WO2018180308A1 - Chemically amplified resist material and method for forming resist pattern - Google Patents

Chemically amplified resist material and method for forming resist pattern Download PDF

Info

Publication number
WO2018180308A1
WO2018180308A1 PCT/JP2018/008774 JP2018008774W WO2018180308A1 WO 2018180308 A1 WO2018180308 A1 WO 2018180308A1 JP 2018008774 W JP2018008774 W JP 2018008774W WO 2018180308 A1 WO2018180308 A1 WO 2018180308A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
acid
irradiation
group
sensitive
Prior art date
Application number
PCT/JP2018/008774
Other languages
French (fr)
Japanese (ja)
Inventor
恭志 中川
岳彦 成岡
永井 智樹
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020197031266A priority Critical patent/KR20190129992A/en
Priority to JP2019509120A priority patent/JPWO2018180308A1/en
Publication of WO2018180308A1 publication Critical patent/WO2018180308A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • the present invention relates to a chemically amplified resist material and a resist pattern forming method.
  • EUV (extreme ultraviolet light) lithography has attracted attention as one of the elemental technologies for manufacturing next-generation semiconductor devices.
  • EUV lithography is a pattern formation technique that uses EUV light having a wavelength of 13.5 nm as an exposure light source. According to EUV lithography, it has been demonstrated that an extremely fine resist pattern (for example, 20 nm or less) can be formed in an exposure step of a semiconductor device manufacturing process.
  • the present invention provides a high level of both high sensitivity and excellent lithography characteristics in pattern formation technology using radiation having a wavelength of 250 nm or less such as EUV, electron beam, ion beam, KrF excimer laser, ArF excimer laser, etc.
  • An object of the present invention is to provide a resist material that can be achieved.
  • Another object of the present invention is to provide a resist pattern forming method using the resist material.
  • the invention made in order to solve the above problems includes a step of irradiating a part of a resist film formed using a photosensitive resin composition with a first radiation having a wavelength of 250 nm or less, and the partial irradiation.
  • a chemically amplified resist material used as the photosensitive resin composition wherein (1) a base component that is soluble or insoluble in the developer by the action of an acid; 2) a radiation-sensitive sensitizer and a component that generates an acid upon irradiation, and the component (2) includes the following components (a) and (b), the following components (b) and (c), or A chemically amplified resist material containing all of the components (a) to (c), wherein the component (b) is decomposed by the
  • R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms
  • R 1 to R 6 Each independently represents a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R a to R d and R 1 to R 6 . 2 or more of them are part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which they are bonded to each other, provided that at least one of R 1 to R 6 is a hydroxy group .
  • the component (2) contains the components (a) and (b), the components (b) and (c), or the components (a) to (c),
  • the component (b) is a chemically amplified resist material containing a precursor that decomposes by the action of an acid to produce a compound represented by the above formula (A).
  • Still another invention made in order to solve the above-mentioned problems is a step of coating the chemically amplified resist material on a substrate, and a wavelength of 250 nm or less on a part of the resist film formed by the coating step.
  • a step of irradiating radiation having, a step of irradiating the entire surface of the resist film after the partial irradiation step with radiation having a wavelength exceeding 250 nm, a step of heating the resist film after the whole surface irradiation step, and the heating step And a step of developing the subsequent resist film.
  • the acid and radiation-sensitive sensitizer are not substantially generated by the irradiation of the second radiation in the non-irradiated portion where the first radiation is not irradiated in the partial irradiation step”
  • the partial irradiation step In the non-irradiated part that is not irradiated with the first radiation the radiation sensitive sensitizer is not substantially generated by the irradiation of the second radiation.
  • the acid is not substantially generated by the irradiation of the second radiation ”,“ when the first radiation is not irradiated and only the second radiation is irradiated, the acid and the radiation-sensitive sensitizer are not substantially generated ”.
  • Organic group refers to a group containing at least one carbon atom.
  • Numberer of ring members means the number of atoms constituting the ring of an aromatic ring structure, aromatic heterocyclic structure, alicyclic structure and aliphatic heterocyclic structure. In the case of a polycyclic ring structure, this polycyclic ring The number of atoms to be played.
  • both high sensitivity and excellent lithography characteristics are enhanced.
  • a chemically amplified resist material that can achieve the standard.
  • the resist pattern formation method using the said resist material is provided.
  • the chemically amplified resist material according to this embodiment is used as a photosensitive resin composition in a two-step exposure lithography process.
  • the two-step exposure lithography process includes a partial irradiation step, a full-surface irradiation step, a heating step, and a development step.
  • the partial irradiation step the first radiation having a wavelength of 250 nm or less is irradiated.
  • the second radiation having a wavelength exceeding 250 nm is irradiated.
  • the chemically amplified resist material according to the present embodiment may be either a positive resist material or a negative resist material, and is appropriately selected by selecting a base component, a developer, and the like described later.
  • a resist material in which a part of the irradiated part is melted by development after part of the irradiation and a non-partially irradiated part (light-shielding part) remains is called a positive resist material.
  • the resist material that melts and remains irradiated is called negative resist.
  • the chemically amplified resist material according to the present embodiment includes (1) a base component that becomes soluble or insoluble in a developer by the action of an acid, and (2) sensitization by radiation irradiation.
  • a radiation sensitizer and an acid generating component includes
  • the base component (1) may be an organic compound or an inorganic compound.
  • the organic compound may be a high molecular compound or a low molecular compound.
  • the polymer compound may be a polymer whose solubility in a developer is changed by the action of an acid. Such a polymer is widely used as a base component of a resist material.
  • it is desirable that (1) the base component has a low absorption of the second radiation in the entire surface irradiation and is unlikely to induce an unnecessary sensitization reaction in the non-irradiated part during the entire surface irradiation.
  • the lower limit of the weight average molecular weight (Mw) of the polymer is preferably 1,000, more preferably 3,000, and more preferably 5,000.
  • the upper limit of the Mw is preferably 200,000, more preferably 50,000, and still more preferably 10,000.
  • the upper limit of the ratio of Mw to the number average molecular weight (Mn) of the polymer is preferably 5, more preferably 3, and even more preferably 2.2.
  • the lower limit of the above ratio is usually 1 and preferably 1.5.
  • Mw and Mn of the polymer are GPC columns (two "G2000HXL”, one “G3000HXL”, one “G4000HXL” manufactured by Tosoh Corporation), a flow rate of 1.0 mL / min, and an elution solvent tetrahydrofuran.
  • GPC gel permeation chromatography
  • Examples of the polymer whose solubility in the developing solution is changed by the action of the acid include, for example, a polymer having a structural unit containing a polar group (for example, an acidic functional group), a polymer having a structural unit containing an acid dissociable group, etc. Is mentioned.
  • a polymer having a structural unit containing a polar group is soluble in an alkali developer, but becomes insoluble in an alkali developer by reacting with a crosslinking agent described later in the heating step by the action of an acid.
  • the resist film in the non-partially irradiated portion can be removed with an alkaline developer. Therefore, when the resist film formed using the polymer is developed with an alkaline developer, the resist material functions as a negative resist material.
  • the polymer having a structural unit containing an acid dissociable group is soluble in an organic developer, but insoluble or hardly soluble in an alkali developer.
  • the polymer having a structural unit containing an acid-dissociable group is removed from the acid-dissociable group by the action of an acid in the heating step (deprotection), imparted polarity, soluble in an alkali developer and soluble in an organic developer. Insoluble.
  • the resist film in the non-partially irradiated portion can be removed with an organic developer, and the partially irradiated portion can be removed with an alkali developer.
  • the resist material functions as a negative resist material.
  • the resist material functions as a positive resist material.
  • a polymer having a structural unit containing an acid-dissociable group (hereinafter also referred to as “structural unit (I)”) (hereinafter also referred to as “[P] polymer”) has a lactone structure in addition to the structural unit (I).
  • the structural unit (I) is a structural unit containing an acid dissociable group.
  • Examples of the structural unit (I) include a structural unit represented by the following formula (X).
  • R W is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R X is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R Y and R Z are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 3 ring atoms composed of these groups together with the carbon atom to which they are bonded. It is a part of 20 alicyclic structures.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • the R W preferably a hydrogen atom or a methyl group, more preferably a methyl group.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X , R Y and R Z include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent hydrocarbon group having 3 to 20 carbon atoms. And alicyclic hydrocarbon groups, monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, and the like.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, n-propyl group and i-propyl group, alkenyl groups such as ethenyl group, propenyl group and butenyl group. Alkynyl groups such as ethynyl group, propynyl group, butynyl group and the like.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as cyclopentyl group and cyclohexyl group, and monocyclic alicyclic hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group.
  • Polycyclic alicyclic unsaturated groups such as polycyclic alicyclic saturated hydrocarbon groups such as cyclic unsaturated hydrocarbon groups, norbornyl groups, adamantyl groups, and tricyclodecyl groups, norbornenyl groups, and tricyclodecenyl groups A hydrocarbon group etc. are mentioned.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and anthryl group, benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group. And an aralkyl group such as a group.
  • Examples of the alicyclic structure having 3 to 20 ring members composed of R Y and R Z combined with the carbon atom to which they are bonded include a cyclopentane structure, a cyclohexane structure, a norbornane structure, an adamantane structure, and the like.
  • the structural unit (I) is preferably a structural unit derived from 1-alkylcycloalkane-1-yl (meth) acrylate.
  • the content rate of structural unit (I) As a minimum of the content rate of structural unit (I), 20 mol% is preferred to 40 mol% with respect to all the structural units which constitute a [P] polymer. As an upper limit of the said content rate, 80 mol% is preferable and 60 mol% is more preferable.
  • the structural unit (II) is a structural unit including a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof.
  • the solubility in the developer can be made more appropriate.
  • structural unit (II) for example, a structural unit derived from butyrolactone-yl (meth) acrylate, a structural unit derived from norbornanelactone-yl (meth) acrylate, a structural unit derived from ethylene carbonate-ylmethyl (meth) acrylate, And structural units derived from norbornane sultone-yl (meth) acrylate.
  • the lower limit of the content ratio of the structural unit (II) is preferably 20 mol%, more preferably 30 mol%.
  • 80 mol% is preferable and 70 mol% is more preferable.
  • the structural unit (III) is a structural unit including an aromatic ring to which a hydroxy group is bonded.
  • the sensitivity in partial irradiation of the resist material can be further improved.
  • Examples of the structural unit (III) include a structural unit derived from hydroxystyrene, a structural unit derived from hydroxyvinylnaphthalene, and a structural unit derived from hydroxyphenyl (meth) acrylate.
  • the lower limit of the content ratio of the structural unit (III) is preferably 20 mol%, more preferably 30 mol%.
  • 80 mol% is preferable and 70 mol% is more preferable.
  • the structural unit (IV) is a structural unit containing a group represented by the following formula (Y).
  • R P and R Q are each independently a fluorine atom or a fluorinated alkyl group having 1 to 10 carbon atoms.
  • the fluorinated alkyl group having 1 to 10 carbon atoms represented by R P and R Q for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, a nonafluorobutyl group Etc. Of these, a trifluoromethyl group is preferred.
  • the lower limit of the content ratio of the structural unit (IV) is preferably 5 mol%, and more preferably 10 mol%.
  • the upper limit of the said content rate 50 mol% is preferable and 30 mol% is more preferable.
  • the lower limit of the molecular weight of the low molecular compound is preferably 300, more preferably 500.
  • the upper limit of the molecular weight is preferably 3,000, and more preferably 2,000.
  • the low molecular weight compound is such that a part of the irradiated portion becomes soluble or insoluble in the developer in the development step due to an acid catalyst reaction in the heating step after the entire surface irradiation.
  • low molecular weight compound examples include star-shaped molecules such as torquesen derivatives, calixarene derivatives, Noria, dendrimers and the like.
  • the inorganic compound examples include metal oxides such as cobalt oxide, hafnium oxide, and zirconium oxide, and organometallic compounds such as complexes.
  • the metal oxide may be in the form of particles or nanoparticles having a nano-order particle size.
  • the metal oxide particles may be coordinated with a carboxylic acid or the like.
  • (1) An example of a change in solubility when an inorganic compound is used as the base component is shown below. For example, when (1) a metal oxide nanoparticle coordinated with a carboxylic acid is used as a base component, an anion of an acid generated by radiation irradiation coordinates to the metal oxide instead of the carboxylate anion. As a result, the interaction between the metal oxide particles increases, (1) the base component gels, and dissolution of the irradiated portion when only the non-irradiated portion is dissolved in the development step can be suppressed.
  • the said component is a component which generate
  • the above components include (a) a radiation sensitive acid-sensitizer generator, (b) a radiation sensitive sensitizer generator, and (c) a radiation sensitive acid generator.
  • a radiation-sensitive acid-sensitizer generator may be an acid and a sensitizer even if they are low molecular compounds. It may be a polymer having a group that generates a sensitizer, a polymer having a group that generates a sensitizer, or a polymer having a group that generates an acid.
  • (A) Radiation sensitive acid-sensitizer generator (A) The radiation-sensitive acid-sensitizer generating agent generates an acid and a radiation-sensitive sensitizer that absorbs the second radiation by the irradiation of the first radiation, and the first irradiation in the partial irradiation step. In the non-irradiated part where no radiation is irradiated, the acid and the radiation-sensitive sensitizer are not substantially generated by the irradiation of the second radiation. Since the (a) radiation-sensitive acid-sensitizer generator has the above properties, the generation of the acid and the radiation-sensitive sensitizer due to the irradiation of the second radiation in the entire surface irradiation step can be suppressed.
  • the wavelength of the second radiation is set to be not less than the above lower limit, whereby the first radiation In the partially irradiated part irradiated with acid, acid is generated during the irradiation of the second radiation due to the sensitizing action of the generated radiation-sensitive sensitizer, and on the contrary, in the non-partially irradiated part where the first radiation is not irradiated, the second is irradiated. Generation of acid during irradiation with radiation is suppressed. As a result, the sensitivity and contrast between the partially irradiated portion and the non-partially irradiated portion can be improved.
  • Examples of the radiation-sensitive acid-sensitizer generator include onium salt compounds, diazomethane compounds, and sulfonimide compounds.
  • Examples of the onium salt compound include a sulfonium salt compound, a tetrahydrothiophenium salt compound, and an iodonium salt compound.
  • Examples of the (a) radiation-sensitive acid-sensitizer generator which is a sulfonium salt compound include compounds having a carbon atom adjacent to S + and having a hydroxy group bonded to the carbon atom.
  • the radiation-sensitive sensitizer generating agent generates a radiation-sensitive sensitizer that absorbs the second radiation when irradiated with the first radiation, and the first radiation is not irradiated in the partial irradiation step.
  • the irradiation part is a component that does not substantially generate the radiation-sensitive sensitizer when irradiated with the second radiation, and is different from the radiation-sensitive acid-sensitizer generating agent (a).
  • the chemical structure of (b) the radiation-sensitive sensitizer generating agent is converted by a direct or indirect reaction in the partial irradiation process, and acid generation is assisted in the entire irradiation process.
  • acid generation is assisted in the entire irradiation process.
  • the peak of the wavelength of the absorbed radiation is partially shifted before and after the irradiation process, so that the absorption of the second radiation in the entire irradiation process is performed between the irradiated part and the non-irradiated part where the radiation sensitive sensitizer is generated. Contrast can be easily obtained. Furthermore, when the peak shift of the absorption wavelength is large, the contrast of the absorption of the second radiation in the entire surface irradiation process becomes larger.
  • the radiation-sensitive sensitizer when the radiation-sensitive sensitizer is generated by irradiating the radiation-sensitive sensitizer generating agent with the second radiation, the radiation sensitivity between the irradiated portion and the non-irradiated portion in the partial irradiation.
  • a lower limit of the wavelength of the second radiation that can reduce the amount of radiation-sensitive sensitizer generated by irradiation of the second radiation to such an extent that the difference in concentration of the photosensitive sensitizer can be maintained at a size that allows pattern formation, 300 nm is preferable, 320 nm is more preferable, and 350 nm is more preferable.
  • the first radiation is irradiated by setting the wavelength of the second radiation to the above lower limit or more.
  • the partial irradiation section acid is generated during the irradiation of the second radiation due to the sensitizing action of the generated radiation-sensitive sensitizer, and conversely, in the non-partial irradiation section where the first radiation is not irradiated, the second radiation is irradiated. Generation of acid in is suppressed. As a result, the sensitivity and contrast between the partially irradiated portion and the non-partially irradiated portion can be improved.
  • (B) As a radiation sensitive sensitizer generating agent, what becomes the compound (carbonyl compound) which has a carbonyl group which absorbs the 2nd radiation in a whole surface irradiation process by irradiation of the 1st radiation in a partial irradiation process is preferable. .
  • the carbonyl compound include aldehydes, ketones, carboxylic acids and carboxylic acid esters. Due to the above reaction, the peak of the absorption wavelength of radiation occurs only in the radiation-sensitive sensitizer generating agent (b) of the partially irradiated part. Therefore, after partial irradiation, if the entire surface is irradiated with radiation having a wavelength that can be absorbed only by the partial irradiation portion, only the partial irradiation portion can be selectively sensitized.
  • the (b) radiation-sensitive sensitizer generator is a precursor (hereinafter referred to as “(A) sensitizer”) that is decomposed by the action of an acid and is represented by the following formula (A). , Also referred to as “[B] precursor”).
  • a sensitizer is a compound represented by the following formula (A).
  • R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms
  • R 1 to R 6 Each independently represents a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R a to R d and R 1 to R 6 . Two or more of them are part of a ring structure having 4 to 20 ring members that is formed together with the carbon chain to which they are bonded. However, at least one of R 1 to R 6 is a hydroxy group.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R a to R d and R 1 to R 6 include a monovalent hydrocarbon group having 1 to 20 carbon atoms, carbon- A group ( ⁇ ) containing a divalent heteroatom-containing group between carbons, a group obtained by substituting a part or all of the hydrogen atoms of the monovalent hydrocarbon group and the group ( ⁇ ) with a monovalent heteroatom-containing group Etc.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms are the same as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms of R X , R Y and R Z in the above formula (X). Groups and the like.
  • hetero atom constituting the monovalent and divalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like.
  • R ' is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
  • Examples of the ring structure having 4 to 20 ring members constituted by a carbon chain in which two or more of R a to R d and R 1 to R 6 are combined with each other include, for example, naphthalene structure, anthracene structure, fluorene Examples include a structure, a carbocyclic structure such as a dibenzocyclohexane structure, a xanthene structure, a thioxanthene structure, a dibenzothiacyclohexane structure, and a heterocyclic structure such as a dibenzoazacyclohexane structure.
  • the (A) a sensitizer is a hydroxy group.
  • R 1 to R 6 in the above formula (A) are hydroxy groups.
  • the sensitization performance is further improved, and the sensitivity of the resist material is further improved.
  • the number of hydroxy groups bonded to the aromatic ring of the sensitizer is preferably 1 to 3, more preferably 1 and 2, and even more preferably 2.
  • a hydroxyl group is not bonded to a carbon atom (ortho-position carbon atom) on the same aromatic ring adjacent to the carbon on the aromatic ring to which the carbonyl group of the sensitizer is bonded. . The reason for this will be described below.
  • the sensitizer transits from the ground singlet state to the excited singlet state by irradiation with the second radiation.
  • the excited singlet state has a very short lifetime and is in nanosecond units, and the probability of donating energy or electrons from this singlet state to the photoacid generator or the like is very low.
  • the sensitizer can transition from the excited singlet state to the excited triplet state by a behavior called intersystem crossing, the lifetime of this excited triplet state is relatively long, in units of microseconds. Probability of donating energy or electrons to the generating agent is greatly improved.
  • Examples of (A) sensitizers include compounds represented by the following formulas (i-1) to (i-24) (hereinafter also referred to as “compounds (i-1) to (i-24)”) and the like. Can be mentioned.
  • compounds (i-1) to (i-6) are preferable, and compounds (i-1) and (i-2) are more preferable.
  • the precursor is a compound that is decomposed by the action of an acid to yield a compound (A).
  • Examples of the precursor include an esterified product and an acetalized product of the compound (A), and an acetalized product of the compound (A) is preferable.
  • the precursor is an acetalized product, decomposition due to the action of an acid is more likely to occur, and as a result, the sensitivity of the resist material is further improved.
  • Examples of the esterified product of the compound (A) include compounds in which a hydrogen atom of a hydroxy group bonded to a benzene ring is substituted with an acyl group.
  • Examples of the acetalized compound (A) include a compound obtained by acetalizing a keto group, a compound having an acetal structure derived from two hydroxy groups located at the ortho position of a benzene ring, and two compounds bonded to aromatic rings of different molecules. Examples thereof include a compound having an acetal structure derived from a hydroxy group.
  • a compound obtained by acetalizing a keto group, a compound having an acetal structure derived from two hydroxy groups located at the ortho position of the benzene ring, and a keto group are acetalized.
  • a compound having both the above structure and an acetal structure derived from two hydroxy groups located at the ortho position of the benzene ring is preferred.
  • Examples of the [B] precursor include compounds represented by the following formulas (B-1) to (B-4) (hereinafter also referred to as “compounds (B-1) to (B-4)”) and the like. It is done.
  • R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms, or R a to R 6
  • Two or more of d and R 1 to R 6 are part of a ring structure having 4 to 20 ring members that is formed together with the carbon chain to which they are bonded to each other.
  • R A and R B are each independently a monovalent organic group having 1 to 20 carbon atoms, or the number of ring members formed together with O—C—O in which these groups are combined with each other. Part of 4-20 ring structures.
  • R C and R D each independently represent a monovalent organic group having 1 to 20 carbon atoms, or have 3 to 20 ring members composed of these groups together with the carbon atom to which they are bonded. Part of the ring structure.
  • the groups represented by R a to R d and R 1 to R 6 in the above formulas (B-1) to (B-4) and the ring structure formed by these groups include R a in the above formula (A).
  • include the same ones such as those exemplified as R d and group or ring structure represented by R 1 - R 6.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R A and R B and R C and R D include, for example, R a to R d and R 1 to R 6 in the above formula (A). Examples thereof include the same groups as those exemplified as 1 to 20 monovalent organic groups.
  • R A and R B are preferably chain hydrocarbon groups, more preferably alkyl groups, and even more preferably methyl groups.
  • Examples of the ring structure having 4 to 20 ring members constituted by O—C—O in which R A and R B groups are combined with each other include, for example, 1,3-dioxacyclopentane structure, 1,3- Examples include 1,3-dioxacycloalkane structures such as dioxacyclohexane structures. Of these, a 1,3-dioxacyclopentane structure is preferable.
  • R C and R D are preferably chain hydrocarbon groups, more preferably alkyl groups, and even more preferably methyl groups.
  • Examples of the ring structure having 3 to 20 ring members constituted by the carbon atoms to which the groups R C and R D are combined with each other include cycloalkane structures such as a cyclopentane structure and a cyclohexane structure.
  • Examples of the precursor include compounds represented by the following formulas (B-1-a), (B-2-a), (B-3-a), and (B-4-a) (hereinafter, “Compounds (B-1-a), (B-2-a), (B-3-a), also referred to as (B-4-a)”).
  • the precursor can be synthesized by performing an acetalization or esterification reaction using a hydroxyl group bonded to the keto group and / or aromatic ring of the (A) sensitizer.
  • acetalizing agent (1a) for converting a keto group of a sensitizer into a chain acetal structure such as a dimethyl acetal structure for example, trialkyl orthoformate such as trimethyl orthoformate and triethyl orthoformate, orthoacetic acid Ortho esters such as trialkyl orthoacetate such as trimethyl, triethyl orthoacetate and the like can be mentioned.
  • acetalizing agent (1b) for converting the keto group of the sensitizer into a cyclic acetal structure such as a 1,3-dioxacyclopentane structure
  • ortho such as a mixture of trimethyl orthoformate and ethylene glycol
  • examples thereof include a mixture of an ester and vicinal diol.
  • the acetalizing agent (2) for converting two hydroxy groups located at the ortho position of the benzene ring of the sensitizer into an acetal structure for example, 2,2-dimethoxypropane, 2,2-diethoxy
  • Examples include acetals of ketones having 1 to 20 carbon atoms such as propane, 3,3-dimethoxypentane, and 1,1-dimethoxycyclohexane.
  • Compounds (B-1) and (B-4) are prepared by using, for example, the acetalizing agent (1a) and / or (1b) for the sensitizer (A) in the presence of an acid such as p-toluenesulfonic acid. It can be synthesized by carrying out an acetalization reaction.
  • Compound (B-2) uses an acetalizing agent (2), for example, for the sensitizer (A) having two hydroxy groups located at the ortho positions of the benzene ring, and an acid such as p-toluenesulfonic acid is present. It can synthesize
  • Compound (B-3) comprises an acetalizing agent (1a) and / or (1b) and an acetalizing agent (2) for the sensitizer (A) having two hydroxy groups located at the ortho positions of the benzene ring. ) And an acetalization reaction in the presence of an acid such as p-toluenesulfonic acid.
  • the compounds (B-1) to (B-4) can be isolated by appropriately purifying the obtained product by column chromatography, recrystallization, distillation or the like. [B] precursors other than those described above can also be synthesized by the same method as described above.
  • the radiation-sensitive acid generator generates acid upon irradiation with the first radiation, and the non-irradiated portion where the first radiation is not irradiated in the partial irradiation step causes the acid to be generated upon irradiation with the second radiation. It is a component that does not substantially occur and is different from the above-mentioned (a) radiation-sensitive acid-sensitizer generator. (C) Since the radiation-sensitive acid generator has the above properties, an acid can be generated only at a part of the resist film irradiated by a radiation sensitization reaction during the entire surface irradiation.
  • the lower limit of the wavelength of the second radiation that can reduce the amount of acid generated by the irradiation of the second radiation to such an extent that the size can be maintained is preferably 300 nm, more preferably 320 nm, and even more preferably 350 nm.
  • the wavelength of the second radiation is set to be equal to or higher than the lower limit, so that it is generated in the partial irradiation unit irradiated with the first radiation. Due to the sensitizing action of the radiation-sensitive sensitizer, acid is generated during the irradiation of the second radiation, and conversely, in the non-partially irradiated portion where the first radiation is not irradiated, the generation of acid during the irradiation of the second radiation is suppressed. The As a result, the sensitivity and contrast between the partially irradiated portion and the non-partially irradiated portion can be improved.
  • Examples of the radiation sensitive acid generator include onium salt compounds, diazomethane compounds, N-sulfonyloxyimide compounds and the like.
  • Examples of the onium salt compound include a sulfonium salt compound, a tetrahydrothiophenium salt compound, and an iodonium salt compound.
  • As the radiation-sensitive acid generator sulfonium salt compounds, iodonium salt compounds, sulfonyldiazomethane, N-sulfonyloxyimide, and oxime-O-sulfonate type radiation-sensitive acid generators are preferred, and sulfonium salt compounds and iodonium.
  • a salt compound is more preferable.
  • sulfonium salt compounds include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2, 2-tetrafluoroethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium 2-bicyclo [2.2 .1] Hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium triflu
  • tetrahydrothiophenium salt compound examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium.
  • tetrahydrothiophenium salt compound examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium.
  • Nonafluoro-n-butanesulfonate and the like can be mentioned.
  • iodonium salt compound examples include diphenyliodonium trifluoromethanesulfonate, bis (4-tert-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethane. Examples include sulfonates.
  • N-sulfonyloxyimide compounds include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy). ) Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide and the like.
  • diazomethane compound examples include bis (n-propylsulfonyl) diazomethane and bis (isopropylsulfonyl) diazomethane.
  • the resist material of this embodiment may contain [D] acid diffusion controller, [E] solvent, crosslinking agent, etc. as optional components in addition to the above-mentioned (1) base component and (2) component. Good.
  • the acid diffusion controller controls the diffusion phenomenon in the resist film of the acid generated from (a) a radiation-sensitive acid-sensitizer generator, (c) a radiation-sensitive acid generator, etc. by irradiation. It is a substance that suppresses an undesirable chemical reaction in a non-irradiated part.
  • the content of the acid diffusion controller in the resist material may be a free compound (hereinafter referred to as “[D] acid diffusion controller”) or a form incorporated as part of the polymer. Both of these forms may be used.
  • Examples of the acid diffusion control agent include nitrogen atom-containing compounds, photodegradable bases that are exposed to radiation and generate weak acids.
  • nitrogen atom-containing compound examples include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
  • Examples of the photodegradable base include triphenylsulfonium salt of carboxylic acid, and triphenylsulfonium adamantan-1-yl oxalate is preferable.
  • a solvent will not be specifically limited if it is a solvent which can melt
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvents include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol, and alicyclic monoalcohol solvents having 3 to 18 carbon atoms such as cyclohexanol.
  • examples thereof include a solvent, a polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol, and a polyhydric alcohol partial ether solvent having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, diheptyl ether and other dialkyl ether solvents, tetrahydrofuran, tetrahydropyran and other cyclic ether solvents, diphenyl ether, And aromatic ring-containing ether solvents such as anisole.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone, cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone, 2,4-pentanedione, acetonylacetone And acetophenone.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N And chain amide solvents such as -methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate, polyhydric alcohol carboxylate solvents such as propylene glycol acetate, and polyhydric alcohol partial ether carboxylates such as propylene glycol monomethyl ether acetate.
  • Solvents polyvalent carboxylic acid diester solvents such as diethyl oxalate, carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate and propylene carbonate, and lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone. .
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane, and aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene. It is done.
  • the radiation-sensitive resin composition may contain one or more [E] solvents.
  • the cross-linking agent is used to cause a cross-linking reaction between the base components by an acid catalyst reaction during the heating step after the entire surface irradiation, thereby increasing the molecular weight of the base components and insolubilizing with the developer. ) Different from the base component. Since the resist material contains a cross-linking agent, the polar part becomes nonpolar at the same time as the cross-linking and becomes insoluble in the developer, so that a negative resist material can be provided.
  • the crosslinking agent is a compound having two or more functional groups.
  • the functional group include (meth) acryloyl group, hydroxymethyl group, alkoxymethyl group, epoxy group, vinyl ether group and the like.
  • the resist material is a radiation sensitive resin composition containing the above components.
  • the blending ratio of each component may be appropriately set depending on the use of the resist material, the use conditions, and the like.
  • the lower limit of the content of the [B] precursor as the radiation-sensitive sensitizer generating agent with respect to 100 parts by mass of the component is preferably 0.1 parts by mass, more preferably 1 part by mass. Part by mass is more preferable, and 5 parts by mass is particularly preferable. As an upper limit of the said content, 50 mass parts is preferable, 30 mass parts is more preferable, 20 mass parts is further more preferable, 15 mass parts is especially preferable.
  • Sufficient sensitivity is easily obtained when the content of the precursor is not less than the above lower limit, and a rectangular resist pattern is likely to be obtained when the content is not more than the above upper limit.
  • the lower limit of the content of the [D] acid diffusion controller with respect to 100 parts by mass of the component is preferably 0.1 parts by mass, more preferably 0.5 parts by mass, and even more preferably 1 part by mass.
  • As an upper limit of the said content 20 mass parts is preferable, 10 mass parts is more preferable, and 5 mass parts is further more preferable.
  • the content of the acid diffusion controller is not less than the above lower limit, the shape of the resist pattern tends to be more favorable, and on the other hand, sufficient sensitivity is easily obtained when it is not more than the above upper limit.
  • the resist material of this embodiment can be produced by mixing the above component (1), component (2), [D] acid diffusion controller, [E] solvent and the like by a known method.
  • the lithography process includes a step of coating the resist material on a substrate (hereinafter also referred to as “coating step”) and a resist film formed by the coating step.
  • coating step A part of which is irradiated with radiation having a wavelength of 250 nm or less (first radiation) (hereinafter also referred to as “partial irradiation process”), and a wavelength exceeding 250 nm on the entire surface of the resist film after the partial irradiation process.
  • a step (hereinafter also referred to as “overall irradiation step”), a step of heating the resist film after the entire surface irradiation step (hereinafter also referred to as “heating step”), And a step of developing the resist film after the heating step (hereinafter also referred to as “developing step”).
  • the substrate may be composed of a semiconductor wafer such as a silicon substrate, a silicon dioxide substrate, a glass substrate, and an ITO substrate, or may be an insulating film layer formed on the semiconductor wafer. .
  • Examples of the resist material coating method include a method of applying the resist material by spin coating or the like. When the resist material is applied, the solvent in the resist material may be volatilized by heating (pre-baking) after the application.
  • the conditions for forming the resist film are appropriately selected according to the properties of the resist material, the thickness of the resist film to be obtained, and the like.
  • the lower limit of the average thickness of the resist film is preferably 1 nm, more preferably 10 nm, and further preferably 30 nm.
  • the upper limit of the average thickness is preferably 5,000 nm, more preferably 1,000 nm, and even more preferably 200 nm.
  • a lower layer film (an antireflection film, a film for improving resist adhesion, a film for improving resist shape, etc.) may be formed on the substrate.
  • an antireflection film it is possible to suppress the occurrence of standing waves due to radiation reflected by the substrate or the like in the partial irradiation process.
  • a film for improving the resist adhesion the adhesion between the substrate and the resist film can be improved.
  • the resist shape after development can be further improved. That is, it is possible to reduce the skirt shape or the neck shape of the resist.
  • the lower layer film is desirably a film that does not absorb the radiation of the entire surface. If the lower layer film absorbs radiation from the entire surface, energy sensitization reaction may occur in the resist film due to energy transfer or electron transfer from the lower layer film, which may cause acid generation in the non-partially irradiated part. . For this reason, a buffer layer that does not propagate the radiation sensitization reaction may be disposed between the resist film and the lower layer film to prevent sensitization from the lower layer film that has absorbed the radiation.
  • a protective film may be further formed on the resist film.
  • the protective film may be an absorption film that absorbs at least a part of the wavelength of radiation directly absorbed by the component (a) or (c) in order to prevent an acid generation reaction in a non-irradiated part in the entire surface irradiation process. Good.
  • OOB light out-of-band light
  • the film is protected with the wavelength of the second radiation in the entire irradiation process in order to suppress acid generation in the resist film due to the radiation sensitization reaction in the non-partially irradiated portion. Those that do not induce a radiosensitizing reaction from the film are preferred.
  • An absorption film that absorbs radiation by arranging a buffer layer between the resist film and the protective film so that the radiation-sensitive sensitizer in the resist film is not sensitized by energy transfer or electron transfer from the protective film. You may prevent the sensitization from.
  • a first radiation having a wavelength of 250 nm or less is irradiated to a part of the resist film formed by the coating step.
  • a light-shielding mask having a predetermined pattern is disposed on the resist film formed by the coating process. Thereafter, the resist film is irradiated with the first radiation (pattern exposure) through the mask from an exposure apparatus (radiation irradiation module) having a projection lens, an electron optical system mirror, or a reflection mirror.
  • an exposure apparatus radiation irradiation module having a projection lens, an electron optical system mirror, or a reflection mirror.
  • the upper limit of the wavelength of the first radiation used for partial irradiation is preferably 230 nm, and more preferably 200 nm.
  • the lower limit of the wavelength of the first radiation is preferably 150 nm, and more preferably 190 nm.
  • Examples of the first radiation include gamma rays, X-rays, alpha rays, heavy particle rays, proton rays, beta rays, ion beams, electron beams, and extreme ultraviolet rays.
  • an electron beam, extreme ultraviolet rays, and an ion beam are preferable, and an electron beam and extreme ultraviolet rays are more preferable.
  • a high sensitivity module exposure apparatus or light source having a projection lens (or light source) on the entire resist film surface (the entire surface including both the partial irradiation portion and the non-partial irradiation portion) after the partial irradiation step.
  • the second radiation is irradiated (collective exposure) from a radiation irradiation module.
  • the entire surface irradiation the entire surface of the wafer may be irradiated at once, a combination of local irradiations, or overlapping irradiation.
  • a general light source can be used as the light source for the entire surface irradiation, and in addition to ultraviolet rays from mercury lamps and xenon lamps controlled to a desired wavelength by passing through a band-pass filter or a cut-off filter, LEDs Narrow-band ultraviolet light from a light source, laser diode, laser light source, or the like may be used.
  • LEDs Narrow-band ultraviolet light from a light source, laser diode, laser light source, or the like may be used.
  • the sensitizer (A) generated in the partially irradiated portion in the resist material film absorbs radiation. For this reason, in the whole surface irradiation, radiation is selectively absorbed in the partial irradiation part.
  • the acid can be continuously generated only in the partially irradiated portion, and the sensitivity can be greatly improved.
  • the sensitivity can be improved while maintaining the chemical contrast in the resist film.
  • the lower limit of the wavelength of the second radiation is more preferably 280 nm, and further preferably 320 nm.
  • the wavelength of the second radiation may be 350 nm or more.
  • the efficiency of the radiation sensitization reaction will decrease, so avoid the wavelengths of radiation that can be absorbed by the base component, the radiation sensitive acid generator, and the radiation sensitive sensitizer generator.
  • the lower limit of the wavelength of the second radiation is preferably 450 nm, and more preferably 400 nm.
  • the heating step the resist film after the entire surface irradiation step is heated (hereinafter also referred to as “post-flood exposure bake (PFEB)” or “post-exposure bake (PEB)”).
  • the heating condition can be, for example, 50 ° C. or higher and 200 ° C. or lower and 10 seconds or longer and 300 seconds or shorter in an atmosphere of an inert gas such as nitrogen or argon.
  • the acid generated in the partial irradiation step and the entire irradiation step causes (1) a polarity change reaction such as a deprotection reaction of the base component and a crosslinking reaction.
  • a polarity change reaction such as a deprotection reaction of the base component and a crosslinking reaction.
  • the resist side wall may be wavy due to the influence of the standing wave of radiation in the resist film, the waviness can be reduced by diffusion of reactants in the heating process.
  • the development step the resist film after the heating step is developed. Development is performed by utilizing the fact that the solubility in the developing solution is selectively changed at a part of the irradiated portion due to the reaction in the resist film in the heating step, so that a resist pattern is formed.
  • the developer can be divided into a positive developer and a negative developer.
  • An alkaline developer is preferable as the positive developer.
  • the alkaline developer selectively dissolves the highly polar part of the resist material film after irradiation.
  • Examples of the alkaline developer include alkaline such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines (ethanolamine, etc.), tetraalkylammonium hydroxide (TAAH), etc.
  • alkaline aqueous solution in which at least one compound is dissolved.
  • an aqueous solution of TAAH is preferable.
  • TAAH examples include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • TMAH tetramethylammonium hydroxide
  • a pattern is formed by utilizing a phenomenon in which carboxylic acids and hydroxyl groups generated in a resist film after irradiation are ionized and dissolved in an alkali developer.
  • a water washing process called rinsing is performed.
  • the negative developer is preferably an organic developer.
  • the organic developer selectively dissolves the low-polarity portion of the resist film after irradiation.
  • the organic developer is used to improve the resolution performance and the process window by removing patterns such as holes and trenches.
  • the dissolution contrast between the partially irradiated portion and the non-partially irradiated portion is obtained by the difference in affinity between the solvent in the resist film and the organic developer.
  • the portion with high polarity has low solubility in an organic developer, and remains as a resist pattern.
  • Examples of the organic developer include 2-octanone, 2-nonanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methylcyclohexanone, acetophenone, methyl acetophenone, propyl acetate, acetic acid Butyl, isobutyl acetate, amyl acetate, butenyl acetate, isoamyl acetate, propyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl valerate, methyl pentenoate, methyl crotonic acid, ethyl crotonic acid, methyl propionate, propionate Ethyl acetate, ethyl 3-ethoxypropionate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, isobut
  • the base substrate is etched or ion-implanted to form a substrate pattern.
  • the etching may be dry etching under an atmosphere such as plasma excitation, or may be wet etching immersed in a chemical solution. After the pattern is formed on the substrate by etching, the resist pattern is removed.
  • Mw and Mn Weight average molecular weight (Mw) and number average molecular weight (Mn) Mw and Mn of the polymer used GPC columns (two "G2000HXL”, one "G3000HXL”, one “G4000HXL” from Tosoh Corporation), a flow rate of 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1. Measurement was performed by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard, using a differential refractometer as a detector under the analysis conditions of 0% by mass, sample injection amount 100 ⁇ L, and column temperature 40 ° C.
  • GPC gel permeation chromatography
  • the 13 C-NMR analysis for determining the content of the structural unit of the polymer uses a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.), uses CDCl 3 as a measurement solvent, and uses tetramethylsilane ( TMS) was performed as an internal standard.
  • JNM-ECX400 nuclear magnetic resonance apparatus
  • TMS tetramethylsilane
  • the compound (M-1) is the structural unit (I)
  • the compound (M-2) is the structural unit (II)
  • (M-3) is the deacetylated structural unit (III)
  • the compound ( M-4) gives structural units (IV), respectively.
  • parts by mass means a value when the total mass of monomers used is 100 parts by mass
  • mol% is the amount of monomers used. It means the value when the total number of moles is 100 mol%.
  • the filtered white powder was washed twice with methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (P1) with a good yield.
  • Mw of the polymer (P1) was 7,000, and Mw / Mn was 2.10.
  • the content of each structural unit derived from (M-1) and (M-2) was 52 mol% and 48 mol%, respectively.
  • Mw of the polymer (P2) was 6,000, and Mw / Mn was 1.90.
  • the content of each of the structural unit derived from (M-1) and the structural unit derived from p-hydroxystyrene obtained by deacetylation of (M-3) was 50 mol each. % And 50 mol%.
  • the polymerization reaction liquid was cooled with water and cooled to 30 ° C. or lower.
  • the polymer solution was dropped into 2,000 parts by mass of n-hexane to solidify and purify the polymer.
  • the solid content after filtration was washed twice with 400 parts by mass of hexane, further filtered, and dried at 50 ° C. for 17 hours.
  • 100 parts by mass of propylene glycol monomethyl ether was added. 17.5 parts by mass of triethylamine and 2.8 parts by mass of water were added, and the mixture was heated to 80 ° C. and subjected to a hydrolysis reaction for 6 hours.
  • the reaction solution was cooled with water and cooled to 30 ° C. or lower.
  • the obtained polymer was added to 2,000 parts by mass of hexane, and the precipitated solid content was separated by filtration.
  • the solid content separated by filtration was washed twice with 40 parts by mass of hexane, further filtered, and dried at 50 ° C. for 17 hours to obtain a polymer (P3) in good yield.
  • Mw of the polymer (P3) was 7,500, and Mw / Mn was 1.52.
  • Table 1 shows the Mw, Mw / Mn, and the content ratio of each structural unit of the obtained polymers (P1) to (P3).
  • the content ratio of the structural unit (M-3) in Table 1 is the content as a structural unit derived from p-hydroxystyrene obtained by deacetylating the structural unit derived from (M-3). Indicates the percentage.
  • the reaction solution was cooled to room temperature, diluted with ethyl acetate, the organic phase was washed with a 5% by mass aqueous sodium bicarbonate solution, and the organic phase was concentrated under reduced pressure.
  • the resulting concentrate is crystallized by adding 80 mL of methylene chloride, and the resulting crystals are filtered off and washed with methylene chloride cooled to 5 ° C., and expressed by the following formula (B3). A compound was obtained.
  • ((A) sensitizer) A1 and A2 and CA1 to CA4 compounds represented by the following formulas (A1) and (A2) and (CA1) to (CA4)
  • [Preparation Example 1] 100 parts by mass of (P3) as a polymer, (A) 10 parts by mass of (A1) as a sensitizer, [C] 20 parts by mass of (C1) as a radiation-sensitive acid generator, [D] 0.3 parts by mass of (D1) as an acid diffusion controller and 4,300 parts by mass of (E1) as a solvent [E] and 1,900 parts by mass of (E2) were mixed.
  • the obtained mixed solution was filtered through a membrane filter having a pore size of 0.20 ⁇ m to prepare a resist material (S-1) for sensitizer screening.
  • Resist materials (S-2) and (CS-1) to (CS-5) were prepared in the same manner as in Preparation Example 1, except that the type and amount of (A) sensitizer shown in Table 2 were changed. did. “-” In Table 2 indicates that the corresponding component was not used.
  • a chemically amplified resist material was prepared using the [B] precursor that provides (A) a sensitizer that was effective in screening evaluation of the sensitizer.
  • the resist material of the comparative example includes benzophenone dimethyl ketal (Tokyo Chemical Industry Co., Ltd.), which is a precursor of the sensitizer (CA4) used in the resist material (CS-4) (“CB1” in Table 3 below). Was used.
  • the obtained mixed solution was filtered through a membrane filter having a pore size of 0.20 ⁇ m to prepare a chemically amplified resist material (R-1).
  • the patterning method an operation of irradiating a predetermined exposure amount 0.5cm square area, until 1 ⁇ C / cm 2 ⁇ 50 ⁇ C / cm 2, was carried out a total of 50 points at 1 [mu] m / cm 2 increments. After the electron beam irradiation, the following operations (1) and (2) were subsequently performed for evaluation.
  • PEB was performed in the clean track ACT-8 at 110 ° C. for 60 seconds, and then in the clean track ACT-8 using a 2.38 mass% TMAH aqueous solution at 23 ° C. Developed by paddle method for 1 minute. After development, a positive resist pattern was formed by washing with pure water and drying.
  • the electron beam exposure amount at which the film thickness when it is performed in operation (1) is 0 is E1 ( ⁇ C / cm 2 ), and the film thickness when it is performed in operation (2).
  • E2 ( ⁇ C / cm 2 ) is 0 when the electron beam exposure dose is 0 when the electron beam exposure dose is 0 when the electron beam exposure dose is 0 when the electron beam exposure dose is 0 when the electron beam exposure dose is 0 when the electron beam exposure dose is 0, A (sensitization effect) is obtained when (E2 / E1) ⁇ 0.8, and (E2 / E1) ⁇ 0.
  • B small sensitizing effect or no sensitizing effect. The evaluation results are shown in Table 5 below.
  • both high sensitivity and excellent lithography characteristics are enhanced.
  • a chemically amplified resist material that can achieve the standard.
  • the pattern formation method using the said resist material is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The purpose of the present invention is to provide a resist material which can achieve both of high sensitivity and excellent lithographic properties at high levels in a pattern formation technique utilizing a radioactive ray having a wavelength of 250 nm or less, such as EUV, electron beam, ion beam, KrF excimer laser and ArF excimer laser. The present invention is a chemically amplified resist material which can be used as the photosensitive resin composition in a lithographic process involving a partial irradiation step, a whole area irradiation step, a heating step and a developing step, and which contains (1) a base component that can be made soluble or insoluble in the developing solution by the action of an acid and (2) a component that can generate a radiation-sensitive sensitizer and an acid upon the irradiation with a radioactive ray, wherein the component (2) contains components (a) and (b) as mentioned below, or components (b) and (c) as mentioned below, or all of components (a) to (c) as mentioned below, and the component (b) contains a precursor that can be decomposed by the action of an acid to produce a compound represented by formula (A).

