WO2018181465A1 - Lithium composite metal oxide production method - Google Patents

Lithium composite metal oxide production method Download PDF

Info

Publication number
WO2018181465A1
WO2018181465A1 PCT/JP2018/012725 JP2018012725W WO2018181465A1 WO 2018181465 A1 WO2018181465 A1 WO 2018181465A1 JP 2018012725 W JP2018012725 W JP 2018012725W WO 2018181465 A1 WO2018181465 A1 WO 2018181465A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cleaning liquid
metal oxide
composite metal
lithium composite
Prior art date
Application number
PCT/JP2018/012725
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 雄一
公保 中尾
裕介 前田
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to CN201880014933.2A priority Critical patent/CN110366541B/en
Priority to KR1020197024218A priority patent/KR102545342B1/en
Publication of WO2018181465A1 publication Critical patent/WO2018181465A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium composite metal oxide.
  • the lithium composite metal oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power sources for mobile phones and notebook computers, but also for medium and large power sources for automobiles and power storage.
  • the method for producing a lithium composite metal oxide generally includes a raw material mixing step, a firing step, and a cleaning step.
  • Water is used as the cleaning liquid used in the cleaning process.
  • Patent Document 1 discloses a process in which a lithium composite metal oxide having a specific composition is baked and then washed with water stirring at a ratio of 50 to 200 parts by weight of water with respect to 100 parts by weight of the lithium composite metal oxide. The manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries which has this is described.
  • lithium secondary batteries are required to have further improved battery characteristics such as high initial charge / discharge efficiency, and positive electrode active materials suitable for them.
  • This invention is made
  • the present invention includes the following [1] to [5].
  • a second cleaning step for cleaning with a second cleaning liquid wherein the first cleaning liquid is an alkaline cleaning liquid containing a compound containing an alkali metal, and the second cleaning liquid contains an alkali metal.
  • An alkaline cleaning liquid comprising at least one of a compound and an alkaline compound not containing an alkali metal, wherein an alkali metal concentration relative to a total mass of the first cleaning liquid in the first cleaning liquid is the second cleaning liquid.
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1.]
  • y + z + w ⁇ 0.3 The method for producing a lithium composite metal oxide according to [2].
  • a method for producing a lithium composite metal oxide suitable for a lithium secondary battery having high initial charge / discharge efficiency can be provided.
  • the production process of the metal composite compound and the production process of the lithium composite metal oxide are optional steps, and the subsequent first cleaning step and second cleaning step are essential. Prepare as a process. Hereinafter, each step will be described.
  • a metal other than lithium that is, an essential metal composed of Ni, Co, and Mn is included, and optionally Fe, Cu, Ti, Mg, Al, Preparing a metal composite compound containing any one or more of W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and firing the metal composite compound with an appropriate lithium salt.
  • a metal complex compound a metal complex hydroxide or a metal complex oxide is preferable.
  • the metal complex compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt, and manganese as an example.
  • the metal complex hydroxide is co-precipitation, in particular by a continuous method described in 2002-201028 JP-nickel salt solution, cobalt salt solution, is reacted manganese salt solution and a complexing agent, Ni ( 1-yz) produced by precipitating a composite metal hydroxide represented by Co y Mn z (OH) 2 (where 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4) be able to.
  • nickel salt which is the solute of the said nickel salt solution For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is a solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used.
  • manganese salt that is a solute of the manganese salt solution for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni (1-yz) Co y Mn z (OH) 2 . That is, each of the molar ratios of nickel, cobalt, and manganese in the mixed solution containing the metal salt corresponds to (1-yz): y: z in the composition formula (I) of the lithium composite metal compound. Define the amount of metal salt. Moreover, water is used as a solvent.
  • the complexing agent is capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.
  • hydrazine examples include ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the complexing agent may not be included if desired.
  • the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution and the complexing agent is greater than 0 and 2.0 or less.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. or more and 80 ° C. or less, preferably 30 ° C. or more and 70 ° C. or less.
  • it is preferably controlled within a range of pH 11 or more and pH 13 or less, and the substance in the reaction vessel is appropriately stirred.
  • the reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
  • the finally obtained lithium composite metal oxide is controlled to have desired physical properties. Can do.
  • the obtained reaction precipitate is washed with water and then dried to isolate the nickel cobalt manganese metal composite hydroxide as the nickel cobalt manganese metal composite compound. Moreover, you may wash
  • nickel cobalt manganese metal composite hydroxide is manufactured, but nickel cobalt manganese metal composite oxide may be prepared.
  • a metal composite hydroxide containing nickel, cobalt, manganese and tungsten may be prepared.
  • a metal composite hydroxide containing nickel, cobalt and manganese other than tungsten is prepared by the above method, and then the aqueous solution containing tungsten oxide is dried and deposited on the metal composite hydroxide containing nickel, cobalt and manganese.
  • a metal composite hydroxide containing nickel, cobalt, manganese and tungsten can be prepared.
  • the dried metal composite hydroxide containing nickel, cobalt and manganese is 100 ° C. to 200 ° C.
  • a method of spraying an aqueous solution containing tungsten oxide while heating at a temperature may be used.
  • the concentration of tungsten oxide contained in the aqueous solution containing tungsten oxide is, for example, 1% by mass or more and 10% by mass or less.
  • the aqueous solution containing tungsten oxide may contain a lithium salt such as lithium hydroxide.
  • the concentration of lithium hydroxide contained in the aqueous solution containing tungsten oxide is 1% by mass or more and 10% by mass or less.
  • the metal composite hydroxide containing nickel, cobalt, manganese, and tungsten may contain a metal element other than tungsten as the optional metal.
  • the metal composite oxide or hydroxide is dried and then mixed with a lithium salt.
  • the drying conditions are not particularly limited, but, for example, conditions in which the metal composite oxide or hydroxide is not oxidized and reduced (that is, the oxide is maintained as an oxide, the hydroxide is maintained as a hydroxide).
  • Conditions conditions under which the metal composite hydroxide is oxidized (ie, conditions under which the hydroxide is oxidized into oxide), conditions under which the metal composite oxide is reduced (ie under conditions under which the oxide is reduced into hydroxide) Any of the above conditions may be used.
  • An inert gas such as nitrogen, helium and argon may be used for conditions where oxidation and reduction are not performed.
  • any one of lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide and lithium fluoride, or a mixture of two or more can be used. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
  • Classification may be appropriately performed after the metal composite oxide or hydroxide is dried. The above lithium salt and metal composite metal hydroxide are used in consideration of the composition ratio of the final object.
  • the lithium salt and the composite metal hydroxide are Li x Ni (1-yz) Co y Mn z O 2 (where 0 ⁇ x ⁇ 0. 2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4).
  • a lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium salt. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
  • the firing temperature of the metal composite oxide or hydroxide and lithium salt such as lithium hydroxide and lithium carbonate is not particularly limited, but is preferably 600 ° C. or higher and 1100 ° C. or lower, and preferably 750 ° C. or higher and 1050 ° C. More preferably, it is 800 ° C. or lower and more preferably 800 ° C. or higher and 1025 ° C. or lower.
  • the firing time is preferably 3 hours or more and 50 hours or less. When the firing time exceeds 50 hours, the battery performance tends to be substantially inferior due to volatilization of lithium. That is, if the firing time is within 50 hours, the volatilization of lithium can be suppressed. If the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor. When the firing time is 3 hours or more, the crystal development is good and the battery performance tends to be good.
  • the firing time is preferably 1 hour or more and 30 hours or less for the total time from the start of raising the temperature to the end of temperature holding. When the total time is 30 hours or less, the volatilization of Li can be prevented and the battery performance can be prevented from deteriorating.
  • the time from the start of the temperature rise to the firing temperature is preferably 0.5 hours or more and 20 hours or less. When the time from the start of temperature rise to the firing temperature is within this range, a more uniform lithium composite metal oxide can be obtained.
  • the temperature for such preliminary firing is preferably in the range of 300 ° C. to 850 ° C. for 1 hour to 10 hours.
  • the present embodiment includes a first cleaning process and a second cleaning process for cleaning the cleaning product obtained in the first cleaning process.
  • the first cleaning step is a step of cleaning and removing the remaining lithium carbonate derived from the raw material.
  • the first cleaning step is a step of cleaning the lithium composite metal compound and removing residual lithium carbonate derived from the raw material.
  • the second cleaning step is a step of cleaning and removing residual components of the cleaning liquid used in the first cleaning step.
  • the second cleaning step is a step of cleaning the lithium composite metal compound and removing the cleaning liquid used in the first cleaning step remaining in the lithium composite metal oxide.
  • removing does not mean only when the object is completely removed, but is interpreted to include the case where the object remains partially.
  • the amount of lithium carbonate contained in the lithium composite metal oxide after the first cleaning step should be less than the amount of lithium carbonate contained in the lithium composite metal oxide before the first cleaning step, Lithium carbonate may remain in the lithium composite metal oxide.
  • the first cleaning liquid is an alkaline cleaning liquid containing a compound containing an alkali metal.
  • the compound containing an alkali metal contained in the alkaline cleaning liquid include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3.
  • examples thereof include one or more anhydrides selected from the group consisting of (sodium carbonate) and K 2 CO 3 (potassium carbonate), and hydrates thereof. From the viewpoint of further suppressing elution of lithium from the lithium composite metal oxide, lithium hydroxide or lithium carbonate is preferable, and lithium hydroxide is more preferable.
  • the first cleaning liquid can be prepared by dissolving the alkali metal-containing compound in water.
  • concentration of the compound containing an alkali metal is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more with respect to the total mass of the first cleaning liquid. Moreover, 30 mass% or less is preferable, 25 mass% or less is more preferable, and 20 mass% or less is especially preferable.
  • the upper limit and the lower limit of the concentration of the compound containing an alkali metal can be arbitrarily combined.
  • the concentration of the compound containing an alkali metal is preferably 1% by mass to 30% by mass, more preferably 5% by mass to 25% by mass, and more preferably 10% by mass to 20% by mass with respect to the total mass of the first cleaning liquid. A mass% or less is particularly preferred.
  • cleaning liquid is more than the said lower limit, the elution of lithium from a lithium composite metal oxide can be suppressed more. It can suppress that the compound containing an alkali metal remains in the lithium complex metal oxide manufactured because the density
  • the alkali metal concentration relative to the total mass of the first cleaning liquid in the first cleaning liquid is greater than the alkali metal concentration relative to the total mass of the second cleaning liquid in the second cleaning liquid described later. It is also characterized by high.
  • the concentration of the compound containing an alkali metal with respect to the total mass of the first cleaning liquid in the first cleaning liquid is a compound containing the alkali metal with respect to the total mass of the second cleaning liquid in the second cleaning liquid. Higher than the concentration of.
  • the ratio of the lithium composite metal oxide after firing to the total mass of the first cleaning liquid in the first cleaning step is preferably 30 to 100% by mass, and more preferably 40 to 60% by mass.
  • the ratio of the lithium composite metal oxide after firing to the total mass of the first cleaning liquid is 30 to 100% by mass, elution of lithium from the lithium composite metal oxide can be further suppressed, and the manufactured lithium composite metal It can suppress that the compound containing an alkali metal remains in an oxide.
  • the elution of the lithium component in the lithium composite metal oxide can be suppressed in the cleaning liquid by performing the cleaning process using the first cleaning liquid. For this reason, the concentration gradient of the lithium component on the particle surface of the lithium composite metal oxide to be produced is small, and the remaining lithium carbonate derived from the raw material can be removed while maintaining the lithium component concentration on the particle surface high. Conceivable. In other words, while maintaining a state where the concentration gradient of the lithium component from the inside of the lithium composite metal oxide toward the particle surface is small and the decrease in the lithium component concentration on the particle surface is suppressed, Can be removed. Thereby, the lithium composite metal oxide suitable for a lithium secondary battery with high initial charge / discharge efficiency can be manufactured.
  • the second cleaning step includes a second step of cleaning the lithium composite metal oxide with the second cleaning liquid.
  • the second cleaning liquid is an alkaline cleaning liquid.
  • the second cleaning liquid is an alkaline cleaning liquid containing at least one of a compound containing an alkali metal as an alkali component and an alkaline compound not containing an alkali metal.
  • Examples of the compound containing an alkali metal contained in the second cleaning liquid include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2.
  • the second cleaning liquid is preferably a lithium hydroxide aqueous solution. As described above, ammonia water can also be used as the second cleaning liquid.
  • the alkaline cleaning liquid as the second cleaning liquid may be a cleaning liquid containing an alkali metal as an alkali component, or may use at least one of ammonia water and ammonium carbonate water as a cleaning liquid without containing an alkali metal as an alkali component.
  • a cleaning liquid containing an alkali metal as an alkali component and further containing at least one of ammonia water and ammonium carbonate water may be used.
  • the second alkali cleaning liquid contains an alkali metal as an alkali component
  • the alkali metal concentration in the first cleaning liquid is higher than the alkali metal concentration in the second cleaning liquid.
  • the ammonia and ammonium ion concentrations in the second alkaline cleaning liquid are as follows. It may be higher than the concentration of alkali metal in the cleaning liquid.
  • the concentration of the alkali metal with respect to the total mass of the first cleaning liquid in the first cleaning liquid is preferably twice or more as compared with the concentration of the alkali metal with respect to the total mass of the second cleaning liquid in the second cleaning liquid. .
  • the second cleaning liquid can be prepared by dissolving the alkali component in water.
  • the concentration of the alkali component in the second cleaning liquid with respect to the total mass of the second cleaning liquid is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and particularly preferably 2.0% by mass or more.
  • the upper limit of the concentration of the aqueous solution of the alkali component only needs to be lower than the concentration of the alkaline component in the first cleaning liquid, and is preferably 30% by mass or less, for example, 20% by mass with respect to the total mass of the second cleaning liquid. % Or less is more preferable, and 10% by mass or less is particularly preferable.
  • the upper limit value and the lower limit value of the concentration of the alkali component in the second cleaning liquid can be arbitrarily combined.
  • the concentration of the alkali component in the second cleaning liquid is preferably 0.1% by mass or more and 30% by mass or less, more preferably 1.0% by mass or more and 20% by mass or less, with respect to the total mass of the second cleaning liquid. 2.0 mass% or more and 10 mass% or less are especially preferable.
  • the concentration of the alkali component in the second cleaning liquid is the alkali metal relative to the total mass of the second cleaning liquid.
  • the ratio of the lithium composite metal oxide after firing to the total mass of the second cleaning liquid in the second cleaning step is preferably 3 to 30% by mass, and more preferably 5 to 20% by mass.
  • the ratio of the lithium composite metal oxide after firing to the total mass of the second cleaning liquid in the second cleaning step is 3 to 30% by mass, the lithium component contained in the manufactured lithium composite metal oxide is eluted.
  • the residual component of the first cleaning liquid can be removed by cleaning while suppressing this.
  • the residual component of the first cleaning liquid can be removed by cleaning while suppressing the remaining alkali metal-containing compound contained in the second cleaning liquid.
  • the lithium composite metal oxide is put into an aqueous solution of each cleaning liquid and stirred.
  • the method a method in which an aqueous solution of each cleaning solution is used as shower water, and the lithium composite metal oxide is washed with the first cleaning solution, and then the wet cake of the lithium composite metal oxide separated from the first cleaning solution
  • the method (reslurry or repulp) which is put into the washing liquid and stirred.
  • the lithium composite metal oxide is added to the first cleaning liquid and stirred, the lithium composite metal oxide is separated from the first cleaning liquid, and then the second cleaning liquid is used as shower water. Examples include a method of applying to the lithium composite metal oxide after separation.
  • the lithium composite metal oxide is separated from the washing solution by filtration or the like. Thereafter, it is dried, pulverized as necessary, classified as appropriate, and used as a positive electrode active material applicable to a lithium secondary battery.
  • a step of depositing Al 2 O 3 on the surface of the obtained lithium composite metal oxide and baking it may be performed.
  • firing conditions an oxygen atmosphere is preferable.
  • the firing temperature is preferably 300 to 850 ° C, more preferably 400 to 780 ° C.
  • the firing time is preferably 1 to 30 hours, and more preferably 3 to 10 hours.
  • the produced lithium composite metal oxide is preferably represented by the following composition formula (I).
  • M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1 are satisfied.
  • x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and particularly preferably 0.02 or more. . Further, from the viewpoint of obtaining a lithium secondary battery having higher initial Coulomb efficiency, x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. It is particularly preferred that The upper limit value and the lower limit value of x can be arbitrarily combined. For example, x exceeds 0 and is preferably 0.1 or less, more preferably 0.01 or more and 0.08 or less, and particularly preferably 0.02 or more and 0.06 or less.
  • y in the composition formula (I) is preferably 0.005 or more, more preferably 0.01 or more, and 0.05 or more. It is particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (I) is more preferably 0.35 or less, and particularly preferably 0.33 or less.
  • the upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably 0.005 or more and 0.35 or less, more preferably 0.01 or more and 0.33 or less, and particularly preferably 0.05 or more and 0.33 or less.
  • z in the composition formula (I) is preferably 0.01 or more, more preferably 0.03 or more, and 0.1 or more. It is particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), z in the composition formula (I) is preferably 0.4 or less, and is 0.38 or less. Is more preferable, and it is especially preferable that it is 0.35 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.01 or more and 0.4 or less, more preferably 0.03 or more and 0.38 or less, and particularly preferably 0.1 or more and 0.35 or less.
  • w in the composition formula (I) is preferably more than 0, more preferably 0.0005 or more, and 0.001 or more. Particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (I) is preferably 0.09 or less, more preferably 0.08 or less, and 0 0.07 or less is particularly preferable.
  • the upper limit value and the lower limit value of w can be arbitrarily combined. For example, w exceeds 0 and is preferably 0.09 or less, more preferably 0.0005 or more and 0.08 or less, and particularly preferably 0.001 or more and 0.07 or less.
  • M in the composition formula (I) is one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V. To express.
  • M in the composition formula (I) is one or more metals selected from the group consisting of Ti, Mg, Al, W, B, and Zr. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is more preferably one or more metals selected from the group consisting of Al, W, B, and Zr.
  • the crystal structure of the lithium nickel composite oxide is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • Monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal belonging to C2 / m.
  • a crystal structure is particularly preferred.
  • the lithium salt used in the present invention is any one of lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, lithium fluoride, or a mixture of two or more. can do. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
  • the lithium carbonate component contained in the lithium composite metal oxide is preferably 0.4% by mass or less based on the total mass of the lithium composite metal oxide. More preferably, it is 0.39 mass% or less, and it is especially preferable that it is 0.38 mass% or less.
  • the lithium hydroxide component contained in the lithium composite metal oxide is 0.35% by mass or less based on the total mass of the lithium composite metal oxide.
  • the content is preferably 0.25% by mass or less, and particularly preferably 0.2% by mass or less.
  • the general formula (I) does not include H and C derived from lithium carbonate and lithium hydroxide. This is because lithium carbonate and lithium hydroxide contained in the lithium composite metal oxide are not contained in the crystal structure of the lithium composite metal oxide.
  • Lithium secondary battery> a positive electrode using the positive electrode active material for a lithium secondary battery of the present invention as a positive electrode active material of the lithium secondary battery, and a lithium secondary battery having the positive electrode will be described. To do.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
  • the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less.
  • a positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • Negative electrode current collector examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include porous films, nonwoven fabrics, and woven fabrics made of materials such as polyolefin resins such as polyethylene and polypropylene, fluororesins, and nitrogen-containing aromatic polymers. A material having the following form can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117 is 50 seconds / 100 cc or more, 300 seconds / 100 cc. Or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (where FSI is bis (fluorosulfonyl) imide), lower aliphatic carboxylic acid lithium salts, and lithium salts such as LiAlCl 4 , and two or more of these Mixtures may be used.
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, and an inorganic solid electrolyte can be mentioned include a sulfide such as Li 2 S-GeS 2 -P 2 S 5, it may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the positive electrode active material having the above-described configuration uses the above-described lithium-containing composite metal oxide of the present embodiment, the first charge / discharge efficiency of the lithium secondary battery using the positive electrode active material can be improved. .
  • the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to the present embodiment, the initial charge / discharge efficiency of the lithium secondary battery can be improved.
  • the lithium secondary battery having the above-described configuration since the lithium secondary battery having the above-described configuration has the positive electrode described above, it becomes a secondary battery with higher initial charge / discharge efficiency than before.
  • Another aspect of the present invention is a method for producing a lithium composite metal oxide containing at least nickel, the first cleaning step of cleaning the lithium composite metal oxide with a first cleaning liquid, and the first cleaning step.
  • a second washing step of washing the washed product with a second washing liquid wherein the first washing liquid and the second washing liquid are alkaline washing liquids each containing a compound containing an alkali metal,
  • the concentration of the alkali metal in the first cleaning liquid with respect to the total mass of the first cleaning liquid is 10% by mass to 20% by mass, and the alkali metal in the second cleaning liquid with respect to the total mass of the second cleaning liquid
  • the concentration is 2% by mass or more and 10% by mass or less, and the concentration of the alkali metal in the first cleaning liquid with respect to the total mass of the first cleaning liquid is the second cleaning with respect to the total mass of the second cleaning liquid. Higher than the concentration of the alkali metal in a method for producing a lithium mixed metal oxide.
  • At least one of the alkali metal-containing compounds contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
  • the alkali metal-containing compound contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
  • Another aspect of the present invention is a method for producing a lithium composite metal oxide containing at least nickel, the first cleaning step of cleaning the lithium composite metal oxide with a first cleaning liquid, and the first cleaning step.
  • a second washing step of washing the washed product with a second washing liquid wherein the first washing liquid and the second washing liquid are alkaline washing liquids each containing a compound containing an alkali metal,
  • the concentration of alkali metal in the first cleaning liquid with respect to the total mass of the first cleaning liquid is 2.5 to 20 times the concentration of alkali metal in the second cleaning liquid with respect to the total mass of the second cleaning liquid.
  • a method for producing a lithium composite metal oxide is a method for producing a lithium composite metal oxide.
  • At least one of the alkali metal-containing compounds contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
  • the alkali metal-containing compound contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
  • Another aspect of the present invention is a lithium secondary battery positive electrode containing a lithium composite metal oxide as a positive electrode active material, a separator on the lithium secondary battery positive electrode, and a lithium secondary battery negative electrode on the separator.
  • evaluation of the lithium composite metal oxide and production evaluation of the positive electrode for the lithium secondary battery and the lithium secondary battery were performed as follows.
  • composition analysis of the lithium composite metal oxide powder produced by the method described below is carried out by dissolving the obtained lithium composite metal oxide powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (SII Nanotechnology Co., Ltd.). Manufactured by SPS3000).
  • N-methyl-2-pyrrolidone was used as the organic solvent.
  • the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m serving as a current collector and vacuum-dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery.
  • the electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
  • the obtained negative electrode mixture was applied to a 12 ⁇ m thick Cu foil serving as a current collector and vacuum dried at 60 ° C. for 8 hours to obtain a negative electrode for a lithium secondary battery.
  • the electrode area of the negative electrode for a lithium secondary battery was 1.77 cm 2 .
  • the electrolytic solution was ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter sometimes referred to as EMC) 30:35. : 35 (volume ratio) a mixture of LiPF 6 dissolved to 1.0 mol / l (hereinafter sometimes referred to as LiPF 6 / EC + DMC + EMC) was used.
  • LiPF 6 / EC + DMC + EMC lithium metal as the negative electrode
  • the negative electrode is placed on the upper side of the laminated film separator, covered with a gasket, and then caulked with a caulking machine to form a lithium secondary battery (coin type half cell R2032, hereinafter "half cell”).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • Test temperature 25 ° C Maximum charging voltage 4.3V, charging time 6 hours, charging current 0.2CA, constant current constant voltage charging Minimum discharging voltage 2.5V, discharging time 5 hours, discharging current 0.2CA, constant current discharging
  • the initial charge / discharge efficiency is obtained from the following equation. ⁇ First charge / discharge efficiency (%)> (Initial discharge capacity [mAh / g]) ⁇ (Initial charge capacity [mAh / g]) ⁇ 100
  • Example 1 Production of Lithium Composite Metal Oxide 1 After water was placed in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
  • a nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, a manganese sulfate aqueous solution, and an aluminum sulfate aqueous solution have an atomic ratio of nickel atom, cobalt atom, manganese atom, and aluminum atom of 87.5: 9.5: 2.0: 1.0. It mixed so that the mixed raw material liquid might be prepared.
  • the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel, and nitrogen gas was continuously passed through.
  • a sodium hydroxide aqueous solution was dropped in a timely manner so that the pH of the solution in the reaction vessel measured at 40 ° C. was 11.0 to obtain a nickel cobalt manganese aluminum composite hydroxide, washed with the sodium hydroxide aqueous solution, and then centrifuged. By dehydrating and isolating with a separator, and drying at 105 ° C., nickel cobalt manganese aluminum composite hydroxide was obtained.
  • a lithium hydroxide aqueous solution in which tungsten oxide was dissolved was prepared.
  • the concentration of tungsten oxide in the prepared tungsten-dissolved lithium hydroxide aqueous solution was 61 g / L.
  • the concentration of lithium hydroxide in the tungsten-dissolved lithium hydroxide aqueous solution was 66.6 g / L.
  • Example 2 Production of lithium composite metal oxide 2 Lithium composite metal oxide 2 was prepared in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
  • Lithium composite metal oxide 3 was prepared in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
  • Lithium composite metal oxide 4 was produced in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
  • Lithium composite metal oxide 5 was prepared in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
  • Examples 1 and 2 in which the cleaning process to which the present invention was applied had higher initial charge / discharge efficiency than Comparative Examples 1 to 3 to which the present invention was not applied. This is because when the present invention is applied, the elution of lithium from the lithium composite metal oxide is small and the concentration gradient of lithium on the surface of the lithium composite metal oxide is small compared to the case of washing with pure water. Can be considered.
  • a method for producing a lithium composite metal oxide having high initial charge / discharge efficiency can be provided.

