WO2018180700A1 - Emitter and drip irrigation tube - Google Patents

Emitter and drip irrigation tube Download PDF

Info

Publication number
WO2018180700A1
WO2018180700A1 PCT/JP2018/010793 JP2018010793W WO2018180700A1 WO 2018180700 A1 WO2018180700 A1 WO 2018180700A1 JP 2018010793 W JP2018010793 W JP 2018010793W WO 2018180700 A1 WO2018180700 A1 WO 2018180700A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
tube
emitter
irrigation liquid
discharge
Prior art date
Application number
PCT/JP2018/010793
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 守越
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2018180700A1 publication Critical patent/WO2018180700A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • A01G25/023Dispensing fittings for drip irrigation, e.g. drippers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the present invention relates to an emitter and a drip irrigation tube.
  • drip irrigation has been known as one of the plant cultivation methods.
  • the drip irrigation method is a method in which a drip irrigation tube is arranged on the soil in which plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • irrigation liquid such as water or liquid fertilizer
  • a drip irrigation tube usually has a tube formed with a plurality of through holes through which irrigation liquid is discharged, and a plurality of emitters (also referred to as “drippers”) for discharging the irrigation liquid from each through hole.
  • emitters there are known an emitter that is used while being joined to the inner wall surface of the tube (see, for example, Patent Document 1), and an emitter that is used by piercing the tube from the outside.
  • Patent Document 1 describes an emitter bonded to the inner wall surface of a tube.
  • An emitter described in Patent Document 1 includes a first member having a water intake for taking in irrigation liquid, a second member having a discharge port for discharging irrigation liquid, and the first member and the second member. And a membrane member disposed therebetween. Inside the first member, there are formed a valve seat portion arranged so as to surround the water intake port and a decompression groove which becomes a part of the decompression flow path. A through hole is formed in the membrane member at a position corresponding to the downstream end of the decompression groove.
  • the first member, the membrane member, and the second member are stacked to form a decompression flow path, and the membrane member contacts the valve seat portion and closes the water intake.
  • a flow path through which the irrigation liquid flows is formed from the intake port to the discharge port.
  • the membrane member creeps during long-term use. Deformation may occur.
  • creep deformation occurs, the membrane member becomes difficult to return to its original shape when the pressure of the irrigation liquid in the tube is low, so the irrigation liquid discharged from the emitter when the pressure of the irrigation liquid is low It becomes difficult to increase the amount of. It is considered that creep deformation is more likely to occur when the amount of deformation of the membrane member is large.
  • an object of the present invention is to provide an emitter and drip irrigation that can control the amount of irrigation liquid discharged without depending on the pressure of the irrigation liquid in the tube while reducing the deformation amount of the membrane member. Is to provide a tube.
  • an emitter is an inner wall surface of a tube through which an irrigation liquid is circulated, and is joined to a position corresponding to a discharge port communicating between the inside and the outside of the tube, and the emitter in the tube
  • An emitter for quantitatively discharging the irrigation liquid from the discharge port to the outside of the tube the water intake unit for taking in the irrigation liquid, and being disposed facing the discharge port, the irrigation liquid
  • the flow rate of the irrigation liquid is reduced by deformation of the first diaphragm portion according to the pressure of the irrigation liquid in the tube.
  • a discharge flow path connecting the flow reduction section and the discharge section, and the discharge flow path includes a low pressure flow section having a large flow path diameter and a high pressure flow section having a small flow path diameter.
  • the emitter according to the present invention can control the amount of the irrigation liquid that is discharged regardless of the pressure of the irrigation liquid in the tube while reducing the deformation amount of the membrane member.
  • FIG. 1 is a cross-sectional view of a drip irrigation tube according to an embodiment of the present invention.
  • 2A to 2C are diagrams showing the configuration of the emitter according to one embodiment of the present invention.
  • 3A and 3B are diagrams showing the configuration of the emitter according to one embodiment of the present invention.
  • 4A and 4B are diagrams showing the configuration of the emitter according to one embodiment of the present invention.
  • FIG. 5 is a partially enlarged view showing the configuration of the emitter according to one embodiment of the present invention.
  • 6A to 6C are schematic views for explaining the operation of the emitter according to the embodiment of the present invention.
  • FIG. 7 is a partially enlarged view showing a configuration of an emitter according to another embodiment of the present invention.
  • 8A and 8B are partially enlarged views showing the configuration of an emitter according to still another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view in the direction along the axis of the drip irrigation tube 100 according to the present embodiment.
  • the drip irrigation tube 100 has a tube 110 and an emitter 120.
  • the tube 110 is a tube for flowing irrigation liquid.
  • the material of the tube 110 is not particularly limited.
  • the material of the tube 110 is polyethylene.
  • a plurality of discharge ports 112 for discharging irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110.
  • the diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm.
  • Emitters 120 are respectively joined to positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110.
  • the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
  • the drip irrigation tube 100 is manufactured by joining the back surface 124 of the emitter 120 to the inner wall surface of the tube 110.
  • the method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method for joining the tube 110 and the emitter 120 include welding of a resin material constituting the emitter 120 or the tube 110, adhesion by an adhesive, and the like. Normally, the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
  • FIG. 2A is a plan view of the emitter 120 before the emitter body 121 and the film 122 are joined
  • FIG. 2B is a plan view of the emitter 120 after the emitter body 121 and the film 122 are joined.
  • 3A is a side view of the emitter 120
  • FIG. 3B is a cross-sectional view taken along line AA shown in FIG. 2B
  • 4A is a side view of the side view of the emitter 120
  • FIG. 4B is a cross-sectional view of the emitter body 121 taken along the line BB shown in FIG. 2B.
  • FIG. 5 is a partially enlarged view of a region C shown in FIG. 3B.
  • the emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112.
  • the shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112.
  • the shape of the back surface 124 joined to the inner wall surface of the tube 110 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is formed on the inner wall surface of the tube 110 so as to be along the inner wall surface of the tube 110. It has a generally arc shape that is convex toward the top.
  • the planar shape of the emitter 120 is a substantially rectangular shape with four corners rounded.
  • the size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
  • the emitter 120 is joined to the inner wall surface of the tube 110, and the emitter body 121 is joined to the emitter body 121.
  • the emitter main body 121 and the film 122 may be formed integrally or may be formed separately. In the present embodiment, the emitter main body 121 and the film 122 are integrally formed via the hinge portion 123.
  • Both the emitter body 121 and the film 122 are preferably formed of one kind of flexible material.
  • the emitter main body 121 and the film 122 including the diaphragm portion are integrally formed of one kind of flexible material.
  • the material of the emitter body 121 and the film 122 include resin and rubber.
  • the resin include polyethylene and silicone. The flexibility of the emitter main body 121 and the film 122 can be adjusted by using an elastic resin material.
  • Examples of a method for adjusting the flexibility of the emitter body 121 and the film 122 include selection of a resin having elasticity and adjustment of a mixing ratio of a resin material having elasticity with respect to a hard resin material.
  • the integrally molded product of the emitter main body 121 and the film 122 can be manufactured by injection molding, for example.
  • the emitter 120 includes a water intake 150, a first connection groove 131 that is a part of the first connection flow path 141, a first pressure reduction groove 132 that is a part of the first pressure reduction flow path 142, and a second connection flow path.
  • a third connection groove 136 serving as a part of the three connection flow path 146, a flow rate reducing unit 160, a flow path opening / closing unit 170, and a discharge unit 180 are provided.
  • the water intake unit 150, the flow rate reduction unit 160, and the flow path opening / closing unit 170 are disposed on the surface 125 side of the emitter 120.
  • the first connection groove 131, the first pressure reduction groove 132, the second connection groove 133, the second pressure reduction groove 134, the third pressure reduction groove 135, the third connection groove 136, and the discharge unit 180 are disposed on the back surface 124 side of the emitter 120.
  • Each flow path disposed on the front surface 125 side of the emitter 120 and each flow path disposed on the back surface 124 side of the emitter 120 are communicated with each other through a through-hole described later. These through holes also form part of the flow path.
  • the third connection channel 146 includes a channel opening / closing through hole 173 that connects the channel opening / closing part 170 and the third connection groove 136, the third connection groove 136, the third connection groove 136, and the flow rate reducing unit 160. And a second connection through hole 166 that connects the two.
  • the through hole that connects the flow path opening / closing section 170 and the discharge section 180 is also referred to as a discharge flow path 147.
  • the first connection groove 131, the first decompression groove 132, the second connection groove 133, the second decompression groove 134, the third decompression groove 135, and the third connection groove 136 are respectively The first connection channel 141, the first decompression channel 142, the second connection channel 143, the second decompression channel 144, the third decompression channel 145 and a part of the third connection channel 146 are formed. Thereby, it is comprised from the intake part 150, the 1st connection flow path 141, the 1st pressure reduction flow path 142, the 2nd connection flow path 143, the 2nd pressure reduction flow path 144, the flow volume reduction
  • a first flow path connecting the water intake unit 150 and the discharge unit 180 is formed. Further, the water intake 150, the first connection channel 141, the first decompression channel 142, the second connection channel 143, the third decompression channel 145, the channel opening / closing unit 170, the third connection channel 146, the channel reduction Part 160, discharge channel 147 and discharge unit 180, and a second channel connecting water intake unit 150 and discharge unit 180 is formed. In both the first channel and the second channel, the irrigation liquid is circulated from the water intake unit 150 to the discharge unit 180. In the present embodiment, the first flow path and the second flow path overlap between the water intake section 150 and the second connection flow path 143. In addition, the first flow path and the second flow path overlap between the flow rate reduction unit 160 and the discharge unit 180.
  • the water intake 150 is disposed in a region about half of the surface 125 of the emitter 120 (see FIGS. 2A and 2B). In the region of the surface 125 where the water intake unit 150 is not arranged, a flow rate reducing unit 160 and a flow path opening / closing unit 170 (film 122) are arranged.
  • the water intake unit 150 includes a water intake side screen unit 151 and a water intake through hole 152.
  • the water intake side screen unit 151 prevents the suspended matter in the irrigation liquid taken into the emitter 120 from entering the water intake recess 153.
  • the water intake side screen portion 151 is open to the inside of the tube 110 and has a water intake recess 153, a plurality of slits 154, and a plurality of ridges 155.
  • the water intake recess 153 is one recess formed on the entire surface 125 of the emitter 120 where the film 122 is not bonded.
  • the depth of the water intake recess 153 is not particularly limited, and is appropriately set depending on the size of the emitter 120.
  • a plurality of slits 154 are formed on the outer peripheral wall of the water intake recess 153, and a plurality of ridges 155 are formed on the bottom surface of the water intake recess 153.
  • a water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
  • the plurality of slits 154 connect the inner surface of the water intake recess 153 and the outer surface of the emitter body 121, while taking the irrigation liquid from the side surface of the emitter body 121 into the water recess 153. Is prevented from entering the water intake recess 153.
  • the shape of the slit 154 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the shape of the slit 154 is formed such that the width increases from the outer surface of the emitter body 121 toward the inner surface of the water intake recess 153 (see FIGS. 2A and 2B). Thus, since the slit 154 is configured to have a so-called wedge wire structure, the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
  • the plurality of ridges 155 are arranged on the bottom surface of the water intake recess 153.
  • the arrangement and number of the ridges 155 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 153 and the intrusion of suspended matter in the irrigation liquid can be prevented.
  • the plurality of ridges 155 are arranged such that the major axis direction of the ridges 155 is along the minor axis direction of the emitter 120. Further, the ridge 155 is formed so that the width decreases from the surface 125 of the emitter main body 121 toward the bottom surface side of the water intake recess 153.
  • the space between the adjacent ridges 155 has a so-called wedge wire structure.
  • lines 155 will not be specifically limited if the above-mentioned function can be exhibited.
  • the space between the adjacent ridges 155 is configured to have a so-called wedge wire structure, the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
  • the water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
  • the shape and number of the water intake through holes 152 are not particularly limited as long as the irrigation liquid taken into the water intake recess 153 can be taken into the emitter body 121.
  • the water intake through hole 152 is a single long hole formed along the major axis direction of the emitter 120 on the bottom surface of the water intake recess 153. Since the long holes are partially covered by the plurality of ridges 155, the water intake through holes 152 appear to be divided into a large number of through holes when viewed from the surface 125 side.
  • the irrigation liquid that has flowed through the tube 110 is taken into the emitter main body 121 while preventing the floating substance from entering the water intake recess 153 by the water intake side screen portion 151.
  • the first connection groove 131 (first connection flow path 141) connects the water intake through hole 152 (water intake section 150) and the first pressure reduction groove 132.
  • the first connection groove 131 is formed linearly along the major axis direction of the emitter 120 at the outer edge portion of the back surface 124.
  • the first connection channel 141 is formed by the first connection groove 131 and the inner wall surface of the tube 110.
  • the irrigation liquid taken in from the water intake unit 150 flows through the first connection channel 141 to the first decompression channel 142.
  • the first pressure reducing groove 132 (first pressure reducing flow path 142) is disposed in the first flow path and the second flow path upstream of the flow rate reducing unit 160, and the first connection groove 131 (first connection flow path 141). ) And the second connection groove 133 (second connection flow path 143).
  • the first decompression groove 132 (first decompression channel 142) reduces the pressure of the irrigation liquid introduced from the water intake 150 and guides it to the second connection groove 133 (second connection channel 143).
  • the first decompression groove 132 is linearly arranged along the major axis direction of the emitter 120 at the outer edge portion of the back surface 124.
  • the upstream end of the first decompression groove 132 is connected to the first connection groove 131, and the downstream end of the first decompression groove 132 is connected to the upstream end of the second connection groove 133.
  • the shape of the first decompression groove 132 is not particularly limited as long as the above-described function can be exhibited.
  • the plan view shape of the first decompression groove 132 is a zigzag shape.
  • first triangular protrusions 132a having a substantially triangular prism shape protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows.
  • the first convex portion 132 a is arranged so that the tip does not exceed the central axis of the first decompression groove 132 when viewed in plan.
  • the first decompression channel 142 is formed by the first decompression groove 132 and the inner wall surface of the tube 110.
  • the irrigation liquid taken in from the water intake unit 150 is decompressed by the first decompression channel 142 and guided to the second connection groove 133 (second connection channel 143).
  • the second connection groove 133 (second connection flow path 143) includes a first pressure reduction groove 132 (first pressure reduction flow path 142), a second pressure reduction groove 134 (second pressure reduction flow path 144), and a third pressure reduction groove 135 ( A third decompression channel 145) is connected.
  • the second connection groove 133 is formed linearly along the minor axis direction of the emitter 120 at the outer edge portion of the back surface 124.
  • the second connection channel 143 is formed by the second connection groove 133 and the inner wall surface of the tube 110.
  • the second decompression groove 134 (second decompression flow path 144) is disposed in the first flow path upstream of the flow rate reduction unit 160, and the second connection groove 133 (second connection flow path 143) and the flow rate reduction.
  • the unit 160 is connected.
  • the second decompression groove 134 (second decompression flow path 144) reduces the pressure of the irrigation liquid that has flowed in from the second connection groove 133 (second connection flow path 143) and guides it to the flow rate reduction unit 160.
  • the second decompression groove 134 is disposed along the major axis direction of the emitter 120 at the outer edge portion of the back surface 124.
  • the upstream end of the second decompression groove 134 is connected to the downstream end of the second connection groove 133, and the downstream end of the second decompression groove 134 is connected to the first connection through-hole 165 communicating with the flow rate reducing portion 160.
  • the shape of the second decompression groove 134 is not particularly limited as long as the above-described function can be exhibited.
  • the plan view shape of the second decompression groove 134 is a zigzag shape similar to the shape of the first decompression groove 132.
  • substantially triangular prism-shaped second protrusions 134a protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows.
  • the second convex portion 134a is arranged so that the tip does not exceed the central axis of the second decompression groove 134 when viewed in plan.
  • the second decompression channel 144 is formed by the second decompression groove 134 and the inner wall surface of the tube 110.
  • the second decompression groove 134 (second decompression channel 144) is longer than a third decompression groove 135 (third decompression channel 145) described later. Therefore, the irrigation liquid flowing through the second decompression groove 134 (second decompression flow path 144) is decompressed more than the irrigation liquid flowing through the third decompression groove 135 (third decompression flow path 145).
  • a part of the irrigation liquid taken in from the water intake unit 150 and decompressed in the first decompression channel 142 is decompressed by the second decompression channel 144 and guided to the flow rate reduction unit 160.
  • the third decompression groove 135 (third decompression channel 145) is disposed in the second channel upstream of the channel opening / closing part 170, and is connected to the second connection groove 133 (second connection channel 143).
  • the road opening / closing part 170 is connected.
  • the third decompression groove 135 (third decompression flow path 145) reduces the pressure of the irrigation liquid flowing in from the second connection groove 133 (second connection flow path 143) and guides it to the flow path opening / closing part 170.
  • the third decompression groove 135 is disposed along the major axis direction of the emitter 120 in the central portion of the back surface 124.
  • the upstream end of the third decompression groove 135 is connected to the second connection channel 143, and the downstream end of the third decompression groove 135 is connected to the third connection through-hole 174 communicating with the channel opening / closing part 170.
  • the shape of the third decompression groove 135 is not particularly limited as long as the above function can be exhibited.
  • the plan view shape of the third decompression groove 135 is a zigzag shape similar to the shape of the first decompression groove 132.
  • substantially triangular prism-shaped third projections 135a protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows.
  • the third convex portion 135a is arranged so that the tip does not exceed the central axis of the third decompression groove 135 when viewed in plan.
  • a third decompression channel 145 is formed by the third decompression groove 135 and the inner wall surface of the tube 110.
  • the other part of the irrigation liquid taken in from the water intake unit 150 and decompressed in the first decompression channel 142 is decompressed by the third decompression channel 145 and guided to the channel opening / closing unit 170.
  • the second flow path functions only when the pressure of the irrigation liquid is low.
  • the flow rate reducing unit 160 is disposed between the second decompression channel 144 (second decompression groove 134) and the ejection channel 147 in the first channel, and is disposed on the surface 125 side of the emitter 120. Yes.
  • the flow rate reduction unit 160 sends the irrigation liquid to the discharge unit 180 while reducing the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube 110.
  • the configuration of the flow rate reducing unit 160 is not particularly limited as long as the above-described function can be exhibited.
  • the flow rate reducing portion 160 includes a flow rate reducing recess 161, a first valve seat portion 162, a communication groove 163, and a flow rate reducing through-hole 164 communicating with the discharge portion 180 (discharge flow path 147).
