンサ2_1~2_nの更に別の配置例を示す図である。
 この例では、弁開度が50%となる中間位置Pmに弁軸200が到達したことを検出する一つのON/OFFセンサ2を設ける場合が示されている。このとき、図17Bに示すように、ON/OFFセンサ2を構成する電極21の両側には、カム部材24を配置する。これらのカム部材24は、全閉位置Pcと中間位置Pmとの間、および中間位置Pmと全開位置Poとの間に、ショートプレート201の接点の軌道に沿って配置する。
FIG. 17A is a diagram showing still another arrangement example of the ON / OFF sensors 2_1 to 2_n.
In this example, a case where one ON / OFF sensor 2 for detecting that the valve shaft 200 has reached the intermediate position Pm at which the valve opening degree is 50% is provided is shown. At this time, as shown in FIG. 17B, cam members 24 are arranged on both sides of the electrode 21 constituting the ON / OFF sensor 2. These cam members 24 are arranged along the track of the contact point of the short plate 201 between the fully closed position Pc and the intermediate position Pm and between the intermediate position Pm and the fully open position Po.
 これによれば、全閉位置Pcと全開位置Poの中間点である位置Pmにおいて、原点復帰が行われる。そのため、全閉位置Pcまたは全開位置Poのみを原点に設定した場合に比べて、原点復帰に要する時間と相対的位置センサ1による機械的変位量の測定誤差を小さくすることが可能となる。また、ON/OFFセンサが一つで済むので、ON/OFFセンサを設置することによる追加のコスト等を更に抑えることが可能となる。 According to this, the origin return is performed at the position Pm which is an intermediate point between the fully closed position Pc and the fully opened position Po. Therefore, compared with the case where only the fully closed position Pc or the fully open position Po is set as the origin, it is possible to reduce the time required for the origin return and the measurement error of the mechanical displacement amount by the relative position sensor 1. In addition, since only one ON / OFF sensor is required, it is possible to further suppress the additional cost due to the installation of the ON / OFF sensor.
 また、上記実施の形態では、相対的位置センサ1としてインクリメンタル型のロータリエンコーダを用いる場合を例示した。しかし、非接触で操作対象軸の回転方向の機械的変位Mdを検出することができるものであれば、相対的位置センサ1として用いることができる。例えば、電動モータ52としてブラシレスモータを用いる場合には、そのブラシレスモータを構成するホール素子(ホールIC)から出力される信号を相対的位置センサ1として利用することも可能である。 In the above embodiment, the case where an incremental rotary encoder is used as the relative position sensor 1 is exemplified. However, it can be used as the relative position sensor 1 as long as it can detect the mechanical displacement Md in the rotation direction of the operation target shaft without contact. For example, when a brushless motor is used as the electric motor 52, a signal output from a Hall element (Hall IC) constituting the brushless motor can be used as the relative position sensor 1.
 また、電動モータ52としてステッピングモータを用いる場合には、相対的位置センサ1を別途設けることなく、そのステッピングモータを駆動するためのパルス信号を位置算出部3がカウントすることにより、操作対象軸の回転方向の機械的変位量を算出することも可能である。 Further, when a stepping motor is used as the electric motor 52, the position calculation unit 3 counts the pulse signal for driving the stepping motor without providing the relative position sensor 1 separately. It is also possible to calculate the mechanical displacement amount in the rotation direction.
 また、電動モータ52として同期モータを用いる場合には、相対的位置センサ1を別途設けることなく、操作対象軸の回転方向の機械的変位量を算出することも可能である。例えば、同期モータを駆動している駆動時間をT〔s〕、回転速度をN〔rpm〕、減速機53の減速比を1/Gとしたとき、回転角度Φ〔°〕は、(T×N×360)/(60×G)で表される。したがって、位置算出部3が上記計算を行うことにより、操作対象軸の回転方向の機械的変位量を算出することが可能となる。 Further, when a synchronous motor is used as the electric motor 52, the mechanical displacement amount in the rotation direction of the operation target shaft can be calculated without providing the relative position sensor 1 separately. For example, when the driving time for driving the synchronous motor is T [s], the rotation speed is N [rpm], and the reduction ratio of the speed reducer 53 is 1 / G, the rotation angle Φ [°] is (T × N × 360) / (60 × G). Therefore, the position calculation unit 3 can calculate the mechanical displacement amount in the rotation direction of the operation target shaft by performing the above calculation.