Abstract

This lithium composite metal oxide production method is for producing a lithium composite metal oxide containing at least nickel, and has: a first washing step for washing a lithium composite metal oxide with a first washing liquid; and a second washing step for washing the washed product obtained in the first washing step, with a second washing liquid, wherein the first washing liquid is an alkaline washing liquid containing an alkali metal-containing compound, the second washing liquid is an alkaline washing liquid containing an alkali metal-containing compound and/or an alkaline compound not containing an alkali metal, and the concentration of alkali metals in the first washing liquid with respect to the total mass of the first washing liquid is higher than the concentration of alkali metals in the second washing liquid with respect to the total mass of the second washing liquid.

Description

リチウム複合金属酸化物の製造方法Method for producing lithium composite metal oxide
 本発明は、リチウム複合金属酸化物の製造方法に関する。
 本願は、2017年3月31日に、日本に出願された特願2017-072870号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a lithium composite metal oxide.
This application claims priority on March 31, 2017 based on Japanese Patent Application No. 2017-072870 filed in Japan, the contents of which are incorporated herein by reference.
 リチウム複合金属酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型及び大型電源においても、実用化が進んでいる。 The lithium composite metal oxide is used as a positive electrode active material for a lithium secondary battery. Lithium secondary batteries have already been put into practical use not only for small power sources for mobile phones and notebook computers, but also for medium and large power sources for automobiles and power storage.
 リチウム複合金属酸化物の製造方法は、一般的に、原料の混合工程、焼成工程、及び洗浄工程を有している。洗浄工程に使用される洗浄液には、水が用いられる。例えば、特許文献1には、特定の組成のリチウム複合金属酸化物を焼成した後、このリチウム複合金属酸化物100重量部に対し、水50~200重量部の割合で水撹拌して洗浄する工程を有する非水系電解質二次電池用正極活物質の製造方法が記載されている。 The method for producing a lithium composite metal oxide generally includes a raw material mixing step, a firing step, and a cleaning step. Water is used as the cleaning liquid used in the cleaning process. For example, Patent Document 1 discloses a process in which a lithium composite metal oxide having a specific composition is baked and then washed with water stirring at a ratio of 50 to 200 parts by weight of water with respect to 100 parts by weight of the lithium composite metal oxide. The manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries which has this is described.
特開2007-242288号公報JP 2007-242288 A
 リチウム二次電池の応用分野の拡大が進む中、リチウム二次電池には、高い初回充放電効率等のさらなる電池特性の向上が求められ、それに適した正極活物質が求められている。
 本発明は上記事情に鑑みてなされたものであって、初回充放電効率が高いリチウム二次電池に適したリチウム複合金属酸化物の製造方法を提供することを課題とする。
As the application field of lithium secondary batteries continues to expand, lithium secondary batteries are required to have further improved battery characteristics such as high initial charge / discharge efficiency, and positive electrode active materials suitable for them.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the manufacturing method of the lithium composite metal oxide suitable for a lithium secondary battery with high initial stage charge / discharge efficiency.
 本発明者らが鋭意検討した結果、洗浄工程を水で行うと、リチウム複合金属酸化物中のリチウムが溶出し、電池特性が低下するという課題を見出した。本発明者らが鋭意検討したところ、リチウム複合金属酸化物の洗浄工程を段階的に行い、さらに特定の洗浄液を使用することにより、上記課題を解決するに至った。
 すなわち、本発明は、下記[1]~[5]の発明を包含する。
[1]少なくともニッケルを含むリチウム複合金属酸化物の製造方法であって、リチウム複合金属酸化物を第1の洗浄液で洗浄する第1洗浄工程と、前記第1洗浄工程で得られた洗浄物を、第2の洗浄液で洗浄する第2洗浄工程と、を有し、前記第1の洗浄液は、アルカリ金属を含有する化合物を含むアルカリ性洗浄液であり、前記第2の洗浄液は、アルカリ金属を含有する化合物及びアルカリ金属を含有しないアルカリ性化合物の少なくとも1つを含むアルカリ性洗浄液であり、前記第1の洗浄液中の前記第1の洗浄液の総質量に対するアルカリ金属の濃度が、前記第2の洗浄液中の前記第2の洗浄液の総質量に対するアルカリ金属の濃度よりも高い、リチウム複合金属酸化物の製造方法。
[2]前記第2洗浄工程後の前記リチウム複合金属酸化物が下記組成式(I)で表される、[1]に記載のリチウム複合金属酸化物の製造方法。
  Li[Li(Ni(1-y-z-w)CoMn1-x]O2 ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、0≦x≦0.2、0<y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)[3]前記組成式(I)において、y+z+w≦0.3である、[2]に記載のリチウム複合金属酸化物の製造方法。
[4]前記第2の洗浄液が水酸化リチウム水溶液である、[1]~[3]のいずれか1つに記載のリチウム複合金属酸化物の製造方法。
[5]前記第2の洗浄液の水酸化リチウム濃度が1質量%以上30質量%以下である、[1]~[4]のいずれか1つに記載のリチウム複合金属酸化物の製造方法。
[6]前記第2の洗浄液がアンモニアを含む[1]~[5]のいずれか1つに記載のリチウム複合金属酸化物の製造方法。
As a result of intensive studies by the present inventors, it has been found that when the washing step is carried out with water, lithium in the lithium composite metal oxide is eluted and the battery characteristics are deteriorated. As a result of intensive studies by the present inventors, the above-mentioned problems have been solved by performing the cleaning process of the lithium composite metal oxide stepwise and using a specific cleaning solution.
That is, the present invention includes the following [1] to [5].
[1] A method for producing a lithium composite metal oxide containing at least nickel, the first cleaning step of cleaning the lithium composite metal oxide with a first cleaning liquid, and the washed product obtained in the first cleaning step. A second cleaning step for cleaning with a second cleaning liquid, wherein the first cleaning liquid is an alkaline cleaning liquid containing a compound containing an alkali metal, and the second cleaning liquid contains an alkali metal. An alkaline cleaning liquid comprising at least one of a compound and an alkaline compound not containing an alkali metal, wherein an alkali metal concentration relative to a total mass of the first cleaning liquid in the first cleaning liquid is the second cleaning liquid The method for producing a lithium composite metal oxide, wherein the concentration of the alkali metal is higher than the total mass of the second cleaning liquid.
[2] The method for producing a lithium composite metal oxide according to [1], wherein the lithium composite metal oxide after the second cleaning step is represented by the following composition formula (I).
Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I)
(However, M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and 0 ≦ x ≦ 0.2, 0 <y ≦ 0.4, 0 ≦ z ≦ 0.4, and 0 ≦ w ≦ 0.1.] [3] In the composition formula (I), y + z + w ≦ 0.3. The method for producing a lithium composite metal oxide according to [2].
[4] The method for producing a lithium composite metal oxide according to any one of [1] to [3], wherein the second cleaning liquid is an aqueous lithium hydroxide solution.
[5] The method for producing a lithium composite metal oxide according to any one of [1] to [4], wherein the concentration of lithium hydroxide in the second cleaning liquid is 1% by mass or more and 30% by mass or less.
[6] The method for producing a lithium composite metal oxide according to any one of [1] to [5], wherein the second cleaning liquid contains ammonia.
 本発明によれば、初回充放電効率が高いリチウム二次電池に適したリチウム複合金属酸化物の製造方法を提供することができる。 According to the present invention, a method for producing a lithium composite metal oxide suitable for a lithium secondary battery having high initial charge / discharge efficiency can be provided.
リチウムイオン二次電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a lithium ion secondary battery. リチウムイオン二次電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a lithium ion secondary battery.
<リチウム複合金属酸化物の製造方法>
 本発明のリチウム複合金属酸化物の製造方法は、金属複合化合物の製造工程と、リチウム複合金属酸化物の製造工程を任意の工程とし、その後の第1洗浄工程と第2洗浄工程とを必須の工程として備える。
 以下、各工程について説明する。
<Method for producing lithium composite metal oxide>
In the method for producing a lithium composite metal oxide according to the present invention, the production process of the metal composite compound and the production process of the lithium composite metal oxide are optional steps, and the subsequent first cleaning step and second cleaning step are essential. Prepare as a process.
Hereinafter, each step will be described.
 本発明のリチウム複合金属酸化物の製造方法において、まず、リチウム以外の金属、すなわち、Ni、Co及びMnから構成される必須金属を含み、並びに、所望によりFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、正極活物質の製造方法の一例を、金属複合化合物の製造工程と、リチウム複合金属酸化物の製造工程とに分けて説明する。 In the method for producing a lithium composite metal oxide of the present invention, first, a metal other than lithium, that is, an essential metal composed of Ni, Co, and Mn is included, and optionally Fe, Cu, Ti, Mg, Al, Preparing a metal composite compound containing any one or more of W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and firing the metal composite compound with an appropriate lithium salt. preferable. As a metal complex compound, a metal complex hydroxide or a metal complex oxide is preferable. Below, an example of the manufacturing method of a positive electrode active material is divided and demonstrated to the manufacturing process of a metal composite compound, and the manufacturing process of a lithium composite metal oxide.
(金属複合化合物の製造工程)
 金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
(Production process of metal composite compounds)
The metal complex compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method. Hereinafter, the manufacturing method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt, and manganese as an example.
 前記金属複合水酸化物は、共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni(1-y-z)CoMn(OH)(式中、0<y≦0.4、0≦z≦0.4)で表される複合金属水酸化物を沈殿させることにより製造することができる。 The metal complex hydroxide is co-precipitation, in particular by a continuous method described in 2002-201028 JP-nickel salt solution, cobalt salt solution, is reacted manganese salt solution and a complexing agent, Ni ( 1-yz) produced by precipitating a composite metal hydroxide represented by Co y Mn z (OH) 2 (where 0 <y ≦ 0.4, 0 ≦ z ≦ 0.4) be able to.
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。以上の金属塩は、上記Ni(1-y-z)CoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比が、リチウム複合金属化合物の組成式(I)中の(1-y-z):y:zと対応するように各金属塩の量を規定する。
 また、溶媒として水が使用される。
Although it does not specifically limit as nickel salt which is the solute of the said nickel salt solution, For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used. As the cobalt salt that is a solute of the cobalt salt solution, for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used. As the manganese salt that is a solute of the manganese salt solution, for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used. The above metal salt is used in a proportion corresponding to the composition ratio of Ni (1-yz) Co y Mn z (OH) 2 . That is, each of the molar ratios of nickel, cobalt, and manganese in the mixed solution containing the metal salt corresponds to (1-yz): y: z in the composition formula (I) of the lithium composite metal compound. Define the amount of metal salt.
Moreover, water is used as a solvent.
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は、所望により含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。 The complexing agent is capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution. For example, an ammonium ion supplier (ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, Examples include ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine. The complexing agent may not be included if desired. When the complexing agent is included, the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution and the complexing agent. For example, the molar ratio with respect to the total number of moles of the metal salt is greater than 0 and 2.0 or less.
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム及び水酸化カリウム)を添加する。 During precipitation, an alkali metal hydroxide (for example, sodium hydroxide or potassium hydroxide) is added if necessary to adjust the pH value of the aqueous solution.
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、Ni(1-y-z)CoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御され、反応槽内のpH値は、例えば40℃測定時において、pH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。 In addition to the nickel salt solution, cobalt salt solution, and manganese salt solution, when a complexing agent is continuously supplied to the reaction vessel, nickel, cobalt, and manganese react to form Ni (1-yz) Co y. Mn z (OH) 2 is produced. During the reaction, the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. or more and 80 ° C. or less, preferably 30 ° C. or more and 70 ° C. or less. Hereinafter, it is preferably controlled within a range of pH 11 or more and pH 13 or less, and the substance in the reaction vessel is appropriately stirred. The reaction vessel is of a type that causes the formed reaction precipitate to overflow for separation.
 反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、最終的に得られるリチウム複合金属酸化物を所望の物性に制御することができる。 By appropriately controlling the concentration of metal salt to be supplied to the reaction tank, the stirring speed, the reaction temperature, the reaction pH, and the firing conditions described later, the finally obtained lithium composite metal oxide is controlled to have desired physical properties. Can do.
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン金属複合化合物としてのニッケルコバルトマンガン金属複合水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄してもよい。
 なお、上記の例では、ニッケルコバルトマンガン金属複合水酸化物を製造しているが、ニッケルコバルトマンガン金属複合酸化物を調製してもよい。
After the above reaction, the obtained reaction precipitate is washed with water and then dried to isolate the nickel cobalt manganese metal composite hydroxide as the nickel cobalt manganese metal composite compound. Moreover, you may wash | clean with the alkaline solution containing weak acid water, sodium hydroxide, or potassium hydroxide as needed.
In the above example, nickel cobalt manganese metal composite hydroxide is manufactured, but nickel cobalt manganese metal composite oxide may be prepared.
 なお、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を調製する例について説明したが、本発明はこれに限定されない。例えば、ニッケル、コバルト、マンガン及びタングステンを含む金属複合水酸化物を調製してもよい。この場合、タングステン以外のニッケル、コバルト及びマンガンを含む金属複合水酸化物を上記方法にて調製後、酸化タングステンを含む水溶液を乾燥させたニッケル、コバルト及びマンガンを含む金属複合水酸化物に被着させることにより、ニッケル、コバルト、マンガン及びタングステンを含む金属複合水酸化物を調製することができる。 In addition, although the example which prepares the metal composite hydroxide containing nickel, cobalt, and manganese was demonstrated, this invention is not limited to this. For example, a metal composite hydroxide containing nickel, cobalt, manganese and tungsten may be prepared. In this case, a metal composite hydroxide containing nickel, cobalt and manganese other than tungsten is prepared by the above method, and then the aqueous solution containing tungsten oxide is dried and deposited on the metal composite hydroxide containing nickel, cobalt and manganese. Thus, a metal composite hydroxide containing nickel, cobalt, manganese and tungsten can be prepared.
 酸化タングステンを含む水溶液を乾燥させたニッケル、コバルト及びマンガンを含む金属複合水酸化物に被着させる方法としては、乾燥させたニッケル、コバルト及びマンガンを含む金属複合水酸化物を100℃~200℃で加熱しながら、酸化タングステンを含む水溶液を噴霧する方法等が挙げられる。 As a method of depositing an aqueous solution containing tungsten oxide on a dried metal composite hydroxide containing nickel, cobalt and manganese, the dried metal composite hydroxide containing nickel, cobalt and manganese is 100 ° C. to 200 ° C. For example, a method of spraying an aqueous solution containing tungsten oxide while heating at a temperature may be used.
