WO2018181152A1 - Bearing with resin pulley - Google Patents

Bearing with resin pulley Download PDF

Info

Publication number
WO2018181152A1
WO2018181152A1 PCT/JP2018/012093 JP2018012093W WO2018181152A1 WO 2018181152 A1 WO2018181152 A1 WO 2018181152A1 JP 2018012093 W JP2018012093 W JP 2018012093W WO 2018181152 A1 WO2018181152 A1 WO 2018181152A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
pulley
bearing
polyamide
acid
Prior art date
Application number
PCT/JP2018/012093
Other languages
French (fr)
Japanese (ja)
Inventor
工 林
正晴 井上
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017068850A external-priority patent/JP2018169024A/en
Priority claimed from JP2017068820A external-priority patent/JP2018169021A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018181152A1 publication Critical patent/WO2018181152A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H55/48Pulleys manufactured exclusively or in part of non-metallic material, e.g. plastics

Definitions

  • the present invention relates to a bearing with a resin pulley comprising a resin pulley and a rolling bearing.
  • the present invention relates to a pulley with a pulley for guiding an auxiliary machine driving belt for transmitting the rotational power of an engine to an auxiliary machine of an automobile, an idler pulley, and a tension pulley.
  • a pulley used in an auxiliary machine driving belt for transmitting the rotational power of an engine to an automobile auxiliary machine has a resin pulley on the outer circumference of the outer ring of the rolling bearing for the purpose of reducing the weight and cost.
  • An integrally molded bearing with a resin pulley is used.
  • These pulleys in automobiles are used in an environment where they are exposed to high temperatures, high impact, rainwater, antifreezing agents (calcium chloride) sprayed on roads, and the like.
  • the resin pulley has excellent mechanical characteristics corresponding to the belt tension, shape accuracy of the guide section that spans and guides the belt, excellent heat resistance and calcium chloride resistance during continuous load use, and close contact with the bearing. In order to maintain the properties, low water absorption and small dimensional change are required.
  • a resin pulley made of a glass fiber reinforced material of a mixed polymer of polyamide 66 resin and polyamide 612 resin is more excellent in calcium chloride resistance than glass fiber reinforced polyamide 66 resin.
  • the polyamide 612 resin exists in a so-called sea-island structure, and the polyamide 612 resin is inferior in heat resistance to the polyamide 66 resin, it is inferior in heat resistance and mechanical strength as a whole.
  • calcium chloride resistance is inferior to that of the polyamide resin 612 alone.
  • Polyamide 612 resin has a low glass transition temperature (Tg) and melting point, and a large decrease in physical properties at high temperatures in the water-absorbed state. Therefore, high temperature physical properties at the time of water absorption are required.
  • Tg is low
  • the coefficient of linear expansion beyond Tg is large. Therefore, due to the difference in coefficient of linear expansion between the rolling bearing and the resin pulley material, the tightening margin is small, and between the rolling bearing outer ring and the resin pulley at high temperatures. There is a risk of peeling, slipping or fretting.
  • pulley creep may occur at high temperatures depending on use conditions, and the belt may not be properly guided.
  • the present invention has been made to cope with such problems, and is equipped with a resin pulley that is excellent in wear resistance, strength at high temperature, strength after water absorption, heat resistance, calcium chloride resistance, and can suppress dimensional change and creep.
  • An object is to provide a bearing.
  • a bearing with a resin pulley according to the present invention includes an inner ring, an outer ring, a rolling bearing having a plurality of rolling elements interposed between the inner ring and the outer ring, and a resin pulley fixed to the outer ring.
  • the resin composition is an injection-molded product obtained by blending a fibrous reinforcing material with a polyamide resin comprising: a glass fiber and a carbon fiber as the fibrous reinforcing material. 10 to 50% by mass based on the total composition.
  • the diamine component is mainly composed of 1,10-decanediamine.
  • the diamine component is composed mainly of an aliphatic diamine having 9 carbon atoms, and the aliphatic diamine is at least one aliphatic diamine selected from 1,9-nonanediamine and 2-methyl-1,8-octanediamine. It is characterized by being.
  • the resin composition contains 10 to 50% by mass of the glass fiber as the fibrous reinforcing material, or 10 to 40% by mass of the carbon fiber with respect to the whole composition. It is characterized by that.
  • the glass transition temperature of the polyamide resin is 120 ° C. or higher. Further, the polyamide resin contains carbon 14 which is a radioisotope.
  • the bearing with a resin pulley according to the present invention has a resin pulley having a dicarboxylic acid component mainly composed of terephthalic acid and a diamine component mainly composed of 1,10-decanediamine or an aliphatic diamine composed of 9 carbon atoms.
  • a resin composition injection-molded product obtained by blending a fibrous reinforcing material with the polyamide resin, and the composition is at least one selected from glass fiber and carbon fiber as the fibrous reinforcing material.
  • the polyamide resin used as the base resin has a glass transition temperature of 120 ° C. or higher, it is possible to prevent peeling, slipping, fretting, etc. between the rolling bearing outer ring and the resin pulley at high temperatures.
  • Part of the components constituting the polyamide resin (for example, 1,10-decanediamine or aliphatic diamine having 9 carbon atoms) is synthesized from plants, and the polyamide resin contains carbon 14 which is a radioisotope. Therefore, the substantial carbon dioxide emission at the time of combustion can be reduced compared with the synthetic resin derived from petroleum.
  • the polyamide resin for example, 1,10-decanediamine or aliphatic diamine having 9 carbon atoms
  • FIG. 1 is a side view showing a bearing with a resin pulley
  • FIG. 2 is an axial sectional view of the bearing with a resin pulley of FIG.
  • the bearing 1 with a resin pulley includes a rolling bearing 11 that receives a radial load and a pulley 2 made of resin.
  • the rolling bearing 11 includes an inner ring 12, an outer ring 13, a plurality of rolling elements 14 interposed between the inner ring 12 and the outer ring 13, and a cage 15 that holds the rolling elements 14 at regular intervals in the circumferential direction. ing.
  • the resin pulley 2 is fixed to the outer ring 13 of the rolling bearing 11.
  • the pulley 2 in this form includes an inner diameter cylindrical portion 3 fixed to the outer ring 13, an outer diameter cylindrical portion 4 having a belt guide surface, and a disc provided between the inner diameter cylindrical portion 3 and the outer diameter cylindrical portion 4. Part 5 and a plurality of ribs 6 provided radially on both sides of disk part 5.
  • the shape of the belt guide surface in the pulley 2 is a flat shape.
  • seal members 16 are provided at both axial opening portions between the inner and outer rings, and grease 17 is sealed around the rolling elements 14 for lubrication.
  • grease 17 for example, a grease that uses poly- ⁇ -olefin oil, alkyl diphenyl ether oil, ester oil or the like as a base oil and a diurea compound or the like as a thickener is used in consideration of the use temperature of the pulley.
  • the pulley 2 is an injection molded body of a predetermined resin composition.
  • the method for fixing the pulley 2 to the outer ring 13 of the rolling bearing 11 is not particularly limited. However, since the manufacturing process can be simplified and the occurrence of a defective engagement portion can be prevented, it is formed integrally with the outer ring 13 by injection molding ( Insert molding) is preferable.
  • Insert molding a rolling bearing is disposed in advance in a mold, and a predetermined resin material to be described later is filled therein to integrally mold a pulley on the outer diameter side of the outer ring.
  • the gate position at the time of injection molding can be appropriately set in consideration of the weld to be formed. For example, a plurality of gates can be provided on the end surface of the inner diameter cylindrical portion 3 at a predetermined circumferential interval.
  • the inner diameter cylindrical portion 3 of the pulley 2 is formed so as to cover from the outer diameter surface to the end surface of the outer ring 13.
  • the outer diameter portion of the outer ring 13 is held by the inner diameter cylindrical portion 3 of the pulley 2, and the pulley 2 can be prevented from being detached from the rolling bearing.
  • FIG. 3 is an axial sectional view of a bearing with a resin pulley.
  • the bearing with a resin pulley 1 ′ includes a rolling bearing 11 that receives a radial load and a pulley 2 made of resin.
  • the configuration of the rolling bearing 11 is substantially the same as in the case of FIG.
  • a boss portion 7 formed on the inner peripheral portion and an outer peripheral portion 8 having a pulley groove over which a V-ribbed belt (not shown) is stretched are integrally formed.
  • the boss portion 7 is fixed to the outer ring 13 by engaging with the groove 13 a on the outer diameter surface of the outer ring 13.
  • an engagement shape is formed by the resin that has entered the groove.
  • the type of the rolling bearing 11 is not limited to the deep groove ball bearing shown in each drawing, and a known rolling bearing such as an angular ball bearing, a cylindrical roller bearing, or a tapered roller bearing can be applied.
  • the shape of the belt guide surface of the pulley 2 may be any shape such as a timing gear shape in addition to the flat shape of FIG. 2 and the V-ribbed shape of FIG.
  • the bearing with a resin pulley according to the present invention is a resin composition in which a pulley made of resin has a predetermined polyamide resin as a base resin and a predetermined amount of fibrous reinforcing material (glass fiber or carbon fiber) is blended therein. It is an injection-molded body.
  • the polyamide resin used in the present invention comprises a dicarboxylic acid component and a diamine component, and is obtained by polycondensation of dicarboxylic acid and diamine constituting each component.
  • the dicarboxylic acid component constituting the polyamide resin has terephthalic acid as a main component. By using terephthalic acid as the main component, the polyamide resin has excellent high-temperature rigidity.
  • the diamine component constituting the polyamide resin is mainly composed of 1,10-decanediamine or an aliphatic diamine having 9 carbon atoms.
  • the polyamide resin (A) when 1,10-decanediamine is used as a main component and the polyamide resin (B) when an aliphatic diamine having 9 carbon atoms is used as a main component are described.
  • the diamine component constituting the polyamide resin (A) is mainly composed of 1,10-decanediamine.
  • 1,10-decanediamine is a linear aliphatic diamine. Since both terephthalic acid and 1,10-decanediamine have high chemical structure symmetry, a highly crystalline polyamide resin can be obtained by using them as the main components.
  • linear 1,10-decanediamine having 10 carbon atoms is used as a main component for the diamine component constituting the polyamide resin (A). Since the carbon number of the monomer unit of the diamine component as the main component is 10 and even, it is easier to take a more stable crystal structure and the crystallinity is improved, compared to the case where the carbon number is odd, More preferable (even-odd effect). Further, when the diamine component as a main component has 8 or less carbon atoms, the melting point of the polyamide resin may exceed the decomposition temperature. When the diamine component has 12 or more carbon atoms, the polyamide resin has a low melting point, and the pulley may be deformed when used under high temperature conditions.
  • the polyamide resin (A) may be obtained by replacing part of terephthalic acid, which is a dicarboxylic acid component, and 1,10-decanediamine, which is a diamine component, with other copolymerization components.
  • terephthalic acid which is a dicarboxylic acid component
  • 1,10-decanediamine which is a diamine component
  • the total amount of terephthalic acid and 1,10-decanediamine as the main components is the total number of moles (100 mol%) of the raw material monomers.
  • Dicarboxylic acid components other than terephthalic acid used as other copolymerization components include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecane
  • Examples include aliphatic dicarboxylic acids such as diacids, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and naphthalenedicarboxylic acid.
  • diamine components other than 1,10-decanediamine used as other copolymerization components include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, and 1,5-pentanediamine. 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,11-undecanediamine, aliphatic diamine such as 1,12-dodecanediamine, cyclohexanediamine, etc. Aromatic diamines such as alicyclic diamine and xylylenediamine.
  • the polyamide resin (A) may be copolymerized with lactams such as caprolactam.
  • the weight average molecular weight of the polyamide resin (A) is preferably 15000 to 50000, more preferably 26000 to 50000. When the weight average molecular weight of the polyamide resin (A) is less than 15000, the rigidity of the resin is lowered, and the pulley may be deformed when the belt is guided. On the other hand, when the weight average molecular weight of the polyamide resin (A) exceeds 50,000, crystallization is slowed down and fluidity during injection molding is lowered. Further, the relative viscosity of the polyamide resin (A) is not particularly limited, but in order to facilitate the molding of the pulley, the relative viscosity measured at a concentration of 1 g / dL and 25 ° C. using 96% by mass sulfuric acid as a solvent. Is preferably 2.0 or more.
  • the above-mentioned polyamide resin (A) preferably has a melting point of 310 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably about 320 to 340 ° C. in consideration of moldability and the like.
  • the melting point range is preferably 310 to 340 ° C, more preferably 310 to 330 ° C, and particularly preferably 310 to 320 ° C. Since the melting point is higher than other polyamide resins generally used as pulley materials (for example, polyamide 66 resin (267 ° C.)) and heat resistance is excellent, it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures.
  • the melting point was determined by using a differential scanning calorimeter (DSC) to lower the polyamide resin from a molten state to 25 ° C. at a temperature lowering rate of 20 ° C./min. It can be measured as the temperature (Tm) of the endothermic peak that appears when the temperature is raised at the rate of temperature rise.
  • DSC differential scanning calorimeter
  • the glass transition temperature of the polyamide resin (A) is preferably 120 ° C. or higher. More preferably, it is 150 degreeC or more. Since the glass transition temperature is higher than other polyamide resins generally used as a pulley material (for example, polyamide 66 resin (49 ° C.)), it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures.
  • the glass transition temperature is a step-like shape that appears when the polyamide resin is rapidly cooled in an inert gas atmosphere using a differential scanning calorimeter (DSC) and then heated at a rate of temperature increase of 20 ° C./min. It can be measured as the temperature (Tg) at the midpoint of the endothermic peak (JIS K 7121).
  • the polyamide resin (A) only the predetermined polyamide 10T resin comprising the dicarboxylic acid component mainly composed of terephthalic acid and the diamine component mainly composed of 1,10-decanediamine as described above is used as the resin component. In addition, it is preferable not to copolymerize or polymer blend with other polyamide resins or other resins. Thereby, the partial characteristic fall like the case where it is set as the mixed polymer of polyamide 66 resin and polyamide 612 resin can be prevented.
  • the dicarboxylic acid component constituting the polyamide resin (B) is mainly composed of terephthalic acid.
  • dicarboxylic acid components other than terephthalic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3, 3 -Aliphatic dicarboxylic acids such as diethyl succinic acid, azelaic acid, sebacic acid, suberic acid; alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid; isophthalic acid, 2,6 -Naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxy
  • the proportion of terephthalic acid in the dicarboxylic acid component is 60 mol% or more, preferably 75 mol% or more, more preferably 90 mol% or more, based on the entire dicarboxylic acid component.
  • the terephthalic acid component is less than 60 mol%, various physical properties such as heat resistance and chemical resistance of the obtained polyamide are lowered, which is not preferable.
  • the diamine component constituting the polyamide resin (B) is mainly composed of an aliphatic diamine having 9 carbon atoms.
  • diamines include linear 1,9-nonanediamine and branched 2-methyl-1,8-octanediamine.
  • diamine components other than aliphatic diamines having 9 carbon atoms include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1, 12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl- Aliphatic diamines such as 1,9-nonanediamine; cycloaliphatic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine; p-phenylenediamine, m-phenylenediamine, xylenediamine, 4,4′-diaminodiphenylmethane, 4, 4'-diaminodiphenylsulfone, 4,4'-di Aromatic diamines such
  • 1,9-nonanediamine is particularly preferable.
  • the proportion of 1,9-nonanediamine in the diamine component is 60 mol% or more, preferably 75 mol% or more, more preferably 90 mol% or more, based on the entire diamine component. If the composition of the diamine component is within this range, it is preferable because the obtained polyamide is excellent in all of heat resistance, moldability, chemical resistance, low water absorption, light weight, and mechanical properties.
  • the polyamide resin (B) is preferably composed only of terephthalic acid and an aliphatic diamine composed of 9 carbon atoms. More preferably, it is a polyamide 9T resin substantially composed only of terephthalic acid and 1,9-nonanediamine.
  • the intrinsic viscosity of the polyamide 9T resin is not particularly limited. However, in order to facilitate the formation of the pulley, the intrinsic viscosity measured at a concentration of 1 g / dL and 25 ° C. using 96% by mass sulfuric acid is 0.4. It is preferable to set it to -3.0.
  • the polyamide resin (B) has a melting point of 300 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably about 320 to 340 ° C. in consideration of moldability and the like.
  • the melting point range is preferably 300 to 340 ° C., more preferably 300 to 330 ° C., and particularly preferably 300 to 320 ° C. Since the melting point is higher than other polyamide resins generally used as pulley materials (for example, polyamide 66 resin (267 ° C.)) and heat resistance is excellent, it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures.
  • the melting point can be measured using a differential scanning calorimeter (DSC) as described above.
  • the polyamide resin (B) has a glass transition temperature of 120 ° C. or higher. More preferably, it is 125 ° C. or higher. Since the glass transition temperature is higher than that of other polyamide resins (for example, polyamide 66 resin (49 ° C.)) generally used as a pulley material, it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures.
  • the glass transition temperature can be measured using a differential scanning calorimeter (DSC) as described above.
  • plant-derived raw materials may be used as the dicarboxylic acid component or the diamine component.
  • 1,10-decanediamine using castor oil as a starting material can be used.
  • butadiene as a starting material for 1,9-nonanediamine and / or 2-methyl-1,8-octanediamine is produced using a plant-derived material, and this butadiene is used.
  • a plant-derived diamine can be produced through a hydration and dimerization reaction.
  • Examples of the method for producing plant-derived butadiene include a method in which biomass-derived ethanol is dehydrated and condensed in a bimolecular contact manner.
  • a biomass-derived raw material such as a plant
  • the substantial emission amount of carbon dioxide accompanying the incineration of pulleys can be reduced as compared with the case where no biomass-derived raw material is used.
  • whether or not it is a plant plastic using a biomass-derived raw material can be determined by measuring the concentration of 14 C, which is a radioisotope, with respect to the carbon constituting the resin. Since the half-life of 14 C is 5730 years, carbon derived from fossil resources, which is supposed to be produced after more than 10 million years, does not contain 14 C at all. From this, if 14 C is contained in the resin, it can be determined that at least a raw material derived from biomass is used.
  • Glass fibers or carbon fibers are used as the fibrous reinforcing material to be blended with the polyamide resins (A) and (B) used as the base resin.
  • the glass fiber is obtained by spinning from inorganic glass containing SiO 2 , B 2 O 3 , Al 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Fe 2 O 3 or the like as a main component.
  • alkali-free glass (E glass), alkali-containing glass (C glass, A glass) or the like can be used.
  • alkali-free glass is preferable.
  • the alkali-free glass is a borosilicate glass that contains almost no alkali component in the composition.
  • Carbon fiber can be used regardless of the type of raw material such as polyacrylonitrile (PAN), pitch, rayon, and lignin-poval mixture.
  • PAN polyacrylonitrile
  • rayon rayon
  • lignin-poval mixture since these fibrous reinforcing materials can improve adhesiveness with a polyamide resin, it is preferable that the surface treatment is carried out using silane coupling agents, such as an epoxy type and an amino type.
  • the fibrous reinforcing material is blended so as to contain 10 to 50% by mass of at least one selected from glass fibers and carbon fibers with respect to the entire composition. Preferably, only one of them is blended.
  • the blending amount is preferably 10 to 50% by mass, more preferably 20 to 50% by mass, and more preferably 20 to 35% by mass with respect to the entire resin composition. Further preferred.
  • the amount of glass fiber is less than 10% by mass, the reinforcing effect is small, and when it exceeds 50% by mass, fluidity suitable for injection molding may not be obtained.
  • the blending amount is preferably 10 to 40% by mass, more preferably 15 to 30% by mass with respect to the entire resin composition.
  • the amount of carbon fiber is less than 10% by mass, the reinforcing effect is small, and when it exceeds 40% by mass, fluidity suitable for injection molding may not be obtained.
  • the glass fiber is most preferably 20 to 30% by mass, and the carbon fiber is most preferably 15 to 20% by mass with respect to the entire resin composition.
  • additives other than the above-mentioned fibrous reinforcing material may be blended as necessary as long as the properties and injection moldability required for the pulley are not impaired.
  • a solid lubricant for example, a solid lubricant, a particulate filler (inorganic filler), an antioxidant, an antistatic agent, a release agent, a colorant, and the like can be blended.
  • polytetrafluoroethylene resin, graphite, calcium carbonate, clay, talc, silica, welastonite, elastomer and the like can be blended.
  • Each material constituting the resin composition is mixed with a Henschel mixer, a ball mixer, a ribbon blender, or the like, if necessary, and then melt-kneaded with a melt extruder such as a twin-screw kneading extruder to form pellets for molding. Can be obtained.
  • the filling material may be fed by side feed when melt-kneading with a twin screw extruder or the like.
  • the pulley is molded integrally with the outer ring of the rolling bearing by insert molding (injection molding) or the like as described above.
  • the resin temperature is set to be equal to or higher than the melting points of the polyamide resins (A) and (B) described above, and the mold temperature is maintained below the glass transition temperature of the polyamide resin.
  • the use temperature of the pulley is equal to or higher than the mold temperature, there is a possibility of causing a dimensional change due to relaxation of the molding stress. Therefore, it is preferable to perform an annealing treatment (heat treatment) at the use temperature or higher.
  • the resin pulley in the bearing with the resin pulley of the present invention is formed by blending a predetermined amount of fibrous reinforcing material (glass fiber or carbon fiber) with a predetermined polyamide resin. Excellent heat resistance and calcium chloride resistance, suppressing dimensional changes and creep. For this reason, the belt can be properly guided even at a high temperature, and peeling and slipping at the fixed portion between the rolling bearing outer ring and the resin pulley can be prevented.
  • Polyamide 612 resin DuPont Zytel 151L (2) Fibrous reinforcing material
  • Glass fiber 03JAFT692 manufactured by Asahi Fiber Glass Co., Ltd. (average fiber diameter 10 ⁇ m, average fiber length 3 mm)
  • Carbon fiber HTA-C6 manufactured by Toho Tenax Co., Ltd. (average fiber diameter 7 ⁇ m, average fiber length 6 mm)
  • Examples 1 to 4 and Comparative Examples 1 to 3 Using the resin composition which mix
  • the above resin composition was subjected to the following (1) water absorption rate, (2) tensile strength evaluation, (3) water absorption tensile strength evaluation, (4) high temperature tensile strength evaluation, and (5) calcium chloride resistance evaluation. The results are shown in Table 1.
  • the tensile strength and appearance were confirmed repeatedly for 3 cycles.
  • the tensile strength was measured in the same manner as in (2), and the tensile strength retention rate was evaluated by comparison with that before spraying calcium chloride.
  • the surface of the test piece was observed with an optical microscope to confirm whether surface cracks or cracks occurred.
  • each example was excellent in tensile strength after water absorption and at high temperature, and also excellent in calcium chloride resistance.
  • each comparative example using other polyamide resins resulted in inferior tensile strength after water absorption and calcium chloride resistance.
  • the bearing with a resin pulley of the present invention is excellent in wear resistance, strength at high temperature, strength after water absorption, heat resistance, calcium chloride resistance, and can suppress dimensional change and creep. It can be suitably used as a pulley, idler pulley or tension pulley.