 また、上記実施の形態では、回転制御装置100を調節弁の弁軸200を操作する電動式の操作器として適用する場合を例示した。しかし、回転制御装置100によって操作される操作対象軸は、弁軸に限定されず、回転制御装置において相対的位置センサを使用するあらゆる開度計測システムに適用することが可能となる。例えば、回転制御装置100を、ダンパシャフトを操作するダンパ用の操作器として適用することも可能である。 Further, in the above embodiment, the case where the rotation control device 100 is applied as an electric operating device that operates the valve shaft 200 of the control valve is illustrated. However, the operation target shaft operated by the rotation control device 100 is not limited to the valve shaft, and can be applied to any opening degree measurement system that uses a relative position sensor in the rotation control device. For example, the rotation control device 100 can be applied as a damper operating device that operates the damper shaft.
 また、上記実施の形態では、プリント基板20に形成した貫通孔20cに弁軸200を挿通させる場合を例示したが、本発明は例示した構成に限られない。例えば、図18に示すように、プリント基板20の一辺に例えば平面視半円形状の切り欠き部20dを設け、この切り欠き部20dに弁軸200を配置してもよい。この場合、電極21aは、プリント基板20の主面20aにおける切り欠き部20dの周辺に配置すればよい。 In the above embodiment, the case where the valve shaft 200 is inserted through the through hole 20c formed in the printed circuit board 20 is illustrated, but the present invention is not limited to the illustrated configuration. For example, as shown in FIG. 18, a cutout portion 20d having a semicircular shape in plan view may be provided on one side of the printed circuit board 20, and the valve shaft 200 may be disposed in the cutout portion 20d. In this case, the electrode 21a may be disposed around the notch 20d in the main surface 20a of the printed circuit board 20.
 100…回転制御装置(操作器)、200…弁軸、1…相対的位置センサ、2,2_1~2_n…ON/OFFセンサ、3…位置算出部、4,4A…操作量算出部、5…操作部、6…反転回数カウント部、7…絶対値積算部、8…タイマ、9…起動回数カウント部、20…プリント基板、20a、20b…主面、21a、21b…電極、201…ショートプレート、201a、201b…接触子、23_i…検出回路、24a、24b…カム部材、31…相対的位置情報取得部、32…基準値更新部、33…位置決定部、41…目標値取得部、42…偏差算出部、43…操作量決定部、51…電動モータ駆動部、52…電動モータ、53…減速機、SP…目標値、PV…実開度、ΔP…偏差、MV…操作量、RP…積算値、AP…基準値、RST…リセット信号。 DESCRIPTION OF SYMBOLS 100 ... Rotation control apparatus (operator), 200 ... Valve shaft, 1 ... Relative position sensor, 2, 2_1 to 2_n ... ON / OFF sensor, 3 ... Position calculation part, 4, 4A ... Manipulation amount calculation part, 5 ... Operation unit, 6 ... Inversion count counting unit, 7 ... Absolute value integration unit, 8 ... Timer, 9 ... Activation count counting unit, 20 ... Printed circuit board, 20a, 20b ... Main surface, 21a, 21b ... Electrode, 201 ... Short plate , 201a, 201b ... contact, 23_i ... detection circuit, 24a, 24b ... cam member, 31 ... relative position information acquisition unit, 32 ... reference value update unit, 33 ... position determination unit, 41 ... target value acquisition unit, 42 ... Deviation calculation unit, 43 ... Operation amount determination unit, 51 ... Electric motor drive unit, 52 ... Electric motor, 53 ... Reduction gear, SP ... Target value, PV ... Actual opening, ΔP ... Deviation, MV ... Operation amount, RP ... integrated value, AP ... reference value, ST ... reset signal.

