WO2018179922A1 - 通信装置、通信制御方法、及び通信システム - Google Patents

通信装置、通信制御方法、及び通信システム Download PDF

Info

Publication number
WO2018179922A1
WO2018179922A1 PCT/JP2018/004825 JP2018004825W WO2018179922A1 WO 2018179922 A1 WO2018179922 A1 WO 2018179922A1 JP 2018004825 W JP2018004825 W JP 2018004825W WO 2018179922 A1 WO2018179922 A1 WO 2018179922A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication path
bandwidth
path
available bandwidth
Prior art date
Application number
PCT/JP2018/004825
Other languages
English (en)
French (fr)
Inventor
智昭 佐藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/496,729 priority Critical patent/US11012347B2/en
Publication of WO2018179922A1 publication Critical patent/WO2018179922A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • H04L12/4675Dynamic sharing of VLAN information amongst network nodes
    • H04L12/4679Arrangements for the registration or de-registration of VLAN attribute values, e.g. VLAN identifiers, port VLAN membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/125Shortest path evaluation based on throughput or bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]

Definitions

  • the present disclosure relates to a communication device, a communication control method, and a communication system.
  • An object of the present disclosure is to provide a communication device, a communication control method, and a communication system that can distribute a flow to a suitable communication path.
  • the communication device performs multilink communication between a communication partner device and simultaneously using a plurality of communication paths in which one or a plurality of flows are set for each communication path.
  • a distribution control unit that executes control for distributing a setting flow for a first communication path among the plurality of communication paths to a distribution destination communication path different from the first communication path;
  • a determination unit that determines the distribution destination communication path from a plurality of candidate communication paths other than the first communication path included in the communication path, based on an available bandwidth of each candidate communication path.
  • multilink communication is performed simultaneously with a communication partner apparatus using a plurality of communication paths in which one or a plurality of flows are set for each communication path.
  • a communication control method executed by a communication device that performs the allocation from a plurality of candidate communication paths other than the first communication path included in the plurality of communication paths, based on an available bandwidth of each candidate communication path
  • a destination communication path is determined, and control for distributing the setting flow for the first communication path to the distribution destination communication path is executed.
  • a communication system includes a plurality of communication paths in which one or a plurality of flows are set for each communication path between the first communication apparatus and the first communication apparatus.
  • a second communication device that performs multilink communication simultaneously using a plurality of communication devices, and a plurality of transmission devices respectively located in a plurality of communication sections included in the plurality of communication paths, and each transmission device corresponds to each other Information related to the currently available bandwidth for the communication section is transmitted to the first communication device, and the first communication device has a vacancy in each communication path based on the currently available bandwidth transmitted from each of the transmission devices.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the first embodiment.
  • a communication system 1 includes a communication device 10, a communication device 20, transmission devices 30-1, 30-2, and 30-3, and transmission devices 40-1, 40-2, and 40-3. is doing.
  • the transmission devices 30-1, 30-2, and 30-3 may be collectively referred to simply as the transmission device 30.
  • the transmission devices 40-1, 40-2, and 40-3 may be collectively referred to simply as the transmission device 40.
  • the number of transmission apparatuses 30 and the number of transmission apparatuses 40 are each three, but the number is not limited to this, and may be four or more.
  • the communication device 10 is connected to transmission devices 30-1, 30-2, and 30-3 via links L1, L2, and L3, respectively.
  • the transmission apparatuses 30-1, 30-2, and 30-3 are connected to the transmission apparatuses 40-1, 40-2, and 40-3 via wireless sections W1, W2, and W3, respectively.
  • the transmission devices 40-1, 40-2, and 40-3 are connected to the communication device 20 via links L4, L5, and L6, respectively.
  • the link L1, the wireless section W1, and the link L4 constitute a “first communication path”.
  • the link L2, the wireless section W2, and the link L5 constitute a “second communication path”.
  • the link L3, the wireless section W3, and the link L6 constitute a “third communication path”.
  • the communication device 10 performs multilink communication with the communication device 20 using the first communication route, the second communication route, and the third communication route at the same time. That is, multilink communication is communication using a plurality of communication paths as one virtual communication line.