Abstract

Provided is a bearing with a resin pulley that has exceptional wear resistance, strength at high temperatures, strength after water absorption, heat resistance, and calcium chloride resistance, and with which dimension changes and creeping can be minimized. A bearing (1) with a resin pulley comprises: a roller bearing (11) having an inner race (12), an outer race (13), and a plurality of rolling elements (14); and a resinous pulley (2) fixed to the outer race (13). The pulley (2) is an injection molding of a resin composition, in which: the base resin is a polyamide resin comprising a dicarboxylic acid component having terephthalic acid as the main component, and a diamine component of which the main component is 1,10-decanediamine or C9 aliphatic diamine; and a fibrous reinforcing material is blended into the base resin. The resin composition contains at least one type of fibers selected from glass fibers and carbon fibers as the fibrous reinforcing material, in the amount of 10 to 50 mass% relative to the total composition.

Description

樹脂プーリ付き軸受Bearing with resin pulley
 本発明は、樹脂製のプーリと転がり軸受からなる樹脂プーリ付き軸受に関する。特に、自動車の補機にエンジンの回転動力を伝達するための補機駆動用ベルトを案内するプーリや、アイドラプーリ、テンションプーリとして使用される樹脂プーリ付き軸受に関する。 The present invention relates to a bearing with a resin pulley comprising a resin pulley and a rolling bearing. In particular, the present invention relates to a pulley with a pulley for guiding an auxiliary machine driving belt for transmitting the rotational power of an engine to an auxiliary machine of an automobile, an idler pulley, and a tension pulley.
 従来、自動車の補機にエンジンの回転動力を伝達するための補機駆動用ベルトなどで使用されるプーリには、その重量軽減ならびにコスト削減の目的で、転がり軸受の外輪の外周に樹脂プーリを一体成形した樹脂プーリ付き軸受が用いられている。自動車におけるこれらのプーリは、高温や高衝撃、雨水、道路に散布された凍結防止剤(塩化カルシウム)などに曝される環境下で使用される。このため、樹脂プーリでは、ベルト張力に対応した機械的特性、ベルトを掛け渡して案内する案内部の形状精度、連続負荷使用時における耐熱性と耐塩化カルシウム性に優れることや、軸受との密着性を維持するために低吸水で寸法変化が少ないことが要求される。 Conventionally, a pulley used in an auxiliary machine driving belt for transmitting the rotational power of an engine to an automobile auxiliary machine has a resin pulley on the outer circumference of the outer ring of the rolling bearing for the purpose of reducing the weight and cost. An integrally molded bearing with a resin pulley is used. These pulleys in automobiles are used in an environment where they are exposed to high temperatures, high impact, rainwater, antifreezing agents (calcium chloride) sprayed on roads, and the like. For this reason, the resin pulley has excellent mechanical characteristics corresponding to the belt tension, shape accuracy of the guide section that spans and guides the belt, excellent heat resistance and calcium chloride resistance during continuous load use, and close contact with the bearing. In order to maintain the properties, low water absorption and small dimensional change are required.
 このような特性を考慮し、従来、樹脂プーリの成形材料として、ガラス繊維などの強化繊維を所定量配合した強化ナイロン(ポリアミド)、例えば、ポリアミド6樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアミド612樹脂、ポリアミド11樹脂、ポリアミド12樹脂などのガラス繊維強化材を用いることが知られている(特許文献1、2参照)。また、プーリの機械的強度および耐熱性を保持しながら塩化カルシウム耐性を高くするものとして、ポリアミド66樹脂とポリアミド612樹脂との混合ポリマーに、ガラス繊維を配合してなる樹脂材料が提案されている(特許文献3参照)。 Considering such characteristics, conventionally, as a molding material for a resin pulley, reinforced nylon (polyamide) in which a predetermined amount of reinforcing fiber such as glass fiber is blended, for example, polyamide 6 resin, polyamide 66 resin, polyamide 610 resin, polyamide 612 It is known to use glass fiber reinforcing materials such as resin, polyamide 11 resin, and polyamide 12 resin (see Patent Documents 1 and 2). Further, as a material for increasing the resistance to calcium chloride while maintaining the mechanical strength and heat resistance of the pulley, a resin material obtained by blending glass fibers with a mixed polymer of polyamide 66 resin and polyamide 612 resin has been proposed. (See Patent Document 3).
特許第3506735号公報Japanese Patent No. 3506735 特許第2838037号公報Japanese Patent No. 2838037 特開2000-2317号公報JP 2000-2317 A
 ポリアミド66樹脂とポリアミド612樹脂との混合ポリマーのガラス繊維強化材による樹脂製プーリは、ガラス繊維強化ポリアミド66樹脂よりも耐塩化カルシウム性に優れる。しかし、ポリアミド612樹脂が、いわゆる海島構造で存在しており、ポリアミド612樹脂はポリアミド66樹脂よりも耐熱性に劣るため、全体として耐熱性や機械的強度に劣る。また、耐塩化カルシウム性についても、ポリアミド樹脂612単独と比較すれば劣る。 A resin pulley made of a glass fiber reinforced material of a mixed polymer of polyamide 66 resin and polyamide 612 resin is more excellent in calcium chloride resistance than glass fiber reinforced polyamide 66 resin. However, since the polyamide 612 resin exists in a so-called sea-island structure, and the polyamide 612 resin is inferior in heat resistance to the polyamide 66 resin, it is inferior in heat resistance and mechanical strength as a whole. Also, calcium chloride resistance is inferior to that of the polyamide resin 612 alone.
 また昨今では、居住空間を確保するため、エンジンルーム内がコンパクトになり、各部品に求められる耐熱性がより厳しくなっている。ポリアミド612樹脂ではガラス転移温度(Tg)や融点が低く、吸水した状態での高温時の物性低下も大きいため、吸水時での高い高温物性が必要となっている。 In recent years, in order to secure a living space, the interior of the engine room has become compact, and the heat resistance required for each part has become stricter. Polyamide 612 resin has a low glass transition temperature (Tg) and melting point, and a large decrease in physical properties at high temperatures in the water-absorbed state. Therefore, high temperature physical properties at the time of water absorption are required.
 Tgが低いことから、Tgをこえての線膨張係数が大きいため、転がり軸受と樹脂プーリ材との線膨張係数の違いから、締め代が小さくなり、高温時に転がり軸受外輪と樹脂プーリとの間で、剥がれ、すべり、フレッチングの発生といったおそれがある。また、耐熱性が低いため、使用条件によっては高温時にプーリのクリープが発生し、ベルトを適切に案内することができなくなるおそれがある。 Because Tg is low, the coefficient of linear expansion beyond Tg is large. Therefore, due to the difference in coefficient of linear expansion between the rolling bearing and the resin pulley material, the tightening margin is small, and between the rolling bearing outer ring and the resin pulley at high temperatures. There is a risk of peeling, slipping or fretting. In addition, since the heat resistance is low, pulley creep may occur at high temperatures depending on use conditions, and the belt may not be properly guided.
 本発明はこのような問題に対処するためになされたものであり、耐摩耗性、高温時強度、吸水後強度、耐熱性、耐塩化カルシウム性に優れ、寸法変化やクリープを抑制できる樹脂プーリ付き軸受を提供することを目的とする。 The present invention has been made to cope with such problems, and is equipped with a resin pulley that is excellent in wear resistance, strength at high temperature, strength after water absorption, heat resistance, calcium chloride resistance, and can suppress dimensional change and creep. An object is to provide a bearing.
 本発明の樹脂プーリ付き軸受は、内輪、外輪、および、上記内輪と上記外輪との間に介在する複数の転動体を有する転がり軸受と、上記外輪に固定された樹脂製のプーリとを備えてなる樹脂プーリ付き軸受であって、上記樹脂製のプーリが、テレフタル酸を主成分とするジカルボン酸成分と、1,10-デカンジアミンまたは炭素数9からなる脂肪族ジアミンを主成分とするジアミン成分とからなるポリアミド樹脂をベース樹脂とし、これに繊維状補強材を配合してなる樹脂組成物の射出成形体であり、上記樹脂組成物は、上記繊維状補強材としてガラス繊維および炭素繊維から選ばれる少なくとも1つを該組成物全体に対して10~50質量%含むことを特徴とする。 A bearing with a resin pulley according to the present invention includes an inner ring, an outer ring, a rolling bearing having a plurality of rolling elements interposed between the inner ring and the outer ring, and a resin pulley fixed to the outer ring. A resin pulley bearing, wherein the resin pulley includes a dicarboxylic acid component mainly composed of terephthalic acid and a diamine component mainly composed of 1,10-decanediamine or an aliphatic diamine composed of 9 carbon atoms. The resin composition is an injection-molded product obtained by blending a fibrous reinforcing material with a polyamide resin comprising: a glass fiber and a carbon fiber as the fibrous reinforcing material. 10 to 50% by mass based on the total composition.
 上記ジアミン成分が、1,10-デカンジアミンを主成分とすることを特徴とする。 The diamine component is mainly composed of 1,10-decanediamine.
 上記ジアミン成分が、炭素数9からなる脂肪族ジアミンを主成分とし、該脂肪族ジアミンは、1,9-ノナンジアミンおよび2-メチル-1,8-オクタンジアミンから選ばれる少なくとも1つの脂肪族ジアミンであることを特徴とする。 The diamine component is composed mainly of an aliphatic diamine having 9 carbon atoms, and the aliphatic diamine is at least one aliphatic diamine selected from 1,9-nonanediamine and 2-methyl-1,8-octanediamine. It is characterized by being.
 上記樹脂組成物は、上記繊維状補強材として、上記ガラス繊維を該組成物全体に対して10~50質量%含む、または、上記炭素繊維を該組成物全体に対して10~40質量%含むことを特徴とする。 The resin composition contains 10 to 50% by mass of the glass fiber as the fibrous reinforcing material, or 10 to 40% by mass of the carbon fiber with respect to the whole composition. It is characterized by that.
 上記ポリアミド樹脂のガラス転移温度が120℃以上であることを特徴とする。また、上記ポリアミド樹脂が、放射性同位元素である炭素14を含むことを特徴とする。 The glass transition temperature of the polyamide resin is 120 ° C. or higher. Further, the polyamide resin contains carbon 14 which is a radioisotope.
 本発明の樹脂プーリ付き軸受は、その樹脂製のプーリが、テレフタル酸を主成分とするジカルボン酸成分と、1,10-デカンジアミンまたは炭素数9からなる脂肪族ジアミンを主成分とするジアミン成分とからなるポリアミド樹脂をベース樹脂とし、これに繊維状補強材を配合してなる樹脂組成物の射出成形体であり、この組成物は繊維状補強材としてガラス繊維および炭素繊維から選ばれる少なくとも1つを該組成物全体に対して10~50質量%含むので、耐熱性が高く、高温時かつ吸水後の強度低下やクリープが小さく、耐塩化カルシウム性や耐疲労性、耐摩耗性に優れる樹脂製プーリとなる。このため、樹脂プーリ付き軸受の信頼性が向上する。 The bearing with a resin pulley according to the present invention has a resin pulley having a dicarboxylic acid component mainly composed of terephthalic acid and a diamine component mainly composed of 1,10-decanediamine or an aliphatic diamine composed of 9 carbon atoms. Is a resin composition injection-molded product obtained by blending a fibrous reinforcing material with the polyamide resin, and the composition is at least one selected from glass fiber and carbon fiber as the fibrous reinforcing material. Is contained in an amount of 10 to 50% by mass with respect to the total composition, so that the resin has high heat resistance, low strength reduction and creep after water absorption, and excellent calcium chloride resistance, fatigue resistance, and wear resistance. It becomes a pulley. For this reason, the reliability of the bearing with the resin pulley is improved.
