WO2018180704A1 - Addition-curable silicone composition - Google Patents

Addition-curable silicone composition Download PDF

Info

Publication number
WO2018180704A1
WO2018180704A1 PCT/JP2018/010799 JP2018010799W WO2018180704A1 WO 2018180704 A1 WO2018180704 A1 WO 2018180704A1 JP 2018010799 W JP2018010799 W JP 2018010799W WO 2018180704 A1 WO2018180704 A1 WO 2018180704A1
Authority
WO
WIPO (PCT)
Prior art keywords
addition
group
silicone composition
curable silicone
component
Prior art date
Application number
PCT/JP2018/010799
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 北沢
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201880019262.9A priority Critical patent/CN110431189B/en
Priority to EP18775954.3A priority patent/EP3604449B1/en
Priority to KR1020197031170A priority patent/KR102536773B1/en
Priority to JP2019509347A priority patent/JP6822551B2/en
Priority to US16/498,222 priority patent/US11028234B2/en
Publication of WO2018180704A1 publication Critical patent/WO2018180704A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00

Definitions

  • the present invention relates to an addition-curable silicone composition. Specifically, the present invention relates to an addition-curable silicone composition that is excellent in long-term storage stability at room temperature but can be quickly cured when heated.
  • Addition-curable silicone composition cures to form silicone gel, silicone rubber, hard coat film, etc. with excellent electrical properties, cold resistance, heat resistance and chemical stability. Widely used as a sealant, filler or coating agent, optical semiconductor insulation coating protective agent and the like. Further, by blending various inorganic fillers, it is possible to increase the strength of the composition or to impart heat resistance. Furthermore, it is also used as a heat dissipation material or a conductive material for electronic components such as semiconductor elements and LED substrates.
  • Addition-curable silicone compositions are generally divided into a one-part type in which all raw materials are premixed, and a two-part type in which a composition containing a curing catalyst and a composition containing a crosslinking agent are stored separately and mixed before use. Broadly divided.
  • One-component addition-curable silicone compositions generally have poor long-term storage at room temperature, and product management may be difficult because freezing or refrigeration storage is essential.
  • an addition curing reaction control agent such as acetylene alcohol is blended (Patent Document 1: JP-A-4-46962, etc.) ).
  • an addition curing reaction control agent improves the storage stability at room temperature, while the presence of the addition curing reaction control agent has a problem of lowering heat curing properties. Such trouble may occur. For example, when a hydroxyl group supply source such as alcohol or water is blended in the composition to obtain a foam in a heating line, a foam with a small amount of dehydrogenation at the beginning of the reaction is the core, and a good foam is obtained. However, the addition curing reaction control agent also suppresses the initial foaming, and a good foam cannot be obtained.
  • a hydroxyl group supply source such as alcohol or water
  • the two-component addition curable silicone composition is excellent in long-term storage stability at room temperature because the composition containing the curing catalyst and the composition containing the crosslinking agent are separated.
  • the introduction of the device may become a bottleneck.
  • the same handling as that of the above-mentioned one-liquid addition-curable silicone composition is required. Therefore, when left for a certain period of time, problems such as curing in the line are caused.
  • the present invention has been made in view of the above circumstances, and is an addition-curable type that is excellent in long-term storage at room temperature and can maintain rapid heat-curing properties without containing an addition-curing reaction control agent.
  • An object is to provide a silicone composition.
  • the present inventor contains a hydrosilylation catalyst such as an organopolysiloxane having an aliphatic unsaturated hydrocarbon group, an organohydrogenpolysiloxane, and a platinum group metal catalyst.
  • a hydrosilylation catalyst such as an organopolysiloxane having an aliphatic unsaturated hydrocarbon group, an organohydrogenpolysiloxane, and a platinum group metal catalyst.
  • an organic compound or polymer compound containing a platinum group metal catalyst is used as a core material, and a three-dimensional crosslinked polymer compound obtained by polymerizing at least one polyfunctional monomer is used as a wall material.
  • the present invention provides the following addition-curable silicone composition. [1].
  • (B) Organohydrogenpolysiloxane having hydrogen atoms ( Si—H groups) bonded to two or more silicon atoms in one molecule: the total number of aliphatic unsaturated hydrocarbon groups in component (A) An amount of Si—H group to the amount of 0.5 to 5 and (C) an organic compound or polymer compound containing a platinum group metal catalyst as a core substance, and at least one polyfunctional monomer is polymerized.
  • the organic compound or polymer compound having a microcapsule structure using the three-dimensional crosslinked polymer compound as a wall material and containing the platinum group metal catalyst has a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s.
  • Hydrosilylation catalyst fine particles An addition-curable silicone composition containing an effective amount. [2].
  • component (D) at least one inorganic filler selected from the group consisting of metals, metal oxides, metal hydroxides, metal nitrides, metal carbides and carbon allotropes is added to 100 parts by mass of component (A).
  • the addition-curable silicone composition according to any one of [1] to [4], containing 0.1 to 5,000 parts by mass.
  • the addition-curable silicone composition of the present invention is excellent in long-term storage stability at room temperature without using an addition-curing reaction control agent by using hydrosilylation catalyst fine particles having a specific microcapsule structure, and can be heated quickly. It is possible to maintain curability.
  • the component (A) has at least 2, preferably 2 to 100, particularly preferably 2 to 50, aliphatic unsaturated hydrocarbon groups per molecule, and a kinematic viscosity at 25 ° C. of 60 to 100 , 000 mm 2 / s organopolysiloxane.
  • the aliphatic unsaturated hydrocarbon group bonded to the silicon atom is a monovalent hydrocarbon group having an aliphatic unsaturated bond, preferably having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and more preferably.
  • An alkenyl group is a monovalent hydrocarbon group having an aliphatic unsaturated bond, preferably having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and more preferably.
  • alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, and octenyl group.
  • a vinyl group is particularly preferable.
  • the aliphatic unsaturated hydrocarbon group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, or may be bonded to both.
  • the organic group other than the aliphatic unsaturated hydrocarbon group bonded to the silicon atom of the organopolysiloxane is an unsubstituted group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms. Or a substituted monovalent hydrocarbon group is mentioned. Specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, etc.
  • An alkyl group an aryl group such as a phenyl group, a tolyl group, a xylyl group, and a naphthyl group; an aralkyl group such as a benzyl group, a phenylethyl group, and a phenylpropyl group; Those substituted with a halogen atom such as chlorine, a cyano group, and the like, such as a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, and a cyanoethyl group. Of these, a methyl group is preferred.
  • the organopolysiloxane is a kinematic viscosity of 60 ⁇ 100,000mm 2 / s at 25 ° C., it is preferable in the 100 ⁇ 30,000mm 2 / s. If the kinematic viscosity is less than 60 mm 2 / s, the physical properties of the silicone composition may be reduced, and if it exceeds 100,000 mm 2 / s, the extensibility of the silicone composition may be poor. . In the present invention, the kinematic viscosity is a value at 25 ° C. measured by an Ubbelohde Ostwald viscometer.
  • the molecular structure of the organopolysiloxane is not particularly limited as long as it has the above properties, and examples thereof include linear, branched, partially branched, or linear structures having a cyclic structure. Among these, those having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups are preferred.
  • the organopolysiloxane having a linear structure may partially have a branched structure or a cyclic structure.
  • the organopolysiloxane of a component can be used individually by 1 type or in combination of 2 or more types.
  • Organohydrogenpolysiloxane is capable of forming a crosslinked structure by the addition reaction of Si-H groups in the molecule in the presence of the above-mentioned aliphatic unsaturated hydrocarbon group of component (A) and a platinum group metal catalyst. If it is.
  • Examples of the organic group bonded to the silicon atom of the organohydrogenpolysiloxane include monovalent hydrocarbon groups other than aliphatic unsaturated hydrocarbon groups.
  • Examples of such monovalent hydrocarbon groups include unsubstituted or substituted monovalent hydrocarbon groups having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms.
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and dodecyl group, aryl groups such as phenyl group; aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group, Those in which some or all of the hydrogen atoms in these groups are substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups, such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group, cyanoethyl group And an epoxy ring-containing organic group (glycidyl group or glycidyloxy group-substituted alkyl group) such as 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group, and the like.
  • halogen atoms such as fluorine, bromine and chlorine
  • the molecular structure of the organohydrogenpolysiloxane is not particularly limited as long as it has the above-mentioned properties, and examples thereof include linear, branched, cyclic, partially branched or linear linear structures. Of these, linear and cyclic are preferable.
  • the organohydrogenpolysiloxane preferably has a kinematic viscosity at 25 ° C. of 1.0 to 1,000 mm 2 / s, more preferably 10 to 100 mm 2 / s. If the kinematic viscosity is 1.0 mm 2 / s or more, the physical properties of the silicone composition do not deteriorate, and if it is 1,000 mm 2 / s or less, the extensibility of the silicone composition is poor. There is no fear.
  • the organohydrogenpolysiloxane can be used alone or in combination of two or more.
  • the amount of the organohydrogenpolysiloxane is such that the ratio of the number of Si—H groups to the total number of aliphatic unsaturated hydrocarbon groups in the component (A) is 0.5 to 5. 0.8 to 3 is preferable, and an amount of 1 to 2.5 is more preferable.
  • the amount of component (B) is less than the above lower limit, the addition reaction does not proceed sufficiently and crosslinking is insufficient. On the other hand, if it exceeds the upper limit, the cross-linked structure becomes non-uniform or the storage stability of the composition is remarkably deteriorated.
  • Component (C) is a microcapsule structure in which an organic compound or polymer compound containing a platinum group metal catalyst is used as a core material, and a three-dimensional crosslinked polymer compound obtained by polymerizing at least one polyfunctional monomer is used as a wall material. And hydrosilylation catalyst fine particles having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s of an organic compound or polymer compound containing the above platinum group metal catalyst, one kind alone or two kinds The above can be used in appropriate combination. Because of such a structure, when blended in an addition-curable silicone composition, it has excellent long-term storage stability at room temperature without containing a reaction control agent, so that rapid curability can be maintained. In order to obtain the above-mentioned effect more, it is preferable to have a structure that prevents the core substance in the microcapsule structure from diffusing into the composition or reduces its speed at room temperature.
  • the platinum group metal catalyst a conventionally known catalyst used for the addition reaction can be used.
  • the catalyst include platinum-based, palladium-based, rhodium-based, ruthenium-based, osmium-based, and iridium-based catalysts, among which platinum or platinum compounds that are relatively easily available are preferable.
  • platinum compounds that are relatively easily available are preferable.
  • platinum alone platinum black, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like. These can be used alone or in appropriate combination of two or more.
  • the platinum group metal catalyst is preferably diluted with an organic compound or a polymer compound.
  • the organic compound include liquid paraffins, hydrocarbons such as various mineral oils, polyhydric alcohols such as ethylene glycol and glycerin, and cyclic siloxane compounds.
  • the polymer compound include hydrocarbon polymers such as polybutadiene, polyisoprene and polyisobutylene, dimethyl compounds such as dimethylpolysiloxane, various liquid organopolysiloxane compounds such as methyl-phenyl and fluoro compounds, polyethylene glycol, Examples thereof include polyethers such as polypropylene glycol, which can be used singly or in appropriate combination of two or more.
  • the kinematic viscosity at 25 ° C. of the organic compound or polymer compound containing the platinum group metal catalyst is 10 to 100,000 mm 2 / s, preferably 30 to 50,000 mm 2 / s, preferably 100 to 30, More preferably, it is 000 mm 2 / s. If the kinematic viscosity is less than 10 mm 2 / s, the core substance in the microcapsule structure may rapidly diffuse into the composition at room temperature, and the long-term storage stability may deteriorate. When the kinematic viscosity exceeds 100,000 mm 2 / s, the core material in the microcapsule structure is difficult to diffuse into the composition even when heated, and thus a partial curing reaction that lowers the curing rate is caused.
  • the kinematic viscosity at 25 ° C. of the organic compound or polymer compound containing the platinum group metal catalyst has the same value as the kinematic viscosity at 25 ° C. of the organic compound or polymer compound.
  • the kinematic viscosity is a value at 25 ° C. measured with an Ubbelohde Ostwald viscometer.
  • polyfunctional monomer that serves as a precursor of the three-dimensional cross-linked polymer compound that forms the wall material of the microcapsule structure conventionally known monomers can be used, but two or more polymerizable carbons in one molecule -It is preferably a polyfunctional monomer having a carbon double bond.
  • polyfunctional acrylate such as 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, di (trimethylolpropane) tetraacrylate, 1,4-butane
  • Difunctional methacrylates such as diol dimethacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, glycerol dimethacrylate, trimethylolpropane trimethacrylate, N, N'-methylenebis Acrylamide, N, N'-ethylenebisacrylamide, N, N '-(1,2-dihydroxyethylene) bisacrylamide
  • Polyfunctional acrylamide, polyfunctional methacrylamide such as N, N'-methylenebismethacrylamide, divinylbenzene, etc.,
  • polyfunctional acrylates and polyfunctional methacrylates that are relatively easily available and highly polymerizable are preferred.
  • these polyfunctional monomers can be used individually by 1 type or in combination of 2 or more types.
  • a (meth) acryl group means an acryl group and a methacryl group.
  • a method for producing hydrosilylation catalyst fine particles comprising an organic compound or polymer compound containing a platinum group metal catalyst as a core material and a three-dimensional crosslinked polymer compound as a wall material is not particularly limited, and a conventionally known method is adopted. Examples thereof include an interfacial polymerization method and an in-situ polymerization method.
  • the polymerization reaction can be accelerated by heating or ultraviolet irradiation, and a thermal polymerization initiator or a photopolymerization initiator may be used in combination.
  • a dispersion is prepared by dispersing a mixture of an organic compound or polymer compound containing a platinum group metal catalyst, a polyfunctional monomer, and a photopolymerization initiator in a dispersion medium.
  • diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, 2-hydroxy-2-phenylacetophenone, 2, Examples include 2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2- (dimethylamino) -4′-morpholinobutyrophenone.
  • the dispersion medium include water and a mixture obtained by adding a water-soluble organic solvent such as methanol or ethanol to water.
  • the dispersion medium may contain an arbitrary dispersant, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, polyoxyethylene alkyl ether, and polyvinyl alcohol.
  • the polyfunctional monomer is polymerized by irradiating the prepared dispersion with ultraviolet rays to produce a three-dimensional crosslinked polymer compound as a wall material, thereby obtaining hydrosilylation catalyst fine particles having a microcapsule structure.
  • the hydrosilylation catalyst fine particles having a microcapsule structure as the component (C) preferably have a platinum group metal catalyst in an amount of 0.01 to 10% by mass, more preferably 0.05 to 5% by mass.
  • the content is preferably 0.1 to 3% by mass.
  • the platinum atom content can be measured using ICP-OES (Agilent 730: manufactured by Agilent Technologies).
  • the content of the organic compound or polymer compound in the component hydrosilylation catalyst fine particles is preferably 1 to 80% by mass, more preferably 3 to 70% by mass, and 5 to 50% by mass. % Is more preferable.
  • the content of the three-dimensional crosslinked polymer compound obtained by polymerizing at least one polyfunctional monomer in the hydrosilylation catalyst fine particle as the component (C) is preferably 10 to 95% by mass, It is more preferably from 90 to 90% by mass, and further preferably from 30 to 80% by mass.
  • these content rates can be measured by differential thermothermal gravimetric simultaneous measurement (TG / DTA7200: manufactured by SII NanoTechnology Co., Ltd.).
  • the average particle size of the component (C) is preferably in the range of 0.01 to 1,000 ⁇ m, more preferably in the range of 0.05 to 500 ⁇ m, and still more preferably in the range of 0.1 to 100 ⁇ m. . If it is smaller than 0.01 ⁇ m, the hydrosilylation catalyst fine particles themselves tend to aggregate and there is a possibility that the dispersibility in the addition-curable silicone composition may be lowered. If it is larger than 1,000 ⁇ m, the addition-curable silicone composition is cured by heating. In some cases, the dispersibility of the platinum group metal catalyst is lowered, and it may be difficult to uniformly cure the composition.
  • an average particle diameter can be calculated
  • the component (C) hydrosilylation catalyst fine particles may be used singly or in combination of two or more.
  • the compounding amount of the component (C) may be an effective amount as a catalyst, that is, an effective amount necessary to accelerate the addition reaction and cure the addition-curable silicone composition of the present invention. In particular, it is preferably 0.1 to 500 ppm, more preferably 1 to 200 ppm, based on mass based on the component (A) in terms of a platinum group metal atom. If the amount of the catalyst is smaller than the lower limit, the effect as a catalyst may not be obtained. Further, even if the above upper limit is exceeded, the catalytic effect does not increase and is uneconomical.
  • the addition-curable silicone composition of the present invention can further contain an inorganic filler as the component (D).
  • the inorganic filler of component (D) is for imparting various properties such as thermal conductivity, heat resistance, reinforcement and conductivity to the addition-curable silicone composition of the present invention, and includes metals, metal oxides, A material composed of at least one material selected from the group consisting of metal hydroxides, metal nitrides, metal carbides, and carbon allotropes is preferable.
  • aluminum, alumina, zinc oxide or boron nitride aluminum, alumina, zinc oxide or boron nitride.
  • the use of lithium, cerium hydroxide, and iron oxide is preferable.
  • silicon dioxide such as hydrophobic fumed silica is preferred.
  • silver and copper is preferred. preferable.
  • the average particle size of the inorganic filler is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 40 ⁇ m or less because the resulting composition may be non-uniform if it is larger than 500 ⁇ m. Good. Moreover, it is preferable that it is 0.01 micrometer or more, especially 0.1 micrometer or more. In addition, an average particle diameter can be calculated
  • the blending amount of the component (D) is more than 5,000 parts by mass with respect to 100 parts by mass of the component (A), the viscosity may become high and handling may be difficult, and a uniform composition may not be obtained. Therefore, a range of 5,000 parts by mass or less is preferable, and a range of 2,000 parts by mass or less is more preferable. In addition, when mix
  • the addition-curable silicone composition of the present invention may contain a platinum group metal catalyst having no conventionally known microcapsule structure used for the addition reaction within a range not impairing the effects of the present invention.
  • the addition-curable silicone composition of the present invention does not need to contain an addition-curing reaction control agent, and can be made non-compounded.
  • an organo (poly) siloxane having no reactivity such as methylpolysiloxane may be contained in order to adjust the elastic modulus and viscosity of the composition.
  • a conventionally known antioxidant such as 2,6-di-tert-butyl-4-methylphenol may be contained as necessary.
  • an adhesion assistant, a surface treatment agent, a release agent, a dye, a pigment, a flame retardant, an anti-settling agent, a thixotropy improver, and the like can be blended as necessary.
  • the method for producing the addition-curable silicone composition of the present invention may be in accordance with a conventional method for producing an addition-curable silicone composition, and is not particularly limited.
  • the above components (A) to (C) and, if necessary, the component (D) and other components may be mixed with Awatori Nerita (registered trademark of Shinky Corporation), Trimix, Twin Mix, Planeta Registration of Lee mixer (all registered trademark of mixer manufactured by Inoue Seisakusho Co., Ltd.), Ultra mixer (registered trademark of mixer manufactured by Mizuho Kogyo Co., Ltd.), Hibis Disper Mix (mixer manufactured by Special Machine Industries Co., Ltd.) (Trademark) etc., or the method of mixing by the manual mixing using a spatula etc. is employable.
  • Awatori Nerita registered trademark of Shinky Corporation
  • Trimix Trimix
  • Twin Mix Planeta Registration of Lee mixer
  • Ultra mixer registered trademark of mixer manufactured by Mizuho Kogyo Co., Ltd.
  • Hibis Disper Mix mixtureer manufactured by Special Machine Industries Co., Ltd.
  • the addition-curable silicone composition of the present invention has a viscosity measured at 25 ° C. of not less than 0.1 Pa ⁇ s and less than 1,000 Pa ⁇ s, preferably 1 to 500 Pa ⁇ s, more preferably 5 to 300 Pa ⁇ s. .
  • the viscosity can be obtained by adjusting the mixing
  • the viscosity is a value of 25 ° C. measured with a spiral viscometer, for example, a Malcolm viscometer (rotor A: 10 rpm, displacement speed: 6 [1 / s]).
  • the addition-curable silicone composition of the present invention can be suitably used for a wide range of applications in the same manner as conventional general addition-curable silicone compositions, and does not contain an addition-curing reaction control agent at room temperature. This is particularly effective for the purpose of improving long-term storage.
  • the curing conditions for curing the addition-curable silicone composition of the present invention are not particularly limited, but the temperature is usually 25 to 200 ° C., preferably 60 to 180 ° C., more preferably 80 to 170 ° C., The time is usually 3 minutes to 24 hours, preferably 5 minutes to 12 hours, more preferably 10 minutes to 6 hours.
  • the properties of the addition-curable silicone composition after curing are not particularly limited, and examples thereof include gels, low-hardness rubbers, and high-hardness rubbers.
  • kinematic viscosity shows the value of 25 degreeC by an Ubbelohde type Ostwald viscometer.
  • A-1 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 590 mm 2 / s
  • Component (B)] B-1 Organohydrogenpolysiloxane represented by the following formula (1) and having a kinematic viscosity at 25 ° C. of 12 mm 2 / s
  • Component (C) Hydrosilylation catalyst fine particles obtained in Synthesis Example 1 below
  • Synthesis Example 1 Preparation of component C-1 In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyltetramethyldisiloxane 4.5 g of a solution in which the complex is dissolved in the same dimethylpolysiloxane (Kinematic viscosity at 25 ° C.
  • the platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.306% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured by 1 was 10.7 ⁇ m.
  • the platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.310% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in (1) was 10.0 ⁇ m.
  • C-6 Hydrosilylation catalyst fine particles obtained in Synthesis Example 6 below [Synthesis Example 6] Preparation of C-6 component In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyltetramethyldisiloxane 4.5 g of a solution in which the complex is dissolved in dimethylpolysiloxane (kinematic viscosity at 25 ° C.
  • C-10 Hydrosilylation catalyst fine particles obtained in Synthesis Example 10 (comparative product) below [Synthesis Example 10] Preparation of C-10 component In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyl 15.0 g of a solution (platinum atom content: 0.3% by mass as platinum atom) in which tetramethyldisiloxane complex is dissolved in toluene (kinematic viscosity at 25 ° C.
  • diphenyl (2, 4, 6-Trimethylbenzoyl) phosphine oxide (0.105 g) was added and shaken vigorously to prepare an O / O type emulsion.
  • a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup
  • the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm.
  • diphenyl (2, O-O type emulsion was prepared by adding 0.105 g of 4,6-trimethylbenzoyl) phosphine oxide and shaking vigorously. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion.
  • C-12 A solution in which a platinum-divinyltetramethyldisiloxane complex is dissolved in the same dimethylpolysiloxane as A-1 above (platinum atom content: 1% by mass as platinum atoms)
  • the components (A) and (D) were added to a plastic container, and mixed for 90 seconds at 2,000 rpm using Awatori Nertaro (Sinky Corp.). Next, the component (C) was added and mixed at 2,000 rpm for 30 seconds, and the component (B) was further added and mixed at 2,000 rpm for 30 seconds to prepare an addition-curable silicone composition. However, when blending the component (E), it was mixed for 30 seconds at 2,000 rpm in addition to the blending of the component (C). With respect to each composition obtained by the above method, the initial viscosity at 25 ° C. was measured with a Malcolm viscometer (type PC-1T), and the storage stability at room temperature and the thermosetting property were evaluated according to the following methods. The results are shown in Tables 1 and 2.
  • Comparative Examples 1 to 4 the time required for curing when stored at room temperature is very short. In other words, it is judged that the long-term storage at room temperature is poor. Further, although Comparative Example 5 was excellent in long-term storage at room temperature, a non-uniform cured product partially cured during heat curing was obtained. Further, in Comparative Example 6, since the component (B) was added and mixed, it was immediately cured, so it can be said that there is no preservation at room temperature. In Comparative Example 7 in which the addition curing reaction control agent was blended, the composition had a long t90 value at room temperature but a large t90 value and was inferior in heat curability.
  • the addition-curable silicone composition of the present invention is excellent in long-term storage at room temperature without containing an addition-curing reaction control agent by utilizing hydrosilylation catalyst fine particles having a specific microcapsule structure, It was confirmed that it was possible to maintain quick heat curability.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Catalysts (AREA)