Claims (11)

  1.  操作対象軸の回転を制御する回転制御装置であって、
     前記操作対象軸の回転方向の機械的変位を非接触で検出する相対的位置センサと、
     前記操作対象軸の回転方向における第1位置から第2位置までの回転可能な範囲において前記第1位置と前記第2位置とを除く少なくとも1つの所定の中間位置に前記操作対象軸が到達したときに検知信号を出力するON/OFFセンサと、
     前記検知信号が出力されてからの、前記相対的位置センサによって検出された前記機械的変位の積算値と、前記検知信号を出力した前記ON/OFFセンサに対応する前記所定の中間位置を示す基準値とに基づいて、前記操作対象軸の回転方向の絶対的な位置を算出する位置算出部と、
     前記操作対象軸の回転方向の目標位置の情報と、前記位置算出部によって算出された前記操作対象軸の絶対的な位置とに基づいて、前記操作対象軸の操作量を算出する操作量算出部と、
     前記操作量算出部によって算出された前記操作量に基づいて、前記操作対象軸の回転方向における前記第1位置から前記第2位置までの回転可能な範囲内において前記操作対象軸を操作する操作部とを備え、
     前記ON/OFFセンサは、
     前記操作対象軸の周りに設けられ、前記操作対象軸の軸線と直交する主面を有する基板と、
    前記基板の主面上に配置された少なくとも1つの電極と、
    一端が前記操作対象軸に固定され、前記操作対象軸の径方向に延在し、前記操作対象軸が前記所定の中間位置にあるときに他端側の一部が前記電極の1つに接触する接触子と、
    前記接触子が前記電極の1つに接触すると前記検知信号を出力する検出回路と、
    前記基板の前記主面上に配置され、前記操作対象軸が前記所定の中間位置にないときに前記接触子の他端を前記主面から離間させる方向に移動させるカム部材と、
    を備える、回転制御装置。
    A rotation control device for controlling rotation of an operation target shaft,
    A relative position sensor for detecting the mechanical displacement in the rotational direction of the operation target shaft in a non-contact manner;
    When the operation target shaft reaches at least one predetermined intermediate position excluding the first position and the second position in a rotatable range from the first position to the second position in the rotation direction of the operation target shaft. An ON / OFF sensor that outputs a detection signal to
    An integrated value of the mechanical displacement detected by the relative position sensor after the detection signal is output, and a reference indicating the predetermined intermediate position corresponding to the ON / OFF sensor that has output the detection signal A position calculation unit that calculates an absolute position in the rotation direction of the operation target axis based on the value;
    An operation amount calculation unit that calculates an operation amount of the operation target axis based on information on a target position in the rotation direction of the operation target axis and an absolute position of the operation target axis calculated by the position calculation unit. When,
    An operation unit that operates the operation target shaft within a rotatable range from the first position to the second position in the rotation direction of the operation target shaft based on the operation amount calculated by the operation amount calculation unit. And
    The ON / OFF sensor
    A substrate provided around the operation target axis and having a main surface orthogonal to the axis of the operation target axis;
    At least one electrode disposed on a major surface of the substrate;
    One end is fixed to the operation target shaft, extends in the radial direction of the operation target shaft, and a part of the other end side contacts one of the electrodes when the operation target shaft is at the predetermined intermediate position. A contactor,
    A detection circuit that outputs the detection signal when the contact contacts one of the electrodes;
    A cam member that is disposed on the main surface of the substrate and moves the other end of the contact member away from the main surface when the operation target shaft is not at the predetermined intermediate position;
    A rotation control device.
  2.  請求項1に記載された回転制御装置において、
