WO2018180269A1 - Optical element and manufacturing method for optical element - Google Patents

Optical element and manufacturing method for optical element Download PDF

Info

Publication number
WO2018180269A1
WO2018180269A1 PCT/JP2018/008493 JP2018008493W WO2018180269A1 WO 2018180269 A1 WO2018180269 A1 WO 2018180269A1 JP 2018008493 W JP2018008493 W JP 2018008493W WO 2018180269 A1 WO2018180269 A1 WO 2018180269A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light
optical
optical filter
adhesive layer
Prior art date
Application number
PCT/JP2018/008493
Other languages
French (fr)
Japanese (ja)
Inventor
剛守 若林
大井 好晴
本間 雅彦
正宙 南舘
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019509098A priority Critical patent/JPWO2018180269A1/en
Priority to CN201880020783.6A priority patent/CN110462458A/en
Publication of WO2018180269A1 publication Critical patent/WO2018180269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors

Definitions

  • the present invention relates to an optical element and a method for manufacturing the optical element.
  • an image pickup apparatus equipped with a solid-state image pickup device such as a CCD or a CMOS image sensor has been further reduced in size and functionality.
  • a solid-state image pickup device such as a CCD or a CMOS image sensor
  • the size can be reduced by using a deflection element such as a prism that bends light.
  • Patent Document 1 includes a prism that bends light transmitted through an imaging lens group, and a cover glass that transmits light bent by the prism, and includes an exit surface of the prism that emits light, and an incident surface of the cover glass. Describes an imaging apparatus using an optical component bonded with an optically transparent adhesive.
  • the present invention provides an optical element that integrates a deflecting element that bends light and an optical filter and that is easy to manufacture with little light loss, and an optical element in which the deflecting element and the optical filter are integrated by an adhesive layer.
  • the object is to provide a manufacturing method.
  • the optical element of the present invention selectively deflects light that deflects incident light and emits light in at least a part of the region from the ultraviolet region to the near infrared region that is located on the incident side or the emission side of the deflection element.
  • the refractive index of the member having the maximum layer thickness among the members included in the optical filter is n F , the relationship of the following expressions (1) and (2) is satisfied.
  • ⁇ n GF
  • ⁇ n PG
  • the optical element manufacturing method of the present invention includes a deflection element that deflects and emits incident light, and light in at least a part of the region from the ultraviolet region to the near infrared region that is located on the incident side or the emission side of the deflection element.
  • ⁇ 0.5 and ⁇ n PG
  • a step of producing a precursor, and said optics In the case where the optical element is used as a child precursor, the composition layer for forming the adhesive layer is cured by irradiating light in the ultraviolet region from the side which becomes the incident side when the optical element is used or the side which becomes the outgoing side when the optical element is used. Including a step of forming an adhesive layer.
  • an optical element that integrates a deflecting element that bends light and an optical filter and that is easy to manufacture with little optical loss. Further, according to the present invention, it is possible to provide a method for easily manufacturing an optical element in which a deflection element and an optical filter are integrated by an adhesive layer.
  • the optical element of the present invention is disposed and used immediately before the light receiving surface of a solid-state image pickup element, it is advantageous for downsizing of the image pickup apparatus.
  • FIG. 9B is a plan view of the optical element shown in FIG. 9A. It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film. It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film. It is a perspective view which shows the modification of the optical element of embodiment which has a light shielding film. It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film.
  • FIG. 13B is a plan view of the optical element shown in FIG. 13A. It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film.
  • FIG. 14B is a plan view of the optical element shown in FIG. 14A. It is sectional drawing which shows the optical element of a manufacture example.
  • UV ultraviolet light or ultraviolet light
  • NIR near infrared light or near infrared light
  • refractive index means a refractive index with respect to light having a wavelength of 589 nm.
  • “Curable material” refers to an uncured material that is cured by heating or light irradiation to become a cured material, and “cured material” is obtained by curing the curable material by heating or light irradiation. This refers to the cured product.
  • “to” representing a numerical range includes upper and lower limits.
  • the “incident side” of an optical element refers to a side where light enters the optical element from the light entering direction along the optical axis of the imaging device or the like when used.
  • the “emission side” of the optical element refers to a side on which light incident from the incident side of the optical element is deflected and emitted in a predetermined direction, for example, the direction of the element that receives the emitted light.
  • FIG. 1 is a cross-sectional view showing an example of the optical element of the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing an example of an imaging apparatus including the optical element of the present embodiment shown in FIG.
  • An optical element 10 shown in FIG. 1 selectively deflects incident light and deflects and emits light in at least a part of the region from the ultraviolet region to the near infrared region located on the exit side of the deflecting element 1.
  • An optical filter 2 to be blocked, and an adhesive layer 3 that is located between the deflection element 1 and the optical filter 2 and that integrates the deflection element 1 and the optical filter 2 are provided.
  • the optical filter 2 is located on the exit side of the deflecting element 1, but in the optical element of the present invention, the optical filter 2 may be located on the incident side of the deflecting element 1.
  • the optical element 10 is arranged in the order of the optical filter 2, the adhesive layer 3, and the deflection element 1 from the light incident side.
  • a direction in which light is emitted from the deflection element 1 is defined as a Z-axis direction, and two directions perpendicular to the Z-axis direction and perpendicular to each other are defined as an X-axis direction (a direction perpendicular to the paper surface).
  • the Y-axis direction (direction parallel to the paper surface) is defined.
  • the Z-axis direction is referred to as the “Z direction”.
  • the X direction, the Y direction, and the Z direction are the same as those shown in FIG. 1 and 2 are YZ sectional views.
  • the refractive index of the deflecting element 1 is n P
  • the refractive index of the adhesive layer 3 is n G
  • the member having the largest layer thickness among the members included in the optical filter 2 (hereinafter referred to as “thickest member”).
  • n GF
  • ⁇ n PG
  • the refractive index of the deflecting element is also referred to as “refractive index n P ”
  • the refractive index of the adhesive layer is also referred to as “refractive index n G ”
  • the refractive index of the thickest member included in the optical filter is also referred to as “refractive index n F ”.
  • the deflection element 1 is a right-angle prism, and has an incident surface 1a on which light is incident, a reflecting surface 1b that reflects incident light, and an emitting surface 1c that emits reflected light.
  • the adhesive layer 3 and the optical filter 2 each have two main surfaces parallel to the emission surface 1 c of the deflection element 1.
  • One of the two main surfaces of the adhesive layer 3 is a main surface in contact with the output surface 1c of the deflecting element 1, and is an incident surface 3a on which light emitted from the deflecting element 1 is incident, and the other emits the light. This is the exit surface 3b.
  • One of the two main surfaces of the optical filter 2 is a main surface in contact with the output surface 3b of the adhesive layer 3, and is an incident surface 2a on which light emitted from the adhesive layer 3 enters, and the other emits the light. This is the emission surface 2b.
  • the light is incident on the incident surface 1 a of the deflecting element 1 from the Y direction, deflected by reflection on the reflecting surface 1 b of the deflecting element 1, and then emitted from the emitting surface 1 c of the deflecting element 1 in the Z direction.
  • the light passes through the adhesive layer 3 and the optical filter 2 and is emitted from the emission surface 2 b of the optical filter 2 in the Z direction.
  • the optical element of the present embodiment combines the functions of the deflection element and the optical filter by integrating the deflection element and the optical filter using the adhesive layer as described above. That is, in the optical element of the present embodiment, the light incident from the incident surface is deflected, and at least a part of the light from the ultraviolet region to the near infrared region is selectively blocked and emitted. Thus, according to the optical element of the present embodiment, it is possible to reduce the size of the imaging apparatus. Furthermore, since the relationship between the refractive indexes of the deflecting element, the adhesive layer, and the optical filter satisfies the expressions (1) and (2), the optical loss of the optical element of the present embodiment is small.
  • FIG. 2 shows a configuration example of an imaging apparatus 100 having an objective lens 5, an object-side prism 6, an imaging lens group 8 (comprising lenses 81, 82, and 83), a lens moving mechanism 7, an optical element 10, and a solid-state imaging element 4. It is.
  • Incident light from the Z direction taken into the objective lens 5 is deflected in the Y direction by the reflecting surface of the object side prism 6, passes through the imaging lens group 8, and enters the optical element 10.
  • the light emitted from the optical element 10 enters the light receiving surface 41 of the solid-state image sensor 4 and is converted into an electrical signal.
  • the thickness of the imaging device 100 in the Z direction is reduced.
  • the imaging lens group 8 can be thinned by moving a part of the imaging lens group 8 in the Y direction by using a lens moving mechanism 7 such as a stepping motor, thereby providing a zoom lens function and a focus adjustment function.
  • a lens moving mechanism 7 such as a stepping motor
  • the optical element 10 is arranged so that incident light from the Y direction is deflected in the Z direction by the deflecting element 1 and emitted.
  • the optical element 10 may be arranged so as to be rotated by 90 ° about the Y direction as a rotation axis, and thereby the incident light from the Y direction is deflected in the X direction and emitted. it can.
  • the F number changes according to the aperture stop diameter.
  • the brightness changes.
  • ⁇ Deflection element> a right-angle prism is illustrated as the deflecting element 1.
  • incident light is deflected and emitted, and the expression (2) is expressed in relation to the refractive index with the adhesive layer.
  • n P refractive index
  • the deflection element include a diffraction element and a prism.
  • the diffractive element include a blazed reflection diffraction grating and a volume hologram diffractive element having a saw-shaped cross section.
  • the prism include a triangular prism and a free-form surface prism having a non-planar reflecting surface.
  • the blazed reflective diffraction grating exhibits a function as a deflecting element having high + 1st order diffraction efficiency at a predetermined diffraction angle, for example, by adjusting the grating material and the blazed shape.
  • a prism is preferable from the viewpoint of stably processing a high-precision optical reflecting surface, and a triangular prism is more preferable.
  • the angle formed by the incident surface and the output surface is 90 ° in the cross section of the YZ plane, and the angle formed by the incident surface and the reflective surface (for example, indicated by ⁇ in FIG. 3).
  • the angle between the reflecting surface and the exit surface is in the range of 40 to 50 °
  • the cross section of the YZ plane is an isosceles right triangle.
  • FIG. 3 is a schematic diagram showing the relationship between the incident angle ⁇ 0 and the outgoing angle ⁇ of light in the optical element 10 shown in FIG.
  • the deflection element 1 is a triangular prism having a YZ plane cross section with a right isosceles triangle and extending in the X direction, that is, a right angle prism (hereinafter, the deflection element 1 is also referred to as a right angle prism 1).
  • the angle between the incident surface 1a and the reflecting surface 1b of the right-angle prism 1 and the angle between the emitting surface 1c and the reflecting surface 1b are both 45 °.
  • the angle formed by the incident surface 1a and the reflecting surface 1b is denoted by ⁇
  • the angle formed by the emitting surface 1c and the reflecting surface 1b is denoted by ⁇ .
  • the description of the right-angle prism 1 when these angles are described as ⁇ and ⁇ , the description can be generalized to a triangular prism as it is.
  • the light incident at an incident angle theta 0 to the incident surface 1a of the light of the rectangular prism 1 having a refractive index n P is refracted by the internal prism propagates in refraction angle theta 'incident surface 1a, the reflection surface 1b is reached.
  • the angle formed by the incident surface 1a and the reflecting surface 1b is ⁇ , and the incident angle to the reflecting surface 1b is ( ⁇ ′).
  • n P ⁇ sin ( ⁇ ′) ⁇ 1 it is necessary to satisfy n P ⁇ sin ( ⁇ ′) ⁇ 1 in order for the incident light on the reflecting surface 1b to be deflected to the emitting surface 1c by total reflection. That is, the refractive index n P of the right-angle prism 1, it is necessary to satisfy the following relation.
  • FIG. 4 shows that total reflection is possible if the region is above the straight line indicating the relationship between the incident angle ⁇ m and the refractive index n P.
  • the light totally reflected by the reflection surface 1b of the right-angle prism 1 reaches the emission surface 1c.
  • the angle formed by the exit surface 1c and the reflection surface 1b is ⁇ , and the incident angle to the exit surface 1c is ( ⁇ + ⁇ ′).
  • n P 1.50 to 1.98
  • the light totally reflected by the reflecting surface 1b has a refractive index n G of the adhesive layer 3 described below in the range of 1.35 to 1.80 and a refractive index n F of the optical filter 2 of 1.35 to 2.50.
  • n G refractive index of the adhesive layer 3
  • the reflective layer examples include a metal film such as Ag or Al, a high refractive index dielectric film (hereinafter referred to as “high refractive index film”) and a low refractive index dielectric film (hereinafter referred to as “low refractive index”).
  • a dielectric multilayer film or the like in which films are referred to may be used.
  • the prism having a reflective layer formed on the reflective surface there is an advantage that an inexpensive prism material can be used as compared with the case of using a prism capable of total reflection on the reflective surface.
  • the process of forming the reflective layer becomes a load, and the reflectance is less than 100%, which is disadvantageous in terms of productivity and performance.
  • the deflecting element 1 includes a configuration including a prism and a reflective layer.
  • Deflecting element is made of a material having a refractive index n P satisfying formula (2) in relation to the refractive index of the adhesive layer.
  • Refractive index n P of the material used for the deflection element preferably 1.4 to 2.5.
  • the refractive index n P is preferably 1.70 or more, more preferably 1.75 or more, and 1.80 or more from the viewpoint that the larger the maximum capture angle, the smaller the F-number bright imaging lens. Is more preferable.
  • a reflective layer may be provided on the reflective surface when n P is 1.55 or less and the maximum incident angle ⁇ m is 8 ° or more. Even when a reflective layer is provided, the refractive index n P is the refractive index of the prism material.
  • the upper limit of n P is composition, from the viewpoint of the difference between the refractive index n G of the adhesive layer can be 0.5 or less, 2.1 is preferred, 2.0 is more preferable.
  • glass having the n P, resin and the like, glass being preferred.
  • the deflection element in addition to the refractive index n P, depending on the type of adhesive layer and the optical filter, there are cases where UV permeability is required.
  • the adhesive layer described below includes an ultraviolet curable material obtained by using an ultraviolet curable material, and the optical filter has a function of blocking UV, the deflecting element has UV transparency. It is good to have.
  • the light transmission of the deflection element refers to the light transmission in the relationship between the incident light and the light that is deflected and emitted after the incidence.
  • the wavelength of UV for which the deflection element is required to transmit is generally in the range of 250 to 400 nm depending on the ultraviolet curable material used for the adhesive layer.
  • a wavelength in the vicinity of i-line (365 nm) where the emission intensity of the HgXe discharge lamp is high is preferably used.
  • the maximum transmittance at a wavelength of 340 to 390 nm is preferably 10% or more, and more preferably 50% or more.
  • the transmittance of the deflecting element with respect to 365 nm light is preferably 5% or more, more preferably 20% or more, and further preferably 50% or more. Higher transmittance is more advantageous for shortening the UV irradiation time, preferably 70% or more, and more preferably 80% or more.
  • the deflection element may transmit visible light.
  • Any of the glass of 1.70 ⁇ n P described above has an internal transmittance of UV wavelength 365 nm of 10% or more and an internal transmittance in the visible region of 420 nm to 700 nm of 92% or more. Can be used as material.
  • the three corners in the YZ cross section are right angles or acute angles, so that chipping is performed. And easily cause cracks. Therefore, it is preferable to chamfer these corners.
  • the triangular prism 11 used in the optical element of the present embodiment illustrated in FIG. 5 is obtained by chamfering the three corners in the YZ section of the right-angle prism 1 shown in FIG.
  • the triangular prism 11 includes a W1 surface having a width w1 at a corner where the incident surface 1a and the reflecting surface 1b intersect, a W2 surface having a width w2 at a corner where the reflecting surface 1b and the emitting surface 1c intersect, and the incident surface 1a.
  • the W1 surface, the W2 surface, and the C surface are chamfered portions.
  • the occurrence of chipping and cracks can be reduced by having a chamfered portion obtained by chamfering the corner portion.
  • the chamfering process is performed within a range where the signal light effective width ⁇ in of the incident surface 1a of the triangular prism 11 and the signal light effective width ⁇ out of the output surface 1c can be secured.
  • the reflected light path deviation angle on the reflecting surface is larger than the refracted optical path deviation angle on the transmission refracting surface having the same inclination angle deviation, and thus is required for the reflecting surface.
  • the surface accuracy is about 2 to 4 times that of the transmission refractive surface. Therefore, the flatness of the reflecting surface 1b of the triangular prism 11 is related to the wavefront aberration that affects the resolution of the imaging device, and the rigidity of the prism material used, the film formation stress on the light incident surface 1a, and the light exit surface 1c, and bonding. Depends on the adhesive layer.
  • an antireflection layer or a reflection layer may be formed on the incident surface 1a and the exit surface 1c of the triangular prism 11 as described later, and film stress is generated at that time.
  • the difference in thermal expansion coefficient (when a thermosetting material is used for forming the adhesive layer) or polymerization shrinkage Residual stress is generated due to (when a thermosetting material or a photocurable material is used for forming the adhesive layer). Due to the influence of these stresses, if the chamfer widths w1 and w2 are narrow, the flatness of the end portion of the reflecting surface 1b of the triangular prism 11 may not be ensured.
  • an optical element using the triangular prism 11 is used in, for example, an imaging apparatus as shown in FIG. 2, there is a possibility that the aberration of the imaging lens system is deteriorated and the resolution of the imaging apparatus is lowered. .
  • the chamfering widths w1 and w2 at the chamfered portion are preferably independently 0.1 mm or more, and more preferably 0.2 mm or more.
  • the chamfer widths w1 and w2 are preferably independently 0.4 mm or less.
  • the chamfer width c is preferably about 0.05 to 0.2 mm.
  • the W1 surface, W2 surface, and C surface, which are the chamfered portions shown in FIG. 5, are preferably diffusing surfaces that prevent light incident on this surface from becoming stray light, similarly to the side surfaces of the deflecting element described later. Further, it is more preferable that a light absorption / shielding film is provided on these surfaces.
  • the adhesive layer 3 is provided between the deflection element 1 and the optical filter 2 and has a function of bonding and integrating the two.
  • the adhesive layer 3 is transparent to light having a predetermined wavelength to be transmitted by the optical element 10, for example, light in a wavelength range that the solid-state imaging device receives as signal light, and has an expression in relation to the refractive index with the optical filter 2.
  • Any adhesive layer having a refractive index n G that satisfies (1) and satisfies the formula (2) in relation to the refractive index with the deflecting element 1 can be used without particular limitation.
  • the constituent material of the adhesive layer preferably includes a thermosetting material or a photo-curing material.
  • a thermosetting material or a photo-curing material As the photocurable material, an ultraviolet curable material is preferable.
  • a thermosetting material or a photo-curing material that fixes and solidifies by polymerization by heating or irradiation with light such as ultraviolet rays, in other words, is used. Can be used.
  • the photocurable material completes the polymerization and solidification in a short time and has high productivity.
  • the photo-curable material is advantageous when a member having low heat resistance is included because other members constituting the optical element are not easily affected by heat during curing.
  • an ultraviolet curable material is preferable, and when an ultraviolet curable material is used, it is preferable to add a photopolymerization initiator.
  • the light irradiation wavelength and the polymerization sensitivity for the ultraviolet curable material depend on the type of the ultraviolet curable material or the type of the photopolymerization initiator.
  • an ultraviolet curable material when an ultraviolet curable material is used, light in the wavelength range of 250 to 400 nm is used as irradiation light, and light in the vicinity of i-line (365 nm) where the emission intensity of the HgXe discharge lamp is high is often used.
  • thermosetting material for example, EPO-TEK epoxy resin, # 301, # 301-2, # 310M-1, etc.
  • the photocurable material include, for example, an ultraviolet curable material, a mercaptoester resin from Norland-Products, an epoxy resin from NOA60 series and NTT-AT, AT3925M, 3727E, an acrylate resin, # 18165, # 6205. Etc. can be used.
  • the adhesive layer 3 is a layer containing a cured material obtained by curing a curable material that is cured by light and / or heat. If necessary, the adhesive layer 3 is within a range that does not impair the effects of the present invention, and various additives made of non-cured materials in addition to the cured material, for example, UV absorbers, NIR absorbers and other absorbents, polymerization initiators, A polymerization inhibitor may be included.
  • Refractive index n G of the adhesive layer 3 satisfies the formula (1) in relation to the refractive index of the optical filter 2, and the refractive index of the relationship between the deflection element 1 satisfying the formula (2) refractive index n G It is.
  • the refractive index n G of the adhesive layer 3 depends on the deflecting element 1 and the optical filter 2 to be combined, but specifically, it is preferably 1.35 to 1.80, more preferably 1.45 to 1.65. If n G is 1.35 or more, it is preferable in that the thickest member included in the optical filter 2 can use inexpensive and abundant kinds of materials with a refractive index n F , and if it is 1.80 or less, the refractive index n. Since the difference in refractive index between P and refractive index n F can be suppressed, it is preferable in that Fresnel reflection at each interface is small.
  • the adhesive layer 3 is transparent to light of a predetermined wavelength that the optical element 10 should transmit. Although it depends on the optical device in which the optical element is used, it is generally preferable that it exhibits high transparency to at least visible light.
  • the thickness of the adhesive layer 3 is preferably 1 to 20 ⁇ m and more preferably 2 to 10 ⁇ m from the viewpoint of transparency, adhesive strength, productivity, and the like.
  • the deflecting element 1 or the optical filter 2 needs to be a material that transmits UV for the following manufacturing reasons.
  • the optical element 10 of FIG. 1 first, the optical element in which the adhesive layer 3 in the optical element 10 is a layer made of an adhesive layer forming composition containing an ultraviolet curable material for obtaining the adhesive layer 3. A precursor is prepared. Next, the UV curable material in the layer made of the composition for forming the adhesive layer is cured by irradiating UV from the deflecting element 1 side or the optical filter 2 side of the optical element precursor to form the adhesive layer 3.
  • a UV reflecting layer is formed on the deflecting element 1
  • a UV absorber containing layer or a UV reflecting layer is formed on the optical filter 2, and the like.
  • the adhesive layer can receive UV incident from the deflecting element side of the optical element or incident from the optical filter side of the optical element.
  • the optical element is configured so as to be able to receive UV.
  • the adhesive layer there may be a member having UV blocking properties on both the deflection element side and the optical filter side of the adhesive layer. It is preferable that no member having UV blocking properties be present on one side, and a configuration in which a sufficient amount of UV can reach the adhesive layer from the deflecting element side is preferable.
  • the value described for the deflection element can be applied to the UV transmittance of the deflection element or the optical filter.
  • the optical filter in the optical element of the present invention is an optical filter that selectively blocks light in at least a part of the region from the ultraviolet region to the near infrared region, and the refractive index n F of the thickest member included in the optical filter.
  • the optical filter examples include an optical filter that selectively blocks both (i) UV and (ii) light in at least a part of the region from the visible region to the near infrared region.
  • the deflecting element preferably has UV transparency.
  • the maximum transmittance at a wavelength of 340 to 390 nm is 10% or more. Preferably there is.
  • optical filters include (i) UV and (ii-1) blocking NIR and transmitting visible light, and (i) UV and (ii-2) blocking visible light. And an NIR transmission filter that transmits NIR. Further, (i) UV and (ii-3) block light in the first region in the near infrared region, and visible light and light in the second region on the longer wavelength side than the first region in the near infrared region. A band-pass filter that transmits light is also included.
  • These optical filters have (i) UV blocking properties such as, for example, blocking properties with an average UV transmittance of 300 to 400 nm being preferably 10% or less, and more preferably 2% or less.
  • the NIR blocking property of the NIR cut filter is preferably a blocking property such that the average transmittance of NIR having a wavelength of 700 to 1100 nm is 5% or less, and more preferably 2% or less.
  • the visible light transmittance in the NIR cut filter for example, the average transmittance of visible light having a wavelength of 440 to 620 nm is preferably 80% or more, and more preferably 90% or more.
  • the visible light blocking property of the NIR transmission filter is preferably, for example, a blocking property in which the average transmittance of visible light having a wavelength of 400 to 730 nm is 5% or less, and more preferably 2% or less.
  • the NIR transmittance in the NIR transmission filter for example, it is preferable that the NIR wavelength has a continuous wavelength region of 40 nm or more with a transmittance of 80% or more between NIR wavelengths of 800 to 1000 nm, and preferably has a wavelength region of 80 nm or more.
  • the blocking property of blocking the light in the first region in the near-infrared region of the band-pass filter has a second wavelength which is longer than the first region at the NIR wavelength of 700 to 1100 nm.
  • the average transmittance of NIR in the first region excluding the continuous transmission wavelength band in the region is preferably 5% or less, and more preferably 2% or less.
  • the NIR transmittance of the second region on the longer wavelength side of the first region in the band pass filter for example, continuous 40 nm or more and 80 nm with a transmittance of 80% or more between NIR wavelengths 800 to 1000 nm. It may have the following wavelength range, and preferably has a wavelength range of 40 nm or more and 60 nm or less.
  • the visible light transmittance in the band-pass filter is preferably the same visible light transmittance as (ii-1).
  • 6A to 6C which are specific structures of the optical filter having selective light blocking properties, are YZ cross-sectional views respectively showing the optical filters 2A, 2B, and 2C used in the optical element of the present embodiment.
  • the optical filters 2A, 2B and 2C can be used in place of the optical filter 2 of the optical element 10 shown in FIG. 1, for example.
  • the left side shows the incident surface 2a in contact with the adhesive layer 3, and the right side shows the outgoing surface 2b in contact with the atmosphere.
  • the shape of the absorption-type substrate 21 is a parallel plate shape having a pair of main surfaces facing each other, and light is blocked by absorption.
  • the thickest member included in the optical filter is the absorption substrate 21, and the refractive index n F of the optical filter 2 ⁇ / b> A is the refractive index of the absorption substrate 21.
  • the absorbing substrate 21 examples include an absorbing glass substrate or a resin substrate containing a resin and an absorbing dye (hereinafter referred to as “absorbing resin substrate”).
  • the thickness of the absorption substrate 21 is preferably 20 ⁇ m or more, although it depends on the configuration. In the case of an absorption type glass substrate, the thickness is preferably 50 to 500 ⁇ m, and in the case of an absorption type resin substrate, the thickness is preferably 20 to 200 ⁇ m.
  • the absorption glass substrate is obtained by forming absorption glass into a parallel plate shape.
  • the absorption type glass include fluorophosphate glass containing CuO, phosphate glass containing CuO, and the like.
  • the fluorophosphate glass containing CuO and the phosphate glass containing CuO are collectively referred to as “CuO-containing glass”.
  • CuO-containing glass typically has an ability to absorb NIR having a wavelength of 700 to 1100 nm.
  • the absorption ability in the near infrared region can be adjusted by adjusting the CuO content and thickness.
  • CuO-containing glass containing one or more of Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc. is a short wavelength side in the ultraviolet region, For example, it has an absorption characteristic at a wavelength of 300 nm or less.
  • the refractive index of the absorption type glass substrate is preferably 1.40 to 1.75, more preferably 1.45 to 1.60, as the refractive index of the CuO-containing glass.
  • the absorbing resin substrate is a substrate in which the absorbing dye is uniformly dissolved or dispersed in the resin.
  • the resin is a matrix component for forming a parallel plate shape, and a transparent resin is preferable.
  • the absorbing dye a dye that selectively absorbs light having a cutoff wavelength required for the optical filter 2 is used. Specific examples include a dye that selectively absorbs light in at least a part of the region from the ultraviolet region to the near infrared region, and a UV absorbing dye that selectively absorbs light in the wavelength region corresponding to the above (i). And any one of the absorbing dyes that selectively absorb light in the wavelength regions corresponding to the above (ii-1), (ii-2), and (ii-3), respectively.
  • the absorption wavelength band and the light absorption characteristics can be adjusted by selecting the absorption dye and adjusting the concentration and thickness.
  • the refractive index of the absorptive resin substrate depends on the refractive index of the resin that is the matrix component.
  • the refractive index of the absorptive resin substrate is preferably 1.35 to 1.75, more preferably 1.45 to 1.60.
  • the optical filter 2B shown in FIG. 6B includes a parallel plate-shaped substrate 21B having a pair of opposing main surfaces, and an absorption layer 22 formed on one main surface of the substrate 21B.
  • the main surface that is not in contact with the absorption layer 22 of the substrate 21B is the incident surface 2a that is in contact with the adhesive layer 3
  • the main surface that is not in contact with the substrate 21B of the absorption layer 22 is the emission surface 2b that is in contact with the atmosphere.
  • the absorption layer 22 is formed on the main surface opposite to the adhesive layer 3 side of the substrate 21B.
  • the optical filter 2 used in the optical element 10 may have a configuration having the absorption layer 22 on the adhesive layer 3 side of the substrate 21B.
  • the absorbing layer 22 is formed on the main surface opposite to the adhesive layer 3 side of the substrate 21B from the viewpoint that the closer to the light receiving surface of the solid-state imaging device, the reflected light tends to be stray light that affects image quality degradation.
  • the optical filter 2B is preferable.
  • the substrate 21B may be the same absorption substrate as the absorption substrate 21 in the optical filter 2A, or may be a transparent substrate having no absorption from the ultraviolet region to the near infrared region.
  • the transparent substrate include transparent glass, crystal such as crystal, lithium niobate, and sapphire, chemically tempered glass obtained by chemically strengthening soda lime glass, crystallized glass, or a substrate made of a transparent resin. These thicknesses can be the same as those of the absorption glass substrate and the absorption resin substrate, respectively.
  • the absorption layer 22 has a thickness of about 1 to 50 ⁇ m as described below, and is thinner than the substrate 21B. Therefore, in the optical filter 2B, the thickest member included in the optical filter is the substrate 21B.
  • the refractive index n F of the optical filter 2B is the refractive index of the substrate 21B.
  • the refractive index of the substrate 21B is preferably 1.40 to 1.75, and preferably 1.45 to 1.60, as in the case where the absorption substrate 21 is an absorption glass substrate.
  • the substrate 21B is a transparent resin substrate or an absorption resin substrate, it is preferably 1.35 to 1.75, and preferably 1.45 to 1.60, as in the case where the absorption substrate 21 is an absorption resin substrate.
  • the absorbing layer 22 is a layer in which the absorbing dye is uniformly dissolved or dispersed in the resin.
  • the resin and the absorbing dye can be the same as those of the absorbing resin substrate. Since the absorption layer 22 can be formed on the substrate 21B by a method such as wet coating, for example, the absorption layer 22 can be thinned, whereas the absorption resin substrate maintains its shape by itself and has a corresponding thickness. Is different.
  • the absorption layer 22 is thinner than the substrate 21B, preferably 1 to 50 ⁇ m, more preferably 2 to 20 ⁇ m.
  • the resin used for the absorption layer 22 is preferably a transparent resin.
  • the absorbing dye include a dye that can selectively absorb at least a part of light ranging from the ultraviolet region to the near infrared region when the absorption layer 22 containing the substrate and the substrate 21B are combined to form the optical filter 2B. .
  • a UV-absorbing dye that selectively absorbs light in a wavelength region corresponding to (i) above, and a wavelength region corresponding to each of (ii-1), (ii-2), and (ii-3) above Absorption dyes that selectively absorb the light.
  • the absorption dye when the absorption layer 22 and the substrate 21B are combined into the optical filter 2B, the absorption dye that can exhibit the absorption and transmission characteristics of the NIR cut filter, the NIR transmission filter, or the band transmission filter is used alone. Or a combination of two or more.
  • a plurality of absorbing layers containing different absorbing dyes may be sequentially formed on the substrate 21B to form the laminated absorbing layer 22.
  • An optical filter 2C shown in FIG. 6C is formed on a parallel plate-shaped substrate 21C having a pair of main surfaces facing each other, an absorption layer 22 formed on one main surface of the substrate 21C, and the other main surface.
  • the reflective layer 23 is made of.
  • the main surface that is not in contact with the substrate 21C of the reflective layer 23 is the incident surface 2a that is in contact with the adhesive layer 3
  • the main surface that is not in contact with the substrate 21C of the absorption layer 22 is the emission surface 2b that is in contact with the atmosphere. .
  • the reflective layer 23 is formed on the main surface of the substrate 21C on the adhesive layer 3 side, and the absorption layer 22 is formed on the main surface on the opposite side.
  • the optical filter 2 used in the optical element 10 may have a configuration in which the absorption layer 22 is provided on the adhesive layer 3 side of the substrate 21C and the reflection layer 23 is provided on the opposite side. Further, the optical filter 2 may have a configuration in which the absorption layer 22 and the reflective layer 23 are laminated in that order on the main surface of the substrate 21C on the adhesive layer 3 side or on the main surface on the opposite side.
  • the substrate 21C has the reflective layer 23 on the adhesive layer 3 side, and the opposite side is the absorbing layer 22.
  • the optical filter 2C having
  • the substrate 21C can be the same as the substrate 21B in the optical filter 2B.
  • the absorption layer 22 is the optical filter 2C, except that the absorption dye to be used is appropriately selected so that the blocking characteristics required for the optical filter 2 can be obtained together with the absorption characteristics of the substrate 21C and the reflection characteristics of the reflection layer 23.
  • the refractive index n F of the optical filter 2C is the refractive index of the substrate 21C.
  • the reflection layer 23 is a layer having a reflection wavelength band that selectively reflects light in at least a part of the region from the ultraviolet region to the near infrared region.
  • the reflective layer 23 preferably has a reflection characteristic that exhibits the absorption transmission characteristic of the NIR cut filter, the NIR transmission filter, or the band transmission filter by functioning in a complementary manner with the substrate 21 ⁇ / b> C and the absorption layer 22.
  • the reflective layer 23 preferably has a reflection characteristic that blocks a part of light in the ultraviolet region. In that case, it is preferable to have UV blocking properties such that the average transmittance at a wavelength of 350 to 400 nm is 10% or less, and preferably 2% or less.
  • the reflective layer 23 is preferably composed of a dielectric multilayer film in which low refractive index films and high refractive index films are alternately laminated.
  • the dielectric multilayer film may be configured to include a metal film as necessary.
  • the dielectric multilayer film is designed by using a conventionally known method for the specific number of layers and film thickness, and the refractive index of the high refractive index material and low refractive index material to be used according to the required optical characteristics. Can be manufactured.
  • the reflective layer 23 is a dielectric multilayer film
  • the total film thickness is preferably 1 to 10 ⁇ m, and more preferably 2 to 6 ⁇ m.
  • Various members such as an absorption type glass substrate, an absorption type resin substrate, a transparent substrate, an absorption layer, a reflection layer, and constituent materials included in the configuration of the optical filters 2A, 2B, and 2C and the constituent materials thereof are, for example, Is exemplified.
  • the optical filter 2 is not limited to the configuration of the optical filters 2A, 2B, and 2C, and may be configured according to the gist of the present invention. It can be changed as appropriate.
  • the optical filter 2 may be composed of the substrate 21B and the reflective layer 23 formed on one or both of the main surfaces thereof.
  • the absorption layer 22 may be formed on both main surfaces of the substrate 21B.
  • R
  • 2 / (n1 + n2) 2 That is, if ⁇ n
  • , R ⁇ n 2 / (n1 + n2) 2 , R> 0.09 / (n1 + n2) 2 when ⁇ n> 0.3, and R> 0 when ⁇ n> 0.2. 0.04 / (n1 + n2) 2 and ⁇ n> 0.1, R> 0.01 / (n1 + n2) 2 .
  • Expression is defined in the optical element of the present invention (1) is a graph showing the relation between the refractive index n F the refractive index n G, Equation (2) shows the relationship between refractive index n G and the refractive index n P.
  • the refractive index n F the refractive index n G can be replaced by n1 and n2
  • the refractive index n P and the refractive index n G can be replaced by n1 and n2.
  • n G + n F and n P + n G are required to be 2.6 or more from the viewpoint of an actual optical material having a transmission wavelength region within a wavelength range of 350 to 1100 nm.
  • FIG. 7 shows the result of calculating the reflectance R [%] by adapting this to n1 + n2.
  • FIG. 7 is a graph showing the relationship between the refractive index sum (n1 + n2) and the reflectance R [%] at optical interfaces having different refractive indexes (n1, n2).
  • ⁇ n GF and ⁇ n PG are preferably 0.3 or less, more preferably 0.2 or less, and particularly preferably 0.1 or less.
  • an antireflection layer may be formed at the interface between the adhesive layer and the optical filter in order to reduce Fresnel reflection.
  • [Delta] n PG may form an anti-reflection layer at the interface of the adhesive layer and likewise deflecting element in the case of 0.2-0.5. Since it is difficult to form the antireflection layer on the adhesive layer, the antireflection layer is preferably formed on the surface in contact with the adhesive layer of the optical filter or the surface in contact with the adhesive layer of the deflection element.
  • the relational expression of the reflectance R is for the case of normal incidence, but if the incident angle is 30 ° or less, the difference from the reflectance for normal incidence is slight.
  • the optical element of the present invention has an antireflection layer at the interface between the deflecting element and the adhesive layer and at the interface between the adhesive layer and the optical filter under the refractive index relationship of the expressions (1) and (2). May be.
  • the optical element may have an antireflection layer on a surface in contact with the atmosphere.
  • An antireflection layer may be provided in one place among these, may be provided in two places, and may be provided in all the places. In particular, when the reflectance of the reflected light generated at these interfaces is 1% or more, it is preferable to form an antireflection layer to reduce the reflectance to 0.5% or less.
  • FIG. 8 is an example of an optical element further including an antireflection layer in the optical element of the present embodiment.
  • An optical element 10A shown in FIG. 8 includes an antireflection layer on the incident surface 1a that is an interface with the air of the deflection element 1, in addition to the deflection element 1, the adhesive layer 3, and the optical filter 2 in the optical element 10 shown in FIG. 12a, the antireflection layer 12b on the exit surface 1c which is the interface in contact with the adhesive layer 3 of the deflecting element 1, the antireflection layer 13a on the entrance surface 2a which is the interface in contact with the adhesive layer 3 of the optical filter 2, and the air of the optical filter 2
  • the antireflection layer 13b is provided on the emission surface 2b which is the interface with the.
  • the antireflection layer 12a taking into account the range of the incident angle of light, is designed in accordance with the refractive index n P of the deflecting elements 1, a dielectric multilayer film formed by alternately laminating a low refractive index film and the high refractive index film An antireflective layer consisting of can be used.
  • the antireflection layer 12b an anti-reflection layer comprising a single layer dielectric film having a thickness d c the refractive index n c, specifically, by using the antireflection layer satisfies the following two formulas, deflection
  • the reflectance R at the interface between the element 1 and the adhesive layer 3 can be reduced.
  • ⁇ c corresponds to the center wavelength of the light required for the light emitted from the optical element 10A, for example, the center wavelength of the incident signal light detected by the solid-state image sensor 4 in the imaging apparatus 100 shown in FIG.
  • ⁇ S the wavelength of the light required for the light emitted from the optical element 10A
  • ⁇ L the longest wavelength of the incident signal light detected by the solid-state image sensor 4 in the imaging apparatus 100 shown in FIG.
  • the antireflection layer 12b may be a dielectric multilayer film in the same manner as the antireflection layer 12a.
  • the antireflection layer 13a is provided according to the value of ⁇ n GF in the same manner as the antireflection layer 12b is provided according to the value of ⁇ n PG .
  • ⁇ n GF is 0.1 or less, the antireflection layer 13a may not be provided.
  • ⁇ n PG 0.2 to 0.5, R ⁇ 1.0% depending on the refractive index value.
  • An antireflection layer 13a may be provided.
  • the antireflective layer 13a like the anti-reflection layer 12b, the film thickness d antireflection layer or reflectance made of a single layer dielectric film c R was designed to reduce the refractive index n c An antireflection layer made of a dielectric multilayer film is used.
  • the antireflection layer 13b is formed to reduce reflection at the interface between the optical filter 2 and air.
  • a dielectric multilayer film in which low refractive index films and high refractive index films are alternately laminated may be used.
  • the optical filter 2 may be, for example, the optical filter 2A, 2B, or 2C shown in FIGS. 6A to 6C.
  • an anti-reflection layer including a dielectric multilayer film which is designed in accordance with the refractive index n F of the absorption-type substrate 21 can be used.
  • an antireflection layer made of a dielectric multilayer film designed according to the refractive index of the absorption layer 22 can be used as the antireflection layer 13b.
  • the optical filter has a function of selectively blocking light in at least a part of the region from the ultraviolet region to the near infrared region.
  • the optical filter selectively selects, for example, (i) UV and (ii-1) NIR, (ii-2) visible light, or (ii-3) light in the first region in the near infrared region. It has a function to shut off.
  • the optical element of the present invention may have a configuration in which a part of the blocking performance is shared by other than the optical filter.
  • a reflective layer that reflects light in a wavelength range selected from the above (i), (ii-1), (ii-2), and (ii-3) is, for example, an optical element 10A shown in FIG.
  • the deflection element 1 may be provided on the incident surface 1a or the emission surface 1c.
  • the optical filter 2 may have a configuration that does not have the light blocking property of the reflective layer provided on the deflection element 1. In this way, the optical element as a whole is designed to have a light transmission and blocking performance in a predetermined region.
  • the first light shielding film that partially blocks light incident on the optical element from the incident side and / or the second light shielding film that blocks light incident on the optical element from the side surface May be further provided.
  • the “light-shielding film” refers to a film that blocks at least visible light of incident light.
  • the light shielding film preferably blocks light of all wavelengths from the ultraviolet region to the near infrared region.
  • the light shielding film may have a light transmittance of 10% or less at a wavelength of 350 to 1000 nm, and preferably 2% or less.
  • reflected light generated on the surface of each optical member of the imaging lens system or light scattered on the wall surface of a housing (not shown) such as a lens holder becomes stray light and enters the optical element 10, the cause of image quality deterioration It becomes.
  • the imaging apparatus 100 In order to block such stray light other than the signal light used in the solid-state imaging device 4 before entering the light-receiving surface 41 of the solid-state imaging device 4, the imaging apparatus 100 has a configuration other than the opening corresponding to the light-receiving surface 41. It is preferable to have a light shielding film in the region. When the light shielding film is formed on the optical element 10 on the side close to the light receiving surface 41 of the solid-state imaging element 4 in the imaging apparatus 100, it is effective in removing stray light.
  • the optical element 10 may have a first light shielding film that partially blocks light from the incident side of the optical element 10.
  • the optical element 10 preferably has a second light shielding film that blocks light incident on the optical element 10 from the side surface.
  • the optical element 10 may have both the first light shielding film and the second light shielding film.
  • FIGS. 9A, 9B, FIG. 10, FIG. 11, and FIG. 12 show a cross-sectional view, a plan view, and a perspective view, respectively, of optical elements 10B, 10C, 10D, and 10E having a light shielding film in the optical element of the present invention.
  • Optical elements 10B, 10C, and 10D shown in FIGS. 9A, 9B, 10, and 11 include an optical element having a light shielding film 15 as a first light shielding film that partially blocks light incident from the incident side of the optical element. It is an example.
  • An optical element 10E shown in FIG. 12 is an example of an optical element having a light shielding film 15B as a second light shielding film that blocks light incident from the side surface of the optical element.
  • FIG. 9A shows an optical element 10B in which the light shielding film 15 is formed at the interface with the air of the optical filter 2 in the optical element 10 shown in FIG. 1, and FIG. 9B shows the optical element 10B viewed from the light shielding film 15 side.
  • the deflection element 1, the adhesive layer 3, and the optical filter 2 can be the same as those of the optical element 10.
  • the shape of the light shielding film 15 has a frame-like shape in which the outer periphery coincides with the outer periphery of the emission surface 2b of the optical filter 2 in the shape of the main surface.
  • the light shielding film 15 for example, a structure in which a metal film such as Cr and an antireflection layer such as CrOx that prevents surface reflection of the metal film are laminated, or a resin light shielding film containing a light absorber and a resin that exhibits light shielding properties. Etc. can be exemplified.
  • the light absorber include inorganic or organic colorants such as carbon black and titanium black.
  • Resin is a matrix component for forming a light shielding film.
  • the resin light-shielding film is formed on the emission surface 2b of the optical filter 2 by a printing method or a photolithography method using a light absorber and a photocurable material (resin).
  • the formation method of the light absorber, the photocurable material (resin), and also the light shielding film containing these in a resin light shielding film is illustrated by WO2014 / 021245A, for example.
  • the thickness of the light shielding film 15 is preferably about 50 to 500 nm in the case of a structure in which an antireflection layer is laminated, and is preferably about 0.1 to 400 ⁇ m in the case of a resin light shielding film.
  • the thickness is more preferably 0.2 to 100 ⁇ m, and even more preferably 0.5 to 10 ⁇ m.
  • An optical element 10C shown in FIG. 10 is an example in which, in the optical element 10B shown in FIGS. 9A and 9B, the light shielding film 15 is provided on the incident surface 2a of the optical filter 2 instead of on the outgoing surface 2b of the optical filter 2.
  • the optical element 10D shown in FIG. 11 is an example in which the light shielding film 15 is provided on the incident surface 1a of the deflecting element 1 instead of on the outgoing surface 2b of the optical filter 2 in the optical element 10B shown in FIGS. 9A and 9B. is there.
  • the light shielding film 15 included in the optical element 10C and the optical element 10D can be the same as the light shielding film 15 included in the optical element 10B, except that the arrangement position is different.
  • Each of the optical elements 10B, 10C, and 10D is an example in which the light shielding film 15 is provided on each surface on the emission surface 2b of the optical filter 2, the incident surface 2a of the optical filter 2, and the incident surface 1a of the deflection element 1.
  • these two surfaces (1a + 2a, 1a + 2b, 2a + 2b) or three surfaces (1a + 2a + 2b) may be formed.
  • An optical element 10E shown in FIG. 12 is an example having the light shielding film 15B over the entire area of both side surfaces of the deflection element 1 in the side surface of the optical element in the optical element 10 shown in FIG.
  • the deflection element 1 in the optical element 10 shown in FIG. 1 is a triangular prism, and has large areas on the side surfaces 1d and 1e perpendicular to the light incident / exit surfaces 1a and 1c. Therefore, when stray light entering the prism reaches the side surface, it may be reflected and transmitted through the light exit surface 1c and emitted from the optical element 10. In that case, for example, in the imaging apparatus 100 illustrated in FIG. 2, the ratio of stray light emitted from the optical element 10 to the light receiving surface 41 of the solid-state imaging element 4 is high. In particular, in the case of a triangular prism having a high refractive index, the light incident on the side surface 1d or 1e is totally reflected, and stray light reaching the light receiving surface 41 increases.
  • the light shielding film 15B can have a configuration other than the shape, for example, a layer configuration, a constituent material, and a formation method, in the same manner as the light shielding film 15 included in the optical element 10B. In forming the light shielding film 15B, it is preferable to form the light shielding film 15B after making the side surfaces 1d and 1e have a non-flat diffusion surface, since substantial stray light is further reduced.
  • the side surfaces 1d and 1e As a method of setting the side surfaces 1d and 1e as the diffusing surface, when the deflecting element 1 is processed into a triangular prism shape, cutting is performed using a cutting blade such that the side surfaces 1d and 1e become rough surfaces, or the side surface 1d after cutting. And 1e are lapped and polished to form a diffusion surface corresponding to a rating of # 1000 or less.
  • stray light emitted from the emission surface of the optical element can be reduced to some extent only by using the side surfaces 1 d and 1 e of the deflection element 1 as diffusion surfaces. That is, by making the side surfaces 1d and 1e of the deflecting element 1 diffusing surfaces, generation of total reflected light generated on the optical flat surface is suppressed (increased transmitted light to the air side), and incident light is diffused at a wide angle. Thus, for example, the amount of stray light that enters the light receiving surface 41 of the solid-state imaging device 4 as a bright spot can be reduced.
  • the side surfaces 1d and 1e of the deflecting element 1 are preferably formed with the light shielding film 15B after forming the diffusion surface.
  • the size (outer edge) of the exit surface 1c of the deflection element 1 and the entrance / exit surfaces 2a and 2b of the optical filter 2 are substantially the same.
  • the deflecting element may be a prism, and (I) on each surface where the prism and the optical filter face each other, the outer edge of the prism may be inside the outer edge of the optical filter. (II) In each surface where the prism and the optical filter face each other, the configuration may be such that the outer edge of the prism is outside the outer edge of the optical filter.
  • FIG. 13A shows an optical element 10F similar to the optical element 10B except for the configuration of (I) above in the optical element 10B shown in FIGS. 9A and 9B.
  • FIG. 13B is a diagram of the optical element 10F viewed from the light shielding film 15 side.
  • the outer edge of the exit surface 1 c of the deflecting element 1 is inside the outer edges of the entrance / exit surfaces 2 a and 2 b of the optical filter 2.
  • the length in the Y direction of the exit surface 1c of the deflection element 1 is L p
  • the length in the X direction is W p
  • the length in the Y direction of the entrance and exit surfaces 2a and 2b of the optical filter 2 is L.
  • the length of X direction is indicated by W F
  • L F> L P has been shown to be a W F> W P.
  • the configuration (I) is advantageous in that the light shielding film 15 can be formed so as to surely include the outer periphery of the deflection element 1, and stray light can be reliably reduced.
  • FIG. 14A shows an optical element 10G similar to the optical element 10B except for the configuration of (II) above in the optical element 10B shown in FIGS. 9A and 9B.
  • FIG. 14B is a diagram of the optical element 10G viewed from the light shielding film 15 side.
  • the outer edge of the exit surface 1c of the deflecting element 1 is outside the outer edges of the entrance / exit surfaces 2a and 2b of the optical filter 2.
  • the length in the Y direction of the exit surface 1c of the deflecting element 1 is L p
  • the length in the X direction is W p
  • the length in the Y direction of the entrance and exit surfaces 2a and 2b of the optical filter 2 is L.
  • F the length of X direction is indicated by W F
  • L F ⁇ L P has been shown to be a W F ⁇ W P.
  • optical element of the present invention has been described above using the optical elements 10, 10A to 10G, but the optical element of the present invention is not limited to the above-described embodiment. These embodiments can be changed or modified without departing from the spirit and scope of the present invention.
  • the production method of the present invention includes the following steps (A) and (B).
  • a step of producing an optical element precursor having a composition layer for forming an adhesive layer containing an ultraviolet curable material between the deflecting element and the optical filter here, the optical element precursor is an optical element to be manufactured.
  • the composition layer for adhesive layer formation containing an ultraviolet curable material instead of an adhesive layer in the arrangement
  • Process (A) The process (A) is located between the deflection element 1 and the optical filter 2 located on the exit side of the deflection element 1 and between the deflection element 1 and the optical filter 2 and is cured by the following process (B). In this step, a precursor of the optical element 10 having the adhesive layer forming composition layer, which becomes the adhesive layer 3 for integrating the deflecting element 1 and the optical filter 2, is prepared.
  • the composition for forming an adhesive layer constituting the composition layer for forming an adhesive layer contains an ultraviolet curable material.
  • the ultraviolet curable material is as described above.
  • the composition for forming an adhesive layer preferably contains the above-described photopolymerization initiator and, if necessary, contains various additives. Further, in order to prevent the curable material from being polymerized and solidified by light, heat, air or the like during storage, a polymerization inhibitor may be mixed and used.
  • the composition for forming an adhesive layer may further contain a solvent in order to ensure good coatability.
  • the solvent is a component that is removed from the composition layer for forming an adhesive layer by drying or the like during the manufacturing process of the optical element.
  • an adhesive layer forming composition containing each of the above components is prepared so that the cured film thickness on the exit surface 1 c of the deflection element 1 becomes a desired thickness.
  • the composition for forming an adhesive layer is uniformly applied to obtain the deflection element 1 with the composition layer for forming an adhesive layer.
  • the optical filter 2 is laminated on the composition layer for forming an adhesive layer so that the incident surface 2a of the optical filter 2 is in contact therewith.
  • the composition for forming the adhesive layer to be used contains a solvent, the solvent is dried and removed before the optical filter 2 is laminated.
  • the surface on which the composition for forming an adhesive layer is applied may be the incident surface 2a of the optical filter 2.
  • the deflecting element 1 is laminated so that the exit surface 1c of the deflecting element 1 is in contact with the adhesive layer forming composition layer formed on the incident surface 2a of the optical filter 2.
  • the composition for forming an adhesive layer to be used contains a solvent, the solvent is dried and removed before the deflection element 1 is laminated.
  • the precursor of the optical element 10 which has the composition layer for contact bonding layer formation instead of the contact bonding layer 3 in the optical element 10 is produced.
  • Step (B) Step About the precursor of the optical element 10 obtained in the step (A), UV is applied to the composition layer for forming the adhesive layer according to the curing conditions of the ultraviolet curable material contained in the composition for forming the adhesive layer. Irradiate. Thereby, an ultraviolet curable material hardens
  • the precursor of the optical element 10 is irradiated with UV from the incident surface 1a side of the deflecting element 1, or from the output surface 2b side of the optical filter 2.
  • the method of irradiating UV is mentioned.
  • UV may be irradiated from the reflecting surface 1b side.
  • permeability of UV used for photopolymerization hardening is high. It is preferable to perform UV irradiation from the side because productivity is improved.
  • the deflecting element 1 is configured to have UV transparency, and the composition for forming an adhesive layer is irradiated with UV from the incident surface 1a side or the reflecting surface 1b side of the deflecting element 1.
  • the physical layer is an adhesive layer.
  • the optical filter 2 is designed so as not to have UV blocking properties, and UV is irradiated from the emission surface 2b side of the optical filter 2 for forming an adhesive layer.
  • the composition layer is an adhesive layer. In the production method of the present invention, the former is preferred.
  • an optical element in which a deflection element and an optical filter are integrated by an adhesive layer can be easily manufactured by using UV irradiation.
  • the optical element 10H shown in a sectional view in FIG. 15 is similar to the deflection element 11 shown in FIG. 5, the optical filter 2C shown in FIG. 6C on the emission side of the deflection element 11, and the deflection element 11 and the optical filter 2C. There is an adhesive layer 3 between them.
  • the optical element 10H has an antireflection layer 12a on the incident surface 1a of the deflection element 11, an antireflection layer 12b on the emission surface 1c of the deflection element 11, and an antireflection film 13b on the emission surface 2b of the optical filter 2C.
  • the optical element 10H further includes, on the antireflection film 13b, a light shielding film 15 having a frame shape in which the outer periphery coincides with the outer periphery of the antireflection film 13b in the shape of the main surface.
  • a light shielding film 15B similar to that shown in FIG. 12 is provided over the entire area on the two side surfaces 1d and 1e.
  • the refractive index n P at a wavelength of 589nm is 1.75 or more
  • the internal transmittance of a transparent and ultraviolet wavelengths 365nm in wavelength range 400 ⁇ 1100 nm is cutting a 10 percent or more optical glass triangular prism shape.
  • the triangular prism prism cross section is an isosceles right triangle with an apex angle of 90 °.
  • the light incident surface incident from the Y direction, the light output surface emitted in the Z direction, and the total reflection surface deflected from the Y direction to the Z direction are all polished into an optical mirror surface. Furthermore, C surface processing and Chamfering of W1 surface and W2 surface are performed, and each chamfering part is obtained.
  • the width of the isosceles surface that is the light incident / exit surface of the triangular prism is processed to a dimension that covers the signal light effective width ⁇ in of the light incident surface and the signal light effective width ⁇ out of the light output surface.
  • antireflection layers 12a and 12b are formed so as to cover the effective widths ⁇ in and ⁇ out of the air interface which is the light incident surface 1a of the triangular prism and the adhesive layer interface which is the light emitting surface 1c.
  • the residual reflection in the signal light wavelength region is 0.5% or less.
  • the triangular prism is cut into the element shape shown in FIG. 12 using a dicing device in parallel with the ZY plane so that the dimension in the X direction covers the light receiving surface of the solid-state imaging device, and the cut surfaces 1d and 1e are optically cut.
  • the diffusion surface In order to prevent the light incident from the cut surfaces 1d and 1e from becoming stray light, a light shielding film-forming composition containing a light absorber and an ultraviolet curable resin is further applied thereon, and a light shielding film 15B is formed by UV irradiation. Thus, the deflecting element 11 with a light shielding film is obtained.
  • the optical filter 2C is a NIR cut filter that transmits visible light and blocks UV and NIR.
  • a filter function that blocks UV of 300 to 400 nm and NIR of 700 to 1100 nm and transmits visible light of 420 to 660 nm.
  • an NIR absorption type glass substrate 21C obtained by adding CuO or the like to a fluorophosphate glass is used as the substrate 21C of the optical filter 2C.
  • the thickest member in the optical filter 2C is the glass substrate 21C, and n F ⁇ 1.52.
  • a reflective layer 23 made of a dielectric multilayer film having reflection wavelength bands of 350 to 400 nm and 700 to 1100 nm is formed on the interface of the optically polished NIR absorption glass substrate 21C on the adhesive layer 3 side.
  • an absorption layer 22 containing an NIR absorbing dye having an absorption maximum wavelength at 650 to 750 nm is formed at the air interface on the light emitting surface (solid-state imaging device) side of the NIR absorption type glass substrate 21C.
  • the absorbing layer 22 optionally contains a UV absorbing dye.
  • the NIR absorption type glass substrate 21C has an absorption maximum wavelength in the vicinity of 900 nm. However, when it is attempted to increase the absorption of NIR, the NIR absorption type glass substrate absorbs visible light and causes a decrease in visible light transmittance. Therefore, the glass substrate thickness is adjusted so as to suppress a decrease in visible light transmittance. Similarly, the content of the NIR absorbing dye in the absorption layer 22 is adjusted so as to suppress a decrease in visible light transmittance. When the NIR absorption type glass substrate 21C and the absorption layer 22 are adjusted so as to suppress the decrease in the transmittance of visible light, the wavelength regions where transmitted light is generated are generated at 350 to 400 nm and 700 to 1100 nm. The reflective layer 23 having a wavelength band is designed.
  • the refractive index n F of the glass substrate 21C can be realized so that the reflective layer 23 having a small number of layers and a total film thickness can exhibit high transmittance in the visible range of 420 to 660 nm and low transmittance in the reflected wavelength range.
  • a dielectric multilayer film is designed on the premise that the adhesive layer 3 having a refractive index n G of 0.1 or less is used.
  • the reflection wavelength band shifts to a short wavelength region as the incident angle of incident light increases, and the spectral transmittance of the entire optical filter 2C changes.
  • the absorption layer 22 complements the NIR absorptivity of the NIR absorption type glass substrate 21C, and also has a role of reducing the incident angle dependency of such spectral characteristics.
  • the antireflection layer 13b is formed on the air interface of the absorption layer 22 of the optical filter 2C, and the residual reflection with respect to the signal light wavelength region at the interface is 0.5% or less. Further, a frame-shaped light shielding film 15 is formed in a peripheral region other than the signal light transmission effective region at the air interface of the antireflection layer 13b to obtain an optical filter 2C with a light shielding film.
  • UV is irradiated from the incident surface or / and the total reflection surface of the deflecting element (triangular prism) 11 to polymerize and solidify the ultraviolet curable material in the composition layer for forming the adhesive layer, whereby the adhesive layer 3 is obtained.
  • the optical element 10H when the difference in refractive index n P and the refractive index n G is small, it provided the optical filter 2B shown in Figure 6B in place of the optical filter 2C the exit side of the deflecting element 11, deflection elements 11
  • the adhesive layer 3 may be provided between the optical filter 2B, the reflective layer 23 on the emission surface 1c of the deflection element 11, and the antireflection layer 12b.
  • the antireflection layer 12a, the antireflection layer 13b, and the light shielding films 15 and 15B can be configured similarly to the optical element 10H.
  • the optical element of the present invention is an optical element having both a light deflection function and a selective blocking function.
  • the optical element is disposed immediately before the light-receiving surface of the solid-state image sensor. If used, it is advantageous for downsizing of the imaging device.