Description

化学増幅型レジスト材料及びレジストパターン形成方法Chemically amplified resist material and resist pattern forming method
 本発明は、化学増幅型レジスト材料及びレジストパターン形成方法に関する。 The present invention relates to a chemically amplified resist material and a resist pattern forming method.
 次世代の半導体デバイスを製造するための要素技術の一つとして、EUV(極紫外線光)リソグラフィーが注目されている。EUVリソグラフィーは、露光光源として波長13.5nmのEUV光を利用するパターン形成技術である。EUVリソグラフィーによれば、半導体デバイス製造プロセスの露光工程において、極めて微細なレジストパターン(例えば20nm以下)を形成できることが実証されている。 EUV (extreme ultraviolet light) lithography has attracted attention as one of the elemental technologies for manufacturing next-generation semiconductor devices. EUV lithography is a pattern formation technique that uses EUV light having a wavelength of 13.5 nm as an exposure light source. According to EUV lithography, it has been demonstrated that an extremely fine resist pattern (for example, 20 nm or less) can be formed in an exposure step of a semiconductor device manufacturing process.
 しかし、現時点で開発されているEUV光源は出力が低いため、露光処理に長時間を要し、その結果、EUVリソグラフィーは実用化に至っていないのが現状である。EUV光源の低い出力を補うために、レジスト材料(感光性樹脂組成物)の感度を向上させることが考えられる(特許文献1参照)。EUVと同様の問題は電子線及びイオンビーム等を光源とするリソグラフィーの出力と感度においても存在している。 However, since the EUV light source developed at the present time has a low output, it takes a long time for the exposure process, and as a result, EUV lithography has not yet been put into practical use. In order to compensate for the low output of the EUV light source, it is conceivable to improve the sensitivity of the resist material (photosensitive resin composition) (see Patent Document 1). Problems similar to EUV also exist in the output and sensitivity of lithography using electron beams and ion beams as light sources.
特開2002-174894号公報JP 2002-174894 A
 しかし、高い感度と優れたリソグラフィー特性(高い解像力、低いパターンラフネスなど)の両方をより高水準に達成することは従来技術では困難であった。優れたリソグラフィー特性を維持しつつ、感度を向上させることができれば、EUV、電子線及びイオンビーム等を光源とするリソグラフィーのみならず、KrFエキシマレーザー光又はArFエキシマレーザー光を光源とするリソグラフィーでも、レーザーのパルス数を低減し、メンテナンスコストを削減することが可能となる。そこで、本発明は、EUV、電子線、イオンビーム、KrFエキシマレーザー、ArFエキシマレーザー等の250nm以下の波長を有する放射線を利用したパターン形成技術において、高い感度と優れたリソグラフィー特性の両方を高水準に達成可能なレジスト材料を提供することを目的とする。また、本発明は、上記レジスト材料を用いたレジストパターン形成方法を提供することを目的とする。 However, it has been difficult for the prior art to achieve both high sensitivity and excellent lithography properties (high resolution, low pattern roughness, etc.) at a higher level. If sensitivity can be improved while maintaining excellent lithography characteristics, not only lithography using EUV, electron beam, ion beam, etc. as a light source, but also lithography using KrF excimer laser light or ArF excimer laser light as a light source, It is possible to reduce the number of laser pulses and maintenance costs. Therefore, the present invention provides a high level of both high sensitivity and excellent lithography characteristics in pattern formation technology using radiation having a wavelength of 250 nm or less such as EUV, electron beam, ion beam, KrF excimer laser, ArF excimer laser, etc. An object of the present invention is to provide a resist material that can be achieved. Another object of the present invention is to provide a resist pattern forming method using the resist material.
 上記課題を解決するためになされた発明は、感光性樹脂組成物を使用して形成されたレジスト膜の一部に、250nm以下の波長を有する第1放射線を照射する工程と、上記一部照射工程後のレジスト膜の全面に、250nmを超える波長を有する第2放射線を照射する工程と、上記全面照射工程後のレジスト膜を加熱する工程と、上記加熱工程後のレジスト膜を現像液により現像する工程とを備えるリソグラフィープロセスにおいて、上記感光性樹脂組成物として使用される化学増幅型レジスト材料であって、(1)酸の作用により上記現像液に可溶又は不溶となるベース成分と、(2)放射線照射により感放射線性増感体及び酸を発生する成分とを含み、上記(2)成分が、下記(a)及び(b)成分、下記(b)及び(c)成分、又は下記(a)~(c)成分の全てを含有し、上記(b)成分が、酸の作用により分解し下記式(A)で表される化合物を生じる前駆体を含む化学増幅型レジスト材料である。
(a)上記第1放射線の照射によって、酸と、上記第2放射線を吸収する感放射線性増感体とを発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸及び感放射線性増感体が実質的に発生しない感放射線性酸-増感体発生剤
(b)上記第1放射線の照射によって、第2放射線を吸収する感放射線性増感体を発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記感放射線性増感体が実質的に発生しない感放射線性増感体発生剤
(c)上記第1放射線の照射によって、酸を発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸が実質的に発生しない感放射線性酸発生剤
Figure JPOXMLDOC01-appb-C000004
(式(A)中、R~Rは、それぞれ独立して、水素原子、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であり、R~Rは、それぞれ独立して、水素原子、ヒドロキシ基、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であるか、又はR~R及びR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。但し、R~Rのうち少なくとも1つはヒドロキシ基である。)
The invention made in order to solve the above problems includes a step of irradiating a part of a resist film formed using a photosensitive resin composition with a first radiation having a wavelength of 250 nm or less, and the partial irradiation. A step of irradiating the entire surface of the resist film after the step with a second radiation having a wavelength exceeding 250 nm, a step of heating the resist film after the entire surface irradiation step, and developing the resist film after the heating step with a developer A chemically amplified resist material used as the photosensitive resin composition, wherein (1) a base component that is soluble or insoluble in the developer by the action of an acid; 2) a radiation-sensitive sensitizer and a component that generates an acid upon irradiation, and the component (2) includes the following components (a) and (b), the following components (b) and (c), or A chemically amplified resist material containing all of the components (a) to (c), wherein the component (b) is decomposed by the action of an acid to produce a compound represented by the following formula (A): is there.
(A) In the non-irradiation part that generates the acid and the radiation-sensitive sensitizer that absorbs the second radiation by the irradiation of the first radiation and is not irradiated with the first radiation in the partial irradiation step, Radiation-sensitive acid-sensitizer generator that does not substantially generate the acid and radiation-sensitive sensitizer upon irradiation with the second radiation (b) Radiation-sensitive that absorbs the second radiation upon irradiation with the first radiation In the non-irradiated part that generates the photosensitizer and is not irradiated with the first radiation in the partial irradiation step, the radiation-sensitive sensitizer is not substantially generated by the irradiation of the second radiation. Body generator (c) In the non-irradiated part where the first radiation is not irradiated with the first radiation and the acid is substantially generated by the second radiation. Does not cause radiation sensitive acid generator
Figure JPOXMLDOC01-appb-C000004
(In the formula (A), R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms, and R 1 to R 6 Each independently represents a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R a to R d and R 1 to R 6 . 2 or more of them are part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which they are bonded to each other, provided that at least one of R 1 to R 6 is a hydroxy group .)
 上記課題を解決するためになされた別の発明は、(1)酸の作用により現像液に可溶又は不溶となるベース成分と、(2)放射線照射により感放射線性増感体及び酸を発生する成分とを含み、上記(2)成分が、上記(a)及び(b)成分、上記(b)及び(c)成分、又は上記(a)~(c)成分のすべてを含有し、上記(b)成分が、酸の作用により分解し上記式(A)で表される化合物を生じる前駆体を含む化学増幅型レジスト材料である。 Another invention made to solve the above problems is (1) a base component that is soluble or insoluble in a developer by the action of an acid, and (2) a radiation-sensitive sensitizer and an acid generated by irradiation. The component (2) contains the components (a) and (b), the components (b) and (c), or the components (a) to (c), The component (b) is a chemically amplified resist material containing a precursor that decomposes by the action of an acid to produce a compound represented by the above formula (A).
 上記課題を解決するためになされたさらに別の発明は、当該化学増幅型レジスト材料を基板上に塗工する工程と、上記塗工工程により形成されたレジスト膜の一部に250nm以下の波長を有する放射線を照射する工程と、上記一部照射工程後のレジスト膜の全面に250nmを超える波長を有する放射線を照射する工程と、上記全面照射工程後のレジスト膜を加熱する工程と、上記加熱工程後のレジスト膜を現像する工程とを備えるレジストパターン形成方法である。 Still another invention made in order to solve the above-mentioned problems is a step of coating the chemically amplified resist material on a substrate, and a wavelength of 250 nm or less on a part of the resist film formed by the coating step. A step of irradiating radiation having, a step of irradiating the entire surface of the resist film after the partial irradiation step with radiation having a wavelength exceeding 250 nm, a step of heating the resist film after the whole surface irradiation step, and the heating step And a step of developing the subsequent resist film.
 ここで、「上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸及び感放射線性増感体が実質的に発生しない」、「上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記感放射線性増感体が実質的に発生しない」、「上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸が実質的に発生しない」、「第1放射線を照射せず第2放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない」、「第1放射線を照射せず第2放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない」及び「第1放射線を照射せず第2放射線のみを照射した場合に上記酸を実質的に発生しない」とは、第2放射線のみの照射によっては酸や感放射線性増感体が発生しないか、又は第2放射線のみの照射によって酸や感放射線性増感体が発生した場合であっても、一部照射における照射部と非照射部との間における酸や感放射線性増感体の濃度の差をパターン形成可能な程度の大きさに維持できる程度に非照射部における第2放射線の照射による酸や感放射線性増感体の発生量が少なく、その結果、現像工程において上記一部照射部又は非一部照射部(すなわち、一部照射の際に放射線が照射されなかった部分)のいずれかのみを現像液に溶解できる程度に酸や感放射線性増感体の発生量が少ないことを意味する。「有機基」とは、少なくとも1個の炭素原子を含む基をいう。「環員数」とは、芳香環構造、芳香族複素環構造、脂環構造及び脂肪族複素環構造の環を構成する原子数をいい、多環の環構造の場合は、この多環を構成する原子数をいう。 Here, “the acid and radiation-sensitive sensitizer are not substantially generated by the irradiation of the second radiation in the non-irradiated portion where the first radiation is not irradiated in the partial irradiation step”, “the partial irradiation step In the non-irradiated part that is not irradiated with the first radiation, the radiation sensitive sensitizer is not substantially generated by the irradiation of the second radiation. " , The acid is not substantially generated by the irradiation of the second radiation ”,“ when the first radiation is not irradiated and only the second radiation is irradiated, the acid and the radiation-sensitive sensitizer are not substantially generated ”. "When the second radiation is not irradiated and only the second radiation is not emitted, the above-mentioned radiation-sensitive sensitizer is not substantially generated" and "When the first radiation is not irradiated and only the second radiation is irradiated" "The acid is not substantially generated" means that the second release. Irradiation part in partial irradiation even when acid or radiation-sensitive sensitizer is not generated by irradiation of only rays or acid or radiation-sensitive sensitizer is generated by irradiation of second radiation only Acid and radiation sensitive sensitization by irradiation of the second radiation in the non-irradiated part to such an extent that the difference in concentration of the acid and radiation sensitive sensitizer between the non-irradiated part and the non-irradiated part can be maintained to a level that allows pattern formation. As a result, the amount of the photosensitive member generated is small, and as a result, only one of the above-mentioned partially irradiated portion or non-partially irradiated portion (that is, the portion not irradiated with radiation at the time of partial irradiation) is used as a developer. This means that the amount of acid or radiation-sensitive sensitizer generated is small enough to be dissolved. “Organic group” refers to a group containing at least one carbon atom. “Number of ring members” means the number of atoms constituting the ring of an aromatic ring structure, aromatic heterocyclic structure, alicyclic structure and aliphatic heterocyclic structure. In the case of a polycyclic ring structure, this polycyclic ring The number of atoms to be played.
 本発明によれば、EUV光、電子線、イオンビーム、KrFエキシマレーザー、ArFエキシマレーザー等の250nm以下の波長を有する放射線を利用したパターン形成技術において、高い感度と優れたリソグラフィー特性の両方を高水準に達成可能な化学増幅型レジスト材料が提供される。また、本発明によれば、上記レジスト材料を用いたレジストパターン形成方法が提供される。 According to the present invention, in pattern formation technology using radiation having a wavelength of 250 nm or less, such as EUV light, electron beam, ion beam, KrF excimer laser, ArF excimer laser, etc., both high sensitivity and excellent lithography characteristics are enhanced. There is provided a chemically amplified resist material that can achieve the standard. Moreover, according to this invention, the resist pattern formation method using the said resist material is provided.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.
<化学増幅型レジスト材料>
 本実施形態に係る化学増幅型レジスト材料は二段露光リソグラフィープロセスにおいて、感光性樹脂組成物として使用されるものである。二段露光リソグラフィープロセスは、一部照射工程と、全面照射工程と、加熱工程と、現像工程とを備える。上記一部照射工程では、250nm以下の波長を有する第1放射線を照射する。また、上記全面照射工程では、250nmを超える波長を有する第2放射線を照射する。
<Chemically amplified resist material>
The chemically amplified resist material according to this embodiment is used as a photosensitive resin composition in a two-step exposure lithography process. The two-step exposure lithography process includes a partial irradiation step, a full-surface irradiation step, a heating step, and a development step. In the partial irradiation step, the first radiation having a wavelength of 250 nm or less is irradiated. In the entire surface irradiation step, the second radiation having a wavelength exceeding 250 nm is irradiated.
 本実施形態に係る化学増幅型レジスト材料はポジ型レジスト材料又はネガ型レジスト材料のいずれであってもよく、後述するベース成分及び現像液等を選択することにより適宜選択される。ここで、一部照射後の現像により一部照射部が溶け出し非一部照射部(遮光部)が残るレジスト材料のことをポジ型レジスト材料といい、反対に非照射部(遮光部)が溶け出し、照射部が残るレジスト材料のことをネガ型レジストという。 The chemically amplified resist material according to the present embodiment may be either a positive resist material or a negative resist material, and is appropriately selected by selecting a base component, a developer, and the like described later. Here, a resist material in which a part of the irradiated part is melted by development after part of the irradiation and a non-partially irradiated part (light-shielding part) remains is called a positive resist material. The resist material that melts and remains irradiated is called negative resist.
 本実施形態に係る化学増幅型レジスト材料(以下、単に「レジスト材料」という。)は、(1)酸の作用により現像液に可溶又は不溶となるベース成分と、(2)放射線照射により感放射線性増感体及び酸を発生する成分とを含む。 The chemically amplified resist material according to the present embodiment (hereinafter, simply referred to as “resist material”) includes (1) a base component that becomes soluble or insoluble in a developer by the action of an acid, and (2) sensitization by radiation irradiation. A radiation sensitizer and an acid generating component.
<(1)ベース成分>
 本実施形態において、上記(1)ベース成分は有機化合物であってもよく、無機化合物であってもよい。この有機化合物は高分子化合物であってもよく、低分子化合物であってもよい。また、上記高分子化合物は、酸の作用により現像液への溶解性が変化する重合体であってもよい。このような重合体はレジスト材料のベース成分として広く用いられている。さらに、(1)ベース成分は、一部照射における第1放射線を過度に吸収せず、十分垂直性が高い形状のレジストパターンの形成を実現できるものであることが望ましい。また、(1)ベース成分では、全面照射における第2放射線の吸収が低く、全面照射時に非照射部で不要な増感反応の誘発が起こりにくいものであることが望ましい。
<(1) Base component>
In the present embodiment, the base component (1) may be an organic compound or an inorganic compound. The organic compound may be a high molecular compound or a low molecular compound. In addition, the polymer compound may be a polymer whose solubility in a developer is changed by the action of an acid. Such a polymer is widely used as a base component of a resist material. Furthermore, (1) it is desirable that the base component does not excessively absorb the first radiation in the partial irradiation and can realize the formation of a resist pattern having a sufficiently high verticality. In addition, it is desirable that (1) the base component has a low absorption of the second radiation in the entire surface irradiation and is unlikely to induce an unnecessary sensitization reaction in the non-irradiated part during the entire surface irradiation.
 上記重合体の重量平均分子量(Mw)の下限としては、1,000が好ましく、3,000がより好ましく、5,000がより好ましい。上記Mwの上限としては、200,000が好ましく、50,000がより好ましく、10,000がさらに好ましい。上記重合体の数平均分子量(Mn)に対するMwの比の上限としては、5が好ましく、3がより好ましく、2.2がさらに好ましい。上記比の下限としては、通常1であり、1.5が好ましい。上記重合体は全面照射後の加熱工程中の酸触媒反応により、現像工程において一部照射部が現像液に可溶又は不溶となるものである。 The lower limit of the weight average molecular weight (Mw) of the polymer is preferably 1,000, more preferably 3,000, and more preferably 5,000. The upper limit of the Mw is preferably 200,000, more preferably 50,000, and still more preferably 10,000. The upper limit of the ratio of Mw to the number average molecular weight (Mn) of the polymer is preferably 5, more preferably 3, and even more preferably 2.2. The lower limit of the above ratio is usually 1 and preferably 1.5. In the above-mentioned polymer, a part of the irradiated portion becomes soluble or insoluble in the developing solution in the developing step due to an acid catalyst reaction during the heating step after the entire surface irradiation.
 本明細書において、重合体のMw及びMnは、GPCカラム(東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。 In this specification, Mw and Mn of the polymer are GPC columns (two "G2000HXL", one "G3000HXL", one "G4000HXL" manufactured by Tosoh Corporation), a flow rate of 1.0 mL / min, and an elution solvent tetrahydrofuran. , Measured by gel permeation chromatography (GPC) using a monodisperse polystyrene as a standard, using a differential refractometer as a detector under the analysis conditions of a sample concentration of 1.0 mass%, a sample injection amount of 100 μL, and a column temperature of 40 ° C. Is the value to be
 上記酸の作用により現像液への溶解性が変化する重合体としては、例えば極性基(例えば酸性官能基)を含む構造単位を有する重合体、酸解離性基を含む構造単位を有する重合体等が挙げられる。極性基を含む構造単位を有する重合体はアルカリ現像液に可溶であるが、加熱工程で後述する架橋剤と酸の作用により反応することにより、アルカリ現像液に不溶となる。この場合、現像工程では非一部照射部のレジスト膜はアルカリ現像液により除去可能となる。従って、上記重合体を用いて形成されたレジスト膜をアルカリ現像液にて現像する場合、上記レジスト材料はネガ型レジスト材料として働く。 Examples of the polymer whose solubility in the developing solution is changed by the action of the acid include, for example, a polymer having a structural unit containing a polar group (for example, an acidic functional group), a polymer having a structural unit containing an acid dissociable group, etc. Is mentioned. A polymer having a structural unit containing a polar group is soluble in an alkali developer, but becomes insoluble in an alkali developer by reacting with a crosslinking agent described later in the heating step by the action of an acid. In this case, in the development process, the resist film in the non-partially irradiated portion can be removed with an alkaline developer. Therefore, when the resist film formed using the polymer is developed with an alkaline developer, the resist material functions as a negative resist material.
 一方、上記酸解離性基を含む構造単位を有する重合体は有機現像液に可溶であるが、アルカリ現像液には不溶又は難溶である。上記酸解離性基を含む構造単位を有する重合体は、加熱工程で酸の作用により上記酸解離性基が外れ(脱保護)、極性が付与され、アルカリ現像液に可溶かつ有機現像液に不溶となる。この場合、非一部照射部のレジスト膜は有機現像液により除去可能となり、一部照射部はアルカリ現像液により除去可能となる。従って、上記重合体を用いて形成されたレジスト膜を有機現像液にて現像する場合、レジスト材料はネガ型レジスト材料として働く。一方、上記重合体を用いて形成されたレジスト膜をアルカリ現像液にて現像する場合、レジスト材料はポジ型レジスト材料として働く。 On the other hand, the polymer having a structural unit containing an acid dissociable group is soluble in an organic developer, but insoluble or hardly soluble in an alkali developer. The polymer having a structural unit containing an acid-dissociable group is removed from the acid-dissociable group by the action of an acid in the heating step (deprotection), imparted polarity, soluble in an alkali developer and soluble in an organic developer. Insoluble. In this case, the resist film in the non-partially irradiated portion can be removed with an organic developer, and the partially irradiated portion can be removed with an alkali developer. Therefore, when a resist film formed using the above polymer is developed with an organic developer, the resist material functions as a negative resist material. On the other hand, when a resist film formed using the above polymer is developed with an alkaline developer, the resist material functions as a positive resist material.
[酸解離性基を含む構造単位を有する重合体]
 酸解離性基を含む構造単位(以下、「構造単位(I)」ともいう)を有する重合体(以下、「[P]重合体」ともいう)は、構造単位(I)以外に、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(II)、ヒドロキシ基が結合する芳香環を含む構造単位(III)及び後述する式(Y)で表される基を含む構造単位(IV)を有していてもよく、構造単位(I)~(IV)以外の他の構造単位を有していてもよい。
[Polymer having a structural unit containing an acid-dissociable group]
A polymer having a structural unit containing an acid dissociable group (hereinafter also referred to as “structural unit (I)”) (hereinafter also referred to as “[P] polymer”) has a lactone structure in addition to the structural unit (I). , A structural unit (II) including a cyclic carbonate structure, a sultone structure or a combination thereof, a structural unit (III) including an aromatic ring to which a hydroxy group is bonded, and a structural unit including a group represented by the formula (Y) described later ( IV) and other structural units other than the structural units (I) to (IV).
(構造単位(I))
 構造単位(I)は、酸解離性基を含む構造単位である。構造単位(I)としては、例えば下記式(X)で表される構造単位等が挙げられる。
(Structural unit (I))
The structural unit (I) is a structural unit containing an acid dissociable group. Examples of the structural unit (I) include a structural unit represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(X)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部である。 In the formula (X), R W is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. R X is a monovalent hydrocarbon group having 1 to 20 carbon atoms. R Y and R Z are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 3 ring atoms composed of these groups together with the carbon atom to which they are bonded. It is a part of 20 alicyclic structures.
 「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。 The “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. The “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group. The term “alicyclic hydrocarbon group” refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure. “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
 Rとしては、水素原子及びメチル基が好ましく、メチル基がより好ましい。 The R W, preferably a hydrogen atom or a methyl group, more preferably a methyl group.
 R、R及びRで表される炭素数1~20の1価の炭化水素基としては、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X , R Y and R Z include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a monovalent hydrocarbon group having 3 to 20 carbon atoms. And alicyclic hydrocarbon groups, monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, and the like.
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基、エテニル基、プロペニル基、ブテニル基等のアルケニル基、エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, n-propyl group and i-propyl group, alkenyl groups such as ethenyl group, propenyl group and butenyl group. Alkynyl groups such as ethynyl group, propynyl group, butynyl group and the like.
 炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基、シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基、ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基、ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。 Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as cyclopentyl group and cyclohexyl group, and monocyclic alicyclic hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group. Polycyclic alicyclic unsaturated groups such as polycyclic alicyclic saturated hydrocarbon groups such as cyclic unsaturated hydrocarbon groups, norbornyl groups, adamantyl groups, and tricyclodecyl groups, norbornenyl groups, and tricyclodecenyl groups A hydrocarbon group etc. are mentioned.