Abstract

This addition-curable silicone composition contains (A) an organopolysiloxane having at least two unsaturated aliphatic hydrocarbon groups in each molecule, (B) an organohydrogenpolysiloxane in an amount that provides a value of 0.5-5 for the ratio of the number of SiH groups to the total number of unsaturated aliphatic hydrocarbon groups in the component (A), and (C) an effective amount of hydrosilylation catalyst microparticles that have a microcapsule structure containing a platinum-group metal catalyst-containing organic compound or polymer compound as a core material and a three-dimensional crosslinked polymer compound obtained by polymerizing at least one polyfunctional monomer as a wall material, the platinum-group metal catalyst-containing organic compound or polymer compound having a dynamic viscosity of 10-100,000 mm2/s at 25ºC.

Description

付加硬化型シリコーン組成物Addition-curing silicone composition
 本発明は、付加硬化型シリコーン組成物に関する。詳細には、室温下での長期保存性に優れるものの、加熱した場合には速やかに硬化させることが可能な付加硬化型シリコーン組成物に関する。 The present invention relates to an addition-curable silicone composition. Specifically, the present invention relates to an addition-curable silicone composition that is excellent in long-term storage stability at room temperature but can be quickly cured when heated.
 付加硬化型シリコーン組成物は硬化して、電気特性や耐寒性、耐熱性や化学的安定性に優れたシリコーンゲルやシリコーンゴム、ハードコート膜等を形成するので、電気・電子部品、半導体素子の封止剤、充填剤或いはコーティング剤、光半導体絶縁被覆保護剤等として広範に利用される。また各種無機充填剤を配合することで、組成物の強度を高めたり、耐熱性を付与することが可能である。さらには、半導体素子やLED基板等の電子部品の放熱材料や導電材料としても活用される。 Addition-curable silicone composition cures to form silicone gel, silicone rubber, hard coat film, etc. with excellent electrical properties, cold resistance, heat resistance and chemical stability. Widely used as a sealant, filler or coating agent, optical semiconductor insulation coating protective agent and the like. Further, by blending various inorganic fillers, it is possible to increase the strength of the composition or to impart heat resistance. Furthermore, it is also used as a heat dissipation material or a conductive material for electronic components such as semiconductor elements and LED substrates.
 付加硬化型シリコーン組成物は一般に、全ての原料が予め混合された1液型と、硬化触媒を含む組成物と架橋剤を含む組成物を分けて保存し、使用前に混合する2液型に大別される。1液付加硬化型シリコーン組成物は一般に、室温下での長期保存性に乏しく、冷凍もしくは冷蔵保存が必須であるため製品管理が困難となる場合がある。1液付加硬化型シリコーン組成物の室温下保存性を確保する手法としては例えば、アセチレンアルコール等の付加硬化反応制御剤を配合することが挙げられる(特許文献1:特開平4-46962号公報等)。しかしながら、付加硬化反応制御剤を活用することで、室温下保存性が向上する一方、付加硬化反応制御剤の存在は加熱硬化性を低下させるという問題があり、種々の用途に展開する場合に幾つかの不具合が生じることがある。例えば、組成物にアルコールあるいは水等のヒドロキシル基供給源を配合し、加熱ラインにおいて発泡体を得る場合、反応初期の少量の脱水素反応による発泡がその核となって良好な発泡体が得られることが知られているが、上記付加硬化反応制御剤がこの初期発泡をも抑制してしまい、良好な発泡体を得ることができない。また、ミラブルタイプの付加硬化材料として使用する場合、電線やチューブ等を成形するために高速で加硫を行うと、表面にタック(粘着感)が残り、平滑な表面を有する成形体が得られない等の問題が生じる。 Addition-curable silicone compositions are generally divided into a one-part type in which all raw materials are premixed, and a two-part type in which a composition containing a curing catalyst and a composition containing a crosslinking agent are stored separately and mixed before use. Broadly divided. One-component addition-curable silicone compositions generally have poor long-term storage at room temperature, and product management may be difficult because freezing or refrigeration storage is essential. As a method for ensuring the storage stability at room temperature of the one-component addition-curable silicone composition, for example, an addition curing reaction control agent such as acetylene alcohol is blended (Patent Document 1: JP-A-4-46962, etc.) ). However, the use of an addition curing reaction control agent improves the storage stability at room temperature, while the presence of the addition curing reaction control agent has a problem of lowering heat curing properties. Such trouble may occur. For example, when a hydroxyl group supply source such as alcohol or water is blended in the composition to obtain a foam in a heating line, a foam with a small amount of dehydrogenation at the beginning of the reaction is the core, and a good foam is obtained. However, the addition curing reaction control agent also suppresses the initial foaming, and a good foam cannot be obtained. In addition, when used as a millable type addition-curing material, if vulcanization is performed at high speed to form electric wires, tubes, etc., tack (adhesive feeling) remains on the surface, and a molded body having a smooth surface is obtained. Problems such as not occurring.
 また2液付加硬化型シリコーン組成物は、硬化触媒を含む組成物と架橋剤を含む組成物が分かれているため室温下での長期保存性に優れる一方で、2液を混合・吐出するための装置の導入がネックとなる場合がある。さらに2液を混合した後は先述の1液付加硬化型シリコーン組成物と同等の取扱いが要求されるため、一定時間放置した場合にはライン中で硬化してしまう等の問題を引き起こしてしまう。 In addition, the two-component addition curable silicone composition is excellent in long-term storage stability at room temperature because the composition containing the curing catalyst and the composition containing the crosslinking agent are separated. The introduction of the device may become a bottleneck. Further, after mixing the two liquids, the same handling as that of the above-mentioned one-liquid addition-curable silicone composition is required. Therefore, when left for a certain period of time, problems such as curing in the line are caused.
特開平4-46962号公報JP-A-4-46962
 上述した通り、1液・2液に関わらず付加硬化型シリコーン組成物において、「室温下での長期保存性に優れる」ことと「加熱した場合に速やかに硬化する」ことを両立することは非常に難しいことがわかる。
 本発明は上記事情を鑑みてなされたものであり、付加硬化反応制御剤を含有せずとも、室温下での長期保存性に優れ、速やかな加熱硬化性を維持することが可能な付加硬化型シリコーン組成物を提供することを目的とする。
As described above, it is extremely possible to achieve both “excellent long-term storage stability at room temperature” and “curing rapidly when heated” in addition-curable silicone compositions regardless of whether they are one-part or two-part. It is difficult to understand.
The present invention has been made in view of the above circumstances, and is an addition-curable type that is excellent in long-term storage at room temperature and can maintain rapid heat-curing properties without containing an addition-curing reaction control agent. An object is to provide a silicone composition.
 本発明者は、上記目的を達成するため鋭意検討を行った結果、脂肪族不飽和炭化水素基を有するオルガノポリシロキサン、オルガノハイドロジェンポリシロキサン、及び白金族金属触媒等のヒドロシリル化触媒を含有する付加硬化型シリコーン組成物において、白金族金属触媒を含有する有機化合物又は高分子化合物を芯物質とし、少なくとも1種の多官能性モノマーを重合してなる三次元架橋高分子化合物を壁物質としたマイクロカプセル構造を有し、かつ上記白金族金属触媒を含有する有機化合物又は高分子化合物の25℃での動粘度が10~100,000mm2/sであるヒドロシリル化触媒微粒子を用いることにより、上記課題を解決できることを知見し、本発明をなすに至ったものである。 As a result of intensive studies to achieve the above object, the present inventor contains a hydrosilylation catalyst such as an organopolysiloxane having an aliphatic unsaturated hydrocarbon group, an organohydrogenpolysiloxane, and a platinum group metal catalyst. In the addition-curable silicone composition, an organic compound or polymer compound containing a platinum group metal catalyst is used as a core material, and a three-dimensional crosslinked polymer compound obtained by polymerizing at least one polyfunctional monomer is used as a wall material. By using hydrosilylation catalyst fine particles having a microcapsule structure and having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s of the organic compound or polymer compound containing the platinum group metal catalyst, It has been found that the problem can be solved, and has led to the present invention.
 従って、本発明は下記付加硬化型シリコーン組成物を提供する。
[1].(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン、
(B)1分子中に2個以上のケイ素原子に結合した水素原子(=Si-H基)を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対するSi-H基の個数比が0.5~5となる量、及び
(C)白金族金属触媒を含む有機化合物又は高分子化合物を芯物質とし、少なくとも1種の多官能性モノマーを重合してなる三次元架橋高分子化合物を壁物質としたマイクロカプセル構造を有し、かつ上記白金族金属触媒を含む有機化合物又は高分子化合物の25℃での動粘度が10~100,000mm2/sであるヒドロシリル化触媒微粒子:有効量
を含有する付加硬化型シリコーン組成物。
[2].(C)成分の平均粒子径が0.01~1,000μmである[1]記載の付加硬化型シリコーン組成物。
[3].多官能性モノマーが、1分子中に2個以上の重合性炭素-炭素二重結合を有する多官能性モノマーである[1]又は[2]記載の付加硬化型シリコーン組成物。
[4].多官能性モノマーが、1分子中に2個以上の(メタ)アクリル基を有する多官能性モノマーである[3]記載の付加硬化型シリコーン組成物。
[5].さらに、(D)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物及び炭素の同素体からなる群より選ばれる少なくとも1種の無機充填剤を(A)成分100質量部に対して0.1~5,000質量部含有する[1]~[4]のいずれかに記載の付加硬化型シリコーン組成物。
Accordingly, the present invention provides the following addition-curable silicone composition.
[1]. (A) an organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and having a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s,
(B) Organohydrogenpolysiloxane having hydrogen atoms (= Si—H groups) bonded to two or more silicon atoms in one molecule: the total number of aliphatic unsaturated hydrocarbon groups in component (A) An amount of Si—H group to the amount of 0.5 to 5 and (C) an organic compound or polymer compound containing a platinum group metal catalyst as a core substance, and at least one polyfunctional monomer is polymerized. The organic compound or polymer compound having a microcapsule structure using the three-dimensional crosslinked polymer compound as a wall material and containing the platinum group metal catalyst has a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s. Hydrosilylation catalyst fine particles: An addition-curable silicone composition containing an effective amount.
[2]. The addition-curable silicone composition according to [1], wherein the component (C) has an average particle size of 0.01 to 1,000 μm.
[3]. The addition-curable silicone composition according to [1] or [2], wherein the polyfunctional monomer is a polyfunctional monomer having two or more polymerizable carbon-carbon double bonds in one molecule.
[4]. The addition-curable silicone composition according to [3], wherein the polyfunctional monomer is a polyfunctional monomer having two or more (meth) acryl groups in one molecule.
[5]. Further, (D) at least one inorganic filler selected from the group consisting of metals, metal oxides, metal hydroxides, metal nitrides, metal carbides and carbon allotropes is added to 100 parts by mass of component (A). The addition-curable silicone composition according to any one of [1] to [4], containing 0.1 to 5,000 parts by mass.
 本発明の付加硬化型シリコーン組成物は、特定のマイクロカプセル構造を有するヒドロシリル化触媒微粒子を用いることにより、付加硬化反応制御剤を含有せずとも室温下での長期保存性に優れ、速やかな加熱硬化性を維持することが可能である。 The addition-curable silicone composition of the present invention is excellent in long-term storage stability at room temperature without using an addition-curing reaction control agent by using hydrosilylation catalyst fine particles having a specific microcapsule structure, and can be heated quickly. It is possible to maintain curability.
 以下、本発明について詳細に説明する。
[(A)成分]
 (A)成分は、1分子中に少なくとも2個、好ましくは2~100個、特に好ましくは2~50個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sのオルガノポリシロキサンである。
 ケイ素原子に結合した脂肪族不飽和炭化水素基は、脂肪族不飽和結合を有する、好ましくは炭素数2~8、より好ましくは炭素数2~6の1価炭化水素基であり、さらに好ましくはアルケニル基である。具体的には、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等のアルケニル基が挙げられる。中でも、ビニル基が特に好ましい。脂肪族不飽和炭化水素基は、分子鎖末端のケイ素原子、分子鎖途中のケイ素原子のいずれに結合していてもよく、両者に結合していてもよい。
Hereinafter, the present invention will be described in detail.
[(A) component]
The component (A) has at least 2, preferably 2 to 100, particularly preferably 2 to 50, aliphatic unsaturated hydrocarbon groups per molecule, and a kinematic viscosity at 25 ° C. of 60 to 100 , 000 mm 2 / s organopolysiloxane.
The aliphatic unsaturated hydrocarbon group bonded to the silicon atom is a monovalent hydrocarbon group having an aliphatic unsaturated bond, preferably having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and more preferably. An alkenyl group. Specific examples include alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, and octenyl group. Among these, a vinyl group is particularly preferable. The aliphatic unsaturated hydrocarbon group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, or may be bonded to both.
 オルガノポリシロキサンのケイ素原子に結合する、脂肪族不飽和炭化水素基以外の有機基としては、炭素数1~18、好ましくは炭素数1~10、より好ましくは炭素数1~8の、非置換又は置換の1価炭化水素基が挙げられる。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。中でも、メチル基であるものが好ましい。 The organic group other than the aliphatic unsaturated hydrocarbon group bonded to the silicon atom of the organopolysiloxane is an unsubstituted group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms. Or a substituted monovalent hydrocarbon group is mentioned. Specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, etc. An alkyl group; an aryl group such as a phenyl group, a tolyl group, a xylyl group, and a naphthyl group; an aralkyl group such as a benzyl group, a phenylethyl group, and a phenylpropyl group; Those substituted with a halogen atom such as chlorine, a cyano group, and the like, such as a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, and a cyanoethyl group. Of these, a methyl group is preferred.