 酸化タングステンを含む水溶液に含まれる酸化タングステンの濃度は、例えば、1質量%以上10質量%以下である。 The concentration of tungsten oxide contained in the aqueous solution containing tungsten oxide is, for example, 1% by mass or more and 10% by mass or less.
 酸化タングステンを含む水溶液は、水酸化リチウム等のリチウム塩を含んでいてもよい。酸化タングステンを含む水溶液に含まれる水酸化リチウムの濃度は、1質量%以上10質量%以下である。 The aqueous solution containing tungsten oxide may contain a lithium salt such as lithium hydroxide. The concentration of lithium hydroxide contained in the aqueous solution containing tungsten oxide is 1% by mass or more and 10% by mass or less.
 ニッケル、コバルト、マンガン及びタングステンを含む金属複合水酸化物は、前記任意金属としてタングステン以外の金属元素を含んでいてもよい。 The metal composite hydroxide containing nickel, cobalt, manganese, and tungsten may contain a metal element other than tungsten as the optional metal.
(リチウム複合金属酸化物の製造工程)
 上記金属複合酸化物又は水酸化物を乾燥した後、リチウム塩と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は水酸化物が酸化及び還元されない条件(すなわち酸化物が酸化物のまま維持される、水酸化物が水酸化物のまま維持される条件)、金属複合水酸化物が酸化される条件(すなわち水酸化物が酸化物に酸化される条件)、金属複合酸化物が還元される条件(すなわち酸化物が水酸化物に還元される条件)のいずれの条件でもよい。酸化及び還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の希ガス等の不活性ガスを使用すればよく、金属複合水酸化物が酸化される条件では、酸素又は空気を雰囲気下として行えばよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、及び亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウム及びフッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 金属複合酸化物又は水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合金属水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該複合金属水酸化物は、LiNi(1-y-z)CoMn(式中、0≦x≦0.2、0<y≦0.4、0≦z≦0.4)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
(Lithium composite metal oxide manufacturing process)
The metal composite oxide or hydroxide is dried and then mixed with a lithium salt. The drying conditions are not particularly limited, but, for example, conditions in which the metal composite oxide or hydroxide is not oxidized and reduced (that is, the oxide is maintained as an oxide, the hydroxide is maintained as a hydroxide). Conditions), conditions under which the metal composite hydroxide is oxidized (ie, conditions under which the hydroxide is oxidized into oxide), conditions under which the metal composite oxide is reduced (ie under conditions under which the oxide is reduced into hydroxide) Any of the above conditions may be used. An inert gas such as nitrogen, helium and argon may be used for conditions where oxidation and reduction are not performed. Under conditions where the metal composite hydroxide is oxidized, oxygen or air is used in the atmosphere. Just do it. As a condition for reducing the metal composite oxide, a reducing agent such as hydrazine and sodium sulfite may be used in an inert gas atmosphere. As lithium salt, any one of lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide and lithium fluoride, or a mixture of two or more Can be used. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
Classification may be appropriately performed after the metal composite oxide or hydroxide is dried. The above lithium salt and metal composite metal hydroxide are used in consideration of the composition ratio of the final object. For example, when nickel cobalt manganese composite hydroxide is used, the lithium salt and the composite metal hydroxide are Li x Ni (1-yz) Co y Mn z O 2 (where 0 ≦ x ≦ 0. 2, 0 <y ≦ 0.4, 0 ≦ z ≦ 0.4). A lithium-nickel cobalt manganese composite oxide is obtained by firing a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium salt. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
 上記金属複合酸化物又は水酸化物と、水酸化リチウム及び炭酸リチウム等のリチウム塩との焼成温度としては、特に制限はないが、600℃以上1100℃以下であることが好ましく、750℃以上1050℃以下であることがより好ましく、800℃以上1025℃以下がさらに好ましい。 The firing temperature of the metal composite oxide or hydroxide and lithium salt such as lithium hydroxide and lithium carbonate is not particularly limited, but is preferably 600 ° C. or higher and 1100 ° C. or lower, and preferably 750 ° C. or higher and 1050 ° C. More preferably, it is 800 ° C. or lower and more preferably 800 ° C. or higher and 1025 ° C. or lower.
 焼成時間は、3時間以上50時間以下が好ましい。焼成時間が50時間を超えると、リチウムの揮発によって実質的に電池性能に劣る傾向となる。つまり焼成時間が50時間以内であると、リチウムの揮発を抑制することができる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。焼成時間が3時間以上であると、結晶の発達が良好となり、電池性能が良好となる傾向となる。
 焼成時間は、昇温開始から達温して温度保持が終了するまでの合計時間を1時間以上30時間以下とすることが好ましい。合計時間が30時間以下であると、Liの揮発を防止でき、電池性能の劣化を防止できる。合計時間が1時間以上であると、結晶の発達が良好に進行し、電池性能を向上させることができる。
 昇温開始から焼成温度に達するまでの時間は、0.5時間以上20時間以下であることが好ましい。昇温開始から焼成温度に達するまでの時間がこの範囲であると、より均一なリチウム複合金属酸化物を得ることができる。
 なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300℃以上850℃以下の範囲で、1時間以上10時間以下行うことが好ましい。
The firing time is preferably 3 hours or more and 50 hours or less. When the firing time exceeds 50 hours, the battery performance tends to be substantially inferior due to volatilization of lithium. That is, if the firing time is within 50 hours, the volatilization of lithium can be suppressed. If the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor. When the firing time is 3 hours or more, the crystal development is good and the battery performance tends to be good.
The firing time is preferably 1 hour or more and 30 hours or less for the total time from the start of raising the temperature to the end of temperature holding. When the total time is 30 hours or less, the volatilization of Li can be prevented and the battery performance can be prevented from deteriorating. When the total time is 1 hour or more, the development of crystals proceeds well, and the battery performance can be improved.
The time from the start of the temperature rise to the firing temperature is preferably 0.5 hours or more and 20 hours or less. When the time from the start of temperature rise to the firing temperature is within this range, a more uniform lithium composite metal oxide can be obtained.
In addition, it is also effective to perform temporary baking before the above baking. The temperature for such preliminary firing is preferably in the range of 300 ° C. to 850 ° C. for 1 hour to 10 hours.
 (洗浄工程)
 本実施形態は、第1の洗浄工程と、前記第1の洗浄工程で得られた洗浄物を洗浄する第2の洗浄工程と、を有する。第1の洗浄工程は原料に由来する残留する炭酸リチウムを洗浄し、除去する工程である。言い換えれば、第1の洗浄工程は、リチウム複合金属化合物を洗浄し、原料に由来する、残留する炭酸リチウムを除去する工程である。第2の洗浄工程は、第1の洗浄工程で用いた洗浄液の残留成分を洗浄し、除去する工程である。言い換えれば、第2の洗浄工程は、リチウム複合金属化合物を洗浄し、リチウム複合金属酸化物に残留する第1の洗浄工程で用いた洗浄液を除去する工程である。
(Washing process)
The present embodiment includes a first cleaning process and a second cleaning process for cleaning the cleaning product obtained in the first cleaning process. The first cleaning step is a step of cleaning and removing the remaining lithium carbonate derived from the raw material. In other words, the first cleaning step is a step of cleaning the lithium composite metal compound and removing residual lithium carbonate derived from the raw material. The second cleaning step is a step of cleaning and removing residual components of the cleaning liquid used in the first cleaning step. In other words, the second cleaning step is a step of cleaning the lithium composite metal compound and removing the cleaning liquid used in the first cleaning step remaining in the lithium composite metal oxide.
 なお本明細書において、「除去する」とは、対象物を完全に取り除く場合のみを意味するものでなく、対象物が一部残存する場合も含むと解釈される。例えば、第1の洗浄工程後のリチウム複合金属酸化物に含まれる炭酸リチウムの量が、第1の洗浄工程前のリチウム複合金属酸化物に含まれる炭酸リチウムの量より減少していればよく、リチウム複合金属酸化物に炭酸リチウムが残存していてもよい。 In addition, in this specification, “removing” does not mean only when the object is completely removed, but is interpreted to include the case where the object remains partially. For example, the amount of lithium carbonate contained in the lithium composite metal oxide after the first cleaning step should be less than the amount of lithium carbonate contained in the lithium composite metal oxide before the first cleaning step, Lithium carbonate may remain in the lithium composite metal oxide.
・第1洗浄工程
 焼成後に、第1の洗浄液でリチウム複合金属酸化物を洗浄する第1の洗浄工程を行う。
-1st washing | cleaning process The 1st washing | cleaning process which wash | cleans lithium composite metal oxide with a 1st washing | cleaning liquid is performed after baking.
 第1の洗浄液は、アルカリ金属を含有する化合物を含むアルカリ性洗浄液である。
 前記アルカリ性洗浄液が含むアルカリ金属を含有する化合物としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、及びKCO(炭酸カリウム)からなる群より選ばれる1種以上の無水物並びにその水和物を挙げることができる。リチウム複合金属酸化物からのリチウムの溶出をより抑制できる観点から、水酸化リチウム又は炭酸リチウムが好ましく、水酸化リチウムがより好ましい。
The first cleaning liquid is an alkaline cleaning liquid containing a compound containing an alkali metal.
Examples of the compound containing an alkali metal contained in the alkaline cleaning liquid include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3. Examples thereof include one or more anhydrides selected from the group consisting of (sodium carbonate) and K 2 CO 3 (potassium carbonate), and hydrates thereof. From the viewpoint of further suppressing elution of lithium from the lithium composite metal oxide, lithium hydroxide or lithium carbonate is preferable, and lithium hydroxide is more preferable.
 第1の洗浄液は、上記アルカリ金属を含有する化合物を水に溶解させることにより調製できる。アルカリ金属を含有する化合物の濃度は、第1の洗浄液の総質量に対し、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が特に好ましい。また、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が特に好ましい。アルカリ金属を含有する化合物の濃度の上限と下限は、任意に組み合わせることができる。例えば、アルカリ金属を含有する化合物の濃度は、第1の洗浄液の総質量に対し、1質量%以上30質量%以下が好ましく、5質量%以上25質量%以下がより好ましく、10質量%以上20質量%以下が特に好ましい。
 第1の洗浄液の濃度が、上記下限値以上であることにより、リチウム複合金属酸化物からのリチウムの溶出をより抑制できる。
 第1の洗浄液の濃度が、上記上限値以下であることにより、製造されるリチウム複合金属酸化物中に、アルカリ金属を含有する化合物が残留することを抑制できる。
The first cleaning liquid can be prepared by dissolving the alkali metal-containing compound in water. The concentration of the compound containing an alkali metal is preferably 1% by mass or more, more preferably 5% by mass or more, and particularly preferably 10% by mass or more with respect to the total mass of the first cleaning liquid. Moreover, 30 mass% or less is preferable, 25 mass% or less is more preferable, and 20 mass% or less is especially preferable. The upper limit and the lower limit of the concentration of the compound containing an alkali metal can be arbitrarily combined. For example, the concentration of the compound containing an alkali metal is preferably 1% by mass to 30% by mass, more preferably 5% by mass to 25% by mass, and more preferably 10% by mass to 20% by mass with respect to the total mass of the first cleaning liquid. A mass% or less is particularly preferred.
When the density | concentration of a 1st washing | cleaning liquid is more than the said lower limit, the elution of lithium from a lithium composite metal oxide can be suppressed more.
It can suppress that the compound containing an alkali metal remains in the lithium complex metal oxide manufactured because the density | concentration of a 1st washing | cleaning liquid is below the said upper limit.
 本実施形態においては、前記第1の洗浄液中の前記第1の洗浄液の総質量に対するアルカリ金属の濃度が、後述する第2の洗浄液中の前記第2の洗浄液の総質量に対するアルカリ金属の濃度よりも高いことを特徴とする。言い換えれば、前記第1の洗浄液中の前記第1の洗浄液の総質量に対するアルカリ金属を含有する化合物の濃度が、第2の洗浄液中の前記第2の洗浄液の総質量に対するアルカリ金属を含有する化合物の濃度よりも高い。 In the present embodiment, the alkali metal concentration relative to the total mass of the first cleaning liquid in the first cleaning liquid is greater than the alkali metal concentration relative to the total mass of the second cleaning liquid in the second cleaning liquid described later. It is also characterized by high. In other words, the concentration of the compound containing an alkali metal with respect to the total mass of the first cleaning liquid in the first cleaning liquid is a compound containing the alkali metal with respect to the total mass of the second cleaning liquid in the second cleaning liquid. Higher than the concentration of.
 第1洗浄工程における第1の洗浄液の総質量に対する焼成後のリチウム複合金属酸化物の割合は、30~100質量%であることが好ましく、40~60質量%であることがより好ましい。第1の洗浄液の総質量に対する焼成後のリチウム複合金属酸化物の割合が30~100質量%であると、リチウム複合金属酸化物からのリチウムの溶出をより抑制でき、かつ製造されるリチウム複合金属酸化物中に、アルカリ金属を含有する化合物が残留することを抑制できる。 The ratio of the lithium composite metal oxide after firing to the total mass of the first cleaning liquid in the first cleaning step is preferably 30 to 100% by mass, and more preferably 40 to 60% by mass. When the ratio of the lithium composite metal oxide after firing to the total mass of the first cleaning liquid is 30 to 100% by mass, elution of lithium from the lithium composite metal oxide can be further suppressed, and the manufactured lithium composite metal It can suppress that the compound containing an alkali metal remains in an oxide.
 第1の洗浄液を用いて洗浄工程を行うことにより、洗浄液中にリチウム複合金属酸化物中のリチウム成分が溶出することを抑制できると推察される。このため、製造されるリチウム複合金属酸化物の粒子表面のリチウム成分の濃度傾斜が小さく、粒子表面のリチウム成分濃度を高く維持しながら、原料に由来する残留する炭酸リチウムを除去することができると考えられる。言い換えれば、リチウム複合金属酸化物の内部から粒子表面へ向かうリチウム成分の濃度傾斜が小さく、粒子表面のリチウム成分濃度の低下が抑制された状態を維持しながら、原料に由来する残留する炭酸リチウムを除去することができる。これにより、初回充放電効率が高いリチウム二次電池に適したリチウム複合金属酸化物を製造することができる。 It is surmised that the elution of the lithium component in the lithium composite metal oxide can be suppressed in the cleaning liquid by performing the cleaning process using the first cleaning liquid. For this reason, the concentration gradient of the lithium component on the particle surface of the lithium composite metal oxide to be produced is small, and the remaining lithium carbonate derived from the raw material can be removed while maintaining the lithium component concentration on the particle surface high. Conceivable. In other words, while maintaining a state where the concentration gradient of the lithium component from the inside of the lithium composite metal oxide toward the particle surface is small and the decrease in the lithium component concentration on the particle surface is suppressed, Can be removed. Thereby, the lithium composite metal oxide suitable for a lithium secondary battery with high initial charge / discharge efficiency can be manufactured.
・第2洗浄工程
 第1洗浄工程後、第2の洗浄液でリチウム複合金属酸化物を洗浄する第2工程を有する。第2の洗浄液は、アルカリ性洗浄液である。第2の洗浄液は、アルカリ成分としてアルカリ金属を含有する化合物及びアルカリ金属を含有しないアルカリ性化合物の少なくとも1つを含むアルカリ性洗浄液である。
 第2の洗浄液が含有するアルカリ金属を含有する化合物としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、及びKCO(炭酸カリウム)からなる群より選ばれる1種以上の無水物並びにその水和物を挙げることができる。アルカリ金属を含有しないアルカリ性化合物としては、(NHCO(炭酸アンモニウム)及びNH(アンモニア)からなる群より選ばれる1種以上の無水物並びにその水和物を挙げることができる。第2の洗浄液は水酸化リチウム水溶液であることが好ましい。上述のように、第2の洗浄液として、アンモニア水を使用することもできる。
Second cleaning step After the first cleaning step, the second cleaning step includes a second step of cleaning the lithium composite metal oxide with the second cleaning liquid. The second cleaning liquid is an alkaline cleaning liquid. The second cleaning liquid is an alkaline cleaning liquid containing at least one of a compound containing an alkali metal as an alkali component and an alkaline compound not containing an alkali metal.