 ベース樹脂とする上記ポリアミド樹脂は、ガラス転移温度が120℃以上であるので、高温時に転がり軸受外輪と樹脂プーリとの間における、剥がれ、すべり、フレッチングの発生などを防止できる。 Since the polyamide resin used as the base resin has a glass transition temperature of 120 ° C. or higher, it is possible to prevent peeling, slipping, fretting, etc. between the rolling bearing outer ring and the resin pulley at high temperatures.
 ポリアミド樹脂を構成する成分の一部(例えば1,10-デカンジアミンや炭素数9からなる脂肪族ジアミン)が植物より合成されるものであり、該ポリアミド樹脂に放射性同位元素である炭素14を含むので、石油由来の合成樹脂に比べて燃焼時の実質的な二酸化炭素排出量を低減できる。 Part of the components constituting the polyamide resin (for example, 1,10-decanediamine or aliphatic diamine having 9 carbon atoms) is synthesized from plants, and the polyamide resin contains carbon 14 which is a radioisotope. Therefore, the substantial carbon dioxide emission at the time of combustion can be reduced compared with the synthetic resin derived from petroleum.
本発明の樹脂プーリ付き軸受の一例を示す側面図である。It is a side view which shows an example of the bearing with a resin pulley of this invention. 図1の樹脂プーリ付き軸受の軸方向断面図である。It is an axial sectional view of the bearing with a resin pulley of FIG. 本発明の樹脂プーリ付き軸受の他の例を示す軸方向断面図である。It is an axial direction sectional view showing other examples of a bearing with a resin pulley of the present invention.
 本発明の樹脂プーリ付き軸受の一例を図1および図2に基づいて説明する。図1は樹脂プーリ付き軸受を示す側面図であり、図2は図1の樹脂プーリ付き軸受の軸方向断面図である。図1および図2に示すように、樹脂プーリ付き軸受1は、ラジアル荷重を受ける転がり軸受11と、樹脂製のプーリ2とを備えてなる。転がり軸受11は、内輪12と、外輪13と、内輪12と外輪13との間に介在する複数の転動体14と、この転動体14を周方向に一定間隔で保持する保持器15とを備えている。樹脂製のプーリ2は、転がり軸受11の外輪13に固定されている。この形態のプーリ2は、外輪13に固定される内径円筒部3と、ベルト案内面を有する外径円筒部4と、内径円筒部3と外径円筒部4との間に設けられた円板部5と、円板部5の両面に放射状に設けられた複数のリブ6とを有する。プーリ2におけるベルト案内面の形状は、フラット形状である。 An example of a bearing with a resin pulley according to the present invention will be described with reference to FIGS. FIG. 1 is a side view showing a bearing with a resin pulley, and FIG. 2 is an axial sectional view of the bearing with a resin pulley of FIG. As shown in FIGS. 1 and 2, the bearing 1 with a resin pulley includes a rolling bearing 11 that receives a radial load and a pulley 2 made of resin. The rolling bearing 11 includes an inner ring 12, an outer ring 13, a plurality of rolling elements 14 interposed between the inner ring 12 and the outer ring 13, and a cage 15 that holds the rolling elements 14 at regular intervals in the circumferential direction. ing. The resin pulley 2 is fixed to the outer ring 13 of the rolling bearing 11. The pulley 2 in this form includes an inner diameter cylindrical portion 3 fixed to the outer ring 13, an outer diameter cylindrical portion 4 having a belt guide surface, and a disc provided between the inner diameter cylindrical portion 3 and the outer diameter cylindrical portion 4. Part 5 and a plurality of ribs 6 provided radially on both sides of disk part 5. The shape of the belt guide surface in the pulley 2 is a flat shape.
 転がり軸受11では、内外輪間の軸方向両端開口部にシール部材16を設けており、転動体14の周囲にグリース17が封入されて潤滑がなされる。グリース17としては、プーリの使用温度を考慮して、例えば、ポリ-α-オレフィン油、アルキルジフェニルエーテル油、エステル油などを基油とし、ジウレア化合物などを増ちょう剤とするグリースが使用される。 In the rolling bearing 11, seal members 16 are provided at both axial opening portions between the inner and outer rings, and grease 17 is sealed around the rolling elements 14 for lubrication. As the grease 17, for example, a grease that uses poly-α-olefin oil, alkyl diphenyl ether oil, ester oil or the like as a base oil and a diurea compound or the like as a thickener is used in consideration of the use temperature of the pulley.
 プーリ2は所定の樹脂組成物の射出成形体である。プーリ2を転がり軸受11の外輪13に固定する方法は特に限定されないが、製造工程の簡略化が図れ、係合部不良の発生を防止できることから、射出成形により外輪13に重ねて一体に成形(インサート成形)することが好ましい。インサート成形では、金型内に予め転がり軸受を配置し、これに後述の所定の樹脂材料を充填してプーリを外輪の外径側に一体成形する。射出成形時のゲート位置は、形成されるウェルドなどを考慮して適宜設定できる。例えば、内径円筒部3の端面に所定円周間隔で複数のゲートを設けることができる。 The pulley 2 is an injection molded body of a predetermined resin composition. The method for fixing the pulley 2 to the outer ring 13 of the rolling bearing 11 is not particularly limited. However, since the manufacturing process can be simplified and the occurrence of a defective engagement portion can be prevented, it is formed integrally with the outer ring 13 by injection molding ( Insert molding) is preferable. In insert molding, a rolling bearing is disposed in advance in a mold, and a predetermined resin material to be described later is filled therein to integrally mold a pulley on the outer diameter side of the outer ring. The gate position at the time of injection molding can be appropriately set in consideration of the weld to be formed. For example, a plurality of gates can be provided on the end surface of the inner diameter cylindrical portion 3 at a predetermined circumferential interval.
 図2に示すように、プーリ2の内径円筒部3は、外輪13の外径面から端面までを覆うように形成されている。これにより、外輪13の外径部を、プーリ2の内径円筒部3で抱え込む形となり、プーリ2が転がり軸受から外れることを防止できる。 As shown in FIG. 2, the inner diameter cylindrical portion 3 of the pulley 2 is formed so as to cover from the outer diameter surface to the end surface of the outer ring 13. As a result, the outer diameter portion of the outer ring 13 is held by the inner diameter cylindrical portion 3 of the pulley 2, and the pulley 2 can be prevented from being detached from the rolling bearing.
 本発明の樹脂プーリ付き軸受の他の例を図3に基づいて説明する。図3は樹脂プーリ付き軸受の軸方向断面図である。図3に示すように、樹脂プーリ付き軸受1’は、ラジアル荷重を受ける転がり軸受11と、樹脂製のプーリ2とを備えてなる。転がり軸受11の構成は、上記図2の場合と概ね同じである。この形態のプーリ2は、内周部に形成されるボス部7と、Vリブドベルト(図示省略)が掛け渡されるプーリ溝を有する外周部8とが一体に形成されている。ボス部7は、外輪13の外径面の溝13aに係合することで外輪13に固定されている。外径面に溝13aを有する外輪13に対して、プーリ2をインサート成形することで該溝に入り込んだ樹脂により係合形状が形成される。 Another example of the bearing with a resin pulley of the present invention will be described with reference to FIG. FIG. 3 is an axial sectional view of a bearing with a resin pulley. As shown in FIG. 3, the bearing with a resin pulley 1 ′ includes a rolling bearing 11 that receives a radial load and a pulley 2 made of resin. The configuration of the rolling bearing 11 is substantially the same as in the case of FIG. In this form of pulley 2, a boss portion 7 formed on the inner peripheral portion and an outer peripheral portion 8 having a pulley groove over which a V-ribbed belt (not shown) is stretched are integrally formed. The boss portion 7 is fixed to the outer ring 13 by engaging with the groove 13 a on the outer diameter surface of the outer ring 13. By engaging the outer ring 13 having the groove 13a on the outer diameter surface with the pulley 2 being insert-molded, an engagement shape is formed by the resin that has entered the groove.
 転がり軸受11の形式としては、各図に示す深溝玉軸受に限定されず、アンギュラ玉軸受、円筒ころ軸受、円すいころ軸受など、公知の転がり軸受を適用できる。また、プーリ2のベルト案内面の形状は、図2のフラット形状、図3のVリブド形状の他、タイミング歯車形状などの任意の形状とできる。その他、プーリと転がり軸受とをインサート成形で一体とすることが、コスト的に優位で好ましいが、プーリのみを樹脂組成物で成形した後、これに必要に応じて転がり軸受を嵌合する形態であってもよい。 The type of the rolling bearing 11 is not limited to the deep groove ball bearing shown in each drawing, and a known rolling bearing such as an angular ball bearing, a cylindrical roller bearing, or a tapered roller bearing can be applied. Further, the shape of the belt guide surface of the pulley 2 may be any shape such as a timing gear shape in addition to the flat shape of FIG. 2 and the V-ribbed shape of FIG. In addition, it is preferable and advantageous in terms of cost to integrate the pulley and the rolling bearing by insert molding, but after forming only the pulley with a resin composition, the rolling bearing is fitted to this as necessary. There may be.
 本発明の樹脂プーリ付き軸受は、その樹脂製のプーリが、所定のポリアミド樹脂をベース樹脂とし、これに所定量の繊維状補強材(ガラス繊維または炭素繊維)を配合してなる樹脂組成物の射出成形体であることを特徴としている。 The bearing with a resin pulley according to the present invention is a resin composition in which a pulley made of resin has a predetermined polyamide resin as a base resin and a predetermined amount of fibrous reinforcing material (glass fiber or carbon fiber) is blended therein. It is an injection-molded body.
 本発明で用いるポリアミド樹脂は、ジカルボン酸成分とジアミン成分とからなり、各成分を構成するジカルボン酸とジアミンとを重縮合して得られる。上記ポリアミド樹脂を構成するジカルボン酸成分は、テレフタル酸を主成分とする。テレフタル酸を主成分とすることで、ポリアミド樹脂の高温剛性などに優れる。上記ポリアミド樹脂を構成するジアミン成分は、1,10-デカンジアミンまたは炭素数9からなる脂肪族ジアミンを主成分とする。以下に、1,10-デカンジアミンを主成分として用いた場合のポリアミド樹脂(A)、炭素数9からなる脂肪族ジアミンを主成分として用いた場合のポリアミド樹脂(B)について、説明する。 The polyamide resin used in the present invention comprises a dicarboxylic acid component and a diamine component, and is obtained by polycondensation of dicarboxylic acid and diamine constituting each component. The dicarboxylic acid component constituting the polyamide resin has terephthalic acid as a main component. By using terephthalic acid as the main component, the polyamide resin has excellent high-temperature rigidity. The diamine component constituting the polyamide resin is mainly composed of 1,10-decanediamine or an aliphatic diamine having 9 carbon atoms. Hereinafter, the polyamide resin (A) when 1,10-decanediamine is used as a main component, and the polyamide resin (B) when an aliphatic diamine having 9 carbon atoms is used as a main component are described.
<ポリアミド樹脂(A)>