  • the communication device 10 may be referred to as a “transmission-side communication device”, and the communication device 20 may be referred to as a “communication partner device” of the communication device 10.
  • the communication device 10 sets one or a plurality of flows for each of the first communication path, the second communication path, and the third communication path.
  • the communication device 10 receives a transmission frame transmitted from a certain transmission source terminal (not shown)
  • the communication device 10 receives the transmission frame toward a communication path in which a flow corresponding to the received transmission frame is set. Send a transmission frame.
  • the communication device 10 may set again the setting flow for the first communication path to a communication path other than the first communication path, that is, the second communication path or the third communication path (that is, distribute again). is there.
  • the communication device 10 sets the second communication path and the third communication path other than the first communication path as a plurality of “candidate communication paths”, and selects “free bandwidth” of each candidate communication path from the plurality of path communication paths. Based on the “width”, the “distribution destination communication path” is determined. Then, the communication device 10 distributes the setting flow for the first communication path to the determined distribution destination communication path. Thereby, a flow can be distributed with respect to a suitable communication path.
  • FIG. 2 is a block diagram illustrating an example of a transmission-side communication device according to the first embodiment.
  • the communication device 10 that is a transmission side communication device has a distribution control unit 11, a determination unit 12, and ports 13-1, 13-2, and 13-3.
  • the ports 13-1, 13-2, and 13-3 correspond to the first communication path, the second communication path, and the third communication path, respectively.
  • the ports 13-1, 13-2, and 13-3 may be simply referred to as a port 13 collectively.
  • the distribution control unit 11 associates each of the plurality of flows with one of the first communication path, the second communication path, and the third communication path. That is, one or a plurality of flows are set for each of the first communication path, the second communication path, and the third communication path.
  • the distribution control unit 11 also distributes a setting flow for one communication path among the first communication path, the second communication path, and the third communication path to a distribution destination communication path different from the one communication path. Execute. For example, the distribution control unit 11 distributes the setting flow for the one communication path to the distribution destination communication path based on the “free bandwidth” of the one communication path (that is, the setting flow is assigned to the distribution destination). Control to reset the communication path). Hereinafter, this control may be referred to as “redistribution control”.
  • the distribution control unit 11 When the distribution control unit 11 receives a transmission frame transmitted from a certain transmission source terminal (not shown), the distribution control unit 11 receives the transmission frame toward the port 13 in which a flow corresponding to the received transmission frame is set. The transmitted transmission frame is sent out.
  • the determination unit 12 includes a plurality of candidate communication paths other than the one communication path among the first communication path, the second communication path, and the third communication path. Then, based on the “free bandwidth” of each candidate communication path, the “distribution destination communication path” is determined.
  • Each of the ports 13-1, 13-2, and 13-3 sends the transmission frame received from the distribution control unit 11 to the corresponding link (that is, the communication path).
  • the determination unit 12 in the communication device 10 determines each candidate communication from a plurality of candidate communication paths other than one communication path among the plurality of communication paths used for multilink communication. Based on the “free bandwidth” of the route, the “allocation destination communication route” is determined. Then, the distribution control unit 11 executes control for distributing the setting flow for the one communication path to the determined distribution destination communication path.
  • the configuration of the communication device 10 can determine the distribution destination communication path based on the free bandwidth of each of the plurality of candidate communication paths, so that the flow can be distributed to a suitable communication path.
  • the second embodiment relates to a more specific embodiment.
  • the basic configuration of the communication system of the second embodiment is the same as that of the communication system 1 of the first embodiment, and will be described with reference to FIG.
  • the communication device 10 is included in the first network.
  • the communication device 20 is included in the second network.
  • the transmission devices 30-1, 30-2, 30-3 and the transmission devices 40-1, 40-2, 40-3 are included in the third network.
  • the first network and the second network are Ethernet (registered trademark) networks
  • the third network is a wireless network.
  • the first network and the second network may be Ethernet (registered trademark) networks
  • the third network may be a wired network.
  • the transmission device 30-1 and the transmission device 40-1 are included in the wireless network
  • the transmission devices 30-2 and 30-3 and the transmission devices 40-2 and 40-3 are included in the wired network. May be. That is, the third network may include a wireless network and a wired network.