 オルガノポリシロキサンは、25℃での動粘度が60~100,000mm2/sであり、100~30,000mm2/sであるものが好ましい。動粘度が60mm2/s未満であると、シリコーン組成物の物理的特性が低下するおそれがあり、100,000mm2/sを超えると、シリコーン組成物の伸展性が乏しいものとなるおそれがある。本発明において、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である。 The organopolysiloxane is a kinematic viscosity of 60 ~ 100,000mm 2 / s at 25 ° C., it is preferable in the 100 ~ 30,000mm 2 / s. If the kinematic viscosity is less than 60 mm 2 / s, the physical properties of the silicone composition may be reduced, and if it exceeds 100,000 mm 2 / s, the extensibility of the silicone composition may be poor. . In the present invention, the kinematic viscosity is a value at 25 ° C. measured by an Ubbelohde Ostwald viscometer.
 オルガノポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状、分岐鎖状、一部分岐又は環状構造を有する直鎖状等が挙げられる。中でも、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するものが好ましい。この直鎖状構造を有するオルガノポリシロキサンは、部分的に分岐状構造、又は環状構造を有していてもよい。(A)成分のオルガノポリシロキサンは、1種を単独で又は2種以上を組み合わせて使用することができる。 The molecular structure of the organopolysiloxane is not particularly limited as long as it has the above properties, and examples thereof include linear, branched, partially branched, or linear structures having a cyclic structure. Among these, those having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups are preferred. The organopolysiloxane having a linear structure may partially have a branched structure or a cyclic structure. (A) The organopolysiloxane of a component can be used individually by 1 type or in combination of 2 or more types.
[(B)成分]
 (B)成分は、1分子中に2個以上、好ましくは3個以上、より好ましくは3~100個、さらに好ましくは3~20個ののケイ素原子に結合した水素原子(=Si-H基)を有するオルガノハイドロジェンポリシロキサンである。オルガノハイドロジェンポリシロキサンは、分子中のSi-H基が、上述した(A)成分が有する脂肪族不飽和炭化水素基と白金族金属触媒の存在下に付加反応し、架橋構造を形成できるものであればよい。
[Component (B)]
Component (B) is a hydrogen atom (= Si—H group) bonded to 2 or more, preferably 3 or more, more preferably 3 to 100, and still more preferably 3 to 20 silicon atoms in one molecule. Is an organohydrogenpolysiloxane. Organohydrogenpolysiloxane is capable of forming a crosslinked structure by the addition reaction of Si-H groups in the molecule in the presence of the above-mentioned aliphatic unsaturated hydrocarbon group of component (A) and a platinum group metal catalyst. If it is.
 オルガノハイドロジェンポリシロキサンのケイ素原子に結合した有機基としては、脂肪族不飽和炭化水素基以外の1価炭化水素基が挙げられる。このような1価炭化水素基としては、炭素数1~12、好ましくは炭素数1~10の、非置換又は置換の1価炭化水素基が挙げられる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基;2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等や、2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基等のエポキシ環含有有機基(グリシジル基又はグリシジルオキシ基置換アルキル基)等が挙げられる。 Examples of the organic group bonded to the silicon atom of the organohydrogenpolysiloxane include monovalent hydrocarbon groups other than aliphatic unsaturated hydrocarbon groups. Examples of such monovalent hydrocarbon groups include unsubstituted or substituted monovalent hydrocarbon groups having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms. Specifically, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and dodecyl group, aryl groups such as phenyl group; aralkyl groups such as 2-phenylethyl group and 2-phenylpropyl group, Those in which some or all of the hydrogen atoms in these groups are substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups, such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group, cyanoethyl group And an epoxy ring-containing organic group (glycidyl group or glycidyloxy group-substituted alkyl group) such as 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group, and the like.
 オルガノハイドロジェンポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状、分岐鎖状、環状、一部分岐又は環状構造を有する直鎖状等が挙げられる。中でも直鎖状、環状のものが好ましい。 The molecular structure of the organohydrogenpolysiloxane is not particularly limited as long as it has the above-mentioned properties, and examples thereof include linear, branched, cyclic, partially branched or linear linear structures. Of these, linear and cyclic are preferable.
 オルガノハイドロジェンポリシロキサンは、25℃の動粘度が1.0~1,000mm2/sのものが好ましく、10~100mm2/sであるものがより好ましい。動粘度が1.0mm2/s以上であれば、シリコーン組成物の物理的特性が低下するおそれがなく、1,000mm2/s以下であれば、シリコーン組成物の伸展性が乏しいものとなるおそれがない。オルガノハイドロジェンポリシロキサンは、1種単独で又は2種以上を適宜組み合わせて用いることができる。 The organohydrogenpolysiloxane preferably has a kinematic viscosity at 25 ° C. of 1.0 to 1,000 mm 2 / s, more preferably 10 to 100 mm 2 / s. If the kinematic viscosity is 1.0 mm 2 / s or more, the physical properties of the silicone composition do not deteriorate, and if it is 1,000 mm 2 / s or less, the extensibility of the silicone composition is poor. There is no fear. The organohydrogenpolysiloxane can be used alone or in combination of two or more.
 (B)オルガノハイドロジェンポリシロキサンの配合量は、(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対するSi-H基の個数比が0.5~5となる量であり、0.8~3が好ましく、1~2.5となる量がより好ましい。(B)成分の量が上記下限値未満では付加反応が十分に進行せず、架橋が不十分となる。また、上記上限値超では、架橋構造が不均一となったり、組成物の保存性が著しく悪化したりする。 (B) The amount of the organohydrogenpolysiloxane is such that the ratio of the number of Si—H groups to the total number of aliphatic unsaturated hydrocarbon groups in the component (A) is 0.5 to 5. 0.8 to 3 is preferable, and an amount of 1 to 2.5 is more preferable. When the amount of component (B) is less than the above lower limit, the addition reaction does not proceed sufficiently and crosslinking is insufficient. On the other hand, if it exceeds the upper limit, the cross-linked structure becomes non-uniform or the storage stability of the composition is remarkably deteriorated.
[(C)成分]
 (C)成分は、白金族金属触媒を含む有機化合物又は高分子化合物を芯物質とし、少なくとも1種の多官能性モノマーを重合してなる三次元架橋高分子化合物を壁物質としたマイクロカプセル構造を有し、かつ上記白金族金属触媒を含む有機化合物又は高分子化合物の25℃での動粘度が10~100,000mm2/sであるヒドロシリル化触媒微粒子であり、1種単独で又は2種以上を適宜組み合わせて用いることができる。このような構造のため、付加硬化型シリコーン組成物に配合した際、反応制御剤を含有せずとも室温下での長期保存性に優れるため、速やかな硬化性を維持することが可能である。先述の効果をより得るためには、室温下において、マイクロカプセル構造中の芯物質が組成物中へ拡散することを防ぐ、又はその速度を低下させる構造とすることが好ましい。
[Component (C)]
Component (C) is a microcapsule structure in which an organic compound or polymer compound containing a platinum group metal catalyst is used as a core material, and a three-dimensional crosslinked polymer compound obtained by polymerizing at least one polyfunctional monomer is used as a wall material. And hydrosilylation catalyst fine particles having a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s of an organic compound or polymer compound containing the above platinum group metal catalyst, one kind alone or two kinds The above can be used in appropriate combination. Because of such a structure, when blended in an addition-curable silicone composition, it has excellent long-term storage stability at room temperature without containing a reaction control agent, so that rapid curability can be maintained. In order to obtain the above-mentioned effect more, it is preferable to have a structure that prevents the core substance in the microcapsule structure from diffusing into the composition or reduces its speed at room temperature.
 白金族金属触媒としては、付加反応に用いられる従来公知のものを使用することができる。例えば、白金系、パラジウム系、ロジウム系、ルテニウム系、オスミウム系、イリジウム系等の触媒が挙げられるが、中でも比較的入手しやすい白金又は白金化合物が好ましい。例えば、白金の単体、白金黒、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。 As the platinum group metal catalyst, a conventionally known catalyst used for the addition reaction can be used. Examples of the catalyst include platinum-based, palladium-based, rhodium-based, ruthenium-based, osmium-based, and iridium-based catalysts, among which platinum or platinum compounds that are relatively easily available are preferable. Examples thereof include platinum alone, platinum black, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like. These can be used alone or in appropriate combination of two or more.
 白金族金属触媒は、有機化合物又は高分子化合物に希釈された状態であるのが好ましい。有機化合物としては、例えば、流動パラフィン類、各種鉱油等の炭化水素類、エチレングリコール、グリセリン等の多価アルコール類、環状シロキサン化合物等が挙げられる。高分子化合物としては、例えば、ポリブタジエン、ポリイソプレン、ポリイソブチレン等の炭化水素系高分子、ジメチルポリシロキサン等のジメチル系、メチル-フェニル系、フロロ系等の各種液状オルガノポリシロキサン化合物、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル類が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。 The platinum group metal catalyst is preferably diluted with an organic compound or a polymer compound. Examples of the organic compound include liquid paraffins, hydrocarbons such as various mineral oils, polyhydric alcohols such as ethylene glycol and glycerin, and cyclic siloxane compounds. Examples of the polymer compound include hydrocarbon polymers such as polybutadiene, polyisoprene and polyisobutylene, dimethyl compounds such as dimethylpolysiloxane, various liquid organopolysiloxane compounds such as methyl-phenyl and fluoro compounds, polyethylene glycol, Examples thereof include polyethers such as polypropylene glycol, which can be used singly or in appropriate combination of two or more.
 上記白金族金属触媒を含む有機化合物又は高分子化合物の25℃での動粘度は10~100,000mm2/sであり、30~50,000mm2/sであることが好ましく、100~30,000mm2/sであることがさらに好ましい。該動粘度が10mm2/s未満であると、室温下においてマイクロカプセル構造中の芯物質が組成物中へ迅速に拡散して長期保存性が悪化するおそれがある。また該動粘度が100,000mm2/sを超えると、加熱した場合においてもマイクロカプセル構造中の芯物質が組成物中へ拡散しづらくなるため、硬化速度が低下する、部分的な硬化反応を起こす等、硬化性の低下や不均一な硬化反応を招くおそれがある。白金族金属触媒を含む有機化合物又は高分子化合物の25℃での動粘度は、有機化合物又は高分子化合物の25℃での動粘度は同じ値である。なお、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である。 The kinematic viscosity at 25 ° C. of the organic compound or polymer compound containing the platinum group metal catalyst is 10 to 100,000 mm 2 / s, preferably 30 to 50,000 mm 2 / s, preferably 100 to 30, More preferably, it is 000 mm 2 / s. If the kinematic viscosity is less than 10 mm 2 / s, the core substance in the microcapsule structure may rapidly diffuse into the composition at room temperature, and the long-term storage stability may deteriorate. When the kinematic viscosity exceeds 100,000 mm 2 / s, the core material in the microcapsule structure is difficult to diffuse into the composition even when heated, and thus a partial curing reaction that lowers the curing rate is caused. This may cause a decrease in curability or an uneven curing reaction. The kinematic viscosity at 25 ° C. of the organic compound or polymer compound containing the platinum group metal catalyst has the same value as the kinematic viscosity at 25 ° C. of the organic compound or polymer compound. The kinematic viscosity is a value at 25 ° C. measured with an Ubbelohde Ostwald viscometer.
 マイクロカプセル構造の壁物質を形成する三次元架橋高分子化合物の前駆体となる多官能性モノマーとしては、従来公知のものを使用することができるが、1分子中に2個以上の重合性炭素-炭素二重結合を有する多官能性モノマーであることが好ましい。例えば、1,6-ヘキサンジオールジアクリレート、1,10-デカンジオールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ジ(トリメチロールプロパン)テトラアクリレート等の多官能アクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、グリセロールジメタクリレート、トリメチロールプロパントリメタクリレート等の多官能メタクリレート、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド、N,N’-(1,2-ジヒドロキシエチレン)ビスアクリルアミド等の多官能アクリルアミド、N,N’-メチレンビスメタクリルアミド等の多官能メタクリルアミド、ジビニルベンゼン等が挙げられるが、中でも1分子中に2個以上の(メタ)アクリル基を有する多官能性モノマーであることが好ましく、さらには比較的入手しやすく重合性の高い多官能アクリレート及び多官能メタクリレートが好ましい。なお、これら多官能性モノマーは、1種単独で又は2種以上を適宜組み合わせて用いることができる。なお、(メタ)アクリル基とは、アクリル基、メタクリル基をいう。 As the polyfunctional monomer that serves as a precursor of the three-dimensional cross-linked polymer compound that forms the wall material of the microcapsule structure, conventionally known monomers can be used, but two or more polymerizable carbons in one molecule -It is preferably a polyfunctional monomer having a carbon double bond. For example, polyfunctional acrylate such as 1,6-hexanediol diacrylate, 1,10-decanediol diacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, di (trimethylolpropane) tetraacrylate, 1,4-butane Difunctional methacrylates such as diol dimethacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, glycerol dimethacrylate, trimethylolpropane trimethacrylate, N, N'-methylenebis Acrylamide, N, N'-ethylenebisacrylamide, N, N '-(1,2-dihydroxyethylene) bisacrylamide Polyfunctional acrylamide, polyfunctional methacrylamide such as N, N'-methylenebismethacrylamide, divinylbenzene, etc., among others, polyfunctional monomers having two or more (meth) acryl groups in one molecule. In particular, polyfunctional acrylates and polyfunctional methacrylates that are relatively easily available and highly polymerizable are preferred. In addition, these polyfunctional monomers can be used individually by 1 type or in combination of 2 or more types. In addition, a (meth) acryl group means an acryl group and a methacryl group.