 ポリアミド樹脂(A)を構成するジアミン成分は、1,10-デカンジアミンを主成分とする。1,10-デカンジアミンは直鎖状の脂肪族ジアミンである。テレフタル酸および1,10-デカンジアミンは、いずれも化学構造の対称性が高いため、これらを主成分とすることで、高い結晶性のポリアミド樹脂が得られる。
<Polyamide resin (A)>
The diamine component constituting the polyamide resin (A) is mainly composed of 1,10-decanediamine. 1,10-decanediamine is a linear aliphatic diamine. Since both terephthalic acid and 1,10-decanediamine have high chemical structure symmetry, a highly crystalline polyamide resin can be obtained by using them as the main components.
 本発明では、上記ポリアミド樹脂(A)を構成するジアミン成分について、上述のとおり、炭素数が10である直鎖状の1,10-デカンジアミンを主成分として用いている。主成分とするジアミン成分のモノマー単位の炭素数が10であり、偶数であるので、より安定な結晶構造をとりやすく、結晶性が向上するという点では、炭素数が奇数の場合に比べて、より好ましい(偶奇効果)。また、主成分とするジアミン成分の炭素数が8以下の場合には、上記ポリアミド樹脂の融点が分解温度を上回るおそれがある。ジアミン成分の炭素数が12以上の場合には、上記ポリアミド樹脂の融点が低くなり、高温条件下で使用する場合にプーリが変形する等のおそれがある。 In the present invention, as described above, linear 1,10-decanediamine having 10 carbon atoms is used as a main component for the diamine component constituting the polyamide resin (A). Since the carbon number of the monomer unit of the diamine component as the main component is 10 and even, it is easier to take a more stable crystal structure and the crystallinity is improved, compared to the case where the carbon number is odd, More preferable (even-odd effect). Further, when the diamine component as a main component has 8 or less carbon atoms, the melting point of the polyamide resin may exceed the decomposition temperature. When the diamine component has 12 or more carbon atoms, the polyamide resin has a low melting point, and the pulley may be deformed when used under high temperature conditions.
 上記ポリアミド樹脂(A)は、ジカルボン酸成分であるテレフタル酸およびジアミン成分である1,10-デカンジアミンの一部を、他の共重合成分で置き換えたものとしてもよい。ただし、他の共重合成分が多くなると、融点および結晶性が低下することから、主成分となるテレフタル酸および1,10-デカンジアミンの総量は、原料モノマーの総モル数(100モル%)に対して、95モル%以上とすることが好ましい。また、実質的にテレフタル酸および1,10-デカンジアミンのみから構成し、他の共重合成分を実質的に含まないことが特に好ましい。 The polyamide resin (A) may be obtained by replacing part of terephthalic acid, which is a dicarboxylic acid component, and 1,10-decanediamine, which is a diamine component, with other copolymerization components. However, since the melting point and crystallinity decrease as the amount of other copolymerization components increases, the total amount of terephthalic acid and 1,10-decanediamine as the main components is the total number of moles (100 mol%) of the raw material monomers. On the other hand, it is preferable to set it as 95 mol% or more. Further, it is particularly preferable that it is substantially composed only of terephthalic acid and 1,10-decanediamine, and is substantially free of other copolymerization components.
 他の共重合成分として用いる、テレフタル酸以外のジカルボン酸成分としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸が挙げられる。また、他の共重合成分として用いる、1,10-デカンジアミン以外のジアミン成分としては、1,2-エタンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミンなどの脂肪族ジアミン、シクロヘキサンジアミンなどの脂環族ジアミン、キシリレンジアミンなどの芳香族ジアミンが挙げられる。また、上記ポリアミド樹脂(A)には、カプロラクタムなどのラクタム類を共重合させてもよい。 Dicarboxylic acid components other than terephthalic acid used as other copolymerization components include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecane Examples include aliphatic dicarboxylic acids such as diacids, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and naphthalenedicarboxylic acid. Examples of diamine components other than 1,10-decanediamine used as other copolymerization components include 1,2-ethanediamine, 1,3-propanediamine, 1,4-butanediamine, and 1,5-pentanediamine. 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,11-undecanediamine, aliphatic diamine such as 1,12-dodecanediamine, cyclohexanediamine, etc. Aromatic diamines such as alicyclic diamine and xylylenediamine. The polyamide resin (A) may be copolymerized with lactams such as caprolactam.
 上記ポリアミド樹脂(A)の重量平均分子量は、好ましくは15000~50000であり、より好ましくは26000~50000である。上記ポリアミド樹脂(A)の重量平均分子量が15000未満であると、該樹脂の剛性が低下し、ベルト案内時にプーリが変形するおそれがある。一方、上記ポリアミド樹脂(A)の重量平均分子量が50000をこえると、結晶化が遅くなり射出成形時の流動性が低下する。また、上記ポリアミド樹脂(A)の相対粘度は、特に限定されないが、プーリの成形を容易にするためには、96質量%硫酸を溶媒とし、濃度1g/dL、25℃で測定される相対粘度を2.0以上とすることが好ましい。 The weight average molecular weight of the polyamide resin (A) is preferably 15000 to 50000, more preferably 26000 to 50000. When the weight average molecular weight of the polyamide resin (A) is less than 15000, the rigidity of the resin is lowered, and the pulley may be deformed when the belt is guided. On the other hand, when the weight average molecular weight of the polyamide resin (A) exceeds 50,000, crystallization is slowed down and fluidity during injection molding is lowered. Further, the relative viscosity of the polyamide resin (A) is not particularly limited, but in order to facilitate the molding of the pulley, the relative viscosity measured at a concentration of 1 g / dL and 25 ° C. using 96% by mass sulfuric acid as a solvent. Is preferably 2.0 or more.
 上記ポリアミド樹脂(A)は、その融点が310℃以上であることが好ましい。また、上限は特に限定されないが、成形加工性などを考慮して320~340℃程度とすることが好ましい。融点範囲としては、310~340℃が好ましく、310~330℃がより好ましく、310~320℃が特に好ましい。プーリ材料として一般に使用される他のポリアミド樹脂(例えば、ポリアミド66樹脂(同267℃))よりも融点が高く、耐熱性に優れるので、高温時の強度低下、寸法変化、クリープなどを抑制できる。なお、融点は、示差走査熱量計(DSC)を用いて、不活性ガス雰囲気下で、上記ポリアミド樹脂を溶融状態から20℃/分の降温速度で25℃まで降温した後、20℃/分の昇温速度で昇温した場合に現れる吸熱ピークの温度(Tm)として測定できる。 The above-mentioned polyamide resin (A) preferably has a melting point of 310 ° C. or higher. The upper limit is not particularly limited, but is preferably about 320 to 340 ° C. in consideration of moldability and the like. The melting point range is preferably 310 to 340 ° C, more preferably 310 to 330 ° C, and particularly preferably 310 to 320 ° C. Since the melting point is higher than other polyamide resins generally used as pulley materials (for example, polyamide 66 resin (267 ° C.)) and heat resistance is excellent, it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures. The melting point was determined by using a differential scanning calorimeter (DSC) to lower the polyamide resin from a molten state to 25 ° C. at a temperature lowering rate of 20 ° C./min. It can be measured as the temperature (Tm) of the endothermic peak that appears when the temperature is raised at the rate of temperature rise.
 上記ポリアミド樹脂(A)は、そのガラス転移温度が120℃以上であることが好ましい。より好ましくは150℃以上である。プーリ材料として一般に使用される他のポリアミド樹脂(例えば、ポリアミド66樹脂(同49℃))よりもガラス転移温度が高いので、高温時の強度低下、寸法変化、クリープなどを抑制できる。なお、ガラス転移温度は、示差走査熱量計(DSC)を用いて、不活性ガス雰囲気下で、上記ポリアミド樹脂を急冷した後、20℃/分の昇温速度で昇温した場合に現れる階段状の吸熱ピークの中点の温度(Tg)として測定できる(JIS K7121)。 The glass transition temperature of the polyamide resin (A) is preferably 120 ° C. or higher. More preferably, it is 150 degreeC or more. Since the glass transition temperature is higher than other polyamide resins generally used as a pulley material (for example, polyamide 66 resin (49 ° C.)), it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures. The glass transition temperature is a step-like shape that appears when the polyamide resin is rapidly cooled in an inert gas atmosphere using a differential scanning calorimeter (DSC) and then heated at a rate of temperature increase of 20 ° C./min. It can be measured as the temperature (Tg) at the midpoint of the endothermic peak (JIS K 7121).
 ポリアミド樹脂(A)には、上記のようなテレフタル酸を主成分とするジカルボン酸成分と、1,10-デカンジアミンを主成分とするジアミン成分とからなる上記所定のポリアミド10T樹脂のみを樹脂成分とし、これ以外のポリアミド樹脂や他の樹脂との共重合や、ポリマーブレンドとはしないことが好ましい。これにより、ポリアミド66樹脂とポリアミド612樹脂との混合ポリマーとする場合のような、部分的な特性低下などを防止できる。 As the polyamide resin (A), only the predetermined polyamide 10T resin comprising the dicarboxylic acid component mainly composed of terephthalic acid and the diamine component mainly composed of 1,10-decanediamine as described above is used as the resin component. In addition, it is preferable not to copolymerize or polymer blend with other polyamide resins or other resins. Thereby, the partial characteristic fall like the case where it is set as the mixed polymer of polyamide 66 resin and polyamide 612 resin can be prevented.
<ポリアミド樹脂(B)>
 ポリアミド樹脂(B)を構成するジカルボン酸成分は、テレフタル酸を主成分とする。テレフタル酸以外のジカルボン酸成分としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸などの脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸;イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-フェニレンジオキシジ酢酸、1,3-フェニレンジオキシジ酢酸、ジフェン酸、ジ安息香酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸などの芳香族ジカルボン酸、あるいはこれらの任意の混合物を挙げることができる。これらのうち芳香族ジカルボン酸が好ましく使用される。さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
<Polyamide resin (B)>
The dicarboxylic acid component constituting the polyamide resin (B) is mainly composed of terephthalic acid. Examples of dicarboxylic acid components other than terephthalic acid include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3, 3 -Aliphatic dicarboxylic acids such as diethyl succinic acid, azelaic acid, sebacic acid, suberic acid; alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid; isophthalic acid, 2,6 -Naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, diphenic acid, dibenzoic acid, 4, 4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4 4'-dicarboxylic acid, aromatic dicarboxylic acids such as 4,4'-biphenyl dicarboxylic acid, or can be given any mixture thereof. Of these, aromatic dicarboxylic acids are preferably used. Furthermore, polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid can be used as long as melt molding is possible.