  • the types of the first network, the second network, and the third network are not particularly limited.
  • FIG. 3 is a diagram for explaining the communication system according to the second embodiment.
  • each of the communication device 10 and the communication device 20 is an end point (MEP: Maintenance (End Point) of an OAM (Operations, Administration, Maintenance) in the client layer.
  • MEP Maintenance (End Point) of an OAM (Operations, Administration, Maintenance) in the client layer.
  • OAM Operations, Administration, Maintenance
  • Each of the transmission device 30 and the transmission device 40 is a terminal OAM end of the server layer.
  • the server layer has a function of notifying the client layer of a bandwidth notification message (for example, Ethernet (registered trademark) bandwidth notification message: ETH-BNM).
  • a bandwidth notification message for example, Ethernet (registered trademark) bandwidth notification message: ETH-BNM.
  • the transmission device 30 transmits to the communication device 10 a bandwidth notification message including information regarding “currently available bandwidth” for the communication section in which the transmission device 30 is located.
  • the transmission device 40 transmits to the communication device 20 a bandwidth notification message including information on “currently available bandwidth” for the communication section in which the transmission device 40 is located. That is, the transmission device 30 and the transmission device 40 are also the terminal of the band notification.
  • the communication device 10 calculates the free bandwidth of each communication path used for multilink communication based on the currently available bandwidth transmitted from each transmission device 30. Then, the communication device 10 determines, based on the available bandwidth of each candidate communication path, from a plurality of candidate communication paths other than one of the plurality of communication paths used for multilink communication. To decide. And the communication apparatus 10 performs control which distributes the setting flow with respect to the said one communication path to the determined said allocation destination communication path.
  • FIG. 4 is a block diagram illustrating an example of a transmission-side communication device according to the second embodiment.
  • the communication device 10 which is the transmission side communication device of the second embodiment includes a distribution control unit 11, a determination unit 12, a port 13, a flow counter 14, a route management processing unit 15, and table management.
  • the flow counter 14 acquires the throughput (that is, the used bandwidth) for each flow set in the port 13 (that is, the communication path), and outputs the acquired used bandwidth for each flow to the table management unit 16.
  • the route management processing unit 15 receives the bandwidth notification message transmitted from the transmission device 30 via the port 13, and extracts information on the currently available bandwidth from the received bandwidth notification message.
  • the route management processing unit 15 has a message processing unit 15A, and this information extraction processing is performed by the message processing unit 15A.
  • the route management processing unit 15 is, for example, ITU-T G. 8013 / Y. 1731 is a functional unit corresponding to ETH-OAM, and the message processing unit 15A is an ITU-T G. 8013 / Y. This is a functional unit corresponding to ETH-BN of 1731.
  • the table management unit 16 updates the “forwarding table” and the “management table” stored in the storage unit 17 using information received from each of the flow counter 14, the path management processing unit 15, and the distribution control unit 11. To do.
  • the storage unit 17 stores a forwarding table 17A and a management table 17B.
  • FIG. 5 is a diagram illustrating an example of a forwarding table according to the second embodiment.
  • FIG. 6 is a diagram illustrating an example of a management table according to the second embodiment.
  • Transfer destination port identifiers A, B, and C in FIG. 5 correspond to, for example, ports 13-1, 13-2, and 13-3, respectively.
  • a nominal bandwidth (Nominal Bandwidth)
  • a currently available bandwidth (Bandwidth)
  • a free bandwidth (Free Bandwidth)
  • an allocation to each port is associated with a used bandwidth (Throughput) corresponding to each VLAN identifier.
  • Each VLAN identifier assigned to each port corresponds to one flow. For example, in FIG. 5, the nominal bandwidth (that is, the maximum bandwidth) of port A is 100 Mbps, the currently available bandwidth is 50 Mbps, and the free bandwidth is 0 Mbps.
  • the bandwidth used for the flow corresponding to the VLAN identifier 100 is 10 Mbps
  • the bandwidth used for the flow corresponding to the VLAN identifier 200 is 20 Mbps
  • the bandwidth used for the flow corresponding to the VLAN identifier 300 is 30 Mbps.