 芯物質である白金族金属触媒を含有する有機化合物又は高分子化合物と、壁物質である三次元架橋高分子化合物からなるヒドロシリル化触媒微粒子の製造方法は特に限定されず従来公知の方法を採用することができ、例えば、界面重合法やin-situ重合法等が挙げられ、重合反応は加熱や紫外線照射により加速することができ、熱重合開始剤や光重合開始剤を併用してもよい。 A method for producing hydrosilylation catalyst fine particles comprising an organic compound or polymer compound containing a platinum group metal catalyst as a core material and a three-dimensional crosslinked polymer compound as a wall material is not particularly limited, and a conventionally known method is adopted. Examples thereof include an interfacial polymerization method and an in-situ polymerization method. The polymerization reaction can be accelerated by heating or ultraviolet irradiation, and a thermal polymerization initiator or a photopolymerization initiator may be used in combination.
 本発明のヒドロシリル化触媒微粒子を製造する工程の一例を以下に述べる。
 はじめに、白金族金属触媒を含有する有機化合物又は高分子化合物、多官能性モノマー、光重合開始剤の混合物を分散媒中に分散させた分散液を調製する。ここで、光重合開始剤としては、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、2-ヒドロキシ-2-フェニルアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン等が例示できる。また、分散媒としては、水、水にメタノールやエタノールといった水溶性有機溶剤を添加した混合物等が挙げられる。分散媒は任意の分散剤を含有してもよく、例えば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸トリエタノールアミン、ポリオキシエチレンアルキルエーテル、ポリビニルアルコール等が挙げられる。
 続いて調製した分散液に紫外線を照射することで多官能性モノマーを重合し、壁物質となる三次元架橋高分子化合物を生成し、マイクロカプセル構造を有するヒドロシリル化触媒微粒子を得る。
An example of the process for producing the hydrosilylation catalyst fine particles of the present invention will be described below.
First, a dispersion is prepared by dispersing a mixture of an organic compound or polymer compound containing a platinum group metal catalyst, a polyfunctional monomer, and a photopolymerization initiator in a dispersion medium. Here, as the photopolymerization initiator, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, 2-hydroxy-2-phenylacetophenone, 2, Examples include 2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2- (dimethylamino) -4′-morpholinobutyrophenone. Examples of the dispersion medium include water and a mixture obtained by adding a water-soluble organic solvent such as methanol or ethanol to water. The dispersion medium may contain an arbitrary dispersant, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, polyoxyethylene alkyl ether, and polyvinyl alcohol.
Subsequently, the polyfunctional monomer is polymerized by irradiating the prepared dispersion with ultraviolet rays to produce a three-dimensional crosslinked polymer compound as a wall material, thereby obtaining hydrosilylation catalyst fine particles having a microcapsule structure.
 また、(C)成分のマイクロカプセル構造を有するヒドロシリル化触媒微粒子は、その構造中、白金族金属触媒を0.01~10質量%有することが好ましく、0.05~5質量%有することがより好ましく、0.1~3質量%有することがさらに好ましい。なお、上記白金原子含有量は、ICP-OES(Agilent730:アジレント・テクノロジー(株)製)を用いて測定することができる。 Further, the hydrosilylation catalyst fine particles having a microcapsule structure as the component (C) preferably have a platinum group metal catalyst in an amount of 0.01 to 10% by mass, more preferably 0.05 to 5% by mass. The content is preferably 0.1 to 3% by mass. The platinum atom content can be measured using ICP-OES (Agilent 730: manufactured by Agilent Technologies).
 なお、成分であるヒドロシリル化触媒微粒子中の上記有機化合物又は高分子化合物の含有割合は、1~80質量%であることが好ましく、3~70質量%であることがより好ましく、5~50質量%であることがさらに好ましい。 The content of the organic compound or polymer compound in the component hydrosilylation catalyst fine particles is preferably 1 to 80% by mass, more preferably 3 to 70% by mass, and 5 to 50% by mass. % Is more preferable.
 また、(C)成分であるヒドロシリル化触媒微粒子中の少なくとも1種の多官能性モノマーを重合してなる三次元架橋高分子化合物の含有割合は、10~95質量%であることが好ましく、20~90質量%であることがより好ましく、30~80質量%であることがさらに好ましい。 Further, the content of the three-dimensional crosslinked polymer compound obtained by polymerizing at least one polyfunctional monomer in the hydrosilylation catalyst fine particle as the component (C) is preferably 10 to 95% by mass, It is more preferably from 90 to 90% by mass, and further preferably from 30 to 80% by mass.
 なお、これらの含有割合は、示差熱熱重量同時測定(TG/DTA7200:エスアイアイ・ナノテクノロジー(株)製)により測定することができる。 In addition, these content rates can be measured by differential thermothermal gravimetric simultaneous measurement (TG / DTA7200: manufactured by SII NanoTechnology Co., Ltd.).
 (C)成分の平均粒子径は、0.01~1,000μmの範囲であることが好ましく、より好ましくは0.05~500μmの範囲であり、さらに好ましくは0.1~100μmの範囲である。0.01μmより小さいとヒドロシリル化触媒微粒子自身が凝集しやすく、付加硬化型シリコーン組成物への分散性が低下するおそれがあり、また1,000μmより大きいと付加硬化型シリコーン組成物を加熱硬化させる際に白金族金属触媒の分散性が低下し、組成物の一様な硬化が困難となる場合がある。なお平均粒子径は、例えば、レーザー光回折法による粒度分布測定における質量平均値(又はメジアン径)として求めることができる。 The average particle size of the component (C) is preferably in the range of 0.01 to 1,000 μm, more preferably in the range of 0.05 to 500 μm, and still more preferably in the range of 0.1 to 100 μm. . If it is smaller than 0.01 μm, the hydrosilylation catalyst fine particles themselves tend to aggregate and there is a possibility that the dispersibility in the addition-curable silicone composition may be lowered. If it is larger than 1,000 μm, the addition-curable silicone composition is cured by heating. In some cases, the dispersibility of the platinum group metal catalyst is lowered, and it may be difficult to uniformly cure the composition. In addition, an average particle diameter can be calculated | required as a mass average value (or median diameter) in the particle size distribution measurement by a laser beam diffraction method, for example.
 (C)成分のヒドロシリル化触媒微粒子は、1種単独でも2種以上を混合して使用してもよい。(C)成分の配合量は、触媒としての有効量、即ち、付加反応を促進して本発明の付加硬化型シリコーン組成物を硬化させるために必要な有効量であればよい。特には、(A)成分に対し、白金族金属原子に換算した質量基準で0.1~500ppmであることが好ましく、より好ましくは1~200ppmである。触媒の量が上記下限値より小さいと触媒としての効果が得られないおそれがある。また上記上限値を超えても触媒効果が増大することはなく不経済であるため好ましくない。 The component (C) hydrosilylation catalyst fine particles may be used singly or in combination of two or more. The compounding amount of the component (C) may be an effective amount as a catalyst, that is, an effective amount necessary to accelerate the addition reaction and cure the addition-curable silicone composition of the present invention. In particular, it is preferably 0.1 to 500 ppm, more preferably 1 to 200 ppm, based on mass based on the component (A) in terms of a platinum group metal atom. If the amount of the catalyst is smaller than the lower limit, the effect as a catalyst may not be obtained. Further, even if the above upper limit is exceeded, the catalytic effect does not increase and is uneconomical.
[(D)成分]
 本発明の付加硬化型シリコーン組成物は、さらに、(D)成分として無機充填剤を含むことができる。(D)成分の無機充填剤は、本発明の付加硬化型シリコーン組成物に熱伝導性や耐熱性、補強性や導電性といった種々特性を付与するためのものであり、金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物及び炭素の同素体からなる群より選ばれる少なくとも1種の材料からなるものが好ましく、例えば、アルミニウム、銀、銅、金属ケイ素、アルミナ、酸化亜鉛、酸化マグネシウム、二酸化ケイ素、酸化セリウム、酸化鉄、水酸化アルミニウム、水酸化セリウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ダイヤモンド、グラファイト、カーボンナノチューブ、グラフェン等が挙げられ、組成物に熱伝導性を付与するためにはアルミニウム、アルミナ、酸化亜鉛、窒化ホウ素の使用が好ましく、耐熱性を付与するためには酸化セリウム、水酸化セリウム、酸化鉄の使用が好ましく、補強性を付与するためには、疎水性フュームドシリカ等の二酸化ケイ素の使用が好ましく、導電性を付与するためには銀、銅の使用が好ましい。
[(D) component]
The addition-curable silicone composition of the present invention can further contain an inorganic filler as the component (D). The inorganic filler of component (D) is for imparting various properties such as thermal conductivity, heat resistance, reinforcement and conductivity to the addition-curable silicone composition of the present invention, and includes metals, metal oxides, A material composed of at least one material selected from the group consisting of metal hydroxides, metal nitrides, metal carbides, and carbon allotropes is preferable. For example, aluminum, silver, copper, metal silicon, alumina, zinc oxide, magnesium oxide , Silicon dioxide, cerium oxide, iron oxide, aluminum hydroxide, cerium hydroxide, aluminum nitride, boron nitride, silicon carbide, diamond, graphite, carbon nanotube, graphene, etc., to impart thermal conductivity to the composition It is preferable to use aluminum, alumina, zinc oxide or boron nitride. The use of lithium, cerium hydroxide, and iron oxide is preferable. In order to impart reinforcement, the use of silicon dioxide such as hydrophobic fumed silica is preferred. In order to impart conductivity, the use of silver and copper is preferred. preferable.
 無機充填剤の平均粒子径は、500μmより大きいと得られる組成物が不均一となるおそれがあるため、500μm以下の範囲が好ましく、より好ましくは100μm以下の範囲、さらに好ましくは40μm以下の範囲がよい。また、0.01μm以上、特に0.1μm以上であることが好ましい。なお、平均粒子径は、例えば、レーザー光回折法による粒度分布測定における質量平均値(又はメジアン径)として求めることができる。また、無機充填剤の形状は、球状、不定形状、針状、板状等、特に限定されるものではない。 The average particle size of the inorganic filler is preferably 500 μm or less, more preferably 100 μm or less, and even more preferably 40 μm or less because the resulting composition may be non-uniform if it is larger than 500 μm. Good. Moreover, it is preferable that it is 0.01 micrometer or more, especially 0.1 micrometer or more. In addition, an average particle diameter can be calculated | required as a mass average value (or median diameter) in the particle size distribution measurement by a laser beam diffraction method, for example. Further, the shape of the inorganic filler is not particularly limited, such as a spherical shape, an indefinite shape, a needle shape, a plate shape and the like.
 (D)成分の配合量は、(A)成分100質量部に対し、5,000質量部より多いと高粘度となって取り扱い性に困難が生じることがあり、また均一な組成物とならない場合もあるため、5,000質量部以下の範囲が好ましく、2,000質量部以下の範囲がより好ましい。なお、配合する場合は、0.1質量部以上が好ましく、1質量部以上がより好ましい。 When the blending amount of the component (D) is more than 5,000 parts by mass with respect to 100 parts by mass of the component (A), the viscosity may become high and handling may be difficult, and a uniform composition may not be obtained. Therefore, a range of 5,000 parts by mass or less is preferable, and a range of 2,000 parts by mass or less is more preferable. In addition, when mix | blending, 0.1 mass part or more is preferable, and 1 mass part or more is more preferable.
[その他の成分]
 本発明の付加硬化型シリコーン組成物は、本発明の効果を損なわない範囲で、付加反応に用いられる従来公知のマイクロカプセル構造を有さない白金族金属触媒を含有してもよい。本発明の付加硬化型シリコーン組成物は付加硬化反応制御剤を配合しなくてもよく、無配合にすることもできる。さらに、組成物の弾性率や粘度を調整するためにメチルポリシロキサン等の反応性を有さないオルガノ(ポリ)シロキサンを含有してもよい。さらに、付加硬化型シリコーン組成物の劣化を防ぐために、2,6-ジ-tert-ブチル-4-メチルフェノール等の、従来公知の酸化防止剤を必要に応じて含有してもよい。さらに、接着助剤、表面処理剤、離型剤、染料、顔料、難燃剤、沈降防止剤、チクソ性向上剤等を、必要に応じて配合することができる。
[Other ingredients]
The addition-curable silicone composition of the present invention may contain a platinum group metal catalyst having no conventionally known microcapsule structure used for the addition reaction within a range not impairing the effects of the present invention. The addition-curable silicone composition of the present invention does not need to contain an addition-curing reaction control agent, and can be made non-compounded. Further, an organo (poly) siloxane having no reactivity such as methylpolysiloxane may be contained in order to adjust the elastic modulus and viscosity of the composition. Furthermore, in order to prevent deterioration of the addition-curable silicone composition, a conventionally known antioxidant such as 2,6-di-tert-butyl-4-methylphenol may be contained as necessary. Furthermore, an adhesion assistant, a surface treatment agent, a release agent, a dye, a pigment, a flame retardant, an anti-settling agent, a thixotropy improver, and the like can be blended as necessary.
 次に、本発明における付加硬化型シリコーン組成物の製造方法について説明するが、これらに限定されるものではない。
 本発明の付加硬化型シリコーン組成物を製造する方法は、従来の付加硬化型シリコーン組成物の製造方法に従えばよく、特に制限されるものでない。例えば、上記(A)~(C)成分、必要によりこれに加えて(D)成分、及びその他の成分を、あわとり練太郎(シンキー(株)の登録商標)、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機、もしくはヘラ等を用いた手混合にて混合する方法を採用することができる。
Next, although the manufacturing method of the addition-curable silicone composition in this invention is demonstrated, it is not limited to these.
The method for producing the addition-curable silicone composition of the present invention may be in accordance with a conventional method for producing an addition-curable silicone composition, and is not particularly limited. For example, the above components (A) to (C) and, if necessary, the component (D) and other components may be mixed with Awatori Nerita (registered trademark of Shinky Corporation), Trimix, Twin Mix, Planeta Registration of Lee mixer (all registered trademark of mixer manufactured by Inoue Seisakusho Co., Ltd.), Ultra mixer (registered trademark of mixer manufactured by Mizuho Kogyo Co., Ltd.), Hibis Disper Mix (mixer manufactured by Special Machine Industries Co., Ltd.) (Trademark) etc., or the method of mixing by the manual mixing using a spatula etc. is employable.