 ジカルボン酸成分に占めるテレフタル酸の割合は、ジカルボン酸成分全体に対して、60モル%以上であり、好ましくは75モル%以上、より好ましくは90モル%以上である。テレフタル酸成分が60モル%未満の場合には、得られるポリアミドの耐熱性、耐薬品性などの諸物性が低下するため好ましくない。 The proportion of terephthalic acid in the dicarboxylic acid component is 60 mol% or more, preferably 75 mol% or more, more preferably 90 mol% or more, based on the entire dicarboxylic acid component. When the terephthalic acid component is less than 60 mol%, various physical properties such as heat resistance and chemical resistance of the obtained polyamide are lowered, which is not preferable.
 また、上記ポリアミド樹脂(B)を構成するジアミン成分は、炭素数9からなる脂肪族ジアミンを主成分とする。そのようなジアミンとしては、直鎖状の1,9-ノナンジアミン、分岐状の2-メチル-1,8-オクタンジアミンが挙げられる。炭素数9からなる脂肪族ジアミン以外のジアミン成分としては、エチレンジアミン、プロピレンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミンなどの脂肪族ジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン;p-フェニレンジアミン、m-フェニレンジアミン、キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテルなどの芳香族ジアミン、あるいはこれらの任意の混合物を挙げることができる。 The diamine component constituting the polyamide resin (B) is mainly composed of an aliphatic diamine having 9 carbon atoms. Examples of such diamines include linear 1,9-nonanediamine and branched 2-methyl-1,8-octanediamine. Examples of diamine components other than aliphatic diamines having 9 carbon atoms include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,10-decanediamine, 1, 12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl- Aliphatic diamines such as 1,9-nonanediamine; cycloaliphatic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine; p-phenylenediamine, m-phenylenediamine, xylenediamine, 4,4′-diaminodiphenylmethane, 4, 4'-diaminodiphenylsulfone, 4,4'-di Aromatic diamines such as amino diphenyl ether, or can be given any mixture thereof.
 ジアミン成分の主成分としては特に1,9-ノナンジアミンが好ましい。ジアミン成分に占める1,9-ノナンジアミンの割合は、ジアミン成分全体に対して、60モル%以上であり、好ましくは75モル%以上、より好ましくは90モル%以上である。ジアミン成分の組成がこの範囲であれば、得られるポリアミドの耐熱性、成形性、耐薬品性、低吸水性、軽量性、力学特性のいずれにも優れるので好ましい。 As the main component of the diamine component, 1,9-nonanediamine is particularly preferable. The proportion of 1,9-nonanediamine in the diamine component is 60 mol% or more, preferably 75 mol% or more, more preferably 90 mol% or more, based on the entire diamine component. If the composition of the diamine component is within this range, it is preferable because the obtained polyamide is excellent in all of heat resistance, moldability, chemical resistance, low water absorption, light weight, and mechanical properties.
 上記ポリアミド樹脂(B)は、実質的にテレフタル酸および炭素数9からなる脂肪族ジアミンのみから構成することが好ましい。より好ましくは、実質的にテレフタル酸と1,9-ノナンジアミンのみから構成したポリアミド9T樹脂とする。 The polyamide resin (B) is preferably composed only of terephthalic acid and an aliphatic diamine composed of 9 carbon atoms. More preferably, it is a polyamide 9T resin substantially composed only of terephthalic acid and 1,9-nonanediamine.
 上記ポリアミド9T樹脂の極限粘度は、特に限定されないが、プーリの成形を容易にするためには、96質量%硫酸を溶媒とし、濃度1g/dL、25℃で測定される極限粘度が0.4~3.0とすることが好ましい。 The intrinsic viscosity of the polyamide 9T resin is not particularly limited. However, in order to facilitate the formation of the pulley, the intrinsic viscosity measured at a concentration of 1 g / dL and 25 ° C. using 96% by mass sulfuric acid is 0.4. It is preferable to set it to -3.0.
 上記ポリアミド樹脂(B)は、その融点が300℃以上であることが好ましい。また、上限は特に限定されないが、成形加工性などを考慮して320~340℃程度とすることが好ましい。融点範囲としては、300~340℃が好ましく、300~330℃がより好ましく、300~320℃が特に好ましい。プーリ材料として一般に使用される他のポリアミド樹脂(例えば、ポリアミド66樹脂(同267℃))よりも融点が高く、耐熱性に優れるので、高温時の強度低下、寸法変化、クリープなどを抑制できる。なお、融点は、上述したように、示差走査熱量計(DSC)を用いて測定できる。 It is preferable that the polyamide resin (B) has a melting point of 300 ° C. or higher. The upper limit is not particularly limited, but is preferably about 320 to 340 ° C. in consideration of moldability and the like. The melting point range is preferably 300 to 340 ° C., more preferably 300 to 330 ° C., and particularly preferably 300 to 320 ° C. Since the melting point is higher than other polyamide resins generally used as pulley materials (for example, polyamide 66 resin (267 ° C.)) and heat resistance is excellent, it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures. The melting point can be measured using a differential scanning calorimeter (DSC) as described above.
 上記ポリアミド樹脂(B)は、そのガラス転移温度が120℃以上であることが好ましい。より好ましくは125℃以上である。プーリ材料として一般に使用される他のポリアミド樹脂(例えば、ポリアミド66樹脂(同49℃))よりも高いガラス転移温度であるので、高温時の強度低下、寸法変化、クリープなどを抑制できる。なお、ガラス転移温度は、上述したように、示差走査熱量計(DSC)を用いて測定できる。 It is preferable that the polyamide resin (B) has a glass transition temperature of 120 ° C. or higher. More preferably, it is 125 ° C. or higher. Since the glass transition temperature is higher than that of other polyamide resins (for example, polyamide 66 resin (49 ° C.)) generally used as a pulley material, it is possible to suppress a decrease in strength, dimensional change, creep, and the like at high temperatures. The glass transition temperature can be measured using a differential scanning calorimeter (DSC) as described above.
 本発明で用いるポリアミド樹脂(A)、(B)において、ジカルボン酸成分またはジアミン成分として、植物由来の原料を用いてもよい。例えば、ポリアミド樹脂(A)の場合、ひまし油を出発原料とした1,10-デカンジアミンを使用できる。また、ポリアミド樹脂(B)の場合、1,9-ノナンジアミンおよび/または2-メチル-1,8-オクタンジアミンの出発原料となるブタジエンを植物由来の原料を用いて製造し、このブタジエンを用いて水和2量化反応を経て植物由来のジアミンを製造することができる。植物由来のブタジエンの製造方法としては、バイオマス由来のエタノールを2分子接触的に脱水縮合させる方法が挙げられる。このように植物のようなバイオマス由来原料を採用することで、プーリの焼却処分に伴う二酸化炭素の実質的な排出量を、バイオマス由来原料を用いない場合よりも低減できる。ここで、バイオマス由来原料を用いた植物性プラスチックであるかどうかは、樹脂を構成している炭素について、放射性同位元素である14Cの濃度を測定することで判別できる。14Cの半減期は5730年であることから、1千万年以上の歳月を経て生成されるとされる化石資源由来の炭素には 14Cが全く含まれない。このことから樹脂中に 14Cが含まれていれば、少なくともバイオマス由来の原料を用いていると判断できる。 In the polyamide resins (A) and (B) used in the present invention, plant-derived raw materials may be used as the dicarboxylic acid component or the diamine component. For example, in the case of the polyamide resin (A), 1,10-decanediamine using castor oil as a starting material can be used. In the case of the polyamide resin (B), butadiene as a starting material for 1,9-nonanediamine and / or 2-methyl-1,8-octanediamine is produced using a plant-derived material, and this butadiene is used. A plant-derived diamine can be produced through a hydration and dimerization reaction. Examples of the method for producing plant-derived butadiene include a method in which biomass-derived ethanol is dehydrated and condensed in a bimolecular contact manner. Thus, by adopting a biomass-derived raw material such as a plant, the substantial emission amount of carbon dioxide accompanying the incineration of pulleys can be reduced as compared with the case where no biomass-derived raw material is used. Here, whether or not it is a plant plastic using a biomass-derived raw material can be determined by measuring the concentration of 14 C, which is a radioisotope, with respect to the carbon constituting the resin. Since the half-life of 14 C is 5730 years, carbon derived from fossil resources, which is supposed to be produced after more than 10 million years, does not contain 14 C at all. From this, if 14 C is contained in the resin, it can be determined that at least a raw material derived from biomass is used.
 ベース樹脂とする上記ポリアミド樹脂(A)、(B)に配合する繊維状補強材としては、ガラス繊維または炭素繊維を用いる。ガラス繊維は、SiO、B、Al、CaO、MgO、NaO、KO、Feなどを主成分とする無機ガラスから紡糸して得られる。一般に、無アルカリガラス(Eガラス)、含アルカリガラス(Cガラス、Aガラス)などを使用できる。上記ポリアミド樹脂(A)、(B)への影響を考慮すれば無アルカリガラスが好ましい。無アルカリガラスは、組成物中にアルカリ成分をほとんど含んでいないホウケイ酸ガラスである。アルカリ成分がほとんど入っていないので、ポリアミド樹脂への影響がほとんどなく樹脂組成物の特性が変化しない。また、炭素繊維は、ポリアクリロニトリル系(PAN系)、ピッチ系、レーヨン系、リグニン-ポバール系混合物など原料の種類によらないで使用できる。なお、これら繊維状補強材は、ポリアミド樹脂との接着性を向上できるため、エポキシ系、アミノ系などのシランカップリング剤を用いて表面処理されていることが好ましい。 Glass fibers or carbon fibers are used as the fibrous reinforcing material to be blended with the polyamide resins (A) and (B) used as the base resin. The glass fiber is obtained by spinning from inorganic glass containing SiO 2 , B 2 O 3 , Al 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Fe 2 O 3 or the like as a main component. Generally, alkali-free glass (E glass), alkali-containing glass (C glass, A glass) or the like can be used. In consideration of the influence on the polyamide resins (A) and (B), alkali-free glass is preferable. The alkali-free glass is a borosilicate glass that contains almost no alkali component in the composition. Since the alkali component is hardly contained, there is almost no influence on the polyamide resin, and the properties of the resin composition do not change. Carbon fiber can be used regardless of the type of raw material such as polyacrylonitrile (PAN), pitch, rayon, and lignin-poval mixture. In addition, since these fibrous reinforcing materials can improve adhesiveness with a polyamide resin, it is preferable that the surface treatment is carried out using silane coupling agents, such as an epoxy type and an amino type.
 上記繊維状補強材は、ガラス繊維および炭素繊維から選ばれる少なくとも1つを該組成物全体に対して10~50質量%含むように配合する。好ましくは、いずれか一方のみを配合する。繊維状補強材としてガラス繊維のみを用いる場合、その配合量は、樹脂組成物全体に対して10~50質量%とすることが好ましく、20~50質量%がより好ましく、20~35質量%がさらに好ましい。ガラス繊維の配合量が10質量%未満である場合、補強効果が少なく、50質量%をこえる場合は、射出成形に適した流動性が得られないおそれがある。 The fibrous reinforcing material is blended so as to contain 10 to 50% by mass of at least one selected from glass fibers and carbon fibers with respect to the entire composition. Preferably, only one of them is blended. When only glass fibers are used as the fibrous reinforcing material, the blending amount is preferably 10 to 50% by mass, more preferably 20 to 50% by mass, and more preferably 20 to 35% by mass with respect to the entire resin composition. Further preferred. When the amount of glass fiber is less than 10% by mass, the reinforcing effect is small, and when it exceeds 50% by mass, fluidity suitable for injection molding may not be obtained.