Abstract

The present invention provides an optical element in which a deflection element for bending light and an optical filter are integrated and which causes little light loss and is easy to manufacture, and further provides a method for simply and easily manufacturing an optical element in which a deflection element and an optical filter are integrated by an adhesion layer. This optical element is provided with: a deflection element which deflects and emits incident light; an optical filter which is located on the incidence side or emission side of the deflection element, and selectively blocks light in at least part of a region ranging from an ultraviolet region to a near-infrared region; and an adhesion layer which integrates the deflection element and the optical filter therebetween, wherein the relations of expression (1) and expression (2) are satisfied: ΔnGF = |nG-nF| ≤ 0.5 … (1), ΔnPG = |nP-nG| ≤ 0.5 … (2) where nP is the refractive index of the deflection element, nG is the refractive index of the adhesion layer, and nF is the refractive index of a member having a maximum layer thickness among members included in the optical filter.

Description

光学素子および光学素子の製造方法Optical element and optical element manufacturing method
 本発明は光学素子および光学素子の製造方法に関する。 The present invention relates to an optical element and a method for manufacturing the optical element.
 デジタルスチルカメラ等で、CCDやCMOSイメージセンサ等の固体撮像素子を搭載した撮像装置において、より小型化と高機能化が進んでいる。例えば、ズームレンズなどの結合レンズ系および固体撮像素子を含む撮像装置において、光を折り曲げるプリズム等の偏向素子を用いて小型化が図られるようになった。 In a digital still camera or the like, an image pickup apparatus equipped with a solid-state image pickup device such as a CCD or a CMOS image sensor has been further reduced in size and functionality. For example, in an image pickup apparatus including a coupled lens system such as a zoom lens and a solid-state image pickup device, the size can be reduced by using a deflection element such as a prism that bends light.
 特許文献1には、結像レンズ群を透過した光を折り曲げるプリズムと、プリズムで折り曲げられた光を透過させるカバーガラスとを有し、光を射出するプリズムの射出面とカバーガラスの入射面とが光学的に透明な接着剤で接着された光学部品を用いた撮影装置が記載されている。 Patent Document 1 includes a prism that bends light transmitted through an imaging lens group, and a cover glass that transmits light bent by the prism, and includes an exit surface of the prism that emits light, and an incident surface of the cover glass. Describes an imaging apparatus using an optical component bonded with an optically transparent adhesive.
特開2012-68509号公報JP 2012-68509 A
 本発明は、光を折り曲げる偏向素子と光学フィルタを一体化するとともに光損失が少なく製造が容易な光学素子の提供、および、偏向素子と光学フィルタが接着層により一体化された光学素子を簡便に製造する方法の提供を目的とする。 The present invention provides an optical element that integrates a deflecting element that bends light and an optical filter and that is easy to manufacture with little light loss, and an optical element in which the deflecting element and the optical filter are integrated by an adhesive layer. The object is to provide a manufacturing method.
 本発明の光学素子は、入射する光を偏向して出射する偏向素子と、前記偏向素子の入射側または出射側に位置する、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断する光学フィルタと、前記偏向素子と前記光学フィルタの間に両者を一体化する接着層とを備え、前記偏向素子の屈折率をn、前記接着層の屈折率をn、および前記光学フィルタに含まれる部材のうち層厚が最大の部材の屈折率をnとしたとき、下式(1)および下式(2)の関係を満足する。
 ΔnGF=|n-n|≦0.5  …(1)
 ΔnPG=|n-n|≦0.5  …(2)
The optical element of the present invention selectively deflects light that deflects incident light and emits light in at least a part of the region from the ultraviolet region to the near infrared region that is located on the incident side or the emission side of the deflection element. And an adhesive layer that integrates both between the deflection element and the optical filter, the refractive index of the deflection element is n P , the refractive index of the adhesive layer is n G , and When the refractive index of the member having the maximum layer thickness among the members included in the optical filter is n F , the relationship of the following expressions (1) and (2) is satisfied.
Δn GF = | n G −n F | ≦ 0.5 (1)
Δn PG = | n P −n G | ≦ 0.5 (2)
 本発明の光学素子の製造方法は、入射する光を偏向して出射する偏向素子と、前記偏向素子の入射側または出射側に位置する、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断する光学フィルタと、前記偏向素子と前記光学フィルタの間に両者を一体化する接着層とを備え、前記偏向素子の屈折率をn、前記接着層の屈折率をn、および前記光学フィルタに含まれる部材のうち層厚が最大の部材の屈折率をnとしたとき、ΔnGF=|n-n|≦0.5およびΔnPG=|n-n|≦0.5の関係を満足する、光学素子を製造する方法であって、前記偏向素子と前記光学フィルタの間に、紫外線硬化性材料を含む接着層形成用組成物層を有する光学素子前駆体を作製する工程、および前記光学素子前駆体に前記光学素子とした場合に入射側となる側または前記光学素子とした場合に出射側となる側から紫外域の光を照射して前記接着層形成用組成物層を硬化させ前記接着層とする工程を含む。 The optical element manufacturing method of the present invention includes a deflection element that deflects and emits incident light, and light in at least a part of the region from the ultraviolet region to the near infrared region that is located on the incident side or the emission side of the deflection element. And an adhesive layer that integrates both between the deflection element and the optical filter, the refractive index of the deflection element is n P , and the refractive index of the adhesive layer is n G , and when the out layer thickness of members included in the optical filter has a refractive index of the largest member with n F, Δn GF = | n G -n F | ≦ 0.5 and Δn PG = | n P -n G | ≦ 0.5, a method for producing an optical element, comprising an adhesive layer forming composition layer containing an ultraviolet curable material between the deflection element and the optical filter. A step of producing a precursor, and said optics In the case where the optical element is used as a child precursor, the composition layer for forming the adhesive layer is cured by irradiating light in the ultraviolet region from the side which becomes the incident side when the optical element is used or the side which becomes the outgoing side when the optical element is used. Including a step of forming an adhesive layer.
 本発明によれば、光を折り曲げる偏向素子と光学フィルタを一体化するとともに光損失が少なく製造が容易な光学素子が提供できる。また、本発明によれば、偏向素子と光学フィルタが接着層により一体化された光学素子を簡便に製造する方法が提供できる。 According to the present invention, it is possible to provide an optical element that integrates a deflecting element that bends light and an optical filter and that is easy to manufacture with little optical loss. Further, according to the present invention, it is possible to provide a method for easily manufacturing an optical element in which a deflection element and an optical filter are integrated by an adhesive layer.
 撮像装置において、本発明の光学素子を固体撮像素子の受光面の直前に配置して用いれば、撮像装置の小型化に有利である。 In an image pickup apparatus, if the optical element of the present invention is disposed and used immediately before the light receiving surface of a solid-state image pickup element, it is advantageous for downsizing of the image pickup apparatus.
実施形態の光学素子の一例を示す断面図である。It is sectional drawing which shows an example of the optical element of embodiment. 実施形態の光学素子を備える撮像装置の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of an imaging device provided with the optical element of embodiment. 実施形態の光学素子における光の入射角と出射角の関係を模式的に示す断面図である。It is sectional drawing which shows typically the relationship between the incident angle of light in the optical element of embodiment, and an output angle. 直角プリズムにおいて入射角θを全反射する屈折率nを示すグラフである。It is a graph showing the refractive index n P for totally reflecting the incident angle theta m in a right angle prism. 実施形態の光学素子に用いる偏向素子の一例を示す断面図である。It is sectional drawing which shows an example of the deflection | deviation element used for the optical element of embodiment. 実施形態の光学素子に用いる光学フィルタの一例を示す断面図である。It is sectional drawing which shows an example of the optical filter used for the optical element of embodiment. 実施形態の光学素子に用いる光学フィルタの別の一例を示す断面図である。It is sectional drawing which shows another example of the optical filter used for the optical element of embodiment. 実施形態の光学素子に用いる光学フィルタのさらに別の一例を示す断面図である。It is sectional drawing which shows another example of the optical filter used for the optical element of embodiment. 異なる屈折率(n1,n2)の光学界面における屈折率和と反射率の関係を示すグラフである。It is a graph which shows the relationship between the refractive index sum and reflectance in the optical interface of different refractive index (n1, n2). 実施形態の光学素子の別の一例を示す断面図である。It is sectional drawing which shows another example of the optical element of embodiment. 遮光膜を有する実施形態の光学素子の一例を示す断面図である。It is sectional drawing which shows an example of the optical element of embodiment which has a light shielding film. 図9Aに示す光学素子の平面図である。FIG. 9B is a plan view of the optical element shown in FIG. 9A. 遮光膜を有する実施形態の光学素子の変形例を示す断面図である。It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film. 遮光膜を有する実施形態の光学素子の変形例を示す断面図である。It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film. 遮光膜を有する実施形態の光学素子の変形例を示す斜視図である。It is a perspective view which shows the modification of the optical element of embodiment which has a light shielding film. 遮光膜を有する実施形態の光学素子の変形例を示す断面図である。It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film. 図13Aに示す光学素子の平面図である。FIG. 13B is a plan view of the optical element shown in FIG. 13A. 遮光膜を有する実施形態の光学素子の変形例を示す断面図である。It is sectional drawing which shows the modification of the optical element of embodiment which has a light shielding film. 図14Aに示す光学素子の平面図である。FIG. 14B is a plan view of the optical element shown in FIG. 14A. 作製例の光学素子を示す断面図である。It is sectional drawing which shows the optical element of a manufacture example.
 以下、本発明の実施の形態について説明する。なお、本明細書において、必要に応じて、紫外線または紫外域の光を「UV」、近赤外線または近赤外域の光を「NIR」と略記する。本明細書において、「屈折率」は、波長589nmの光に対する屈折率を意味する。「硬化性材料」とは、加熱や光照射により硬化して硬化材料となる、硬化前の未硬化の材料をいい、「硬化材料」とは硬化性材料が加熱や光照射により硬化して得られる硬化物をいう。本明細書において、数値範囲を表す「~」では、上下限を含む。 Hereinafter, embodiments of the present invention will be described. In this specification, ultraviolet light or ultraviolet light is abbreviated as “UV”, and near infrared light or near infrared light is abbreviated as “NIR” as necessary. In this specification, “refractive index” means a refractive index with respect to light having a wavelength of 589 nm. “Curable material” refers to an uncured material that is cured by heating or light irradiation to become a cured material, and “cured material” is obtained by curing the curable material by heating or light irradiation. This refers to the cured product. In this specification, “to” representing a numerical range includes upper and lower limits.
 本明細書において、光学素子の「入射側」とは、使用に際して撮像装置等の光軸に沿って光の進入方向から光が光学素子に入射する側をいう。光学素子の「出射側」とは、光学素子の入射側から入射した光が、所定の方向、例えば、出射光を受光する素子の方向に、偏向して出射する側をいう。 In this specification, the “incident side” of an optical element refers to a side where light enters the optical element from the light entering direction along the optical axis of the imaging device or the like when used. The “emission side” of the optical element refers to a side on which light incident from the incident side of the optical element is deflected and emitted in a predetermined direction, for example, the direction of the element that receives the emitted light.
[光学素子]
 本発明の実施形態の光学素子について図面を参照して説明する。図1は、本実施形態の光学素子の一例を示す断面図である。図2は、図1に示す本実施形態の光学素子を備える撮像装置の一例を概略的に示す断面図である。
[Optical element]
An optical element according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the optical element of the present embodiment. FIG. 2 is a cross-sectional view schematically showing an example of an imaging apparatus including the optical element of the present embodiment shown in FIG.
 図1に示す光学素子10は、入射する光を偏向して出射する偏向素子1と、偏向素子1の出射側に位置する紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断する光学フィルタ2と、偏向素子1と光学フィルタ2の間に位置し偏向素子1と光学フィルタ2を一体化する接着層3とを備える。図1に示す光学素子10において、光学フィルタ2は偏向素子1の出射側に位置するが、本発明の光学素子において、光学フィルタ2は偏向素子1の入射側に位置してもよい。その場合、光の入射側から光学フィルタ2、接着層3、偏向素子1の順に配置された光学素子10となる。 An optical element 10 shown in FIG. 1 selectively deflects incident light and deflects and emits light in at least a part of the region from the ultraviolet region to the near infrared region located on the exit side of the deflecting element 1. An optical filter 2 to be blocked, and an adhesive layer 3 that is located between the deflection element 1 and the optical filter 2 and that integrates the deflection element 1 and the optical filter 2 are provided. In the optical element 10 shown in FIG. 1, the optical filter 2 is located on the exit side of the deflecting element 1, but in the optical element of the present invention, the optical filter 2 may be located on the incident side of the deflecting element 1. In this case, the optical element 10 is arranged in the order of the optical filter 2, the adhesive layer 3, and the deflection element 1 from the light incident side.
 図1においては、説明の便宜上、偏向素子1において光が出射する方向をZ軸方向と定義し、Z軸方向に直交しかつ互いに直交する二方向をX軸方向(紙面と直交する方向)、Y軸方向(紙面と平行な方向)と定義する。本明細書において、Z軸方向を「Z方向」という。X軸方向、Y軸方向についても同様である。本明細書において、特に断りのない限り、X方向、Y方向、Z方向は、図1に示すのと同様の方向である。図1および図2はYZ断面図である。 In FIG. 1, for convenience of explanation, a direction in which light is emitted from the deflection element 1 is defined as a Z-axis direction, and two directions perpendicular to the Z-axis direction and perpendicular to each other are defined as an X-axis direction (a direction perpendicular to the paper surface). The Y-axis direction (direction parallel to the paper surface) is defined. In this specification, the Z-axis direction is referred to as the “Z direction”. The same applies to the X-axis direction and the Y-axis direction. In this specification, unless otherwise specified, the X direction, the Y direction, and the Z direction are the same as those shown in FIG. 1 and 2 are YZ sectional views.
 光学素子10において、偏向素子1の屈折率をn、接着層3の屈折率をn、および光学フィルタ2に含まれる部材のうち層厚が最大の部材(以下、「最厚部材」ともいう)の屈折率をnとしたとき、下式(1)および下式(2)の関係を満足する。
 ΔnGF=|n-n|≦0.5  …(1)
 ΔnPG=|n-n|≦0.5  …(2)
In the optical element 10, the refractive index of the deflecting element 1 is n P , the refractive index of the adhesive layer 3 is n G , and the member having the largest layer thickness among the members included in the optical filter 2 (hereinafter referred to as “thickest member”). when the refractive index of say) was n F, satisfy the relation of the following formula (1) and the following formula (2).
Δn GF = | n G −n F | ≦ 0.5 (1)
Δn PG = | n P −n G | ≦ 0.5 (2)
 以下、偏向素子の屈折率を「屈折率n」、接着層の屈折率を「屈折率n」、光学フィルタに含まれる最厚部材の屈折率を「屈折率n」ともいう。 Hereinafter, the refractive index of the deflecting element is also referred to as “refractive index n P ”, the refractive index of the adhesive layer is also referred to as “refractive index n G ”, and the refractive index of the thickest member included in the optical filter is also referred to as “refractive index n F ”.
 偏向素子1は、直角プリズムであり、光が入射する入射面1aと、入射した光を反射する反射面1bと、反射した光を出射する出射面1cを有する。接着層3および光学フィルタ2は、それぞれ偏向素子1の出射面1cに平行な2つの主面を有する。接着層3の2つの主面の一方は、偏向素子1の出射面1cと接する主面であって、偏向素子1から出射した光が入射する入射面3aであり、他方はその光を出射する出射面3bである。光学フィルタ2の2つの主面の一方は、接着層3の出射面3bと接する主面であって、接着層3から出射した光が入射する入射面2aであり、他方はその光を出射する出射面2bである。 The deflection element 1 is a right-angle prism, and has an incident surface 1a on which light is incident, a reflecting surface 1b that reflects incident light, and an emitting surface 1c that emits reflected light. The adhesive layer 3 and the optical filter 2 each have two main surfaces parallel to the emission surface 1 c of the deflection element 1. One of the two main surfaces of the adhesive layer 3 is a main surface in contact with the output surface 1c of the deflecting element 1, and is an incident surface 3a on which light emitted from the deflecting element 1 is incident, and the other emits the light. This is the exit surface 3b. One of the two main surfaces of the optical filter 2 is a main surface in contact with the output surface 3b of the adhesive layer 3, and is an incident surface 2a on which light emitted from the adhesive layer 3 enters, and the other emits the light. This is the emission surface 2b.
 光学素子10において、光は偏向素子1の入射面1aにY方向から入射し、偏向素子1の反射面1bで反射により偏向された後、偏向素子1の出射面1cからZ方向に出射され、接着層3および光学フィルタ2を透過して光学フィルタ2の出射面2bからZ方向に出射される。 In the optical element 10, the light is incident on the incident surface 1 a of the deflecting element 1 from the Y direction, deflected by reflection on the reflecting surface 1 b of the deflecting element 1, and then emitted from the emitting surface 1 c of the deflecting element 1 in the Z direction. The light passes through the adhesive layer 3 and the optical filter 2 and is emitted from the emission surface 2 b of the optical filter 2 in the Z direction.
 本実施形態の光学素子は、このように接着層を用いて偏向素子と光学フィルタを一体化することで偏向素子と光学フィルタの機能を兼ね備える。すなわち、本実施形態の光学素子においては、入射面から入射した光は、偏向されるとともに、紫外域から近赤外域にわたる少なくとも一部の領域の光が選択的に遮断されて出射される。このように、本実施形態の光学素子によれば撮像装置の小型化を図ることができる。さらに、偏向素子と接着層と光学フィルタにおける屈折率の関係が式(1)、式(2)を満たすことで、本実施形態の光学素子における光損失は少ない。 The optical element of the present embodiment combines the functions of the deflection element and the optical filter by integrating the deflection element and the optical filter using the adhesive layer as described above. That is, in the optical element of the present embodiment, the light incident from the incident surface is deflected, and at least a part of the light from the ultraviolet region to the near infrared region is selectively blocked and emitted. Thus, according to the optical element of the present embodiment, it is possible to reduce the size of the imaging apparatus. Furthermore, since the relationship between the refractive indexes of the deflecting element, the adhesive layer, and the optical filter satisfies the expressions (1) and (2), the optical loss of the optical element of the present embodiment is small.
 以下、撮像装置の小型化について図2を用いて説明する。図2は、対物レンズ5、物体側プリズム6、結像レンズ群8(レンズ81、82、83からなる)、レンズ移動機構7、光学素子10および固体撮像素子4を有する撮像装置100の構成例である。 Hereinafter, the downsizing of the imaging apparatus will be described with reference to FIG. FIG. 2 shows a configuration example of an imaging apparatus 100 having an objective lens 5, an object-side prism 6, an imaging lens group 8 (comprising lenses 81, 82, and 83), a lens moving mechanism 7, an optical element 10, and a solid-state imaging element 4. It is.
 対物レンズ5に取り込まれるZ方向からの入射光は、物体側プリズム6の反射面でY方向に偏向され、結像レンズ群8を透過して光学素子10に入射する。光学素子10から出射した光は、固体撮像素子4の受光面41に入射し、電気信号に変換される。 Incident light from the Z direction taken into the objective lens 5 is deflected in the Y direction by the reflecting surface of the object side prism 6, passes through the imaging lens group 8, and enters the optical element 10. The light emitted from the optical element 10 enters the light receiving surface 41 of the solid-state image sensor 4 and is converted into an electrical signal.
 ここで、物体側プリズム6および偏向素子1を含む光学素子10を用いることにより、撮像装置100のZ方向の厚みが薄型化される。特に、結像レンズ群8の一部を、ステッピングモータ等のレンズ移動機構7を用いてY方向に移動することによりズームレンズ機能やフォーカス調整機能を付与する撮像装置においても薄型化できる。このように、光学素子10を固体撮像素子4の直前に配置して用いる場合、図2に示すように、光学素子10は入射側から偏向素子1、接着層3、光学フィルタ2の順に配置されるのが好ましい。 Here, by using the optical element 10 including the object-side prism 6 and the deflecting element 1, the thickness of the imaging device 100 in the Z direction is reduced. In particular, the imaging lens group 8 can be thinned by moving a part of the imaging lens group 8 in the Y direction by using a lens moving mechanism 7 such as a stepping motor, thereby providing a zoom lens function and a focus adjustment function. As described above, when the optical element 10 is arranged and used immediately before the solid-state imaging element 4, the optical element 10 is arranged in the order of the deflecting element 1, the adhesive layer 3, and the optical filter 2 from the incident side as shown in FIG. It is preferable.
 なお、図2では、光学素子10は、偏向素子1によりY方向からの入射光をZ方向に偏向して出射する配置とされている。撮像装置100において、光学素子10は、Y方向を回転軸として90°回転した配置とされてもよく、それにより、Y方向からの入射光をX方向に偏向して出射する構成とすることができる。 In FIG. 2, the optical element 10 is arranged so that incident light from the Y direction is deflected in the Z direction by the deflecting element 1 and emitted. In the imaging apparatus 100, the optical element 10 may be arranged so as to be rotated by 90 ° about the Y direction as a rotation axis, and thereby the incident light from the Y direction is deflected in the X direction and emitted. it can.
 撮像装置100の、対物レンズ5、物体側プリズム6および結像レンズ群8からなる撮像レンズ系は、開口絞り径に応じてFナンバーが変化する。そして、そのFナンバーが取込角θおよび開口数NA=sinθを用いてF=1/(2×NA)で関係つけられ、Fナンバーに応じて被写体からの放射光を固体撮像素子4に取り込む明るさが変化する。撮像レンズ系の代表的なF=1、1.4、2、2.4に対する最大取込角θは、それぞれ、30°、21.1°、14.5°、10.4°である。すなわち、光学素子10の入射面1aにおける光軸に対し、-θ~+θの入射角範囲の光が光学素子10に入射する。 In the imaging lens system including the objective lens 5, the object side prism 6 and the imaging lens group 8 of the imaging apparatus 100, the F number changes according to the aperture stop diameter. The F number is related by F = 1 / (2 × NA) using the capture angle θ and the numerical aperture NA = sin θ, and the radiated light from the subject is captured by the solid-state imaging device 4 according to the F number. The brightness changes. The maximum capture angles θ m for typical F = 1, 1.4, 2, 2.4 of the imaging lens system are 30 °, 21.1 °, 14.5 °, 10.4 °, respectively. . That is, light having an incident angle range of −θ m to + θ m is incident on the optical element 10 with respect to the optical axis on the incident surface 1a of the optical element 10.
 次に、本発明の光学素子における構成要素である偏向素子と光学フィルタと接着層について、以下に説明する。 Next, the deflecting element, the optical filter, and the adhesive layer, which are components in the optical element of the present invention, will be described below.
<偏向素子>
 図1には、偏向素子1として直角プリズムを例示したが、本発明の光学素子における偏向素子としては、入射する光を偏向して出射し、接着層との屈折率の関係において式(2)を満足する屈折率nを有する素子であれば、特に制限なく使用できる。
<Deflection element>
In FIG. 1, a right-angle prism is illustrated as the deflecting element 1. However, as the deflecting element in the optical element of the present invention, incident light is deflected and emitted, and the expression (2) is expressed in relation to the refractive index with the adhesive layer. As long as the element has a refractive index n P that satisfies the above, it can be used without any particular limitation.
 偏向素子として、具体的には、回折素子、プリズム等が挙げられる。回折素子としては、断面形状が周期的な鋸形状をなすブレーズ型反射回折格子、体積ホログラム回折素子が挙げられる。プリズムとしては、三角柱プリズム、反射面を非平面とした自由曲面プリズム等が挙げられる。また、ブレーズ型反射回折格子は、格子材料とブレーズ形状を調整することで、例えば、所定の回折角度で、+1次回折効率が高い偏向素子としての機能を発揮する。 Specific examples of the deflection element include a diffraction element and a prism. Examples of the diffractive element include a blazed reflection diffraction grating and a volume hologram diffractive element having a saw-shaped cross section. Examples of the prism include a triangular prism and a free-form surface prism having a non-planar reflecting surface. The blazed reflective diffraction grating exhibits a function as a deflecting element having high + 1st order diffraction efficiency at a predetermined diffraction angle, for example, by adjusting the grating material and the blazed shape.
 偏向素子としては、高精度の光学反射面を安定して加工できる観点からプリズムが好ましく、三角柱プリズムがより好ましい。また、三角柱プリズムのうちでも、YZ面の断面において、入射面と出射面のなす角度が90°であって、入射面と反射面のなす角度(例えば、図3においてαで示される。)、および反射面と出射面のなす角度(例えば、図3においてβで示される。)が、それぞれ40~50°の範囲内の三角柱プリズムがさらに好ましく、YZ面の断面が直角二等辺三角形であるα=β=45°の直角プリズムが特に好ましい。 As the deflection element, a prism is preferable from the viewpoint of stably processing a high-precision optical reflecting surface, and a triangular prism is more preferable. Further, among the triangular prisms, the angle formed by the incident surface and the output surface is 90 ° in the cross section of the YZ plane, and the angle formed by the incident surface and the reflective surface (for example, indicated by α in FIG. 3). Further, it is more preferable that the angle between the reflecting surface and the exit surface (for example, indicated by β in FIG. 3) is in the range of 40 to 50 °, and the cross section of the YZ plane is an isosceles right triangle. A right angle prism with β = 45 ° is particularly preferred.
 光学素子における光の入射角および出射角について、偏向素子の屈折率nとの関係に基づいて説明する。図3は、図1に示す光学素子10における光の入射角θと出射角θの関係を示す模式図である。図3において、偏向素子1は、YZ面の断面が直角二等辺三角形でX方向に延びた三角柱プリズム、すなわち直角プリズム(以下、偏向素子1を直角プリズム1ともいう。)である。 For the incident angle and the outgoing angle of light in the optical element will be described based on the relationship between the refractive index n P of the deflection element. FIG. 3 is a schematic diagram showing the relationship between the incident angle θ 0 and the outgoing angle θ of light in the optical element 10 shown in FIG. In FIG. 3, the deflection element 1 is a triangular prism having a YZ plane cross section with a right isosceles triangle and extending in the X direction, that is, a right angle prism (hereinafter, the deflection element 1 is also referred to as a right angle prism 1).
 直角プリズム1の入射面1aと反射面1bのなす角、および出射面1cと反射面1bのなす角は、ともに45°である。なお、図3においては、三角柱プリズムに一般化して説明するために、入射面1aと反射面1bのなす角の角度をα、出射面1cと反射面1bのなす角の角度をβで示した。以下の直角プリズム1の説明において、これらの角度をα、βとして説明している場合は、その説明をそのまま三角柱プリズムに一般化できる。 The angle between the incident surface 1a and the reflecting surface 1b of the right-angle prism 1 and the angle between the emitting surface 1c and the reflecting surface 1b are both 45 °. In FIG. 3, in order to generalize the triangular prism, the angle formed by the incident surface 1a and the reflecting surface 1b is denoted by α, and the angle formed by the emitting surface 1c and the reflecting surface 1b is denoted by β. . In the following description of the right-angle prism 1, when these angles are described as α and β, the description can be generalized to a triangular prism as it is.
 YZ面内において、屈折率nの直角プリズム1の光の入射面1aに入射角θで入射した光は、入射面1aで屈折して屈折角θ’でプリズム内部を伝搬し、反射面1bに到達する。 In the YZ plane, the light incident at an incident angle theta 0 to the incident surface 1a of the light of the rectangular prism 1 having a refractive index n P is refracted by the internal prism propagates in refraction angle theta 'incident surface 1a, the reflection surface 1b is reached.