 本発明の付加硬化型シリコーン組成物は、25℃にて測定される粘度0.1Pa・s以上1,000Pa・s未満、好ましくは1~500Pa・s、さらに好ましくは5~300Pa・sを有する。粘度が、0.1Pa・s未満では、形状保持が困難となる等、作業性が悪くなるおそれがある。また粘度が1,000Pa・sを超える場合にも吐出や塗布が困難となる等、作業性が悪くなるおそれがある。前記粘度は、上述した各成分の配合を調整することにより得ることができる。本発明において、粘度はスパイラル粘度計、例えば、マルコム粘度計により測定した25℃の値である(ロータAで10rpm、ズリ速度6[1/s])。 The addition-curable silicone composition of the present invention has a viscosity measured at 25 ° C. of not less than 0.1 Pa · s and less than 1,000 Pa · s, preferably 1 to 500 Pa · s, more preferably 5 to 300 Pa · s. . When the viscosity is less than 0.1 Pa · s, workability may be deteriorated, such as difficulty in maintaining the shape. In addition, when the viscosity exceeds 1,000 Pa · s, workability may be deteriorated, such as difficulty in discharging and coating. The said viscosity can be obtained by adjusting the mixing | blending of each component mentioned above. In the present invention, the viscosity is a value of 25 ° C. measured with a spiral viscometer, for example, a Malcolm viscometer (rotor A: 10 rpm, displacement speed: 6 [1 / s]).
 本発明の付加硬化型シリコーン組成物は、従来の一般的な付加硬化型シリコーン組成物と同様に広範な用途に好適に用いることができ、付加硬化反応制御剤を含有せずに室温下での長期保存性を向上させる目的に対し、特に有効である。 The addition-curable silicone composition of the present invention can be suitably used for a wide range of applications in the same manner as conventional general addition-curable silicone compositions, and does not contain an addition-curing reaction control agent at room temperature. This is particularly effective for the purpose of improving long-term storage.
 本発明の付加硬化型シリコーン組成物を硬化する場合の硬化条件は特に制限されるものでないが、温度は通常25~200℃、好ましくは60~180℃、より好ましくは80~170℃であり、時間は通常3分~24時間、好ましくは5分~12時間、より好ましくは10分~6時間である。付加硬化型シリコーン組成物の硬化後の性状は特に制限されるものではなく、ゲル状、低硬度ゴム状、高硬度ゴム状等が挙げられる。 The curing conditions for curing the addition-curable silicone composition of the present invention are not particularly limited, but the temperature is usually 25 to 200 ° C., preferably 60 to 180 ° C., more preferably 80 to 170 ° C., The time is usually 3 minutes to 24 hours, preferably 5 minutes to 12 hours, more preferably 10 minutes to 6 hours. The properties of the addition-curable silicone composition after curing are not particularly limited, and examples thereof include gels, low-hardness rubbers, and high-hardness rubbers.
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。なお、動粘度はウベローデ型オストワルド粘度計による25℃の値を示す。
 初めに、本発明の付加硬化型シリコーン組成物を調製するために以下の各成分を用意した。
[(A)成分]
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が590mm2/sのジメチルポリシロキサン
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not restrict | limited to the following Example. In addition, kinematic viscosity shows the value of 25 degreeC by an Ubbelohde type Ostwald viscometer.
First, the following components were prepared in order to prepare the addition-curable silicone composition of the present invention.
[(A) component]
A-1: Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 590 mm 2 / s
[(B)成分]
B-1:下記式(1)で表される、25℃における動粘度が12mm2/sのオルガノハイドロジェンポリシロキサン
[Component (B)]
B-1: Organohydrogenpolysiloxane represented by the following formula (1) and having a kinematic viscosity at 25 ° C. of 12 mm 2 / s
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[(C)成分]
C-1:下記合成例1で得られたヒドロシリル化触媒微粒子
[合成例1]C-1成分の調製
 25mLガラス瓶に、1,6-ヘキサンジオールジメタクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体を、上記A-1と同じジメチルポリシロキサン(25℃における動粘度=590mm2/s)に溶解した溶液(白金原子含有量:白金原子として1質量%)4.5g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子8.7g(収率=58%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.306質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は14.7μmであった。
[Component (C)]
C-1: Hydrosilylation catalyst fine particles obtained in Synthesis Example 1 below [Synthesis Example 1] Preparation of component C-1 In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyltetramethyldisiloxane 4.5 g of a solution in which the complex is dissolved in the same dimethylpolysiloxane (Kinematic viscosity at 25 ° C. = 590 mm 2 / s) as in the above A-1 (platinum atom content: 1% by mass as a platinum atom), diphenyl (2,4 , 6-Trimethylbenzoyl) phosphine oxide 0.105 g was added and shaken vigorously to prepare an O / O type emulsion. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 8.7 g (yield = 58%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.306% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured at 14.7 was 14.7 μm.
C-2:下記合成例2で得られたヒドロシリル化触媒微粒子
[合成例2]C-2成分の調製
 25mLガラス瓶に、グリセロールジメタクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサン(25℃における動粘度=590mm2/s)に溶解した溶液(白金原子含有量:白金原子として1質量%)4.5g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子7.0g(収率=46%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.306質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は10.7μmであった。
C-2: Hydrosilylation catalyst fine particles obtained in Synthesis Example 2 below [Synthesis Example 2] Preparation of component C-2 In a 25 mL glass bottle, 10.5 g of glycerol dimethacrylate and platinum-divinyltetramethyldisiloxane complex were added to the A- 4.5 g of a solution (platinum atom content: 1% by mass as platinum atom) dissolved in the same dimethylpolysiloxane (dynamic viscosity at 25 ° C. = 590 mm 2 / s) as 1, diphenyl (2,4,6-trimethylbenzoyl) O / O type emulsion was prepared by adding 0.105 g of phosphine oxide and shaking vigorously. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 7.0 g (yield = 46%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.306% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured by 1 was 10.7 μm.
C-3:下記合成例3で得られたヒドロシリル化触媒微粒子
[合成例3]C-3成分の調製
 25mLガラス瓶に、ペンタエリスリトールテトラアクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサン(25℃における動粘度=590mm2/s)に溶解した溶液(白金原子含有量:白金原子として1質量%)4.5g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子7.9g(収率=52%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.293質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は48.3μmであった。
C-3: Hydrosilylation catalyst fine particles obtained in Synthesis Example 3 below [Synthesis Example 3] Preparation of component C-3 In a 25 mL glass bottle, 10.5 g of pentaerythritol tetraacrylate and a platinum-divinyltetramethyldisiloxane complex are -1, 4.5 g of a solution (platinum atom content: 1% by mass as a platinum atom) dissolved in dimethylpolysiloxane (dynamic viscosity at 25 ° C. = 590 mm 2 / s), diphenyl (2,4,6-trimethylbenzoyl) ) 0.105 g of phosphine oxide was added and shaken vigorously to prepare an O / O type emulsion. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 7.9 g of white powdery hydrosilylation catalyst fine particles having a microcapsule structure (yield = 52%). The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technology Co., Ltd.) is 0.293% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in (4) was 48.3 μm.
C-4:下記合成例4で得られたヒドロシリル化触媒微粒子
[合成例4]C-4成分の調製
 25mLガラス瓶に、ジ(トリメチロールプロパン)テトラアクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサン(25℃における動粘度=590mm2/s)に溶解した溶液(白金原子含有量:白金原子として1質量%)4.5g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子8.3g(収率=55%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.268質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は49.7μmであった。
C-4: Hydrosilylation catalyst fine particles obtained in Synthesis Example 4 below [Synthesis Example 4] Preparation of component C-4 In a 25 mL glass bottle, 10.5 g of di (trimethylolpropane) tetraacrylate, platinum-divinyltetramethyldisiloxane 4.5 g of a solution in which the complex is dissolved in the same dimethylpolysiloxane (dynamic viscosity at 25 ° C. = 590 mm 2 / s) as in A-1 above (platinum atom content: 1 mass% as platinum atom), diphenyl (2, 4, 6-Trimethylbenzoyl) phosphine oxide (0.105 g) was added and shaken vigorously to prepare an O / O type emulsion. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 8.3 g (yield = 55%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.268% by mass, and a laser diffraction / scattering type particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in (4) was 49.7 μm.
C-5:下記合成例5で得られたヒドロシリル化触媒微粒子
[合成例5]C-5成分の調製
 25mLガラス瓶に、グリセロールジメタクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体をジメチルポリシロキサン(25℃における動粘度=110mm2/s)に溶解した溶液(白金原子含有量:白金原子として1質量%)4.5g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子6.8g(収率=45%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.310質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は10.0μmであった。
C-5: Hydrosilylation catalyst fine particles obtained in Synthesis Example 5 below [Synthesis Example 5] Preparation of component C-5 In a 25 mL glass bottle, 10.5 g of glycerol dimethacrylate and platinum-divinyltetramethyldisiloxane complex were added to dimethylpolysiloxane. 4.5 g of a solution (platinum atom content: 1% by mass as a platinum atom) dissolved in (kinematic viscosity at 25 ° C. = 110 mm 2 / s), 0.105 g of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide In addition, an O / O emulsion was prepared by shaking vigorously. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 6.8 g (yield = 45%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.310% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in (1) was 10.0 μm.
C-6:下記合成例6で得られたヒドロシリル化触媒微粒子
[合成例6]C-6成分の調製
 25mLガラス瓶に、1,6-ヘキサンジオールジメタクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体をジメチルポリシロキサン(25℃における動粘度=96,000mm2/s)に溶解した溶液(白金原子含有量:白金原子として1質量%)4.5g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子8.5g(収率=56%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.309質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は15.6μmであった。
C-6: Hydrosilylation catalyst fine particles obtained in Synthesis Example 6 below [Synthesis Example 6] Preparation of C-6 component In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyltetramethyldisiloxane 4.5 g of a solution in which the complex is dissolved in dimethylpolysiloxane (kinematic viscosity at 25 ° C. = 96,000 mm 2 / s) (platinum atom content: 1 mass% as platinum atom), diphenyl (2,4,6-trimethylbenzoyl) ) 0.105 g of phosphine oxide was added and shaken vigorously to prepare an O / O type emulsion. While stirring with a homomixer set at a rotation speed of 1,400 rpm, 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the previously prepared O / O emulsion was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 8.5 g (yield = 56%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.309% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in 15.6 was 15.6 μm.
C-7:下記合成例7(比較品)で得られたヒドロシリル化触媒微粒子
[合成例7]C-7成分の調製
 25mLガラス瓶に、1,6-ヘキサンジオールジメタクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサン:トルエン=30:70の混合溶液(25℃における動粘度=8.6mm2/s)に溶解した溶液(白金原子含有量:白金原子として0.3質量%)15.0g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子7.6g(収率=30%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.301質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は13.0μmであった。
C-7: Hydrosilylation catalyst fine particles obtained in Synthesis Example 7 (comparative product) below [Synthesis Example 7] Preparation of component C-7 In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyl A solution (platinum atom content: platinum atom) in which a tetramethyldisiloxane complex is dissolved in a mixed solution of dimethylpolysiloxane: toluene = 30: 70 (dynamic viscosity at 25 ° C. = 8.6 mm 2 / s) same as A-1 above. As an O / O emulsion by adding 15.0 g) and 0.105 g of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide and shaking vigorously. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 7.6 g (yield = 30%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.301% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in 13.0 was 13.0 μm.
C-8:下記合成例8(比較品)で得られたヒドロシリル化触媒微粒子
[合成例8]C-8成分の調製
 25mLガラス瓶に、ペンタエリスリトールテトラアクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサン:トルエン=30:70の混合溶液(25℃における動粘度=8.6mm2/s)に溶解した溶液(白金原子含有量:白金原子として0.3質量%)15.0g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子10.3g(収率=40%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.299質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は11.4μmであった。