  • a flow rate reducing through hole 164 communicating with the discharge unit 180, a first connection through hole 165 communicating with the second pressure reducing groove 134 (second pressure reducing channel 144), and a first A second connection through hole 166 communicating with the third connection groove 136 (third connection flow path 146) is opened.
  • the plan view shape of the concave portion 161 for reducing the flow rate is a substantially circular shape.
  • a first connection connection connected to the flow rate reducing through hole 164 (discharge channel 147) communicating with the discharge unit 180 and the second pressure reducing groove 134 (second pressure reducing channel 144).
  • a through hole 165, a second connection through hole 166 communicating with the third connection groove 136 (third connection flow path 146), and a first valve seat portion 162 are disposed.
  • the depth of the flow rate reducing recess 161 is not particularly limited as long as it is equal to or greater than the depth of the communication groove 163.
  • the first valve seat 162 is disposed on the bottom surface of the flow rate reducing recess 161 so as to surround the flow rate reducing through hole 164.
  • the first valve seat 162 is formed so that the first diaphragm 167 can be in close contact when the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the second pressure.
  • the flow rate of the irrigation liquid flowing from the flow rate reducing recess portion 161 into the discharge portion 180 is decreased.
  • the shape of the 1st valve seat part 162 will not be specifically limited if the above-mentioned function can be exhibited.
  • the shape of the first valve seat portion 162 is an annular convex portion.
  • the end surface of the annular convex portion has a height from the bottom surface of the flow rate reducing concave portion 161 that decreases from the inside toward the outside.
  • a communication groove 163 that communicates the inside of the flow rate reducing recess 161 and the flow rate reducing through hole 164 is formed in a part of the region where the first diaphragm portion 167 of the first valve seat 162 can be in close contact.
  • the first connection through hole 165 communicated with the second decompression groove 134 (second decompression flow path 144) and the second connection through hole 166 communicated with the third connection groove 136 (third connection flow path 146) are:
  • the bottom surface of the flow rate reducing recess 161 is formed in a region where the first valve seat 162 is not disposed.
  • the first connection through hole 165 communicating with the second decompression groove 134 (second decompression flow path 144) is disposed so as to be surrounded by the first valve seat 162, and is used for reducing the flow rate communicating with the discharge unit 180.
  • the through hole 164 may be disposed outside the first valve seat portion 162.
  • the flow rate reducing through-hole 164 (discharge channel 147) is disposed at the center of the bottom surface of the flow rate reducing recess 161, and is connected to the flow rate reducing unit 160 at the first opening 164a and at the second opening 164b.
  • the discharge unit 180 is connected.
  • the discharge flow path 147 has a larger flow path diameter, a low-pressure circulation part 164c through which irrigation liquid can flow even at low pressure, and a smaller flow path diameter for irrigation unless the pressure is high.
  • a high-pressure circulation part 164d through which liquid is difficult to circulate. More specifically, the high-pressure flow part 164d has a flow path diameter decreasing part in which the flow path diameter continuously decreases in the flow direction of the irrigation liquid.
  • the end of the high-pressure circulation part 164d on the discharge part 180 side is a second opening part 164b.
  • the discharge channel 147 has the largest channel diameter at the first opening 164 a that opens to the flow rate reducing unit 160, and the smallest channel diameter at the second opening 164 b that opens to the discharge unit 180.
  • the first diaphragm portion 167 is a part of the film 122.
  • the first diaphragm portion 167 is disposed so as to block communication between the inside of the flow rate reducing recess 161 and the inside of the tube 110.
  • the first diaphragm portion 167 has flexibility and is deformed so as to contact the first valve seat portion 162 according to the pressure of the irrigation liquid in the tube 110. Specifically, the first diaphragm portion 167 deforms toward the first valve seat portion 162 as the pressure of the irrigation liquid increases, and eventually comes into contact with the first valve seat portion 162.
  • the first diaphragm portion 167 blocks the first connection through hole 165, the flow rate reduction through hole 164, and the communication groove 163. Therefore, the irrigation liquid sent from the first connection through hole 165 can be sent to the discharge unit 180 through the communication groove 163 and the flow rate reduction through hole 164.
  • the first diaphragm portion 167 is disposed adjacent to a second diaphragm portion 175 described later.
  • the channel opening / closing unit 170 is disposed between the third decompression channel 145 (third decompression groove 135) and the discharge unit 180 in the second channel, and is disposed on the surface 125 side of the emitter 120. Yes.
  • the channel opening / closing unit 170 opens and closes the second channel according to the pressure in the tube 110 and sends the irrigation liquid to the discharge unit 180.
  • the channel opening / closing part 170 is connected to the flow rate reducing unit 160 via the channel opening / closing through hole 173, the third connection channel 146, and the second connection through hole 166.
  • the irrigation liquid from the decompression channel 145 (third decompression groove 135) reaches the discharge unit 180 through the channel opening / closing unit 170, the third connection channel 146, and the flow rate reduction unit 160.
  • the configuration of the flow path opening / closing portion 170 is not particularly limited as long as the above-described function can be exhibited.
  • the channel opening / closing part 170 is a channel opening / closing through hole that communicates with the channel opening / closing recess 171, the second valve seat 172, and the second connection through hole 166 of the flow rate reducing unit 160.
  • a third connection through hole 174 communicating with the third decompression channel 145 (third decompression groove 135) and a channel opening / closing through hole 173 communicating with the flow rate reducing unit 160 are provided. And are open.
  • the channel opening / closing recess 171 communicates with the flow rate reducing recess 161 of the flow rate reducing unit 160.
  • the plan view shape of the channel opening / closing recess 171 is substantially circular.
  • a third connection through hole 174 connected to the third decompression groove 135, a channel opening / closing through hole 173 connected to the third connection channel 146, and a second A valve seat 172 is disposed on the bottom surface of the channel opening / closing recess 171.
  • the end surface of the second valve seat portion 172 is disposed closer to the surface 125 than the end surface of the first valve seat portion 162. That is, the second valve seat portion 172 is formed higher than the first valve seat portion 162. Accordingly, when the film 122 is deformed by the pressure of the irrigation liquid, the film 122 contacts the second valve seat portion 172 before the first valve seat portion 162.
  • the third connection through hole 174 communicating with the third decompression groove 135 is formed in a region where the second valve seat 172 is not disposed on the bottom surface of the flow path opening / closing recess 171.
  • the second valve seat 172 is disposed on the bottom surface of the channel opening / closing recess 171 so as to surround the channel opening / closing through hole 173.
  • the second valve seat portion 172 is disposed in a non-contact manner facing the second diaphragm portion 175, and when the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 175 can be in close contact. It is formed as follows.
  • the second diaphragm portion 175 When the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 175 is in close contact with the second valve seat portion 172 and closes the flow passage opening / closing through-hole 173, resulting in the second Block the flow path.
  • the shape of the 2nd valve seat part 172 will not be specifically limited if the above-mentioned function can be exhibited.
  • the second valve seat portion 172 is an annular convex portion arranged so as to surround the flow passage opening / closing through hole 173.
  • the second diaphragm portion 175 is a part of the film 122 and is disposed adjacent to the first diaphragm portion 167.
  • the second diaphragm portion 175 is disposed so as to block communication between the inside of the channel opening / closing recess 171 and the inside of the tube 110.
  • the second diaphragm portion 175 has flexibility and is deformed so as to contact the second valve seat portion 172 in accordance with the pressure of the irrigation liquid in the tube 110. Specifically, the second diaphragm portion 175 is deformed toward the second valve seat portion 172 as the pressure of the irrigation liquid increases, and when the pressure of the irrigation liquid reaches the first pressure, Contact the seat 172. As a result, the second flow path (flow path opening / closing through hole 173) is closed.
  • the discharge unit 180 is disposed on the back surface 124 side of the emitter 120 so as to face the discharge port 112.
  • the discharge unit 180 sends the irrigation liquid from the flow rate reducing through-hole 164 to the discharge port 112 of the tube 110. Accordingly, the discharge unit 180 can discharge the irrigation liquid to the outside of the emitter 120.
  • the structure of the discharge part 180 will not be specifically limited if the above-mentioned function can be exhibited.
  • the discharge unit 180 includes a discharge recess 181 and an intrusion prevention unit 182.
  • the discharge recess 181 is disposed on the back surface 124 side of the emitter 120.
  • the shape of the discharge recess 181 in plan view is substantially rectangular.
  • a flow rate reducing through hole 164 and an intrusion prevention unit 182 are arranged on the bottom surface of the discharge recess 181.
  • the intrusion prevention unit 182 prevents intrusion of foreign matter from the discharge port 112.
  • the intrusion prevention unit 182 is not particularly limited as long as it can perform the above-described function.
  • intrusion prevention unit 182 has two protruding strips 183 disposed adjacent to each other. The two ridges 183 are arranged so as to be positioned between the flow rate reducing through hole 164 and the discharge port 112 when the emitter 120 is joined to the tube 110.
  • the film 122 is formed of a flexible resin material.
  • the material of the film 122 can be appropriately set according to the desired flexibility.
  • Examples of the resin include polyethylene.
  • the flexibility of the film 122 can also be adjusted by using a resin material having elasticity.
  • An example of a method for adjusting the flexibility of the film 122 is the same as the method for adjusting the flexibility of the emitter body 121.
  • the shape and size of the film 122 can be appropriately set according to the size of the emitter main body 121 and the through holes and recesses formed in the emitter main body 121.
  • the thickness of the film 122 can be appropriately set according to the desired flexibility.
  • the film 122 can be manufactured by injection molding, for example.
  • the hinge portion 123 is connected to a part of the surface 125 of the emitter body 121.
  • the thickness of the hinge portion 123 is the same as that of the film 122 and is integrally formed with the emitter body 121 and the film 122.
  • the film 122 may be prepared as a separate body from the emitter body 121 and bonded to the emitter body 121.
  • the emitter 120 is configured by rotating the film 122 around the hinge portion 123 and joining it to the surface 125 of the emitter body 121.
  • a method for joining the emitter body 121 and the film 122 is not particularly limited. Examples of the method of joining the emitter body 121 and the film 122 include welding of a resin material constituting the film 122, adhesion with an adhesive, and the like. In addition, you may cut
  • irrigation liquid is fed into the tube 110.
  • irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof.
  • the pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged.
  • the irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake unit 150. Specifically, the irrigation liquid in the tube 110 enters the water intake recess 153 through the slit 154 or the gap between the protrusions 155 and passes through the water intake through hole 152.
  • the water intake part 150 has the water intake side screen part 151 (gap between the slit 154 and the protrusion 155), the suspended
  • the irrigation liquid taken from the water intake unit 150 reaches the first connection channel 141.
  • the irrigation liquid that has reached the first connection channel 141 passes through the first decompression channel 142 and reaches the second connection channel 143.
  • the irrigation liquid that has reached the second connection channel 143 flows into the second decompression channel 144 and the third decompression channel 145.
  • the irrigation liquid advances in advance through the third decompression channel 145 having a shorter channel length and less pressure loss than the second decompression channel 144.
  • the irrigation liquid that has flowed into the third decompression flow path 145 flows into the flow path opening / closing part 170 through the third connection through hole 174.
  • the irrigation liquid that has flowed into the flow path opening / closing section 170 flows into the flow rate reducing section 160 through the flow path opening / closing through hole 173, the third connection flow path 146, and the second connection through hole 166.
  • the irrigation liquid that has flowed into the flow rate reduction unit 160 flows into the discharge unit 180 through the flow rate reduction through hole 164.
  • the irrigation liquid that has flowed into the discharge unit 180 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
  • the irrigation liquid that has flowed into the second decompression flow path 144 flows into the flow rate reduction unit 160 through the first connection through hole 165.
  • the irrigation liquid that has flowed into the flow rate reduction unit 160 flows into the discharge unit 180 through the flow rate reduction through hole 164.
  • the irrigation liquid that has flowed into the discharge unit 180 is discharged out of the tube 110 from the discharge port 112 of the tube 110.
  • the flow channel opening / closing portion 170 and the flow rate reducing portion 160 communicate with each other via the flow channel opening / closing through hole 173 and the second connection through hole 166.
  • the flow rate reducing unit 160 controls the flow rate of the irrigation liquid by deforming the first diaphragm unit 167 according to the pressure of the irrigation liquid in the tube 110, and the flow path opening / closing unit 170 controls the flow rate in the tube 110.
  • the flow rate of the irrigation liquid is controlled by deforming the second diaphragm portion 175 according to the pressure of the irrigation liquid. Therefore, the operation of the flow rate reducing unit 160 and the flow path opening / closing unit 170 according to the pressure of the irrigation liquid in the tube 110 will be described.
  • FIGS. 6A to 6C are schematic diagrams showing the operational relationship between the flow rate reducing unit 160 and the flow path opening / closing unit 170.
  • FIG. 6A to 6C are diagrams schematically showing a cross section taken along the line DD shown in FIG. 2B in order to explain the operation of the emitter 120.
  • 6A is a cross-sectional view when the irrigation liquid is not supplied to the tube 110
  • FIG. 6B is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the first pressure
  • FIG. 6C is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the second pressure exceeding the first pressure.
  • the first diaphragm portion 167 and the second diaphragm portion 175 are not deformed (see FIG. 6A).
  • the first diaphragm portion 167 of the flow rate reducing portion 160 starts to deform toward the first valve seat portion 162.
  • the second diaphragm part 175 of the flow path opening / closing part 170 starts to deform toward the second valve seat part 172.
  • the irrigated liquid thus discharged is discharged to the outside from the discharge port 112 of the tube 110 through both the first flow path and the second flow path.
  • the irrigation liquid taken from the water intake unit 150 is the first flow. It is discharged through both the channel and the second channel.
  • the second diaphragm portion 175 contacts the second valve seat portion 172 and closes the second flow path (see FIG. 6B). At this time, the first diaphragm portion 167 is not in contact with the first valve seat portion 162.
  • the second diaphragm portion 175 is close to the second valve seat portion 172, and thus is discharged through the second flow path. The amount of irrigation liquid is reduced.
  • the irrigation liquid in the second flow path is not discharged from the discharge unit 180.
  • the irrigation liquid taken from the water intake unit 150 is discharged from the discharge unit 180 of the tube 110 to the outside through only the first flow path.
  • the first diaphragm portion 167 When the pressure of the irrigation liquid in the tube 110 is further increased, the first diaphragm portion 167 is further deformed toward the first valve seat portion 162. Normally, as the pressure of the irrigation liquid increases, the amount of the irrigation liquid flowing through the first flow path should increase, but in the emitter 120 according to the present embodiment, the irrigation liquid in the second flow path. The pressure between the first diaphragm 167 and the first valve seat 162 is reduced, thereby preventing an excessive increase in the amount of irrigation liquid flowing through the first flow path. Then, when the pressure of the irrigation liquid in the tube 110 is equal to or higher than the second pressure exceeding the first pressure, the first diaphragm portion 167 contacts the first valve seat portion 162 (see FIG. 6C).
  • the irrigation liquid introduced from the water intake portion 150 passes through the communication groove 163, and the tube. 110 is discharged from the discharge unit 180 to the outside.
  • the flow rate reducing unit 160 makes the first flow path when the first diaphragm portion 167 contacts the first valve seat portion 162. The increase in the amount of irrigation liquid flowing through
  • the emitter 120 has the discharge channel 147 having the high-pressure circulation part, so that the internal pressure of the flow rate reduction unit 160 is the discharge flow having no high-pressure circulation part. It becomes higher than the internal pressure of the flow rate reducing portion 160 in the emitter having the path 147. As a result, the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the internal pressure of the flow rate reducing unit 160 becomes smaller, and the first diaphragm unit 167 is more difficult to deform.
  • the pressure (second pressure) necessary for the first diaphragm portion 167 to reach the first valve seat portion 162 is also increased at the same time.
  • the second pressure is further decreased by simultaneously increasing the height of the first valve seat 162, and the liquid amount of the irrigation liquid is increased. What is necessary is just to adjust the pressure (2nd pressure) which the flow volume reduction part 160 suppresses increase.
  • the discharge channel 147 connecting the flow rate reducing unit 160 and the discharge unit 180 includes a low-pressure circulation unit having a large channel diameter and a high-pressure circulation unit having a small channel diameter. And have.
  • the discharge flow path 147 having the high-pressure circulation part makes it possible to suppress an increase in the amount of irrigation liquid by the flow rate reduction part 160 at a predetermined second pressure while reducing the deformation amount of the first diaphragm part 167. For this reason, the first diaphragm portion 167 is unlikely to undergo creep deformation and easily returns to its original shape when the pressure of the irrigation liquid in the tube 110 becomes small. Therefore, the first diaphragm portion 167 does not depend on the pressure of the irrigation liquid in the tube 110. The irrigation liquid can be dripped quantitatively.
  • the first diaphragm portion 167 is deformed more largely than the second diaphragm portion 175. Therefore, creep deformation is more likely to occur in the first diaphragm portion 167 than in the second diaphragm portion 175.
  • the discharge flow path 147 having a high-pressure circulation part is used, so that creep deformation is suppressed and the discharge amount when the pressure of the irrigation liquid is small is adjusted. This effect is more noticeable.
  • the discharge channel 147 has the largest channel diameter in the first opening 164 a that opens to the flow rate reducing unit 160, and the second opening that opens to the discharge unit 180.
  • the flow path diameter is the smallest and the through hole does not increase in the flow direction of the irrigation liquid, so that it can be easily pulled out from the mold during molding using the mold. .
  • the configurations of the emitter and the drip irrigation tube according to the present invention are not limited to the emitter 120 and the drip irrigation tube 100 according to the above embodiment.
  • the discharge channel 147 does not have to be a through hole having the smallest channel diameter in the second opening 164b that opens to the discharge unit 180, and a high-pressure circulation part is provided in the middle of the through hole as shown in FIG.
  • the high-pressure circulation part may be provided in a region including the first opening 164a.
  • the opening diameter of the second opening 164b may be larger than the flow path diameter of the high-pressure circulation part.
  • the discharge flow path 147 does not need to have a flow path diameter decreasing portion in which the flow path diameter continuously decreases as a high-pressure circulation section, and may have a region in which the flow path diameter decreases discontinuously (stepped). .
  • the discharge flow path 147 may have a shape like a screw hole, for example, as shown in FIG.
  • the internal pressure of the flow rate reducing portion 160 can be increased at the crest portion 164e of the screw hole (the portion where the flow path diameter becomes narrow).
  • the irrigation liquid can flow along the valley 164f of the screw hole (portion in which the flow path diameter is widened), it is possible to make it difficult for the flow rate to decrease while providing the high-pressure circulation portion.
  • the twist angle of the screw part formed in the discharge channel 147 having a shape like a screw hole can be arbitrarily determined in a range of 3 ° to 20 °, for example, 10 ° shown in FIG. The angle may be 5 ° shown in FIG. 8B.
  • the discharge flow path 147 does not need to be a through hole, and the flow rate reducing through hole 164 disposed from the flow rate reducing unit 160 toward the back surface 124 of the emitter 120 and the connection disposed at the back surface 124 of the emitter 120.
  • channel and the connection flow path formed of the inner wall face of the tube 110 may be sufficient.
  • the amount of deformation of the membrane member is further reduced to suppress creep deformation of the membrane member, and the amount of irrigation liquid discharged can be controlled regardless of the pressure of the irrigation liquid in the tube. It is possible to easily provide a possible emitter. Therefore, according to the present invention, it is expected that the emitter will be widely used in technical fields that require long-term dripping, such as drip irrigation and durability tests, and that the technical field will be further developed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Reciprocating Pumps (AREA)
  • Nozzles (AREA)