     前記電極は、前記主面上の前記所定の中間位置に対応する位置に配置され、
     前記カム部材は、前記操作対象軸の軸線を中心とする円周に沿って配置され、それぞれ前記円周に沿って前記主面上の前記所定の中間位置に対応する位置に近づくにつれて前記主面からの高さが低くなる、
     回転制御装置。
    In the rotation control device according to claim 1,
    The electrode is disposed at a position corresponding to the predetermined intermediate position on the main surface,
    The cam member is disposed along a circumference centered on an axis of the operation target shaft, and the main surface as it approaches a position corresponding to the predetermined intermediate position on the main surface along the circumference. The height from
    Rotation control device.
  3.  請求項2に記載された回転制御装置において、
     前記電極と前記カム部材とは、それぞれ、前記主面上の前記操作対象軸の軸を中心として互いに異なる半径を有する第1円周と第2円周とに沿って配置され、
     前記カム部材のうち前記主面上で隣り合う2つのカム部材の互いに対向する端部は、前記主面上で互いに離間している、
     回転制御装置。
    In the rotation control device according to claim 2,
    The electrode and the cam member are respectively disposed along a first circumference and a second circumference having different radii around the axis of the operation target shaft on the main surface,
    End portions of the two cam members adjacent to each other on the main surface among the cam members are separated from each other on the main surface.
    Rotation control device.
  4.  請求項2に記載された回転制御装置において、
     前記電極と前記カム部材とは、前記主面上の前記操作対象軸の軸を中心とする同一の円周上に配置され、
     前記カム部材は、それぞれ絶縁性を有する材料から形成され、
     前記カム部材のうち前記主面上で隣り合う前記2つのカム部材の互いに対向する端部は、それぞれ前記電極の一部を覆いかつ前記電極上で互いに離間している、
     回転制御装置。
    In the rotation control device according to claim 2,
    The electrode and the cam member are disposed on the same circumference around the axis of the operation target shaft on the main surface,
    The cam members are each formed of an insulating material,
    The opposite end portions of the two cam members adjacent to each other on the main surface of the cam member respectively cover a part of the electrode and are separated from each other on the electrode.
    Rotation control device.
  5.  請求項4に記載された回転制御装置において、
     前記接触子は、弾性変形可能な板状の部材であり、
     前記操作対象軸が前記所定の中間位置にあるときに前記電極に接触する部分の幅は、前記主面上で隣り合う前記2つのカム部材の互いに対向する端部同士の間隔より狭い、
     回転制御装置。
    In the rotation control device according to claim 4,
    The contact is a plate-like member that can be elastically deformed,
    The width of the portion that contacts the electrode when the operation target shaft is at the predetermined intermediate position is narrower than the interval between the opposing ends of the two cam members adjacent on the main surface,
    Rotation control device.
  6.  請求項1乃至5の何れか1項に記載された回転制御装置において、
     前記基板は、前記主面として、第1主面とこの第1主面と反対側の第2主面とを有し、
    前記電極は、前記第1主面上に配置された少なくとも1つの第1電極と、前記第2主面上に配置された少なくとも1つの第2電極とからなり、
     前記接触子は、一端が前記操作対象軸に固定され、前記操作対象軸の径方向に延在し、前記操作対象軸が前記所定の中間位置にあるときに他端側の一部が前記第1電極の1つに接触する第1接触子と、前記第1接触子と電気的に接続されるとともに、一端が前記操作対象軸に固定され、前記操作対象軸の径方向に延在し、前記操作対象軸が前記所定の中間位置にあるときに他端側の一部が前記第2電極の1つに接触する第2接触子とからなり、
     前記カム部材は、前記基板の前記第1主面上に配置され、前記操作対象軸が前記所定の中間位置にないときに前記第1接触子の他端を前記主面から離間させる方向に移動させる複数の第1カム部材と、前記基板の前記第2主面上に配置され、前記操作対象軸が前記所定の中間位置にないときに前記第2接触子の他端を前記主面から離間させる方向に移動させる複数の第2カム部材とを含み、
     前記検出回路は、前記第1接触子の他端側の一部が前記第1電極に接触し、かつ前記第2接触子の他端側の一部が前記第2電極に接触すると前記検知信号を出力する、
     回転制御装置。
    In the rotation control device according to any one of claims 1 to 5,
    The substrate has, as the main surface, a first main surface and a second main surface opposite to the first main surface,