  • the used bandwidth of the flows corresponding to the VLAN identifiers 400, 500, and 600 at port A is zero. That is, the use bandwidth of the entire flow of port A is 60 Mbps.
  • the currently available bandwidth of port A is 50 Mbps, which is smaller than the used bandwidth (60 Mbps) of the entire flow of port A, so the free bandwidth of port A is zero.
  • the bandwidth calculation unit 18 refers to the management table stored in the storage unit 17 to calculate the free bandwidth of the communication path corresponding to each port 13. Specifically, the bandwidth calculation unit 18 refers to the management table 17B and associates the target port among the ports 13-1, 13-2, and 13-3 used for multilink communication with the target port. The sum of the used bandwidth of each of the plurality of flows is calculated. Then, the bandwidth calculator 18 reads the current available bandwidth of the port of interest from the management table 17B. Then, the bandwidth calculation unit 18 calculates the free bandwidth of the target port by subtracting the sum of the used bandwidths calculated for the target port from the currently available bandwidth of the read target port.
  • the bandwidth calculation unit 18 sequentially changes the target port among the ports 13-1, 13-2, and 13-3, and free bandwidths for the ports 13-1, 13-2, and 13-3, respectively. Is calculated. Then, the bandwidth calculation unit 18 outputs the calculated available bandwidth of the communication path corresponding to each port 13 to the distribution control unit 11.
  • the distribution control unit 11 associates each of the plurality of flows with one of the first communication path, the second communication path, and the third communication path. For example, when the distribution control unit 11 receives a transmission frame, the distribution control unit 11 determines whether or not a forwarding destination port of a flow corresponding to the transmission frame is defined in the forwarding table. If not specified, the distribution control unit 11 sets a transfer destination port of the flow corresponding to the transmission frame using a hash function or the like. Information regarding the transfer destination port set in this flow is output to the table management unit 16 and is reflected in the forwarding table by the table management unit 16. On the other hand, if specified, the distribution control unit 11 sends the transmission frame to the transfer destination port associated with the flow of the transmission frame in accordance with the specification.
  • the distribution control unit 11 changes the flow associated with one port 13 (that is, a communication path) whose free bandwidth calculated by the bandwidth calculation unit 18 is equal to or lower than a predetermined level to the one port 13. "Redistribution control" is executed to distribute to other ports 13 (that is, distribution destination communication paths) different from the above.
  • the distribution control unit 11 for example, “determination target flow” in order from the flow with the highest priority among the plurality of flows associated with the one port 13 whose free bandwidth is equal to or lower than a predetermined level. Choose as. For example, the priority is higher as the use bandwidth is larger. Conversely, the priority can be increased as the available bandwidth is smaller.
  • the distribution control unit 11 determines to distribute the determination target flow to the distribution destination communication path.
  • the flow with the next highest priority is determined as the determination target flow according to the priority.
  • the determination unit 12 determines each candidate from a plurality of ports 13 (that is, a plurality of candidate communication paths) that are distribution destination candidates other than the one port 13. Based on the available bandwidth of the communication path, the distribution destination communication path is determined. For example, the determination unit 12 determines a candidate communication path having a higher priority among the plurality of candidate communication paths as a distribution destination communication path based on the available bandwidth of each candidate communication path. This priority is higher, for example, as the available bandwidth is larger. That is, according to this priority, a candidate communication path having the largest available bandwidth among the plurality of candidate communication paths is selected as a distribution destination communication path. Conversely, the priority can be increased as the available bandwidth is smaller. Then, information regarding the distribution destination communication path determined by the determination unit 12 is output to the distribution control unit 11. Then, the information is sent to the table management unit 16 via the distribution control unit 11 and reflected in the forwarding table by the table management unit 16.
  • FIG. 7 is a block diagram illustrating an example of a transmission apparatus according to the second embodiment.
  • the transmission device 30 includes a port 31, a transfer processing unit 32, a wireless communication unit 33, a transmission method control unit 34, a bandwidth monitoring unit 35, and a message transmission processing unit 36.