Abstract

The purpose of the present invention is to provide an emitter capable of controlling the amount of a discharged irrigation-liquid without relying on the pressure of the irrigation liquid inside a tube, while further reducing the deformation amount of a membrane member. The foregoing is achieved by an emitter including: a water intake part for taking in the irrigation liquid; a discharge part disposed facing the discharge port, the discharge part being for discharging the irrigation liquid; and a flow path for connecting the water intake part and the discharge part. In the emitter, the flow path includes: a flow rate reduction part containing a flexible first diaphragm disposed so as to partition the inside of the emitter and the inside of the tube, the flow rate reduction part reducing the flow rate of the irrigation liquid as a result of the first diaphragm deforming in accordance with the pressure of the irrigation liquid in the tube; and a discharge flow path that connects the flow rate reduction part and the discharge part. The discharge flow path has a low-pressure circulation part with a large flow path diameter, and a high-pressure circulation part with a small flow path diameter.

Description

エミッタおよび点滴灌漑用チューブEmitter and drip irrigation tubes
 本発明は、エミッタおよび点滴灌漑用チューブに関する。 The present invention relates to an emitter and a drip irrigation tube.
 以前から、植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌上に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料などの灌漑用液体を滴下する方法である。近年、点滴灌漑法は、灌漑用液体の消費量を最小限にすることが可能であるため、特に注目されている。 For some time, drip irrigation has been known as one of the plant cultivation methods. The drip irrigation method is a method in which a drip irrigation tube is arranged on the soil in which plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil. In recent years, drip irrigation has attracted particular attention because it can minimize the consumption of irrigation liquid.
 点滴灌漑用チューブは、通常、灌漑用液体が吐出される複数の貫通孔が形成されたチューブと、各貫通孔から灌漑用液体を吐出するための複数のエミッタ(「ドリッパ」ともいう)を有する。また、エミッタの種類としては、チューブの内壁面に接合して使用されるエミッタ(例えば、特許文献1参照)と、チューブに外側から突き刺して使用されるエミッタとが知られている。 A drip irrigation tube usually has a tube formed with a plurality of through holes through which irrigation liquid is discharged, and a plurality of emitters (also referred to as “drippers”) for discharging the irrigation liquid from each through hole. . As types of emitters, there are known an emitter that is used while being joined to the inner wall surface of the tube (see, for example, Patent Document 1), and an emitter that is used by piercing the tube from the outside.
 特許文献1には、チューブの内壁面に接合されるエミッタが記載されている。特許文献1に記載のエミッタは、灌漑用液体を取り入れるための取水口を有する第1部材と、灌漑用液体を排出するための排出口を有する第2部材と、第1部材および第2部材の間に配置された膜部材とを有する。第1部材の内側には、取水口を取り囲むように配置された弁座部と、減圧流路の一部となる減圧溝とが形成されている。膜部材には、減圧溝の下流端に対応する位置に貫通孔が形成されている。 Patent Document 1 describes an emitter bonded to the inner wall surface of a tube. An emitter described in Patent Document 1 includes a first member having a water intake for taking in irrigation liquid, a second member having a discharge port for discharging irrigation liquid, and the first member and the second member. And a membrane member disposed therebetween. Inside the first member, there are formed a valve seat portion arranged so as to surround the water intake port and a decompression groove which becomes a part of the decompression flow path. A through hole is formed in the membrane member at a position corresponding to the downstream end of the decompression groove.
 第1部材、膜部材および第2部材を積層することで、減圧流路が形成されるとともに、膜部材が弁座部に接触して取水口を閉塞する。また、取水口から排出口まで、灌漑用液体が流れる流路が形成される。 The first member, the membrane member, and the second member are stacked to form a decompression flow path, and the membrane member contacts the valve seat portion and closes the water intake. In addition, a flow path through which the irrigation liquid flows is formed from the intake port to the discharge port.
 特許文献1に記載のエミッタでは、チューブ内の灌漑用液体の圧力が所定の圧力以上となった場合に、取水口を閉塞している膜部材が灌漑用液体によって押し込まれて、灌漑用液体がエミッタ内に流入するようになっている。エミッタ内に流入した灌漑用液体は、減圧流路により減圧されて定量的に排出口から排出される。 In the emitter described in Patent Document 1, when the pressure of the irrigation liquid in the tube becomes equal to or higher than a predetermined pressure, the membrane member closing the intake port is pushed in by the irrigation liquid, and the irrigation liquid is It flows into the emitter. The irrigation liquid that has flowed into the emitter is depressurized by the depressurization channel and quantitatively discharged from the discharge port.
特開2010-046094号公報JP 2010-046094 A
 しかしながら、特許文献1に記載のエミッタのように、水圧で変形する膜部材を使用して排出される灌漑用液体の量を調整する点滴灌漑用チューブでは、長期間の使用中に膜部材がクリープ変形を生じてしまうことがある。クリープ変形が生じると、チューブ内の灌漑用液体の圧力が低くなったときに膜部材がもとの形状に戻りにくくなるため、灌漑用液体の圧力が低いときにエミッタから吐出される灌漑用液体の量を多くすることが困難になる。クリープ変形は、膜部材の変形量が大きいときにより生じやすいと考えられる。 However, in the drip irrigation tube that adjusts the amount of irrigation liquid discharged using a membrane member that is deformed by water pressure, such as the emitter described in Patent Document 1, the membrane member creeps during long-term use. Deformation may occur. When creep deformation occurs, the membrane member becomes difficult to return to its original shape when the pressure of the irrigation liquid in the tube is low, so the irrigation liquid discharged from the emitter when the pressure of the irrigation liquid is low It becomes difficult to increase the amount of. It is considered that creep deformation is more likely to occur when the amount of deformation of the membrane member is large.
 そこで、本発明の目的は、膜部材の変形量をより小さくしつつ、チューブ内の灌漑用液体の圧力によらずに吐出される灌漑用液体の量を制御することができるエミッタおよび点滴灌漑用チューブを提供することである。 Therefore, an object of the present invention is to provide an emitter and drip irrigation that can control the amount of irrigation liquid discharged without depending on the pressure of the irrigation liquid in the tube while reducing the deformation amount of the membrane member. Is to provide a tube.
 上記の課題を解決するため、本発明に関するエミッタは、灌漑用液体を流通させるチューブの内壁面であり、かつ前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、前記灌漑用液体を取り入れるための取水部と、前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、前記取水部および前記吐出部を繋ぐ流路と、を有し、前記流路は、流量減少用凹部および前記流量減少用凹部と前記チューブの内部とを仕切るように配置される可撓性の第1ダイヤフラム部を含み、前記チューブ内の前記灌漑用液体の圧力に応じて、前記第1ダイヤフラム部が変形することにより前記灌漑用液体の流量を減少させる流量減少部と、前記流量減少部と前記吐出部とを繋ぐ吐出流路と、を有し、前記吐出流路は、流路径が大きい低圧流通部と流路径が小さい高圧流通部とを有する。 In order to solve the above problems, an emitter according to the present invention is an inner wall surface of a tube through which an irrigation liquid is circulated, and is joined to a position corresponding to a discharge port communicating between the inside and the outside of the tube, and the emitter in the tube An emitter for quantitatively discharging the irrigation liquid from the discharge port to the outside of the tube, the water intake unit for taking in the irrigation liquid, and being disposed facing the discharge port, the irrigation liquid And a flow passage connecting the water intake portion and the discharge portion, the flow passage partitioning the flow rate reducing recess and the flow rate reducing recess from the inside of the tube. The flow rate of the irrigation liquid is reduced by deformation of the first diaphragm portion according to the pressure of the irrigation liquid in the tube. And a discharge flow path connecting the flow reduction section and the discharge section, and the discharge flow path includes a low pressure flow section having a large flow path diameter and a high pressure flow section having a small flow path diameter. .
 本発明に係るエミッタは、膜部材の変形量をより小さくしつつ、チューブ内の灌漑用液体の圧力によらずに吐出される灌漑用液体の量を制御することができる。 The emitter according to the present invention can control the amount of the irrigation liquid that is discharged regardless of the pressure of the irrigation liquid in the tube while reducing the deformation amount of the membrane member.
図1は、本発明の一実施の形態に係る点滴灌漑用チューブの断面図である。FIG. 1 is a cross-sectional view of a drip irrigation tube according to an embodiment of the present invention. 図2A~Cは、本発明の一実施の形態に係るエミッタの構成を示す図である。2A to 2C are diagrams showing the configuration of the emitter according to one embodiment of the present invention. 図3A、Bは、本発明の一実施の形態に係るエミッタの構成を示す図である。3A and 3B are diagrams showing the configuration of the emitter according to one embodiment of the present invention. 図4A、Bは、本発明の一実施の形態に係るエミッタの構成を示す図である。4A and 4B are diagrams showing the configuration of the emitter according to one embodiment of the present invention. 図5は、本発明の一実施の形態に係るエミッタの構成を示す部分拡大図である。FIG. 5 is a partially enlarged view showing the configuration of the emitter according to one embodiment of the present invention. 図6A~Cは、本発明の一実施の形態に係るエミッタの動作を説明するための模式図である。6A to 6C are schematic views for explaining the operation of the emitter according to the embodiment of the present invention. 図7は、本発明の別の実施の形態に係るエミッタの構成を示す部分拡大図である。FIG. 7 is a partially enlarged view showing a configuration of an emitter according to another embodiment of the present invention. 図8A、Bは、本発明のさらに別の実施の形態に係るエミッタの構成を示す部分拡大図である。8A and 8B are partially enlarged views showing the configuration of an emitter according to still another embodiment of the present invention.
 以下、本発明の一実施の形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 (点滴灌漑用チューブおよびエミッタの構成)
 図1は、本実施の形態に係る点滴灌漑用チューブ100の軸に沿う方向における断面図である。
(Composition of drip irrigation tube and emitter)
FIG. 1 is a cross-sectional view in the direction along the axis of the drip irrigation tube 100 according to the present embodiment.
 図1に示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。 As shown in FIG. 1, the drip irrigation tube 100 has a tube 110 and an emitter 120.
 チューブ110は、灌漑用液体を流すための管である。チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。チューブ110の管壁には、チューブ110の軸方向において所定の間隔(例えば、200~500mm)で灌漑用液体を吐出するための複数の吐出口112が形成されている。吐出口112の開口部の直径は、灌漑用液体を吐出することができれば特に限定されない。本実施の形態では、吐出口112の開口部の直径は、1.5mmである。チューブ110の内壁面の吐出口112に対応する位置には、エミッタ120がそれぞれ接合される。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を配置することができれば特に限定されない。 The tube 110 is a tube for flowing irrigation liquid. The material of the tube 110 is not particularly limited. In the present embodiment, the material of the tube 110 is polyethylene. A plurality of discharge ports 112 for discharging irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110. The diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm. Emitters 120 are respectively joined to positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110. The cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
 点滴灌漑用チューブ100は、エミッタ120の裏面124をチューブ110の内壁面に接合することによって作製される。チューブ110とエミッタ120との接合方法は、特に限定されない。チューブ110とエミッタ120との接合方法の例には、エミッタ120またはチューブ110を構成する樹脂材料の溶着や、接着剤による接着などが含まれる。なお、通常、吐出口112は、チューブ110とエミッタ120とを接合した後に形成されるが、接合前に形成されてもよい。 The drip irrigation tube 100 is manufactured by joining the back surface 124 of the emitter 120 to the inner wall surface of the tube 110. The method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method for joining the tube 110 and the emitter 120 include welding of a resin material constituting the emitter 120 or the tube 110, adhesion by an adhesive, and the like. Normally, the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
 図2Aは、エミッタ本体121とフィルム122とを接合する前のエミッタ120の平面図であり、図2Bは、エミッタ本体121とフィルム122とを接合した後のエミッタ120の平面図であり、図2Cは、エミッタ本体121とフィルム122とを接合した後のエミッタ120の底面図である。図3Aは、エミッタ120の側面図であり、図3Bは、図2Bに示されるA-A線の断面図である。図4Aは、エミッタ120の側面図の側面図であり、図4Bは、図2Bに示されるB-B線のエミッタ本体121の断面図である。図5は、図3Bに示される領域Cの部分拡大図である。 2A is a plan view of the emitter 120 before the emitter body 121 and the film 122 are joined, and FIG. 2B is a plan view of the emitter 120 after the emitter body 121 and the film 122 are joined. These are bottom views of the emitter 120 after the emitter body 121 and the film 122 are joined together. 3A is a side view of the emitter 120, and FIG. 3B is a cross-sectional view taken along line AA shown in FIG. 2B. 4A is a side view of the side view of the emitter 120, and FIG. 4B is a cross-sectional view of the emitter body 121 taken along the line BB shown in FIG. 2B. FIG. 5 is a partially enlarged view of a region C shown in FIG. 3B.
 図1に示されるように、エミッタ120は、吐出口112を覆うようにチューブ110の内壁面に接合されている。エミッタ120の形状は、チューブ110の内壁面に密着して、吐出口112を覆うことができれば特に限定されない。本実施の形態では、チューブ110の軸方向に垂直なエミッタ120の断面における、チューブ110の内壁面に接合する裏面124の形状は、チューブ110の内壁面に沿うように、チューブ110の内壁面に向かって凸の略円弧形状である。エミッタ120の平面形状は、四隅がR面取りされた略矩形である。エミッタ120の大きさは、特に限定されない。本実施の形態では、エミッタ120の長辺方向の長さは25mmであり、短辺方向の長さは8mmであり、高さは2.5mmである。 As shown in FIG. 1, the emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112. The shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112. In the present embodiment, the shape of the back surface 124 joined to the inner wall surface of the tube 110 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is formed on the inner wall surface of the tube 110 so as to be along the inner wall surface of the tube 110. It has a generally arc shape that is convex toward the top. The planar shape of the emitter 120 is a substantially rectangular shape with four corners rounded. The size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
 図1、図2A~C、図3A、B、図4A、Bおよび図5に示されるように、エミッタ120は、チューブ110の内壁面に接合されるエミッタ本体121と、エミッタ本体121に接合されたフィルム122とを有する。エミッタ本体121およびフィルム122は、一体として形成されていてもよいし、別体として形成されていてもよい。本実施の形態では、エミッタ本体121およびフィルム122は、ヒンジ部123を介して一体的に形成されている。 As shown in FIGS. 1, 2A to 3C, 3A, B, 4A, B, and 5, the emitter 120 is joined to the inner wall surface of the tube 110, and the emitter body 121 is joined to the emitter body 121. Film 122. The emitter main body 121 and the film 122 may be formed integrally or may be formed separately. In the present embodiment, the emitter main body 121 and the film 122 are integrally formed via the hinge portion 123.
 エミッタ本体121およびフィルム122は、いずれも可撓性を有する一種類の材料で成形されていることが好ましい。本実施の形態では、エミッタ本体121と、ダイヤフラム部を含むフィルム122とは、可撓性を有する一種類の材料で一体的に形成されている。エミッタ本体121およびフィルム122の材料の例には、樹脂およびゴムが含まれる。エミッタ本体121が可撓性を有しない場合には、可撓性を有しない材料が選択されうる。樹脂の例には、ポリエチレンおよびシリコーンが含まれる。エミッタ本体121およびフィルム122の可撓性は、弾性を有する樹脂材料の使用によって調整することができる。エミッタ本体121およびフィルム122の可撓性の調整方法の例には、弾性を有する樹脂の選択や、硬質の樹脂材料に対する弾性を有する樹脂材料の混合比の調整などが含まれる。エミッタ本体121およびフィルム122の一体成形品は、例えば、射出成形によって製造できる。 Both the emitter body 121 and the film 122 are preferably formed of one kind of flexible material. In the present embodiment, the emitter main body 121 and the film 122 including the diaphragm portion are integrally formed of one kind of flexible material. Examples of the material of the emitter body 121 and the film 122 include resin and rubber. When the emitter body 121 does not have flexibility, a material that does not have flexibility can be selected. Examples of the resin include polyethylene and silicone. The flexibility of the emitter main body 121 and the film 122 can be adjusted by using an elastic resin material. Examples of a method for adjusting the flexibility of the emitter body 121 and the film 122 include selection of a resin having elasticity and adjustment of a mixing ratio of a resin material having elasticity with respect to a hard resin material. The integrally molded product of the emitter main body 121 and the film 122 can be manufactured by injection molding, for example.
 エミッタ120は、取水部150と、第1接続流路141の一部となる第1接続溝131と、第1減圧流路142の一部となる第1減圧溝132と、第2接続流路143の一部となる第2接続溝133と、第2減圧流路144の一部となる第2減圧溝134と、第3減圧流路145の一部となる第3減圧溝135と、第3接続流路146の一部となる第3接続溝136と、流量減少部160と、流路開閉部170と、吐出部180とを有する。取水部150、流量減少部160および流路開閉部170は、エミッタ120の表面125側に配置されている。また、第1接続溝131、第1減圧溝132、第2接続溝133、第2減圧溝134、第3減圧溝135、第3接続溝136および吐出部180は、エミッタ120の裏面124側に配置されている。エミッタ120の表面125側に配置されている各流路と、エミッタ120の裏面124側に配置されている各流路とは、後述する貫通孔により連通されている。これらの貫通孔も、流路の一部を形成する。たとえば、第3接続流路146は、流路開閉部170と第3接続溝136とを繋ぐ流路開閉用貫通孔173と、第3接続溝136と、第3接続溝136と流量減少部160とを繋ぐ第2接続用貫通孔166と、からなる。また、以降の説明において、流路開閉部170と吐出部180とを繋ぐ貫通孔を吐出流路147ともいう。 The emitter 120 includes a water intake 150, a first connection groove 131 that is a part of the first connection flow path 141, a first pressure reduction groove 132 that is a part of the first pressure reduction flow path 142, and a second connection flow path. A second connection groove 133 that is a part of the second decompression channel 144, a second decompression groove 134 that is a part of the second decompression channel 144, a third decompression groove 135 that is a part of the third decompression channel 145, A third connection groove 136 serving as a part of the three connection flow path 146, a flow rate reducing unit 160, a flow path opening / closing unit 170, and a discharge unit 180 are provided. The water intake unit 150, the flow rate reduction unit 160, and the flow path opening / closing unit 170 are disposed on the surface 125 side of the emitter 120. In addition, the first connection groove 131, the first pressure reduction groove 132, the second connection groove 133, the second pressure reduction groove 134, the third pressure reduction groove 135, the third connection groove 136, and the discharge unit 180 are disposed on the back surface 124 side of the emitter 120. Has been placed. Each flow path disposed on the front surface 125 side of the emitter 120 and each flow path disposed on the back surface 124 side of the emitter 120 are communicated with each other through a through-hole described later. These through holes also form part of the flow path. For example, the third connection channel 146 includes a channel opening / closing through hole 173 that connects the channel opening / closing part 170 and the third connection groove 136, the third connection groove 136, the third connection groove 136, and the flow rate reducing unit 160. And a second connection through hole 166 that connects the two. In the following description, the through hole that connects the flow path opening / closing section 170 and the discharge section 180 is also referred to as a discharge flow path 147.
 エミッタ120およびチューブ110が接合されることにより、第1接続溝131、第1減圧溝132、第2接続溝133、第2減圧溝134、第3減圧溝135および第3接続溝136は、それぞれ第1接続流路141、第1減圧流路142、第2接続流路143、第2減圧流路144、第3減圧流路145および第3接続流路146の一部となる。これにより、取水部150、第1接続流路141、第1減圧流路142、第2接続流路143、第2減圧流路144、流量減少部160、吐出流路147および吐出部180から構成され、取水部150と吐出部180とを繋ぐ第1流路が形成される。また、取水部150、第1接続流路141、第1減圧流路142、第2接続流路143、第3減圧流路145、流路開閉部170、第3接続流路146、流路減少部160、吐出流路147および吐出部180から構成され、取水部150と吐出部180とを繋ぐ第2流路が形成される。第1流路および第2流路は、いずれも取水部150から吐出部180まで灌漑用液体を流通させる。本実施の形態では、取水部150から第2接続流路143までの間は、第1流路と第2流路とが重複している。また、流量減少部160から吐出部180までの間も、第1流路と第2流路とが重複している。 By joining the emitter 120 and the tube 110, the first connection groove 131, the first decompression groove 132, the second connection groove 133, the second decompression groove 134, the third decompression groove 135, and the third connection groove 136 are respectively The first connection channel 141, the first decompression channel 142, the second connection channel 143, the second decompression channel 144, the third decompression channel 145 and a part of the third connection channel 146 are formed. Thereby, it is comprised from the intake part 150, the 1st connection flow path 141, the 1st pressure reduction flow path 142, the 2nd connection flow path 143, the 2nd pressure reduction flow path 144, the flow volume reduction | decrease part 160, the discharge flow path 147, and the discharge part 180. Thus, a first flow path connecting the water intake unit 150 and the discharge unit 180 is formed. Further, the water intake 150, the first connection channel 141, the first decompression channel 142, the second connection channel 143, the third decompression channel 145, the channel opening / closing unit 170, the third connection channel 146, the channel reduction Part 160, discharge channel 147 and discharge unit 180, and a second channel connecting water intake unit 150 and discharge unit 180 is formed. In both the first channel and the second channel, the irrigation liquid is circulated from the water intake unit 150 to the discharge unit 180. In the present embodiment, the first flow path and the second flow path overlap between the water intake section 150 and the second connection flow path 143. In addition, the first flow path and the second flow path overlap between the flow rate reduction unit 160 and the discharge unit 180.