C-8: Hydrosilylation catalyst fine particles obtained in Synthesis Example 8 (comparative product) below [Synthesis Example 8] Preparation of component C-8 In a 25 mL glass bottle, 10.5 g of pentaerythritol tetraacrylate, platinum-divinyltetramethyldisiloxane A solution (platinum atom content: 0.3 as platinum atom) in which the complex is dissolved in the same mixed solution of dimethylpolysiloxane: toluene = 30: 70 (dynamic viscosity at 25 ° C. = 8.6 mm 2 / s) as A-1 above. 15.0 g (% by mass) and 0.105 g of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide were added and shaken vigorously to prepare an O / O type emulsion. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 10.3 g (yield = 40%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.299% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in 11.4 was 11.4 μm.
C-9:下記合成例9(比較品)で得られたヒドロシリル化触媒微粒子
[合成例9]C-9成分の調製
 25mLガラス瓶に、ジ(トリメチロールプロパン)テトラアクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサン:トルエン=30:70の混合溶液(25℃における動粘度=8.6mm2/s)に溶解した溶液(白金原子含有量:白金原子として0.3質量%)15.0g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子10.6g(収率=42%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.256質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は14.0μmであった。
C-9: Hydrosilylation catalyst fine particles obtained in Synthesis Example 9 (comparative product) below [Synthesis Example 9] Preparation of component C-9 In a 25 mL glass bottle, 10.5 g of di (trimethylolpropane) tetraacrylate, platinum-divinyl A solution (platinum atom content: platinum atom) in which a tetramethyldisiloxane complex is dissolved in a mixed solution of dimethylpolysiloxane: toluene = 30: 70 (dynamic viscosity at 25 ° C. = 8.6 mm 2 / s) same as A-1 above. As an O / O emulsion by adding 15.0 g) and 0.105 g of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide and shaking vigorously. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 10.6 g (yield = 42%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.256% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured by 1 was 14.0 μm.
C-10:下記合成例10(比較品)で得られたヒドロシリル化触媒微粒子
[合成例10]C-10成分の調製
 25mLガラス瓶に、1,6-ヘキサンジオールジメタクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体をトルエン(25℃における動粘度=0.68mm2/s)に溶解した溶液(白金原子含有量:白金原子として0.3質量%)15.0g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子7.1g(収率=28%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.295質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は12.4μmであった。
C-10: Hydrosilylation catalyst fine particles obtained in Synthesis Example 10 (comparative product) below [Synthesis Example 10] Preparation of C-10 component In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyl 15.0 g of a solution (platinum atom content: 0.3% by mass as platinum atom) in which tetramethyldisiloxane complex is dissolved in toluene (kinematic viscosity at 25 ° C. = 0.68 mm 2 / s), diphenyl (2, 4, 6-Trimethylbenzoyl) phosphine oxide (0.105 g) was added and shaken vigorously to prepare an O / O type emulsion. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 7.1 g (yield = 28%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.295% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in (1) was 12.4 μm.
C-11:下記合成例11(比較品)で得られたヒドロシリル化触媒微粒子
[合成例11]C-11成分の調製
 25mLガラス瓶に、1,6-ヘキサンジオールジメタクリレート10.5g、白金-ジビニルテトラメチルジシロキサン錯体をジメチルポリシロキサン(25℃における動粘度=205,000mm2/s)に溶解した溶液(白金原子含有量:白金原子として0.3質量%)4.5g、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド0.105gを加え、激しく振とうすることでO/O型エマルションを調製した。300mLのポリプロピレン製カップに測りとった2質量%ポリビニルアルコール水溶液135gを、回転数1,400rpmに設定したホモミクサーで撹拌しながら先に調製したO/O型エマルションを添加し、回転数を3,000rpmとして遮光下で1時間室温撹拌し(O/O)/W型エマルションを調製した。続いて得られた(O/O)/W型エマルションに、波長365nmのUV-LEDから1時間紫外線を照射した。これを24時間遮光下で静置した後に上澄みをデカンテーションし、沈殿物をイオン交換水、イオン交換水/エタノール=50/50(質量比)、エタノール、エタノール/トルエン=50/50(質量比)、トルエンの順で洗浄・遠心分離し、凍結乾燥を3時間行なうことで、マイクロカプセル構造を有する、白色粉末状のヒドロシリル化触媒微粒子7.2g(収率=48%)を得た。ICP-OES(Agilent730:アジレント・テクノロジー(株)製)から定量した白金原子含有量は0.295質量%であり、レーザー回折/散乱式粒度測定装置(LA-750:(株)堀場製作所製)で測定した平均粒子径は16.1μmであった。
C-11: Hydrosilylation catalyst fine particles obtained in Synthesis Example 11 (comparative product) below [Synthesis Example 11] Preparation of component C-11 In a 25 mL glass bottle, 10.5 g of 1,6-hexanediol dimethacrylate, platinum-divinyl 4.5 g of a solution (platinum atom content: 0.3 mass% as platinum atom) in which tetramethyldisiloxane complex is dissolved in dimethylpolysiloxane (kinematic viscosity at 25 ° C. = 205,000 mm 2 / s), diphenyl (2, O-O type emulsion was prepared by adding 0.105 g of 4,6-trimethylbenzoyl) phosphine oxide and shaking vigorously. While stirring with a homomixer set at a rotation speed of 1,400 rpm to 135 g of a 2% by weight polyvinyl alcohol aqueous solution measured in a 300 mL polypropylene cup, the O / O emulsion prepared above was added, and the rotation speed was 3,000 rpm. Was stirred at room temperature for 1 hour under light shielding to prepare an (O / O) / W type emulsion. Subsequently, the obtained (O / O) / W type emulsion was irradiated with ultraviolet rays from a UV-LED having a wavelength of 365 nm for 1 hour. This was left to stand for 24 hours in the dark, and then the supernatant was decanted, and the precipitate was ion-exchanged water, ion-exchanged water / ethanol = 50/50 (mass ratio), ethanol, ethanol / toluene = 50/50 (mass ratio). ), Toluene was washed and centrifuged in that order, and freeze-dried for 3 hours to obtain 7.2 g (yield = 48%) of white powdery hydrosilylation catalyst fine particles having a microcapsule structure. The platinum atom content determined from ICP-OES (Agilent 730: manufactured by Agilent Technologies) is 0.295% by mass, and a laser diffraction / scattering particle size measuring device (LA-750: manufactured by Horiba, Ltd.) The average particle size measured in (1) was 16.1 μm.
C-12:白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:白金原子として1質量%) C-12: A solution in which a platinum-divinyltetramethyldisiloxane complex is dissolved in the same dimethylpolysiloxane as A-1 above (platinum atom content: 1% by mass as platinum atoms)
[(D)成分]
D-1:疎水性フュームドシリカ(BET比表面積:110m2/g)
[(D) component]
D-1: Hydrophobic fumed silica (BET specific surface area: 110 m 2 / g)
その他成分
[(E)成分]
E-1:下式(2)で表される付加硬化反応制御剤
Other components [(E) component]
E-1: Addition curing reaction control agent represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[実施例1~6、比較例1~7]
付加硬化型シリコーン組成物の調製
 上記(A)~(E)成分を、下記表1及び2に示す配合量に従い、下記に示す方法で配合して付加硬化型シリコーン組成物を調製した。なお、Si-H/Si-Vi(個数比)は、(A)成分中のアルケニル基(ビニル基)の個数の合計に対する(B)成分中のSi-H基の個数の合計の比である。
[Examples 1 to 6, Comparative Examples 1 to 7]
Preparation of addition curable silicone composition The above components (A) to (E) were blended by the method shown below according to the blending amounts shown in Tables 1 and 2 to prepare an addition curable silicone composition. Si—H / Si—Vi (number ratio) is the ratio of the total number of Si—H groups in the component (B) to the total number of alkenyl groups (vinyl groups) in the component (A). .
 プラスチック容器に(A)及び(D)成分を加え、あわとり練太郎(シンキー(株)製)を使用して2,000rpmで90秒間混合した。次に(C)成分を加えて2,000rpmで30秒間混合し、さらに(B)成分を加えて2,000rpmで30秒間混合し、付加硬化型シリコーン組成物を調製した。但し、(E)成分を配合する場合は、(C)成分の配合前に加え、2,000rpmで30秒間混合した。
 上記方法で得られた各組成物について、初期値の25℃における絶対粘度をマルコム粘度計(タイプPC-1T)で測定し、下記の方法に従い室温下保存性と加熱硬化性を評価した。結果を表1及び表2に併記する。
The components (A) and (D) were added to a plastic container, and mixed for 90 seconds at 2,000 rpm using Awatori Nertaro (Sinky Corp.). Next, the component (C) was added and mixed at 2,000 rpm for 30 seconds, and the component (B) was further added and mixed at 2,000 rpm for 30 seconds to prepare an addition-curable silicone composition. However, when blending the component (E), it was mixed for 30 seconds at 2,000 rpm in addition to the blending of the component (C).
With respect to each composition obtained by the above method, the initial viscosity at 25 ° C. was measured with a Malcolm viscometer (type PC-1T), and the storage stability at room temperature and the thermosetting property were evaluated according to the following methods. The results are shown in Tables 1 and 2.
[室温下保存性試験]
 上記で調製した付加硬化型シリコーン組成物をプラスチック容器中25℃環境下にて保存し、組成物が硬化するまでの時間を追跡した。なお、ここでいう「硬化」とは、マルコム粘度計(タイプPC-1T)で測定する25℃における組成物の絶対粘度が1,000Pa・sを超えた状態と定義する。
[Storage stability test at room temperature]
The addition-curable silicone composition prepared above was stored in a plastic container in an environment at 25 ° C., and the time until the composition was cured was followed. Here, “curing” is defined as a state in which the absolute viscosity of the composition at 25 ° C. measured with a Malcolm viscometer (type PC-1T) exceeds 1,000 Pa · s.
[加熱硬化性試験]
 直径2.5cmの2枚のパラレルプレートの間に、未硬化の付加硬化型シリコーン組成物を厚み2mmで塗布した。塗布したプレートを25℃から125℃まで10℃/分、125℃から145℃まで2℃/分、145℃から150℃まで0.5℃/分で昇温した後、付加硬化型シリコーン組成物の貯蔵弾性率G’が飽和するまで温度を150℃で維持し、貯蔵弾性率G’が飽和時の90%の値に達した時間t90を読み取った。このt90の値が小さいほど硬化速度が速く、言い換えればシリコーン組成物が優れた加熱硬化性を有すると判断できる。なお、測定には、粘弾性測定装置(タイプRDAIII:レオメトリック・サイエンティフィック・エフ・イー(株)製)を用いた。
[Heat curing test]
An uncured addition-curable silicone composition was applied in a thickness of 2 mm between two parallel plates having a diameter of 2.5 cm. After the coated plate is heated from 25 ° C. to 125 ° C. at 10 ° C./min, from 125 ° C. to 145 ° C. at 2 ° C./min, from 145 ° C. to 150 ° C. at 0.5 ° C./min, an addition-curable silicone composition The temperature was maintained at 150 ° C. until the storage elastic modulus G ′ was saturated, and the time t90 when the storage elastic modulus G ′ reached 90% of the saturation value was read. The smaller the value of t90, the faster the curing speed. In other words, it can be determined that the silicone composition has excellent heat curability. For the measurement, a viscoelasticity measuring device (type RDAIII: manufactured by Rheometric Scientific F.E.) was used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
*:(B)成分を加えて混合後、即座に硬化
**:部分的に硬化した不均一な硬化物
Figure JPOXMLDOC01-appb-T000004
*: Immediately cured after adding (B) component **: Partially cured non-uniform cured product
 表1及び2の結果より、本発明の要件を満たす実施例1~6では、室温下にて保存した場合に硬化するまでに要する時間が極めて長く、t90の値が小さい、すなわち硬化速度が速く、言い換えればシリコーン組成物が優れた加熱硬化性を示す。以上から、「室温下での長期保存性に優れる」ことと「加熱した場合に速やかに硬化する」ことを両立するといえる。 From the results of Tables 1 and 2, in Examples 1 to 6 that satisfy the requirements of the present invention, the time required for curing when stored at room temperature is extremely long, and the value of t90 is small, that is, the curing rate is high. In other words, the silicone composition exhibits excellent heat curability. From the above, it can be said that both “excellent in long-term storage at room temperature” and “harden rapidly when heated” are compatible.
 一方、比較例1~4では、室温下にて保存した場合に硬化するまでに要する時間は非常に短い。言い換えれば、室温下での長期保存性に乏しいと判断される。また比較例5は室温下での長期保存性に優れるものの、加熱硬化時には部分的に硬化した不均一な硬化物が得られた。さらに比較例6では(B)成分を加えて混合後、即座に硬化したことから、室温下での保存性は全くないといえる。付加硬化反応制御剤を配合した比較例7では、室温下での長期保存性に優れるものの、t90の値が大きく、加熱硬化性に劣る組成物であった。 On the other hand, in Comparative Examples 1 to 4, the time required for curing when stored at room temperature is very short. In other words, it is judged that the long-term storage at room temperature is poor. Further, although Comparative Example 5 was excellent in long-term storage at room temperature, a non-uniform cured product partially cured during heat curing was obtained. Further, in Comparative Example 6, since the component (B) was added and mixed, it was immediately cured, so it can be said that there is no preservation at room temperature. In Comparative Example 7 in which the addition curing reaction control agent was blended, the composition had a long t90 value at room temperature but a large t90 value and was inferior in heat curability.
 従って、本発明の付加硬化型シリコーン組成物は、特定のマイクロカプセル構造を有するヒドロシリル化触媒微粒子を活用することにより、付加硬化反応制御剤を含有せずとも室温下での長期保存性に優れ、速やかな加熱硬化性を維持することが可能であることが確認できた。 Therefore, the addition-curable silicone composition of the present invention is excellent in long-term storage at room temperature without containing an addition-curing reaction control agent by utilizing hydrosilylation catalyst fine particles having a specific microcapsule structure, It was confirmed that it was possible to maintain quick heat curability.
 なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (5)