 炭素数6~20の1価の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基、ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and anthryl group, benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group. And an aralkyl group such as a group.
 R及びRが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造としては、例えばシクロペンタン構造、シクロヘキサン構造、ノルボルナン構造、アダマンタン構造等が挙げられる。 Examples of the alicyclic structure having 3 to 20 ring members composed of R Y and R Z combined with the carbon atom to which they are bonded include a cyclopentane structure, a cyclohexane structure, a norbornane structure, an adamantane structure, and the like.
 構造単位(I)としては、1-アルキルシクロアルカン-1-イル(メタ)アクリレートに由来する構造単位が好ましい。 The structural unit (I) is preferably a structural unit derived from 1-alkylcycloalkane-1-yl (meth) acrylate.
 構造単位(I)の含有割合の下限としては、[P]重合体を構成する全構造単位に対して、20モル%が好ましく、40モル%がより好ましい。上記含有割合の上限としては、80モル%が好ましく、60モル%がより好ましい。 As a minimum of the content rate of structural unit (I), 20 mol% is preferred to 40 mol% with respect to all the structural units which constitute a [P] polymer. As an upper limit of the said content rate, 80 mol% is preferable and 60 mol% is more preferable.
(構造単位(II))
 構造単位(II)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[P]重合体は、構造単位(II)を有すると、現像液への溶解性をより適度なものとすることができる。
(Structural unit (II))
The structural unit (II) is a structural unit including a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof. When the [P] polymer has the structural unit (II), the solubility in the developer can be made more appropriate.
 構造単位(II)としては、例えばブチロラクトン-イル(メタ)アクリレートに由来する構造単位、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位、エチレンカーボネート-イルメチル(メタ)アクリレートに由来する構造単位、ノルボルナンスルトン-イル(メタ)アクリレートに由来する構造単位等が挙げられる。 As the structural unit (II), for example, a structural unit derived from butyrolactone-yl (meth) acrylate, a structural unit derived from norbornanelactone-yl (meth) acrylate, a structural unit derived from ethylene carbonate-ylmethyl (meth) acrylate, And structural units derived from norbornane sultone-yl (meth) acrylate.
 [P]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、20モル%が好ましく、30モル%がより好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましい。 When the [P] polymer has the structural unit (II), the lower limit of the content ratio of the structural unit (II) is preferably 20 mol%, more preferably 30 mol%. As an upper limit of the said content rate, 80 mol% is preferable and 70 mol% is more preferable.
(構造単位(III))
 構造単位(III)は、ヒドロキシ基が結合する芳香環を含む構造単位である。[P]重合体が構造単位(III)を有すると、当該レジスト材料の一部照射における感度をより向上させることができる。
(Structural unit (III))
The structural unit (III) is a structural unit including an aromatic ring to which a hydroxy group is bonded. When the [P] polymer has the structural unit (III), the sensitivity in partial irradiation of the resist material can be further improved.
 構造単位(III)としては、例えばヒドロキシスチレンに由来する構造単位、ヒドロキシビニルナフタレンに由来する構造単位、ヒドロキシフェニル(メタ)アクリレートに由来する構造単位等が挙げられる。 Examples of the structural unit (III) include a structural unit derived from hydroxystyrene, a structural unit derived from hydroxyvinylnaphthalene, and a structural unit derived from hydroxyphenyl (meth) acrylate.
 [P]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、20モル%が好ましく、30モル%がより好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましい。 When the [P] polymer has the structural unit (III), the lower limit of the content ratio of the structural unit (III) is preferably 20 mol%, more preferably 30 mol%. As an upper limit of the said content rate, 80 mol% is preferable and 70 mol% is more preferable.
(構造単位(IV))
 構造単位(IV)は、下記式(Y)で表される基を含む構造単位である。[P]重合体が構造単位(IV)を有すると、当該レジスト材料の一部照射における感度をより向上させることができる。
(Structural unit (IV))
The structural unit (IV) is a structural unit containing a group represented by the following formula (Y). When the [P] polymer has the structural unit (IV), the sensitivity in partial irradiation of the resist material can be further improved.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(Y)中、R及びRは、それぞれ独立して、フッ素原子又は炭素数1~10のフッ素化アルキル基である。 In the above formula (Y), R P and R Q are each independently a fluorine atom or a fluorinated alkyl group having 1 to 10 carbon atoms.
 R及びRで表される炭素数1~10のフッ素化アルキル基としては、例えばフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等が挙げられる。これらの中で、トリフルオロメチル基が好ましい。 The fluorinated alkyl group having 1 to 10 carbon atoms represented by R P and R Q, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, a nonafluorobutyl group Etc. Of these, a trifluoromethyl group is preferred.
 [P]重合体が構造単位(IV)を有する場合、構造単位(IV)の含有割合の下限としては、5モル%が好ましく、10モル%がより好ましい。上記含有割合の上限としては、50モル%が好ましく、30モル%がより好ましい。 When the [P] polymer has a structural unit (IV), the lower limit of the content ratio of the structural unit (IV) is preferably 5 mol%, and more preferably 10 mol%. As an upper limit of the said content rate, 50 mol% is preferable and 30 mol% is more preferable.
 上記低分子化合物の分子量の下限としては、300が好ましく、500がより好ましい。上記分子量の上限としては、3,000が好ましく、2,000がより好ましい。上記低分子化合物は、全面照射後の加熱工程中の酸触媒反応により、現像工程において一部照射部が現像液に可溶又は不溶となるものである。 The lower limit of the molecular weight of the low molecular compound is preferably 300, more preferably 500. The upper limit of the molecular weight is preferably 3,000, and more preferably 2,000. The low molecular weight compound is such that a part of the irradiated portion becomes soluble or insoluble in the developer in the development step due to an acid catalyst reaction in the heating step after the entire surface irradiation.
 低分子化合物としては、例えばトルクセン誘導体等の星形分子、カリックスアレーン誘導体、ノリア(Noria)、デンドリマー等が挙げられる。 Examples of the low molecular weight compound include star-shaped molecules such as torquesen derivatives, calixarene derivatives, Noria, dendrimers and the like.
 無機化合物としては、例えば酸化コバルト、酸化ハフニウム、酸化ジルコニウム等の金属酸化物、錯体等の有機金属化合物が挙げられる。上記金属酸化物は粒子状であってもよく、ナノオーダーの粒子径を有するナノパーティクルであってもよい。また、上記金属酸化物の粒子はカルボン酸等で配位されていてもよい。(1)ベース成分として無機化合物を用いた場合の溶解性変化の一例を以下に示す。例えば(1)ベース成分としてカルボン酸が配位した金属酸化物のナノパーティクルを用いた場合、放射線照射により発生した酸のアニオンがカルボン酸アニオンに代わって金属酸化物に配位する。これにより、金属酸化物の粒子同士の相互作用が増すことで(1)ベース成分がゲル化し、現像工程において非照射部のみを溶解させる場合における照射部の溶解を抑止できる。 Examples of the inorganic compound include metal oxides such as cobalt oxide, hafnium oxide, and zirconium oxide, and organometallic compounds such as complexes. The metal oxide may be in the form of particles or nanoparticles having a nano-order particle size. The metal oxide particles may be coordinated with a carboxylic acid or the like. (1) An example of a change in solubility when an inorganic compound is used as the base component is shown below. For example, when (1) a metal oxide nanoparticle coordinated with a carboxylic acid is used as a base component, an anion of an acid generated by radiation irradiation coordinates to the metal oxide instead of the carboxylate anion. As a result, the interaction between the metal oxide particles increases, (1) the base component gels, and dissolution of the irradiated portion when only the non-irradiated portion is dissolved in the development step can be suppressed.
<(2)放射線照射により感放射線性増感体と酸を発生する成分>
 上記成分は、放射線照射(露光)により感放射線性増感体と酸を発生する成分である。上記成分は、(a)感放射線性酸-増感体発生剤、(b)感放射線性増感体発生剤、及び(c)感放射線性酸発生剤の3つの成分のうち、(a)成分、(a)~(c)成分中の任意の2つの成分、又は(a)~(c)成分の全てを含有する。すなわち、レジスト材料中で、上記(2)成分は上記(1)ベース成分とブレンドされている。また、(a)感放射線性酸-増感体発生剤、(b)感放射線性増感体発生剤及び(c)感放射線性酸発生剤は、低分子化合物であっても、酸及び増感体を発生する基を有する重合体、増感体を発生する基を有する重合体又は酸を発生する基を有する重合体であってもよい。
<(2) A component that generates a radiation-sensitive sensitizer and an acid upon irradiation>
The said component is a component which generate | occur | produces a radiation sensitive sensitizer and an acid by irradiation (exposure). The above components include (a) a radiation sensitive acid-sensitizer generator, (b) a radiation sensitive sensitizer generator, and (c) a radiation sensitive acid generator. Component, any two components in components (a) to (c), or all of components (a) to (c). That is, in the resist material, the component (2) is blended with the base component (1). Further, (a) a radiation-sensitive acid-sensitizer generator, (b) a radiation-sensitive sensitizer generator, and (c) a radiation-sensitive acid generator may be an acid and a sensitizer even if they are low molecular compounds. It may be a polymer having a group that generates a sensitizer, a polymer having a group that generates a sensitizer, or a polymer having a group that generates an acid.
[(a)感放射線性酸-増感体発生剤]
 (a)感放射線性酸-増感体発生剤は、第1放射線の照射によって、酸と、第2放射線を吸収する感放射線性増感体とを発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸及び感放射線性増感体が実質的に発生しない。上記(a)感放射線性酸-増感体発生剤は、上記性質を有するので、全面照射工程における第2放射線の照射による上記酸及び感放射線性増感体の発生を抑制することができる。
[(A) Radiation sensitive acid-sensitizer generator]
(A) The radiation-sensitive acid-sensitizer generating agent generates an acid and a radiation-sensitive sensitizer that absorbs the second radiation by the irradiation of the first radiation, and the first irradiation in the partial irradiation step. In the non-irradiated part where no radiation is irradiated, the acid and the radiation-sensitive sensitizer are not substantially generated by the irradiation of the second radiation. Since the (a) radiation-sensitive acid-sensitizer generator has the above properties, the generation of the acid and the radiation-sensitive sensitizer due to the irradiation of the second radiation in the entire surface irradiation step can be suppressed.
 また、(a)感放射線性酸-増感体発生剤に第2放射線を照射することで酸及び感放射線性増感体が発生した場合に、一部照射における照射部と非照射部との間における酸及び感放射線性増感体の濃度の差をパターン形成可能な程度の大きさに維持できる程度に第2放射線の照射による酸及び感放射線性増感体の発生量を少なくできる。第2放射線の波長の下限としては、300nmが好ましく、320nmがより好ましく、350nmがさらに好ましい。(a)感放射線性酸-増感体発生剤が第2放射線の照射により酸及び感放射線性増感体を発生する場合における第2放射線の波長を上記下限以上とすることで、第1放射線が照射される一部照射部では、発生した感放射線性増感体の増感作用により第2放射線の照射時に酸が発生し、反対に第1放射線が照射されない非一部照射部では第2放射線の照射時における酸の発生が抑制される。その結果、一部照射部と非一部照射部との間における感度及びコントラストを向上できる。 Further, (a) when an acid and a radiation-sensitive sensitizer are generated by irradiating the radiation-sensitive acid-sensitizer generating agent with the second radiation, the irradiation part and the non-irradiation part in partial irradiation The amount of acid and radiation-sensitive sensitizer generated by the irradiation of the second radiation can be reduced to such an extent that the difference in concentration between the acid and radiation-sensitive sensitizer can be maintained at a level that allows pattern formation. As a minimum of the wavelength of the 2nd radiation, 300 nm is preferred, 320 nm is more preferred, and 350 nm is still more preferred. (A) When the radiation-sensitive acid-sensitizer generating agent generates an acid and a radiation-sensitive sensitizer by irradiation with the second radiation, the wavelength of the second radiation is set to be not less than the above lower limit, whereby the first radiation In the partially irradiated part irradiated with acid, acid is generated during the irradiation of the second radiation due to the sensitizing action of the generated radiation-sensitive sensitizer, and on the contrary, in the non-partially irradiated part where the first radiation is not irradiated, the second is irradiated. Generation of acid during irradiation with radiation is suppressed. As a result, the sensitivity and contrast between the partially irradiated portion and the non-partially irradiated portion can be improved.
 (a)感放射線性酸-増感体発生剤としては、オニウム塩化合物、ジアゾメタン化合物、及びスルホンイミド化合物等が挙げられる。また、オニウム塩化合物としては、例えばスルホニウム塩化合物、テトラヒドロチオフェニウム塩化合物、ヨードニウム塩化合物等が挙げられる。スルホニウム塩化合物である(a)感放射線性酸-増感体発生剤としては、例えばSに隣接する炭素原子を有し、この炭素原子にヒドロキシ基が結合している化合物等が挙げられる。 (A) Examples of the radiation-sensitive acid-sensitizer generator include onium salt compounds, diazomethane compounds, and sulfonimide compounds. Examples of the onium salt compound include a sulfonium salt compound, a tetrahydrothiophenium salt compound, and an iodonium salt compound. Examples of the (a) radiation-sensitive acid-sensitizer generator which is a sulfonium salt compound include compounds having a carbon atom adjacent to S + and having a hydroxy group bonded to the carbon atom.
[(b)感放射線性増感体発生剤]
 (b)感放射線性増感体発生剤は、第1放射線の照射によって、第2放射線を吸収する感放射線性増感体を発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記感放射線性増感体が実質的に発生しない成分であり、上記(a)感放射線性酸-増感体発生剤とは異なるものである。本実施形態に係るパターン形成方法では、一部照射工程で、(b)感放射線性増感体発生剤の化学構造が直接的又は間接的な反応により変換し、全面照射工程で酸発生を補助する感放射線性増感体を生成する。吸収される放射線の波長のピークが一部照射工程前後でシフトすることにより、感放射線性増感体が発生した照射部と非照射部との間で、全面照射工程における第2放射線の吸収のコントラストが得られやすくなる。さらに、上記吸収波長のピークシフトが大きい場合、全面照射工程における第2放射線の吸収のコントラストがより大きくなる。
[(B) Radiation-sensitive sensitizer generating agent]
(B) The radiation-sensitive sensitizer generating agent generates a radiation-sensitive sensitizer that absorbs the second radiation when irradiated with the first radiation, and the first radiation is not irradiated in the partial irradiation step. The irradiation part is a component that does not substantially generate the radiation-sensitive sensitizer when irradiated with the second radiation, and is different from the radiation-sensitive acid-sensitizer generating agent (a). In the pattern forming method according to the present embodiment, the chemical structure of (b) the radiation-sensitive sensitizer generating agent is converted by a direct or indirect reaction in the partial irradiation process, and acid generation is assisted in the entire irradiation process. To produce a radiation sensitive sensitizer. The peak of the wavelength of the absorbed radiation is partially shifted before and after the irradiation process, so that the absorption of the second radiation in the entire irradiation process is performed between the irradiated part and the non-irradiated part where the radiation sensitive sensitizer is generated. Contrast can be easily obtained. Furthermore, when the peak shift of the absorption wavelength is large, the contrast of the absorption of the second radiation in the entire surface irradiation process becomes larger.
 また、(b)感放射線性増感体発生剤に第2放射線を照射することで感放射線性増感体が発生した場合に、一部照射における照射部と非照射部との間における感放射線性増感体の濃度の差をパターン形成可能な程度の大きさに維持できる程度に第2放射線の照射による感放射線性増感体の発生量を少なくできる第2放射線の波長の下限としては、300nmが好ましく、320nmがより好ましく、350nmがさらに好ましい。(b)感放射線性増感体発生剤が第2放射線の照射により感放射線性増感体を発生する場合における第2放射線の波長を上記下限以上とすることで、第1放射線が照射される一部照射部では、発生した感放射線性増感体の増感作用により第2放射線の照射時に酸が発生し、反対に第1放射線が照射されない非一部照射部では第2放射線の照射時における酸の発生が抑制される。その結果、一部照射部と非一部照射部との間における感度及びコントラストを向上できる。 In addition, (b) when the radiation-sensitive sensitizer is generated by irradiating the radiation-sensitive sensitizer generating agent with the second radiation, the radiation sensitivity between the irradiated portion and the non-irradiated portion in the partial irradiation. As a lower limit of the wavelength of the second radiation that can reduce the amount of radiation-sensitive sensitizer generated by irradiation of the second radiation to such an extent that the difference in concentration of the photosensitive sensitizer can be maintained at a size that allows pattern formation, 300 nm is preferable, 320 nm is more preferable, and 350 nm is more preferable. (B) When the radiation-sensitive sensitizer generating agent generates a radiation-sensitive sensitizer by irradiation of the second radiation, the first radiation is irradiated by setting the wavelength of the second radiation to the above lower limit or more. In the partial irradiation section, acid is generated during the irradiation of the second radiation due to the sensitizing action of the generated radiation-sensitive sensitizer, and conversely, in the non-partial irradiation section where the first radiation is not irradiated, the second radiation is irradiated. Generation of acid in is suppressed. As a result, the sensitivity and contrast between the partially irradiated portion and the non-partially irradiated portion can be improved.
 (b)感放射線性増感体発生剤としては、一部照射工程における第1放射線の照射によって、全面照射工程における第2放射線を吸収するカルボニル基を有する化合物(カルボニル化合物)となるものが好ましい。カルボニル化合物としてはアルデヒド、ケトン、カルボン酸及びカルボン酸エステル等が挙げられる。上記反応により、一部照射部の(b)感放射線性増感体発生剤でのみ、放射線の吸収波長のピークのシフトが起こる。従って、一部照射後に、一部照射部だけが吸収できる波長の放射線で全面照射を行えば、一部照射部だけを選択的に増感できる。 (B) As a radiation sensitive sensitizer generating agent, what becomes the compound (carbonyl compound) which has a carbonyl group which absorbs the 2nd radiation in a whole surface irradiation process by irradiation of the 1st radiation in a partial irradiation process is preferable. . Examples of the carbonyl compound include aldehydes, ketones, carboxylic acids and carboxylic acid esters. Due to the above reaction, the peak of the absorption wavelength of radiation occurs only in the radiation-sensitive sensitizer generating agent (b) of the partially irradiated part. Therefore, after partial irradiation, if the entire surface is irradiated with radiation having a wavelength that can be absorbed only by the partial irradiation portion, only the partial irradiation portion can be selectively sensitized.
 上記(b)感放射線性増感体発生剤は、酸の作用により分解し下記式(A)で表される化合物(以下、「(A)増感剤」ともいう)を生じる前駆体(以下、「[B]前駆体」ともいう)を含む。(b)感放射線性増感体発生剤が[B]前駆体を含むことで、一部照射部において、(a)感放射線性酸-増感体発生剤又は(c)感放射線性酸発生剤から発生した酸の作用により、効率良く感放射線性増感体を発生させることができ、良好な微細パターンを形成することができる。 The (b) radiation-sensitive sensitizer generator is a precursor (hereinafter referred to as “(A) sensitizer”) that is decomposed by the action of an acid and is represented by the following formula (A). , Also referred to as “[B] precursor”). (B) When the radiation-sensitive sensitizer generator contains the [B] precursor, (a) a radiation-sensitive acid-sensitizer generator or (c) generation of a radiation-sensitive acid in a partially irradiated part. By the action of the acid generated from the agent, a radiation-sensitive sensitizer can be generated efficiently and a good fine pattern can be formed.
((A)増感剤)
 (A)増感剤は、下記式(A)で表される化合物である。
((A) sensitizer)
(A) A sensitizer is a compound represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(A)中、R~Rは、それぞれ独立して、水素原子、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であり、R~Rは、それぞれ独立して、水素原子、ヒドロキシ基、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であるか、又はR~R及びR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。但し、R~Rのうち少なくとも1つはヒドロキシ基である。 In the above formula (A), R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms, and R 1 to R 6 Each independently represents a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R a to R d and R 1 to R 6 . Two or more of them are part of a ring structure having 4 to 20 ring members that is formed together with the carbon chain to which they are bonded. However, at least one of R 1 to R 6 is a hydroxy group.
 R~R及びR~Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記1価の炭化水素基及び基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R a to R d and R 1 to R 6 include a monovalent hydrocarbon group having 1 to 20 carbon atoms, carbon- A group (α) containing a divalent heteroatom-containing group between carbons, a group obtained by substituting a part or all of the hydrogen atoms of the monovalent hydrocarbon group and the group (α) with a monovalent heteroatom-containing group Etc.
 炭素数1~20の1価の炭化水素基としては、例えば上記式(X)におけるR、R及びRの炭素数1~20の1価の炭化水素基として例示したものと同様の基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms are the same as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms of R X , R Y and R Z in the above formula (X). Groups and the like.
 1価及び2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the hetero atom constituting the monovalent and divalent heteroatom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。 Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like. R 'is a hydrogen atom or a monovalent hydrocarbon group.
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。 Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
 R~R及びR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造としては、例えばナフタレン構造、アントラセン構造、フルオレン構造、ジベンゾシクロヘキサン構造等の炭素環構造、キサンテン構造、チオキサンテン構造、ジベンゾチアシクロヘキサン構造、ジベンゾアザシクロヘキサン構造等の複素環構造などが挙げられる。 Examples of the ring structure having 4 to 20 ring members constituted by a carbon chain in which two or more of R a to R d and R 1 to R 6 are combined with each other include, for example, naphthalene structure, anthracene structure, fluorene Examples include a structure, a carbocyclic structure such as a dibenzocyclohexane structure, a xanthene structure, a thioxanthene structure, a dibenzothiacyclohexane structure, and a heterocyclic structure such as a dibenzoazacyclohexane structure.
 (A)増感剤としては、上記式(A)のRがヒドロキシ基であるものが好ましい。(A)増感剤は、Rがヒドロキシ基であると、増感性能がより向上し、当該レジスト材料の感度がより向上する。 The (A) a sensitizer, those R 2 in the formula (A) is a hydroxy group. (A) a sensitizer, when R 2 is a hydroxy group, a sensitizing performance is improved, the sensitivity of the resist material is further improved.
 (A)増感剤としては、上記式(A)のR~Rのうちの少なくとも2つがヒドロキシ基であることが好ましい。(A)増感剤は、R~Rのうちの2つ以上がヒドロキシ基であると、増感性能がより向上し、当該レジスト材料の感度がより向上する。 (A) As the sensitizer, it is preferable that at least two of R 1 to R 6 in the above formula (A) are hydroxy groups. (A) When two or more of R 1 to R 6 are hydroxy groups in the sensitizer, the sensitization performance is further improved, and the sensitivity of the resist material is further improved.
 (A)増感剤が有する芳香環に結合するヒドロキシ基の数としては、1~3が好ましく、1及び2がより好ましく、2がさらに好ましい。 (A) The number of hydroxy groups bonded to the aromatic ring of the sensitizer is preferably 1 to 3, more preferably 1 and 2, and even more preferably 2.
 なお、(A)増感剤のカルボニル基が結合している芳香環上の炭素に隣接する同一芳香環上の炭素原子(オルト位の炭素原子)には、水酸基が結合していないことが好ましい。この理由を以下に説明する。 In addition, it is preferable that a hydroxyl group is not bonded to a carbon atom (ortho-position carbon atom) on the same aromatic ring adjacent to the carbon on the aromatic ring to which the carbonyl group of the sensitizer is bonded. . The reason for this will be described below.
 第2放射線の照射によって増感剤が基底一重項状態から、励起一重項状態に遷移する。しかしながら、励起一重項状態はその存在寿命が非常に短くナノ秒単位とされており、この一重項状態から光酸発生剤等にエネルギーもしくは電子を供与する確率が非常に低い。 The sensitizer transits from the ground singlet state to the excited singlet state by irradiation with the second radiation. However, the excited singlet state has a very short lifetime and is in nanosecond units, and the probability of donating energy or electrons from this singlet state to the photoacid generator or the like is very low.
 一方で、項間交差とよばれる挙動で増感剤が励起一重項状態から励起三重項状態に遷移できると、この励起三重項状態の寿命は比較的長くマイクロ秒単位とされており、光酸発生剤等にエネルギーもしくは電子を供与する確率が格段に向上する。 On the other hand, if the sensitizer can transition from the excited singlet state to the excited triplet state by a behavior called intersystem crossing, the lifetime of this excited triplet state is relatively long, in units of microseconds. Probability of donating energy or electrons to the generating agent is greatly improved.