 直角プリズム1において入射面1aと反射面1bとのなす角度はαであり、反射面1bへの入射角は(α-θ’)となる。なお、スネル屈折則により、sinθ=n×sinθ’の関係を満たす。ここで、反射面1bの入射光が全反射により出射面1cに偏向するためには、n×sin(α-θ’)≧1を満たすことが必要である。すなわち、直角プリズム1の屈折率nは、以下の関係を満たすことが必要である。 In the right-angle prism 1, the angle formed by the incident surface 1a and the reflecting surface 1b is α, and the incident angle to the reflecting surface 1b is (α−θ ′). In addition, the relationship of sin θ 0 = n P × sin θ ′ is satisfied by the Snell refraction law. Here, it is necessary to satisfy n P × sin (α−θ ′) ≧ 1 in order for the incident light on the reflecting surface 1b to be deflected to the emitting surface 1c by total reflection. That is, the refractive index n P of the right-angle prism 1, it is necessary to satisfy the following relation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、収束または発散光の入射光で全反射光の入射角条件が厳しい設定は、図3の方向の入射角θの条件(θ>0)で、用いられる撮像レンズのFナンバーから、sinθ=1/(2F)で入射光の入射角範囲が規定される。 In addition, the setting where the incident angle condition of the total reflection light with the incident light of convergent or divergent light is severe is the condition of the incident angle θ 0 in the direction of FIG. 3 (θ 0 > 0), and from the F number of the imaging lens used, The incident angle range of incident light is defined by sin θ 0 = 1 / (2F).
 α=45°の直角プリズム1において、最大取込角である入射角θの光を全反射するための屈折率nの最低値のグラフを図4に示す。図4においては、入射角θと屈折率nの関係を示す直線より上の領域であれば全反射が可能であることを示す。図4に示すとおり、θ=10°(NA=0.17、F=2.9)では、n≧1.60、θ=15°(NA=0.26、F=1.9)では、n≧1.69、θ=20°(NA=0.34、F=1.5)では、n≧1.79、θ=25°(NA=0.42、F=1.2)では、n≧1.89である。 In right-angle prism 1 of alpha = 45 °, shows a graph of the minimum value of the refractive index n P for totally reflecting the light incident angle theta m is the maximum capture angle in FIG. FIG. 4 shows that total reflection is possible if the region is above the straight line indicating the relationship between the incident angle θ m and the refractive index n P. As shown in FIG. 4, when θ m = 10 ° (NA = 0.17, F = 2.9), n P ≧ 1.60, θ m = 15 ° (NA = 0.26, F = 1.9). ), N P ≧ 1.69, θ m = 20 ° (NA = 0.34, F = 1.5), n P ≧ 1.79, θ m = 25 ° (NA = 0.42, F = 1.2), n P ≧ 1.89.
 直角プリズム1の反射面1bで全反射された光は、出射面1cに到達する。出射面1cと反射面1bとのなす角度はβであり、出射面1cへの入射角は(β-α+θ’)となる。さらに、接着層3および光学フィルタ2を透過して光学フィルタ2の出射面2bから大気側へ出射する光の出射角θは、スネル屈折則によりsinθ=n×sin(β-α+θ’)となる。 The light totally reflected by the reflection surface 1b of the right-angle prism 1 reaches the emission surface 1c. The angle formed by the exit surface 1c and the reflection surface 1b is β, and the incident angle to the exit surface 1c is (β−α + θ ′). Furthermore, the outgoing angle θ of the light that passes through the adhesive layer 3 and the optical filter 2 and is emitted from the outgoing surface 2b of the optical filter 2 to the atmosphere side is sinθ = n P × sin (β−α + θ ′) according to Snell's refraction law. Become.
 なお、α=β=45°の直角プリズム1においては、sinθ=sinθとなり、出射角θは入射角θと等しい。 In the right angle prism 1 with α = β = 45 °, sin θ = sin θ 0 , and the exit angle θ is equal to the incident angle θ 0 .
 ここで、直角プリズム1が入射角θ=5~30°を最大入射角とした全反射プリズム(n=1.50~1.98)を考える。反射面1bで全反射した光は、以下に説明する接着層3の屈折率nが1.35~1.80および光学フィルタ2の屈折率nが1.35~2.50の範囲とすると、直角プリズム1と接着層3の界面および接着層3と光学フィルタ2の界面で全反射することはなく、それぞれの界面および光学フィルタ2と空気の界面で屈折した後、光学フィルタ2より固体撮像素子側の空気面に出射する。 Here, let us consider a total reflection prism (n P = 1.50 to 1.98) in which the right-angle prism 1 has an incident angle θ m = 5 to 30 ° as a maximum incident angle. The light totally reflected by the reflecting surface 1b has a refractive index n G of the adhesive layer 3 described below in the range of 1.35 to 1.80 and a refractive index n F of the optical filter 2 of 1.35 to 2.50. Then, there is no total reflection at the interface between the right-angle prism 1 and the adhesive layer 3 and at the interface between the adhesive layer 3 and the optical filter 2. The light is emitted to the air surface on the image sensor side.
 なお、三角柱プリズムを用いた光学素子において、入射光の入射角θの範囲がプリズムの反射面で全反射する屈折率nの関係を満たさない場合、例えば、n=1.50で入射角θが5°より大きな場合や、n=1.70で入射角θが16°より大きな場合や、n=1.90で入射角θが27°より大きな場合であっても、反射面に反射層を形成することで光損失を抑制できる。反射層としては、例えば、AgやAlなどの金属膜や、高屈折率の誘電体膜(以下、「高屈折率膜」という。)と低屈折率の誘電体膜(以下、「低屈折率膜」という。)を積層した誘電体多層膜などを用いればよい。反射面に反射層を形成したプリズムにおいては、反射面で全反射が可能なプリズムを用いる場合に比べて、安価なプリズム材料を使用できるという利点がある。一方で、反射層を成膜する工程が負荷となるとともに、反射率は100%に満たないことから、生産性および性能の点で不利である。なお、偏向素子1は、プリズムと反射層を備える構成も含めるものとする。 In an optical element using a triangular prism, when the range of the incident angle θ 0 of incident light does not satisfy the relationship of the refractive index n P that is totally reflected by the reflecting surface of the prism, for example, it is incident at n P = 1.50. When the angle θ 0 is larger than 5 °, when n P = 1.70 and the incident angle θ 0 is larger than 16 °, or when n P = 1.90 and the incident angle θ 0 is larger than 27 °. However, light loss can be suppressed by forming a reflective layer on the reflective surface. Examples of the reflective layer include a metal film such as Ag or Al, a high refractive index dielectric film (hereinafter referred to as “high refractive index film”) and a low refractive index dielectric film (hereinafter referred to as “low refractive index”). A dielectric multilayer film or the like in which films are referred to may be used. In the prism having a reflective layer formed on the reflective surface, there is an advantage that an inexpensive prism material can be used as compared with the case of using a prism capable of total reflection on the reflective surface. On the other hand, the process of forming the reflective layer becomes a load, and the reflectance is less than 100%, which is disadvantageous in terms of productivity and performance. The deflecting element 1 includes a configuration including a prism and a reflective layer.
 偏向素子は、接着層との屈折率の関係において式(2)を満足する屈折率nを有する材料からなる。偏向素子に用いる材料の屈折率nは、偏向素子の種類にもよるが、1.4~2.5が好ましい。偏向素子がプリズムの場合、屈折率nは、最大取込角が大きなほど小さなFナンバーの明るい撮像レンズとなるとの観点から1.70以上が好ましく、1.75以上が好ましく、1.80以上がより好ましい。 Deflecting element is made of a material having a refractive index n P satisfying formula (2) in relation to the refractive index of the adhesive layer. Refractive index n P of the material used for the deflection element, depending on the type of the deflection element, preferably 1.4 to 2.5. When the deflecting element is a prism, the refractive index n P is preferably 1.70 or more, more preferably 1.75 or more, and 1.80 or more from the viewpoint that the larger the maximum capture angle, the smaller the F-number bright imaging lens. Is more preferable.
 偏向素子として直角プリズムを用いる場合には、上記のとおり、nが1.55以下で最大入射角θが8°以上では反射面に反射層を備えるとよい。なお、反射層を備える場合であっても、屈折率nは、プリズム材料の屈折率とする。直角プリズムで最大入射角θで全反射を可能とするために、θ=8°でnは1.55超が好ましく、θ=10°でnは1.60以上が好ましく、θ=15°でnは1.69以上が好ましく、θ=20°でnは1.79以上が好ましく、θ=25°でnは1.89以上が好ましい。nの上限は、接着層の屈折率nとの差を0.5以下とできる観点および経済性の観点から、2.1が好ましく、2.0がより好ましい。 When a right-angle prism is used as the deflecting element, as described above, a reflective layer may be provided on the reflective surface when n P is 1.55 or less and the maximum incident angle θ m is 8 ° or more. Even when a reflective layer is provided, the refractive index n P is the refractive index of the prism material. In order to allow total reflection at a maximum incident angle θ m with a right angle prism, θ m = 8 ° and n P is preferably more than 1.55, θ m = 10 ° and n P is preferably 1.60 or more, n P is preferably 1.69 or more θ m = 15 °, n P is preferably 1.79 or more θ m = 20 °, n P by θ m = 25 ° is preferably 1.89 or more. The upper limit of n P is composition, from the viewpoint of the difference between the refractive index n G of the adhesive layer can be 0.5 or less, 2.1 is preferred, 2.0 is more preferable.
 偏向素子用の材料としては、上記nを有するガラス、樹脂等が挙げられ、ガラスが好ましい。1.70≦n<1.80のガラスとしては、光ガラス社製、J-LASF014(n=1.7879)、J-LASF016(n=1.7724)、J-LAK09(n=1.7339)、J-LAK18(n=1.7290)、J-LAK10(n=1.7199)、オハラ社製、S-LAH66(n=1.772)、S-YGH51(n=1.755)、S-LAL19(n=1.729)等が挙げられる。 As the material for the deflection element, glass having the n P, resin and the like, glass being preferred. Examples of the glass having 1.70 ≦ n P <1.80 include J-LASF014 (n P = 1.7879), J-LASF016 (n P = 1.7724), J-LAK09 (n P = 1.7339), J-LAK18 (n P = 1.7290), J-LAK10 (n P = 1.7199), manufactured by OHARA, S-LAH66 (n P = 1.772), S-YGH51 ( n P = 1.755), include S-LAL19 (n P = 1.729 ) and the like.
 1.80≦n<1.90のガラスとしては、光ガラス社製、J-LASFH22(n=1.8483)、J-LASF05(n=1.8346)、J-LASF09(n=1.8158)、J-LASF015(n=1.8038)、オハラ社製、S-LAH92(n=1.892)、S-LAH58(n=1.883)、S-LAH89(n=1.851)、S-LAH55VS(n=1.835)、S-LAH53V(n=1.806)、S-LAH65VS(n=1.804)、HOYA社製、TAFD30(n=1.883)、TAFD5F(n=1.835)、TAFD5G(n=1.835)、TAF3(n=1.804)等が挙げられる。 Examples of the glass having 1.80 ≦ n P <1.90 include J-LASFH22 (n P = 1.88483), J-LASF05 (n P = 1.8346), J-LASF09 (n P = 1.8158), J-LASF015 (n P = 1.8038), manufactured by Ohara, S-LAH92 (n P = 1.892), S-LAH58 (n P = 1.883), S-LAH89 ( n P = 1.851), S- LAH55VS (n P = 1.835), S-LAH53V (n P = 1.806), S-LAH65VS (n P = 1.804), HOYA Corporation, TAFD30 ( n P = 1.883), TAFD5F (n P = 1.835), TAFD5G (n P = 1.835), TAF3 (n P = 1.804) and the like.
 1.90≦nのガラスとしては、光ガラス社製、J-LASFH21(n=1.9535)、J-LASFH9(n=1.9024)、オハラ社製、S-LAH88(n=1.916)、HOYA社製、TAFD45(n=1.954)、TAFD35(n=1.911)、TAFD25(n=1.904)、TAFD37(n=1.900)、TAFD55(n=2.001)、FDS18-W(n=1.946)、E-FDS1-W(n=1.923)等が挙げられる。 As glass of 1.90 ≦ n P , J-LASFH21 (n P = 1.9535), J-LASFH9 (n P = 1.9024) manufactured by Hikari Glass Co., Ltd., S-LAH88 (n P = 1.916), HOYA Corporation, TAFD45 (n P = 1.954) , TAFD35 (n P = 1.911), TAFD25 (n P = 1.904), TAFD37 (n P = 1.900), TAFD55 (n P = 2.001), FDS18-W (n P = 1.946), E-FDS1-W (n P = 1.923) , and the like.
 また、偏向素子には、上記屈折率nの他に、接着層および光フィルタの種類に応じて、UV透過性が求められる場合がある。例えば、以下に説明する接着層が、紫外線硬化性材料を用いて得られる紫外線硬化材料を含む場合であって、光学フィルタがUVを遮断する機能を有する場合には、偏向素子はUV透過性を有するとよい。なお、本明細書において、偏向素子の光透過性をいう場合は、入射する光と、入射後偏向して出射する光との関係における光透過性をいう。 Moreover, the deflection element, in addition to the refractive index n P, depending on the type of adhesive layer and the optical filter, there are cases where UV permeability is required. For example, when the adhesive layer described below includes an ultraviolet curable material obtained by using an ultraviolet curable material, and the optical filter has a function of blocking UV, the deflecting element has UV transparency. It is good to have. In this specification, the light transmission of the deflection element refers to the light transmission in the relationship between the incident light and the light that is deflected and emitted after the incidence.
 偏向素子に透過性が求められるUVの波長は、接着層に用いられる紫外線硬化性材料によるが、概ね250~400nmの範囲である。紫外線硬化性材料の硬化には、特には、HgXe放電ランプの発光強度が高いi線(365nm)近傍の波長が好ましく用いられる。これを勘案すると上記の場合、波長340~390nmの最大透過率は、10%以上が好ましく、50%以上がより好ましい。偏向素子は、特には、365nmの光に対する透過率は、5%以上が好ましく、20%以上がより好ましく、50%以上がさらに好ましい。UV照射時間の短縮には高透過率ほど有利であり、70%以上が好ましく、80%以上がさらに好ましい。 The wavelength of UV for which the deflection element is required to transmit is generally in the range of 250 to 400 nm depending on the ultraviolet curable material used for the adhesive layer. For curing the ultraviolet curable material, in particular, a wavelength in the vicinity of i-line (365 nm) where the emission intensity of the HgXe discharge lamp is high is preferably used. Considering this, in the above case, the maximum transmittance at a wavelength of 340 to 390 nm is preferably 10% or more, and more preferably 50% or more. In particular, the transmittance of the deflecting element with respect to 365 nm light is preferably 5% or more, more preferably 20% or more, and further preferably 50% or more. Higher transmittance is more advantageous for shortening the UV irradiation time, preferably 70% or more, and more preferably 80% or more.
 さらに、偏向素子は可視光を透過するとよい。前述の1.70≦nのガラスは何れも、UV波長365nmの内部透過率が10%以上であるとともに、420nm~700nmの可視域の内部透過率が92%以上で、偏向素子用のガラス材料として使用できる。 Further, the deflection element may transmit visible light. Any of the glass of 1.70 ≦ n P described above has an internal transmittance of UV wavelength 365 nm of 10% or more and an internal transmittance in the visible region of 420 nm to 700 nm of 92% or more. Can be used as material.
 本実施形態の光学素子において、偏向素子として三角柱プリズムを用いる場合、例えば、図1、図3に示す三角柱プリズム1では、YZ断面における3箇所の角部は、直角または鋭角となっているためチッピングやクラックの原因となりやすい。したがって、これらの角部を面取りすることが好ましい。 In the optical element of this embodiment, when a triangular prism is used as a deflecting element, for example, in the triangular prism 1 shown in FIGS. 1 and 3, the three corners in the YZ cross section are right angles or acute angles, so that chipping is performed. And easily cause cracks. Therefore, it is preferable to chamfer these corners.
 図5に例示する、本実施形態の光学素子に用いられる三角柱プリズム11は、図1に示される直角プリズム1のYZ断面における3箇所の角部に面取り加工を施して得られる。 The triangular prism 11 used in the optical element of the present embodiment illustrated in FIG. 5 is obtained by chamfering the three corners in the YZ section of the right-angle prism 1 shown in FIG.
 三角柱プリズム11は、入射面1aと反射面1bの交差する角部が幅w1のW1面を、反射面1bと出射面1cの交差する角部が幅w2のW2面を、および、入射面1aと出射面1cの交差する角部(頂角=90°)が幅cのC面を有する。W1面、W2面、およびC面は、面取部である。このように、角部を面取り加工して得られる面取部を有することでチッピングやクラックの発生を軽減できる。 The triangular prism 11 includes a W1 surface having a width w1 at a corner where the incident surface 1a and the reflecting surface 1b intersect, a W2 surface having a width w2 at a corner where the reflecting surface 1b and the emitting surface 1c intersect, and the incident surface 1a. And the exit surface 1c intersect at a corner (vertical angle = 90 °) has a C-plane with a width c. The W1 surface, the W2 surface, and the C surface are chamfered portions. Thus, the occurrence of chipping and cracks can be reduced by having a chamfered portion obtained by chamfering the corner portion.
 面取り加工は、三角柱プリズム11の入射面1aの信号光有効幅Φinおよび出射面1cの信号光有効幅Φoutを確保できる範囲で行う。 The chamfering process is performed within a range where the signal light effective width Φin of the incident surface 1a of the triangular prism 11 and the signal light effective width Φout of the output surface 1c can be secured.
 面取部の有無に関わらず本実施形態の光学素子において、傾斜角偏差が同じである透過屈折面における屈折光路偏角に比べて反射面における反射光路偏角は大きいため、反射面に要求される面精度は、透過屈折面の2~4倍程度厳しい。そのため、三角柱プリズム11の反射面1bの平坦性は、撮像装置の解像度に影響する波面収差に関わり、使用するプリズム材料の剛性や光の入射面1a、および出射面1cにおける成膜応力や接合される接着層に依存する。 In the optical element of this embodiment regardless of the presence or absence of a chamfered portion, the reflected light path deviation angle on the reflecting surface is larger than the refracted optical path deviation angle on the transmission refracting surface having the same inclination angle deviation, and thus is required for the reflecting surface. The surface accuracy is about 2 to 4 times that of the transmission refractive surface. Therefore, the flatness of the reflecting surface 1b of the triangular prism 11 is related to the wavefront aberration that affects the resolution of the imaging device, and the rigidity of the prism material used, the film formation stress on the light incident surface 1a, and the light exit surface 1c, and bonding. Depends on the adhesive layer.
 すなわち、三角柱プリズム11の、入射面1aや出射面1cには、後述するように反射防止層や反射層を成膜する場合があり、その際に膜応力が発生する。また、入射面1aや出射面1cには接着層3を介して光学フィルタ2を一体化する際に、熱膨張率の相違(接着層の形成に熱硬化性材料を使用した場合)や重合収縮(接着層の形成に熱硬化性材料や光硬化性材料を使用した場合)にともなう残量応力が発生する。これらの応力の影響で、面取幅w1、w2が狭いと三角柱プリズム11の反射面1bの端部の平坦性が確保されない場合がある。このような、三角柱プリズム11を用いた光学素子を、例えば、図2に示すような撮像装置に用いた場合には、撮像レンズ系の収差劣化につながり、撮像装置の解像度低下をもたらすおそれがある。 That is, an antireflection layer or a reflection layer may be formed on the incident surface 1a and the exit surface 1c of the triangular prism 11 as described later, and film stress is generated at that time. Further, when the optical filter 2 is integrated with the entrance surface 1a and the exit surface 1c via the adhesive layer 3, the difference in thermal expansion coefficient (when a thermosetting material is used for forming the adhesive layer) or polymerization shrinkage Residual stress is generated due to (when a thermosetting material or a photocurable material is used for forming the adhesive layer). Due to the influence of these stresses, if the chamfer widths w1 and w2 are narrow, the flatness of the end portion of the reflecting surface 1b of the triangular prism 11 may not be ensured. When such an optical element using the triangular prism 11 is used in, for example, an imaging apparatus as shown in FIG. 2, there is a possibility that the aberration of the imaging lens system is deteriorated and the resolution of the imaging apparatus is lowered. .
 上記観点から、面取部における面取幅w1、w2は、それぞれ独立に0.1mm以上が好ましく、0.2mm以上がより好ましい。面取幅w1、w2を大きくとると三角柱プリズム11およびこれを用いた光学素子全体が大型化するため、面取幅w1、w2はそれぞれ独立に0.4mm以下が好ましい。また、面取幅cは、0.05~0.2mm程度が好ましい。 From the above viewpoint, the chamfering widths w1 and w2 at the chamfered portion are preferably independently 0.1 mm or more, and more preferably 0.2 mm or more. When the chamfer widths w1 and w2 are increased, the triangular prism 11 and the entire optical element using the prism prism 11 are increased in size. Therefore, the chamfer widths w1 and w2 are preferably independently 0.4 mm or less. The chamfer width c is preferably about 0.05 to 0.2 mm.
 図5に示す面取部であるW1面、W2面およびC面は、後述の偏向素子の側面と同様に、この面に入射した光が迷光化しないような、拡散面が好ましい。また、これらの面には、光吸収遮光膜を備えるとさらに好ましい。 The W1 surface, W2 surface, and C surface, which are the chamfered portions shown in FIG. 5, are preferably diffusing surfaces that prevent light incident on this surface from becoming stray light, similarly to the side surfaces of the deflecting element described later. Further, it is more preferable that a light absorption / shielding film is provided on these surfaces.
<接着層>
 光学素子10において、接着層3は偏向素子1と光学フィルタ2の間に設けられ、両者を接着して一体化する機能を有する。接着層3は光学素子10が透過すべき所定の波長の光、例えば、固体撮像素子が信号光として受光する波長域の光に対して透明であり、光学フィルタ2との屈折率の関係において式(1)を満足し、かつ偏向素子1との屈折率の関係において式(2)を満足する屈折率nを有する接着層であれば、特に制限なく使用できる。
<Adhesive layer>
In the optical element 10, the adhesive layer 3 is provided between the deflection element 1 and the optical filter 2 and has a function of bonding and integrating the two. The adhesive layer 3 is transparent to light having a predetermined wavelength to be transmitted by the optical element 10, for example, light in a wavelength range that the solid-state imaging device receives as signal light, and has an expression in relation to the refractive index with the optical filter 2. Any adhesive layer having a refractive index n G that satisfies (1) and satisfies the formula (2) in relation to the refractive index with the deflecting element 1 can be used without particular limitation.
 接着層の構成材料は、好ましくは、熱硬化材料または光硬化材料を含む。光硬化材料としては紫外線硬化材料が好ましい。熱硬化材料または光硬化材料を含む接着層の形成には、加熱または紫外線等の光照射により重合固化する、言い換えれば、硬化することで接着層を固定させる熱硬化性材料または光硬化性材料が使用できる。熱硬化性材料に比べて光硬化性材料は重合固化が短時間で完了し、生産性が高い。さらに、光硬化性材料は、硬化の際に光学素子を構成する他の部材が熱による影響を受けにくいため、耐熱性の低い部材を含む場合に有利である。 The constituent material of the adhesive layer preferably includes a thermosetting material or a photo-curing material. As the photocurable material, an ultraviolet curable material is preferable. For the formation of an adhesive layer containing a thermosetting material or a photo-curing material, a thermosetting material or a photo-curing material that fixes and solidifies by polymerization by heating or irradiation with light such as ultraviolet rays, in other words, is used. Can be used. Compared with the thermosetting material, the photocurable material completes the polymerization and solidification in a short time and has high productivity. Furthermore, the photo-curable material is advantageous when a member having low heat resistance is included because other members constituting the optical element are not easily affected by heat during curing.
 光硬化性材料としては紫外線硬化性材料が好ましく、紫外線硬化性材料を用いる場合は、光重合開始剤を添加することが好ましい。紫外線硬化性材料に対する、光照射波長や重合感度は、紫外線硬化性材料の種類、または、光重合開始剤の種類に依存する。紫外線硬化性材料を用いる場合、照射光としては、250~400nmの波長域の光が用いられ、HgXe放電ランプの発光強度が高いi線(365nm)近傍の光が多く用いられる。 As the photocurable material, an ultraviolet curable material is preferable, and when an ultraviolet curable material is used, it is preferable to add a photopolymerization initiator. The light irradiation wavelength and the polymerization sensitivity for the ultraviolet curable material depend on the type of the ultraviolet curable material or the type of the photopolymerization initiator. When an ultraviolet curable material is used, light in the wavelength range of 250 to 400 nm is used as irradiation light, and light in the vicinity of i-line (365 nm) where the emission intensity of the HgXe discharge lamp is high is often used.
 熱硬化性材料としては、例えば、EPO-TEK社のエポキシ系樹脂、#301、#301-2、#310M-1等が使用可能である。光硬化性材料としては、例えば、紫外線硬化性材料として、Norland-Products社のメルカプトエステル系樹脂、NOA60シリーズやNTT-AT社のエポキシ系樹脂、AT3925M、3727E、アクリレート系樹脂、#18165、#6205等が使用可能である。 As the thermosetting material, for example, EPO-TEK epoxy resin, # 301, # 301-2, # 310M-1, etc. can be used. Examples of the photocurable material include, for example, an ultraviolet curable material, a mercaptoester resin from Norland-Products, an epoxy resin from NOA60 series and NTT-AT, AT3925M, 3727E, an acrylate resin, # 18165, # 6205. Etc. can be used.
 接着層3は、光および/または熱で硬化する硬化性材料が硬化した硬化材料を含む層である。接着層3は必要に応じて、本発明の効果を損なわない範囲で、硬化材料以外に非硬化材料からなる各種添加剤、例えば、UV吸収剤、NIR吸収剤等の吸収剤、重合開始剤や重合禁止剤を含んでもよい。 The adhesive layer 3 is a layer containing a cured material obtained by curing a curable material that is cured by light and / or heat. If necessary, the adhesive layer 3 is within a range that does not impair the effects of the present invention, and various additives made of non-cured materials in addition to the cured material, for example, UV absorbers, NIR absorbers and other absorbents, polymerization initiators, A polymerization inhibitor may be included.
 接着層3の屈折率nは、光学フィルタ2との屈折率の関係において式(1)を満足し、かつ偏向素子1との屈折率の関係において式(2)を満足する屈折率nである。接着層3の屈折率nは、組み合せる偏向素子1および光学フィルタ2によるが、具体的には、1.35~1.80が好ましく、1.45~1.65がより好ましい。nが1.35以上であれば、光学フィルタ2に含まれる最厚部材において安価で種類の豊富な屈折率nの材料を使用できる点で好ましく、1.80以下であれば屈折率nおよび屈折率nとの屈折率差を抑制できるため各界面のフレネル反射が小さい点で好ましい。 Refractive index n G of the adhesive layer 3 satisfies the formula (1) in relation to the refractive index of the optical filter 2, and the refractive index of the relationship between the deflection element 1 satisfying the formula (2) refractive index n G It is. The refractive index n G of the adhesive layer 3 depends on the deflecting element 1 and the optical filter 2 to be combined, but specifically, it is preferably 1.35 to 1.80, more preferably 1.45 to 1.65. If n G is 1.35 or more, it is preferable in that the thickest member included in the optical filter 2 can use inexpensive and abundant kinds of materials with a refractive index n F , and if it is 1.80 or less, the refractive index n. Since the difference in refractive index between P and refractive index n F can be suppressed, it is preferable in that Fresnel reflection at each interface is small.
 接着層3は光学素子10が透過すべき所定の波長の光に対して透明である。光学素子が用いられる光学装置によるが、一般的には少なくとも可視光に対して高透過性を示すとよい。また、接着層3の厚さは、透明性、接着強度、生産性等の観点から1~20μmが好ましく、2~10μmがより好ましい。 The adhesive layer 3 is transparent to light of a predetermined wavelength that the optical element 10 should transmit. Although it depends on the optical device in which the optical element is used, it is generally preferable that it exhibits high transparency to at least visible light. The thickness of the adhesive layer 3 is preferably 1 to 20 μm and more preferably 2 to 10 μm from the viewpoint of transparency, adhesive strength, productivity, and the like.
 なお、偏向素子1と光学フィルタ2を接合する接着層3として、紫外線硬化性材料を用いる場合、以下の製造上の理由から偏向素子1または光学フィルタ2がUVを透過する材料である必要がある。例えば、図1の光学素子10を製造する場合、まず、光学素子10における接着層3が、接着層3を得るための紫外線硬化性材料を含む接着層形成用組成物からなる層である光学素子前駆体を作製する。次いで、該光学素子前駆体の偏向素子1側または光学フィルタ2側からUVを照射することで接着層形成用組成物からなる層中の紫外線硬化性材料を硬化させて接着層3とする。 When an ultraviolet curable material is used as the adhesive layer 3 for joining the deflecting element 1 and the optical filter 2, the deflecting element 1 or the optical filter 2 needs to be a material that transmits UV for the following manufacturing reasons. . For example, when manufacturing the optical element 10 of FIG. 1, first, the optical element in which the adhesive layer 3 in the optical element 10 is a layer made of an adhesive layer forming composition containing an ultraviolet curable material for obtaining the adhesive layer 3. A precursor is prepared. Next, the UV curable material in the layer made of the composition for forming the adhesive layer is cured by irradiating UV from the deflecting element 1 side or the optical filter 2 side of the optical element precursor to form the adhesive layer 3.
 なお、本発明の光学素子にUV遮断性が求められる場合、偏向素子1にUV反射層を形成する、光学フィルタ2にUV吸収剤の含有層やUV反射層を形成する等が行われる。このような光学素子において、紫外線硬化性材料を用いて接着層を形成する場合、接着層が光学素子の偏向素子側から入射するUVを受光可能であるか、または光学素子の光学フィルタ側から入射するUVを受光可能であるように光学素子を構成する。 When UV blocking properties are required for the optical element of the present invention, a UV reflecting layer is formed on the deflecting element 1, a UV absorber containing layer or a UV reflecting layer is formed on the optical filter 2, and the like. In such an optical element, when an adhesive layer is formed using an ultraviolet curable material, the adhesive layer can receive UV incident from the deflecting element side of the optical element or incident from the optical filter side of the optical element. The optical element is configured so as to be able to receive UV.
 接着層に紫外線硬化性材料を硬化させるのに十分な量のUVが到達できれば、接着層の偏向素子側および光学フィルタ側の両方にUV遮断性を有する部材が存在してもよいが、いずれか一方の側にUV遮断性を有する部材が存在しないことが好ましく、偏向素子側から接着層に十分な量のUVが到達できる構成が好ましい。偏向素子または光学フィルタのUV透過率は、上記偏向素子について説明した値を適用できる。 As long as a sufficient amount of UV reaches the adhesive layer to cure the ultraviolet curable material, there may be a member having UV blocking properties on both the deflection element side and the optical filter side of the adhesive layer. It is preferable that no member having UV blocking properties be present on one side, and a configuration in which a sufficient amount of UV can reach the adhesive layer from the deflecting element side is preferable. The value described for the deflection element can be applied to the UV transmittance of the deflection element or the optical filter.