 取水部150は、エミッタ120の表面125の約半分の領域に配置されている(図2A、B参照)。取水部150が配置されていない表面125の領域には、流量減少部160および流路開閉部170(フィルム122)が配置されている。取水部150は、取水側スクリーン部151および取水用貫通孔152を有する。 The water intake 150 is disposed in a region about half of the surface 125 of the emitter 120 (see FIGS. 2A and 2B). In the region of the surface 125 where the water intake unit 150 is not arranged, a flow rate reducing unit 160 and a flow path opening / closing unit 170 (film 122) are arranged. The water intake unit 150 includes a water intake side screen unit 151 and a water intake through hole 152.
 取水側スクリーン部151は、エミッタ120に取り入れられる灌漑用液体中の浮遊物が取水用凹部153内に侵入することを防止する。取水側スクリーン部151は、チューブ110内に対して開口しており、取水用凹部153、複数のスリット154および複数の凸条155を有する。 The water intake side screen unit 151 prevents the suspended matter in the irrigation liquid taken into the emitter 120 from entering the water intake recess 153. The water intake side screen portion 151 is open to the inside of the tube 110 and has a water intake recess 153, a plurality of slits 154, and a plurality of ridges 155.
 取水用凹部153は、エミッタ120の表面125において、フィルム122が接合されていない領域の全体に形成されている1つの凹部である。取水用凹部153の深さは特に限定されず、エミッタ120の大きさによって適宜設定される。取水用凹部153の外周壁には複数のスリット154が形成されており、取水用凹部153の底面上には複数の凸条155が形成されている。また、取水用凹部153の底面には取水用貫通孔152が形成されている。 The water intake recess 153 is one recess formed on the entire surface 125 of the emitter 120 where the film 122 is not bonded. The depth of the water intake recess 153 is not particularly limited, and is appropriately set depending on the size of the emitter 120. A plurality of slits 154 are formed on the outer peripheral wall of the water intake recess 153, and a plurality of ridges 155 are formed on the bottom surface of the water intake recess 153. In addition, a water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
 複数のスリット154は、取水用凹部153の内側面と、エミッタ本体121の外側面とを繋いでおり、エミッタ本体121の側面から灌漑用液体を取水用凹部153内に取り入れつつ、灌漑用液体中の浮遊物が取水用凹部153内に侵入することを防止する。スリット154の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、スリット154の形状は、エミッタ本体121の外側面から取水用凹部153の内側面に向かうにつれて、幅が大きくなるように形成されている(図2A、B参照)。このように、スリット154は、いわゆるウェッジワイヤー構造となるように構成されているため、取水用凹部153内に流入した灌漑用液体の圧力損失が抑制される。 The plurality of slits 154 connect the inner surface of the water intake recess 153 and the outer surface of the emitter body 121, while taking the irrigation liquid from the side surface of the emitter body 121 into the water recess 153. Is prevented from entering the water intake recess 153. The shape of the slit 154 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the shape of the slit 154 is formed such that the width increases from the outer surface of the emitter body 121 toward the inner surface of the water intake recess 153 (see FIGS. 2A and 2B). Thus, since the slit 154 is configured to have a so-called wedge wire structure, the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
 複数の凸条155は、取水用凹部153の底面上に配置されている。凸条155の配置および数は、取水用凹部153の開口部側から灌漑用液体を取り入れつつ、灌漑用液体中の浮遊物の侵入を防止することができれば特に限定されない。本実施の形態では、複数の凸条155は、凸条155の長軸方向がエミッタ120の短軸方向に沿うように配列されている。また、凸条155は、エミッタ本体121の表面125から取水用凹部153の底面側に向かうにつれて幅が小さくなるように形成されている。すなわち、凸条155の配列方向において、隣接する凸条155間の空間は、いわゆるウェッジワイヤー構造となっている。また、隣接する凸条155間の間隔は、前述の機能を発揮することができれば特に限定されない。このように、隣接する凸条155間の空間は、いわゆるウェッジワイヤー構造となるように構成されているため、取水用凹部153内に流入した灌漑用液体の圧力損失が抑制される。 The plurality of ridges 155 are arranged on the bottom surface of the water intake recess 153. The arrangement and number of the ridges 155 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 153 and the intrusion of suspended matter in the irrigation liquid can be prevented. In the present embodiment, the plurality of ridges 155 are arranged such that the major axis direction of the ridges 155 is along the minor axis direction of the emitter 120. Further, the ridge 155 is formed so that the width decreases from the surface 125 of the emitter main body 121 toward the bottom surface side of the water intake recess 153. That is, in the arrangement direction of the ridges 155, the space between the adjacent ridges 155 has a so-called wedge wire structure. Moreover, the space | interval between the adjacent protruding item | lines 155 will not be specifically limited if the above-mentioned function can be exhibited. Thus, since the space between the adjacent ridges 155 is configured to have a so-called wedge wire structure, the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
 取水用貫通孔152は、取水用凹部153の底面に形成されている。取水用貫通孔152の形状および数は、取水用凹部153の内部に取り込まれた灌漑用液体をエミッタ本体121内に取り込むことができれば特に限定されない。本実施の形態では、取水用貫通孔152は、取水用凹部153の底面において、エミッタ120の長軸方向に沿って形成された1つの長孔である。この長孔は、複数の凸条155により部分的に覆われているため、表面125側から見た場合、取水用貫通孔152は、多数の貫通孔に分かれているように見える。 The water intake through hole 152 is formed on the bottom surface of the water intake recess 153. The shape and number of the water intake through holes 152 are not particularly limited as long as the irrigation liquid taken into the water intake recess 153 can be taken into the emitter body 121. In the present embodiment, the water intake through hole 152 is a single long hole formed along the major axis direction of the emitter 120 on the bottom surface of the water intake recess 153. Since the long holes are partially covered by the plurality of ridges 155, the water intake through holes 152 appear to be divided into a large number of through holes when viewed from the surface 125 side.
 チューブ110内を流れてきた灌漑用液体は、取水側スクリーン部151によって取水用凹部153内への浮遊物の侵入が防止されつつ、エミッタ本体121内に取り込まれる。 The irrigation liquid that has flowed through the tube 110 is taken into the emitter main body 121 while preventing the floating substance from entering the water intake recess 153 by the water intake side screen portion 151.
 第1接続溝131(第1接続流路141)は、取水用貫通孔152(取水部150)と、第1減圧溝132とを接続する。第1接続溝131は、裏面124の外縁部においてエミッタ120の長軸方向に沿って直線状に形成されている。チューブ110およびエミッタ120が接合されることで、第1接続溝131とチューブ110の内壁面とにより、第1接続流路141が形成される。取水部150から取り込まれた灌漑用液体は、第1接続流路141を通って、第1減圧流路142に流れる。 The first connection groove 131 (first connection flow path 141) connects the water intake through hole 152 (water intake section 150) and the first pressure reduction groove 132. The first connection groove 131 is formed linearly along the major axis direction of the emitter 120 at the outer edge portion of the back surface 124. By joining the tube 110 and the emitter 120, the first connection channel 141 is formed by the first connection groove 131 and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 150 flows through the first connection channel 141 to the first decompression channel 142.
 第1減圧溝132(第1減圧流路142)は、流量減少部160より上流側の第1流路および第2流路に配置されており、第1接続溝131(第1接続流路141)と第2接続溝133(第2接続流路143)とを接続する。第1減圧溝132(第1減圧流路142)は、取水部150から取り入れられた灌漑用液体の圧力を減圧させて、第2接続溝133(第2接続流路143)に導く。第1減圧溝132は、裏面124の外縁部においてエミッタ120の長軸方向に沿って直線状に配置されている。第1減圧溝132の上流端は第1接続溝131に接続されており、第1減圧溝132の下流端は第2接続溝133の上流端に接続されている。第1減圧溝132の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第1減圧溝132の平面視形状は、ジグザグ形状である。第1減圧溝132には、内側面から突出する略三角柱形状の第1凸部132aが灌漑用液体の流れる方向に沿って交互に配置されている。第1凸部132aは、平面視したときに、先端が第1減圧溝132の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることで、第1減圧溝132とチューブ110の内壁面により、第1減圧流路142が形成される。取水部150から取り込まれた灌漑用液体は、第1減圧流路142により減圧されて第2接続溝133(第2接続流路143)に導かれる。 The first pressure reducing groove 132 (first pressure reducing flow path 142) is disposed in the first flow path and the second flow path upstream of the flow rate reducing unit 160, and the first connection groove 131 (first connection flow path 141). ) And the second connection groove 133 (second connection flow path 143). The first decompression groove 132 (first decompression channel 142) reduces the pressure of the irrigation liquid introduced from the water intake 150 and guides it to the second connection groove 133 (second connection channel 143). The first decompression groove 132 is linearly arranged along the major axis direction of the emitter 120 at the outer edge portion of the back surface 124. The upstream end of the first decompression groove 132 is connected to the first connection groove 131, and the downstream end of the first decompression groove 132 is connected to the upstream end of the second connection groove 133. The shape of the first decompression groove 132 is not particularly limited as long as the above-described function can be exhibited. In the present embodiment, the plan view shape of the first decompression groove 132 is a zigzag shape. In the first decompression grooves 132, first triangular protrusions 132a having a substantially triangular prism shape protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows. The first convex portion 132 a is arranged so that the tip does not exceed the central axis of the first decompression groove 132 when viewed in plan. By joining the tube 110 and the emitter 120, the first decompression channel 142 is formed by the first decompression groove 132 and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 150 is decompressed by the first decompression channel 142 and guided to the second connection groove 133 (second connection channel 143).
 第2接続溝133(第2接続流路143)は、第1減圧溝132(第1減圧流路142)と、第2減圧溝134(第2減圧流路144)および第3減圧溝135(第3減圧流路145)とを接続する。第2接続溝133は、裏面124の外縁部においてエミッタ120の短軸方向に沿って直線状に形成されている。チューブ110およびエミッタ120が接合されることで、第2接続溝133とチューブ110の内壁面とにより、第2接続流路143が形成される。取水部150から取り込まれ、第1接続流路141に導かれ、第1減圧流路142で減圧された灌漑用液体は、第2接続流路143を通って、第2減圧流路144および第3減圧流路145に導かれる。 The second connection groove 133 (second connection flow path 143) includes a first pressure reduction groove 132 (first pressure reduction flow path 142), a second pressure reduction groove 134 (second pressure reduction flow path 144), and a third pressure reduction groove 135 ( A third decompression channel 145) is connected. The second connection groove 133 is formed linearly along the minor axis direction of the emitter 120 at the outer edge portion of the back surface 124. By joining the tube 110 and the emitter 120, the second connection channel 143 is formed by the second connection groove 133 and the inner wall surface of the tube 110. The irrigation liquid that has been taken in from the water intake unit 150, led to the first connection channel 141, and decompressed in the first decompression channel 142 passes through the second connection channel 143 and passes through the second decompression channel 144 and the second decompression channel 144. 3 Guided to the reduced pressure channel 145.
 第2減圧溝134(第2減圧流路144)は、流量減少部160より上流側の第1流路に配置されており、第2接続溝133(第2接続流路143)と、流量減少部160とを接続する。第2減圧溝134(第2減圧流路144)は、第2接続溝133(第2接続流路143)から流入した灌漑用液体の圧力を減圧させて、流量減少部160に導く。第2減圧溝134は、裏面124の外縁部においてエミッタ120の長軸方向に沿って配置されている。第2減圧溝134の上流端は第2接続溝133の下流端に接続されており、第2減圧溝134の下流端は流量減少部160に連通した第1接続用貫通孔165に接続されている。第2減圧溝134の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第2減圧溝134の平面視形状は、第1減圧溝132の形状と同様のジグザグ形状である。第2減圧溝134には、内側面から突出する略三角柱形状の第2凸部134aが灌漑用液体の流れる方向に沿って交互に配置されている。第2凸部134aは、平面視したときに、先端が第2減圧溝134の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることで、第2減圧溝134とチューブ110の内壁面により、第2減圧流路144が形成される。本実施の形態では、第2減圧溝134(第2減圧流路144)は、後述する第3減圧溝135(第3減圧流路145)より長くなっている。このため、第2減圧溝134(第2減圧流路144)を流れる灌漑用液体は、第3減圧溝135(第3減圧流路145)を流れる灌漑用液体よりも減圧される。取水部150から取り込まれ、第1減圧流路142で減圧された灌漑用液体の一部は、第2減圧流路144により減圧されて流量減少部160に導かれる。 The second decompression groove 134 (second decompression flow path 144) is disposed in the first flow path upstream of the flow rate reduction unit 160, and the second connection groove 133 (second connection flow path 143) and the flow rate reduction. The unit 160 is connected. The second decompression groove 134 (second decompression flow path 144) reduces the pressure of the irrigation liquid that has flowed in from the second connection groove 133 (second connection flow path 143) and guides it to the flow rate reduction unit 160. The second decompression groove 134 is disposed along the major axis direction of the emitter 120 at the outer edge portion of the back surface 124. The upstream end of the second decompression groove 134 is connected to the downstream end of the second connection groove 133, and the downstream end of the second decompression groove 134 is connected to the first connection through-hole 165 communicating with the flow rate reducing portion 160. Yes. The shape of the second decompression groove 134 is not particularly limited as long as the above-described function can be exhibited. In the present embodiment, the plan view shape of the second decompression groove 134 is a zigzag shape similar to the shape of the first decompression groove 132. In the second decompression groove 134, substantially triangular prism-shaped second protrusions 134a protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows. The second convex portion 134a is arranged so that the tip does not exceed the central axis of the second decompression groove 134 when viewed in plan. By joining the tube 110 and the emitter 120, the second decompression channel 144 is formed by the second decompression groove 134 and the inner wall surface of the tube 110. In the present embodiment, the second decompression groove 134 (second decompression channel 144) is longer than a third decompression groove 135 (third decompression channel 145) described later. Therefore, the irrigation liquid flowing through the second decompression groove 134 (second decompression flow path 144) is decompressed more than the irrigation liquid flowing through the third decompression groove 135 (third decompression flow path 145). A part of the irrigation liquid taken in from the water intake unit 150 and decompressed in the first decompression channel 142 is decompressed by the second decompression channel 144 and guided to the flow rate reduction unit 160.
 第3減圧溝135(第3減圧流路145)は、流路開閉部170より上流側の第2流路に配置されており、第2接続溝133(第2接続流路143)と、流路開閉部170とを接続する。第3減圧溝135(第3減圧流路145)は、第2接続溝133(第2接続流路143)から流入した灌漑用液体の圧力を減圧させて、流路開閉部170に導く。第3減圧溝135は、裏面124の中央部分においてエミッタ120の長軸方向に沿って配置されている。第3減圧溝135の上流端は第2接続流路143に接続されており、第3減圧溝135の下流端は流路開閉部170に連通した第3接続用貫通孔174に接続されている。第3減圧溝135の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第3減圧溝135の平面視形状は、第1減圧溝132の形状と同様のジグザグ形状である。第3減圧溝135には、内側面から突出する略三角柱形状の第3凸部135aが灌漑用液体の流れる方向に沿って交互に配置されている。第3凸部135aは、平面視したときに、先端が第3減圧溝135の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることで、第3減圧溝135とチューブ110の内壁面により、第3減圧流路145が形成される。取水部150から取り込まれ、第1減圧流路142で減圧された灌漑用液体の他の一部は、第3減圧流路145により減圧されて流路開閉部170に導かれる。詳細については後述するが、第2流路は、灌漑用液体の圧力が低圧の場合にのみ機能する。 The third decompression groove 135 (third decompression channel 145) is disposed in the second channel upstream of the channel opening / closing part 170, and is connected to the second connection groove 133 (second connection channel 143). The road opening / closing part 170 is connected. The third decompression groove 135 (third decompression flow path 145) reduces the pressure of the irrigation liquid flowing in from the second connection groove 133 (second connection flow path 143) and guides it to the flow path opening / closing part 170. The third decompression groove 135 is disposed along the major axis direction of the emitter 120 in the central portion of the back surface 124. The upstream end of the third decompression groove 135 is connected to the second connection channel 143, and the downstream end of the third decompression groove 135 is connected to the third connection through-hole 174 communicating with the channel opening / closing part 170. . The shape of the third decompression groove 135 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the plan view shape of the third decompression groove 135 is a zigzag shape similar to the shape of the first decompression groove 132. In the third decompression groove 135, substantially triangular prism-shaped third projections 135a protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows. The third convex portion 135a is arranged so that the tip does not exceed the central axis of the third decompression groove 135 when viewed in plan. By joining the tube 110 and the emitter 120, a third decompression channel 145 is formed by the third decompression groove 135 and the inner wall surface of the tube 110. The other part of the irrigation liquid taken in from the water intake unit 150 and decompressed in the first decompression channel 142 is decompressed by the third decompression channel 145 and guided to the channel opening / closing unit 170. Although the details will be described later, the second flow path functions only when the pressure of the irrigation liquid is low.
 流量減少部160は、第1流路内において第2減圧流路144(第2減圧溝134)と吐出流路147との間に配置されており、かつエミッタ120の表面125側に配置されている。流量減少部160は、チューブ110内の灌漑用液体の圧力に応じて灌漑用液体の流量を減少させつつ、灌漑用液体を吐出部180に送る。流量減少部160の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、流量減少部160は、流量減少用凹部161と、第1弁座部162と、連通溝163と、吐出部180に連通した流量減少用貫通孔164(吐出流路147)と、第2減圧溝134(第2減圧流路144)に連通した第1接続用貫通孔165と、第3接続溝136(第3接続流路146)に連通した第2接続用貫通孔166と、フィルム122の一部である第1ダイヤフラム部167とを有する。流量減少用凹部161の内面には、吐出部180に連通した流量減少用貫通孔164と、第2減圧溝134(第2減圧流路144)に連通した第1接続用貫通孔165と、第3接続溝136(第3接続流路146)に連通した第2接続用貫通孔166とが開口している。 The flow rate reducing unit 160 is disposed between the second decompression channel 144 (second decompression groove 134) and the ejection channel 147 in the first channel, and is disposed on the surface 125 side of the emitter 120. Yes. The flow rate reduction unit 160 sends the irrigation liquid to the discharge unit 180 while reducing the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube 110. The configuration of the flow rate reducing unit 160 is not particularly limited as long as the above-described function can be exhibited. In the present embodiment, the flow rate reducing portion 160 includes a flow rate reducing recess 161, a first valve seat portion 162, a communication groove 163, and a flow rate reducing through-hole 164 communicating with the discharge portion 180 (discharge flow path 147). A first connection through hole 165 communicating with the second decompression groove 134 (second decompression flow path 144), and a second connection through hole 166 communicating with the third connection groove 136 (third connection flow path 146). And a first diaphragm portion 167 that is a part of the film 122. On the inner surface of the flow rate reducing recess 161, a flow rate reducing through hole 164 communicating with the discharge unit 180, a first connection through hole 165 communicating with the second pressure reducing groove 134 (second pressure reducing channel 144), and a first A second connection through hole 166 communicating with the third connection groove 136 (third connection flow path 146) is opened.