 この項間交差は、遷移の特徴が異なる励起状態間で起こりやすいことが知られており、ベンゾフェノンは励起一重項状態がn軌道、励起三重項状態がπ*軌道であるため、遷移がn-π*遷移となり、項間交差が非常に起こりやすい(El-Sayed則)。ゆえにベンゾフェノンは一般的に知られている通り、良好な増感剤として機能する。 This intersystem crossing is known to occur easily between excited states having different transition characteristics. Since benzophenone has an excited singlet state in an n orbital and an excited triplet state in a π * orbital, the transition is n−. π * transition, and inter-term crossing is very likely to occur (El-Sayed rule). Therefore, as generally known, benzophenone functions as a good sensitizer.
 しかしながら、ベンゾフェノン誘導体において、そのカルボニル基が結合している芳香環上の炭素に隣接する同一芳香環上の炭素原子(オルト位の炭素原子)に水酸基が結合すると、n軌道のエネルギー準位が低下するため、励起一重項状態がπ軌道となり、よって励起一重項状態から励起三重項状態への遷移がπ-π*遷移となるため、項間交差が起こりにくくなってしまい、ひいては増感剤としての機能しにくい状態となってしまう。 However, in a benzophenone derivative, when a hydroxyl group is bonded to a carbon atom (ortho-position carbon atom) on the same aromatic ring adjacent to the carbon on the aromatic ring to which the carbonyl group is bonded, the energy level of the n orbital decreases. As a result, the excited singlet state becomes a π orbit, and the transition from the excited singlet state to the excited triplet state becomes a π-π * transition, so that intersystem crossing hardly occurs, and as a sensitizer. It becomes difficult to function.
 (A)増感剤としては、例えば下記式(i-1)~(i-24)で表される化合物(以下、「化合物(i-1)~(i-24)」ともいう)等が挙げられる。 Examples of (A) sensitizers include compounds represented by the following formulas (i-1) to (i-24) (hereinafter also referred to as “compounds (i-1) to (i-24)”) and the like. Can be mentioned.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (A)増感剤としては、化合物(i-1)~(i-6)が好ましく、化合物(i-1)及び(i-2)がより好ましい。 (A) As the sensitizer, compounds (i-1) to (i-6) are preferable, and compounds (i-1) and (i-2) are more preferable.
([B]前駆体)
 [B]前駆体は、酸の作用により分解し(A)化合物を生じる化合物である。[B]前駆体としては、例えば(A)化合物のエステル化物、アセタール化物等が挙げられ、(A)化合物のアセタール化物が好ましい。[B]前駆体をアセタール化物とすると、酸の作用による分解がより起こり易くなり、その結果、当該レジスト材料の感度がより向上する。
([B] precursor)
[B] The precursor is a compound that is decomposed by the action of an acid to yield a compound (A). [B] Examples of the precursor include an esterified product and an acetalized product of the compound (A), and an acetalized product of the compound (A) is preferable. [B] When the precursor is an acetalized product, decomposition due to the action of an acid is more likely to occur, and as a result, the sensitivity of the resist material is further improved.
 (A)化合物のエステル化物としては、例えばベンゼン環に結合するヒドロキシ基の水素原子をアシル基で置換した化合物等が挙げられる。 Examples of the esterified product of the compound (A) include compounds in which a hydrogen atom of a hydroxy group bonded to a benzene ring is substituted with an acyl group.
 (A)化合物のアセタール化物としては、例えばケト基をアセタール化した化合物、ベンゼン環のオルト位に位置する2つのヒドロキシ基に由来するアセタール構造を有する化合物、異なる分子の芳香環に結合する2つのヒドロキシ基に由来するアセタール構造を有する化合物等が挙げられる。これらの中で、アセタール化物の合成容易性の観点から、ケト基をアセタール化した化合物、ベンゼン環のオルト位に位置する2つのヒドロキシ基に由来するアセタール構造を有する化合物、並びにケト基をアセタール化した構造及びベンゼン環のオルト位に位置する2つのヒドロキシ基に由来するアセタール構造を共に有する化合物が好ましい。 Examples of the acetalized compound (A) include a compound obtained by acetalizing a keto group, a compound having an acetal structure derived from two hydroxy groups located at the ortho position of a benzene ring, and two compounds bonded to aromatic rings of different molecules. Examples thereof include a compound having an acetal structure derived from a hydroxy group. Among these, from the viewpoint of ease of synthesis of the acetalized product, a compound obtained by acetalizing a keto group, a compound having an acetal structure derived from two hydroxy groups located at the ortho position of the benzene ring, and a keto group are acetalized. A compound having both the above structure and an acetal structure derived from two hydroxy groups located at the ortho position of the benzene ring is preferred.
 [B]前駆体としては、例えば下記式(B-1)~(B-4)で表される化合物(以下、「化合物(B-1)~(B-4)」ともいう)等が挙げられる。 Examples of the [B] precursor include compounds represented by the following formulas (B-1) to (B-4) (hereinafter also referred to as “compounds (B-1) to (B-4)”) and the like. It is done.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(B-1)~(B-4)中、R~Rは、それぞれ独立して、水素原子、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であり、R~Rは、それぞれ独立して、水素原子、ヒドロキシ基、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であるか、又はR~R及びR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。R及びRは、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合するO-C-Oと共に構成される環員数4~20の環構造の一部である。R及びRは、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造の一部である。 In the above formulas (B-1) to (B-4), R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms. R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms, or R a to R 6 Two or more of d and R 1 to R 6 are part of a ring structure having 4 to 20 ring members that is formed together with the carbon chain to which they are bonded to each other. R A and R B are each independently a monovalent organic group having 1 to 20 carbon atoms, or the number of ring members formed together with O—C—O in which these groups are combined with each other. Part of 4-20 ring structures. R C and R D each independently represent a monovalent organic group having 1 to 20 carbon atoms, or have 3 to 20 ring members composed of these groups together with the carbon atom to which they are bonded. Part of the ring structure.
 上記式(B-1)~(B-4)のR~R及びR~Rで表される基及びこれらの基が構成する環構造としては、上記式(A)のR~R及びR~Rで表される基及び環構造として例示したのと同様のもの等が挙げられる。 The groups represented by R a to R d and R 1 to R 6 in the above formulas (B-1) to (B-4) and the ring structure formed by these groups include R a in the above formula (A). ~ include the same ones such as those exemplified as R d and group or ring structure represented by R 1 - R 6.
 R及びR並びにR及びRで表される炭素数1~20の1価の有機基としては、例えば上記式(A)のR~R及びR~Rの炭素数1~20の1価の有機基として例示したものと同様の基等が挙げられる。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R A and R B and R C and R D include, for example, R a to R d and R 1 to R 6 in the above formula (A). Examples thereof include the same groups as those exemplified as 1 to 20 monovalent organic groups.
 R及びRとしては、鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。 R A and R B are preferably chain hydrocarbon groups, more preferably alkyl groups, and even more preferably methyl groups.
 R及びRの基が互いに合わせられこれらが結合するO-C-Oと共に構成される環員数4~20の環構造としては、例え1,3-ジオキサシクロペンタン構造、1,3-ジオキサシクロヘキサン構造等の1,3-ジオキサシクロアルカン構造などが挙げられる。これらの中で、1,3-ジオキサシクロペンタン構造が好ましい。 Examples of the ring structure having 4 to 20 ring members constituted by O—C—O in which R A and R B groups are combined with each other include, for example, 1,3-dioxacyclopentane structure, 1,3- Examples include 1,3-dioxacycloalkane structures such as dioxacyclohexane structures. Of these, a 1,3-dioxacyclopentane structure is preferable.
 R及びRとしては、鎖状炭化水素基が好ましく、アルキル基がより好ましく、メチル基がさらに好ましい。 R C and R D are preferably chain hydrocarbon groups, more preferably alkyl groups, and even more preferably methyl groups.
 R及びRの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造としては、例えばシクロペンタン構造、シクロヘキサン構造等のシクロアルカン構造などが挙げられる。 Examples of the ring structure having 3 to 20 ring members constituted by the carbon atoms to which the groups R C and R D are combined with each other include cycloalkane structures such as a cyclopentane structure and a cyclohexane structure.
 [B]前駆体としては、例えば下記式(B-1-a)、(B-2-a)、(B-3-a)、(B-4-a)で表される化合物(以下、「化合物(B-1-a)、(B-2-a)、(B-3-a)、(B-4-a)」ともいう)等が挙げられる。 [B] Examples of the precursor include compounds represented by the following formulas (B-1-a), (B-2-a), (B-3-a), and (B-4-a) (hereinafter, “Compounds (B-1-a), (B-2-a), (B-3-a), also referred to as (B-4-a)”).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 これらの中で、化合物(B-1-a)、(B-2-a)及び(B-4-a)が好ましい。 Of these, compounds (B-1-a), (B-2-a) and (B-4-a) are preferred.
([B]前駆体の合成方法)
 [B]前駆体は、(A)増感剤のケト基及び/又は芳香環に結合するヒドロキシ基を用いてアセタール化、エステル化反応を行うこと等により合成することができる。
([B] precursor synthesis method)
[B] The precursor can be synthesized by performing an acetalization or esterification reaction using a hydroxyl group bonded to the keto group and / or aromatic ring of the (A) sensitizer.
 (A)増感剤のケト基をジメチルアセタール構造等の鎖状アセタール構造に変換するためのアセタール化剤(1a)としては、例えばオルトギ酸トリメチル、オルトギ酸トリエチル等のオルトギ酸トリアルキル、オルト酢酸トリメチル、オルト酢酸トリエチル等のオルト酢酸トリアルキルなどのオルトエステルなどが挙げられる。(A)増感剤のケト基を1,3-ジオキサシクロペンタン構造等の環状アセタール構造に変換するためのアセタール化剤(1b)としては、例えばオルトギ酸トリメチル及びエチレングリコールの混合物等のオルトエステル及びビシナルジオール(vicinal diol)の混合物などが挙げられる。 (A) As an acetalizing agent (1a) for converting a keto group of a sensitizer into a chain acetal structure such as a dimethyl acetal structure, for example, trialkyl orthoformate such as trimethyl orthoformate and triethyl orthoformate, orthoacetic acid Ortho esters such as trialkyl orthoacetate such as trimethyl, triethyl orthoacetate and the like can be mentioned. (A) As the acetalizing agent (1b) for converting the keto group of the sensitizer into a cyclic acetal structure such as a 1,3-dioxacyclopentane structure, for example, ortho such as a mixture of trimethyl orthoformate and ethylene glycol Examples thereof include a mixture of an ester and vicinal diol.
 (A)増感剤のベンゼン環のオルト位に位置する2つのヒドロキシ基をアセタール構造に変換するためのアセタール化剤(2)としては、例えば2,2-ジメトキシプロパン、2,2-ジエトキシプロパン、3,3-ジメトキシペンタン、1,1-ジメトキシシクロヘキサン等の炭素数1~20のケトンのアセタールなどが挙げられる。 (A) As the acetalizing agent (2) for converting two hydroxy groups located at the ortho position of the benzene ring of the sensitizer into an acetal structure, for example, 2,2-dimethoxypropane, 2,2-diethoxy Examples include acetals of ketones having 1 to 20 carbon atoms such as propane, 3,3-dimethoxypentane, and 1,1-dimethoxycyclohexane.
 化合物(B-1)及び(B-4)は、(A)増感剤に対し、例えばアセタール化剤(1a)及び/又は(1b)を用い、p-トルエンスルホン酸等の酸存在下でアセタール化反応を行うことにより合成することができる。 Compounds (B-1) and (B-4) are prepared by using, for example, the acetalizing agent (1a) and / or (1b) for the sensitizer (A) in the presence of an acid such as p-toluenesulfonic acid. It can be synthesized by carrying out an acetalization reaction.
 化合物(B-2)は、ベンゼン環のオルト位に位置する2つのヒドロキシ基を有する(A)増感剤に対し、例えばアセタール化剤(2)を用い、p-トルエンスルホン酸等の酸存在下でアセタール化反応を行うことにより合成することができる。 Compound (B-2) uses an acetalizing agent (2), for example, for the sensitizer (A) having two hydroxy groups located at the ortho positions of the benzene ring, and an acid such as p-toluenesulfonic acid is present. It can synthesize | combine by performing acetalization reaction under.
 化合物(B-3)は、ベンゼン環のオルト位に位置する2つのヒドロキシ基を有する(A)増感剤に対し、アセタール化剤(1a)及び/又は(1b)と、アセタール化剤(2)とを用い、p-トルエンスルホン酸等の酸存在下でアセタール化反応を行うことにより合成することができる。 Compound (B-3) comprises an acetalizing agent (1a) and / or (1b) and an acetalizing agent (2) for the sensitizer (A) having two hydroxy groups located at the ortho positions of the benzene ring. ) And an acetalization reaction in the presence of an acid such as p-toluenesulfonic acid.
 上記アセタール化反応においては、トルエン等の溶媒を用いてもよい。得られた生成物を、カラムクロマトグラフィー、再結晶、蒸留等により適切に精製することにより化合物(B-1)~(B-4)を単離することができる。上記以外の[B]前駆体についても、上記同様の方法により合成することができる。 In the acetalization reaction, a solvent such as toluene may be used. The compounds (B-1) to (B-4) can be isolated by appropriately purifying the obtained product by column chromatography, recrystallization, distillation or the like. [B] precursors other than those described above can also be synthesized by the same method as described above.
[(c)感放射線性酸発生剤]
 (c)感放射線性酸発生剤は、第1放射線の照射によって、酸を発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸が実質的に発生しない成分であり、上記(a)感放射線性酸-増感体発生剤とは異なるものである。(c)感放射線性酸発生剤は上記性質を有するので、全面照射時に放射線増感反応によりレジスト膜の一部照射部だけで酸を発生させることができる。
[(C) Radiation sensitive acid generator]
(C) The radiation-sensitive acid generator generates acid upon irradiation with the first radiation, and the non-irradiated portion where the first radiation is not irradiated in the partial irradiation step causes the acid to be generated upon irradiation with the second radiation. It is a component that does not substantially occur and is different from the above-mentioned (a) radiation-sensitive acid-sensitizer generator. (C) Since the radiation-sensitive acid generator has the above properties, an acid can be generated only at a part of the resist film irradiated by a radiation sensitization reaction during the entire surface irradiation.
 また、(c)感放射線性酸発生剤に第2放射線を照射することで酸が発生した場合に、一部照射における照射部と非照射部との間における酸の濃度の差をパターン形成可能な程度の大きさに維持できる程度に第2放射線の照射による酸の発生量を少なくできる第2放射線の波長の下限としては、300nmが好ましく、320nmがより好ましく、350nmがさらに好ましい。(c)感放射線性酸発生剤が第2放射線の照射により酸を発生する場合における第2放射線の波長を上記下限以上とすることで、第1放射線が照射される一部照射部では、発生した感放射線性増感体の増感作用により第2放射線の照射時に酸が発生し、反対に第1放射線が照射されない非一部照射部では第2放射線の照射時における酸の発生が抑制される。その結果、一部照射部と非一部照射部との間における感度及びコントラストを向上できる。 In addition, (c) when acid is generated by irradiating the radiation sensitive acid generator with the second radiation, it is possible to pattern the difference in acid concentration between the irradiated part and non-irradiated part in partial irradiation The lower limit of the wavelength of the second radiation that can reduce the amount of acid generated by the irradiation of the second radiation to such an extent that the size can be maintained is preferably 300 nm, more preferably 320 nm, and even more preferably 350 nm. (C) When the radiation-sensitive acid generator generates an acid upon irradiation with the second radiation, the wavelength of the second radiation is set to be equal to or higher than the lower limit, so that it is generated in the partial irradiation unit irradiated with the first radiation. Due to the sensitizing action of the radiation-sensitive sensitizer, acid is generated during the irradiation of the second radiation, and conversely, in the non-partially irradiated portion where the first radiation is not irradiated, the generation of acid during the irradiation of the second radiation is suppressed. The As a result, the sensitivity and contrast between the partially irradiated portion and the non-partially irradiated portion can be improved.
 (c)感放射線性酸発生剤としては、例えばオニウム塩化合物、ジアゾメタン化合物、N-スルホニルオキシイミド化合物等が挙げられる。また、オニウム塩化合物としては、例えばスルホニウム塩化合物、テトラヒドロチオフェニウム塩化合物、ヨードニウム塩化合物等が挙げられる。(c)感放射線性酸発生剤としては、スルホニウム塩化合物、ヨードニウム塩化合物、スルホニルジアゾメタン、N-スルホニルオキシイミド、及びオキシム-O-スルホネート型感放射線性酸発生剤が好ましく、スルホニウム塩化合物及びヨードニウム塩化合物がより好ましい。 (C) Examples of the radiation sensitive acid generator include onium salt compounds, diazomethane compounds, N-sulfonyloxyimide compounds and the like. Examples of the onium salt compound include a sulfonium salt compound, a tetrahydrothiophenium salt compound, and an iodonium salt compound. (C) As the radiation-sensitive acid generator, sulfonium salt compounds, iodonium salt compounds, sulfonyldiazomethane, N-sulfonyloxyimide, and oxime-O-sulfonate type radiation-sensitive acid generators are preferred, and sulfonium salt compounds and iodonium. A salt compound is more preferable.
 スルホニウム塩化合物としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウム1,2-ジ(シクロヘキシルオキシカルボニル)エタン-1-スルホネート等が挙げられる。 Examples of the sulfonium salt compounds include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2, 2-tetrafluoroethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium 2-bicyclo [2.2 .1] Hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium 1,2-di (cyclohexyl) Oxycarbonyl) ethane-1-sulfonate, and the like.
 テトラヒドロチオフェニウム塩化合物としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。 Examples of the tetrahydrothiophenium salt compound include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium. Nonafluoro-n-butanesulfonate and the like can be mentioned.
 ヨードニウム塩化合物としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート等が挙げられる。 Examples of the iodonium salt compound include diphenyliodonium trifluoromethanesulfonate, bis (4-tert-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethane. Examples include sulfonates.
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。 Examples of N-sulfonyloxyimide compounds include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy). ) Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide and the like.
 ジアゾメタン化合物としては、例えばビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン等が挙げられる。 Examples of the diazomethane compound include bis (n-propylsulfonyl) diazomethane and bis (isopropylsulfonyl) diazomethane.
<任意成分>
 本実施形態のレジスト材料は、上述の(1)ベース成分及び(2)成分の他に、任意成分として、[D]酸拡散制御体、[E]溶媒、架橋剤等を含有していてもよい。
<Optional component>
The resist material of this embodiment may contain [D] acid diffusion controller, [E] solvent, crosslinking agent, etc. as optional components in addition to the above-mentioned (1) base component and (2) component. Good.
[[D]酸拡散制御体]
 [D]酸拡散制御体は、放射線照射により(a)感放射線性酸-増感体発生剤、(c)感放射線性酸発生剤等から生じる酸のレジスト膜中における拡散現象を制御し、非照射部における好ましくない化学反応を抑制する物質である。[D]酸拡散制御体の当該レジスト材料における含有形態としては、遊離の化合物(以下、適宜「[D]酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
[[D] Acid diffusion controller]
[D] The acid diffusion controller controls the diffusion phenomenon in the resist film of the acid generated from (a) a radiation-sensitive acid-sensitizer generator, (c) a radiation-sensitive acid generator, etc. by irradiation. It is a substance that suppresses an undesirable chemical reaction in a non-irradiated part. [D] The content of the acid diffusion controller in the resist material may be a free compound (hereinafter referred to as “[D] acid diffusion controller”) or a form incorporated as part of the polymer. Both of these forms may be used.
 [D]酸拡散制御剤としては、窒素原子含有化合物、放射線照射により感光し弱酸を発生する光崩壊性塩基等が挙げられる。 [D] Examples of the acid diffusion control agent include nitrogen atom-containing compounds, photodegradable bases that are exposed to radiation and generate weak acids.
 窒素原子含有化合物としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。 Examples of the nitrogen atom-containing compound include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
 光崩壊性塩基としては、例えばカルボン酸のトリフェニルスルホニウム塩等が挙げられ、トリフェニルスルホニウムアダマンタン-1-イルオキサレートが好ましい。 Examples of the photodegradable base include triphenylsulfonium salt of carboxylic acid, and triphenylsulfonium adamantan-1-yl oxalate is preferable.
[[E]溶媒]
 [E]溶媒は、少なくとも(1)成分、(2)成分及び所望により含有される任意成分を溶解又は分散可能な溶媒であれば特に限定されない。
[[E] solvent]
[E] A solvent will not be specifically limited if it is a solvent which can melt | dissolve or disperse | distribute at least (1) component, (2) component, and the arbitrary component contained depending on necessity.
 [E]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。 [E] Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
 アルコール系溶媒としては、例えば4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒、シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒、1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒、プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。 Examples of alcohol solvents include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol, and alicyclic monoalcohol solvents having 3 to 18 carbon atoms such as cyclohexanol. Examples thereof include a solvent, a polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol, and a polyhydric alcohol partial ether solvent having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
 エーテル系溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒、テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒、ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。 Examples of the ether solvent include diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, diheptyl ether and other dialkyl ether solvents, tetrahydrofuran, tetrahydropyran and other cyclic ether solvents, diphenyl ether, And aromatic ring-containing ether solvents such as anisole.
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。 Examples of ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone, cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone, 2,4-pentanedione, acetonylacetone And acetophenone.
 アミド系溶媒としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。 Examples of the amide solvent include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N And chain amide solvents such as -methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
 エステル系溶媒としては、例えば酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒、酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒、酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒、シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒などが挙げられる。 Examples of ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate, polyhydric alcohol carboxylate solvents such as propylene glycol acetate, and polyhydric alcohol partial ether carboxylates such as propylene glycol monomethyl ether acetate. Solvents, polyvalent carboxylic acid diester solvents such as diethyl oxalate, carbonate solvents such as dimethyl carbonate, diethyl carbonate, ethylene carbonate and propylene carbonate, and lactone solvents such as γ-butyrolactone and δ-valerolactone. .
 炭化水素系溶媒としては、例えばn-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒、トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒等が挙げられる。 Examples of the hydrocarbon solvent include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane, and aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene. It is done.
 これらの中で、エステル系溶媒及びケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒及び環状ケトン系溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテート及びシクロヘキサノンがさらに好ましい。当該感放射線性樹脂組成物は、[E]溶媒を1種又は2種以上含有していてもよい。 Of these, ester solvents and ketone solvents are preferred, polyhydric alcohol partial ether carboxylate solvents and cyclic ketone solvents are more preferred, and propylene glycol monomethyl ether acetate and cyclohexanone are even more preferred. The radiation-sensitive resin composition may contain one or more [E] solvents.
[架橋剤]
 架橋剤は、全面照射後の加熱工程中において、酸触媒反応によりベース成分間で架橋反応を引き起こし、ベース成分の分子量を増加させ、現像液に対して不溶化するためのものであり、上記(1)ベース成分とは異なるものである。レジスト材料が架橋剤を含むことにより、架橋と同時に極性部位が非極性化し、現像液に対して不溶化するため、ネガ型レジスト材料を提供することができる。
[Crosslinking agent]
The cross-linking agent is used to cause a cross-linking reaction between the base components by an acid catalyst reaction during the heating step after the entire surface irradiation, thereby increasing the molecular weight of the base components and insolubilizing with the developer. ) Different from the base component. Since the resist material contains a cross-linking agent, the polar part becomes nonpolar at the same time as the cross-linking and becomes insoluble in the developer, so that a negative resist material can be provided.
 架橋剤は2つ以上の官能基を有する化合物である。上記官能基としては、(メタ)アクリロイル基、ヒドロキシメチル基、アルコキシメチル基、エポキシ基、ビニルエーテル基等が上げられる。 The crosslinking agent is a compound having two or more functional groups. Examples of the functional group include (meth) acryloyl group, hydroxymethyl group, alkoxymethyl group, epoxy group, vinyl ether group and the like.
(各成分の含有量)
 当該レジスト材料は、上記成分を含む感放射線性樹脂組成物である。レジスト材料を調製するに際しては、レジスト材料の用途、使用条件等において各成分の配合比率を適宜設定すればよい。
(Content of each component)
The resist material is a radiation sensitive resin composition containing the above components. When preparing the resist material, the blending ratio of each component may be appropriately set depending on the use of the resist material, the use conditions, and the like.