<光学フィルタ>
 本発明の光学素子における光学フィルタとしては、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断する光学フィルタであって、光学フィルタに含まれる最厚部材の屈折率nが接着層の屈折率nとの関係において式(1)を満足すれば、特に制限なく使用できる。
<Optical filter>
The optical filter in the optical element of the present invention is an optical filter that selectively blocks light in at least a part of the region from the ultraviolet region to the near infrared region, and the refractive index n F of the thickest member included in the optical filter. Can satisfy the expression (1) in relation to the refractive index n G of the adhesive layer, and can be used without particular limitation.
 光学フィルタとしては、例えば、(i)UV、および(ii)可視域から近赤外域にわたる少なくとも一部の領域の光、の両方を選択的に遮断する光学フィルタが挙げられる。該光学フィルタと紫外線硬化材料を含む接着層を組み合わせる場合、上記のとおり、偏向素子は、UV透過性を有することが好ましく、具体的には、波長340~390nmの最大透過率が10%以上であるのが好ましい。 Examples of the optical filter include an optical filter that selectively blocks both (i) UV and (ii) light in at least a part of the region from the visible region to the near infrared region. When combining the optical filter and the adhesive layer containing an ultraviolet curable material, as described above, the deflecting element preferably has UV transparency. Specifically, the maximum transmittance at a wavelength of 340 to 390 nm is 10% or more. Preferably there is.
 このような光学フィルタとして、具体的には(i)UVおよび(ii-1)NIRを遮断し、可視光を透過するNIRカットフィルタや、(i)UVおよび(ii-2)可視光を遮断し、NIRを透過するNIR透過フィルタが挙げられる。また、(i)UVおよび(ii-3)近赤外域における第1の領域の光を遮断し、可視光と、近赤外域における第1の領域より長波長側にある第2の領域の光を透過する帯域透過フィルタも挙げられる。 Specific examples of such optical filters include (i) UV and (ii-1) blocking NIR and transmitting visible light, and (i) UV and (ii-2) blocking visible light. And an NIR transmission filter that transmits NIR. Further, (i) UV and (ii-3) block light in the first region in the near infrared region, and visible light and light in the second region on the longer wavelength side than the first region in the near infrared region. A band-pass filter that transmits light is also included.
 これらの光学フィルタが有する(i)UVの遮断性としては、例えば、波長300~400nmのUVの平均透過率を10%以下とする遮断性が好ましく、2%以下がより好ましい。 These optical filters have (i) UV blocking properties such as, for example, blocking properties with an average UV transmittance of 300 to 400 nm being preferably 10% or less, and more preferably 2% or less.
 上記NIRカットフィルタが有する(ii-1)NIRの遮断性としては、例えば、波長700~1100nmのNIRの平均透過率が、5%以下となる遮断性が好ましく、2%以下がより好ましい。NIRカットフィルタにおける可視光透過性としては、例えば、波長440~620nmの可視光の平均透過率が、80%以上であるのが好ましく、90%以上がより好ましい。 (Ii-1) The NIR blocking property of the NIR cut filter is preferably a blocking property such that the average transmittance of NIR having a wavelength of 700 to 1100 nm is 5% or less, and more preferably 2% or less. As the visible light transmittance in the NIR cut filter, for example, the average transmittance of visible light having a wavelength of 440 to 620 nm is preferably 80% or more, and more preferably 90% or more.
 上記NIR透過フィルタが有する(ii-2)可視光の遮断性としては、例えば、波長400~730nmの可視光の平均透過率が、5%以下となる遮断性が好ましく、2%以下がより好ましい。NIR透過フィルタにおけるNIR透過性としては、例えば、NIR波長800~1000nmの間に透過率が80%以上となる連続する40nm以上の波長域を有するとよく、80nm以上の波長域を有すると好ましい。 (Ii-2) The visible light blocking property of the NIR transmission filter is preferably, for example, a blocking property in which the average transmittance of visible light having a wavelength of 400 to 730 nm is 5% or less, and more preferably 2% or less. . As the NIR transmittance in the NIR transmission filter, for example, it is preferable that the NIR wavelength has a continuous wavelength region of 40 nm or more with a transmittance of 80% or more between NIR wavelengths of 800 to 1000 nm, and preferably has a wavelength region of 80 nm or more.
 上記帯域透過フィルタが有する(ii-3)近赤外域における第1の領域の光を遮断する遮断性としては、例えば、NIR波長700~1100nmにおいて、第1の領域より長波長側にある第2の領域の連続する透過波長帯域を除く第1の領域のNIRの平均透過率は5%以下が好ましく、2%以下がより好ましい。帯域透過フィルタにおける第1の領域より長波長側にある第2の領域のNIRの透過性としては、例えば、NIR波長800~1000nmの間に透過率が80%以上となる連続する40nm以上かつ80nm以下の波長域を有するとよく、40nm以上かつ60nm以下の波長域を有すると好ましい。帯域透過フィルタにおける可視光透過性としては、(ii-1)と同様の可視光透過性が好ましい。 For example, (ii-3) the blocking property of blocking the light in the first region in the near-infrared region of the band-pass filter has a second wavelength which is longer than the first region at the NIR wavelength of 700 to 1100 nm. The average transmittance of NIR in the first region excluding the continuous transmission wavelength band in the region is preferably 5% or less, and more preferably 2% or less. As the NIR transmittance of the second region on the longer wavelength side of the first region in the band pass filter, for example, continuous 40 nm or more and 80 nm with a transmittance of 80% or more between NIR wavelengths 800 to 1000 nm. It may have the following wavelength range, and preferably has a wavelength range of 40 nm or more and 60 nm or less. The visible light transmittance in the band-pass filter is preferably the same visible light transmittance as (ii-1).
 上記光の選択遮断性を有する光学フィルタの具体的な構成である図6A~図6Cは、本実施形態の光学素子に用いる光学フィルタ2A、2Bおよび2Cをそれぞれ示すYZ断面図である。光学フィルタ2A、2Bおよび2Cは、例えば、図1に示す光学素子10の光学フィルタ2に替えて使用できる。光学フィルタ2A、2Bおよび2Cにおいて、左辺が接着層3と接する入射面2aを示し、右辺が大気と接する出射面2bを示す。 6A to 6C, which are specific structures of the optical filter having selective light blocking properties, are YZ cross-sectional views respectively showing the optical filters 2A, 2B, and 2C used in the optical element of the present embodiment. The optical filters 2A, 2B and 2C can be used in place of the optical filter 2 of the optical element 10 shown in FIG. 1, for example. In the optical filters 2A, 2B and 2C, the left side shows the incident surface 2a in contact with the adhesive layer 3, and the right side shows the outgoing surface 2b in contact with the atmosphere.
 図6Aに示す光学フィルタ2Aは、吸収型基板21のみからなる。吸収型基板21の形状は、互いに対向する一対の主面を有する平行平板形状であり、光の遮断は吸収により行う。光学フィルタ2Aにおいては、光学フィルタに含まれる最厚部材は、吸収型基板21であり、光学フィルタ2Aの屈折率nは吸収型基板21の屈折率である。 The optical filter 2A shown in FIG. The shape of the absorption-type substrate 21 is a parallel plate shape having a pair of main surfaces facing each other, and light is blocked by absorption. In the optical filter 2 </ b> A, the thickest member included in the optical filter is the absorption substrate 21, and the refractive index n F of the optical filter 2 </ b> A is the refractive index of the absorption substrate 21.
 吸収型基板21としては、吸収型のガラス基板または樹脂と吸収色素を含有する樹脂基板(以下、「吸収型樹脂基板」という。)等が挙げられる。吸収型基板21の厚さは、構成によるが、20μm以上が好ましい。吸収型のガラス基板の場合、厚さは50~500μmが好ましく、吸収型樹脂基板の場合、厚さは20~200μmが好ましい。 Examples of the absorbing substrate 21 include an absorbing glass substrate or a resin substrate containing a resin and an absorbing dye (hereinafter referred to as “absorbing resin substrate”). The thickness of the absorption substrate 21 is preferably 20 μm or more, although it depends on the configuration. In the case of an absorption type glass substrate, the thickness is preferably 50 to 500 μm, and in the case of an absorption type resin substrate, the thickness is preferably 20 to 200 μm.
 吸収型のガラス基板は吸収型のガラスを平行平板形状に成形して得られる。吸収型のガラスとしては、CuOを含有するフツリン酸塩系ガラス、CuOを含有するリン酸塩系ガラス等が挙げられる。以下、CuOを含有するフツリン酸塩系ガラスおよびCuOを含有するリン酸塩系ガラスを、総称して「CuO含有ガラス」という。 The absorption glass substrate is obtained by forming absorption glass into a parallel plate shape. Examples of the absorption type glass include fluorophosphate glass containing CuO, phosphate glass containing CuO, and the like. Hereinafter, the fluorophosphate glass containing CuO and the phosphate glass containing CuO are collectively referred to as “CuO-containing glass”.
 CuO含有ガラスは、典型的には、波長700~1100nmのNIRを吸収する能力を有する。CuO含有ガラスにおいては、CuO含有量および厚さを調節することで、近赤外域における吸収能を調整できる。 CuO-containing glass typically has an ability to absorb NIR having a wavelength of 700 to 1100 nm. In the CuO-containing glass, the absorption ability in the near infrared region can be adjusted by adjusting the CuO content and thickness.
 また、例えば、Fe、MoO、WO、CeO、Sb、V等の1種または2種以上を含有するCuO含有ガラスは、紫外域の短波長側、例えば、波長300nm以下に吸収特性を有する。吸収型のガラス基板の屈折率としては、CuO含有ガラスの屈折率として、1.40~1.75が好ましく、1.45~1.60が好ましい。 In addition, for example, CuO-containing glass containing one or more of Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc. is a short wavelength side in the ultraviolet region, For example, it has an absorption characteristic at a wavelength of 300 nm or less. The refractive index of the absorption type glass substrate is preferably 1.40 to 1.75, more preferably 1.45 to 1.60, as the refractive index of the CuO-containing glass.
 吸収型樹脂基板は、樹脂中に吸収色素が均一に溶解または分散した基板である。樹脂は平行平板形状を形成するためのマトリックス成分であり、透明樹脂が好ましい。吸収色素としては、光学フィルタ2に求められる遮断波長の光を選択的に吸収する色素が用いられる。具体的には、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に吸収する色素が挙げられ、上記(i)に対応する波長域の光を選択的に吸収するUV吸収色素と、上記(ii-1)、(ii-2)、(ii-3)にそれぞれ対応する波長域の光を選択的に吸収する吸収色素のいずれかを組み合せて使用できる。 The absorbing resin substrate is a substrate in which the absorbing dye is uniformly dissolved or dispersed in the resin. The resin is a matrix component for forming a parallel plate shape, and a transparent resin is preferable. As the absorbing dye, a dye that selectively absorbs light having a cutoff wavelength required for the optical filter 2 is used. Specific examples include a dye that selectively absorbs light in at least a part of the region from the ultraviolet region to the near infrared region, and a UV absorbing dye that selectively absorbs light in the wavelength region corresponding to the above (i). And any one of the absorbing dyes that selectively absorb light in the wavelength regions corresponding to the above (ii-1), (ii-2), and (ii-3), respectively.
 吸収型樹脂基板では、吸収色素の選定および濃度や板厚の調整により、吸収波長帯および吸光特性を調整できる。吸収型樹脂基板の屈折率は、マトリックス成分である樹脂の屈折率による。吸収型樹脂基板の屈折率としては、1.35~1.75が好ましく、1.45~1.60が好ましい。 In the absorption type resin substrate, the absorption wavelength band and the light absorption characteristics can be adjusted by selecting the absorption dye and adjusting the concentration and thickness. The refractive index of the absorptive resin substrate depends on the refractive index of the resin that is the matrix component. The refractive index of the absorptive resin substrate is preferably 1.35 to 1.75, more preferably 1.45 to 1.60.
 図6Bに示す光学フィルタ2Bは、互いに対向する一対の主面を有する平行平板形状の基板21Bと、基板21Bの一方の主面上に形成された吸収層22からなる。光学フィルタ2Bにおいて、基板21Bの吸収層22と接していない主面が接着層3と接する入射面2aであり、吸収層22の基板21Bと接していない主面が大気と接する出射面2bとなる。 The optical filter 2B shown in FIG. 6B includes a parallel plate-shaped substrate 21B having a pair of opposing main surfaces, and an absorption layer 22 formed on one main surface of the substrate 21B. In the optical filter 2B, the main surface that is not in contact with the absorption layer 22 of the substrate 21B is the incident surface 2a that is in contact with the adhesive layer 3, and the main surface that is not in contact with the substrate 21B of the absorption layer 22 is the emission surface 2b that is in contact with the atmosphere. .
 すなわち、光学フィルタ2Bにおいて、吸収層22は基板21Bの接着層3側と反対側の主面上に形成されている。光学素子10に用いる光学フィルタ2としては、基板21Bの接着層3側に吸収層22を有する構成であってもよい。ただし、固体撮像素子の受光面に近い層ほどその反射光が画質劣化に影響する迷光となりやすいとの観点から吸収層22が基板21Bの接着層3側と反対側の主面上に形成された光学フィルタ2Bが好ましい。 That is, in the optical filter 2B, the absorption layer 22 is formed on the main surface opposite to the adhesive layer 3 side of the substrate 21B. The optical filter 2 used in the optical element 10 may have a configuration having the absorption layer 22 on the adhesive layer 3 side of the substrate 21B. However, the absorbing layer 22 is formed on the main surface opposite to the adhesive layer 3 side of the substrate 21B from the viewpoint that the closer to the light receiving surface of the solid-state imaging device, the reflected light tends to be stray light that affects image quality degradation. The optical filter 2B is preferable.
 基板21Bは、光学フィルタ2Aにおける吸収型基板21と同じ吸収型の基板であってもよく、紫外域から近赤外域に吸収を有しない透明基板であってもよい。透明基板としては、透明なガラスや、水晶、ニオブ酸リチウム、サファイア等の結晶、ソーダライムガラス等に化学強化を施した化学強化ガラス、結晶化ガラス、または透明樹脂からなる基板等が挙げられ、これらの厚さはそれぞれ上記吸収型のガラス基板、吸収型樹脂基板と同様にできる。なお、吸収層22の厚みは、以下のとおり1~50μm程度であり、基板21Bより薄いことから、光学フィルタ2Bにおいて、光学フィルタに含まれる最厚部材は、基板21Bである。光学フィルタ2Bの屈折率nは基板21Bの屈折率である。 The substrate 21B may be the same absorption substrate as the absorption substrate 21 in the optical filter 2A, or may be a transparent substrate having no absorption from the ultraviolet region to the near infrared region. Examples of the transparent substrate include transparent glass, crystal such as crystal, lithium niobate, and sapphire, chemically tempered glass obtained by chemically strengthening soda lime glass, crystallized glass, or a substrate made of a transparent resin. These thicknesses can be the same as those of the absorption glass substrate and the absorption resin substrate, respectively. The absorption layer 22 has a thickness of about 1 to 50 μm as described below, and is thinner than the substrate 21B. Therefore, in the optical filter 2B, the thickest member included in the optical filter is the substrate 21B. The refractive index n F of the optical filter 2B is the refractive index of the substrate 21B.
 基板21Bの屈折率は、基板21Bがガラスの場合、吸収型基板21が吸収型のガラス基板の場合と同様に1.40~1.75が好ましく、1.45~1.60が好ましい。基板21Bが透明樹脂基板または吸収型樹脂基板の場合、吸収型基板21が吸収型樹脂基板の場合と同様に1.35~1.75が好ましく、1.45~1.60が好ましい。 When the substrate 21B is made of glass, the refractive index of the substrate 21B is preferably 1.40 to 1.75, and preferably 1.45 to 1.60, as in the case where the absorption substrate 21 is an absorption glass substrate. When the substrate 21B is a transparent resin substrate or an absorption resin substrate, it is preferably 1.35 to 1.75, and preferably 1.45 to 1.60, as in the case where the absorption substrate 21 is an absorption resin substrate.
 吸収層22は、樹脂中に吸収色素が均一に溶解または分散した層である。樹脂および吸収色素は、吸収型樹脂基板と同様とできる。吸収層22は、基板21B上に、例えば、湿式コーティング等の方法で形成できるため、薄膜化できるのに対して、吸収型樹脂基板はそれ自体で形状を維持するため、相応の厚みを有する点が異なる。吸収層22の厚みは、基板21Bより薄く、1~50μmが好ましく、2~20μmがより好ましい。 The absorbing layer 22 is a layer in which the absorbing dye is uniformly dissolved or dispersed in the resin. The resin and the absorbing dye can be the same as those of the absorbing resin substrate. Since the absorption layer 22 can be formed on the substrate 21B by a method such as wet coating, for example, the absorption layer 22 can be thinned, whereas the absorption resin substrate maintains its shape by itself and has a corresponding thickness. Is different. The absorption layer 22 is thinner than the substrate 21B, preferably 1 to 50 μm, more preferably 2 to 20 μm.
 吸収層22に用いる樹脂は透明樹脂が好ましい。吸収色素としては、これを含有する吸収層22と基板21Bを合わせて光学フィルタ2Bとした際に、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に吸収できる色素が挙げられる。 The resin used for the absorption layer 22 is preferably a transparent resin. Examples of the absorbing dye include a dye that can selectively absorb at least a part of light ranging from the ultraviolet region to the near infrared region when the absorption layer 22 containing the substrate and the substrate 21B are combined to form the optical filter 2B. .
 具体的には、上記(i)に対応する波長域の光を選択的に吸収するUV吸収色素、上記(ii-1)、(ii-2)、(ii-3)にそれぞれ対応する波長域の光を選択的に吸収する吸収色素等が挙げられる。吸収色素としては、吸収層22と基板21Bを合わせて光学フィルタ2Bとした際に、上記NIRカットフィルタ、NIR透過フィルタまたは帯域透過フィルタが有する吸収透過特性を示すようにできる吸収色素が、単独で、または2種以上の組み合わせで用いられる。なお、2種類以上の吸収色素を用いる場合には、異なる吸収色素を含む複数の吸収層を基板21B上に順次形成して積層型の吸収層22としてもよい。 Specifically, a UV-absorbing dye that selectively absorbs light in a wavelength region corresponding to (i) above, and a wavelength region corresponding to each of (ii-1), (ii-2), and (ii-3) above Absorption dyes that selectively absorb the light. As the absorption dye, when the absorption layer 22 and the substrate 21B are combined into the optical filter 2B, the absorption dye that can exhibit the absorption and transmission characteristics of the NIR cut filter, the NIR transmission filter, or the band transmission filter is used alone. Or a combination of two or more. When two or more kinds of absorbing dyes are used, a plurality of absorbing layers containing different absorbing dyes may be sequentially formed on the substrate 21B to form the laminated absorbing layer 22.
 図6Cに示す光学フィルタ2Cは、互いに対向する一対の主面を有する平行平板形状の基板21Cと、基板21Cの一方の主面上に形成された吸収層22と他方の主面上に形成された反射層23からなる。光学フィルタ2Cにおいて、反射層23の基板21Cと接していない主面が接着層3と接する入射面2aであり、吸収層22の基板21Cと接していない主面が大気と接する出射面2bとなる。 An optical filter 2C shown in FIG. 6C is formed on a parallel plate-shaped substrate 21C having a pair of main surfaces facing each other, an absorption layer 22 formed on one main surface of the substrate 21C, and the other main surface. The reflective layer 23 is made of. In the optical filter 2C, the main surface that is not in contact with the substrate 21C of the reflective layer 23 is the incident surface 2a that is in contact with the adhesive layer 3, and the main surface that is not in contact with the substrate 21C of the absorption layer 22 is the emission surface 2b that is in contact with the atmosphere. .
 すなわち、光学フィルタ2Cにおいて、反射層23は基板21Cの接着層3側の主面上に、吸収層22はその反対側の主面上に形成されている。光学素子10に用いる光学フィルタ2としては、基板21Cの接着層3側に吸収層22を有し、その反対側に反射層23を有する構成でもよい。さらに、光学フィルタ2は、基板21Cの接着層3側の主面上、またはその反対側の主面上に、吸収層22と反射層23をその順に積層した構成でもよい。ただし、固体撮像素子の受光面に近い層ほどその反射光が画質劣化に影響する迷光となりやすいとの観点から基板21Cの接着層3側に反射層23を有し、その反対側に吸収層22を有する光学フィルタ2Cが好ましい。 That is, in the optical filter 2C, the reflective layer 23 is formed on the main surface of the substrate 21C on the adhesive layer 3 side, and the absorption layer 22 is formed on the main surface on the opposite side. The optical filter 2 used in the optical element 10 may have a configuration in which the absorption layer 22 is provided on the adhesive layer 3 side of the substrate 21C and the reflection layer 23 is provided on the opposite side. Further, the optical filter 2 may have a configuration in which the absorption layer 22 and the reflective layer 23 are laminated in that order on the main surface of the substrate 21C on the adhesive layer 3 side or on the main surface on the opposite side. However, from the viewpoint that the layer closer to the light-receiving surface of the solid-state imaging device is more likely to have stray light that affects the image quality degradation, the substrate 21C has the reflective layer 23 on the adhesive layer 3 side, and the opposite side is the absorbing layer 22. The optical filter 2C having
 基板21Cは光学フィルタ2Bにおける基板21Bと同様にできる。吸収層22は光学フィルタ2Cとした際に、基板21Cの吸収特性および反射層23の反射特性と合わせて光学フィルタ2に求められる遮断特性が得られるように、用いる吸収色素を適宜選択する以外は、光学フィルタ2Bにおける吸収層22と同様にできる。なお、反射層23の厚みは、以下のとおり1~10μm程度であることから、光学フィルタ2Cにおいて、光学フィルタに含まれる最厚部材は、基板21Cである。光学フィルタ2Cの屈折率nは基板21Cの屈折率である。 The substrate 21C can be the same as the substrate 21B in the optical filter 2B. When the absorption layer 22 is the optical filter 2C, except that the absorption dye to be used is appropriately selected so that the blocking characteristics required for the optical filter 2 can be obtained together with the absorption characteristics of the substrate 21C and the reflection characteristics of the reflection layer 23. The same as the absorption layer 22 in the optical filter 2B. Since the thickness of the reflective layer 23 is about 1 to 10 μm as follows, in the optical filter 2C, the thickest member included in the optical filter is the substrate 21C. The refractive index n F of the optical filter 2C is the refractive index of the substrate 21C.
 反射層23は、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に反射する反射波長帯を有する層である。反射層23は、基板21Cおよび吸収層22と相補的に機能することにより、上記NIRカットフィルタ、NIR透過フィルタまたは帯域透過フィルタが有する吸収透過特性を示す反射特性を有することが好ましい。 The reflection layer 23 is a layer having a reflection wavelength band that selectively reflects light in at least a part of the region from the ultraviolet region to the near infrared region. The reflective layer 23 preferably has a reflection characteristic that exhibits the absorption transmission characteristic of the NIR cut filter, the NIR transmission filter, or the band transmission filter by functioning in a complementary manner with the substrate 21 </ b> C and the absorption layer 22.
 反射層23は、特には紫外域の光の一部を遮断する反射特性を有することが好ましい。その場合、波長350~400nmの平均透過率を10%以下とするUV遮断性を有するとよく、2%以下が好ましい。 The reflective layer 23 preferably has a reflection characteristic that blocks a part of light in the ultraviolet region. In that case, it is preferable to have UV blocking properties such that the average transmittance at a wavelength of 350 to 400 nm is 10% or less, and preferably 2% or less.
 反射層23は、低屈折率膜と高屈折率膜とを交互に積層した誘電体多層膜から構成されることが好ましい。誘電体多層膜は、必要に応じて金属膜も含む構成であってもよい。 The reflective layer 23 is preferably composed of a dielectric multilayer film in which low refractive index films and high refractive index films are alternately laminated. The dielectric multilayer film may be configured to include a metal film as necessary.
 誘電体多層膜は、求められる光学特性に応じて、その具体的な層数や膜厚、および使用する高屈折率材料および低屈折率材料の屈折率を、従来公知の手法を用いて設計し、製造できる。反射層23は、誘電体多層膜である場合、総膜厚は、1~10μmが好ましく、2~6μmがより好ましい。 The dielectric multilayer film is designed by using a conventionally known method for the specific number of layers and film thickness, and the refractive index of the high refractive index material and low refractive index material to be used according to the required optical characteristics. Can be manufactured. When the reflective layer 23 is a dielectric multilayer film, the total film thickness is preferably 1 to 10 μm, and more preferably 2 to 6 μm.
 なお、光学フィルタ2A、2Bおよび2Cの構成に含まれる、吸収型のガラス基板、吸収型樹脂基板、透明基板、吸収層、反射層等の各種部材およびその構成材料については、例えば、WO2016/114362Aに例示されている。 Various members such as an absorption type glass substrate, an absorption type resin substrate, a transparent substrate, an absorption layer, a reflection layer, and constituent materials included in the configuration of the optical filters 2A, 2B, and 2C and the constituent materials thereof are, for example, Is exemplified.
 以上、図6A~図6Cを用いて光学フィルタ2の例を説明したが、光学フィルタ2は光学フィルタ2A、2Bおよび2Cの構成に限定されず、本発明の趣旨に応じて、これらの構成を適宜変更可能である。例えば、光学フィルタ2は、基板21Bと、その主面のいずれか一方または両方に形成された反射層23と、からなるものでもよい。また、基板21Bと吸収層22からなる光学フィルタ2において、基板21Bの両方の主面に吸収層22が形成されたものでもよい。 As described above, the example of the optical filter 2 has been described with reference to FIGS. 6A to 6C. However, the optical filter 2 is not limited to the configuration of the optical filters 2A, 2B, and 2C, and may be configured according to the gist of the present invention. It can be changed as appropriate. For example, the optical filter 2 may be composed of the substrate 21B and the reflective layer 23 formed on one or both of the main surfaces thereof. In the optical filter 2 including the substrate 21B and the absorption layer 22, the absorption layer 22 may be formed on both main surfaces of the substrate 21B.
<屈折率n、屈折率nおよび屈折率nの関係>
 本発明の光学素子における偏向素子、接着層、光学フィルタの屈折率の関係、すなわち、屈折率n、屈折率nおよび屈折率nの関係について説明する。異なる屈折率n1とn2の光学界面において発生する反射光の反射率R[%]は、フレネル反射則より、入射角が30°以下の場合に、次式で近似できる。
<Relationship between refractive index n P , refractive index n G and refractive index n F >
The relationship between the refractive index of the deflecting element, the adhesive layer, and the optical filter in the optical element of the present invention, that is, the relationship between the refractive index n P , the refractive index n G, and the refractive index n F will be described. The reflectivity R [%] of the reflected light generated at the optical interfaces having different refractive indexes n1 and n2 can be approximated by the following equation when the incident angle is 30 ° or less from the Fresnel reflection law.
 R=|n1-n2|/(n1+n2)
 すなわち、Δn=|n1-n2|とすると、R=Δn/(n1+n2)となり、Δn>0.3ではR>0.09/(n1+n2)、Δn>0.2では、R>0.04/(n1+n2)、Δn>0.1ではR>0.01/(n1+n2)となる。
R = | n1-n2 | 2 / (n1 + n2) 2
That is, if Δn = | n1-n2 |, R = Δn 2 / (n1 + n2) 2 , R> 0.09 / (n1 + n2) 2 when Δn> 0.3, and R> 0 when Δn> 0.2. 0.04 / (n1 + n2) 2 and Δn> 0.1, R> 0.01 / (n1 + n2) 2 .
 本発明の光学素子において規定される式(1)は、屈折率nと屈折率nの関係を示し、式(2)は屈折率nと屈折率nの関係を示す。屈折率nと屈折率nをn1とn2に置き換えることができ、屈折率nと屈折率nをn1とn2に置き換えることができる。 Expression is defined in the optical element of the present invention (1) is a graph showing the relation between the refractive index n F the refractive index n G, Equation (2) shows the relationship between refractive index n G and the refractive index n P. The refractive index n F the refractive index n G can be replaced by n1 and n2, the refractive index n P and the refractive index n G can be replaced by n1 and n2.
 本発明の光学素子においてn+nおよびn+nは、波長350~1100nmの範囲内に透過波長域を有する実在の光学材料の観点から2.6以上が求められる。これをn1+n2に適合して反射率R[%]を計算した結果を図7に示す。図7は、異なる屈折率(n1,n2)の光学界面における屈折率和(n1+n2)と反射率R[%]の関係を示すグラフである。 In the optical element of the present invention, n G + n F and n P + n G are required to be 2.6 or more from the viewpoint of an actual optical material having a transmission wavelength region within a wavelength range of 350 to 1100 nm. FIG. 7 shows the result of calculating the reflectance R [%] by adapting this to n1 + n2. FIG. 7 is a graph showing the relationship between the refractive index sum (n1 + n2) and the reflectance R [%] at optical interfaces having different refractive indexes (n1, n2).
 図7から、(n1+n2)≧2.6の場合、Δn=0.5ではR≦3.70%、Δn=0.4ではR≦2.37%、Δn=0.3ではR≦1.33%、Δn=0.2ではR≦0.59%、Δn=0.1ではR≦0.15%となることがわかる。 From FIG. 7, when (n1 + n2) ≧ 2.6, R ≦ 3.70% when Δn = 0.5, R ≦ 2.37% when Δn = 0.4, and R ≦ 1. It can be seen that when 33% and Δn = 0.2, R ≦ 0.59%, and when Δn = 0.1, R ≦ 0.15%.