 繊維状補強材として炭素繊維のみを用いる場合、その配合量は、樹脂組成物全体に対して10~40質量%とすることが好ましく、15~30質量%がより好ましい。炭素繊維の配合量が10質量%未満である場合、補強効果が少なく、40質量%をこえる場合は、射出成形に適した流動性が得られないおそれがある。 When only carbon fibers are used as the fibrous reinforcing material, the blending amount is preferably 10 to 40% by mass, more preferably 15 to 30% by mass with respect to the entire resin composition. When the amount of carbon fiber is less than 10% by mass, the reinforcing effect is small, and when it exceeds 40% by mass, fluidity suitable for injection molding may not be obtained.
 成形品のウェルド強度も考慮した場合、樹脂組成物全体に対して、ガラス繊維であれば20~30質量%が最も好ましく、また、炭素繊維であれば15~20質量%が最も好ましい。 In consideration of the weld strength of the molded product, the glass fiber is most preferably 20 to 30% by mass, and the carbon fiber is most preferably 15 to 20% by mass with respect to the entire resin composition.
 本発明における樹脂組成物には、プーリに必要とされる特性や射出成形性を損なわない範囲であれば、必要に応じて、上記繊維状補強材以外の添加剤を配合してもよい。他の添加剤として、例えば、固体潤滑剤、粒子状充填材(無機充填材)、酸化防止剤、帯電防止剤、離型材、着色剤などを配合できる。具体的には、ポリテトラフルオロエチレン樹脂、グラファイト、炭酸カルシウム、クレー、タルク、シリカ、ウェラストナイト、エラストマーなどを配合できる。 In the resin composition according to the present invention, additives other than the above-mentioned fibrous reinforcing material may be blended as necessary as long as the properties and injection moldability required for the pulley are not impaired. As other additives, for example, a solid lubricant, a particulate filler (inorganic filler), an antioxidant, an antistatic agent, a release agent, a colorant, and the like can be blended. Specifically, polytetrafluoroethylene resin, graphite, calcium carbonate, clay, talc, silica, welastonite, elastomer and the like can be blended.
 上記樹脂組成物を構成する各材料を、必要に応じて、ヘンシェルミキサー、ボールミキサー、リボンブレンダーなどにて混合した後、二軸混練押出し機などの溶融押出し機にて溶融混練し、成形用ペレットを得ることができる。なお、充填材の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。この成形用ペレットを用いて、上述のとおりインサート成形(射出成形)などによりプーリを転がり軸受の外輪と一体に成形する。射出成形時は、樹脂温度を上述のポリアミド樹脂(A)、(B)の融点以上とし、金型温度を該ポリアミド樹脂のガラス転移温度未満に保持して行なう。その他、プーリの使用温度が金型温度以上の場合、成形応力の緩和により寸法変化を起こすおそれがあるため、該使用温度以上でのアニール処理(熱処理)を施すことが好ましい。 Each material constituting the resin composition is mixed with a Henschel mixer, a ball mixer, a ribbon blender, or the like, if necessary, and then melt-kneaded with a melt extruder such as a twin-screw kneading extruder to form pellets for molding. Can be obtained. The filling material may be fed by side feed when melt-kneading with a twin screw extruder or the like. Using this molding pellet, the pulley is molded integrally with the outer ring of the rolling bearing by insert molding (injection molding) or the like as described above. At the time of injection molding, the resin temperature is set to be equal to or higher than the melting points of the polyamide resins (A) and (B) described above, and the mold temperature is maintained below the glass transition temperature of the polyamide resin. In addition, when the use temperature of the pulley is equal to or higher than the mold temperature, there is a possibility of causing a dimensional change due to relaxation of the molding stress. Therefore, it is preferable to perform an annealing treatment (heat treatment) at the use temperature or higher.
 本発明の樹脂プーリ付き軸受における樹脂製プーリは、上述のとおり、所定のポリアミド樹脂に所定量の繊維状補強材(ガラス繊維または炭素繊維)を配合してなるので、高温強度、吸水時強度、耐熱性、耐塩化カルシウム性に優れ、寸法変化やクリープを抑制できる。このため、高温時でもベルトを適切に案内でき、転がり軸受外輪と樹脂プーリとの固定部における剥がれやすべりを防止できる。 As described above, the resin pulley in the bearing with the resin pulley of the present invention is formed by blending a predetermined amount of fibrous reinforcing material (glass fiber or carbon fiber) with a predetermined polyamide resin. Excellent heat resistance and calcium chloride resistance, suppressing dimensional changes and creep. For this reason, the belt can be properly guided even at a high temperature, and peeling and slipping at the fixed portion between the rolling bearing outer ring and the resin pulley can be prevented.
 以下に実施例を挙げて本発明をさらに説明するが、本発明はこれにより何ら制限されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.
 実施例および比較例に用いる原材料を一括して以下に示す。
(1)樹脂材料
 ポリアミド10T樹脂:テレフタル酸と1,10-デカンジアミンを主原料に使用した樹脂(ユニチカ社製XecoT XN500)
 ポリアミド9T樹脂:テレフタル酸と1,9-ノナンジアミンを主原料に使用した樹脂(クラレ社製ジェネスタ N1000A)
 ポリアミド66樹脂:東レ社製アミランCM3001
 ポリアミド6樹脂:東レ社製アミランCM1001
 ポリアミド612樹脂:デュポン社製ザイテル151L
(2)繊維状補強材
 ガラス繊維:旭ファイバーグラス社製03JAFT692(平均繊維径10μm、平均繊維長3mm)
 炭素繊維:東邦テナックス社製HTA-C6(平均繊維径7μm、平均繊維長6mm)
The raw materials used in the examples and comparative examples are collectively shown below.
(1) Resin material Polyamide 10T resin: Resin using terephthalic acid and 1,10-decanediamine as main raw materials (XecoT XN500 manufactured by Unitika)
Polyamide 9T resin: Resin using terephthalic acid and 1,9-nonanediamine as main raw materials (Genare N1000A manufactured by Kuraray Co., Ltd.)
Polyamide 66 resin: Amilan CM3001 manufactured by Toray Industries, Inc.
Polyamide 6 resin: Amilan CM1001 manufactured by Toray Industries, Inc.
Polyamide 612 resin: DuPont Zytel 151L
(2) Fibrous reinforcing material Glass fiber: 03JAFT692 manufactured by Asahi Fiber Glass Co., Ltd. (average fiber diameter 10 μm, average fiber length 3 mm)
Carbon fiber: HTA-C6 manufactured by Toho Tenax Co., Ltd. (average fiber diameter 7 μm, average fiber length 6 mm)
実施例1~4、比較例1~3
 これらの原材料を表1に示す割合で配合した樹脂組成物を用いて、実施例と比較例の組成にて作製し、各種の試験を実施した。組成物の製造には二軸押出機を用いた。ガラス繊維、炭素繊維は折損を防止するために定量サイドフィーダーを用いて供給し、押し出して造粒した。得られた成形用ペレットを用い、インラインスクリュー式射出成形機にて各評価用のダンベル試験片等を成形した。
Examples 1 to 4 and Comparative Examples 1 to 3
Using the resin composition which mix | blended these raw materials in the ratio shown in Table 1, it produced with the composition of an Example and a comparative example, and performed various tests. A twin screw extruder was used for the production of the composition. In order to prevent breakage, glass fibers and carbon fibers were supplied using a fixed side feeder, extruded and granulated. Using the obtained pellets for molding, dumbbell test pieces and the like for each evaluation were molded with an in-line screw injection molding machine.
 上記樹脂組成物について、下記の(1)吸水率、(2)引張強度評価、(3)吸水引張強度評価、(4)高温引張強度評価、(5)耐塩化カルシウム性評価を行なった。それぞれの結果を表1に示す。 The above resin composition was subjected to the following (1) water absorption rate, (2) tensile strength evaluation, (3) water absorption tensile strength evaluation, (4) high temperature tensile strength evaluation, and (5) calcium chloride resistance evaluation. The results are shown in Table 1.
(1)吸水率は、ISO62(23℃で50%相対湿度)に準拠して測定した。
(2)引張強度評価は、ASTM D638に準拠して引張強度を測定した。
(3)吸水引張強さは、80℃で95%相対湿度の雰囲気で3時間吸水させた後、(2)と同様に引張強度を測定した。
(4)高温引張強度評価は、120℃雰囲気中で(2)と同様の引張強度を測定した。
(5)耐塩化カルシウム性評価は、ダンベル試験片を95℃の熱水に48時間浸漬して吸水させた後、塩化カルシウム5wt%水溶液に噴霧し、その後100℃で1時間乾燥する。これを1サイクルとして3サイクル繰り返し引張強度と外観を確認した。引張強度は、(2)と同様に測定し、塩化カルシウム噴霧前のものとの比較で引張強度の保持率として評価した。外観は、光学顕微鏡にて試験片の表面を観察し、表面あれやクラックが発生しているかを確認した。
(1) The water absorption was measured in accordance with ISO62 (50% relative humidity at 23 ° C.).
(2) Tensile strength evaluation measured tensile strength based on ASTM D638.
(3) The tensile strength of water absorption was measured in the same manner as (2) after absorbing water for 3 hours in an atmosphere of 95% relative humidity at 80 ° C.
(4) For the high temperature tensile strength evaluation, the same tensile strength as in (2) was measured in a 120 ° C. atmosphere.
(5) Calcium chloride resistance is evaluated by dipping a dumbbell test piece in hot water at 95 ° C. for 48 hours to absorb water, spraying it on a 5 wt% calcium chloride aqueous solution, and then drying at 100 ° C. for 1 hour. With this as one cycle, the tensile strength and appearance were confirmed repeatedly for 3 cycles. The tensile strength was measured in the same manner as in (2), and the tensile strength retention rate was evaluated by comparison with that before spraying calcium chloride. As for the appearance, the surface of the test piece was observed with an optical microscope to confirm whether surface cracks or cracks occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各実施例は、吸水後および高温時においても引張強度に優れ、また、耐塩化カルシウム性にも優れていた。一方、他のポリアミド樹脂を用いた各比較例は、吸水後の引張強度や耐塩化カルシウム性に劣る結果となった。 As shown in Table 1, each example was excellent in tensile strength after water absorption and at high temperature, and also excellent in calcium chloride resistance. On the other hand, each comparative example using other polyamide resins resulted in inferior tensile strength after water absorption and calcium chloride resistance.
 本発明の樹脂プーリ付き軸受は、耐摩耗性、高温時強度、吸水後強度、耐熱性、耐塩化カルシウム性に優れ、寸法変化やクリープを抑制できるので、自動車における補機駆動用ベルトを案内するプーリや、アイドラプーリ、テンションプーリとして好適に利用できる。 The bearing with a resin pulley of the present invention is excellent in wear resistance, strength at high temperature, strength after water absorption, heat resistance, calcium chloride resistance, and can suppress dimensional change and creep. It can be suitably used as a pulley, idler pulley or tension pulley.
  1 樹脂プーリ付き軸受
  2 プーリ
  3 内径円筒部
  4 外径円筒部
  5 円板部
  6 リブ
  7 ボス部
  8 外周部
  11 転がり軸受
  12 内輪
  13 外輪
  14 転動体
  15 保持器
  16 シール部材
  17 グリース
DESCRIPTION OF SYMBOLS 1 Bearing with resin pulley 2 Pulley 3 Inner diameter cylindrical part 4 Outer diameter cylindrical part 5 Disc part 6 Rib 7 Boss part 8 Outer peripheral part 11 Rolling bearing 12 Inner ring 13 Outer ring 14 Rolling element 15 Cage 16 Seal member 17 Grease