 (1)成分100質量部に対する(b)感放射線性増感体発生剤としての[B]前駆体の含有量の下限としては、0.1質量部が好ましく、1質量部がより好ましく、3質量部がさらに好ましく、5質量部が特に好ましい。上記含有量の上限としては、50質量部が好ましく、30質量部がより好ましく、20質量部がさらに好ましく、15質量部が特に好ましい。[B]前駆体の含有量が上記下限以上であると、十分な感度が得られやすく、他方、上記上限以下であると矩形のレジストパターンが得られやすい。 (1) The lower limit of the content of the [B] precursor as the radiation-sensitive sensitizer generating agent with respect to 100 parts by mass of the component is preferably 0.1 parts by mass, more preferably 1 part by mass. Part by mass is more preferable, and 5 parts by mass is particularly preferable. As an upper limit of the said content, 50 mass parts is preferable, 30 mass parts is more preferable, 20 mass parts is further more preferable, 15 mass parts is especially preferable. [B] Sufficient sensitivity is easily obtained when the content of the precursor is not less than the above lower limit, and a rectangular resist pattern is likely to be obtained when the content is not more than the above upper limit.
 (1)成分100質量部に対する(c)感放射線性酸発生剤の含有量の下限としては、1質量部が好ましく、5質量部がより好ましく、10質量部がさらに好ましく、20質量部が特に好ましい。上記含有量の上限としては、50質量部が好ましく、40質量部がより好ましい。(c)感放射線性酸発生剤の含有量が上記下限以上であると十分な感度が得られやすく、他方、上記上限以下であると矩形のレジストパターンが得られやすい。 (1) As a minimum of content of (c) radiation sensitive acid generator to 100 mass parts of ingredients, 1 mass part is preferred, 5 mass parts is more preferred, 10 mass parts is still more preferred, and 20 mass parts is especially preferred. preferable. As an upper limit of the said content, 50 mass parts is preferable and 40 mass parts is more preferable. (C) Sufficient sensitivity is easily obtained when the content of the radiation-sensitive acid generator is not less than the above lower limit, and a rectangular resist pattern is easily obtained when the content is not more than the above upper limit.
 (1)成分100質量部に対する[D]酸拡散制御剤の含有量の下限としては、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましい。[D]酸拡散制御剤の含有量が上記下限以上であるとレジストパターンの形状がより良好なものとなりやすく、他方、上記上限以下であると十分な感度が得られやすい。 (1) The lower limit of the content of the [D] acid diffusion controller with respect to 100 parts by mass of the component is preferably 0.1 parts by mass, more preferably 0.5 parts by mass, and even more preferably 1 part by mass. As an upper limit of the said content, 20 mass parts is preferable, 10 mass parts is more preferable, and 5 mass parts is further more preferable. [D] When the content of the acid diffusion controller is not less than the above lower limit, the shape of the resist pattern tends to be more favorable, and on the other hand, sufficient sensitivity is easily obtained when it is not more than the above upper limit.
 (1)成分100質量部に対する[E]溶媒の含有量の下限としては、200質量部が好ましく、300質量部がより好ましい。上記含有量の上限としては、10,000質量部が好ましく、7,000質量部がより好ましい。[E]溶媒の含有量が上記下限以上であると、レジスト材料の特性が低下しにくくなり、他方、上記上限以下とすることでレジスト膜を形成しやすくなる。 (1) As a minimum of content of [E] solvent to 100 mass parts of ingredients, 200 mass parts is preferred and 300 mass parts is more preferred. As an upper limit of the said content, 10,000 mass parts is preferable and 7,000 mass parts is more preferable. [E] When the content of the solvent is not less than the above lower limit, the characteristics of the resist material are hardly deteriorated. On the other hand, when the content is not more than the above upper limit, a resist film can be easily formed.
 本実施形態のレジスト材料は、上記(1)成分、(2)成分、[D]酸拡散制御体、[E]溶媒等を公知の方法で混合することにより製造することができる。 The resist material of this embodiment can be produced by mixing the above component (1), component (2), [D] acid diffusion controller, [E] solvent and the like by a known method.
<レジストパターン形成方法>
 上記レジスト材料は二段露光リソグラフィープロセスに好適に使用される。すなわち、本実施形態に係るリソグラフィープロセス(レジストパターン形成方法)は、上記レジスト材料を基板に塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト膜の一部に250nm以下の波長を有する放射線(第1放射線)を照射する工程(以下、「一部照射工程」ともいう)と、上記一部照射工程後のレジスト膜の全面に250nmを超える波長を有する放射線(第2放射線)を照射する工程(以下、「全面照射工程」ともいう)と、上記全面照射工程後のレジスト膜を加熱する工程(以下、「加熱工程」ともいう)と、上記加熱工程後のレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。
<Resist pattern formation method>
The resist material is preferably used in a two-step exposure lithography process. That is, the lithography process (resist pattern forming method) according to the present embodiment includes a step of coating the resist material on a substrate (hereinafter also referred to as “coating step”) and a resist film formed by the coating step. A part of which is irradiated with radiation having a wavelength of 250 nm or less (first radiation) (hereinafter also referred to as “partial irradiation process”), and a wavelength exceeding 250 nm on the entire surface of the resist film after the partial irradiation process. A step (hereinafter also referred to as “overall irradiation step”), a step of heating the resist film after the entire surface irradiation step (hereinafter also referred to as “heating step”), And a step of developing the resist film after the heating step (hereinafter also referred to as “developing step”).
[塗工工程]
 本工程では、当該レジスト材料を基板に塗工する。これにより、基板上にレジスト膜が形成される。
[Coating process]
In this step, the resist material is applied to the substrate. Thereby, a resist film is formed on the substrate.
 基板としては、シリコン基板、二酸化シリコン基板、ガラス基板、及びITO基板等の半導体ウエハから構成されたものであってもよく、上記半導体ウエハ上に絶縁膜層が形成されたものであってもよい。 The substrate may be composed of a semiconductor wafer such as a silicon substrate, a silicon dioxide substrate, a glass substrate, and an ITO substrate, or may be an insulating film layer formed on the semiconductor wafer. .
 レジスト材料の塗工方法としては、例えばレジスト材料をスピンコート等により塗工する方法等が挙げられる。レジスト材料を塗工する際に、塗工後に加熱(プリベーク)してレジスト材料中の溶媒を揮発させてもよい。レジスト膜の形成条件は、レジスト材料の性状及び得られるレジスト膜の厚み等に応じて適宜選択される。レジスト膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、30nmがさらに好ましい。上記平均厚みの上限としては、5,000nmが好ましく、1,000nmがより好ましく、200nmがさらに好ましい。 Examples of the resist material coating method include a method of applying the resist material by spin coating or the like. When the resist material is applied, the solvent in the resist material may be volatilized by heating (pre-baking) after the application. The conditions for forming the resist film are appropriately selected according to the properties of the resist material, the thickness of the resist film to be obtained, and the like. The lower limit of the average thickness of the resist film is preferably 1 nm, more preferably 10 nm, and further preferably 30 nm. The upper limit of the average thickness is preferably 5,000 nm, more preferably 1,000 nm, and even more preferably 200 nm.
 基板上にレジスト膜を形成するに先立って、上記基板上に下層膜(反射防止膜、レジスト密着性改善のための膜、レジスト形状改善のための膜等)を形成してもよい。反射防止膜を形成することにより、一部照射工程において放射線が基板等で反射することによる定在波の発生を抑制することができる。レジスト密着性改善のための膜を形成することにより、基板とレジスト膜との間の密着性を向上させることができる。レジスト形状改善のための膜を形成することにより、現像後のレジスト形状をさらに向上させることができる。すなわち、レジストのすそ引き形状又はくびれ形状を低減できる。一方、全面照射の放射線の定在波の発生によるレジスト形状劣化を防ぐために、下層膜の厚みは全面照射の放射線の反射も抑えられるように設計することが望ましい。下層膜は、全面照射の放射線を吸収しない膜であることが望ましい。仮に、下層膜が全面照射の放射線を吸収する場合、下層膜からのエネルギー移動又は電子移動によりレジスト膜内で放射線増感反応が生じ、これにより非一部照射部で酸が発生するおそれがある。そのため、レジスト膜と下層膜との間に放射線増感反応を伝搬しないバッファ層を配置し、放射線を吸収した下層膜からの増感を防いでもよい。 Prior to forming a resist film on the substrate, a lower layer film (an antireflection film, a film for improving resist adhesion, a film for improving resist shape, etc.) may be formed on the substrate. By forming the antireflection film, it is possible to suppress the occurrence of standing waves due to radiation reflected by the substrate or the like in the partial irradiation process. By forming a film for improving the resist adhesion, the adhesion between the substrate and the resist film can be improved. By forming a film for improving the resist shape, the resist shape after development can be further improved. That is, it is possible to reduce the skirt shape or the neck shape of the resist. On the other hand, in order to prevent resist shape deterioration due to the generation of standing waves of radiation on the entire surface, it is desirable to design the thickness of the lower layer film so that reflection of radiation on the entire surface is suppressed. The lower layer film is desirably a film that does not absorb the radiation of the entire surface. If the lower layer film absorbs radiation from the entire surface, energy sensitization reaction may occur in the resist film due to energy transfer or electron transfer from the lower layer film, which may cause acid generation in the non-partially irradiated part. . For this reason, a buffer layer that does not propagate the radiation sensitization reaction may be disposed between the resist film and the lower layer film to prevent sensitization from the lower layer film that has absorbed the radiation.
 上記レジスト膜の上に保護膜をさらに形成してもよい。保護膜を形成することにより一部照射工程で生成する感放射線性増感体、酸、及びこれらの反応中間体の失活を抑え、プロセス安定性を向上させることができる。上記保護膜は、全面照射工程における非照射部での酸発生反応を防ぐために、上記(a)又は(c)成分が直接吸収する放射線の波長の少なくとも一部を吸収する吸収膜であってもよい。上記吸収膜を用いることで、EUV露光時に発生する紫外線領域の放射線であるアウトオブバンド光(OOB光)のレジスト膜への進入を抑制し、非一部照射部における感放射線性酸発生剤の分解を防ぐこともできる。さらに、上記吸収膜が直接レジスト膜上に形成される場合は、非一部照射部における放射線増感反応によるレジスト膜中の酸発生を抑えるために、全面照射工程における第2放射線の波長で保護膜からの放射線増感反応を誘発しないものがよい。また、レジスト膜内の感放射線性増感体が保護膜からのエネルギー移動又は電子移動等により増感しないように、レジスト膜と保護膜の間にバッファ層を配置し、放射線を吸収した吸収膜からの増感を防いでもよい。一部照射工程後、全面照射工程前に上記吸収膜をレジスト膜上に形成することにより、全面照射工程における第2放射線の照射によって、一部照射工程後の上記レジスト膜に残存する上記感放射線性酸発生剤から直接酸が発生するのをさらに抑制させることができる。 A protective film may be further formed on the resist film. By forming the protective film, it is possible to suppress the deactivation of the radiation-sensitive sensitizer, the acid, and the reaction intermediate produced in the partial irradiation step, thereby improving the process stability. The protective film may be an absorption film that absorbs at least a part of the wavelength of radiation directly absorbed by the component (a) or (c) in order to prevent an acid generation reaction in a non-irradiated part in the entire surface irradiation process. Good. By using the absorbing film, it is possible to suppress the out-of-band light (OOB light), which is radiation in the ultraviolet region generated during EUV exposure, from entering the resist film, and the radiation-sensitive acid generator in the non-partially irradiated portion. It can also prevent decomposition. Further, when the absorption film is formed directly on the resist film, the film is protected with the wavelength of the second radiation in the entire irradiation process in order to suppress acid generation in the resist film due to the radiation sensitization reaction in the non-partially irradiated portion. Those that do not induce a radiosensitizing reaction from the film are preferred. An absorption film that absorbs radiation by arranging a buffer layer between the resist film and the protective film so that the radiation-sensitive sensitizer in the resist film is not sensitized by energy transfer or electron transfer from the protective film. You may prevent the sensitization from. By forming the absorption film on the resist film after the partial irradiation process and before the entire surface irradiation process, the radiation-sensitive radiation remaining on the resist film after the partial irradiation process by irradiation with the second radiation in the entire surface irradiation process. Acid can be further suppressed from being generated directly from the acid generator.
[一部照射工程]
 本工程では、上記塗工工程により形成されたレジスト膜の一部に250nm以下の波長を有する第1放射線を照射する。
[Partial irradiation process]
In this step, a first radiation having a wavelength of 250 nm or less is irradiated to a part of the resist film formed by the coating step.
 一部照射工程では、上記塗工工程により形成されたレジスト膜上に、所定のパターンの遮光マスクを配置する。その後、上記レジスト膜に、投影レンズ、電子光学系ミラー、又は反射ミラーを有する露光装置(放射線照射モジュール)から、上記マスクを介して第1放射線が照射(パターン露光)される。 In the partial irradiation process, a light-shielding mask having a predetermined pattern is disposed on the resist film formed by the coating process. Thereafter, the resist film is irradiated with the first radiation (pattern exposure) through the mask from an exposure apparatus (radiation irradiation module) having a projection lens, an electron optical system mirror, or a reflection mirror.
 一部照射に用いられる第1放射線の波長の上限としては230nmが好ましく、200nmがより好ましい。一方、第1放射線の波長の下限としては、150nmが好ましく、190nmがより好ましい。 The upper limit of the wavelength of the first radiation used for partial irradiation is preferably 230 nm, and more preferably 200 nm. On the other hand, the lower limit of the wavelength of the first radiation is preferably 150 nm, and more preferably 190 nm.
 第1放射線としては、例えばガンマ線、エックス線、アルファ線、重粒子線、陽子線、ベータ線、イオンビーム、電子線、極紫外線等が挙げられる。これらの中で、電子線、極端紫外線及びイオンビームが好ましく、電子線及び極端紫外線がより好ましい。 Examples of the first radiation include gamma rays, X-rays, alpha rays, heavy particle rays, proton rays, beta rays, ion beams, electron beams, and extreme ultraviolet rays. Among these, an electron beam, extreme ultraviolet rays, and an ion beam are preferable, and an electron beam and extreme ultraviolet rays are more preferable.
[全面照射工程]
 本工程では、一部照射工程後のレジスト膜の全面に250nmを超える波長を有する第2放射線を照射する。
[Full irradiation process]
In this step, the entire surface of the resist film after the partial irradiation step is irradiated with the second radiation having a wavelength exceeding 250 nm.
 全面照射工程では、上記一部照射工程後のレジスト膜全面(一部照射部と非一部照射部とを併せた全面)に、投影レンズ(又は光源)を有する高感度化モジュール(露光装置又は放射線照射モジュールということもある)から第2放射線が照射(一括露光)される。この全面照射としてはウエハ全面に一度に照射してもよく、局所的な照射を組み合わせたものでもよく、又は重ね合わせて照射してもよい。全面照射用の光源には、一般的な光源を用いることができ、バンドパスフィルターやカットオフフィルターを通すことで、所望とする波長に制御した水銀ランプ及びキセノンランプ等からの紫外線の他、LED光源、レーザーダイオード、レーザー光源等による帯域の狭い紫外線であってもよい。上記全面照射では、レジスト材料膜中の一部照射部で発生した(A)増感体のみが放射線を吸収する。このため、全面照射では、一部照射部において選択的に放射線の吸収が起こる。よって、全面照射中、一部照射部においてのみ酸を継続的に発生させることができ、感度を大きく向上させることが可能となる。一方、非一部照射部には酸が発生しないことから、レジスト膜中の化学コントラストを維持しつつ感度を向上させることができる。 In the entire surface irradiation step, a high sensitivity module (exposure apparatus or light source) having a projection lens (or light source) on the entire resist film surface (the entire surface including both the partial irradiation portion and the non-partial irradiation portion) after the partial irradiation step. The second radiation is irradiated (collective exposure) from a radiation irradiation module. As the entire surface irradiation, the entire surface of the wafer may be irradiated at once, a combination of local irradiations, or overlapping irradiation. A general light source can be used as the light source for the entire surface irradiation, and in addition to ultraviolet rays from mercury lamps and xenon lamps controlled to a desired wavelength by passing through a band-pass filter or a cut-off filter, LEDs Narrow-band ultraviolet light from a light source, laser diode, laser light source, or the like may be used. In the entire surface irradiation, only the sensitizer (A) generated in the partially irradiated portion in the resist material film absorbs radiation. For this reason, in the whole surface irradiation, radiation is selectively absorbed in the partial irradiation part. Therefore, during the entire surface irradiation, the acid can be continuously generated only in the partially irradiated portion, and the sensitivity can be greatly improved. On the other hand, since no acid is generated in the non-partially irradiated portion, the sensitivity can be improved while maintaining the chemical contrast in the resist film.
 第2放射線の波長の下限としては、280nmがより好ましく、320nmがさらに好ましい。より長い波長の放射線を吸収可能な感放射線性増感体を発生する場合、第2放射線の波長は350nm以上であってもよい。但し、第2放射線の波長が長すぎる場合は、放射線増感反応の効率が落ちるため、ベース成分、感放射線性酸発生剤、感放射線性増感体発生剤が吸収可能な放射線の波長を避けつつも、感放射線性増感体が吸収可能なできるだけ短い波長の放射線を用いることが望ましい。このような観点から、第2放射線の波長の下限としては、450nmが好ましく、400nmがより好ましい。 The lower limit of the wavelength of the second radiation is more preferably 280 nm, and further preferably 320 nm. When generating a radiation-sensitive sensitizer capable of absorbing longer wavelength radiation, the wavelength of the second radiation may be 350 nm or more. However, if the wavelength of the second radiation is too long, the efficiency of the radiation sensitization reaction will decrease, so avoid the wavelengths of radiation that can be absorbed by the base component, the radiation sensitive acid generator, and the radiation sensitive sensitizer generator. However, it is desirable to use radiation with a wavelength as short as possible that the radiation-sensitive sensitizer can absorb. From such a viewpoint, the lower limit of the wavelength of the second radiation is preferably 450 nm, and more preferably 400 nm.
[加熱工程]
 加熱工程では、上記全面照射工程後のレジスト膜が加熱(以下、「ポストフラッドエクスポージャベーク(PFEB)」又は「ポストエスポージャーベーク(PEB)」ともいう。)される。加熱条件としては、例えば大気中、窒素やアルゴン等の不活性ガス雰囲気下で、50℃以上200℃以下、10秒以上300秒以下とすることができる。加熱条件を上記範囲とすることにより、酸の拡散を制御でき、また、半導体ウエハの処理速度を確保できる傾向がある。加熱工程では、上記一部照射工程及び全面照射工程で発生した酸により、(1)ベース成分の脱保護反応等の極性変化反応及び架橋反応等が起こる。また、レジスト膜内における放射線の定在波の影響によりレジスト側壁が波打つことがあるが、加熱工程では反応物の拡散により上記波打ちを低減できる。
[Heating process]
In the heating step, the resist film after the entire surface irradiation step is heated (hereinafter also referred to as “post-flood exposure bake (PFEB)” or “post-exposure bake (PEB)”). The heating condition can be, for example, 50 ° C. or higher and 200 ° C. or lower and 10 seconds or longer and 300 seconds or shorter in an atmosphere of an inert gas such as nitrogen or argon. By setting the heating condition within the above range, acid diffusion can be controlled, and the processing speed of the semiconductor wafer tends to be ensured. In the heating step, the acid generated in the partial irradiation step and the entire irradiation step causes (1) a polarity change reaction such as a deprotection reaction of the base component and a crosslinking reaction. Further, although the resist side wall may be wavy due to the influence of the standing wave of radiation in the resist film, the waviness can be reduced by diffusion of reactants in the heating process.
[現像工程]
 現像工程では、上記加熱工程後のレジスト膜を現像する。上記加熱工程におけるレジスト膜内の反応により、一部照射部で選択的に現像液への溶解性が変わることを利用して現像し、レジストパターンが形成される。現像液はポジ型現像液とネガ型現像液とに分けることができる。
[Development process]
In the development step, the resist film after the heating step is developed. Development is performed by utilizing the fact that the solubility in the developing solution is selectively changed at a part of the irradiated portion due to the reaction in the resist film in the heating step, so that a resist pattern is formed. The developer can be divided into a positive developer and a negative developer.
 ポジ型現像液としてはアルカリ現像液が好ましい。アルカリ現像液は、放射線照射後のレジスト材料膜の極性が高い部分を選択的に溶かす。アルカリ現像液としては、例えば水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類(エタノールアミン等)、水酸化テトラアルキルアンモニウム(TAAH)等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液等が挙げられる。アルカリ現像液としてはTAAHの水溶液が好ましい。TAAHとしては、例えば水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。 An alkaline developer is preferable as the positive developer. The alkaline developer selectively dissolves the highly polar part of the resist material film after irradiation. Examples of the alkaline developer include alkaline such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines (ethanolamine, etc.), tetraalkylammonium hydroxide (TAAH), etc. Examples thereof include an alkaline aqueous solution in which at least one compound is dissolved. As the alkaline developer, an aqueous solution of TAAH is preferable. Examples of TAAH include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
 ポジ型現像液には水酸化テトラメチルアンモニウム(TMAH)の2.38質量%水溶液が広く用いられている。 A 2.38% by mass aqueous solution of tetramethylammonium hydroxide (TMAH) is widely used as a positive developer.
 アルカリ現像では、放射線照射後にレジスト膜中で生成するカルボン酸や水酸基がアルカリ現像液中でイオン化し溶け出す現象を利用してパターンが形成される。現像後は、基板上に残留している現像液を除去するために、リンスと呼ばれる水洗処理が行われる。 In alkali development, a pattern is formed by utilizing a phenomenon in which carboxylic acids and hydroxyl groups generated in a resist film after irradiation are ionized and dissolved in an alkali developer. After the development, in order to remove the developer remaining on the substrate, a water washing process called rinsing is performed.
 ネガ型現像液としては有機現像液が好ましい。有機現像液は、放射線照射後のレジスト膜の極性が低い部分を選択的に溶かす。有機現像液はホールやトレンチ(溝)などの抜きパターンで解像性能とプロセスウィンドウを向上するために用いられる。この場合、レジスト膜中の溶媒と有機現像液との親和性の違いで一部照射部と非一部照射部の溶解コントラストを得る。極性が高い部分は有機現像液への溶解性が低く、レジストパターンとして残る。有機現像液としては、例えば2-オクタノン、2-ノナノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-ヘキサノン、3-ヘキサノン、ジイソブチルケトン、メチルシクロヘキサノン、アセトフェノン、メチルアセトフェノン、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸ブテニル、酢酸イソアミル、蟻酸プロピル、蟻酸ブチル、蟻酸イソブチル、蟻酸アミル、蟻酸イソアミル、吉草酸メチル、ペンテン酸メチル、クロトン酸メチル、クロトン酸エチル、プロピオン酸メチル、プロピオン酸エチル、3-エトキシプロピオン酸エチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソブチル、乳酸アミル、乳酸イソアミル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、安息香酸メチル、安息香酸エチル、酢酸フェニル、酢酸ベンジル、フェニル酢酸メチル、蟻酸ベンジル、蟻酸フェニルエチル、3-フェニルプロピオン酸メチル、プロピオン酸ベンジル、フェニル酢酸エチル、酢酸2-フェニルエチル等が挙げられる。 The negative developer is preferably an organic developer. The organic developer selectively dissolves the low-polarity portion of the resist film after irradiation. The organic developer is used to improve the resolution performance and the process window by removing patterns such as holes and trenches. In this case, the dissolution contrast between the partially irradiated portion and the non-partially irradiated portion is obtained by the difference in affinity between the solvent in the resist film and the organic developer. The portion with high polarity has low solubility in an organic developer, and remains as a resist pattern. Examples of the organic developer include 2-octanone, 2-nonanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methylcyclohexanone, acetophenone, methyl acetophenone, propyl acetate, acetic acid Butyl, isobutyl acetate, amyl acetate, butenyl acetate, isoamyl acetate, propyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl valerate, methyl pentenoate, methyl crotonic acid, ethyl crotonic acid, methyl propionate, propionate Ethyl acetate, ethyl 3-ethoxypropionate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, isobutyl lactate, amyl lactate, isoamyl lactate, methyl 2-hydroxyisobutyrate, ethyl 2-hydroxyisobutyrate, Examples include methyl benzoate, ethyl benzoate, phenyl acetate, benzyl acetate, methyl phenylacetate, benzyl formate, phenylethyl formate, methyl 3-phenylpropionate, benzyl propionate, ethyl phenylacetate, 2-phenylethyl acetate, and the like. .
(基板パターンの形成)
 当該レジストパターン形成方法により形成されたレジストパターンをマスクとして下地である基板がエッチング又はイオン注入されることによって基板パターンが形成される。エッチングはプラズマ励起等の雰囲気下でのドライエッチングであってもよく、薬液中に浸漬するウェットエッチングであってもよい。エッチングにより基板にパターンが形成された後、レジストパターンが除去される。
(Substrate pattern formation)
Using the resist pattern formed by the resist pattern forming method as a mask, the base substrate is etched or ion-implanted to form a substrate pattern. The etching may be dry etching under an atmosphere such as plasma excitation, or may be wet etching immersed in a chemical solution. After the pattern is formed on the substrate by etching, the resist pattern is removed.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例における物性値の測定方法を以下に示す。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The measuring method of the physical property value in a present Example is shown below.
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体のMw及びMnは、GPCカラム(東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本)を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