  • the port 31 is an interface for the link L between the transmission device 30 and the communication device 10. For example, the port 31 receives a transmission frame via the link L and outputs the transmission frame to the transfer processing unit 32. Further, the port 31 transmits the bandwidth notification message received from the message transmission processing unit 36 to the communication apparatus 10 via the link L.
  • the transfer processing unit 32 performs transfer processing on the transmission frame received from the port 31 and outputs the transmission frame after the transfer processing to the wireless communication unit 33.
  • the transfer processing unit 32 performs transmission processing (for example, modulation processing according to the modulation scheme) corresponding to the transmission scheme determined by the transmission scheme control unit 34 on the transmission frame as the transfer processing. That is, for example, adaptive modulation is performed by the transfer processing unit 32.
  • the wireless communication unit 33 performs wireless transmission processing on the transmission frame received from the transfer processing unit 32 and transmits the wireless signal obtained by the wireless transmission processing to the transmission device 40 via the wireless section W. In addition, the wireless communication unit 33 receives a signal transmitted from the transmission device 40 and performs a wireless reception process on the received signal. Then, the wireless communication unit 33 outputs the signal after the wireless reception process to the transmission method control unit 34.
  • the transmission method control unit 34 extracts communication quality information from the signal received from the wireless communication unit 33, and determines a transmission method (for example, modulation method) based on the extracted communication quality information. Then, the transmission method control unit 34 outputs information indicating the determined transmission method to the transfer processing unit 32.
  • a transmission method for example, modulation method
  • the bandwidth monitoring unit 35 calculates the bandwidth corresponding to the transmission method determined by the transmission method control unit 34 as “currently available bandwidth”. For example, the communication quality of the wireless section W may deteriorate due to bad weather or the like. When the communication quality deteriorates, the transmission method control unit 34 selects, for example, a low-order modulation method. For this reason, the currently available bandwidth in the wireless section W is reduced.
  • the bandwidth monitoring unit 35 corresponds to the MEP of the server layer.
  • the message transmission processing unit 36 generates a bandwidth notification message including information on the currently available bandwidth calculated by the bandwidth monitoring unit 35, and outputs the generated bandwidth notification message to the port 31.
  • the message transmission processing unit 36 is, for example, ITU-T G. 8013 / Y. This is a functional unit corresponding to ETH-BN of 1731.
  • FIG. 8 is a flowchart showing an example of the processing operation of the transmission side communication apparatus of the second embodiment. The processing flow illustrated in FIG. 8 starts when the communication device 10 receives a transmission frame.
  • the distribution control unit 11 determines whether or not the transfer destination port corresponding to the transmission frame has already been set in the forwarding table (step S11). For example, the distribution control unit 11 determines whether an entry corresponding to the combination of the destination MAC address and the VLAN identifier included in the header portion of the transmission frame exists in the forwarding table 17A.
  • the distribution control unit 11 sets the transfer destination port of the flow corresponding to the transmission frame (step S12). For example, the distribution control unit 11 determines the transfer destination port by using the MAC address and hash function of the transmission frame. The determined transfer destination port identifier and the destination MAC address and VLAN identifier included in the header portion of the transmission frame are output to the table management unit 16 and reflected in the forwarding table 17A by the table management unit 16. Then, the processing step proceeds to step S13.
  • step S11 YES If the transfer destination port corresponding to the transmission frame has already been set in the forwarding table (step S11 YES), the processing step proceeds to step S13.
  • the distribution control unit 11 determines whether or not the available bandwidth of the transfer destination port corresponding to the received transmission frame is equal to or lower than a predetermined level (step S13). “The free bandwidth is equal to or less than a predetermined level” means that the free bandwidth is equal to or less than zero, and in this case, is synonymous with no free bandwidth.
  • the distribution control unit 11 sends the transmission frame to the transfer destination port corresponding to the transmission frame (step S14). For example, when the transmission frame corresponding to the flow number 5 in FIG. 5 is received, since the available bandwidth of the transfer destination port B corresponding to the flow number 5 is not zero, the distribution control unit 11 transfers the transmission flow to the transfer destination. Send to port 13-2 of port identifier B.
  • the distribution control unit 11 executes “redistribution control” (step S15). For example, when the transmission frame corresponding to the flow number 1 in FIG. 5 is received, since the available bandwidth of the transfer destination port A corresponding to the flow number 1 is zero, the distribution control unit 11 performs “redistribution control”. Execute.