    The electrode comprises at least one first electrode disposed on the first main surface and at least one second electrode disposed on the second main surface,
    One end of the contact is fixed to the operation target shaft, extends in a radial direction of the operation target shaft, and a part of the other end side is the first when the operation target shaft is at the predetermined intermediate position. A first contact that contacts one of the electrodes, and is electrically connected to the first contact, one end of which is fixed to the operation target shaft, and extends in a radial direction of the operation target shaft; When the operation target shaft is at the predetermined intermediate position, a part of the other end side is composed of a second contact that contacts one of the second electrodes,
    The cam member is disposed on the first main surface of the substrate and moves in a direction to separate the other end of the first contact from the main surface when the operation target shaft is not at the predetermined intermediate position. A plurality of first cam members that are arranged on the second main surface of the substrate, and the other end of the second contact is separated from the main surface when the operation target shaft is not at the predetermined intermediate position. A plurality of second cam members that are moved in the direction of movement,
    The detection circuit detects the detection signal when a part of the other end side of the first contactor contacts the first electrode and a part of the other end side of the second contactor contacts the second electrode. Output,
    Rotation control device.
  7.  請求項1乃至6の何れか1項に記載された回転制御装置において、
    前記操作対象軸の回転方向が反転した回数をカウントする反転回数カウント部をさらに備え、
     前記操作量算出部は、前記検知信号が出力されることなく前記反転回数カウント部によってカウントされた値が所定の閾値を超えた場合に、前記操作対象軸を前記第1位置、前記第2位置および前記所定の中間位置のいずれか一つまで移動させるための前記操作量を算出し、
     前記操作部は、前記操作量算出部によって算出された前記操作量に基づいて前記操作対象軸を操作する、
     回転制御装置。
    In the rotation control device according to any one of claims 1 to 6,
    A reversal number counting unit that counts the number of times the rotation direction of the operation target shaft is reversed;
    The operation amount calculation unit moves the operation target axis to the first position and the second position when a value counted by the inversion number counting unit exceeds a predetermined threshold without outputting the detection signal. And calculating the operation amount for moving to any one of the predetermined intermediate positions,
    The operation unit operates the operation target axis based on the operation amount calculated by the operation amount calculation unit.
    Rotation control device.
  8.  請求項1乃至6の何れか1項に記載された回転制御装置において、
    前記操作対象軸の回転方向の前記機械的変位の絶対値を積算する絶対値積算部をさらに備え、
     前記操作量算出部は、前記検知信号が出力されることなく前記絶対値積算部によって積算された値が所定の閾値を超えた場合に、前記操作対象軸を前記第1位置、前記第2位置および前記所定の中間位置のいずれか一つまで移動させるための前記操作量を算出し、
     前記操作部は、前記操作量算出部によって算出された前記操作量に基づいて前記操作対象軸を操作する、
     回転制御装置。
    In the rotation control device according to any one of claims 1 to 6,
    An absolute value accumulating unit for accumulating the absolute value of the mechanical displacement in the rotation direction of the operation target shaft;