Examples of the compound containing an alkali metal contained in the second cleaning liquid include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2. Examples thereof include one or more anhydrides selected from the group consisting of CO 3 (sodium carbonate) and K 2 CO 3 (potassium carbonate), and hydrates thereof. Examples of the alkaline compound not containing an alkali metal include one or more anhydrides selected from the group consisting of (NH 4 ) 2 CO 3 (ammonium carbonate) and NH 3 (ammonia) and hydrates thereof. The second cleaning liquid is preferably a lithium hydroxide aqueous solution. As described above, ammonia water can also be used as the second cleaning liquid.
 第2の洗浄液としてのアルカリ性洗浄液は、アルカリ成分としてアルカリ金属を含む洗浄液であってもよく、アルカリ成分としてアルカリ金属を含まずにアンモニア水及び炭酸アンモニウム水の少なくとも1つを洗浄液として使用してもよく、アルカリ成分としてアルカリ金属を含み、さらにアンモニア水及び炭酸アンモニウム水の少なくとも1つを含む洗浄液を使用してもよい。本実施形態において、第2のアルカリ洗浄液がアルカリ成分としてアルカリ金属を含む場合には、前記第1の洗浄液中のアルカリ金属の濃度が、第2の洗浄液中のアルカリ金属の濃度よりも高いことを特徴とする。
 第2のアルカリ性洗浄液として、アルカリ成分としてアルカリ金属を含まずにアンモニア水及び炭酸アンモニウム水の少なくとも1つを使用する場合には、第2のアルカリ性洗浄液中のアンモニア及びアンモニウムイオン濃度が、第1の洗浄液中のアルカリ金属の濃度より高くてもよい。
 第1の洗浄液中の第1の洗浄液の総質量に対するアルカリ金属の濃度は、第2の洗浄液中の第2の洗浄液の総質量に対するアルカリ金属の濃度に比べて、2倍以上であることが好ましい。
The alkaline cleaning liquid as the second cleaning liquid may be a cleaning liquid containing an alkali metal as an alkali component, or may use at least one of ammonia water and ammonium carbonate water as a cleaning liquid without containing an alkali metal as an alkali component. Alternatively, a cleaning liquid containing an alkali metal as an alkali component and further containing at least one of ammonia water and ammonium carbonate water may be used. In the present embodiment, when the second alkali cleaning liquid contains an alkali metal as an alkali component, the alkali metal concentration in the first cleaning liquid is higher than the alkali metal concentration in the second cleaning liquid. Features.
In the case where at least one of ammonia water and ammonium carbonate water is used as the second alkaline cleaning liquid without containing an alkali metal as an alkaline component, the ammonia and ammonium ion concentrations in the second alkaline cleaning liquid are as follows. It may be higher than the concentration of alkali metal in the cleaning liquid.
The concentration of the alkali metal with respect to the total mass of the first cleaning liquid in the first cleaning liquid is preferably twice or more as compared with the concentration of the alkali metal with respect to the total mass of the second cleaning liquid in the second cleaning liquid. .
 第2の洗浄液は、上記アルカリ成分を水に溶解させることにより調製できる。第2の洗浄液の総質量に対する第2の洗浄液中のアルカリ成分の濃度は、0.1質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上が特に好ましい。また、アルカリ成分の水溶液の濃度の上限値は、前記第1の洗浄液中のアルカリ成分の濃度よりも低ければよく、例えば、第2の洗浄液の総質量に対し30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が特に好ましい。第2の洗浄液中のアルカリ成分の濃度の上限値と下限値は任意に組み合わせることができる。例えば、第2の洗浄液中のアルカリ成分の濃度は、第2の洗浄液の総質量に対し0.1質量%以上30質量%以下が好ましく、1.0質量%以上20質量%以下がより好ましく、2.0質量%以上10質量%以下が特に好ましい。
 なお、第2の洗浄液がアルカリ金属を含有する化合物及びアルカリ金属を含有しないアルカリ性化合物の両方を含む場合、第2の洗浄液中のアルカリ成分の濃度とは、第2の洗浄液の総質量に対するアルカリ金属を含有する化合物とアルカリ金属を含有しないアルカリ性化合物の質量の合計の割合と定義される。
 第2の洗浄液の濃度が、上記下限値以上であることにより、製造されるリチウム複合金属酸化物中に含まれるリチウム成分が溶出する事を抑制しつつ、第1の洗浄液の残留成分を洗浄により除去できる。
 第2の洗浄液の濃度が、上記上限値以下であることにより、第2の洗浄液に含まれるアルカリ金属を含有する化合物が残留する事を抑制しつつ、第1の洗浄液の残留成分を洗浄により除去できる。
The second cleaning liquid can be prepared by dissolving the alkali component in water. The concentration of the alkali component in the second cleaning liquid with respect to the total mass of the second cleaning liquid is preferably 0.1% by mass or more, more preferably 1.0% by mass or more, and particularly preferably 2.0% by mass or more. Moreover, the upper limit of the concentration of the aqueous solution of the alkali component only needs to be lower than the concentration of the alkaline component in the first cleaning liquid, and is preferably 30% by mass or less, for example, 20% by mass with respect to the total mass of the second cleaning liquid. % Or less is more preferable, and 10% by mass or less is particularly preferable. The upper limit value and the lower limit value of the concentration of the alkali component in the second cleaning liquid can be arbitrarily combined. For example, the concentration of the alkali component in the second cleaning liquid is preferably 0.1% by mass or more and 30% by mass or less, more preferably 1.0% by mass or more and 20% by mass or less, with respect to the total mass of the second cleaning liquid. 2.0 mass% or more and 10 mass% or less are especially preferable.
When the second cleaning liquid contains both a compound containing an alkali metal and an alkaline compound not containing an alkali metal, the concentration of the alkali component in the second cleaning liquid is the alkali metal relative to the total mass of the second cleaning liquid. Is defined as the ratio of the total of the mass of the compound containing no and the alkali compound containing no alkali metal.
When the concentration of the second cleaning liquid is equal to or higher than the lower limit, the remaining components of the first cleaning liquid are washed by suppressing the elution of the lithium component contained in the manufactured lithium composite metal oxide. Can be removed.
When the concentration of the second cleaning liquid is equal to or lower than the above upper limit value, the remaining components of the first cleaning liquid are removed by cleaning while suppressing the remaining alkali metal-containing compound contained in the second cleaning liquid. it can.
 第2洗浄工程における第2の洗浄液の総質量に対する焼成後のリチウム複合金属酸化物の割合は、3~30質量%であることが好ましく、5~20質量%であることがより好ましい。第2洗浄工程における第2の洗浄液の総質量に対する焼成後のリチウム複合金属酸化物の割合が3~30質量%であると、製造されるリチウム複合金属酸化物中に含まれるリチウム成分が溶出する事を抑制しつつ、第1の洗浄液の残留成分を洗浄により除去できる。また、第2の洗浄液に含まれるアルカリ金属を含有する化合物が残留する事を抑制しつつ、第1の洗浄液の残留成分を洗浄により除去できる。 The ratio of the lithium composite metal oxide after firing to the total mass of the second cleaning liquid in the second cleaning step is preferably 3 to 30% by mass, and more preferably 5 to 20% by mass. When the ratio of the lithium composite metal oxide after firing to the total mass of the second cleaning liquid in the second cleaning step is 3 to 30% by mass, the lithium component contained in the manufactured lithium composite metal oxide is eluted. The residual component of the first cleaning liquid can be removed by cleaning while suppressing this. In addition, the residual component of the first cleaning liquid can be removed by cleaning while suppressing the remaining alkali metal-containing compound contained in the second cleaning liquid.
 第1洗浄工程及び第2洗浄工程において、第1又は第2の洗浄液とリチウム複合金属酸化物とを接触させる方法としては、各洗浄液の水溶液中に、リチウム複合金属酸化物を投入して撹拌する方法や、各洗浄液の水溶液をシャワー水として、リチウム複合金属酸化物にかける方法や、第1の洗浄液により洗浄し、次いで、第1の洗浄液から分離したリチウム複合金属酸化物のウェットケーキを第2の洗浄液に投入し、撹拌する方法(リスラリー又はリパルプ)が挙げられる。
 好ましい実施形態としては、第1の洗浄液に、リチウム複合金属酸化物を投入して撹拌した後、第1の洗浄液からリチウム複合金属酸化物を分離し、次いで、第2の洗浄液をシャワー水として、分離後のリチウム複合金属酸化物にかける方法等が挙げられる。
In the first cleaning step and the second cleaning step, as a method of bringing the first or second cleaning liquid into contact with the lithium composite metal oxide, the lithium composite metal oxide is put into an aqueous solution of each cleaning liquid and stirred. The method, a method in which an aqueous solution of each cleaning solution is used as shower water, and the lithium composite metal oxide is washed with the first cleaning solution, and then the wet cake of the lithium composite metal oxide separated from the first cleaning solution The method (reslurry or repulp) which is put into the washing liquid and stirred.
As a preferred embodiment, after the lithium composite metal oxide is added to the first cleaning liquid and stirred, the lithium composite metal oxide is separated from the first cleaning liquid, and then the second cleaning liquid is used as shower water. Examples include a method of applying to the lithium composite metal oxide after separation.
(乾燥工程)
 上記洗浄工程後、ろ過等により洗浄液からリチウム複合金属酸化物を分離する。その後乾燥し、必要に応じて粉砕後、適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
(Drying process)
After the washing step, the lithium composite metal oxide is separated from the washing solution by filtration or the like. Thereafter, it is dried, pulverized as necessary, classified as appropriate, and used as a positive electrode active material applicable to a lithium secondary battery.
(その他の工程)
 上記乾燥工程後、所望により、得られたリチウム複合金属酸化物の表面にAlを被着させ、焼成する工程を行ってもよい。焼成条件としては、酸素雰囲気下であることが好ましい。焼成温度は、300~850℃が好ましく、400~780℃がより好ましい。焼成時間は、1~30時間であることが好ましく、3~10時間であることがより好ましい。このような焼成工程を有することによりリチウム複合金属酸化物の表面にAl含有化合物の被覆層を形成することができる。
(Other processes)
After the drying step, if desired, a step of depositing Al 2 O 3 on the surface of the obtained lithium composite metal oxide and baking it may be performed. As firing conditions, an oxygen atmosphere is preferable. The firing temperature is preferably 300 to 850 ° C, more preferably 400 to 780 ° C. The firing time is preferably 1 to 30 hours, and more preferably 3 to 10 hours. By having such a firing step, an Al-containing compound coating layer can be formed on the surface of the lithium composite metal oxide.
 本実施形態において、製造されるリチウム複合金属酸化物は下記組成式(I)で表されることが好ましい。
 Li[Li(Ni(1-y-z-w)CoMn1-x]O2 ・・・(I)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、0≦x≦0.2、0<y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
In the present embodiment, the produced lithium composite metal oxide is preferably represented by the following composition formula (I).
Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I)
(However, M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and 0 ≦ x ≦ 0.2, 0 <y ≦ 0.4, 0 ≦ z ≦ 0.4, and 0 ≦ w ≦ 0.1 are satisfied.)
 サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることが特に好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることが特に好ましい。
 xの上限値と下限値は任意に組み合わせることができる。例えば、xは0を超え、0.1以下であることが好ましく、0.01以上0.08以下であることがより好ましく、0.02以上0.06以下であることが特に好ましい。
From the viewpoint of obtaining a lithium secondary battery having high cycle characteristics, x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and particularly preferably 0.02 or more. . Further, from the viewpoint of obtaining a lithium secondary battery having higher initial Coulomb efficiency, x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. It is particularly preferred that
The upper limit value and the lower limit value of x can be arbitrarily combined. For example, x exceeds 0 and is preferably 0.1 or less, more preferably 0.01 or more and 0.08 or less, and particularly preferably 0.02 or more and 0.06 or less.
 また、電池抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.005以上であることが好ましく、0.01以上であることがより好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるyは0.35以下であることがより好ましく、0.33以下であることが特に好ましい。
 yの上限値と下限値は任意に組み合わせることができる。例えば、yは0.005以上0.35以下であることが好ましく、0.01以上0.33以下であることがより好ましく、0.05以上0.33以下であることが特に好ましい。
Further, from the viewpoint of obtaining a lithium secondary battery with low battery resistance, y in the composition formula (I) is preferably 0.005 or more, more preferably 0.01 or more, and 0.05 or more. It is particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (I) is more preferably 0.35 or less, and particularly preferably 0.33 or less.
The upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably 0.005 or more and 0.35 or less, more preferably 0.01 or more and 0.33 or less, and particularly preferably 0.05 or more and 0.33 or less.
 また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.01以上であることが好ましく、0.03以上であることがより好ましく、0.1以上であることが特に好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る観点から、前記組成式(I)におけるzは0.4以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることが特に好ましい。
  zの上限値と下限値は任意に組み合わせることができる。例えば、zは0.01以上0.4以下であることが好ましく、0.03以上0.38以下であることがより好ましく、0.1以上0.35以下であることが特に好ましい。
Further, from the viewpoint of obtaining a lithium secondary battery having high cycle characteristics, z in the composition formula (I) is preferably 0.01 or more, more preferably 0.03 or more, and 0.1 or more. It is particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), z in the composition formula (I) is preferably 0.4 or less, and is 0.38 or less. Is more preferable, and it is especially preferable that it is 0.35 or less.
The upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.01 or more and 0.4 or less, more preferably 0.03 or more and 0.38 or less, and particularly preferably 0.1 or more and 0.35 or less.
 また、電池抵抗が低いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることが特に好ましい。また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る観点から、前記組成式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることが特に好ましい。
  wの上限値と下限値は任意に組み合わせることができる。例えば、wは0を超え、0.09以下であることが好ましく、0.0005以上0.08以下であることがより好ましく、0.001以上0.07以下であることが特に好ましい。
Further, from the viewpoint of obtaining a lithium secondary battery with low battery resistance, w in the composition formula (I) is preferably more than 0, more preferably 0.0005 or more, and 0.001 or more. Particularly preferred. Further, from the viewpoint of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (I) is preferably 0.09 or less, more preferably 0.08 or less, and 0 0.07 or less is particularly preferable.
The upper limit value and the lower limit value of w can be arbitrarily combined. For example, w exceeds 0 and is preferably 0.09 or less, more preferably 0.0005 or more and 0.08 or less, and particularly preferably 0.001 or more and 0.07 or less.
 前記組成式(I)におけるMは、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。 M in the composition formula (I) is one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V. To express.
 また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(I)におけるMは、Ti、Mg、Al、W、B、及びZrからなる群より選択される1種以上の金属であることが好ましく、熱的安定性が高いリチウム二次電池を得る観点から、Al、W、B、及びZrからなる群より選択される1種以上の金属であることがより好ましい。 Further, from the viewpoint of obtaining a lithium secondary battery with high cycle characteristics, M in the composition formula (I) is one or more metals selected from the group consisting of Ti, Mg, Al, W, B, and Zr. From the viewpoint of obtaining a lithium secondary battery with high thermal stability, it is more preferably one or more metals selected from the group consisting of Al, W, B, and Zr.
(層状構造)
 リチウムニッケル複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
(Layered structure)
The crystal structure of the lithium nickel composite oxide is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, and P6 3 / mmc.
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 Monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
 これらのうち、放電容量が高いリチウム二次電池を得る観点から、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, from the viewpoint of obtaining a lithium secondary battery having a high discharge capacity, the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal belonging to C2 / m. A crystal structure is particularly preferred.
 本発明に用いるリチウム塩は、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、フッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
 リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウム複合金属酸化物に含まれる炭酸リチウム成分は、リチウム複合金属酸化物の総質量に対し0.4質量%以下であることが好ましく、0.39質量%以下であることがより好ましく、0.38質量%以下であることが特に好ましい。
 また、リチウム二次電池用正極活物質のハンドリング性を高める観点から、リチウム複合金属酸化物に含まれる水酸化リチウム成分は、リチウム複合金属酸化物の総質量に対し0.35質量%以下であることが好ましく、0.25質量%以下であることがより好ましく、0.2質量%以下であることが特に好ましい。
The lithium salt used in the present invention is any one of lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, lithium fluoride, or a mixture of two or more. can do. In these, any one or both of lithium hydroxide and lithium carbonate are preferable.
From the viewpoint of improving the handleability of the positive electrode active material for a lithium secondary battery, the lithium carbonate component contained in the lithium composite metal oxide is preferably 0.4% by mass or less based on the total mass of the lithium composite metal oxide. More preferably, it is 0.39 mass% or less, and it is especially preferable that it is 0.38 mass% or less.
In addition, from the viewpoint of improving the handling property of the positive electrode active material for a lithium secondary battery, the lithium hydroxide component contained in the lithium composite metal oxide is 0.35% by mass or less based on the total mass of the lithium composite metal oxide. The content is preferably 0.25% by mass or less, and particularly preferably 0.2% by mass or less.
 なお、一般式(I)には、炭酸リチウム及び水酸化リチウムに由来するH及びCを含んでいない。リチウム複合金属酸化物に含まれる炭酸リチウム及び水酸化リチウムは、前記リチウム複合金属酸化物の結晶構造中には含まれていないためである。 The general formula (I) does not include H and C derived from lithium carbonate and lithium hydroxide. This is because lithium carbonate and lithium hydroxide contained in the lithium composite metal oxide are not contained in the crystal structure of the lithium composite metal oxide.
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本発明のリチウム二次電池用正極活物質を、リチウム二次電池の正極活物質として用いた正極、及びこの正極を有するリチウム二次電池について説明する。
<Lithium secondary battery>
Next, while explaining the configuration of the lithium secondary battery, a positive electrode using the positive electrode active material for a lithium secondary battery of the present invention as a positive electrode active material of the lithium secondary battery, and a lithium secondary battery having the positive electrode will be described. To do.
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
 図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。 1A and 1B are schematic views showing an example of the lithium secondary battery of the present embodiment. The cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 1A, a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, as shown in FIG. 1B, after the electrode group 4 and an insulator (not shown) are accommodated in the battery can 5, the bottom of the can is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, the positive electrode 2, the negative electrode 3, An electrolyte is placed between the two. Furthermore, the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。 As the shape of the electrode group 4, for example, a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。 Moreover, as a shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. . For example, cylindrical shape, square shape, etc. can be mentioned.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
Hereafter, each structure is demonstrated in order.
(Positive electrode)
The positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
(Conductive material)
As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。 The proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. When a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
 この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
(binder)
As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
Examples of the thermoplastic resin include polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride. And fluororesins such as copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; polyolefin resins such as polyethylene and polypropylene.
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。 These thermoplastic resins may be used as a mixture of two or more. By using a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less. A positive electrode mixture having both high adhesion to the current collector and high bonding strength inside the positive electrode mixture can be obtained.
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
(Positive electrode current collector)
As the positive electrode current collector included in the positive electrode of the present embodiment, a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used. Among these, a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。 Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。 When the positive electrode mixture is made into a paste, usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。 Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
A positive electrode can be manufactured by the method mentioned above.
(Negative electrode)
The negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。 Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。 The oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc. represented by the formula SnO x (where x is a positive real number) Oxide of tin; tungsten oxide represented by general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2 Or a composite metal oxide containing vanadium; It is possible.
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。 Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2 ; a formula SbS x such as Sb 2 S 3 (here And x is a positive real number) antimony sulfide; Se 5 S 3 , selenium sulfide represented by the formula SeS x (where x is a positive real number) such as SeS 2 and SeS.
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。 Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 <x <3). And lithium-containing nitrides.
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。 These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。 Further, examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。 Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。 These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。 Among the negative electrode active materials, the potential of the negative electrode hardly changes from the uncharged state to the fully charged state at the time of charging (potential flatness is good), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is For reasons such as high (good cycle characteristics), carbon materials containing graphite as a main component, such as natural graphite and artificial graphite, are preferably used. The shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。 The negative electrode mixture may contain a binder as necessary. Examples of the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、及びステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
(Negative electrode current collector)
Examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。 As a method of supporting the negative electrode mixture on such a negative electrode current collector, as in the case of the positive electrode, a method using pressure molding, pasting with a solvent, etc., applying to the negative electrode current collector, drying and pressing. The method of crimping is mentioned.
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、及び含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、及び織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
(Separator)
Examples of the separator included in the lithium secondary battery of the present embodiment include porous films, nonwoven fabrics, and woven fabrics made of materials such as polyolefin resins such as polyethylene and polypropylene, fluororesins, and nitrogen-containing aromatic polymers. A material having the following form can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。 In the present embodiment, the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117 is 50 seconds / 100 cc or more, 300 seconds / 100 cc. Or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
 また、セパレータの空孔率は、セパレータの体積に対して好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。 Further, the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator. The separator may be a laminate of separators having different porosity.
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
(Electrolyte)
The electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、及びLiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。 The electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (where FSI is bis (fluorosulfonyl) imide), lower aliphatic carboxylic acid lithium salts, and lithium salts such as LiAlCl 4 , and two or more of these Mixtures may be used. Among them, as the electrolyte, at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。 Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, 1,3-propane sultone, or those obtained by further introducing a fluoro group ( One obtained by substituting one or more hydrogen atoms in the organic solvent with fluorine atoms can be used.
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。 It is preferable to use a mixture of two or more of these as the organic solvent. Of these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable. As a mixed solvent of a cyclic carbonate and an acyclic carbonate, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable. The electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。 Further, as the electrolytic solution, it is preferable to use an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased. A mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、及びLiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。 A solid electrolyte may be used instead of the above electrolytic solution. As the solid electrolyte, for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used. Moreover, what is called a gel type which hold | maintained the non-aqueous electrolyte in the high molecular compound can also be used. Also Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, and an inorganic solid electrolyte can be mentioned include a sulfide such as Li 2 S-GeS 2 -P 2 S 5, it may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。 In the lithium secondary battery of this embodiment, when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
 以上のような構成の正極活物質は、上述した本実施形態のリチウム含有複合金属酸化物を用いているため、正極活物質を用いたリチウム二次電池の初回充放電効率を向上させることができる。 Since the positive electrode active material having the above-described configuration uses the above-described lithium-containing composite metal oxide of the present embodiment, the first charge / discharge efficiency of the lithium secondary battery using the positive electrode active material can be improved. .
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の初回充放電効率を向上させることができる。 Moreover, since the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to the present embodiment, the initial charge / discharge efficiency of the lithium secondary battery can be improved.
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも初回充放電効率の高い二次電池となる。 Furthermore, since the lithium secondary battery having the above-described configuration has the positive electrode described above, it becomes a secondary battery with higher initial charge / discharge efficiency than before.
 本発明の別の側面は、少なくともニッケルを含むリチウム複合金属酸化物の製造方法であって、リチウム複合金属酸化物を第1の洗浄液で洗浄する第1洗浄工程と、前記第1洗浄工程で得られた洗浄物を、第2の洗浄液で洗浄する第2洗浄工程と、を有し、前記第1の洗浄液及び第2の洗浄液は、それぞれアルカリ金属を含有する化合物を含むアルカリ性洗浄液であり、前記第1の洗浄液の総質量に対する前記第1の洗浄液中のアルカリ金属の濃度が10質量%以上20質量%以下であり、前記第2の洗浄液の総質量に対する前記第2の洗浄液中のアルカリ金属の濃度が2質量%以上10質量%以下であり、前記第1の洗浄液の総質量に対する前記第の洗浄液中のアルカリ金属の濃度が、前記第2の洗浄液の総質量に対する前記第2の洗浄液中のアルカリ金属の濃度よりも高い、リチウム複合金属酸化物の製造方法である。 Another aspect of the present invention is a method for producing a lithium composite metal oxide containing at least nickel, the first cleaning step of cleaning the lithium composite metal oxide with a first cleaning liquid, and the first cleaning step. A second washing step of washing the washed product with a second washing liquid, wherein the first washing liquid and the second washing liquid are alkaline washing liquids each containing a compound containing an alkali metal, The concentration of the alkali metal in the first cleaning liquid with respect to the total mass of the first cleaning liquid is 10% by mass to 20% by mass, and the alkali metal in the second cleaning liquid with respect to the total mass of the second cleaning liquid The concentration is 2% by mass or more and 10% by mass or less, and the concentration of the alkali metal in the first cleaning liquid with respect to the total mass of the first cleaning liquid is the second cleaning with respect to the total mass of the second cleaning liquid. Higher than the concentration of the alkali metal in a method for producing a lithium mixed metal oxide.
 前記リチウム複合金属酸化物の製造方法において、前記第1の洗浄液及び第2の洗浄液に含まれるアルカリ金属を含有する化合物の少なくとも一方は、水酸化リチウムである。 In the method for producing a lithium composite metal oxide, at least one of the alkali metal-containing compounds contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
 前記リチウム複合金属酸化物の製造方法において、前記第1の洗浄液及び第2の洗浄液に含まれるアルカリ金属を含有する化合物は、水酸化リチウムである。 In the method for producing a lithium composite metal oxide, the alkali metal-containing compound contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
 本発明の別の側面は、少なくともニッケルを含むリチウム複合金属酸化物の製造方法であって、リチウム複合金属酸化物を第1の洗浄液で洗浄する第1洗浄工程と、前記第1洗浄工程で得られた洗浄物を、第2の洗浄液で洗浄する第2洗浄工程と、を有し、前記第1の洗浄液及び第2の洗浄液は、それぞれアルカリ金属を含有する化合物を含むアルカリ性洗浄液であり、前記第1の洗浄液の総質量に対する前記第1の洗浄液中のアルカリ金属の濃度が、前記第2の洗浄液の総質量に対する前記第2の洗浄液中のアルカリ金属の濃度の2.5~20倍である、リチウム複合金属酸化物の製造方法である。 Another aspect of the present invention is a method for producing a lithium composite metal oxide containing at least nickel, the first cleaning step of cleaning the lithium composite metal oxide with a first cleaning liquid, and the first cleaning step. A second washing step of washing the washed product with a second washing liquid, wherein the first washing liquid and the second washing liquid are alkaline washing liquids each containing a compound containing an alkali metal, The concentration of alkali metal in the first cleaning liquid with respect to the total mass of the first cleaning liquid is 2.5 to 20 times the concentration of alkali metal in the second cleaning liquid with respect to the total mass of the second cleaning liquid. And a method for producing a lithium composite metal oxide.
 前記リチウム複合金属酸化物の製造方法において、前記第1の洗浄液及び第2の洗浄液に含まれるアルカリ金属を含有する化合物の少なくとも一方は、水酸化リチウムである。 In the method for producing a lithium composite metal oxide, at least one of the alkali metal-containing compounds contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
 前記リチウム複合金属酸化物の製造方法において、前記第1の洗浄液及び第2の洗浄液に含まれるアルカリ金属を含有する化合物は、水酸化リチウムである。 In the method for producing a lithium composite metal oxide, the alkali metal-containing compound contained in the first cleaning liquid and the second cleaning liquid is lithium hydroxide.