[Weight average molecular weight (Mw) and number average molecular weight (Mn)]
Mw and Mn of the polymer used GPC columns (two "G2000HXL", one "G3000HXL", one "G4000HXL" from Tosoh Corporation), a flow rate of 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1. Measurement was performed by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard, using a differential refractometer as a detector under the analysis conditions of 0% by mass, sample injection amount 100 μL, and column temperature 40 ° C.
13C-NMR分析]
 重合体の構造単位の含有割合を求めるための13C-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-ECX400」)を使用し、測定溶媒としてCDClを用い、テトラメチルシラン(TMS)を内部標準として行った。
[ 13 C-NMR analysis]
The 13 C-NMR analysis for determining the content of the structural unit of the polymer uses a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.), uses CDCl 3 as a measurement solvent, and uses tetramethylsilane ( TMS) was performed as an internal standard.
<[P]重合体の合成>
 [P]重合体の合成に用いた単量体を以下に示す。
<Synthesis of [P] polymer>
The monomer used for the synthesis of [P] polymer is shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 なお、上記化合物(M-1)は構造単位(I)を、化合物(M-2)は構造単位(II)を、(M-3)は脱アセチル化により構造単位(III)を、化合物(M-4)は、構造単位(IV)をそれぞれ与える。なお、以下の重合体の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。 The compound (M-1) is the structural unit (I), the compound (M-2) is the structural unit (II), (M-3) is the deacetylated structural unit (III), and the compound ( M-4) gives structural units (IV), respectively. In the following polymer synthesis examples, unless otherwise specified, parts by mass means a value when the total mass of monomers used is 100 parts by mass, and mol% is the amount of monomers used. It means the value when the total number of moles is 100 mol%.
[合成例1](重合体(P1)の合成)
 反応容器中で、単量体としての化合物(M-1)及び化合物(M-2)を、モル比率が50/50となるように300質量部の2-ブタノンに溶解した。ここにラジカル重合開始剤としてのAIBN3質量部を添加し、30分窒素パージした。反応容器内を78℃とし、攪拌しながら、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をメタノール2,000質量部中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(P1)を良好な収率で得た。重合体(P1)のMwは7,000であり、Mw/Mnは2.10であった。13C-NMR分析の結果、(M-1)及び(M-2)に由来する各構造単位の含有割合は、それぞれ52モル%及び48モル%であった。
[Synthesis Example 1] (Synthesis of polymer (P1))
In the reaction vessel, the compound (M-1) and the compound (M-2) as monomers were dissolved in 300 parts by mass of 2-butanone so that the molar ratio was 50/50. Here, 3 parts by mass of AIBN as a radical polymerization initiator was added and purged with nitrogen for 30 minutes. The inside of the reaction vessel was brought to 78 ° C., and the polymerization reaction was carried out for 6 hours while stirring. After completion of the polymerization reaction, the polymerization solution was cooled with water and cooled to 30 ° C. or lower. The cooled polymerization solution was put into 2,000 parts by mass of methanol, and the precipitated white powder was filtered off. The filtered white powder was washed twice with methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (P1) with a good yield. Mw of the polymer (P1) was 7,000, and Mw / Mn was 2.10. As a result of 13 C-NMR analysis, the content of each structural unit derived from (M-1) and (M-2) was 52 mol% and 48 mol%, respectively.
[合成例2](重合体(P2)の合成)
 反応容器中で、単量体としての化合物(M-1)及び化合物(M-3)を、モル比率が44/56となるように、150質量部のプロピレングリコールモノメチルエーテルに溶解した。ここにラジカル重合開始剤としてのAIBN3質量部と、連鎖移動剤としてのt-ドデシルメルカプタン1質量部とを加えて単量体溶液を調製した。この単量体溶液を窒素雰囲気下、反応温度を70℃に保持して、16時間重合を行った。重合反応終了後、重合溶液をn-ヘキサン1,000質量部中に滴下して、重合体を凝固精製した。上記重合体に、プロピレングリコールモノメチルエーテル150質量部を加えた。さらに、メタノール150質量部、トリエチルアミン37質量部及び水7質量部を加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応終了後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150質量部に溶解した。これを水2,000質量部中に滴下して凝固させ、生成した白色粉末をろ別した。50℃で17時間乾燥させて白色粉末状の重合体(P2)を良好な収率で得た。重合体(P2)のMwは6,000であり、Mw/Mnは1.90であった。13C-NMR分析の結果、(M-1)に由来する構造単位及び(M-3)の脱アセチル化により得られたp-ヒドロキシスチレンに由来する構造単位の各含有割合は、それぞれ50モル%及び50モル%であった。
[Synthesis Example 2] (Synthesis of Polymer (P2))
In a reaction vessel, the compound (M-1) and the compound (M-3) as monomers were dissolved in 150 parts by mass of propylene glycol monomethyl ether so that the molar ratio was 44/56. A monomer solution was prepared by adding 3 parts by mass of AIBN as a radical polymerization initiator and 1 part by mass of t-dodecyl mercaptan as a chain transfer agent. This monomer solution was polymerized for 16 hours under a nitrogen atmosphere while maintaining the reaction temperature at 70 ° C. After completion of the polymerization reaction, the polymerization solution was dropped into 1,000 parts by mass of n-hexane to solidify and purify the polymer. To the above polymer, 150 parts by mass of propylene glycol monomethyl ether was added. Further, 150 parts by mass of methanol, 37 parts by mass of triethylamine and 7 parts by mass of water were added, and the hydrolysis reaction was performed for 8 hours while refluxing at the boiling point. After completion of the reaction, the solvent and triethylamine were distilled off under reduced pressure, and the resulting polymer was dissolved in 150 parts by mass of acetone. This was dropped into 2,000 parts by mass of water and solidified, and the produced white powder was filtered off. It was dried at 50 ° C. for 17 hours to obtain a white powdery polymer (P2) with a good yield. Mw of the polymer (P2) was 6,000, and Mw / Mn was 1.90. As a result of 13 C-NMR analysis, the content of each of the structural unit derived from (M-1) and the structural unit derived from p-hydroxystyrene obtained by deacetylation of (M-3) was 50 mol each. % And 50 mol%.
[合成例3](重合体(P3)の合成)
 反応容器中で、単量体としての化合物(M-1)、化合物(M-3)及び化合物(M-4)を、モル比率が40/40/20となるように、200質量部のプロピレングリコールモノメチルエーテルに溶解した。ここにラジカル重合開始剤としてのAIBN4質量部を加えて単量体溶液を調製した。別の反応容器にプロピレングリコールモノメチルエーテル100質量部を仕込み、反応温度を80℃に保持して、そこへ、上記調製した単量体溶液を3時間かけて滴下し、さらに3時間重合させた。重合終了後、重合反応液を水冷して30℃以下に冷却した。重合溶液をn-ヘキサン2,000質量部中に滴下して、重合体を凝固精製した。ろ別した固形分を400質量部ずつのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させた。上記重合体に、プロピレングリコールモノメチルエーテル100質量部を加えた。トリエチルアミン17.5質量部及び水2.8質量部を加えて、80℃に加熱して6時間加水分解反応を行った。反応終了後、加水分解終了後、反応液を水冷して30℃以下に冷却した。得られた重合体をヘキサン2,000質量部に投入し、析出した固形分をろ別した。ろ別した固形分を40質量部ずつのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させ重合体(P3)を良好な収率で得た。重合体(P3)のMwは7,500であり、Mw/Mnは1.52であった。13C-NMR分析の結果、(M-1)に由来する構造単位、(M-3)の脱アセチル化により得られたp-ヒドロキシスチレン構造単位及び(M-4)に由来する構造単位の各含有割合は、それぞれ40モル%、40モル%及び20モル%であった。
[Synthesis Example 3] (Synthesis of polymer (P3))
In a reaction vessel, compound (M-1), compound (M-3) and compound (M-4) as monomers were mixed with 200 parts by mass of propylene so that the molar ratio was 40/40/20. Dissolved in glycol monomethyl ether. A monomer solution was prepared by adding 4 parts by mass of AIBN as a radical polymerization initiator. In another reaction vessel, 100 parts by mass of propylene glycol monomethyl ether was charged, the reaction temperature was maintained at 80 ° C., and the monomer solution prepared above was dropped therein over 3 hours, and polymerization was further performed for 3 hours. After completion of the polymerization, the polymerization reaction liquid was cooled with water and cooled to 30 ° C. or lower. The polymer solution was dropped into 2,000 parts by mass of n-hexane to solidify and purify the polymer. The solid content after filtration was washed twice with 400 parts by mass of hexane, further filtered, and dried at 50 ° C. for 17 hours. To the above polymer, 100 parts by mass of propylene glycol monomethyl ether was added. 17.5 parts by mass of triethylamine and 2.8 parts by mass of water were added, and the mixture was heated to 80 ° C. and subjected to a hydrolysis reaction for 6 hours. After completion of the reaction and after completion of hydrolysis, the reaction solution was cooled with water and cooled to 30 ° C. or lower. The obtained polymer was added to 2,000 parts by mass of hexane, and the precipitated solid content was separated by filtration. The solid content separated by filtration was washed twice with 40 parts by mass of hexane, further filtered, and dried at 50 ° C. for 17 hours to obtain a polymer (P3) in good yield. Mw of the polymer (P3) was 7,500, and Mw / Mn was 1.52. As a result of 13 C-NMR analysis, structural units derived from (M-1), p-hydroxystyrene structural units obtained by deacetylation of (M-3), and structural units derived from (M-4) Each content rate was 40 mol%, 40 mol%, and 20 mol%, respectively.
 表1に、得られた重合体(P1)~(P3)のMw、Mw/Mn及び各構造単位の含有割合について示す。 Table 1 shows the Mw, Mw / Mn, and the content ratio of each structural unit of the obtained polymers (P1) to (P3).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記表1中の(M-3)の構造単位の含有割合は、(M-3)に由来する構造単位を脱アセチル化することにより得られたp-ヒドロキシスチレンに由来する構造単位としての含有割合を示す。 The content ratio of the structural unit (M-3) in Table 1 is the content as a structural unit derived from p-hydroxystyrene obtained by deacetylating the structural unit derived from (M-3). Indicates the percentage.
<[B]前駆体の合成>
[合成例4]
 反応容器に3,4-ジヒドロキシベンゾフェノン50mmol、2,2-ジメトキシプロパン50mmol、p-トルエンスルホン酸一水和物0.05g及びトルエン400gを加えた。Dean-Starkによる脱水加熱還流を3時間行った後、反応溶液を冷却した。一晩冷却後、析出した原料の3,4-ジヒドロキシベンゾフェノンをろ別除去後、ろ液にナトリウムメトキシドメタノール溶液(28質量%)を0.2g加えて中和した。この中和液を減圧濃縮後、アルミナカラムクロマトグラフィーによる精製を実施することで、下記式(B1)で表される化合物を得た。
<Synthesis of [B] precursor>
[Synthesis Example 4]
To the reaction vessel, 50 mmol of 3,4-dihydroxybenzophenone, 50 mmol of 2,2-dimethoxypropane, 0.05 g of p-toluenesulfonic acid monohydrate and 400 g of toluene were added. After dehydrating and refluxing with Dean-Stark for 3 hours, the reaction solution was cooled. After cooling overnight, the precipitated raw material 3,4-dihydroxybenzophenone was removed by filtration, and the filtrate was neutralized by adding 0.2 g of a sodium methoxide methanol solution (28% by mass). The neutralized solution was concentrated under reduced pressure and then purified by alumina column chromatography to obtain a compound represented by the following formula (B1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[合成例5]
 反応容器に3,4-ジヒドロキシベンゾフェノン79.7mmol、オルトギ酸トリメチル2,000mmol、p-トルエンスルホン酸一水和物0.1g及びトルエン40gを加えた。Dean-Starkによる脱水加熱還流を12時間行った後、反応溶液を冷却した。一晩冷却後、ろ液にナトリウムメトキシドメタノール溶液(28質量%)を0.2g加えて中和した。この中和液を減圧濃縮後、アルミナカラムクロマトグラフィーによる精製を実施することで、下記式(B2)で表される化合物を得た。
[Synthesis Example 5]
To the reaction vessel, 79.7 mmol of 3,4-dihydroxybenzophenone, 2,000 mmol of trimethyl orthoformate, 0.1 g of p-toluenesulfonic acid monohydrate and 40 g of toluene were added. After dehydrating and refluxing with Dean-Stark for 12 hours, the reaction solution was cooled. After cooling overnight, 0.2 g of sodium methoxide methanol solution (28% by mass) was added to the filtrate for neutralization. The neutralized solution was concentrated under reduced pressure, and then purified by alumina column chromatography to obtain a compound represented by the following formula (B2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[合成例6]
 Dean-Stark装置をセットした反応容器に4,4’-ジヒドロキシベンゾフェノン231mmol、エチレングリコール2,160mmol、オルトギ酸トリメチル913mmol及びp-トルエンスルホン酸一水和物0.5gを加えた。80℃で2時間加熱撹拌後、加熱温度を120℃まで徐々に上げていき、メタノール、ギ酸メチル、オルトギ酸トリメチルの留出が終了するまで留出液を除去しながら加熱を継続した。反応溶液を室温に冷却後、酢酸エチルで希釈し、有機相を5質量%の重曹水溶液で洗浄後、有機相を減圧濃縮した。得られた濃縮物に80mLの塩化メチレンを加えて結晶化させ、得られた結晶をろ別し、この結晶を5℃に冷却した塩化メチレンで洗浄することで、下記式(B3)で表される化合物を得た。
[Synthesis Example 6]
To a reaction vessel equipped with a Dean-Stark apparatus, 231 mmol of 4,4′-dihydroxybenzophenone, 2,160 mmol of ethylene glycol, 913 mmol of trimethyl orthoformate and 0.5 g of p-toluenesulfonic acid monohydrate were added. After heating and stirring at 80 ° C. for 2 hours, the heating temperature was gradually raised to 120 ° C., and heating was continued while removing the distillate until distillation of methanol, methyl formate and trimethyl orthoformate was completed. The reaction solution was cooled to room temperature, diluted with ethyl acetate, the organic phase was washed with a 5% by mass aqueous sodium bicarbonate solution, and the organic phase was concentrated under reduced pressure. The resulting concentrate is crystallized by adding 80 mL of methylene chloride, and the resulting crystals are filtered off and washed with methylene chloride cooled to 5 ° C., and expressed by the following formula (B3). A compound was obtained.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<増感剤のスクリーニング評価>
[増感剤スクリーニング用レジスト材料の調製]
 増感剤のスクリーニングを行うためのレジスト材料を調製した。調製に用いた[P]重合体以外の成分について以下に示す。
<Screening evaluation of sensitizer>
[Preparation of resist material for sensitizer screening]
A resist material for screening a sensitizer was prepared. Components other than the [P] polymer used for the preparation are shown below.
((A)増感剤)
 A1及びA2並びにCA1~CA4:下記式(A1)及び(A2)並びに(CA1)~(CA4)で表される化合物
((A) sensitizer)
A1 and A2 and CA1 to CA4: compounds represented by the following formulas (A1) and (A2) and (CA1) to (CA4)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
([C]感放射線性酸発生剤)
 C1:下記式(C1)で表される化合物
([C] radiation sensitive acid generator)
C1: Compound represented by the following formula (C1)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
([D]酸拡散制御剤)
 D1:下記式(D1)で表される化合物
([D] acid diffusion controller)
D1: Compound represented by the following formula (D1)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
([E]溶媒)
 E1:酢酸プロピレングリコールモノメチルエーテル
 E2:乳酸エチル
([E] solvent)
E1: Propylene glycol monomethyl ether acetate E2: Ethyl lactate
[調製例1]
 [P]重合体としての(P3)100質量部、(A)増感剤としての(A1)10質量部、[C]感放射線性酸発生剤としての(C1)20質量部、[D]酸拡散制御剤としての(D1)0.3質量部並びに[E]溶媒としての(E1)4,300質量部及び(E2)1,900質量部を混合した。得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、増感剤スクリーニング用レジスト材料(S-1)を調製した。
[Preparation Example 1]
[P] 100 parts by mass of (P3) as a polymer, (A) 10 parts by mass of (A1) as a sensitizer, [C] 20 parts by mass of (C1) as a radiation-sensitive acid generator, [D] 0.3 parts by mass of (D1) as an acid diffusion controller and 4,300 parts by mass of (E1) as a solvent [E] and 1,900 parts by mass of (E2) were mixed. The obtained mixed solution was filtered through a membrane filter having a pore size of 0.20 μm to prepare a resist material (S-1) for sensitizer screening.
[調製例2~7]
 下記表2に示す(A)増感剤の種類及び量に変えた以外は、調製例1と同様にして、レジスト材料(S-2)及び(CS-1)~(CS-5)を調製した。表2中の「-」は、該当する成分を用いなかったことを示す。
[Preparation Examples 2 to 7]
Resist materials (S-2) and (CS-1) to (CS-5) were prepared in the same manner as in Preparation Example 1, except that the type and amount of (A) sensitizer shown in Table 2 were changed. did. “-” In Table 2 indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
[増感剤スクリーニング評価]
 東京エレクトロン社の「クリーントラックACT-8」内で、シリコンウェハ上に上記調製したレジスト材料をスピンコートした後、130℃、60秒の条件でPBを行い、平均厚み50nmのレジスト膜を形成した。次に、このレジスト膜に、i線ステッパー(ニコン社の「NSR2205i12D」)を用いてレジスト膜にi線を0.5cm四方の領域に1,000mJ/cmで照射した。i線の照射後、上記クリーントラックACT-8内で、110℃、60秒の条件でPEBを行い、次いで上記クリーントラックACT-8内で、2.38質量%水酸化テトラメチルアンモニウム(TMAH)水溶液を用い、23℃で1分間、パドル法により現像した。現像後、純水での水洗及び乾燥によりポジ型レジストパターンを形成した。この処理後、i線照射部における膜厚を確認し、残膜が0、すなわち解像ができているものをA(良好)とし、解像ができていなかったものをB(不良)とした。評価結果を下記表3に示す。この試験において、A(良好)であったものについては、増感剤がi線を吸収して励起され、この励起体から感放射線性酸発生剤へとエネルギー又は電子移動が効率的に起こり、感放射線性酸発生剤から酸が発生し、次いで重合体の脱保護反応が進行したものと推測される。
[Sensitizer screening evaluation]
In the “Clean Track ACT-8” of Tokyo Electron, the resist material prepared above was spin-coated on a silicon wafer, and then PB was performed at 130 ° C. for 60 seconds to form a resist film having an average thickness of 50 nm. . Next, this resist film was irradiated with i-line at an area of 0.5 cm square at 1,000 mJ / cm 2 using an i-line stepper (“NSR2205i12D” manufactured by Nikon Corporation). After i-ray irradiation, PEB was performed in the clean track ACT-8 at 110 ° C. for 60 seconds, and then 2.38 mass% tetramethylammonium hydroxide (TMAH) in the clean track ACT-8. Development was performed by the paddle method at 23 ° C. for 1 minute using an aqueous solution. After development, a positive resist pattern was formed by washing with pure water and drying. After this treatment, the film thickness in the i-ray irradiated part was confirmed, and the residual film was 0, that is, the resolution was A (good), and the resolution was not B (defect). . The evaluation results are shown in Table 3 below. In this test, for those that were A (good), the sensitizer was excited by absorbing i-rays, and energy or electron transfer from the exciter to the radiation-sensitive acid generator efficiently occurred, It is presumed that acid was generated from the radiation-sensitive acid generator, and then the deprotection reaction of the polymer proceeded.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
<化学増幅型レジスト材料の調製>
 上記増感剤のスクリーニング評価において効果が見られた(A)増感剤を与える[B]前駆体を用いて、化学増幅型レジスト材料を調製した。なお、比較例のレジスト材料には、上記レジスト材料(CS-4)で用いた増感剤(CA4)の前駆体であるベンゾフェノンジメチルケタール(東京化成工業社)(下記表3において「CB1」とした)を用いた。
<Preparation of chemically amplified resist material>
A chemically amplified resist material was prepared using the [B] precursor that provides (A) a sensitizer that was effective in screening evaluation of the sensitizer. In addition, the resist material of the comparative example includes benzophenone dimethyl ketal (Tokyo Chemical Industry Co., Ltd.), which is a precursor of the sensitizer (CA4) used in the resist material (CS-4) (“CB1” in Table 3 below). Was used.
[実施例1]
 [P]重合体としての(P3)100質量部、[B]前駆体としての(B1)10質量部、[C]感放射線性酸発生剤としての(C1)20質量部、[D]酸拡散制御剤としての(D1)2.0質量部並びに[E]溶媒としての(E1)4,300質量部及び(E2)1,900質量部を混合した。得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、化学増幅型レジスト材料(R-1)を調製した。
[Example 1]
[P] 100 parts by mass of (P3) as a polymer, 10 parts by mass of (B1) as a [B] precursor, [C] 20 parts by mass of (C1) as a radiation sensitive acid generator, [D] acid 2.0 parts by mass of (D1) as a diffusion control agent and 4,300 parts by mass of (E1) as a solvent [E] and 1,900 parts by mass of (E2) were mixed. The obtained mixed solution was filtered through a membrane filter having a pore size of 0.20 μm to prepare a chemically amplified resist material (R-1).
[実施例2及び3並びに比較例1及び2]
 下記表4に示す[B]前駆体の種類及び量に変えた以外は、実施例1と同様にして、化学増幅型レジスト材料(R-2)及び(R-3)並びに(CR-1)及び(CR-2)を調製した。表4における「-」は、該当する成分を用いなかったことを示す。
[Examples 2 and 3 and Comparative Examples 1 and 2]
Chemically amplified resist materials (R-2) and (R-3) and (CR-1) were the same as in Example 1 except that the types and amounts of the [B] precursors shown in Table 4 were changed. And (CR-2) were prepared. “-” In Table 4 indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<評価>
 東京エレクトロン社の「クリーントラックACT-8」内で、シリコンウェハ上に上記調製した化学増幅型レジスト材料をスピンコートした後、130℃、60秒の条件でPBを行い、平均厚み50nmのレジスト膜を形成した。簡易型の電子線描画装置(日立製作所社の「HL800D」、出力50KeV、電流密度5.0A/cm)を用いてレジスト膜に電子線を照射し、パターニングを行った。パターニング方法としては、0.5cm四方の領域に所定の露光量を照射する操作を、1μC/cm~50μC/cmまで、1μm/cm刻みで合計50点行った。電子線の照射後、続いて以下の(1)及び(2)の操作それぞれを行い、評価を行った。
<Evaluation>
Within the “Clean Track ACT-8” of Tokyo Electron, the chemically amplified resist material prepared above was spin-coated on a silicon wafer, and then PB was performed at 130 ° C. for 60 seconds to obtain a resist film having an average thickness of 50 nm. Formed. Patterning was performed by irradiating the resist film with an electron beam using a simple electron beam drawing apparatus (“HL800D” manufactured by Hitachi, Ltd., output 50 KeV, current density 5.0 A / cm 2 ). The patterning method, an operation of irradiating a predetermined exposure amount 0.5cm square area, until 1μC / cm 2 ~ 50μC / cm 2, was carried out a total of 50 points at 1 [mu] m / cm 2 increments. After the electron beam irradiation, the following operations (1) and (2) were subsequently performed for evaluation.
(操作(1):全面照射なし)
 電子線の照射後、上記クリーントラックACT-8内で、110℃、60秒の条件でPEBを行い、次いで上記クリーントラックACT-8内で、2.38質量%TMAH水溶液を用い、23℃で1分間、パドル法により現像した。現像後、純水での水洗及び乾燥によりポジ型レジストパターンを形成した。
(Operation (1): No full irradiation)
After the electron beam irradiation, PEB was performed in the clean track ACT-8 at 110 ° C. for 60 seconds, and then in the clean track ACT-8 using a 2.38 mass% TMAH aqueous solution at 23 ° C. Developed by paddle method for 1 minute. After development, a positive resist pattern was formed by washing with pure water and drying.
(操作(2):全面照射あり)
 電子線の照射後、浜松ホトニクス社のLED(波長365nm)を用い、レジスト膜の全面を2,000mJ/cmで露光した。次いで、上記クリーントラックACT-8内で、110℃、60秒の条件でPEBを行った。その後、上記操作(1)と同様にして現像、水洗及び乾燥を行い、ポジ型レジストパターンを形成した。
(Operation (2): With full surface irradiation)
After the electron beam irradiation, the entire surface of the resist film was exposed at 2,000 mJ / cm 2 using an LED (wavelength 365 nm) manufactured by Hamamatsu Photonics. Next, PEB was performed in the clean track ACT-8 at 110 ° C. for 60 seconds. Thereafter, development, washing and drying were carried out in the same manner as in the above operation (1) to form a positive resist pattern.
 上記形成したポジ型レジストパターンについて、操作(1)で行った場合の膜厚が0となる電子線露光量をE1(μC/cm)とし、操作(2)で行った場合の膜厚が0となる電子線露光量をE2(μC/cm)としたときに、(E2/E1)<0.8となった場合をA(増感効果有り)、(E2/E1)≧0.8となった場合をB(増感効果が小さい若しくは増感効果なし)と評価した。評価結果を下記表5に示す。 With respect to the positive resist pattern thus formed, the electron beam exposure amount at which the film thickness when it is performed in operation (1) is 0 is E1 (μC / cm 2 ), and the film thickness when it is performed in operation (2). When E2 (μC / cm 2 ) is 0 when the electron beam exposure dose is 0, A (sensitization effect) is obtained when (E2 / E1) <0.8, and (E2 / E1) ≧ 0. The case of 8 was evaluated as B (small sensitizing effect or no sensitizing effect). The evaluation results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表5の結果から、i線露光のスクリーニング評価で365nmの照射に対して増感効果があると認められた増感剤の前駆体を用いた場合にのみ、電子線露光による感放射線性酸発生剤からの酸発生で前駆体が増感剤へと変換し、これに引き続く365nmの光の全面照射により増感効果で感放射線性酸発生剤の分解がより促進され、その結果、小さい電子線露光量での重合体の脱保護、解像が実現できたものと推測される。 From the results in Table 5, generation of radiation-sensitive acid by electron beam exposure only when a precursor of a sensitizer recognized as having a sensitizing effect on irradiation at 365 nm by screening evaluation of i-line exposure was used. The precursor is converted into a sensitizer by the generation of acid from the agent, and the subsequent irradiation with 365 nm light further promotes the decomposition of the radiation-sensitive acid generator due to the sensitization effect. As a result, a small electron beam It is presumed that deprotection and resolution of the polymer can be realized at the exposure amount.
 本発明によれば、EUV光、電子線、イオンビーム、KrFエキシマレーザー、ArFエキシマレーザー等の250nm以下の波長を有する放射線を利用したパターン形成技術において、高い感度と優れたリソグラフィー特性の両方を高水準に達成可能な化学増幅型レジスト材料が提供される。また、本発明によれば、上記レジスト材料を用いたパターン形成方法が提供される。 According to the present invention, in pattern formation technology using radiation having a wavelength of 250 nm or less, such as EUV light, electron beam, ion beam, KrF excimer laser, ArF excimer laser, etc., both high sensitivity and excellent lithography characteristics are enhanced. There is provided a chemically amplified resist material that can achieve the standard. Moreover, according to this invention, the pattern formation method using the said resist material is provided.