    The operation amount calculation unit moves the operation target axis to the first position and the second position when a value accumulated by the absolute value accumulation unit exceeds a predetermined threshold without outputting the detection signal. And calculating the operation amount for moving to any one of the predetermined intermediate positions,
    The operation unit operates the operation target axis based on the operation amount calculated by the operation amount calculation unit.
    Rotation control device.
  9.  請求項1乃至6の何れか1項に記載された回転制御装置において、
     前記検知信号が出力されることなく経過した時間を積算するタイマをさらに備え、
     前記操作量算出部は、前記検知信号が出力されることなく経過した時間が所定の閾値を超えた場合に、前記操作対象軸を前記第1位置、前記第2位置および前記所定の中間位置のいずれか一つまで移動させるための前記操作量を算出し、
     前記操作部は、前記操作量算出部によって算出された前記操作量に基づいて前記操作対象軸を操作する、
     回転制御装置。
    In the rotation control device according to any one of claims 1 to 6,
    A timer for accumulating the elapsed time without the detection signal being output;
    The operation amount calculation unit moves the operation target axis between the first position, the second position, and the predetermined intermediate position when a time elapsed without outputting the detection signal exceeds a predetermined threshold. Calculate the operation amount to move to any one of them,
    The operation unit operates the operation target axis based on the operation amount calculated by the operation amount calculation unit.
    Rotation control device.
  10.  請求項1乃至6の何れか1項に記載された回転制御装置において、
    前記操作対象軸の動き出した回数をカウントする起動回数カウント部をさらに備え、
     前記操作量算出部は、前記検知信号が出力されることなく前記起動回数カウント部によってカウントされた値が所定の閾値を超えた場合に、前記操作対象軸を前記第1位置、前記第2位置および前記所定の中間位置のいずれか一つまで移動させるための前記操作量を算出し、
     前記操作部は、前記操作量算出部によって算出された前記操作量に基づいて前記操作対象軸を操作する、
     回転制御装置。
    In the rotation control device according to any one of claims 1 to 6,
    An activation number counting unit that counts the number of times the operation target axis starts to move;
    The operation amount calculation unit moves the operation target axis to the first position and the second position when a value counted by the activation number counting unit exceeds a predetermined threshold without outputting the detection signal. And calculating the operation amount for moving to any one of the predetermined intermediate positions,
    The operation unit operates the operation target axis based on the operation amount calculated by the operation amount calculation unit.
    Rotation control device.
  11.  請求項1乃至10の何れか1項に記載された回転制御装置において、
     前記位置算出部は、
     前記ON/OFFセンサから前記検知信号が出力されると、前記相対的位置センサによって検出された前記機械的変位の積算値をリセットする基準値更新部を備える、
     回転制御装置。
    In the rotation control device according to any one of claims 1 to 10,
    The position calculation unit
    A reference value updating unit that resets an integrated value of the mechanical displacement detected by the relative position sensor when the detection signal is output from the ON / OFF sensor;
    Rotation control device.
PCT/JP2018/012758 2017-03-29 2018-03-28 Rotation control device WO2018181473A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880021224.7A CN110476040B (en) 2017-03-29 2018-03-28 Rotation control device
KR1020197028091A KR102147922B1 (en) 2017-03-29 2018-03-28 Rotation control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066000 2017-03-29
JP2017066000A JP6802104B2 (en) 2017-03-29 2017-03-29 Rotation control device