 本発明の別の側面は、正極活物質としてリチウム複合金属酸化物を含むリチウム二次電池用正極と、前記リチウム二次電池用正極上のセパレータと、前記セパレータ上のリチウム二次電池用負極と、セパレータに注入されている電解液とを少なくとも含むR2032型リチウム二次電池を作製し、(本願明細書に記載の方法で)初回充放電効率を測定したとき、87~89%の初回充放電効率を示す特性を有する、リチウム複合金属酸化物である。 Another aspect of the present invention is a lithium secondary battery positive electrode containing a lithium composite metal oxide as a positive electrode active material, a separator on the lithium secondary battery positive electrode, and a lithium secondary battery negative electrode on the separator. When an R2032 type lithium secondary battery containing at least the electrolyte solution injected into the separator is manufactured and the initial charge / discharge efficiency is measured (by the method described in this specification), the initial charge / discharge is 87 to 89%. It is a lithium composite metal oxide having characteristics indicating efficiency.
 次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to examples.
 本実施例においては、リチウム複合金属酸化物の評価、リチウム二次電池用正極及びリチウム二次電池の作製評価を、次のようにして行った。 In this example, evaluation of the lithium composite metal oxide and production evaluation of the positive electrode for the lithium secondary battery and the lithium secondary battery were performed as follows.
<組成分析>
 後述の方法で製造されるリチウム複合金属酸化物粉末の組成分析は、得られたリチウム複合金属酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
<Composition analysis>
The composition analysis of the lithium composite metal oxide powder produced by the method described below is carried out by dissolving the obtained lithium composite metal oxide powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (SII Nanotechnology Co., Ltd.). Manufactured by SPS3000).
<リチウム二次電池用正極の作製>
 後述する製造方法で得られるリチウム複合金属酸化物を正極活物質とし、前記正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
<Preparation of positive electrode for lithium secondary battery>
A lithium composite metal oxide obtained by a production method described later is used as a positive electrode active material, and the positive electrode active material, a conductive material (acetylene black), and a binder (PVdF) are combined into a positive electrode active material for a lithium secondary battery: a conductive material: a binder. = 92: 5: 3 (mass ratio) was added and kneaded to prepare a paste-like positive electrode mixture. In preparing the positive electrode mixture, N-methyl-2-pyrrolidone was used as the organic solvent.
 得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。 The obtained positive electrode mixture was applied to an Al foil having a thickness of 40 μm serving as a current collector and vacuum-dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery. The electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .
<リチウム二次電池用負極の作製>
 次に、負極活物質として人造黒鉛(日立化成株式会社製MAGD)と、バインダーとしてCMC(第一工業薬製株式会社製)とSBR(日本エイアンドエル株式会社製)とを、負極活物質:CMC:SRR=98:1:1(質量比)の組成となるように加えて混練することにより、ペースト状の負極合剤を調製した。負極合剤の調製時には、溶媒としてイオン交換水を用いた。
<Preparation of negative electrode for lithium secondary battery>
Next, artificial graphite (manufactured by Hitachi Chemical Co., Ltd., MAGD) as the negative electrode active material, CMC (manufactured by Daiichi Kogyo Co., Ltd.) and SBR (manufactured by Nippon A & L Co., Ltd.) as the binder, and negative electrode active material: CMC: A paste-like negative electrode mixture was prepared by adding and kneading so as to have a composition of SRR = 98: 1: 1 (mass ratio). During the preparation of the negative electrode mixture, ion-exchanged water was used as a solvent.
 得られた負極合剤を、集電体となる厚さ12μmのCu箔に塗布して60℃で8時間真空乾燥を行い、リチウム二次電池用負極を得た。このリチウム二次電池用負極の電極面積は1.77cmとした。 The obtained negative electrode mixture was applied to a 12 μm thick Cu foil serving as a current collector and vacuum dried at 60 ° C. for 8 hours to obtain a negative electrode for a lithium secondary battery. The electrode area of the negative electrode for a lithium secondary battery was 1.77 cm 2 .
<リチウム二次電池(コイン型ハーフセル)の作製>
 以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
 <リチウム二次電池用正極の作製>で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の30:35:35(体積比)混合液に、LiPF6を1.0mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
 次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「ハーフセル」と称することがある。)を作製した。
<Production of lithium secondary battery (coin type half cell)>
The following operations were performed in a glove box with an argon atmosphere.
Place the positive electrode for the lithium secondary battery prepared in <Preparation of Lithium Secondary Battery Positive Electrode> on the lower lid of the parts for Coin Type Battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil surface facing downward. A laminated film separator (laminated heat-resistant porous layer (thickness: 16 μm) on a polyethylene porous film) was placed thereon. 300 μl of electrolyte was injected here. The electrolytic solution was ethylene carbonate (hereinafter sometimes referred to as EC), dimethyl carbonate (hereinafter sometimes referred to as DMC), and ethyl methyl carbonate (hereinafter sometimes referred to as EMC) 30:35. : 35 (volume ratio) a mixture of LiPF 6 dissolved to 1.0 mol / l (hereinafter sometimes referred to as LiPF 6 / EC + DMC + EMC) was used.
Next, using lithium metal as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, covered with a gasket, and then caulked with a caulking machine to form a lithium secondary battery (coin type half cell R2032, hereinafter "half cell"). Was prepared.
<放電試験>
 <リチウム二次電池(コイン型ハーフセル)の作製>で作製したハーフセルを用いて、以下に示す条件で初回充放電試験を実施した。
<Discharge test>
Using the half cell produced in <Preparation of lithium secondary battery (coin-type half cell)>, an initial charge / discharge test was performed under the following conditions.
<充放電試験条件>
 試験温度:25℃
 充電最大電圧4.3V、充電時間6時間、充電電流0.2CA、定電流定電圧充電
 放電最小電圧2.5V、放電時間5時間、放電電流0.2CA、定電流放電
<Charge / discharge test conditions>
Test temperature: 25 ° C
Maximum charging voltage 4.3V, charging time 6 hours, charging current 0.2CA, constant current constant voltage charging Minimum discharging voltage 2.5V, discharging time 5 hours, discharging current 0.2CA, constant current discharging
 初回充放電効率は、以下の式から求められる。
 <初回充放電効率(%)>
 (初回放電容量[mAh/g])÷(初回充電容量[mAh/g])×100
The initial charge / discharge efficiency is obtained from the following equation.
<First charge / discharge efficiency (%)>
(Initial discharge capacity [mAh / g]) ÷ (Initial charge capacity [mAh / g]) × 100
(実施例1)
1.リチウム複合金属酸化物1の製造
 攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
Example 1
1. Production of Lithium Composite Metal Oxide 1 After water was placed in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to keep the liquid temperature at 50 ° C.
 硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸アルミニウム水溶液とを、ニッケル原子とコバルト原子とマンガン原子とアルミニウム原子との原子比が87.5:9.5:2.0:1.0となるように混合して、混合原料液を調製した。 A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, a manganese sulfate aqueous solution, and an aluminum sulfate aqueous solution have an atomic ratio of nickel atom, cobalt atom, manganese atom, and aluminum atom of 87.5: 9.5: 2.0: 1.0. It mixed so that the mixed raw material liquid might be prepared.
 次に、反応槽内に、攪拌下、この混合原料液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、窒素ガスを連続通気させた。反応槽内の溶液の40℃測定時におけるpHが11.0となるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物を得て、水酸化ナトリウム水溶液で洗浄した後、遠心分離機で脱水、単離し、105℃で乾燥することにより、ニッケルコバルトマンガンアルミニウム複合水酸化物を得た。
 酸化タングステンを溶解した水酸化リチウム水溶液を作製した。作製したタングステン溶解水酸化リチウム水溶液における酸化タングステンの濃度は、61g/Lだった。タングステン溶解水酸化リチウム水溶液における水酸化リチウムの濃度は、66.6g/Lだった。タングステン溶解水酸化リチウム水溶液をW/(Ni+Co+Mn+W)=0.004(モル比)となるように前記ニッケルコバルトマンガンアルミニウム複合水酸化物に被着させ、ニッケルコバルトマンガンアルミニウムタングステン複合水酸化物1を得た。
Next, with stirring, the mixed raw material solution and the aqueous ammonium sulfate solution were continuously added as a complexing agent to the reaction vessel, and nitrogen gas was continuously passed through. A sodium hydroxide aqueous solution was dropped in a timely manner so that the pH of the solution in the reaction vessel measured at 40 ° C. was 11.0 to obtain a nickel cobalt manganese aluminum composite hydroxide, washed with the sodium hydroxide aqueous solution, and then centrifuged. By dehydrating and isolating with a separator, and drying at 105 ° C., nickel cobalt manganese aluminum composite hydroxide was obtained.
A lithium hydroxide aqueous solution in which tungsten oxide was dissolved was prepared. The concentration of tungsten oxide in the prepared tungsten-dissolved lithium hydroxide aqueous solution was 61 g / L. The concentration of lithium hydroxide in the tungsten-dissolved lithium hydroxide aqueous solution was 66.6 g / L. A tungsten-dissolved lithium hydroxide aqueous solution was deposited on the nickel cobalt manganese aluminum composite hydroxide so that W / (Ni + Co + Mn + W) = 0.004 (molar ratio) to obtain nickel cobalt manganese aluminum tungsten composite hydroxide 1. It was.
 以上のようにして得られたニッケルコバルトマンガンアルミニウムタングステン複合水酸化物1と水酸化リチウム粉末とをLi/(Ni+Co+Mn+Al+W)=1.10(モル比)となるように秤量して混合した後、酸素雰囲気下760℃で5時間焼成し焼成品1を得た。 The nickel-cobalt-manganese-aluminum-tungsten composite hydroxide 1 and lithium hydroxide powder obtained as described above were weighed and mixed so that Li / (Ni + Co + Mn + Al + W) = 1.10 (molar ratio), and then mixed with oxygen. Firing product 1 was obtained by firing at 760 ° C. for 5 hours in an atmosphere.
[第1洗浄工程]
 200gの焼成品1を、467gの15質量%水酸化リチウム水溶液に加えてスラリー状の液を調製し、前記スラリー状の液を10分間撹拌し、第1の洗浄工程を行った。
[First cleaning step]
200 g of the fired product 1 was added to 467 g of a 15% by mass lithium hydroxide aqueous solution to prepare a slurry-like liquid, and the slurry-like liquid was stirred for 10 minutes to perform the first washing step.
[第2洗浄工程]
 前記第1の洗浄工程で得られたスラリー状の液を吸引ろ過し、得られたウェットケーキに対して更に2000gの1.0質量%水酸化リチウム水溶液を加えて吸引ろ過し、第2の洗浄工程を行った。その後、150℃で12時間大気雰囲気下で乾燥させた。
 得られた乾燥粉にアルミナナノパウダーを被着させ、酸素雰囲気下760℃で10時間焼成し、目的のリチウム複合金属酸化物1を得た。
[Second cleaning step]
The slurry-like liquid obtained in the first washing step is subjected to suction filtration, and 2000 g of 1.0% by mass lithium hydroxide aqueous solution is further added to the obtained wet cake, followed by suction filtration. The process was performed. Then, it was dried in an air atmosphere at 150 ° C. for 12 hours.
The obtained dried powder was coated with alumina nanopowder and fired at 760 ° C. for 10 hours in an oxygen atmosphere to obtain the target lithium composite metal oxide 1.
2.リチウム複合金属酸化物1の評価
 得られたリチウム複合金属酸化物1の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.092、z=0.020、w=0.024、M=W,Alであった。
2. Evaluation of Lithium Composite Metal Oxide 1 The composition analysis of the obtained lithium composite metal oxide 1 was performed, and when it was made to correspond to the composition formula (I), x = 0.02, y = 0.092, z = 0. 020, w = 0.024, M = W, Al.
 (実施例2)
1.リチウム複合金属酸化物2の製造
 第1の洗浄工程、及び第2の洗浄工程を、下記表1に示す洗浄液を用いて行った以外は、実施例1と同様の方法によりリチウム複合金属酸化物2を製造した。
(Example 2)
1. Production of lithium composite metal oxide 2 Lithium composite metal oxide 2 was prepared in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
2.リチウム複合金属酸化物2の評価
 得られたリチウム複合金属酸化物2の組成分析を行い、組成式(I)に対応させたところ、x=0.02、y=0.092、z=0.020、w=0.023、M=W,Alであった。
2. Evaluation of Lithium Composite Metal Oxide 2 The composition analysis of the obtained lithium composite metal oxide 2 was performed, and when it was made to correspond to the composition formula (I), x = 0.02, y = 0.092, z = 0. 020, w = 0.023, M = W, Al.
 (比較例1)
1.リチウム複合金属酸化物3の製造
 第1の洗浄工程、及び第2の洗浄工程を、下記表1に示す洗浄液を用いて行った以外は、実施例1と同様の方法によりリチウム複合金属酸化物3を製造した。
(Comparative Example 1)
1. Production of lithium composite metal oxide 3 Lithium composite metal oxide 3 was prepared in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
2.リチウム複合金属酸化物3の評価
 得られたリチウム複合金属酸化物3の組成分析を行い、組成式(I)に対応させたところ、x=-0.02、y=0.093、z=0.021、w=0.024、M=W,Alであった。
2. Evaluation of Lithium Composite Metal Oxide 3 The composition analysis of the obtained lithium composite metal oxide 3 was conducted and made to correspond to the composition formula (I). As a result, x = −0.02, y = 0.093, z = 0 0.021, w = 0.024, M = W, Al.
 (比較例2)
1.リチウム複合金属酸化物4の製造
 第1の洗浄工程、及び第2の洗浄工程を、下記表1に示す洗浄液を用いて行った以外は、実施例1と同様の方法によりリチウム複合金属酸化物4を製造した。
(Comparative Example 2)
1. Production of lithium composite metal oxide 4 Lithium composite metal oxide 4 was produced in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
2.リチウム複合金属酸化物4の評価
 得られたリチウム複合金属酸化物4の組成分析を行い、組成式(I)に対応させたところ、x=-0.01、y=0.092、z=0.018、w=0.023、M=W,Alであった。
2. Evaluation of Lithium Composite Metal Oxide 4 The composition analysis of the obtained lithium composite metal oxide 4 was performed and made to correspond to the composition formula (I). As a result, x = −0.01, y = 0.092, z = 0. .018, w = 0.023, M = W, Al.
 (比較例3)
1.リチウム複合金属酸化物5の製造
 第1の洗浄工程、及び第2の洗浄工程を、下記表1に示す洗浄液を用いて行った以外は、実施例1と同様の方法によりリチウム複合金属酸化物5を製造した。
(Comparative Example 3)
1. Production of lithium composite metal oxide 5 Lithium composite metal oxide 5 was prepared in the same manner as in Example 1 except that the first cleaning step and the second cleaning step were performed using the cleaning liquid shown in Table 1 below. Manufactured.
2.リチウム複合金属酸化物5の評価
 得られたリチウム複合金属酸化物5の組成分析を行い、組成式(I)に対応させたところ、x=-0.02、y=0.092、z=0.018、w=0.023、M=W,Alであった。
2. Evaluation of Lithium Composite Metal Oxide 5 The composition analysis of the obtained lithium composite metal oxide 5 was performed, and when it was made to correspond to the composition formula (I), x = −0.02, y = 0.092, z = 0. .018, w = 0.023, M = W, Al.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果に示した通り、本発明を適用した洗浄工程を実施した実施例1~2は、本発明を適用しない比較例1~3よりも、初回充放電効率が高かった。これは、本発明を適用した場合には、純水で洗浄した場合に比べて、リチウム複合金属酸化物からのリチウムの溶出が小さく、リチウム複合金属酸化物表面のリチウムの濃度傾斜が小さいためと考察できる。 As shown in the above results, Examples 1 and 2 in which the cleaning process to which the present invention was applied were performed had higher initial charge / discharge efficiency than Comparative Examples 1 to 3 to which the present invention was not applied. This is because when the present invention is applied, the elution of lithium from the lithium composite metal oxide is small and the concentration gradient of lithium on the surface of the lithium composite metal oxide is small compared to the case of washing with pure water. Can be considered.
 本発明によれば、初回充放電効率が高いリチウム複合金属酸化物の製造方法を提供することができる。 According to the present invention, a method for producing a lithium composite metal oxide having high initial charge / discharge efficiency can be provided.
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード DESCRIPTION OF SYMBOLS 1 ... Separator, 2 ... Positive electrode, 3 ... Negative electrode, 4 ... Electrode group, 5 ... Battery can, 6 ... Electrolyte solution, 7 ... Top insulator, 8 ... Sealing body, 10 ... Lithium secondary battery, 21 ... Positive electrode lead, 31 ... Negative electrode lead