Claims (9)

  1.  感光性樹脂組成物を使用して形成されたレジスト膜の一部に、250nm以下の波長を有する第1放射線を照射する工程と、
     上記一部照射工程後のレジスト膜の全面に、250nmを超える波長を有する第2放射線を照射する工程と、
     上記全面照射工程後のレジスト膜を加熱する工程と、
     上記加熱工程後のレジスト膜を現像液により現像する工程と
     を備えるリソグラフィープロセスにおいて、上記感光性樹脂組成物として使用される化学増幅型レジスト材料であって、
     (1)酸の作用により上記現像液に可溶又は不溶となるベース成分と、
     (2)放射線照射により感放射線性増感体及び酸を発生する成分と
    を含み、
     上記(2)成分が、下記(a)及び(b)成分、下記(b)及び(c)成分、又は下記(a)~(c)成分の全てを含有し、
     上記(b)成分が、酸の作用により分解し下記式(A)で表される化合物を生じる前駆体を含む化学増幅型レジスト材料。
    (a)上記第1放射線の照射によって、酸と、上記第2放射線を吸収する感放射線性増感体とを発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸及び感放射線性増感体が実質的に発生しない感放射線性酸-増感体発生剤
    (b)上記第1放射線の照射によって、第2放射線を吸収する感放射線性増感体を発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記感放射線性増感体が実質的に発生しない感放射線性増感体発生剤
    (c)上記第1放射線の照射によって、酸を発生し、かつ上記一部照射工程で第1放射線が照射されない非照射部では、第2放射線の照射により上記酸が実質的に発生しない感放射線性酸発生剤
    Figure JPOXMLDOC01-appb-C000001
    (式(A)中、R~Rは、それぞれ独立して、水素原子、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であり、R~Rは、それぞれ独立して、水素原子、ヒドロキシ基、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であるか、又はR~R及びR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。但し、R~Rのうち少なくとも1つはヒドロキシ基である。)
    Irradiating a part of a resist film formed using the photosensitive resin composition with a first radiation having a wavelength of 250 nm or less;
    Irradiating the entire surface of the resist film after the partial irradiation step with a second radiation having a wavelength of more than 250 nm;
    Heating the resist film after the entire surface irradiation step;
    In a lithography process comprising a step of developing the resist film after the heating step with a developer, a chemically amplified resist material used as the photosensitive resin composition,
    (1) a base component that becomes soluble or insoluble in the developer by the action of an acid;
    (2) a component that generates a radiation-sensitive sensitizer and an acid upon irradiation,
    The component (2) contains the following components (a) and (b), the following components (b) and (c), or the following components (a) to (c):
    A chemically amplified resist material comprising a precursor in which the component (b) is decomposed by the action of an acid to yield a compound represented by the following formula (A).
    (A) In the non-irradiation part that generates the acid and the radiation-sensitive sensitizer that absorbs the second radiation by the irradiation of the first radiation and is not irradiated with the first radiation in the partial irradiation step, Radiation-sensitive acid-sensitizer generator that does not substantially generate the acid and radiation-sensitive sensitizer upon irradiation with the second radiation (b) Radiation-sensitive that absorbs the second radiation upon irradiation with the first radiation In the non-irradiated part that generates the photosensitizer and is not irradiated with the first radiation in the partial irradiation step, the radiation-sensitive sensitizer is not substantially generated by the irradiation of the second radiation. Body generator (c) In the non-irradiated part where the first radiation is not irradiated with the first radiation and the acid is substantially generated by the second radiation. Does not cause radiation sensitive acid generator
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (A), R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms, and R 1 to R 6 Each independently represents a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R a to R d and R 1 to R 6 . 2 or more of them are part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which they are bonded to each other, provided that at least one of R 1 to R 6 is a hydroxy group .)
  2.  (1)酸の作用により現像液に可溶又は不溶となるベース成分と、
     (2)放射線照射により感放射線性増感体及び酸を発生する成分と
    を含み、
     上記(2)成分が、下記(a)及び(b)成分、下記(b)及び(c)成分、又は下記(a)~(c)成分のすべてを含有し、
     上記(b)成分が、酸の作用により分解し下記式(A)で表される化合物を生じる前駆体を含む化学増幅型レジスト材料。
    (a)250nm以下の波長を有する第1放射線の照射によって、酸と、250nmを超える波長を有する第2放射線を吸収する感放射線性増感体とを発生し、かつ第1放射線を照射せず第2放射線のみを照射した場合に上記酸及び感放射線性増感体を実質的に発生しない感放射線性酸-増感体発生剤
    (b)上記第1放射線の照射によって、上記第2放射線を吸収する感放射線性増感体を発生し、かつ第1放射線を照射せず第2放射線のみを照射した場合に上記感放射線性増感体を実質的に発生しない感放射線性増感体発生剤
    (c)上記第1放射線の照射によって、酸を発生し、かつ第1放射線を照射せず第2放射線のみを照射した場合に上記酸を実質的に発生しない感放射線性酸発生剤
    Figure JPOXMLDOC01-appb-C000002
    (式(A)中、R~Rは、それぞれ独立して、水素原子、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であり、R~Rは、それぞれ独立して、水素原子、ヒドロキシ基、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であるか、又はR~R及びR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。但し、R~Rのうち少なくとも1つはヒドロキシ基である。)
    (1) a base component that is soluble or insoluble in a developer by the action of an acid;
    (2) a component that generates a radiation-sensitive sensitizer and an acid upon irradiation,
    The above component (2) contains the following components (a) and (b), the following components (b) and (c), or the following components (a) to (c):
    A chemically amplified resist material comprising a precursor in which the component (b) is decomposed by the action of an acid to yield a compound represented by the following formula (A).
    (A) Irradiation of the first radiation having a wavelength of 250 nm or less generates an acid and a radiation-sensitive sensitizer that absorbs the second radiation having a wavelength exceeding 250 nm, and the first radiation is not irradiated. Radiation-sensitive acid-sensitizer generating agent that does not substantially generate the acid and radiation-sensitive sensitizer when irradiated only with the second radiation (b) The second radiation is irradiated by the irradiation of the first radiation. A radiation-sensitive sensitizer that generates a radiation-sensitive sensitizer to be absorbed and that does not substantially generate the radiation-sensitive sensitizer when only the second radiation is irradiated without irradiation with the first radiation. (C) A radiation-sensitive acid generator that generates an acid upon irradiation with the first radiation and does not substantially generate the acid when only the second radiation is irradiated without irradiation with the first radiation.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (A), R a to R d are each independently a hydrogen atom, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms, and R 1 to R 6 Each independently represents a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R a to R d and R 1 to R 6 . 2 or more of them are part of a ring structure having 4 to 20 ring members constituted with a carbon chain to which they are bonded to each other, provided that at least one of R 1 to R 6 is a hydroxy group .)
  3.  上記式(A)におけるR~Rのうちの少なくとも2つがヒドロキシ基である請求項1又は請求項2に記載の化学増幅型レジスト材料。 3. The chemically amplified resist material according to claim 1, wherein at least two of R 1 to R 6 in the formula (A) are hydroxy groups.
  4.  上記式(A)におけるRがヒドロキシ基である請求項1、請求項2又は請求項3に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to claim 1, wherein R 2 in the formula (A) is a hydroxy group.
  5.  上記前駆体が、下記式(B-1)~(B-4)で表される請求項4に記載の化学増幅型レジスト材料。
    Figure JPOXMLDOC01-appb-C000003
    (式(B-1)~(B-4)中、R~Rは、それぞれ独立して、水素原子、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であり、R~Rは、それぞれ独立して、水素原子、ヒドロキシ基、アミノ基、スルファニル基、ハロゲン原子又は炭素数1~20の1価の有機基であるか、又はR~R及びR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部である。R及びRは、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合するO-C-Oと共に構成される環員数4~20の環構造の一部である。R及びRは、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の環構造の一部である。)
    The chemically amplified resist material according to claim 4, wherein the precursor is represented by the following formulas (B-1) to (B-4).
    Figure JPOXMLDOC01-appb-C000003
    (In the formulas (B-1) to (B-4), R a to R d each independently represents a hydrogen atom, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms. R 1 to R 6 are each independently a hydrogen atom, a hydroxy group, an amino group, a sulfanyl group, a halogen atom, or a monovalent organic group having 1 to 20 carbon atoms, or R a to R 6 d and two or more of R 1 to R 6 are part of a ring structure having 4 to 20 ring members formed together with the carbon chain to which they are bonded to each other, and R A and R B are each independently A part of a ring structure having 4 to 20 ring members, which is a monovalent organic group having 1 to 20 carbon atoms, or O—C—O in which these groups are combined with each other. R C and R D are each independently 1 to 20 carbon atoms. Or a part of a ring structure of 3 to 20 ring members composed of these groups together with the carbon atoms to which they are attached.)
  6.  上記(1)成分が、酸の作用により現像液への溶解性が変化する重合体である請求項1から請求項5のいずれか1項に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to any one of claims 1 to 5, wherein the component (1) is a polymer whose solubility in a developer is changed by the action of an acid.
  7.  上記(2)成分として、(c)感放射線性酸発生剤を含む請求項1から請求項6のいずれか1項に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to any one of claims 1 to 6, comprising (c) a radiation-sensitive acid generator as the component (2).
  8.  上記(2)成分として、酸を発生する基を有する重合体を含む請求項1から請求項6のいずれか1項に記載の化学増幅型レジスト材料。 The chemically amplified resist material according to any one of claims 1 to 6, comprising a polymer having an acid-generating group as the component (2).
  9.  請求項1から請求項8のいずれか1項に記載の化学増幅型レジスト材料を基板上に塗工する工程と、
     上記塗工工程により形成されたレジスト膜の一部に250nm以下の波長を有する放射線を照射する工程と、
     上記一部照射工程後のレジスト膜の全面に250nmを超える波長を有する放射線を照射する工程と、
     上記全面照射工程後のレジスト膜を加熱する工程と、
     上記加熱工程後のレジスト膜を現像する工程と
     を備えるレジストパターン形成方法。
    Applying the chemically amplified resist material according to any one of claims 1 to 8 on a substrate;
    Irradiating a part of the resist film formed by the coating process with radiation having a wavelength of 250 nm or less;
    Irradiating the entire surface of the resist film after the partial irradiation step with radiation having a wavelength of more than 250 nm;
    Heating the resist film after the entire surface irradiation step;
    And a step of developing the resist film after the heating step.
PCT/JP2018/008774 2017-03-28 2018-03-07 Chemically amplified resist material and method for forming resist pattern WO2018180308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197031266A KR20190129992A (en) 2017-03-28 2018-03-07 Chemically Amplified Resist Materials and Methods of Forming Resist Patterns
JP2019509120A JPWO2018180308A1 (en) 2017-03-28 2018-03-07 Chemically amplified resist material and resist pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062461 2017-03-28
JP2017-062461 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180308A1 true WO2018180308A1 (en) 2018-10-04