 式(1)、すなわち、ΔnGF=|n-n|≦0.5を満たすことで、接着層と光学フィルタの界面において発生するフレネル反射光の反射率を3.70%以下にできる。同様に式(2)、すなわちΔnPG=|n-n|≦0.5を満たすことで、偏向素子と接着層の界面において発生するフレネル反射光の反射率を3.70%以下にできる。 By satisfying Expression (1), that is, Δn GF = | n G −n F | ≦ 0.5, the reflectance of Fresnel reflected light generated at the interface between the adhesive layer and the optical filter can be reduced to 3.70% or less. . Similarly, by satisfying Expression (2), that is, Δn PG = | n P −n G | ≦ 0.5, the reflectance of Fresnel reflected light generated at the interface between the deflecting element and the adhesive layer is reduced to 3.70% or less. it can.
 すなわち、屈折率n1=1.5以上の光学材料と屈折率n2=1.0の空気との界面において発生する反射光の反射率は4%以上だが、偏向素子と光学フィルタの屈折率nおよびnに対し、式(1)および式(2)の関係を満たす屈折率nの接着層を用いることにより、各界面の反射率を3.7%以下にできる。 That is, the reflectance of reflected light generated at the interface between an optical material having a refractive index n1 = 1.5 or more and air having a refractive index n2 = 1.0 is 4% or more, but the refractive index n P of the deflecting element and the optical filter. and to n F, by using an adhesive layer having a refractive index n G satisfying the relation of formula (1) and (2), the reflectance of each surface can be below 3.7%.
 フレネル反射光の反射率を低く抑える観点から、ΔnGFおよびΔnPGは0.3以下が好ましく、0.2以下がより好ましく、0.1以下が特に好ましい。なお、ΔnGFが0.2~0.5で界面の反射率が1%以上の場合にはフレネル反射を低減するために接着層と光学フィルタの界面に反射防止層を形成してもよい。ΔnPGが0.2~0.5の場合には同様に偏向素子と接着層の界面に反射防止層を形成してもよい。なお、反射防止層は接着層上に形成することは困難であるので、光学フィルタの接着層と接する面や偏向素子の接着層と接する面に形成するとよい。 From the viewpoint of keeping the reflectance of Fresnel reflected light low, Δn GF and Δn PG are preferably 0.3 or less, more preferably 0.2 or less, and particularly preferably 0.1 or less. When Δn GF is 0.2 to 0.5 and the interface reflectance is 1% or more, an antireflection layer may be formed at the interface between the adhesive layer and the optical filter in order to reduce Fresnel reflection. [Delta] n PG may form an anti-reflection layer at the interface of the adhesive layer and likewise deflecting element in the case of 0.2-0.5. Since it is difficult to form the antireflection layer on the adhesive layer, the antireflection layer is preferably formed on the surface in contact with the adhesive layer of the optical filter or the surface in contact with the adhesive layer of the deflection element.
 上記反射率Rの関係式は垂直入射の場合であるが、入射角が30°以下であれば垂直入射の反射率との相違はわずかである。 The relational expression of the reflectance R is for the case of normal incidence, but if the incident angle is 30 ° or less, the difference from the reflectance for normal incidence is slight.
<反射防止層>
 上記のとおり、本発明の光学素子は、式(1)および式(2)の屈折率関係の下で、偏向素子と接着層の界面、接着層と光学フィルタの界面に反射防止層を有してもよい。さらに、光学素子は、大気と接する面に反射防止層を有してもよい。反射防止層は、これらのうち、1箇所に設けてもよく、2箇所に設けてもよく全ての箇所に設けてもよい。とくに、これらの界面において発生する反射光の反射率が1%以上となる場合は反射防止層を形成して反射率を0.5%以下に低減することが好ましい。
<Antireflection layer>
As described above, the optical element of the present invention has an antireflection layer at the interface between the deflecting element and the adhesive layer and at the interface between the adhesive layer and the optical filter under the refractive index relationship of the expressions (1) and (2). May be. Furthermore, the optical element may have an antireflection layer on a surface in contact with the atmosphere. An antireflection layer may be provided in one place among these, may be provided in two places, and may be provided in all the places. In particular, when the reflectance of the reflected light generated at these interfaces is 1% or more, it is preferable to form an antireflection layer to reduce the reflectance to 0.5% or less.
 図8は、本実施形態の光学素子において、反射防止層をさらに有する光学素子の一例である。図8に示す光学素子10Aは、図1に示す光学素子10において、偏向素子1、接着層3、光学フィルタ2に加えて、偏向素子1の空気との界面である入射面1aに反射防止層12a、偏向素子1の接着層3と接する界面である出射面1cに反射防止層12b、光学フィルタ2の接着層3と接する界面である入射面2aに反射防止層13a、および光学フィルタ2の空気との界面である出射面2bに反射防止層13bを有する構成である。 FIG. 8 is an example of an optical element further including an antireflection layer in the optical element of the present embodiment. An optical element 10A shown in FIG. 8 includes an antireflection layer on the incident surface 1a that is an interface with the air of the deflection element 1, in addition to the deflection element 1, the adhesive layer 3, and the optical filter 2 in the optical element 10 shown in FIG. 12a, the antireflection layer 12b on the exit surface 1c which is the interface in contact with the adhesive layer 3 of the deflecting element 1, the antireflection layer 13a on the entrance surface 2a which is the interface in contact with the adhesive layer 3 of the optical filter 2, and the air of the optical filter 2 The antireflection layer 13b is provided on the emission surface 2b which is the interface with the.
 反射防止層12aとしては、光の入射角の範囲を考慮し、偏向素子1の屈折率nに応じて設計される、低屈折率膜と高屈折率膜を交互に積層した誘電体多層膜からなる反射防止層を使用できる。 The antireflection layer 12a, taking into account the range of the incident angle of light, is designed in accordance with the refractive index n P of the deflecting elements 1, a dielectric multilayer film formed by alternately laminating a low refractive index film and the high refractive index film An antireflective layer consisting of can be used.
 反射防止層12bは、ΔnPGの値に応じて設けられる。例えば、ΔnPGが0.1以下の場合、図7に示すように、反射率R≦0.15%のため反射防止層12bは設けなくてもよい。同様に、ΔnPG=0.2~0.5の範囲では、屈折率値によってR≧0.59%となるため、反射防止層12bを設けるとよい。反射防止層12bとしては、屈折率nで膜厚dの単層誘電体膜からなる反射防止層、具体的には、以下の2つの式を満足する反射防止層を用いることで、偏向素子1と接着層3との界面での反射率Rが低減できる。 Antireflection layer 12b is provided in accordance with the value of [Delta] n PG. For example, when Δn PG is 0.1 or less, as shown in FIG. 7, since the reflectance R ≦ 0.15%, the antireflection layer 12b may not be provided. Similarly, in the range of Δn PG = 0.2 to 0.5, R ≧ 0.59% depending on the refractive index value. Therefore, the antireflection layer 12b is preferably provided. The antireflection layer 12b, an anti-reflection layer comprising a single layer dielectric film having a thickness d c the refractive index n c, specifically, by using the antireflection layer satisfies the following two formulas, deflection The reflectance R at the interface between the element 1 and the adhesive layer 3 can be reduced.
Figure JPOXMLDOC01-appb-M000002
 ここで、λは、光学素子10Aからの出射光に求められる光の中心波長、例えば、図2に示す撮像装置100において固体撮像素子4で検出する入射信号光の中心波長に相当し、最短波長λと最長波長λを用いて、λ=2×λ×λ/(λ+λ)と規定される。
Figure JPOXMLDOC01-appb-M000002
Here, λ c corresponds to the center wavelength of the light required for the light emitted from the optical element 10A, for example, the center wavelength of the incident signal light detected by the solid-state image sensor 4 in the imaging apparatus 100 shown in FIG. Using the wavelength λ S and the longest wavelength λ L , it is defined as λ c = 2 × λ S × λ L / (λ S + λ L ).
 すなわち、反射防止層12bの屈折率nを1.6~1.9の範囲に調整し、波長λに応じて膜厚d=λ/(4×n)とすれば、波長λでR=0%となる。また、入射角θ0≦30°では、反射防止層12bの反射率Rの入射角依存性はわずかである。広い波長範囲の入射光に対して反射率を低減するためには、反射防止層12bを、反射防止層12aと同様に誘電体多層膜とすればよい。 That is, the refractive index n c of the anti-reflective layer 12b is adjusted to the range of 1.6-1.9, if it thickness d c = λ c / a (4 × n c) according to the wavelength lambda c, wavelength the R = 0% at lambda c. Further, when the incident angle θ 0 ≦ 30 °, the incident angle dependence of the reflectance R of the antireflection layer 12b is slight. In order to reduce the reflectance with respect to incident light in a wide wavelength range, the antireflection layer 12b may be a dielectric multilayer film in the same manner as the antireflection layer 12a.
 反射防止層13aは、反射防止層12bがΔnPGの値に応じて設けられるのと同様に、ΔnGFの値に応じて設けられる。例えばΔnGFが0.1以下の場合、反射防止層13aは設けなくてもよく、ΔnPG=0.2~0.5の範囲では、屈折率値によってR≧1.0%となるため、反射防止層13aを設けるとよい。その場合、反射防止層13aとしては、反射防止層12bと同様に、屈折率nで膜厚dの単層誘電体膜からなる反射防止層または反射率Rが低減するように設計された誘電体多層膜からなる反射防止層が用いられる。 The antireflection layer 13a is provided according to the value of Δn GF in the same manner as the antireflection layer 12b is provided according to the value of Δn PG . For example, when Δn GF is 0.1 or less, the antireflection layer 13a may not be provided. In the range of Δn PG = 0.2 to 0.5, R ≧ 1.0% depending on the refractive index value. An antireflection layer 13a may be provided. In that case, the antireflective layer 13a, like the anti-reflection layer 12b, the film thickness d antireflection layer or reflectance made of a single layer dielectric film c R was designed to reduce the refractive index n c An antireflection layer made of a dielectric multilayer film is used.
 反射防止層13bは、光学フィルタ2と空気との界面の反射を低減するために形成される。反射防止層13bとしては、反射防止層12aと同様に、低屈折率膜と高屈折率膜を交互に積層した誘電体多層膜を用いればよい。図8に示す光学素子10Aにおいて、光学フィルタ2は、例えば、図6A~図6Cに示す光学フィルタ2A、2Bまたは2Cであってよい。光学フィルタ2Aの場合、反射防止層13bとして、吸収型基板21の屈折率nに応じて設計される誘電体多層膜からなる反射防止層が使用できる。また、光学フィルタ2B、2Cの場合には、反射防止層13bとして、吸収層22の屈折率に応じて設計される誘電体多層膜からなる反射防止層が使用できる。 The antireflection layer 13b is formed to reduce reflection at the interface between the optical filter 2 and air. As the antireflection layer 13b, similarly to the antireflection layer 12a, a dielectric multilayer film in which low refractive index films and high refractive index films are alternately laminated may be used. In the optical element 10A shown in FIG. 8, the optical filter 2 may be, for example, the optical filter 2A, 2B, or 2C shown in FIGS. 6A to 6C. If the optical filter 2A, as an anti-reflection layer 13b, an anti-reflection layer including a dielectric multilayer film which is designed in accordance with the refractive index n F of the absorption-type substrate 21 can be used. In the case of the optical filters 2B and 2C, an antireflection layer made of a dielectric multilayer film designed according to the refractive index of the absorption layer 22 can be used as the antireflection layer 13b.
<反射層>
 本発明の光学素子において、光学フィルタは、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断する機能を有する。上記のとおり、光学フィルタは、例えば、(i)UVおよび、(ii-1)NIR、(ii-2)可視光または(ii-3)近赤外域における第1の領域の光、を選択的に遮断する機能を有する。本発明の光学素子においては、これらの遮断性能の一部を、光学フィルタ以外が分担する構成であってもよい。
<Reflective layer>
In the optical element of the present invention, the optical filter has a function of selectively blocking light in at least a part of the region from the ultraviolet region to the near infrared region. As described above, the optical filter selectively selects, for example, (i) UV and (ii-1) NIR, (ii-2) visible light, or (ii-3) light in the first region in the near infrared region. It has a function to shut off. The optical element of the present invention may have a configuration in which a part of the blocking performance is shared by other than the optical filter.
 具体的には、上記(i)、(ii-1)、(ii-2)、(ii-3)から選ばれる波長域の光を反射する反射層を、例えば、図8に示す光学素子10Aにおける偏向素子1の入射面1a上または出射面1c上に、反射防止層12aまたは反射防止層12bの代わりに設けてもよい。その場合、光学フィルタ2は、偏向素子1上に設けられた反射層が有する光の遮断性を有しない構成となってもよい。このようにして、光学素子全体として、所定の領域の光の透過、遮断性能を有する設計とする。 Specifically, a reflective layer that reflects light in a wavelength range selected from the above (i), (ii-1), (ii-2), and (ii-3) is, for example, an optical element 10A shown in FIG. Instead of the antireflection layer 12a or the antireflection layer 12b, the deflection element 1 may be provided on the incident surface 1a or the emission surface 1c. In that case, the optical filter 2 may have a configuration that does not have the light blocking property of the reflective layer provided on the deflection element 1. In this way, the optical element as a whole is designed to have a light transmission and blocking performance in a predetermined region.
<遮光膜>
 本発明の光学素子は、例えば、撮像装置に用いられた際に、撮像装置が有する各種光学部材やその保持部材等からの散乱や反射による迷光を低減する必要性が生じる。そして該迷光を低減する等の目的で、光学素子に入射側から入射する光を部分的に遮断する第1の遮光膜および/または光学素子に側面から入射する光を遮断する第2の遮光膜をさらに備えるとよい。
<Light shielding film>
For example, when the optical element of the present invention is used in an imaging apparatus, there is a need to reduce stray light due to scattering and reflection from various optical members and holding members of the imaging apparatus. For the purpose of reducing the stray light, etc., the first light shielding film that partially blocks light incident on the optical element from the incident side and / or the second light shielding film that blocks light incident on the optical element from the side surface. May be further provided.
 なお、「遮光膜」とは、入射光のうち少なくとも可視光を遮断する膜をいう。遮光膜は、好ましくは、紫外域から近赤外域に亘る全波長の光を遮断する。遮光膜は、具体的には、波長350~1000nmの光の透過率が10%以下であればよく、2%以下であれば好ましい。 Note that the “light-shielding film” refers to a film that blocks at least visible light of incident light. The light shielding film preferably blocks light of all wavelengths from the ultraviolet region to the near infrared region. Specifically, the light shielding film may have a light transmittance of 10% or less at a wavelength of 350 to 1000 nm, and preferably 2% or less.
 例えば、図2に示す撮像装置100において、撮像レンズ系(対物レンズ5、物体側プリズム6および結像レンズ群8)のFナンバーに応じて規定される-θ~+θの入射角範囲の光が、光学素子10に入射し偏向されるとともに、固体撮像素子4に対して不要な光が遮断されて出射し、固体撮像素子4の受光面41に信号光として到達する。ここで、撮像レンズ系の各光学部材表面で発生した反射光やレンズホルダー等の筐体(図示せず)壁面で散乱された光が迷光となって光学素子10に入射すると、画質劣化の原因となる。 For example, in the imaging apparatus 100 shown in FIG. 2, an incident angle range of −θ 0 to + θ 0 defined according to the F number of the imaging lens system (objective lens 5, object-side prism 6 and imaging lens group 8). Light enters the optical element 10 and is deflected, and unnecessary light is blocked and emitted from the solid-state image sensor 4 and reaches the light receiving surface 41 of the solid-state image sensor 4 as signal light. Here, if reflected light generated on the surface of each optical member of the imaging lens system or light scattered on the wall surface of a housing (not shown) such as a lens holder becomes stray light and enters the optical element 10, the cause of image quality deterioration It becomes.
 このような、固体撮像素子4で用いる信号光以外の迷光を、固体撮像素子4の受光面41に入射する前に遮断するために、撮像装置100は、受光面41に対応する開口部以外の領域に遮光膜を有するとよい。該遮光膜は、撮像装置100において、固体撮像素子4の受光面41に近い側の光学素子10に形成されると、迷光除去において有効である。 In order to block such stray light other than the signal light used in the solid-state imaging device 4 before entering the light-receiving surface 41 of the solid-state imaging device 4, the imaging apparatus 100 has a configuration other than the opening corresponding to the light-receiving surface 41. It is preferable to have a light shielding film in the region. When the light shielding film is formed on the optical element 10 on the side close to the light receiving surface 41 of the solid-state imaging element 4 in the imaging apparatus 100, it is effective in removing stray light.
 光学素子10は、光学素子10の入射側からの光を部分的に遮断する第1の遮光膜を有するとよい。また、光学素子10は、光学素子10に側面から入射する光を遮断する第2の遮光膜を有することが好ましい。光学素子10は、第1の遮光膜と第2の遮光膜の両方を有してもよい。 The optical element 10 may have a first light shielding film that partially blocks light from the incident side of the optical element 10. The optical element 10 preferably has a second light shielding film that blocks light incident on the optical element 10 from the side surface. The optical element 10 may have both the first light shielding film and the second light shielding film.
 図9A、9B、図10、図11、図12に、本発明の光学素子において遮光膜を有する光学素子10B、10C、10D、10Eの、断面図、平面図、または斜視図をそれぞれ示す。図9A、9B、図10、図11に示す光学素子10B、10C、10Dは、光学素子の入射側から入射する光を部分的に遮断する第1の遮光膜としての遮光膜15を有する光学素子の例である。図12に示す光学素子10Eは、光学素子の側面から入射する光を遮断する第2の遮光膜としての遮光膜15Bを有する光学素子の例である。 9A, 9B, FIG. 10, FIG. 11, and FIG. 12 show a cross-sectional view, a plan view, and a perspective view, respectively, of optical elements 10B, 10C, 10D, and 10E having a light shielding film in the optical element of the present invention. Optical elements 10B, 10C, and 10D shown in FIGS. 9A, 9B, 10, and 11 include an optical element having a light shielding film 15 as a first light shielding film that partially blocks light incident from the incident side of the optical element. It is an example. An optical element 10E shown in FIG. 12 is an example of an optical element having a light shielding film 15B as a second light shielding film that blocks light incident from the side surface of the optical element.
 図9Aは、図1に示す光学素子10において光学フィルタ2の空気との界面に遮光膜15が形成された光学素子10Bを示し、図9Bは、遮光膜15側から見た光学素子10Bを示す。光学素子10Bにおいて、偏向素子1、接着層3、および光学フィルタ2は光学素子10と同様とできる。 9A shows an optical element 10B in which the light shielding film 15 is formed at the interface with the air of the optical filter 2 in the optical element 10 shown in FIG. 1, and FIG. 9B shows the optical element 10B viewed from the light shielding film 15 side. . In the optical element 10B, the deflection element 1, the adhesive layer 3, and the optical filter 2 can be the same as those of the optical element 10.
 光学素子10Bにおいて遮光膜15の形状は、主面の形状において外周が光学フィルタ2の出射面2bの外周に一致する額縁状の形状を有する。遮光膜15をこのような額縁形状にすることで、例えば、光学素子10Bが図2に示す撮像装置100に光学素子10に代わって配置された際に、固体撮像素子4の受光面41に入射する信号光を遮断しないように中心部は矩形形状の信号光出射領域を確保し、周縁部の入射光のみを遮断できる。 In the optical element 10B, the shape of the light shielding film 15 has a frame-like shape in which the outer periphery coincides with the outer periphery of the emission surface 2b of the optical filter 2 in the shape of the main surface. By making the light shielding film 15 into such a frame shape, for example, when the optical element 10B is arranged in place of the optical element 10 in the imaging device 100 shown in FIG. The central portion can secure a rectangular signal light emission region so as not to block the signal light, and can block only the incident light at the peripheral portion.
 遮光膜15としては、例えば、Cr等の金属膜と金属膜の表面反射を防止するCrOx等の反射防止層を積層した構成や、遮光性を発現する光吸収剤および樹脂を含有する樹脂遮光膜などが例示できる。光吸収剤としてはカーボンブラック、チタンブラック等の無機または有機着色剤が挙げられる。樹脂は遮光膜を形成するためのマトリックス成分である。樹脂遮光膜は、例えば、光吸収剤と光硬化性材料(樹脂)を用いて、印刷法やフォトリソグラフィ法により光学フィルタ2の出射面2b上に上記形状となるように形成される。 As the light shielding film 15, for example, a structure in which a metal film such as Cr and an antireflection layer such as CrOx that prevents surface reflection of the metal film are laminated, or a resin light shielding film containing a light absorber and a resin that exhibits light shielding properties. Etc. can be exemplified. Examples of the light absorber include inorganic or organic colorants such as carbon black and titanium black. Resin is a matrix component for forming a light shielding film. For example, the resin light-shielding film is formed on the emission surface 2b of the optical filter 2 by a printing method or a photolithography method using a light absorber and a photocurable material (resin).
 なお、樹脂遮光膜における、光吸収剤、光硬化材料(樹脂)、さらにはこれらを含有する遮光膜の形成方法は、例えば、WO2014/021245Aに例示されている。 In addition, the formation method of the light absorber, the photocurable material (resin), and also the light shielding film containing these in a resin light shielding film is illustrated by WO2014 / 021245A, for example.
 遮光膜15の厚さは、反射防止層を積層した構成の場合、概ね50~500nmが好ましく、樹脂遮光膜の場合、概ね0.1~400μmが好ましい。0.2~100μmであるとより好ましく、0.5~10μmであるとより一層好ましい。 The thickness of the light shielding film 15 is preferably about 50 to 500 nm in the case of a structure in which an antireflection layer is laminated, and is preferably about 0.1 to 400 μm in the case of a resin light shielding film. The thickness is more preferably 0.2 to 100 μm, and even more preferably 0.5 to 10 μm.
 図10に示す光学素子10Cは、図9A、9Bに示す光学素子10Bにおいて、遮光膜15を光学フィルタ2の出射面2b上ではなく、光学フィルタ2の入射面2a上に設けた例である。また、図11に示す光学素子10Dは、図9A、9Bに示す光学素子10Bにおいて、遮光膜15を光学フィルタ2の出射面2b上ではなく、偏向素子1の入射面1a上に設けた例である。 An optical element 10C shown in FIG. 10 is an example in which, in the optical element 10B shown in FIGS. 9A and 9B, the light shielding film 15 is provided on the incident surface 2a of the optical filter 2 instead of on the outgoing surface 2b of the optical filter 2. Further, the optical element 10D shown in FIG. 11 is an example in which the light shielding film 15 is provided on the incident surface 1a of the deflecting element 1 instead of on the outgoing surface 2b of the optical filter 2 in the optical element 10B shown in FIGS. 9A and 9B. is there.
 光学素子10Cおよび光学素子10Dが有する遮光膜15は、光学素子10Bが有する遮光膜15と、配設位置が異なる以外は、同様にできる。光学素子10B、10C、10Dは、それぞれ、光学フィルタ2の出射面2b上、光学フィルタ2の入射面2a上、偏向素子1の入射面1a上の各1面に遮光膜15を有する例であるが、迷光の遮光性をさらに向上するために、これらの2面(1a+2a、1a+2b、2a+2b)または3面(1a+2a+2b)に形成してもよい。 The light shielding film 15 included in the optical element 10C and the optical element 10D can be the same as the light shielding film 15 included in the optical element 10B, except that the arrangement position is different. Each of the optical elements 10B, 10C, and 10D is an example in which the light shielding film 15 is provided on each surface on the emission surface 2b of the optical filter 2, the incident surface 2a of the optical filter 2, and the incident surface 1a of the deflection element 1. However, in order to further improve the light blocking property of stray light, these two surfaces (1a + 2a, 1a + 2b, 2a + 2b) or three surfaces (1a + 2a + 2b) may be formed.
 図12に示す光学素子10Eは、図1に示す光学素子10において、光学素子の側面のうち偏向素子1の両側面の全域に亘って遮光膜15Bを有する例である。 An optical element 10E shown in FIG. 12 is an example having the light shielding film 15B over the entire area of both side surfaces of the deflection element 1 in the side surface of the optical element in the optical element 10 shown in FIG.
 図1に示す光学素子10における偏向素子1は、三角柱プリズムであって、光の入出射面1a、1cに直交する側面1dおよび1eの面積が大きい。そのため、プリズム内に入射した迷光が側面に到達すると反射して光の出射面1cを透過して光学素子10から出射するおそれがある。その場合、例えば、図2に示す撮像装置100において、光学素子10から出射した迷光が固体撮像素子4の受光面41に到達する比率が高い。特に、高屈折率の三角柱プリズムの場合、側面1dまたは1eに入射した光は全反射して、受光面41に到達する迷光が増加する。 The deflection element 1 in the optical element 10 shown in FIG. 1 is a triangular prism, and has large areas on the side surfaces 1d and 1e perpendicular to the light incident / exit surfaces 1a and 1c. Therefore, when stray light entering the prism reaches the side surface, it may be reflected and transmitted through the light exit surface 1c and emitted from the optical element 10. In that case, for example, in the imaging apparatus 100 illustrated in FIG. 2, the ratio of stray light emitted from the optical element 10 to the light receiving surface 41 of the solid-state imaging element 4 is high. In particular, in the case of a triangular prism having a high refractive index, the light incident on the side surface 1d or 1e is totally reflected, and stray light reaching the light receiving surface 41 increases.
 そこで、光学素子10Eのように、偏向素子1の両側面1d、1eの全域に亘って遮光膜15Bを形成することで、側面1dおよび1eからの反射光自体を充分に、例えば、正反射率を5%以下に低減して、光学素子10から出射する迷光を低いレベルに抑制できる。遮光膜15Bは、形状以外の構成、例えば、層構成、構成材料、形成方法は、光学素子10Bが有する遮光膜15と同様にできる。なお、遮光膜15Bの形成に際して、側面1dおよび1eを表面が平坦でない拡散面とした後に遮光膜15Bを形成すれば、さらに実質的な迷光は低減するので好ましい。 Therefore, by forming the light shielding film 15B over the entire area of both side surfaces 1d and 1e of the deflecting element 1 as in the optical element 10E, the reflected light itself from the side surfaces 1d and 1e can be sufficiently reflected, for example, in the regular reflectance ratio. The stray light emitted from the optical element 10 can be suppressed to a low level. The light shielding film 15B can have a configuration other than the shape, for example, a layer configuration, a constituent material, and a formation method, in the same manner as the light shielding film 15 included in the optical element 10B. In forming the light shielding film 15B, it is preferable to form the light shielding film 15B after making the side surfaces 1d and 1e have a non-flat diffusion surface, since substantial stray light is further reduced.
 側面1dおよび1eを拡散面とする方法としては、偏向素子1を三角柱プリズム形状に加工するとき、側面1dおよび1eが粗面となるような切削刃を用いて切削する、あるいは、切削後に側面1dおよび1eをラップ面研磨し、#1000以下の番定に相当する拡散面とする方法が挙げられる。 As a method of setting the side surfaces 1d and 1e as the diffusing surface, when the deflecting element 1 is processed into a triangular prism shape, cutting is performed using a cutting blade such that the side surfaces 1d and 1e become rough surfaces, or the side surface 1d after cutting. And 1e are lapped and polished to form a diffusion surface corresponding to a rating of # 1000 or less.
 なお、光学素子10においては、偏向素子1の側面1dおよび1eを拡散面とすることのみでも、光学素子の出射面から出射する迷光をある程度低減できる。すなわち、偏向素子1の側面1dおよび1eを拡散面とすることで、光学平坦面で生じる全反射光の発生を抑制する(空気側への透過光を増やす)とともに、入射光を広角に拡散することで、例えば、固体撮像素子4の受光面41に輝点として入射する迷光の光量を低減できる。本発明の光学素子においては、上記のとおり、偏向素子1の側面1dおよび1eについては、好ましくは、拡散面とした後に遮光膜15Bを形成する。 In the optical element 10, stray light emitted from the emission surface of the optical element can be reduced to some extent only by using the side surfaces 1 d and 1 e of the deflection element 1 as diffusion surfaces. That is, by making the side surfaces 1d and 1e of the deflecting element 1 diffusing surfaces, generation of total reflected light generated on the optical flat surface is suppressed (increased transmitted light to the air side), and incident light is diffused at a wide angle. Thus, for example, the amount of stray light that enters the light receiving surface 41 of the solid-state imaging device 4 as a bright spot can be reduced. In the optical element of the present invention, as described above, the side surfaces 1d and 1e of the deflecting element 1 are preferably formed with the light shielding film 15B after forming the diffusion surface.
<光学素子の変形例>
 上に説明した本実施形態の光学素子においては、いずれも、偏向素子1の出射面1cと光学フィルタ2の入出射面2a、2bの大きさ(外縁)が略同一である。本発明の光学素子においては、例えば、偏向素子はプリズムであって、(I)プリズムと光学フィルタが対向する各面において、プリズムの外縁が、光学フィルタの外縁よりも内側にある構成でもよく、(II)プリズムと光学フィルタが対向する各面において、プリズムの外縁が、光学フィルタの外縁よりも外側にある構成でもよい。
<Modification of optical element>
In the optical element of the present embodiment described above, the size (outer edge) of the exit surface 1c of the deflection element 1 and the entrance / exit surfaces 2a and 2b of the optical filter 2 are substantially the same. In the optical element of the present invention, for example, the deflecting element may be a prism, and (I) on each surface where the prism and the optical filter face each other, the outer edge of the prism may be inside the outer edge of the optical filter. (II) In each surface where the prism and the optical filter face each other, the configuration may be such that the outer edge of the prism is outside the outer edge of the optical filter.