 流量減少用凹部161の平面視形状は、略円形状である。流量減少用凹部161の底面には、吐出部180に連通した流量減少用貫通孔164(吐出流路147)と、第2減圧溝134(第2減圧流路144)に連通した第1接続用貫通孔165と、第3接続溝136(第3接続流路146)に連通した第2接続用貫通孔166と、第1弁座部162とが配置されている。流量減少用凹部161の深さは、特に限定されず、連通溝163の深さ以上であればよい。 The plan view shape of the concave portion 161 for reducing the flow rate is a substantially circular shape. On the bottom surface of the flow rate reducing recess 161, a first connection connection connected to the flow rate reducing through hole 164 (discharge channel 147) communicating with the discharge unit 180 and the second pressure reducing groove 134 (second pressure reducing channel 144). A through hole 165, a second connection through hole 166 communicating with the third connection groove 136 (third connection flow path 146), and a first valve seat portion 162 are disposed. The depth of the flow rate reducing recess 161 is not particularly limited as long as it is equal to or greater than the depth of the communication groove 163.
 第1弁座部162は、流量減少用貫通孔164を取り囲むように流量減少用凹部161の底面に配置されている。第1弁座部162は、チューブ110を流れる灌漑用液体の圧力が第2圧力以上の場合に、第1ダイヤフラム部167が密着できるように形成されている。第1弁座部162に第1ダイヤフラム部167が接触することによって、流量減少用凹部161から吐出部180に流れ込む灌漑用液体の流量を減少させる。第1弁座部162の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第1弁座部162の形状は、円環状の凸部である。本実施の形態では、円環状の凸部の端面は、内側から外側に向かうにつれて流量減少用凹部161の底面からの高さが低くなっている。第1弁座部162の第1ダイヤフラム部167が密着可能な領域の一部には、流量減少用凹部161の内部と流量減少用貫通孔164を連通する連通溝163が形成されている。第2減圧溝134(第2減圧流路144)に連通した第1接続用貫通孔165、および第3接続溝136(第3接続流路146)に連通した第2接続用貫通孔166は、流量減少用凹部161の底面において、第1弁座部162が配置されていない領域に形成されている。なお、第2減圧溝134(第2減圧流路144)に連通した第1接続用貫通孔165が、第1弁座部162に囲まれるように配置され、吐出部180に連通した流量減少用貫通孔164が第1弁座部162の外側に配置されていてもよい。 The first valve seat 162 is disposed on the bottom surface of the flow rate reducing recess 161 so as to surround the flow rate reducing through hole 164. The first valve seat 162 is formed so that the first diaphragm 167 can be in close contact when the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the second pressure. When the first diaphragm portion 167 comes into contact with the first valve seat portion 162, the flow rate of the irrigation liquid flowing from the flow rate reducing recess portion 161 into the discharge portion 180 is decreased. The shape of the 1st valve seat part 162 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the shape of the first valve seat portion 162 is an annular convex portion. In the present embodiment, the end surface of the annular convex portion has a height from the bottom surface of the flow rate reducing concave portion 161 that decreases from the inside toward the outside. A communication groove 163 that communicates the inside of the flow rate reducing recess 161 and the flow rate reducing through hole 164 is formed in a part of the region where the first diaphragm portion 167 of the first valve seat 162 can be in close contact. The first connection through hole 165 communicated with the second decompression groove 134 (second decompression flow path 144) and the second connection through hole 166 communicated with the third connection groove 136 (third connection flow path 146) are: The bottom surface of the flow rate reducing recess 161 is formed in a region where the first valve seat 162 is not disposed. The first connection through hole 165 communicating with the second decompression groove 134 (second decompression flow path 144) is disposed so as to be surrounded by the first valve seat 162, and is used for reducing the flow rate communicating with the discharge unit 180. The through hole 164 may be disposed outside the first valve seat portion 162.
 流量減少用貫通孔164(吐出流路147)は、流量減少用凹部161の底面の中央部分に配置されており、第1開口部164aにおいて流量減少部160に接続し、第2開口部164bにおいて吐出部180に接続している。本実施形態において、吐出流路147は、図5に示すように、流路径がより大きく、低圧でも灌漑用液体が流通できる低圧流通部164cと、流路径がより小さく、高圧にしないと灌漑用液体が流通しにくい高圧流通部164dと、を有する。より具体的には、高圧流通部164dは、前記灌漑用液体の流通方向に向けて流路径が連続的に減少する流路径減少部を有する。また、高圧流通部164dの吐出部180側の端部が第2開口部164bとなっている。これにより、吐出流路147は、流量減少部160に開口する第1開口部164aにおいて、流路径が最も大きくなり、吐出部180に開口する第2開口部164bにおいて、流路径が最も小さくなる。 The flow rate reducing through-hole 164 (discharge channel 147) is disposed at the center of the bottom surface of the flow rate reducing recess 161, and is connected to the flow rate reducing unit 160 at the first opening 164a and at the second opening 164b. The discharge unit 180 is connected. In the present embodiment, as shown in FIG. 5, the discharge flow path 147 has a larger flow path diameter, a low-pressure circulation part 164c through which irrigation liquid can flow even at low pressure, and a smaller flow path diameter for irrigation unless the pressure is high. And a high-pressure circulation part 164d through which liquid is difficult to circulate. More specifically, the high-pressure flow part 164d has a flow path diameter decreasing part in which the flow path diameter continuously decreases in the flow direction of the irrigation liquid. Further, the end of the high-pressure circulation part 164d on the discharge part 180 side is a second opening part 164b. As a result, the discharge channel 147 has the largest channel diameter at the first opening 164 a that opens to the flow rate reducing unit 160, and the smallest channel diameter at the second opening 164 b that opens to the discharge unit 180.
 第1ダイヤフラム部167は、フィルム122の一部である。第1ダイヤフラム部167は、流量減少用凹部161の内部とチューブ110の内部との連通を遮断するように配置されている。第1ダイヤフラム部167は、可撓性を有し、チューブ110内の灌漑用液体の圧力に応じて、第1弁座部162に接触するように変形する。具体的には、第1ダイヤフラム部167は、灌漑用液体の圧力が高くなるにつれて、第1弁座部162に向かって変形し、やがて第1弁座部162に接触する。第1ダイヤフラム部167が第1弁座部162に密着している場合であっても、第1ダイヤフラム部167は、第1接続用貫通孔165、流量減少用貫通孔164および連通溝163を閉塞しないため、第1接続用貫通孔165から送られてきた灌漑用液体は、連通溝163および流量減少用貫通孔164を通って、吐出部180に送られうる。なお、第1ダイヤフラム部167は、後述の第2ダイヤフラム部175と隣接して配置されている。 The first diaphragm portion 167 is a part of the film 122. The first diaphragm portion 167 is disposed so as to block communication between the inside of the flow rate reducing recess 161 and the inside of the tube 110. The first diaphragm portion 167 has flexibility and is deformed so as to contact the first valve seat portion 162 according to the pressure of the irrigation liquid in the tube 110. Specifically, the first diaphragm portion 167 deforms toward the first valve seat portion 162 as the pressure of the irrigation liquid increases, and eventually comes into contact with the first valve seat portion 162. Even when the first diaphragm portion 167 is in close contact with the first valve seat portion 162, the first diaphragm portion 167 blocks the first connection through hole 165, the flow rate reduction through hole 164, and the communication groove 163. Therefore, the irrigation liquid sent from the first connection through hole 165 can be sent to the discharge unit 180 through the communication groove 163 and the flow rate reduction through hole 164. Note that the first diaphragm portion 167 is disposed adjacent to a second diaphragm portion 175 described later.
 流路開閉部170は、第2流路内において第3減圧流路145(第3減圧溝135)と吐出部180との間に配置されており、かつエミッタ120の表面125側に配置されている。流路開閉部170は、チューブ110内の圧力に応じて第2流路を開放および閉塞して、灌漑用液体を吐出部180に送る。本実施の形態では、流路開閉部170は、流路開閉用貫通孔173、第3接続流路146および第2接続用貫通孔166を介して流量減少部160に接続されており、第3減圧流路145(第3減圧溝135)からの灌漑用液体は、流路開閉部170、第3接続流路146および流量減少部160を通って吐出部180に到達する。流路開閉部170の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、流路開閉部170は、流路開閉用凹部171と、第2弁座部172と、流量減少部160の第2接続用貫通孔166に連通した流路開閉用貫通孔173と、第3減圧流路145(第3減圧溝135)に連通した第3接続用貫通孔174と、フィルム122の一部である第2ダイヤフラム部175とを有する。流路開閉用凹部171の内面には、第3減圧流路145(第3減圧溝135)に連通した第3接続用貫通孔174と、流量減少部160に連通した流路開閉用貫通孔173とが開口している。また、流路開閉用凹部171は、流量減少部160の流量減少用凹部161と連通している。 The channel opening / closing unit 170 is disposed between the third decompression channel 145 (third decompression groove 135) and the discharge unit 180 in the second channel, and is disposed on the surface 125 side of the emitter 120. Yes. The channel opening / closing unit 170 opens and closes the second channel according to the pressure in the tube 110 and sends the irrigation liquid to the discharge unit 180. In the present embodiment, the channel opening / closing part 170 is connected to the flow rate reducing unit 160 via the channel opening / closing through hole 173, the third connection channel 146, and the second connection through hole 166. The irrigation liquid from the decompression channel 145 (third decompression groove 135) reaches the discharge unit 180 through the channel opening / closing unit 170, the third connection channel 146, and the flow rate reduction unit 160. The configuration of the flow path opening / closing portion 170 is not particularly limited as long as the above-described function can be exhibited. In the present embodiment, the channel opening / closing part 170 is a channel opening / closing through hole that communicates with the channel opening / closing recess 171, the second valve seat 172, and the second connection through hole 166 of the flow rate reducing unit 160. 173, a third connection through hole 174 communicating with the third decompression flow path 145 (third decompression groove 135), and a second diaphragm portion 175 that is a part of the film 122. On the inner surface of the channel opening / closing recess 171, a third connection through hole 174 communicating with the third decompression channel 145 (third decompression groove 135) and a channel opening / closing through hole 173 communicating with the flow rate reducing unit 160 are provided. And are open. The channel opening / closing recess 171 communicates with the flow rate reducing recess 161 of the flow rate reducing unit 160.
 流路開閉用凹部171の平面視形状は、略円形状である。流路開閉用凹部171の底面には、第3減圧溝135に接続された第3接続用貫通孔174と、第3接続流路146に接続された流路開閉用貫通孔173と、第2弁座部172とが配置されている。第2弁座部172の端面は、第1弁座部162の端面より表面125側に配置されている。すなわち、第2弁座部172は、第1弁座部162より高く形成されている。これにより、フィルム122が灌漑用液体の圧力により変形した場合に、フィルム122は、第1弁座部162より先に第2弁座部172に接触する。 The plan view shape of the channel opening / closing recess 171 is substantially circular. On the bottom surface of the channel opening / closing recess 171, a third connection through hole 174 connected to the third decompression groove 135, a channel opening / closing through hole 173 connected to the third connection channel 146, and a second A valve seat 172 is disposed. The end surface of the second valve seat portion 172 is disposed closer to the surface 125 than the end surface of the first valve seat portion 162. That is, the second valve seat portion 172 is formed higher than the first valve seat portion 162. Accordingly, when the film 122 is deformed by the pressure of the irrigation liquid, the film 122 contacts the second valve seat portion 172 before the first valve seat portion 162.
 第3減圧溝135に連通した第3接続用貫通孔174は、流路開閉用凹部171の底面において、第2弁座部172が配置されていない領域に形成されている。第2弁座部172は、流路開閉用貫通孔173を取り囲むように流路開閉用凹部171の底面に配置されている。また、第2弁座部172は、第2ダイヤフラム部175に面して非接触に配置され、チューブ110を流れる灌漑用液体の圧力が第1圧力以上の場合、第2ダイヤフラム部175が密着できるように形成されている。チューブ110を流れる灌漑用液体の圧力が第1圧力以上の場合、第2ダイヤフラム部175は、第2弁座部172に密着して流路開閉用貫通孔173を閉塞し、その結果として第2流路を閉塞する。第2弁座部172の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第2弁座部172は、流路開閉用貫通孔173を取り囲むように配置された円環状の凸部である。 The third connection through hole 174 communicating with the third decompression groove 135 is formed in a region where the second valve seat 172 is not disposed on the bottom surface of the flow path opening / closing recess 171. The second valve seat 172 is disposed on the bottom surface of the channel opening / closing recess 171 so as to surround the channel opening / closing through hole 173. Further, the second valve seat portion 172 is disposed in a non-contact manner facing the second diaphragm portion 175, and when the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 175 can be in close contact. It is formed as follows. When the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 175 is in close contact with the second valve seat portion 172 and closes the flow passage opening / closing through-hole 173, resulting in the second Block the flow path. The shape of the 2nd valve seat part 172 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the second valve seat portion 172 is an annular convex portion arranged so as to surround the flow passage opening / closing through hole 173.
 第2ダイヤフラム部175は、フィルム122の一部であり、第1ダイヤフラム部167と隣接して配置されている。第2ダイヤフラム部175は、流路開閉用凹部171の内部とチューブ110の内部との連通を遮断するように配置されている。第2ダイヤフラム部175は、可撓性を有し、チューブ110内の灌漑用液体の圧力に応じて、第2弁座部172に接触するように変形する。具体的には、第2ダイヤフラム部175は、灌漑用液体の圧力が高くなるにつれて、第2弁座部172に向かって変形し、灌漑用液体の圧力が第1圧力に到達すると、第2弁座部172に接触する。これにより、第2流路(流路開閉用貫通孔173)は閉塞される。 The second diaphragm portion 175 is a part of the film 122 and is disposed adjacent to the first diaphragm portion 167. The second diaphragm portion 175 is disposed so as to block communication between the inside of the channel opening / closing recess 171 and the inside of the tube 110. The second diaphragm portion 175 has flexibility and is deformed so as to contact the second valve seat portion 172 in accordance with the pressure of the irrigation liquid in the tube 110. Specifically, the second diaphragm portion 175 is deformed toward the second valve seat portion 172 as the pressure of the irrigation liquid increases, and when the pressure of the irrigation liquid reaches the first pressure, Contact the seat 172. As a result, the second flow path (flow path opening / closing through hole 173) is closed.
 吐出部180は、エミッタ120の裏面124側において、吐出口112に面して配置されている。吐出部180は、流量減少用貫通孔164からの灌漑用液体をチューブ110の吐出口112に送る。これにより、吐出部180は、灌漑用液体をエミッタ120の外部に吐出することができる。吐出部180の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、吐出部180は、吐出用凹部181と、侵入防止部182とを有する。 The discharge unit 180 is disposed on the back surface 124 side of the emitter 120 so as to face the discharge port 112. The discharge unit 180 sends the irrigation liquid from the flow rate reducing through-hole 164 to the discharge port 112 of the tube 110. Accordingly, the discharge unit 180 can discharge the irrigation liquid to the outside of the emitter 120. The structure of the discharge part 180 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the discharge unit 180 includes a discharge recess 181 and an intrusion prevention unit 182.
 吐出用凹部181は、エミッタ120の裏面124側に配置されている。吐出用凹部181の平面視形状は、略矩形である。吐出用凹部181の底面には、流量減少用貫通孔164および侵入防止部182が配置されている。 The discharge recess 181 is disposed on the back surface 124 side of the emitter 120. The shape of the discharge recess 181 in plan view is substantially rectangular. On the bottom surface of the discharge recess 181, a flow rate reducing through hole 164 and an intrusion prevention unit 182 are arranged.
 侵入防止部182は、吐出口112からの異物の侵入を防止する。侵入防止部182は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、侵入防止部182は、隣接して配置された2つの凸条部183を有する。2つの凸条部183は、エミッタ120をチューブ110に接合した場合に、流量減少用貫通孔164および吐出口112の間に位置するように配置されている。 The intrusion prevention unit 182 prevents intrusion of foreign matter from the discharge port 112. The intrusion prevention unit 182 is not particularly limited as long as it can perform the above-described function. In the present embodiment, intrusion prevention unit 182 has two protruding strips 183 disposed adjacent to each other. The two ridges 183 are arranged so as to be positioned between the flow rate reducing through hole 164 and the discharge port 112 when the emitter 120 is joined to the tube 110.
 フィルム122は、可撓性を有する樹脂材料で形成されている。フィルム122の材料は、所望の可撓性に応じて適宜設定されうる。当該樹脂の例には、ポリエチレンが含まれる。フィルム122の可撓性も、弾性を有する樹脂材料の使用によって調整されうる。フィルム122の可撓性の調整方法の例は、エミッタ本体121の可撓性の調整方法と同じである。 The film 122 is formed of a flexible resin material. The material of the film 122 can be appropriately set according to the desired flexibility. Examples of the resin include polyethylene. The flexibility of the film 122 can also be adjusted by using a resin material having elasticity. An example of a method for adjusting the flexibility of the film 122 is the same as the method for adjusting the flexibility of the emitter body 121.
 フィルム122の形状および大きさは、エミッタ本体121や、エミッタ本体121に形成されている貫通孔および凹部などの大きさに応じて適宜設定されうる。フィルム122の厚みは、所望の可撓性に応じて適宜設定されうる。フィルム122は、例えば、射出成形によって製造されうる。 The shape and size of the film 122 can be appropriately set according to the size of the emitter main body 121 and the through holes and recesses formed in the emitter main body 121. The thickness of the film 122 can be appropriately set according to the desired flexibility. The film 122 can be manufactured by injection molding, for example.
 ヒンジ部123は、エミッタ本体121の表面125の一部に接続されている。本実施の形態では、ヒンジ部123の厚さは、フィルム122と同じ厚さであり、エミッタ本体121およびフィルム122と一体的に成形されている。なお、フィルム122は、エミッタ本体121と別体として準備して、エミッタ本体121と接合してもよい。 The hinge portion 123 is connected to a part of the surface 125 of the emitter body 121. In the present embodiment, the thickness of the hinge portion 123 is the same as that of the film 122 and is integrally formed with the emitter body 121 and the film 122. The film 122 may be prepared as a separate body from the emitter body 121 and bonded to the emitter body 121.
 エミッタ120は、ヒンジ部123を軸にフィルム122を回動させ、エミッタ本体121の表面125に接合することにより構成される。エミッタ本体121とフィルム122との接合方法は、特に限定されない。エミッタ本体121とフィルム122との接合方法の例には、フィルム122を構成する樹脂材料の溶着や、接着剤による接着などが含まれる。なお、ヒンジ部123は、エミッタ本体121とフィルム122とを接合した後に切断してもよい。 The emitter 120 is configured by rotating the film 122 around the hinge portion 123 and joining it to the surface 125 of the emitter body 121. A method for joining the emitter body 121 and the film 122 is not particularly limited. Examples of the method of joining the emitter body 121 and the film 122 include welding of a resin material constituting the film 122, adhesion with an adhesive, and the like. In addition, you may cut | disconnect the hinge part 123, after joining the emitter main body 121 and the film 122. FIG.
 (点滴灌漑用チューブおよびエミッタの動作)
 次に、点滴灌漑用チューブ100の動作について説明する。まず、チューブ110内に灌漑用液体が送液される。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。点滴灌漑用チューブ100へ送液される灌漑用液体の圧力は、簡易に点滴灌漑法を導入できるように、またチューブ110およびエミッタ120の破損を防止するため、0.1MPa以下であることが好ましい。チューブ110内の灌漑用液体は、取水部150からエミッタ120内に取り込まれる。具体的には、チューブ110内の灌漑用液体は、スリット154、または凸条155間の隙間から取水用凹部153に入り込み、取水用貫通孔152を通過する。このとき、取水部150は、取水側スクリーン部151(スリット154および凸条155間の隙間)を有しているため、灌漑用液体中の浮遊物を除去することができる。また、取水部150には、いわゆるウェッジワイヤー構造が形成されているため、取水部150へ流入した灌漑用液体の圧力損失は抑制される。
(Operation of drip irrigation tube and emitter)
Next, the operation of the drip irrigation tube 100 will be described. First, irrigation liquid is fed into the tube 110. Examples of irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof. The pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged. . The irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake unit 150. Specifically, the irrigation liquid in the tube 110 enters the water intake recess 153 through the slit 154 or the gap between the protrusions 155 and passes through the water intake through hole 152. At this time, since the water intake part 150 has the water intake side screen part 151 (gap between the slit 154 and the protrusion 155), the suspended | floating matter in the irrigation liquid can be removed. Moreover, since the so-called wedge wire structure is formed in the water intake part 150, the pressure loss of the irrigation liquid flowing into the water intake part 150 is suppressed.