Publications (1)

Publication Number Publication Date
WO2018181473A1 true WO2018181473A1 (en) 2018-10-04

Family

ID=63677596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012758 WO2018181473A1 (en) 2017-03-29 2018-03-28 Rotation control device

Country Status (4)

Country Link
JP (1) JP6802104B2 (en)
KR (1) KR102147922B1 (en)
CN (1) CN110476040B (en)
WO (1) WO2018181473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008568A (en) * 2019-06-28 2022-02-01 松下知识产权经营株式会社 Input device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211802A (en) * 1990-01-17 1991-09-17 Aisin Seiki Co Ltd Variable resistor provided with switch
JPH05157584A (en) * 1991-12-02 1993-06-22 Komatsu Ltd Rotation position detection device and complex rotation position sensor
JPH10274737A (en) * 1997-03-31 1998-10-13 Canon Inc Lens system
JPH11271041A (en) * 1998-03-23 1999-10-05 Fuji Photo Optical Co Ltd Position detecting device
US6155283A (en) * 1999-09-10 2000-12-05 The Foxboro Company Intelligent valve positioner tuning
JP2004169887A (en) * 2002-11-22 2004-06-17 Konan Electric Co Ltd Operation circumstances sensitive device of actuator and operation circumstances detection method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854205A (en) * 1994-08-11 1996-02-27 Meidensha Corp Rotational position detector for electric rotating
JP4088073B2 (en) * 2002-01-11 2008-05-21 株式会社ミツトヨ Absolute position measuring device
JP2010286444A (en) 2009-06-15 2010-12-24 Yamatake Corp Device and method for detecting absolute position
JP5498114B2 (en) 2009-09-29 2014-05-21 アズビル株式会社 Control valve and calibration method of actual opening conversion characteristics of control valve
JP6312077B2 (en) * 2014-01-08 2018-04-18 アルプス電気株式会社 Rotation angle detector
JP6077592B2 (en) * 2015-05-29 2017-02-08 ファナック株式会社 Motor control system and brake abnormality detection method having function of detecting brake abnormality

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211802A (en) * 1990-01-17 1991-09-17 Aisin Seiki Co Ltd Variable resistor provided with switch
JPH05157584A (en) * 1991-12-02 1993-06-22 Komatsu Ltd Rotation position detection device and complex rotation position sensor
JPH10274737A (en) * 1997-03-31 1998-10-13 Canon Inc Lens system
JPH11271041A (en) * 1998-03-23 1999-10-05 Fuji Photo Optical Co Ltd Position detecting device
US6155283A (en) * 1999-09-10 2000-12-05 The Foxboro Company Intelligent valve positioner tuning
JP2004169887A (en) * 2002-11-22 2004-06-17 Konan Electric Co Ltd Operation circumstances sensitive device of actuator and operation circumstances detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114008568A (en) * 2019-06-28 2022-02-01 松下知识产权经营株式会社 Input device

Also Published As

Publication number Publication date
CN110476040A (en) 2019-11-19
JP2018169259A (en) 2018-11-01
KR102147922B1 (en) 2020-08-25
JP6802104B2 (en) 2020-12-16
KR20190122238A (en) 2019-10-29
CN110476040B (en) 2021-07-16

Similar Documents

Publication Publication Date Title
CN108512366B (en) Rotation control device
EP1300662B1 (en) Rotational angle detecting device, torque detecting device, and steering apparatus
KR100219980B1 (en) Rotating operating type electric switch
GB2466703A (en) Two function control device for a wristwatch
JP2004020370A (en) Torque detection system
JP5271306B2 (en) Electric control actuator
JP2003329483A (en) Turning angle detecting device
EP1279931A2 (en) Rotation detecting device of multi-rotation body
WO2018181473A1 (en) Rotation control device
US20110219895A1 (en) Lever operation device
CN111692963A (en) Angle sensor calibration method and angle sensor calibration device
KR20030091807A (en) Rotation detecting apparatus
JP6447715B2 (en) Rotary electronic components and rotary encoders
WO2015037673A1 (en) Needle-pointer-type meter device
US6917034B2 (en) Electronic equipment equipped with position detection means for detecting position of moving body utilizing incremental-type encoder
JPH11211456A (en) Rotating angle detecting device
US10707035B2 (en) Rotary electronic component
KR102144422B1 (en) Rotation controlling device
CN117203501A (en) n-phase position encoder and related signal processing method and calibration method
EP3399282A1 (en) Contactless position sensor with circuit structure for sensing the position of a pointer mounted to a movable part
JP2020034082A (en) Rotation control device
JP2002084791A (en) Stepping motor driving circuit
US4403335A (en) Arrangement for the self-wiping of contacts in multidigit interrogating counters
JP2006010448A (en) Position detection device
JPH06257618A (en) Power transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028091

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774334

Country of ref document: EP

Kind code of ref document: A1