 図13Aは、図9A、9Bに示す光学素子10Bにおいて、上記(I)の構成である以外は、光学素子10Bと同様の、光学素子10Fを示す。図13Bは、光学素子10Fを遮光膜15側から見た図である。 FIG. 13A shows an optical element 10F similar to the optical element 10B except for the configuration of (I) above in the optical element 10B shown in FIGS. 9A and 9B. FIG. 13B is a diagram of the optical element 10F viewed from the light shielding film 15 side.
 光学素子10Fは、偏向素子1の出射面1cの外縁が、光学フィルタ2の入出射面2a、2bの外縁よりも内側にある。図13A、13Bでは、偏向素子1の出射面1cのY方向の長さをL、X方向の長さをW、光学フィルタ2の入出射面2a、2bのY方向の長さをL、X方向の長さをWで示しており、L>Lかつ、W>Wであることが示されている。 In the optical element 10 </ b> F, the outer edge of the exit surface 1 c of the deflecting element 1 is inside the outer edges of the entrance / exit surfaces 2 a and 2 b of the optical filter 2. 13A and 13B, the length in the Y direction of the exit surface 1c of the deflection element 1 is L p , the length in the X direction is W p , and the length in the Y direction of the entrance and exit surfaces 2a and 2b of the optical filter 2 is L. F, the length of X direction is indicated by W F, and L F> L P, has been shown to be a W F> W P.
 光学素子10Fにおいては、上記(I)の構成により、偏向素子1の外周まで確実に含むように遮光膜15を形成でき、迷光を確実に低減できる点で有利である。 In the optical element 10F, the configuration (I) is advantageous in that the light shielding film 15 can be formed so as to surely include the outer periphery of the deflection element 1, and stray light can be reliably reduced.
 図14Aは、図9A、9Bに示す光学素子10Bにおいて、上記(II)の構成である以外は、光学素子10Bと同様の、光学素子10Gを示す。図14Bは、光学素子10Gを遮光膜15側から見た図である。 FIG. 14A shows an optical element 10G similar to the optical element 10B except for the configuration of (II) above in the optical element 10B shown in FIGS. 9A and 9B. FIG. 14B is a diagram of the optical element 10G viewed from the light shielding film 15 side.
 光学素子10Gは、偏向素子1の出射面1cの外縁が、光学フィルタ2の入出射面2a、2bの外縁よりも外側にある。図14A、14Bでは、偏向素子1の出射面1cのY方向の長さをL、X方向の長さをW、光学フィルタ2の入出射面2a、2bのY方向の長さをL、X方向の長さをWで示しており、L<Lかつ、W<Wであることが示されている。 In the optical element 10G, the outer edge of the exit surface 1c of the deflecting element 1 is outside the outer edges of the entrance / exit surfaces 2a and 2b of the optical filter 2. 14A and 14B, the length in the Y direction of the exit surface 1c of the deflecting element 1 is L p , the length in the X direction is W p , and the length in the Y direction of the entrance and exit surfaces 2a and 2b of the optical filter 2 is L. F, the length of X direction is indicated by W F, and L F <L P, has been shown to be a W F <W P.
 光学素子10Gにおいては、上記(II)の構成により、光学素子の出射側の外縁が、偏向素子1の外縁と一致し、光学フィルタ2の外縁と一致する場合と比べて、光学素子の寸法精度を上げられる点で有利である。 In the optical element 10G, due to the configuration of (II) above, the dimensional accuracy of the optical element compared to the case where the outer edge on the emission side of the optical element coincides with the outer edge of the deflecting element 1 and coincides with the outer edge of the optical filter 2. This is advantageous in that
 以上、光学素子10、10A~10Gを用いて、本発明の光学素子の実施形態について説明したが本発明の光学素子は上記実施形態に限定されない。これらの実施形態を、本発明の趣旨および範囲を逸脱することなく、変更または変形できる。 The embodiments of the optical element of the present invention have been described above using the optical elements 10, 10A to 10G, but the optical element of the present invention is not limited to the above-described embodiment. These embodiments can be changed or modified without departing from the spirit and scope of the present invention.
[製造方法]
 本発明の製造方法は、具体的には、以下の(A)工程および(B)工程を有する。
(A)偏向素子と光学フィルタの間に、紫外線硬化性材料を含む接着層形成用組成物層を有する光学素子前駆体を作製する工程(ここで、光学素子前駆体は、製造しようとする光学素子の接着層の配設位置に、接着層に替わって、紫外線硬化性材料を含む接着層形成用組成物層を有する構成である。)
(B)光学素子前駆体に、光学素子とした場合に入射側となる側または光学素子とした場合に出射側となる側から紫外域の光を照射して接着層形成用組成物層を硬化させ接着層とする工程
[Production method]
Specifically, the production method of the present invention includes the following steps (A) and (B).
(A) A step of producing an optical element precursor having a composition layer for forming an adhesive layer containing an ultraviolet curable material between the deflecting element and the optical filter (here, the optical element precursor is an optical element to be manufactured). (It is the structure which has the composition layer for adhesive layer formation containing an ultraviolet curable material instead of an adhesive layer in the arrangement | positioning position of the adhesive layer of an element.)
(B) Curing the composition layer for forming the adhesive layer by irradiating the optical element precursor with light in the ultraviolet region from the incident side when the optical element is used or from the emission side when the optical element is used Process to make the adhesive layer
 以下、本発明の製造方法の各工程について、図1に示す光学素子10を製造する方法を例に説明する。 Hereinafter, each process of the manufacturing method of the present invention will be described by taking a method of manufacturing the optical element 10 shown in FIG. 1 as an example.
(A)工程
 (A)工程は、偏向素子1と偏向素子1の出射側に位置する光学フィルタ2と、偏向素子1と光学フィルタ2の間に位置し、以下の(B)工程により硬化されて偏向素子1と光学フィルタ2を一体化する接着層3となる、接着層形成用組成物層を有する光学素子10の前駆体を作製する工程である。
(A) Process (A) The process (A) is located between the deflection element 1 and the optical filter 2 located on the exit side of the deflection element 1 and between the deflection element 1 and the optical filter 2 and is cured by the following process (B). In this step, a precursor of the optical element 10 having the adhesive layer forming composition layer, which becomes the adhesive layer 3 for integrating the deflecting element 1 and the optical filter 2, is prepared.
 接着層形成用組成物層を構成する接着層形成用組成物は、紫外線硬化性材料を含有する。紫外線硬化性材料は上記のとおりである。接着層形成用組成物は、好ましくは上記の光重合開始剤を含有し、必要に応じて、各種添加剤を含有する。また、貯蔵中に光・熱・空気などによって硬化性材料が重合固化してしまうのを防ぐために、重合禁止剤を混入して用いてもよい。接着層形成用組成物は、さらに、良好な塗工性を確保するために溶剤を含有してもよい。溶剤は、光学素子の製造過程で接着層形成用組成物層から乾燥等により除去される成分である。 The composition for forming an adhesive layer constituting the composition layer for forming an adhesive layer contains an ultraviolet curable material. The ultraviolet curable material is as described above. The composition for forming an adhesive layer preferably contains the above-described photopolymerization initiator and, if necessary, contains various additives. Further, in order to prevent the curable material from being polymerized and solidified by light, heat, air or the like during storage, a polymerization inhibitor may be mixed and used. The composition for forming an adhesive layer may further contain a solvent in order to ensure good coatability. The solvent is a component that is removed from the composition layer for forming an adhesive layer by drying or the like during the manufacturing process of the optical element.
 光学素子10の前駆体作製においては、上記各成分を含有する接着層形成用組成物を準備し、偏向素子1の出射面1c上に、硬化した後の膜厚が所望の厚さとなるように、該接着層形成用組成物を均一に塗布し、接着層形成用組成物層付き偏向素子1を得る。次いで該接着層形成用組成物層上に、光学フィルタ2の入射面2aが接するようにして光学フィルタ2を積層する。なお、用いる接着層形成用組成物が溶剤を含有する場合には、光学フィルタ2を積層する前に溶剤を乾燥除去する。 In the preparation of the precursor of the optical element 10, an adhesive layer forming composition containing each of the above components is prepared so that the cured film thickness on the exit surface 1 c of the deflection element 1 becomes a desired thickness. The composition for forming an adhesive layer is uniformly applied to obtain the deflection element 1 with the composition layer for forming an adhesive layer. Next, the optical filter 2 is laminated on the composition layer for forming an adhesive layer so that the incident surface 2a of the optical filter 2 is in contact therewith. In addition, when the composition for forming the adhesive layer to be used contains a solvent, the solvent is dried and removed before the optical filter 2 is laminated.
 上記において、接着層形成用組成物を塗布する面は光学フィルタ2の入射面2aであってもよい。その場合、光学フィルタ2の入射面2a上に形成された接着層形成用組成物層上に偏向素子1の出射面1cが接するように、偏向素子1を積層する。上記同様に、用いる接着層形成用組成物が溶剤を含有する場合には、偏向素子1を積層する前に溶剤を乾燥除去する。このようにして、光学素子10において接着層3の替わりに接着層形成用組成物層を有する光学素子10の前駆体を作製する。 In the above, the surface on which the composition for forming an adhesive layer is applied may be the incident surface 2a of the optical filter 2. In that case, the deflecting element 1 is laminated so that the exit surface 1c of the deflecting element 1 is in contact with the adhesive layer forming composition layer formed on the incident surface 2a of the optical filter 2. Similarly to the above, when the composition for forming an adhesive layer to be used contains a solvent, the solvent is dried and removed before the deflection element 1 is laminated. Thus, the precursor of the optical element 10 which has the composition layer for contact bonding layer formation instead of the contact bonding layer 3 in the optical element 10 is produced.
(B)工程
 (A)工程で得られた光学素子10の前駆体について、接着層形成用組成物が含有する紫外線硬化性材料の硬化条件に応じて、接着層形成用組成物層にUVを照射する。これにより、紫外線硬化性材料が硬化して、紫外線硬化材料を含む接着層3を有する光学素子10が得られる。
(B) Step About the precursor of the optical element 10 obtained in the step (A), UV is applied to the composition layer for forming the adhesive layer according to the curing conditions of the ultraviolet curable material contained in the composition for forming the adhesive layer. Irradiate. Thereby, an ultraviolet curable material hardens | cures and the optical element 10 which has the contact bonding layer 3 containing an ultraviolet curable material is obtained.
 接着層形成用組成物層にUVを照射する方法としては、光学素子10の前駆体に対して、偏向素子1の入射面1a側からUVを照射するか、光学フィルタ2の出射面2b側からUVを照射する方法が挙げられる。偏向素子1の反射面1bが全反射面で、偏向素子1の内部へのUV入射を遮断する反射材料が形成されていない場合は、反射面1b側からUVを照射してもよい。 As a method of irradiating the composition layer for forming an adhesive layer with UV, the precursor of the optical element 10 is irradiated with UV from the incident surface 1a side of the deflecting element 1, or from the output surface 2b side of the optical filter 2. The method of irradiating UV is mentioned. When the reflecting surface 1b of the deflecting element 1 is a total reflecting surface and no reflecting material for blocking the UV incidence to the inside of the deflecting element 1 is formed, UV may be irradiated from the reflecting surface 1b side.
 なお、偏向素子1にUV反射層が形成されている場合や、光学フィルタ2がUVを遮断する機能を備える吸収層や反射層を有する場合には、光重合硬化に用いるUVの透過率の高い側からUV照射すると生産性が向上し好ましい。光学フィルタ2がUVを遮断する機能を備える場合、偏向素子1はUV透過性を有する構成とされ、偏向素子1の入射面1a側または反射面1b側からUVを照射して接着層形成用組成物層を接着層とする。また、偏向素子1にUV反射層が形成されている場合は、光学フィルタ2はUV遮断性を有しないように設計され、光学フィルタ2の出射面2b側からUVを照射して接着層形成用組成物層を接着層とする。本発明の製造方法においては、前者が好ましい。 In addition, when the UV reflective layer is formed in the deflection | deviation element 1, or when the optical filter 2 has an absorption layer and reflective layer provided with the function which interrupts | blocks UV, the transmittance | permeability of UV used for photopolymerization hardening is high. It is preferable to perform UV irradiation from the side because productivity is improved. When the optical filter 2 has a function of blocking UV, the deflecting element 1 is configured to have UV transparency, and the composition for forming an adhesive layer is irradiated with UV from the incident surface 1a side or the reflecting surface 1b side of the deflecting element 1. The physical layer is an adhesive layer. Further, when a UV reflecting layer is formed on the deflecting element 1, the optical filter 2 is designed so as not to have UV blocking properties, and UV is irradiated from the emission surface 2b side of the optical filter 2 for forming an adhesive layer. The composition layer is an adhesive layer. In the production method of the present invention, the former is preferred.
 以上説明した本発明の製造方法によれば、UV照射を利用することで、偏向素子と光学フィルタが接着層により一体化された光学素子を簡便に製造できる。 According to the manufacturing method of the present invention described above, an optical element in which a deflection element and an optical filter are integrated by an adhesive layer can be easily manufactured by using UV irradiation.
 以下に、本発明の光学素子の作製例を説明する。
<作製例>
 偏向素子の入射面から入射した光の進行方向が偏向素子により偏向され、次いで偏向素子の出射面に接着層を用いて一体化された光学フィルタにより入射光の特定波長域が遮断された光が、該光学フィルタの出射面から出射する本発明の光学素子の作製例を、図15を用いて、以下に説明する。
Hereinafter, an example of manufacturing the optical element of the present invention will be described.
<Production example>
The traveling direction of the light incident from the incident surface of the deflecting element is deflected by the deflecting element, and then the light having the specific wavelength range of the incident light blocked by the optical filter integrated on the exit surface of the deflecting element using the adhesive layer An example of manufacturing the optical element of the present invention that emits from the exit surface of the optical filter will be described below with reference to FIGS.
 図15に断面図を示す、光学素子10Hは、図5に示すのと同様の偏向素子11、偏向素子11の出射側に図6Cに示す光学フィルタ2C、および、偏向素子11と光学フィルタ2Cの間に接着層3を有する。光学素子10Hは、偏向素子11の入射面1a上に反射防止層12a、偏向素子11の出射面1c上に反射防止層12b、および光学フィルタ2Cの出射面2b上に反射防止膜13bを有する。光学素子10Hは、さらに、反射防止膜13b上に、主面の形状において外周が反射防止膜13bの外周に一致する額縁状の形状を有する遮光膜15を有し、図示されないが、偏向素子11の2つの側面1d、1e上の全域に図12に示すのと同様の遮光膜15Bを有する。 The optical element 10H shown in a sectional view in FIG. 15 is similar to the deflection element 11 shown in FIG. 5, the optical filter 2C shown in FIG. 6C on the emission side of the deflection element 11, and the deflection element 11 and the optical filter 2C. There is an adhesive layer 3 between them. The optical element 10H has an antireflection layer 12a on the incident surface 1a of the deflection element 11, an antireflection layer 12b on the emission surface 1c of the deflection element 11, and an antireflection film 13b on the emission surface 2b of the optical filter 2C. The optical element 10H further includes, on the antireflection film 13b, a light shielding film 15 having a frame shape in which the outer periphery coincides with the outer periphery of the antireflection film 13b in the shape of the main surface. A light shielding film 15B similar to that shown in FIG. 12 is provided over the entire area on the two side surfaces 1d and 1e.
(偏向素子11の作製)
 偏向素子11として、波長589nmにおける屈折率nが1.75以上で、波長域400~1100nmで透明かつ紫外波長365nmで内部透過率が10%以上の光学ガラスを三角柱プリズム形状に切削加工する。
(Production of deflection element 11)
As the deflection element 11, the refractive index n P at a wavelength of 589nm is 1.75 or more, the internal transmittance of a transparent and ultraviolet wavelengths 365nm in wavelength range 400 ~ 1100 nm is cutting a 10 percent or more optical glass triangular prism shape.
 ここで、三角柱プリズム断面は頂角が90°の2等辺直角三角形とする。Y方向から入射する光入射面、Z方向に出射する光出射面、さらにY方向からZ方向に偏向する全反射面を何れも、光学鏡面に研磨加工する。さらに、C面加工およびW1面、W2面の面取り加工を施し、各面取部を得る。三角柱プリズムの光入出射面である2等辺面の幅は、光入射面の信号光有効幅Φinおよび光出射面の信号光有効幅Φoutをカバーする寸法に加工する。偏向素子11である三角柱プリズムに、n=1.954で10mm厚の波長365nmの内部透過率が26%である光ガラス社、J-LASFH21を用いる。 Here, the triangular prism prism cross section is an isosceles right triangle with an apex angle of 90 °. The light incident surface incident from the Y direction, the light output surface emitted in the Z direction, and the total reflection surface deflected from the Y direction to the Z direction are all polished into an optical mirror surface. Furthermore, C surface processing and Chamfering of W1 surface and W2 surface are performed, and each chamfering part is obtained. The width of the isosceles surface that is the light incident / exit surface of the triangular prism is processed to a dimension that covers the signal light effective width Φin of the light incident surface and the signal light effective width Φout of the light output surface. For the triangular prism, which is the deflecting element 11, J-LASFH21, an optical glass company having an internal transmittance of 26% with n P = 1.954 and a wavelength of 365 nm of 10 mm is used.
 次に、三角柱プリズムの光入射面1aである空気界面と、光出射面1cである接着層界面の有効幅ΦinおよびΦoutをカバーするように、反射防止層12a、12bを成膜し、各界面の信号光波長域に対する残留反射を0.5%以下とする。 Next, antireflection layers 12a and 12b are formed so as to cover the effective widths Φin and Φout of the air interface which is the light incident surface 1a of the triangular prism and the adhesive layer interface which is the light emitting surface 1c. The residual reflection in the signal light wavelength region is 0.5% or less.
 次に、三角柱プリズムをX方向の寸法が固体撮像素子の受光面をカバーするように、ZY面に平行にダイシング装置を用いて図12に示す素子形状に切断し、切断面1dおよび1eを光拡散面とする。切断面1dおよび1eから入射する光が迷光化しないために、さらに、その上に光吸収剤および紫外線硬化性樹脂を含む遮光膜形成用組成物を塗布し、UV照射により遮光膜15Bを形成して遮光膜付き偏向素子11とする。 Next, the triangular prism is cut into the element shape shown in FIG. 12 using a dicing device in parallel with the ZY plane so that the dimension in the X direction covers the light receiving surface of the solid-state imaging device, and the cut surfaces 1d and 1e are optically cut. The diffusion surface. In order to prevent the light incident from the cut surfaces 1d and 1e from becoming stray light, a light shielding film-forming composition containing a light absorber and an ultraviolet curable resin is further applied thereon, and a light shielding film 15B is formed by UV irradiation. Thus, the deflecting element 11 with a light shielding film is obtained.
(光学フィルタ2Cの作製)
 光学フィルタ2Cは、可視光を透過しUVおよびNIRを遮断するNIRカットフィルタであり、例えば、300~400nmのUVと700~1100nmのNIRを遮断し、420~660nmの可視光を透過するフィルタ機能を有する。
(Preparation of optical filter 2C)
The optical filter 2C is a NIR cut filter that transmits visible light and blocks UV and NIR. For example, a filter function that blocks UV of 300 to 400 nm and NIR of 700 to 1100 nm and transmits visible light of 420 to 660 nm. Have
 光学フィルタ2Cの基板21Cとして、フツリン酸塩系ガラスにCuO等を添加したNIR吸収型のガラス基板21Cを用いる。光学フィルタ2C中の最厚部材はガラス基板21Cであり、n≒1.52である。光学研磨されたNIR吸収型のガラス基板21Cの接着層3側の界面に、350~400nmおよび700~1100nmに反射波長帯域を有する誘電体多層膜からなる反射層23を成膜する。また、NIR吸収型のガラス基板21Cの光出射面(固体撮像素子)側の空気界面に、650~750nmに吸収極大波長を有するNIR吸収色素を含有する吸収層22を形成する。吸収層22は、任意にUV吸収色素を含有する。 As the substrate 21C of the optical filter 2C, an NIR absorption type glass substrate 21C obtained by adding CuO or the like to a fluorophosphate glass is used. The thickest member in the optical filter 2C is the glass substrate 21C, and n F ≈1.52. A reflective layer 23 made of a dielectric multilayer film having reflection wavelength bands of 350 to 400 nm and 700 to 1100 nm is formed on the interface of the optically polished NIR absorption glass substrate 21C on the adhesive layer 3 side. Further, an absorption layer 22 containing an NIR absorbing dye having an absorption maximum wavelength at 650 to 750 nm is formed at the air interface on the light emitting surface (solid-state imaging device) side of the NIR absorption type glass substrate 21C. The absorbing layer 22 optionally contains a UV absorbing dye.
 NIR吸収型のガラス基板21Cは、吸収極大波長を900nm近傍に有するが、NIRの吸収を高めようとすると可視光に吸収を生じ、可視光の透過率低下を招く。そのため、可視光の透過率低下を抑制するようにガラス基板厚を調整する。同様に可視光の透過率低下を抑制するように吸収層22のNIR吸収色素の含有量を調整する。可視光の透過率低下を抑制するようにNIR吸収型のガラス基板21Cおよび吸収層22を調整すると、350~400nmおよび700~1100nmに透過光が発生する波長域が生じるため、該波長域を反射波長帯域とする反射層23を設計する。 The NIR absorption type glass substrate 21C has an absorption maximum wavelength in the vicinity of 900 nm. However, when it is attempted to increase the absorption of NIR, the NIR absorption type glass substrate absorbs visible light and causes a decrease in visible light transmittance. Therefore, the glass substrate thickness is adjusted so as to suppress a decrease in visible light transmittance. Similarly, the content of the NIR absorbing dye in the absorption layer 22 is adjusted so as to suppress a decrease in visible light transmittance. When the NIR absorption type glass substrate 21C and the absorption layer 22 are adjusted so as to suppress the decrease in the transmittance of visible light, the wavelength regions where transmitted light is generated are generated at 350 to 400 nm and 700 to 1100 nm. The reflective layer 23 having a wavelength band is designed.
 なお、少ない層数および総膜厚の反射層23で波長420~660nmの可視域で高透過率を示し、反射波長帯域で低透過率を実現できるように、ガラス基板21Cの屈折率nとの相違が0.1以下の屈折率nの接着層3を用いる前提で、誘電体多層膜を設計する。 Note that the refractive index n F of the glass substrate 21C can be realized so that the reflective layer 23 having a small number of layers and a total film thickness can exhibit high transmittance in the visible range of 420 to 660 nm and low transmittance in the reflected wavelength range. A dielectric multilayer film is designed on the premise that the adhesive layer 3 having a refractive index n G of 0.1 or less is used.
 ここで、反射層23は入射光の入射角増加に伴い反射波長帯が短波長域にシフトし、光学フィルタ2C全体の分光透過率が変化するため撮像画質劣化につながる。吸収層22は、NIR吸収型のガラス基板21CのNIR吸収性を補完するとともに、このような分光特性の入射角依存性を低減する役割も有する。 Here, in the reflection layer 23, the reflection wavelength band shifts to a short wavelength region as the incident angle of incident light increases, and the spectral transmittance of the entire optical filter 2C changes. The absorption layer 22 complements the NIR absorptivity of the NIR absorption type glass substrate 21C, and also has a role of reducing the incident angle dependency of such spectral characteristics.
 次いで、光学フィルタ2Cの吸収層22の空気界面に反射防止層13bを成膜し、界面の信号光波長域に対する残留反射を0.5%以下とする。さらに、反射防止層13bの空気界面の信号光透過有効領域以外の周辺領域に額縁形状の遮光膜15を形成して、遮光膜付き光学フィルタ2Cとする。 Next, the antireflection layer 13b is formed on the air interface of the absorption layer 22 of the optical filter 2C, and the residual reflection with respect to the signal light wavelength region at the interface is 0.5% or less. Further, a frame-shaped light shielding film 15 is formed in a peripheral region other than the signal light transmission effective region at the air interface of the antireflection layer 13b to obtain an optical filter 2C with a light shielding film.
(接着層3の形成による光学素子の作製)
 このようにして作製した遮光膜付き光学フィルタ2Cを、上記で作製した遮光膜付き偏向素子(三角柱プリズム)11に接着固定するため、偏向素子(三角柱プリズム)11または光学フィルタ2Cの接着面に硬化前の紫外線硬化性材料を含む液状の接着層形成用組成物を塗布し、接着層形成用組成物層を形成し、その上に遮光膜付き偏向素子11または遮光膜付き光学フィルタ2Cを積層して光学素子の前駆体を得る。接着層形成用組成物層の厚さは、最終的に得られる接着層3の厚さが2~20μmで均一となるように調整する。
(Production of optical element by formation of adhesive layer 3)
Since the optical filter 2C with the light shielding film thus produced is bonded and fixed to the deflection element (triangular prism) 11 with the light shielding film produced as described above, the optical filter 2C is cured on the bonding surface of the deflection element (triangular prism) 11 or the optical filter 2C. A liquid adhesive layer-forming composition containing the previous ultraviolet curable material is applied to form an adhesive layer-forming composition layer, and a light-shielding film-attached deflection element 11 or a light-shielding film-attached optical filter 2C is laminated thereon. Thus, a precursor of the optical element is obtained. The thickness of the composition layer for forming the adhesive layer is adjusted so that the finally obtained adhesive layer 3 has a uniform thickness of 2 to 20 μm.
 次に、偏向素子(三角柱プリズム)11の入射面または/および全反射面より、UVを照射し、接着層形成用組成物層中の紫外線硬化性材料を重合固化させ、接着層3を得る。 Next, UV is irradiated from the incident surface or / and the total reflection surface of the deflecting element (triangular prism) 11 to polymerize and solidify the ultraviolet curable material in the composition layer for forming the adhesive layer, whereby the adhesive layer 3 is obtained.
 接着層3として、紫外線硬化性材料を用いる場合、例えば、硬化後の屈折率nが1.56のNorlandProducts社NOA61の場合、ΔnGF=|n-n|=0.04のため、接着層3と光学フィルタ2Cの界面には反射防止層を有しない。一方、ΔnPG=|n-n|=0.394のため、偏向素子(三角柱プリズム)11と接着層3の界面には反射防止層12bを有する。 When an ultraviolet curable material is used as the adhesive layer 3, for example, in the case of Norland Products NOA61 having a refractive index n G of 1.56 after curing, Δn GF = | n G −n F | = 0.04, There is no antireflection layer at the interface between the adhesive layer 3 and the optical filter 2C. On the other hand, since Δn PG = | n P −n G | = 0.394, an antireflection layer 12 b is provided at the interface between the deflection element (triangular prism) 11 and the adhesive layer 3.
 なお、光学素子10Hにおいて、屈折率nと屈折率nの差異が小さい場合には、偏向素子11の出射側に光学フィルタ2Cの替わりに図6Bに示す光学フィルタ2Bを設け、偏向素子11と光学フィルタ2Bの間に接着層3を有し、偏向素子11の出射面1c上に反射層23を有するとともに、反射防止層12bを有しない構成としてもよい。その場合、反射防止層12a、反射防止層13bおよび遮光膜15、15Bは光学素子10Hと同様に構成できる。 Incidentally, in the optical element 10H, when the difference in refractive index n P and the refractive index n G is small, it provided the optical filter 2B shown in Figure 6B in place of the optical filter 2C the exit side of the deflecting element 11, deflection elements 11 In addition, the adhesive layer 3 may be provided between the optical filter 2B, the reflective layer 23 on the emission surface 1c of the deflection element 11, and the antireflection layer 12b. In that case, the antireflection layer 12a, the antireflection layer 13b, and the light shielding films 15 and 15B can be configured similarly to the optical element 10H.
 本発明の光学素子は、光の偏向機能と選択遮断機能を兼ね備えた光学素子であり、固体撮像素子を用いたデジタルスチルカメラ等の撮像装置において、固体撮像素子の受光面の直前に配置して用いれば、撮像装置の小型化に有利である。 The optical element of the present invention is an optical element having both a light deflection function and a selective blocking function. In an imaging apparatus such as a digital still camera using a solid-state image sensor, the optical element is disposed immediately before the light-receiving surface of the solid-state image sensor. If used, it is advantageous for downsizing of the imaging device.
 10,10A,10B,10C,10D,10E,10F,10G,10H…光学素子、
 1,11…偏向素子、2,2A,2B,2C…光学フィルタ、3…接着層、
 21…吸収基板、21B,21C…基板、22…吸収層、23…反射層、
 12a,12b,13a,13b…反射防止層、15,15B…遮光膜、
 4…固体撮像素子、5…対物レンズ、6…物体側プリズム、7…レンズ移動機構、8…結像レンズ群、100…撮像装置。
10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H ... optical elements,
DESCRIPTION OF SYMBOLS 1,11 ... Deflection element 2, 2A, 2B, 2C ... Optical filter, 3 ... Adhesive layer,
21 ... Absorbing substrate, 21B, 21C ... Substrate, 22 ... Absorbing layer, 23 ... Reflecting layer,
12a, 12b, 13a, 13b ... antireflection layer, 15, 15B ... light shielding film,
DESCRIPTION OF SYMBOLS 4 ... Solid-state image sensor, 5 ... Objective lens, 6 ... Object side prism, 7 ... Lens moving mechanism, 8 ... Imaging lens group, 100 ... Imaging device.