 取水部150から取り込まれた灌漑用液体は、第1接続流路141に到達する。第1接続流路141に到達した灌漑用液体は、第1減圧流路142を通過し、第2接続流路143に到達する。第2接続流路143に到達した灌漑用液体は、第2減圧流路144および第3減圧流路145に流れ込む。このとき、灌漑用液体は、第2減圧流路144と比較して流路長が短く、圧力損失の少ない第3減圧流路145を先行して進む。第3減圧流路145に流れ込んだ灌漑用液体は、第3接続用貫通孔174を通って流路開閉部170に流れ込む。 The irrigation liquid taken from the water intake unit 150 reaches the first connection channel 141. The irrigation liquid that has reached the first connection channel 141 passes through the first decompression channel 142 and reaches the second connection channel 143. The irrigation liquid that has reached the second connection channel 143 flows into the second decompression channel 144 and the third decompression channel 145. At this time, the irrigation liquid advances in advance through the third decompression channel 145 having a shorter channel length and less pressure loss than the second decompression channel 144. The irrigation liquid that has flowed into the third decompression flow path 145 flows into the flow path opening / closing part 170 through the third connection through hole 174.
 流路開閉部170に流れ込んだ灌漑用液体は、流路開閉用貫通孔173、第3接続流路146および第2接続用貫通孔166を通って、流量減少部160に流れ込む。次いで、流量減少部160に流れ込んだ灌漑用液体は、流量減少用貫通孔164を通って吐出部180に流れ込む。最後に、吐出部180に流れ込んだ灌漑用液体は、チューブ110の吐出口112からチューブ110外に吐出される。 The irrigation liquid that has flowed into the flow path opening / closing section 170 flows into the flow rate reducing section 160 through the flow path opening / closing through hole 173, the third connection flow path 146, and the second connection through hole 166. Next, the irrigation liquid that has flowed into the flow rate reduction unit 160 flows into the discharge unit 180 through the flow rate reduction through hole 164. Finally, the irrigation liquid that has flowed into the discharge unit 180 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
 一方、第2減圧流路144に流れ込んだ灌漑用液体は、第1接続用貫通孔165を通って、流量減少部160に流れ込む。流量減少部160に流れ込んだ灌漑用液体は、流量減少用貫通孔164を通って吐出部180に流れ込む。吐出部180に流れ込んだ灌漑用液体は、チューブ110の吐出口112からチューブ110外に吐出される。 On the other hand, the irrigation liquid that has flowed into the second decompression flow path 144 flows into the flow rate reduction unit 160 through the first connection through hole 165. The irrigation liquid that has flowed into the flow rate reduction unit 160 flows into the discharge unit 180 through the flow rate reduction through hole 164. The irrigation liquid that has flowed into the discharge unit 180 is discharged out of the tube 110 from the discharge port 112 of the tube 110.
 前述したように、流路開閉部170と流量減少部160とは、流路開閉用貫通孔173と第2接続用貫通孔166とを介して連通している。また、流量減少部160では、チューブ110内の灌漑用液体の圧力に応じて、第1ダイヤフラム部167が変形することで灌漑用液体の流量が制御され、流路開閉部170では、チューブ110内の灌漑用液体の圧力に応じて第2ダイヤフラム部175が変形することで灌漑用液体の流量が制御される。そこで、チューブ110内の灌漑用液体の圧力に応じた流量減少部160および流路開閉部170の動作について説明する。 As described above, the flow channel opening / closing portion 170 and the flow rate reducing portion 160 communicate with each other via the flow channel opening / closing through hole 173 and the second connection through hole 166. The flow rate reducing unit 160 controls the flow rate of the irrigation liquid by deforming the first diaphragm unit 167 according to the pressure of the irrigation liquid in the tube 110, and the flow path opening / closing unit 170 controls the flow rate in the tube 110. The flow rate of the irrigation liquid is controlled by deforming the second diaphragm portion 175 according to the pressure of the irrigation liquid. Therefore, the operation of the flow rate reducing unit 160 and the flow path opening / closing unit 170 according to the pressure of the irrigation liquid in the tube 110 will be described.
 図6A~Cは、流量減少部160と、流路開閉部170との動作の関係を示す模式図である。なお、図6A~Cは、エミッタ120の動作を説明するために、図2Bに示されるD-D線の断面を模式的に示した図である。図6Aは、チューブ110に灌漑用液体が送液されていない場合における断面図であり、図6Bは、チューブ110内の灌漑用液体の圧力が第1圧力である場合における断面図であり、図6Cは、チューブ110内の灌漑用液体の圧力が第1圧力を超える第2圧力である場合における断面図である。 FIGS. 6A to 6C are schematic diagrams showing the operational relationship between the flow rate reducing unit 160 and the flow path opening / closing unit 170. FIG. 6A to 6C are diagrams schematically showing a cross section taken along the line DD shown in FIG. 2B in order to explain the operation of the emitter 120. 6A is a cross-sectional view when the irrigation liquid is not supplied to the tube 110, and FIG. 6B is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the first pressure. FIG. 6C is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the second pressure exceeding the first pressure.
 チューブ110内に灌漑用液体を送液する前は、フィルム122に灌漑用液体の圧力が加わらないため、第1ダイヤフラム部167および第2ダイヤフラム部175は、変形していない(図6A参照)。 Before the irrigation liquid is fed into the tube 110, since the pressure of the irrigation liquid is not applied to the film 122, the first diaphragm portion 167 and the second diaphragm portion 175 are not deformed (see FIG. 6A).
 チューブ110内に灌漑用液体を送液し始めると、流量減少部160の第1ダイヤフラム部167は、第1弁座部162に向かって変形し始める。また、流路開閉部170の第2ダイヤフラム部175は、第2弁座部172に向かって変形し始める。しかしながら、この状態では、第1ダイヤフラム部167が第1弁座部162に接触しておらず、かつ第2ダイヤフラム部175が第2弁座部172に接触していないため、取水部150から取り入れられた灌漑用液体は、第1流路および第2流路の両方を通って、チューブ110の吐出口112から外部に吐出される。このように、チューブ110内への灌漑用液体の送液開始時や、チューブ110内の灌漑用液体の圧力が低圧の場合などでは、取水部150から取り入れられた灌漑用液体は、第1流路および第2流路の両方を通って吐出される。 When the irrigation liquid starts to be fed into the tube 110, the first diaphragm portion 167 of the flow rate reducing portion 160 starts to deform toward the first valve seat portion 162. Further, the second diaphragm part 175 of the flow path opening / closing part 170 starts to deform toward the second valve seat part 172. However, in this state, the first diaphragm portion 167 is not in contact with the first valve seat portion 162 and the second diaphragm portion 175 is not in contact with the second valve seat portion 172. The irrigated liquid thus discharged is discharged to the outside from the discharge port 112 of the tube 110 through both the first flow path and the second flow path. As described above, at the start of feeding the irrigation liquid into the tube 110 or when the pressure of the irrigation liquid in the tube 110 is low, the irrigation liquid taken from the water intake unit 150 is the first flow. It is discharged through both the channel and the second channel.
 チューブ110内の灌漑用液体の圧力が第1圧力に到達すると、第2ダイヤフラム部175が第2弁座部172に接触して、第2流路を閉塞する(図6B参照)。このとき、第1ダイヤフラム部167は、第1弁座部162に接触していない。このように、チューブ110内の灌漑用液体の圧力がフィルム122を変形するほど高くなると、第2ダイヤフラム部175が第2弁座部172に近接するため、第2流路を通って吐出される灌漑用液体の液量は減少する。そして、チューブ110内の灌漑用液体の圧力が第1圧力に到達すると、第2流路内の灌漑用液体は、吐出部180から吐出されなくなる。その結果、取水部150から取り入れられた灌漑用液体は、第1流路のみを通って、チューブ110の吐出部180から外部に吐出される。 When the pressure of the irrigation liquid in the tube 110 reaches the first pressure, the second diaphragm portion 175 contacts the second valve seat portion 172 and closes the second flow path (see FIG. 6B). At this time, the first diaphragm portion 167 is not in contact with the first valve seat portion 162. Thus, when the pressure of the irrigation liquid in the tube 110 becomes so high that the film 122 is deformed, the second diaphragm portion 175 is close to the second valve seat portion 172, and thus is discharged through the second flow path. The amount of irrigation liquid is reduced. When the pressure of the irrigation liquid in the tube 110 reaches the first pressure, the irrigation liquid in the second flow path is not discharged from the discharge unit 180. As a result, the irrigation liquid taken from the water intake unit 150 is discharged from the discharge unit 180 of the tube 110 to the outside through only the first flow path.
 チューブ110内の灌漑用液体の圧力がさらに高まると、第1ダイヤフラム部167は、第1弁座部162に向かってさらに変形する。通常は、灌漑用液体の圧力が高くなるにつれて、第1流路を流れる灌漑用液体の量が増大するはずであるが、本実施の形態に係るエミッタ120では、第2流路で灌漑用液体の圧力を減少させるとともに、第1ダイヤフラム部167と第1弁座部162との間隔を狭めることで、第1流路を流れる灌漑用液体の量の過剰な増大を防止している。そして、チューブ110内の灌漑用液体の圧力が第1圧力を超える第2圧力以上である場合に、第1ダイヤフラム部167は、第1弁座部162に接触する(図6C参照)。この場合であっても、第1ダイヤフラム部167は、流量減少用貫通孔164および連通溝163を塞がないため、取水部150から取り入れられた灌漑用液体は、連通溝163を通って、チューブ110の吐出部180から外部に吐出される。このように、流量減少部160は、チューブ110内の灌漑用液体の圧力が第2圧力以上である場合、第1ダイヤフラム部167が第1弁座部162に接触することにより、第1流路を流れる灌漑用液体の液量の増大を抑制する。 When the pressure of the irrigation liquid in the tube 110 is further increased, the first diaphragm portion 167 is further deformed toward the first valve seat portion 162. Normally, as the pressure of the irrigation liquid increases, the amount of the irrigation liquid flowing through the first flow path should increase, but in the emitter 120 according to the present embodiment, the irrigation liquid in the second flow path. The pressure between the first diaphragm 167 and the first valve seat 162 is reduced, thereby preventing an excessive increase in the amount of irrigation liquid flowing through the first flow path. Then, when the pressure of the irrigation liquid in the tube 110 is equal to or higher than the second pressure exceeding the first pressure, the first diaphragm portion 167 contacts the first valve seat portion 162 (see FIG. 6C). Even in this case, since the first diaphragm portion 167 does not block the flow rate reducing through-hole 164 and the communication groove 163, the irrigation liquid introduced from the water intake portion 150 passes through the communication groove 163, and the tube. 110 is discharged from the discharge unit 180 to the outside. As described above, when the pressure of the irrigation liquid in the tube 110 is equal to or higher than the second pressure, the flow rate reducing unit 160 makes the first flow path when the first diaphragm portion 167 contacts the first valve seat portion 162. The increase in the amount of irrigation liquid flowing through
 このとき、エミッタ120が高圧流通部を有する吐出流路147を有すると、灌漑用液体が吐出流路147を流通しにくいため、流量減少部160の内圧は、高圧流通部を有さない吐出流路147を有するエミッタにおける流量減少部160の内圧よりも高くなる。これにより、チューブ110を流れる灌漑用液体の圧力と流量減少部160の内圧との圧力差は、より小さくなり、第1ダイヤフラム部167はより変形しにくくなる。 At this time, if the emitter 120 has the discharge channel 147 having the high-pressure circulation part, the irrigation liquid does not easily flow through the discharge channel 147, so that the internal pressure of the flow rate reduction unit 160 is the discharge flow having no high-pressure circulation part. It becomes higher than the internal pressure of the flow rate reducing portion 160 in the emitter having the path 147. As a result, the pressure difference between the pressure of the irrigation liquid flowing through the tube 110 and the internal pressure of the flow rate reducing unit 160 becomes smaller, and the first diaphragm unit 167 is more difficult to deform.
 ただし、このとき、同時に、第1ダイヤフラム部167が第1弁座部162に到達するのに必要な圧力(第2圧力)もより高くなってしまう。これに対し、第1弁座部162の高さをより高くすれば、第1ダイヤフラム部167は、より小さい圧力差(より小さい変形量)でも第1弁座部162に接触できる。そのため、高圧流通部によって流量減少部160の内圧をより高くする場合は、同時に第1弁座部162の高さをより高くすることによって第2圧力をより低めて、灌漑用液体の液量の増大を流量減少部160が抑制する圧力(第2圧力)を調整すればよい。 However, at this time, the pressure (second pressure) necessary for the first diaphragm portion 167 to reach the first valve seat portion 162 is also increased at the same time. On the other hand, if the height of the first valve seat portion 162 is made higher, the first diaphragm portion 167 can contact the first valve seat portion 162 even with a smaller pressure difference (smaller deformation amount). Therefore, when the internal pressure of the flow rate reduction unit 160 is increased by the high-pressure circulation unit, the second pressure is further decreased by simultaneously increasing the height of the first valve seat 162, and the liquid amount of the irrigation liquid is increased. What is necessary is just to adjust the pressure (2nd pressure) which the flow volume reduction part 160 suppresses increase.
 (効果)
 以上のように、本実施の形態に係る点滴灌漑用チューブ110は、流量減少部160と吐出部180とを繋ぐ吐出流路147が、流路径が大きい低圧流通部と流路径が小さい高圧流通部とを有する。高圧流通部を有する吐出流路147は、第1ダイヤフラム部167の変形量をより小さくしつつ、所定の第2圧力において流量減少部160による灌漑用液体の液量増大の抑制を可能にする。そのため、第1ダイヤフラム部167は、クリープ変形が生じにくく、チューブ110内の灌漑用液体の圧力が小さくなったときには容易に元の形状に戻るため、チューブ110内の灌漑用液体の圧力に依存せず、灌漑用液体を定量的に滴下することができる。
(effect)
As described above, in the drip irrigation tube 110 according to the present embodiment, the discharge channel 147 connecting the flow rate reducing unit 160 and the discharge unit 180 includes a low-pressure circulation unit having a large channel diameter and a high-pressure circulation unit having a small channel diameter. And have. The discharge flow path 147 having the high-pressure circulation part makes it possible to suppress an increase in the amount of irrigation liquid by the flow rate reduction part 160 at a predetermined second pressure while reducing the deformation amount of the first diaphragm part 167. For this reason, the first diaphragm portion 167 is unlikely to undergo creep deformation and easily returns to its original shape when the pressure of the irrigation liquid in the tube 110 becomes small. Therefore, the first diaphragm portion 167 does not depend on the pressure of the irrigation liquid in the tube 110. The irrigation liquid can be dripped quantitatively.
 特に、図6Cに示すように、第2圧力において、第1ダイヤフラム部167は第2ダイヤフラム部175よりも大きく変形する。そのため、クリープ変形は、第1ダイヤフラム部167において第2ダイヤフラム部175よりも生じやすい。高圧流通部を有する吐出流路147を用いると、第1ダイヤフラム部167の変形量をより小さくすることができるため、クリープ変形を抑制して、灌漑用液体の圧力が小さいときの吐出量を調整する効果は、より顕著に奏される。 Particularly, as shown in FIG. 6C, at the second pressure, the first diaphragm portion 167 is deformed more largely than the second diaphragm portion 175. Therefore, creep deformation is more likely to occur in the first diaphragm portion 167 than in the second diaphragm portion 175. When the discharge flow path 147 having a high-pressure circulation part is used, the deformation amount of the first diaphragm part 167 can be further reduced, so that creep deformation is suppressed and the discharge amount when the pressure of the irrigation liquid is small is adjusted. This effect is more noticeable.
 また、本実施の形態に係る点滴灌漑用チューブ110は、吐出流路147が、流量減少部160に開口する第1開口部164aにおいて流路径が最も大きくなり、吐出部180に開口する第2開口部164bにおいて流路径が最も小さくなり、灌漑用液体の流通方向に向けて流路径が増加することがない貫通孔であるため、金型を用いた成形時に、金型からの引き抜きが容易である。 In addition, in the drip irrigation tube 110 according to the present embodiment, the discharge channel 147 has the largest channel diameter in the first opening 164 a that opens to the flow rate reducing unit 160, and the second opening that opens to the discharge unit 180. In the portion 164b, the flow path diameter is the smallest and the through hole does not increase in the flow direction of the irrigation liquid, so that it can be easily pulled out from the mold during molding using the mold. .
 (その他の構成)
 なお、本発明に係るエミッタおよび点滴灌漑用チューブの構成は、上記実施の形態に係るエミッタ120および点滴灌漑用チューブ100に限定されない。
(Other configurations)
The configurations of the emitter and the drip irrigation tube according to the present invention are not limited to the emitter 120 and the drip irrigation tube 100 according to the above embodiment.
 たとえば、吐出流路147は、吐出部180に開口する第2開口部164bにおいて流路径が最も小さくなる貫通孔である必要はなく、図7に示すように貫通孔の中間に高圧流通部が設けられてもよいし、第1開口部164aを含む領域などに高圧流通部が設けられてもよい。これらの場合において、第2開口部164bの開口径は上記高圧流通部の流路径よりも大きくなっていてもよい。 For example, the discharge channel 147 does not have to be a through hole having the smallest channel diameter in the second opening 164b that opens to the discharge unit 180, and a high-pressure circulation part is provided in the middle of the through hole as shown in FIG. The high-pressure circulation part may be provided in a region including the first opening 164a. In these cases, the opening diameter of the second opening 164b may be larger than the flow path diameter of the high-pressure circulation part.
 また、吐出流路147は、高圧流通部として流路径が連続的に減少する流路径減少部を有する必要はなく、不連続(段状)に流路径が減少する領域を有していてもよい。 Further, the discharge flow path 147 does not need to have a flow path diameter decreasing portion in which the flow path diameter continuously decreases as a high-pressure circulation section, and may have a region in which the flow path diameter decreases discontinuously (stepped). .
 また、吐出流路147は、たとえば、図8に示すように、ねじ孔のような形状をしていてもよい。このとき、ねじ孔の山部164e(流路径が狭くなる部分)で流量減少部160の内圧を高めることができる。また、このとき、ねじ孔の谷部164f(流路径が広くなる部分)を沿って灌漑用液体を流すことができるため、高圧流通部を設けつつ、流量の減少を生じにくくすることができる。なお、ねじ孔のような形状を有する吐出流路147に形成されたねじ部のねじり角は、たとえば3°から20°の範囲で任意に定めることができ、たとえば図8Aに示す10°や、図8Bに示す5°などとすることができる。 Further, the discharge flow path 147 may have a shape like a screw hole, for example, as shown in FIG. At this time, the internal pressure of the flow rate reducing portion 160 can be increased at the crest portion 164e of the screw hole (the portion where the flow path diameter becomes narrow). At this time, since the irrigation liquid can flow along the valley 164f of the screw hole (portion in which the flow path diameter is widened), it is possible to make it difficult for the flow rate to decrease while providing the high-pressure circulation portion. In addition, the twist angle of the screw part formed in the discharge channel 147 having a shape like a screw hole can be arbitrarily determined in a range of 3 ° to 20 °, for example, 10 ° shown in FIG. The angle may be 5 ° shown in FIG. 8B.
 また、吐出流路147は、貫通孔である必要はなく、流量減少部160からエミッタ120の裏面124に向けて配置された流量減少用貫通孔164と、エミッタ120の裏面124に配置された接続溝とチューブ110の内壁面により形成される接続流路と、を有する構成であってもよい。 Further, the discharge flow path 147 does not need to be a through hole, and the flow rate reducing through hole 164 disposed from the flow rate reducing unit 160 toward the back surface 124 of the emitter 120 and the connection disposed at the back surface 124 of the emitter 120. The structure which has a groove | channel and the connection flow path formed of the inner wall face of the tube 110 may be sufficient.
 本出願は、2017年3月31日出願の日本国出願番号2017-071232号に基づく優先権を主張する出願であり、当該出願の明細書、特許請求の範囲および図面に記載された内容は本出願に援用される。 This application claims priority based on Japanese Patent Application No. 2017-071232 filed on Mar. 31, 2017, and the description, claims, and drawings of the application include the contents of this application. Incorporated into the application.
 本発明によれば、膜部材の変形量をより小さくして膜部材のクリープ変形を抑制し、チューブ内の灌漑用液体の圧力によらずに吐出される灌漑用液体の量を制御することができるエミッタを簡易に提供することが可能である。したがって、本発明により、点滴灌漑や耐久試験などの、長期の滴下を要する技術分野への上記エミッタの普及および当該技術分野のさらなる発展が期待される。 According to the present invention, the amount of deformation of the membrane member is further reduced to suppress creep deformation of the membrane member, and the amount of irrigation liquid discharged can be controlled regardless of the pressure of the irrigation liquid in the tube. It is possible to easily provide a possible emitter. Therefore, according to the present invention, it is expected that the emitter will be widely used in technical fields that require long-term dripping, such as drip irrigation and durability tests, and that the technical field will be further developed.
 100 点滴灌漑用チューブ
 110 チューブ
 112 吐出口
 120 エミッタ
 121 エミッタ本体
 122 フィルム
 123 ヒンジ部
 124 裏面
 125 表面
 131 第1接続溝
 132 第1減圧溝
 133 第2接続溝
 134 第2減圧溝
 135 第3減圧溝
 136 第3接続溝
 132a 第1凸部
 134a 第2凸部
 135a 第3凸部
 141 第1接続流路
 142 第1減圧流路
 143 第2接続流路
 144 第2減圧流路
 145 第3減圧流路
 146 第3接続流路
 147 吐出流路
 150 取水部
 151 取水側スクリーン部
 152 取水用貫通孔
 153 取水用凹部
 154 スリット
 155 凸条
 160 流量減少部
 161 流量減少用凹部
 162 第1弁座部
 163 連通溝
 164 流量減少用貫通孔
 164a 第1開口部
 164b 第2開口部
 164c 低圧流通部
 164d 高圧流通部
 164e ねじ孔の山部
 164f ねじ孔の谷部
 165 第1接続用貫通孔
 166 第2接続用貫通孔
 167 第1ダイヤフラム部
 170 流路開閉部
 171 流路開閉用凹部
 172 第2弁座部
 173 流路開閉用貫通孔
 174 第3接続用貫通孔
 175 第2ダイヤフラム部
 180 吐出部
 181 吐出用凹部
 182 侵入防止部
 183 凸条部
 