  1.  (A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン、
    (B)1分子中に2個以上のケイ素原子に結合した水素原子(=Si-H基)を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対するSi-H基の個数比が0.5~5となる量、及び
    (C)白金族金属触媒を含む有機化合物又は高分子化合物を芯物質とし、少なくとも1種の多官能性モノマーを重合してなる三次元架橋高分子化合物を壁物質としたマイクロカプセル構造を有し、かつ上記白金族金属触媒を含む有機化合物又は高分子化合物の25℃での動粘度が10~100,000mm2/sであるヒドロシリル化触媒微粒子:有効量
    を含有する付加硬化型シリコーン組成物。
    (A) an organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and having a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s,
    (B) Organohydrogenpolysiloxane having hydrogen atoms (= Si—H groups) bonded to two or more silicon atoms in one molecule: the total number of aliphatic unsaturated hydrocarbon groups in component (A) An amount of Si—H group to the amount of 0.5 to 5 and (C) an organic compound or polymer compound containing a platinum group metal catalyst as a core substance, and at least one polyfunctional monomer is polymerized. The organic compound or polymer compound having a microcapsule structure using the three-dimensional crosslinked polymer compound as a wall material and containing the platinum group metal catalyst has a kinematic viscosity at 25 ° C. of 10 to 100,000 mm 2 / s. Hydrosilylation catalyst fine particles: An addition-curable silicone composition containing an effective amount.
  2.  (C)成分の平均粒子径が0.01~1,000μmである請求項1記載の付加硬化型シリコーン組成物。 2. The addition-curable silicone composition according to claim 1, wherein the average particle size of component (C) is 0.01 to 1,000 μm.
  3.  多官能性モノマーが、1分子中に2個以上の重合性炭素-炭素二重結合を有する多官能性モノマーである請求項1又は2記載の付加硬化型シリコーン組成物。 The addition-curable silicone composition according to claim 1 or 2, wherein the polyfunctional monomer is a polyfunctional monomer having two or more polymerizable carbon-carbon double bonds in one molecule.
  4.  多官能性モノマーが、1分子中に2個以上の(メタ)アクリル基を有する多官能性モノマーである請求項3記載の付加硬化型シリコーン組成物。 The addition-curable silicone composition according to claim 3, wherein the polyfunctional monomer is a polyfunctional monomer having two or more (meth) acryl groups in one molecule.
  5.  さらに、(D)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物及び炭素の同素体からなる群より選ばれる少なくとも1種の無機充填剤を(A)成分100質量部に対して0.1~5,000質量部含有する請求項1~4のいずれか1項記載の付加硬化型シリコーン組成物。 Further, (D) at least one inorganic filler selected from the group consisting of metals, metal oxides, metal hydroxides, metal nitrides, metal carbides and carbon allotropes is added to 100 parts by mass of component (A). The addition-curable silicone composition according to any one of claims 1 to 4, which contains 0.1 to 5,000 parts by mass.
PCT/JP2018/010799 2017-03-27 2018-03-19 Addition-curable silicone composition WO2018180704A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880019262.9A CN110431189B (en) 2017-03-27 2018-03-19 Addition-curable silicone composition
EP18775954.3A EP3604449B1 (en) 2017-03-27 2018-03-19 Addition-curable silicone composition
KR1020197031170A KR102536773B1 (en) 2017-03-27 2018-03-19 Addition Curing Silicone Composition
JP2019509347A JP6822551B2 (en) 2017-03-27 2018-03-19 Additive curable silicone composition
US16/498,222 US11028234B2 (en) 2017-03-27 2018-03-19 Addition-curable silicone composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017060675 2017-03-27
JP2017-060675 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180704A1 true WO2018180704A1 (en) 2018-10-04