Claims (20)

  1.  入射する光を偏向して出射する偏向素子と、
     前記偏向素子の入射側または出射側に位置する、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断する光学フィルタと、
     前記偏向素子と前記光学フィルタの間に両者を一体化する接着層とを備え、
     前記偏向素子の屈折率をn、前記接着層の屈折率をn、および前記光学フィルタに含まれる部材のうち層厚が最大の部材の屈折率をnとしたとき、式(1)および式(2)の関係を満足する、光学素子。
     ΔnGF=|n-n|≦0.5  …(1)
     ΔnPG=|n-n|≦0.5  …(2)
    A deflection element that deflects and emits incident light; and
    An optical filter that selectively blocks light in at least a part of the region from the ultraviolet region to the near infrared region, which is located on the incident side or the emission side of the deflection element;
    An adhesive layer that integrates both between the deflection element and the optical filter;
    When the refractive index of the deflecting element is n P , the refractive index of the adhesive layer is n G , and the refractive index of the member having the largest layer thickness among the members included in the optical filter is n F , the formula (1) And an optical element satisfying the relationship of the formula (2).
    Δn GF = | n G −n F | ≦ 0.5 (1)
    Δn PG = | n P −n G | ≦ 0.5 (2)
  2.  前記偏向素子は、プリズムである請求項1に記載の光学素子。 The optical element according to claim 1, wherein the deflection element is a prism.
  3.  前記プリズムは、直角プリズムである請求項2に記載の光学素子。 The optical element according to claim 2, wherein the prism is a right angle prism.
  4.  前記プリズムの屈折率nは、1.70以上である請求項2または請求項3に記載の光学素子。 Refractive index n P of the prism optical element according to claim 2 or claim 3 1.70 or more.
  5.  前記接着層は、紫外線硬化材料を含む請求項1~4のいずれか1項に記載の光学素子。 5. The optical element according to claim 1, wherein the adhesive layer includes an ultraviolet curable material.
  6.  前記接着層は、前記光学素子の前記偏向素子側から入射する紫外域の光を受光可能であるか、または前記光学素子の前記光学フィルタ側から入射する紫外域の光を受光可能であるとともに、前記光学素子において前記偏向素子の入射側から入射した紫外域の光は前記光学フィルタの出射側に透過しない請求項5に記載の光学素子。 The adhesive layer can receive ultraviolet light incident from the deflection element side of the optical element, or can receive ultraviolet light incident from the optical filter side of the optical element, The optical element according to claim 5, wherein in the optical element, ultraviolet light incident from the incident side of the deflecting element is not transmitted to the output side of the optical filter.
  7.  前記光学フィルタは、紫外域の光を遮断するとともに、可視域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断し、
     前記偏向素子は、波長340~390nmの光の最大透過率が10%以上である、請求項5または6に記載の光学素子。
    The optical filter blocks light in the ultraviolet region and selectively blocks light in at least a part of the range from the visible region to the near infrared region,
    The optical element according to claim 5 or 6, wherein the deflecting element has a maximum transmittance of light having a wavelength of 340 to 390 nm of 10% or more.
  8.  前記光学フィルタは、可視域の光を透過し近赤外域の光を遮断する近赤外線カットフィルタである請求項7に記載の光学素子。 The optical element according to claim 7, wherein the optical filter is a near-infrared cut filter that transmits visible light and blocks near-infrared light.
  9.  前記光学フィルタにおける層厚が最大の部材は、ガラス基板である請求項1~8のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 8, wherein the member having the largest layer thickness in the optical filter is a glass substrate.
  10.  前記ガラス基板は、CuOを含有するフツリン酸塩系ガラスまたはCuOを含有するリン酸塩系ガラスからなる請求項9に記載の光学素子。 The optical element according to claim 9, wherein the glass substrate is made of a fluorophosphate glass containing CuO or a phosphate glass containing CuO.
  11.  前記光学フィルタは、前記ガラス基板の少なくとも一方の面に樹脂と吸収色素を含有する吸収層を有する請求項9または請求項10に記載の光学素子。 The optical element according to claim 9 or 10, wherein the optical filter has an absorption layer containing a resin and an absorption pigment on at least one surface of the glass substrate.
  12.  前記光学フィルタにおける層厚が最大の部材は、樹脂基板である請求項1~8のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 8, wherein the member having the largest layer thickness in the optical filter is a resin substrate.
  13.  前記樹脂基板は吸収色素を含有する請求項12に記載の光学素子。 The optical element according to claim 12, wherein the resin substrate contains an absorbing dye.
  14.  前記光学フィルタは、前記樹脂基板の少なくとも一方の面に樹脂と吸収色素を含有する吸収層を有する請求項12または請求項13に記載の光学素子。 The optical element according to claim 12 or 13, wherein the optical filter has an absorption layer containing a resin and an absorption pigment on at least one surface of the resin substrate.
  15.  前記光学フィルタは、紫外域の一部の領域の光を遮断する誘電体多層膜からなる反射層を備える請求項9~14のいずれか1項に記載の光学素子。 The optical element according to any one of claims 9 to 14, wherein the optical filter includes a reflective layer made of a dielectric multilayer film that blocks light in a part of the ultraviolet region.
  16.  前記光学素子に入射側から入射する光を部分的に遮断する第1の遮光膜をさらに有する請求項1~15のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 15, further comprising a first light-shielding film that partially blocks light incident on the optical element from an incident side.
  17.  前記光学素子に側面から入射する光を遮断する第2の遮光膜をさらに有する請求項1~16のいずれか1項に記載の光学素子。 The optical element according to any one of claims 1 to 16, further comprising a second light-shielding film that blocks light incident on the optical element from a side surface.
  18.  前記プリズムと前記光学フィルタが対向する各面において、前記プリズムの外縁が、前記光学フィルタの外縁よりも内側にある請求項2~17のいずれか1項に記載の光学素子。 The optical element according to any one of claims 2 to 17, wherein an outer edge of the prism is on an inner side of an outer edge of the optical filter in each surface where the prism and the optical filter face each other.
  19.  前記プリズムと前記光学フィルタが対向する各面において、前記プリズムの外縁が、前記光学フィルタの外縁よりも外側にある請求項2~17のいずれか1項に記載の光学素子。 The optical element according to any one of claims 2 to 17, wherein an outer edge of the prism is on an outer side than an outer edge of the optical filter on each surface where the prism and the optical filter face each other.
  20.  入射する光を偏向して出射する偏向素子と、前記偏向素子の入射側または出射側に位置する、紫外域から近赤外域にわたる少なくとも一部の領域の光を選択的に遮断する光学フィルタと、前記偏向素子と前記光学フィルタの間に両者を一体化する接着層とを備え、
     前記偏向素子の屈折率をn、前記接着層の屈折率をn、および前記光学フィルタに含まれる部材のうち層厚が最大の部材の屈折率をnとしたとき、ΔnGF=|n-n|≦0.5およびΔnPG=|n-n|≦0.5の関係を満足する、光学素子を製造する方法であって、
     前記偏向素子と前記光学フィルタの間に、紫外線硬化性材料を含む接着層形成用組成物層を有する光学素子前駆体を作製する工程、および
     前記光学素子前駆体に前記光学素子とした場合に入射側となる側または前記光学素子とした場合に出射側となる側から紫外域の光を照射して前記接着層形成用組成物層を硬化させ前記接着層とする工程
     を含む光学素子の製造方法。
    A deflection element that deflects and emits incident light; and an optical filter that selectively blocks light in at least a part of the range from the ultraviolet region to the near infrared region, which is located on the incident side or the emission side of the deflection element; An adhesive layer that integrates both between the deflection element and the optical filter;
    When the refractive index of the deflecting element is n P , the refractive index of the adhesive layer is n G , and the refractive index of the member having the largest layer thickness among the members included in the optical filter is n F , Δn GF = | A method of manufacturing an optical element that satisfies the relationship of n G −n F | ≦ 0.5 and Δn PG = | n P −n G | ≦ 0.5,
    A step of producing an optical element precursor having a composition layer for forming an adhesive layer containing an ultraviolet curable material between the deflection element and the optical filter, and incident when the optical element is used as the optical element A method for producing an optical element, comprising: a step of irradiating light in the ultraviolet region from the side to be the side or the side to be the emission side when the optical element is used to cure the composition layer for forming an adhesive layer to form the adhesive layer .
PCT/JP2018/008493 2017-03-31 2018-03-06 Optical element and manufacturing method for optical element WO2018180269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019509098A JPWO2018180269A1 (en) 2017-03-31 2018-03-06 Optical element and method for manufacturing optical element
CN201880020783.6A CN110462458A (en) 2017-03-31 2018-03-06 The manufacturing method of optical element and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017070936 2017-03-31
JP2017-070936 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180269A1 true WO2018180269A1 (en) 2018-10-04