 
DESCRIPTION OF SYMBOLS 100 Drip irrigation tube 110 Tube 112 Discharge port 120 Emitter 121 Emitter main body 122 Film 123 Hinge part 124 Back surface 125 Surface 131 1st connection groove 132 1st decompression groove 133 2nd connection groove 134 2nd decompression groove 135 3rd decompression groove 136 Third connection groove 132a First convex portion 134a Second convex portion 135a Third convex portion 141 First connection channel 142 First decompression channel 143 Second connection channel 144 Second decompression channel 145 Third decompression channel 146 Third connection flow path 147 Discharge flow path 150 Water intake portion 151 Water intake side screen portion 152 Water intake through hole 153 Water intake concave portion 154 Slit 155 Projection 160 Flow rate reducing portion 161 Flow rate decreasing concave portion 162 First valve seat portion 163 Communication groove 164 Through-hole for flow rate reduction 164a First opening 164b Second opening 16 4c Low-pressure circulation part 164d High-pressure circulation part 164e Screw hole crest 164f Screw hole trough 165 First connection through hole 166 Second connection through hole 167 First diaphragm part 170 Channel opening / closing part 171 Channel opening / closing recess 172 Second valve seat portion 173 Flow passage opening / closing through hole 174 Third connection through hole 175 Second diaphragm portion 180 Discharge portion 181 Discharge recess portion 182 Intrusion prevention portion 183 Convex portion