Family

ID=63675504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010799 WO2018180704A1 (en) 2017-03-27 2018-03-19 Addition-curable silicone composition

Country Status (7)

Country Link
US (1) US11028234B2 (en)
EP (1) EP3604449B1 (en)
JP (1) JP6822551B2 (en)
KR (1) KR102536773B1 (en)
CN (1) CN110431189B (en)
TW (1) TWI737902B (en)
WO (1) WO2018180704A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019056A1 (en) * 2020-07-22 2022-01-27 信越化学工業株式会社 Anti-sulfurization coating material, cured product thereof, and electronic device
WO2022092245A1 (en) * 2020-10-29 2022-05-05 ダウ・東レ株式会社 Curable fluorosilicone composition
DE102022110708A1 (en) 2021-05-19 2022-11-24 Dupont Toray Specialty Materials Kabushiki Kaisha CURABLE SILICONE COMPOSITION, ENCAPSULING AGENT AND OPTICAL SEMICONDUCTOR DEVICE
CN115779970A (en) * 2021-11-18 2023-03-14 广州市矽友新材料科技有限公司 Platinum catalyst for single-component addition type liquid silicone rubber and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4243143A3 (en) 2017-02-08 2023-11-01 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
KR102229141B1 (en) 2019-09-13 2021-03-17 히타치 긴조쿠 가부시키가이샤 Cable and medical hollow tube
US11779193B2 (en) * 2019-09-13 2023-10-10 Proterial, Ltd. Molded article and hollow tube
CN114377727B (en) * 2021-12-30 2023-08-01 安徽壹石通材料科学研究院有限公司 Embedding type metal catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447442A (en) * 1987-07-20 1989-02-21 Dow Corning Production of microencapsulated platinum metal compound
JPH0214244A (en) * 1988-06-30 1990-01-18 Toray Dow Corning Silicone Co Ltd Thermosetting organopolysiloxane composition
JPH0446962A (en) 1990-06-13 1992-02-17 Toray Dow Corning Silicone Co Ltd Heat-curable silicone elastomer composition
JPH0459873A (en) * 1990-06-29 1992-02-26 Toray Dow Corning Silicone Co Ltd Silicone rubber composition for extrusion molding
JPH07196921A (en) * 1993-12-29 1995-08-01 Toray Dow Corning Silicone Co Ltd Heat-curable silicone composition
JP2002012768A (en) * 2000-06-29 2002-01-15 Dow Corning Toray Silicone Co Ltd Silicone rubber composition
WO2016052521A2 (en) * 2014-09-29 2016-04-07 住友理工株式会社 Silicone rubber composition, silicone rubber crosslinked body, integrally molded body, and manufacturing method for integrally molded body

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194460A (en) * 1992-01-02 1993-03-16 Dow Corning Corporation Storage stable heat curable organosiloxane compositions containing a microencapsulated catalyst and method for preparing said catalyst
DE69905542T2 (en) * 1998-11-30 2003-12-11 Shinetsu Chemical Co Addition curable silicone elastomer blend
US7045586B2 (en) * 2003-08-14 2006-05-16 Dow Corning Corporation Adhesives having improved chemical resistance and curable silicone compositions for preparing the adhesives
US20050038183A1 (en) * 2003-08-14 2005-02-17 Dongchan Ahn Silicones having improved surface properties and curable silicone compositions for preparing the silicones
FR2910345A1 (en) * 2006-12-20 2008-06-27 Oreal Core-shell particles useful for preparing cosmetic or therapeutic compositions have a shell comprising a polymer film formed by reaction of two silicones
WO2010030748A2 (en) * 2008-09-12 2010-03-18 Dow Corning Corporation Suspensions of silicate shell microcapsules
CN102227254B (en) * 2008-12-17 2014-08-13 道康宁公司 Suspensions of silicate shell microcapsules for temperature controlled release
DE102009027847A1 (en) * 2009-07-20 2011-01-27 Wacker Chemie Ag Curable silicone compositions
JP2012052035A (en) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd Addition-curable silicone composition, optical element encapsulating material comprising the composition, and semiconductor device in which optical element is encapsulated with cured product of the optical element encapsulating material
WO2016133946A1 (en) * 2015-02-20 2016-08-25 Dow Corning Corporation Microcapsules having encapsulted catalysts
EP3196229B1 (en) * 2015-11-05 2018-09-26 Dow Silicones Corporation Branched polyorganosiloxanes and related curable compositions, methods, uses and devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447442A (en) * 1987-07-20 1989-02-21 Dow Corning Production of microencapsulated platinum metal compound
JPH0214244A (en) * 1988-06-30 1990-01-18 Toray Dow Corning Silicone Co Ltd Thermosetting organopolysiloxane composition
JPH0446962A (en) 1990-06-13 1992-02-17 Toray Dow Corning Silicone Co Ltd Heat-curable silicone elastomer composition
JPH0459873A (en) * 1990-06-29 1992-02-26 Toray Dow Corning Silicone Co Ltd Silicone rubber composition for extrusion molding
JPH07196921A (en) * 1993-12-29 1995-08-01 Toray Dow Corning Silicone Co Ltd Heat-curable silicone composition
JP2002012768A (en) * 2000-06-29 2002-01-15 Dow Corning Toray Silicone Co Ltd Silicone rubber composition
WO2016052521A2 (en) * 2014-09-29 2016-04-07 住友理工株式会社 Silicone rubber composition, silicone rubber crosslinked body, integrally molded body, and manufacturing method for integrally molded body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604449A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019056A1 (en) * 2020-07-22 2022-01-27 信越化学工業株式会社 Anti-sulfurization coating material, cured product thereof, and electronic device
WO2022092245A1 (en) * 2020-10-29 2022-05-05 ダウ・東レ株式会社 Curable fluorosilicone composition
DE102022110708A1 (en) 2021-05-19 2022-11-24 Dupont Toray Specialty Materials Kabushiki Kaisha CURABLE SILICONE COMPOSITION, ENCAPSULING AGENT AND OPTICAL SEMICONDUCTOR DEVICE
KR20220156756A (en) 2021-05-19 2022-11-28 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 Curable silicone composition, encapsulant, and optical semiconductor device
US11939472B2 (en) 2021-05-19 2024-03-26 Dupont Toray Specialty Materials Kabushiki Kaisha Curable silicone composition, encapsulant and optical semiconductor device
CN115779970A (en) * 2021-11-18 2023-03-14 广州市矽友新材料科技有限公司 Platinum catalyst for single-component addition type liquid silicone rubber and preparation method and application thereof

Also Published As

Publication number Publication date
TWI737902B (en) 2021-09-01
KR20190129115A (en) 2019-11-19
JPWO2018180704A1 (en) 2019-12-19
US11028234B2 (en) 2021-06-08
TW201840721A (en) 2018-11-16
CN110431189B (en) 2022-03-01
EP3604449B1 (en) 2023-11-22
CN110431189A (en) 2019-11-08
US20200032000A1 (en) 2020-01-30
EP3604449A4 (en) 2021-01-13
EP3604449A1 (en) 2020-02-05
KR102536773B1 (en) 2023-05-25
JP6822551B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6822551B2 (en) Additive curable silicone composition
JP6699583B2 (en) Addition-curable silicone composition
Chen et al. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin
TWI598385B (en) Insulated thermal interface material
US9424977B2 (en) Thermally conductive silicone adhesive composition for reactor and reactor
JP2018123310A (en) Thermally conductive polyorganosiloxane composition
JP2019073730A (en) Thermally conductive polyorganosiloxane composition
JP2024023255A (en) Heat dissipation composition, heat dissipation member, and filler aggregate for heat dissipation member
CN108350183B (en) Method for producing thermally conductive silicone composition
CN114466905A (en) Heat-conductive silicone composition and method for producing same
TWI607059B (en) Millable type polyoxime rubber composition and its cured product
JP7355708B2 (en) Thermal conductive addition-curing silicone composition
JP2021147591A (en) Heat softenable addition curing type thermally conductive silicone composition
TW201735997A (en) Supported platinum catalyst-containing resin composition, and thermosetting organopolysiloxane composition using same and curing method therefor
JP2016056226A (en) Silicone rubber composition, and method for improving tear strength of silicone rubber-cured material
JP6561410B2 (en) Thermally conductive composition and thermally conductive member
JP2024047866A (en) Method for curing ultraviolet-curable organopolysiloxane composition
US20240158581A1 (en) Thermally Conductive Silicone Composition
TW202208552A (en) Thermally-conductive addition-curable silicone composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031170

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018775954

Country of ref document: EP

Effective date: 20191028