Family

ID=63675541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008493 WO2018180269A1 (en) 2017-03-31 2018-03-06 Optical element and manufacturing method for optical element

Country Status (4)

Country Link
JP (1) JPWO2018180269A1 (en)
CN (1) CN110462458A (en)
TW (1) TW201837520A (en)
WO (1) WO2018180269A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210063617A1 (en) * 2019-08-30 2021-03-04 Samsung Electro-Mechanics Co., Ltd. Prism for optical imaging system
CN113880461A (en) * 2020-07-01 2022-01-04 佳能株式会社 Optical element manufacturing method, optical element, optical apparatus, and image capturing apparatus
WO2022243228A1 (en) * 2021-05-17 2022-11-24 Schott Ag Optical system for periscope camera module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210063616A1 (en) * 2019-08-30 2021-03-04 Samsung Electro-Mechanics Co., Ltd. Prism for optical imaging system
TWI770808B (en) 2021-02-05 2022-07-11 大陸商信泰光學(深圳)有限公司 Lens module
CN113050208B (en) * 2021-03-10 2023-07-14 浙江舜宇光学有限公司 Resin prism lens, film coating method thereof and long-focus camera

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195128A (en) * 1997-09-18 1999-04-09 Canon Inc Optical observation device
JP2007225636A (en) * 2006-02-21 2007-09-06 Sony Corp Dichroic filter and color resolving prism
JP2012068509A (en) * 2010-09-24 2012-04-05 Hoya Corp Photographic optical system and photographic device
WO2013042738A1 (en) * 2011-09-21 2013-03-28 旭硝子株式会社 Near-infrared cut-off filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587559B2 (en) * 1994-07-29 2004-11-10 オリンパス株式会社 Beam splitting element
JP5046735B2 (en) * 2007-05-07 2012-10-10 協立化学産業株式会社 Film bonding apparatus and polarizing plate manufacturing apparatus
JP6233308B2 (en) * 2012-08-23 2017-11-22 旭硝子株式会社 Near-infrared cut filter and solid-state imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195128A (en) * 1997-09-18 1999-04-09 Canon Inc Optical observation device
JP2007225636A (en) * 2006-02-21 2007-09-06 Sony Corp Dichroic filter and color resolving prism
JP2012068509A (en) * 2010-09-24 2012-04-05 Hoya Corp Photographic optical system and photographic device
WO2013042738A1 (en) * 2011-09-21 2013-03-28 旭硝子株式会社 Near-infrared cut-off filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210063617A1 (en) * 2019-08-30 2021-03-04 Samsung Electro-Mechanics Co., Ltd. Prism for optical imaging system
CN113880461A (en) * 2020-07-01 2022-01-04 佳能株式会社 Optical element manufacturing method, optical element, optical apparatus, and image capturing apparatus
CN113880461B (en) * 2020-07-01 2024-01-12 佳能株式会社 Optical element manufacturing method, optical element, optical apparatus, and image capturing apparatus
WO2022243228A1 (en) * 2021-05-17 2022-11-24 Schott Ag Optical system for periscope camera module

Also Published As

Publication number Publication date
JPWO2018180269A1 (en) 2020-02-06
TW201837520A (en) 2018-10-16
CN110462458A (en) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2018180269A1 (en) Optical element and manufacturing method for optical element
JP6202229B2 (en) Optical filter and imaging device
US9606348B2 (en) Optical wheel
US20040051949A1 (en) Optical material, and, optical element, optical system and laminated diffractive optical element using it
CN105372801B (en) A kind of solar blind UV camera lens and system
TWM479422U (en) Optical lens set with optical refractive index matching layer
JPWO2010061699A1 (en) Thin backlight system and liquid crystal display device using the same
US10401544B2 (en) Optical system and optical apparatus including the same
WO2019146545A1 (en) Diffusion plate and optical device
US20130063828A1 (en) Imaging lens
US11381760B2 (en) Infrared imager and related systems
KR100706959B1 (en) Lens assembly with a infrared absorbing glass
US11131858B2 (en) Low-height projector assembly
JP2002048906A (en) Diffraction optical device and optical system having the same, photographing device and observation device
JP2006284656A (en) Light antireflection optical system and imaging optical system
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
CN220752336U (en) Filter film, amplifying reflection element, head-up display and vehicle
US9193116B2 (en) Method of manufacturing hybrid lens unit
US20230280512A1 (en) Optical Construction
WO2022045012A1 (en) Optical element
US20240036234A1 (en) Lens and lens device
KR102419044B1 (en) Light Source Assembly
US20170160622A1 (en) Wavelength separating element for use in a nonlinear frequency conversion device
US20220278154A1 (en) Sensor unit
KR101946280B1 (en) Nd lens and optical module using nd lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774951

Country of ref document: EP

Kind code of ref document: A1