Claims (6)

  1.  少なくともニッケルを含むリチウム複合金属酸化物の製造方法であって、
     リチウム複合金属酸化物を第1の洗浄液で洗浄する第1洗浄工程と、
     前記第1洗浄工程で得られた洗浄物を、第2の洗浄液で洗浄する第2洗浄工程と、を有し、
     前記第1の洗浄液は、アルカリ金属を含有する化合物を含むアルカリ性洗浄液であり、
     前記第2の洗浄液は、アルカリ金属を含有する化合物及びアルカリ金属を含有しないアルカリ性化合物の少なくとも1つを含むアルカリ性洗浄液であり、
     前記第1の洗浄液の総質量に対する前記第1の洗浄液中のアルカリ金属の濃度が、前記第2の洗浄液の総質量に対する前記第2の洗浄液中のアルカリ金属の濃度よりも高い、リチウム複合金属酸化物の製造方法。
    A method for producing a lithium composite metal oxide containing at least nickel,
    A first cleaning step of cleaning the lithium composite metal oxide with a first cleaning liquid;
    A second washing step of washing the washed product obtained in the first washing step with a second washing liquid,
    The first cleaning liquid is an alkaline cleaning liquid containing a compound containing an alkali metal,
    The second cleaning liquid is an alkaline cleaning liquid containing at least one of a compound containing an alkali metal and an alkaline compound not containing an alkali metal,
    Lithium composite metal oxidation wherein the concentration of alkali metal in the first cleaning liquid relative to the total mass of the first cleaning liquid is higher than the concentration of alkali metal in the second cleaning liquid relative to the total mass of the second cleaning liquid Manufacturing method.
  2.  前記第2洗浄工程後の前記リチウム複合金属酸化物が下記組成式(I)で表される、請求項1に記載のリチウム複合金属酸化物の製造方法。
     Li[Li(Ni(1-y-z-w)CoMn1-x]O2 ・・・(I)
    (ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、0≦x≦0.2、0<y≦0.4、0≦z≦0.4、0≦w≦0.1を満たす。)
    The method for producing a lithium composite metal oxide according to claim 1, wherein the lithium composite metal oxide after the second cleaning step is represented by the following composition formula (I).
    Li [Li x (Ni (1-yzw) Co y Mn z M w ) 1-x ] O 2 (I)
    (However, M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and 0 ≦ x ≦ 0.2, 0 <y ≦ 0.4, 0 ≦ z ≦ 0.4, and 0 ≦ w ≦ 0.1 are satisfied.)
  3.  前記組成式(I)において、y+z+w≦0.3である、請求項2に記載のリチウム複合金属酸化物の製造方法。 The method for producing a lithium composite metal oxide according to claim 2, wherein y + z + w ≦ 0.3 in the composition formula (I).
  4.  前記第2の洗浄液が水酸化リチウム水溶液である、請求項1~3のいずれか1項に記載のリチウム複合金属酸化物の製造方法。 The method for producing a lithium composite metal oxide according to any one of claims 1 to 3, wherein the second cleaning liquid is an aqueous lithium hydroxide solution.
  5.  前記第2の洗浄液の水酸化リチウム濃度が前記第2の洗浄液の総質量に対し1質量%以上30質量%以下である、請求項1~4のいずれか1項に記載のリチウム複合金属酸化物の製造方法。 The lithium mixed metal oxide according to any one of claims 1 to 4, wherein a concentration of lithium hydroxide in the second cleaning liquid is 1% by mass or more and 30% by mass or less based on a total mass of the second cleaning liquid. Manufacturing method.
  6.  前記第2の洗浄液がアンモニア水である請求項1~5のいずれか1項に記載のリチウム複合金属酸化物の製造方法。 The method for producing a lithium composite metal oxide according to any one of claims 1 to 5, wherein the second cleaning liquid is aqueous ammonia.
PCT/JP2018/012725 2017-03-31 2018-03-28 Lithium composite metal oxide production method WO2018181465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880014933.2A CN110366541B (en) 2017-03-31 2018-03-28 Method for producing lithium composite metal oxide
KR1020197024218A KR102545342B1 (en) 2017-03-31 2018-03-28 Manufacturing method of lithium composite metal oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072870 2017-03-31
JP2017072870A JP6937152B2 (en) 2017-03-31 2017-03-31 Method for producing lithium composite metal oxide