Family

ID=63677076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008774 WO2018180308A1 (en) 2017-03-28 2018-03-07 Chemically amplified resist material and method for forming resist pattern

Country Status (3)

Country Link
JP (1) JPWO2018180308A1 (en)
KR (1) KR20190129992A (en)
WO (1) WO2018180308A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061831A (en) * 2013-09-05 2015-04-02 東洋合成工業株式会社 Chemical species generation improver
JP2015134904A (en) * 2013-11-18 2015-07-27 東洋合成工業株式会社 Compound for enhancing generation of chemical species
JP2015172741A (en) * 2014-02-21 2015-10-01 東京エレクトロン株式会社 Photosensitization chemical amplification type resist material, pattern formation method using the same, semiconductor device, mask for lithography and template for nano imprint
WO2016133073A1 (en) * 2015-02-18 2016-08-25 東洋合成工業株式会社 Compound, composition containing the compound, and method of manufacturing device using same
JP2016539201A (en) * 2013-10-02 2016-12-15 東洋合成工業株式会社 Chemical species generation improvement agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174894A (en) 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd Positive type resist composition for electron beam or x- ray

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061831A (en) * 2013-09-05 2015-04-02 東洋合成工業株式会社 Chemical species generation improver
JP2016539201A (en) * 2013-10-02 2016-12-15 東洋合成工業株式会社 Chemical species generation improvement agent
JP2015134904A (en) * 2013-11-18 2015-07-27 東洋合成工業株式会社 Compound for enhancing generation of chemical species
JP2015172741A (en) * 2014-02-21 2015-10-01 東京エレクトロン株式会社 Photosensitization chemical amplification type resist material, pattern formation method using the same, semiconductor device, mask for lithography and template for nano imprint
WO2016133073A1 (en) * 2015-02-18 2016-08-25 東洋合成工業株式会社 Compound, composition containing the compound, and method of manufacturing device using same

Also Published As

Publication number Publication date
JPWO2018180308A1 (en) 2020-02-06
KR20190129992A (en) 2019-11-20

Similar Documents

Publication Publication Date Title
KR102482292B1 (en) Radiation-sensitive composition and resist pattern formation method
JP6613217B2 (en) Photoacid generator, photoresist containing the photoacid generator, and coated article containing the same
JP7140100B2 (en) Radiation-Sensitive Resin Composition, Resist Pattern Forming Method, and Acid Diffusion Control Agent
WO2020066824A1 (en) Actinic light-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device manufacturing method
JP6536207B2 (en) Polymer compound, chemically amplified positive resist material and pattern formation method
JP2019120759A (en) Resist composition and resist pattern forming method
JP6705303B2 (en) Radiation-sensitive resin composition and resist pattern forming method
KR20120053471A (en) Photosensitive copolymer and photoresist composition
JPWO2018180070A1 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device manufacturing method
JP2021004931A (en) Resist composition and resist pattern forming method
WO2019167737A1 (en) Active-ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and method for manufacturing electronic device
JP7220229B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
TW202112845A (en) Radiation-sensitive resin composition, resist pattern formation method, and radiation-sensitive acid generator
JP2023090803A (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device manufacturing method
JP6773794B2 (en) Actinic light-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, manufacturing method of electronic device
JP6485298B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP7336018B2 (en) Pattern forming method, electronic device manufacturing method, and actinic ray- or radiation-sensitive resin composition
JP7124094B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
JPWO2018008300A1 (en) Negative resist pattern forming method and method of manufacturing electronic device
WO2019194018A1 (en) Resist pattern formation method and chemically amplified resist material
WO2018180308A1 (en) Chemically amplified resist material and method for forming resist pattern
WO2021157354A1 (en) Radiation-sensitive resin composition and method for forming resist pattern
US20210318613A9 (en) Radiation-sensitive resin composition and resist pattern-forming method
JP6642345B2 (en) Resist material and pattern forming method
KR102049120B1 (en) Resist composition, method of forming resist pattern and compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031266

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18775193

Country of ref document: EP

Kind code of ref document: A1