Claims (6)

  1.  内輪、外輪、および、前記内輪と前記外輪との間に介在する複数の転動体を有する転がり軸受と、前記外輪に固定された樹脂製のプーリとを備えてなる樹脂プーリ付き軸受であって、
     前記樹脂製のプーリが、テレフタル酸を主成分とするジカルボン酸成分と、1,10-デカンジアミンまたは炭素数9からなる脂肪族ジアミンを主成分とするジアミン成分とからなるポリアミド樹脂をベース樹脂とし、これに繊維状補強材を配合してなる樹脂組成物の射出成形体であり、
     前記樹脂組成物は、前記繊維状補強材としてガラス繊維および炭素繊維から選ばれる少なくとも1つを該組成物全体に対して10~50質量%含むことを特徴とする樹脂プーリ付き軸受。
    A bearing with a resin pulley comprising an inner ring, an outer ring, and a rolling bearing having a plurality of rolling elements interposed between the inner ring and the outer ring, and a resin pulley fixed to the outer ring,
    The resin-made pulley is based on a polyamide resin composed of a dicarboxylic acid component mainly composed of terephthalic acid and a diamine component mainly composed of 1,10-decanediamine or an aliphatic diamine having 9 carbon atoms. , An injection molded body of a resin composition obtained by blending a fibrous reinforcing material with this,
    A bearing with a resin pulley, wherein the resin composition contains at least one selected from glass fiber and carbon fiber as the fibrous reinforcing material in an amount of 10 to 50 mass% based on the entire composition.
  2.  前記ジアミン成分が、1,10-デカンジアミンを主成分とすることを特徴とする請求項1記載の樹脂プーリ付き軸受。 The bearing with a resin pulley according to claim 1, wherein the diamine component contains 1,10-decanediamine as a main component.
  3.  前記ジアミン成分が、炭素数9からなる脂肪族ジアミンを主成分とし、該脂肪族ジアミンは、1,9-ノナンジアミンおよび2-メチル-1,8-オクタンジアミンから選ばれる少なくとも1つの脂肪族ジアミンであることを特徴とする請求項1記載の樹脂プーリ付き軸受。 The diamine component is mainly composed of an aliphatic diamine having 9 carbon atoms, and the aliphatic diamine is at least one aliphatic diamine selected from 1,9-nonanediamine and 2-methyl-1,8-octanediamine. The bearing with a resin pulley according to claim 1, wherein the bearing has a resin pulley.
  4.  前記樹脂組成物は、前記繊維状補強材として、前記ガラス繊維を該組成物全体に対して10~50質量%含む、または、前記炭素繊維を該組成物全体に対して10~40質量%含むことを特徴とする請求項1記載の樹脂プーリ付き軸受。 The resin composition contains, as the fibrous reinforcing material, the glass fiber in an amount of 10 to 50% by mass relative to the entire composition, or the carbon fiber in an amount of 10 to 40% by mass with respect to the entire composition. The bearing with a resin pulley according to claim 1.
  5.  前記ポリアミド樹脂のガラス転移温度が120℃以上であることを特徴とする請求項1記載の樹脂プーリ付き軸受。 2. The bearing with a resin pulley according to claim 1, wherein the polyamide resin has a glass transition temperature of 120 ° C. or higher.
  6.  前記ポリアミド樹脂が、放射性同位元素である炭素14を含むことを特徴とする請求項1記載の樹脂プーリ付き軸受。 The bearing with resin pulley according to claim 1, wherein the polyamide resin contains carbon 14 which is a radioisotope.
PCT/JP2018/012093 2017-03-30 2018-03-26 Bearing with resin pulley WO2018181152A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-068850 2017-03-30
JP2017-068820 2017-03-30
JP2017068850A JP2018169024A (en) 2017-03-30 2017-03-30 Bearing with resin pulley
JP2017068820A JP2018169021A (en) 2017-03-30 2017-03-30 Bearing with resin pulley