Publications (1)

Publication Number Publication Date
WO2018181465A1 true WO2018181465A1 (en) 2018-10-04

Family

ID=63676214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012725 WO2018181465A1 (en) 2017-03-31 2018-03-28 Lithium composite metal oxide production method

Country Status (4)

Country Link
JP (1) JP6937152B2 (en)
KR (1) KR102545342B1 (en)
CN (1) CN110366541B (en)
WO (1) WO2018181465A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114365307A (en) * 2019-06-13 2022-04-15 坚能创智有限公司 Method for preparing cathode of secondary battery
EP4089053A4 (en) * 2020-04-17 2023-08-02 Lg Chem, Ltd. Cathode active material preparation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102165119B1 (en) * 2017-10-20 2020-10-14 주식회사 엘지화학 Methode for preparing positive electrode active material and secondary battery using the same
JP7404886B2 (en) * 2019-03-15 2023-12-26 株式会社豊田自動織機 A positive electrode active material exhibiting a layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum and oxygen, and a method for producing the same
CN113258130B (en) * 2021-04-27 2023-01-03 燕山大学 Amorphous halide solid electrolyte, preparation and application in all-solid-state battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273451A (en) * 2003-02-21 2004-09-30 Sumitomo Metal Mining Co Ltd Positive electrode activator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015144131A (en) * 2010-07-20 2015-08-06 国立研究開発法人産業技術総合研究所 Lithium manganese-based complex oxide and method for manufacturing the same
WO2016060105A1 (en) * 2014-10-15 2016-04-21 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2016104488A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265806A (en) * 2003-03-04 2004-09-24 Canon Inc Lithium metal composite oxide particle, manufacturing method thereof, electrode structure containing the composite oxide, manufacturing method of the electrode structure and lithium secondary battery having the electrode structure
JP4595475B2 (en) * 2004-10-01 2010-12-08 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP4789066B2 (en) 2006-03-06 2011-10-05 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5214202B2 (en) * 2007-09-21 2013-06-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2011057518A (en) * 2009-09-11 2011-03-24 Kansai Shokubai Kagaku Kk High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP2011134551A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Electrode active material, electrode, and sodium secondary battery
KR101375623B1 (en) * 2012-02-28 2014-03-18 비나텍주식회사 Manufacturing method of supercapacitor electrode
KR101751143B1 (en) * 2012-07-06 2017-06-26 스미또모 가가꾸 가부시키가이샤 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
CN105247711B (en) * 2013-07-17 2018-12-07 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method and non-aqueous electrolyte secondary battery
JP2015122264A (en) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
CN104091942B (en) * 2014-07-07 2016-06-29 中南大学 The method controlling the residual lithium in stratiform nickelic positive electrode surface
JP6319632B2 (en) * 2014-07-23 2018-05-09 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273451A (en) * 2003-02-21 2004-09-30 Sumitomo Metal Mining Co Ltd Positive electrode activator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015144131A (en) * 2010-07-20 2015-08-06 国立研究開発法人産業技術総合研究所 Lithium manganese-based complex oxide and method for manufacturing the same
WO2016060105A1 (en) * 2014-10-15 2016-04-21 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2016104488A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114365307A (en) * 2019-06-13 2022-04-15 坚能创智有限公司 Method for preparing cathode of secondary battery
CN114365307B (en) * 2019-06-13 2023-10-13 坚能创智有限公司 Method for preparing cathode of secondary battery
EP4089053A4 (en) * 2020-04-17 2023-08-02 Lg Chem, Ltd. Cathode active material preparation method

Also Published As

Publication number Publication date
KR102545342B1 (en) 2023-06-19
CN110366541B (en) 2022-01-18
JP6937152B2 (en) 2021-09-22
JP2018172256A (en) 2018-11-08
KR20190127683A (en) 2019-11-13
CN110366541A (en) 2019-10-22

Similar Documents

Publication Publication Date Title
JP6495997B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6256956B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2016060105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6337360B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2018079816A1 (en) Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
WO2019187953A1 (en) Lithium composite metal compound, lithium-secondary-battery positive electrode active material, lithium-secondary-battery positive electrode, lithium secondary battery, and lithium composite metal compound production method
CN110692154B (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2018181530A1 (en) Production method for lithium metal complex oxide
WO2018181465A1 (en) Lithium composite metal oxide production method
WO2018181402A1 (en) Lithium nickel composite oxide production method
JP6500001B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2017078136A1 (en) Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP6388978B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2019168091A1 (en) Lithium metal composite oxide, lithium secondary battery positive electrode active material, positive electrode, and lithium secondary battery
JP2018174161A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2018081937A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2018120871A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2018095546A (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary cell, positive electrode for lithium secondary cell, and lithium secondary cell
JP6360374B2 (en) Method for producing lithium-containing composite metal oxide
JP2018098217A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6381606B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024218

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775743

Country of ref document: EP

Kind code of ref document: A1