Claims (6)

  1.  灌漑用液体を流通させるチューブの内壁面であり、かつ前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
     前記灌漑用液体を取り入れるための取水部と、
     前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、
     前記取水部および前記吐出部を繋ぐ流路と、
     を有し、
     前記流路は、
     流量減少用凹部、および、前記流量減少用凹部と前記チューブの内部とを仕切るように配置される可撓性の第1ダイヤフラム部、を含み、前記チューブ内の前記灌漑用液体の圧力に応じて、前記第1ダイヤフラム部が変形することにより前記灌漑用液体の流量を減少させる流量減少部と、
     前記流量減少部と前記吐出部とを繋ぐ吐出流路と、
     を有し、
     前記吐出流路は、流路径が大きい低圧流通部と流路径が小さい高圧流通部とを有する、
     エミッタ。
    It is an inner wall surface of a tube through which the irrigation liquid is circulated, and is joined to a position corresponding to a discharge port communicating between the inside and the outside of the tube, and quantitatively discharges the irrigation liquid in the tube from the discharge port. An emitter for discharging
    A water intake for taking in the irrigation liquid;
    A discharge part arranged to face the discharge port, for discharging the irrigation liquid;
    A flow path connecting the water intake unit and the discharge unit;
    Have
    The flow path is
    According to the pressure of the irrigation liquid in the tube, including a flow rate reducing recess, and a flexible first diaphragm portion arranged to partition the flow rate reducing recess and the inside of the tube. A flow rate reducing unit that reduces the flow rate of the irrigation liquid by deforming the first diaphragm unit;
    A discharge flow path connecting the flow rate reducing portion and the discharge portion;
    Have
    The discharge flow path has a low pressure flow section having a large flow path diameter and a high pressure flow section having a small flow path diameter.
    Emitter.
  2.  前記高圧流通部は、前記灌漑用液体の流通方向に向けて流路径が連続的に減少する流路径減少部を有する、請求項1に記載のエミッタ。 2. The emitter according to claim 1, wherein the high-pressure flow part has a flow path diameter decreasing part in which a flow path diameter continuously decreases toward a flow direction of the irrigation liquid.
  3.  前記吐出流路は、前記吐出部に開口する第2開口部において流路径が最も小さくなる貫通孔である、請求項1または2に記載のエミッタ。 The emitter according to claim 1 or 2, wherein the discharge flow path is a through-hole having the smallest flow path diameter in the second opening that opens to the discharge section.
  4.  前記流量減少部は、
     前記吐出流路が前記流量減少部に開口する第1開口部を取り囲むように、前記第1ダイヤフラム部に面して非接触に配置され、前記チューブを流れる前記灌漑用液体の圧力が第1圧力以上の場合、前記第1ダイヤフラム部が密着可能な第1弁座部と、
     前記第1弁座部の前記第1ダイヤフラム部が密着可能な面に形成され、前記流量減少用凹部の内部と前記第1開口部とを連通する連通溝と、
     を有する、請求項1~3のいずれか1項に記載のエミッタ。
    The flow rate reducing part is
    The discharge channel is disposed in a non-contact manner facing the first diaphragm portion so as to surround the first opening portion that opens to the flow rate reducing portion, and the pressure of the irrigation liquid flowing through the tube is a first pressure. In the above case, the first valve seat portion to which the first diaphragm portion can be closely attached,
    A communication groove formed on a surface to which the first diaphragm portion of the first valve seat portion can be in close contact, and communicating the inside of the flow rate reducing recess and the first opening;
    The emitter according to any one of claims 1 to 3, comprising:
  5.  前記エミッタは、可撓性を有する一種類の材料で成形されており、
     前記第1ダイヤフラム部は、前記エミッタの一部として一体的に成形されている、
     請求項1~4のいずれか1項に記載のエミッタ。
    The emitter is molded from one kind of flexible material,
    The first diaphragm portion is integrally formed as a part of the emitter,
    The emitter according to any one of claims 1 to 4.
  6.  灌漑用液体を吐出するための吐出口を有するチューブと、
     前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1~5のいずれか一項に記載のエミッタとを有する、
     点滴灌漑用チューブ。
     
     
    A tube having a discharge port for discharging irrigation liquid;
    The emitter according to any one of claims 1 to 5, joined at a position corresponding to the discharge port of the inner wall surface of the tube.
    Tube for drip irrigation.

PCT/JP2018/010793 2017-03-31 2018-03-19 Emitter and drip irrigation tube WO2018180700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071232A JP6831738B2 (en) 2017-03-31 2017-03-31 Emitter and drip irrigation tubes
JP2017-071232 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180700A1 true WO2018180700A1 (en) 2018-10-04

Family

ID=63675733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010793 WO2018180700A1 (en) 2017-03-31 2018-03-19 Emitter and drip irrigation tube

Country Status (2)

Country Link
JP (1) JP6831738B2 (en)
WO (1) WO2018180700A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046094A (en) * 1997-10-14 2010-03-04 Hydro Plan Engineering Ltd Emitter unit
US20120305676A1 (en) * 2010-02-18 2012-12-06 Netafim, Ltd. Drip Irrigation Emitter
JP2016154525A (en) * 2015-02-25 2016-09-01 株式会社エンプラス Emitter and tube for irrigation by drip infusion
JP2017042106A (en) * 2015-08-27 2017-03-02 株式会社エンプラス Emitter and tube for infusion irrigation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046094A (en) * 1997-10-14 2010-03-04 Hydro Plan Engineering Ltd Emitter unit
US20120305676A1 (en) * 2010-02-18 2012-12-06 Netafim, Ltd. Drip Irrigation Emitter
JP2016154525A (en) * 2015-02-25 2016-09-01 株式会社エンプラス Emitter and tube for irrigation by drip infusion
JP2017042106A (en) * 2015-08-27 2017-03-02 株式会社エンプラス Emitter and tube for infusion irrigation

Also Published As

Publication number Publication date
JP6831738B2 (en) 2021-02-17
JP2018170997A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6577319B2 (en) Emitter and drip irrigation tubes
US10362740B2 (en) Emitter and drip irrigation tube
US10327396B2 (en) Emitter, and drip irrigation tube
WO2016190168A1 (en) Emitter and drip irrigation tube
CN108024516B (en) Emitter and drip irrigation pipe
JP7349432B2 (en) Emitters and drip irrigation tubing
JP7101045B2 (en) Emitter and drip irrigation tube
WO2018003303A1 (en) Emitter and tube for drip irrigation
WO2018025682A1 (en) Emitter and drip-irrigation tube
WO2018025681A1 (en) Emitter and drip-irrigation tube
WO2017159251A1 (en) Emitter, and tube for drip irrigation
WO2018180700A1 (en) Emitter and drip irrigation tube
WO2021039623A1 (en) Emitter and drip irrigation tube
WO2021039831A1 (en) Emitter and drip irrigation tube
WO2016136695A1 (en) Emitter and drip irrigation tube
JP6831741B2 (en) Emitter and drip irrigation tubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777157

Country of ref document: EP

Kind code of ref document: A1