Publications (1)

Publication Number Publication Date
WO2018181152A1 true WO2018181152A1 (en) 2018-10-04

Family

ID=63677052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012093 WO2018181152A1 (en) 2017-03-30 2018-03-26 Bearing with resin pulley

Country Status (1)

Country Link
WO (1) WO2018181152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130639B2 (en) 2019-12-20 2021-09-28 Abb Schweiz Ag Modular pulley for continuous belt conveyor system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303303A (en) * 2007-06-07 2008-12-18 Nsk Ltd Method for modifying plastic molded article, and plastic molded article
JP2012041433A (en) * 2010-08-18 2012-03-01 Nsk Ltd Polymer material molded product and mechanical component
JP2017056691A (en) * 2015-09-18 2017-03-23 大日本印刷株式会社 Laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303303A (en) * 2007-06-07 2008-12-18 Nsk Ltd Method for modifying plastic molded article, and plastic molded article
JP2012041433A (en) * 2010-08-18 2012-03-01 Nsk Ltd Polymer material molded product and mechanical component
JP2017056691A (en) * 2015-09-18 2017-03-23 大日本印刷株式会社 Laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130639B2 (en) 2019-12-20 2021-09-28 Abb Schweiz Ag Modular pulley for continuous belt conveyor system

Similar Documents

Publication Publication Date Title
CN107107410B (en) Retainer for rolling bearing and rolling bearing
JP5640975B2 (en) Polyamide resin
JP5718616B2 (en) Polyamide resin composition, molded article and method of use thereof
KR20130140541A (en) Polyamide resin composition
JP6406476B1 (en) Polyester elastomer resin composition with improved mold contamination
TWI804479B (en) Polyamide resin composition, molding and method for producing polyamide resin pellets
CN111670221B (en) Polyamide molding compounds with high heat resistance
KR20140031165A (en) Molded polyamide resin article
JP2002106572A (en) Rolling bearing
WO2018181152A1 (en) Bearing with resin pulley
JP2018169021A (en) Bearing with resin pulley
JP2006176597A (en) Polyamide resin composition
JP2021152394A (en) Rolling bearing
JP7022673B2 (en) Resin pulley
JP6517055B2 (en) Thrust washer
CA2056976A1 (en) Aromatic polyamide resin composition
WO2017159418A1 (en) Polyamide resin composition and molded article
JP2018169024A (en) Bearing with resin pulley
JP6620893B2 (en) Polyester elastomer resin composition
JP6697235B2 (en) Rolling bearing
JP5685929B2 (en) Resin parts with excellent hydrocarbon refrigerant barrier properties
JP5510279B2 (en) Packaging material with excellent aromatic hydrocarbon barrier properties
JP2020056417A (en) Holder for rolling bearing and rolling bearing
JP2019074097A (en) Holder for cylindrical roller bearing, and cylindrical roller bearing
JP2019052706A (en) Cage for conical roller bearing and conical roller bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777054

Country of ref document: EP

Kind code of ref document: A1