  • FIG. 9 is a flowchart illustrating an example of redistribution control of the transmission side communication device according to the second embodiment.
  • the distribution control unit 11 controls the determination of the distribution destination port (step S21). Specifically, the allocation control unit 11 sends each allocation destination to the determination unit 12 from a plurality of ports 13 that are allocation destination candidates other than the one port 13 whose free bandwidth is equal to or lower than a predetermined level. The allocation port is determined based on the candidate free bandwidth. For example, the determination unit 12 determines an allocation destination candidate having the largest available bandwidth among the plurality of allocation destination candidates as an allocation destination port. For example, when the transmission frame corresponding to the flow number 1 in FIG. 5 is received, since the available bandwidth of the transfer destination port A corresponding to the flow number 1 in FIG. 6 is zero, two ports of the port identifier B and the port identifier C are used. The port with the port identifier C having the largest available bandwidth is selected as the allocation destination port.
  • the distribution control unit 11 sorts N (N is a natural number) flows associated with transfer destination ports whose free bandwidth is equal to or lower than a predetermined level in descending order of used bandwidth (step S22).
  • N flows are sorted in descending order of the used bandwidth. Is “higher priority as the available bandwidth is smaller”, conversely, the N flows are sorted in ascending order of the used bandwidth.
  • the distribution control unit 11 determines whether or not the free bandwidth of the distribution destination port is larger than the used bandwidth of the determination target flow (step S25).
  • the distribution control unit 11 increments the value of n (step S26), and whether n is larger than N? It is determined whether there is a flow that is not selected as a determination target flow (step S27).
  • step S27 If there is a flow that is not selected as the determination target flow (NO in step S27), the processing step returns to step S24. That is, the flow with the next highest bandwidth is selected as the determination target flow. On the other hand, when all the flows associated with the transfer destination port whose free bandwidth is equal to or lower than the predetermined level have been selected as the determination target flows (YES in step S27), the redistribution control is ended, and the processing steps are performed. Proceed to step S16.
  • step S25 If the available bandwidth of the allocation destination port is larger than the used bandwidth of the determination target flow (YES in step S25), the allocation control unit 11 allocates the determination target flow to the allocation destination port (step S28). Then, the redistribution control ends, and the processing step proceeds to step S16.
  • the redistribution control is performed as follows for the flow associated with the transfer destination port A in FIGS.
  • the flow is performed in the order of the VLAN identifier 300 flow, the VLAN identifier 200 flow, and the VLAN identifier 100 flow.
  • the flow with the VLAN identifier 300 is selected as the determination target flow.
  • step S28 the VLAN identifier 300 is distributed to the port with the port identifier C.
  • the table management unit 16 rewrites the transfer destination port identifier of the flow of the VLAN identifier 300 in the forwarding table 17A shown in FIG. 10 to C, and the VLAN identifier 300 corresponding to the port identifier C in the management table 17B shown in FIG. Is rewritten to 30 Mbps.
  • FIG. 10 is a diagram for explaining the rewriting of the forwarding table.
  • FIG. 11 is a diagram for explaining the rewriting of the management table.
  • the distribution control unit 11 sends the transmission frame to the transfer destination port after the re-distribution (step S16).
  • the determination unit 12 determines each allocation from a plurality of ports 13 (that is, a plurality of candidate communication paths) that are allocation destination candidates other than the one port 13. Based on the available bandwidth of the destination candidate, the destination port (that is, the destination communication path) is determined. Specifically, the determination unit 12 determines a candidate communication path having a higher priority among the plurality of candidate communication paths as a distribution destination communication path based on the available bandwidth of each candidate communication path. This priority is higher as the free bandwidth is larger.
  • a candidate communication path with a large available bandwidth can be determined as a distribution destination communication path, so that a flow can be distributed to a more suitable communication path.
  • the distribution control unit 11 changes the setting flow set to one port 13 among a plurality of ports 13 (that is, a plurality of communication paths) used for multilink communication to one port. Based on the 13 free bandwidths, a control to distribute to the allocation destination ports other than the one port 13 is executed. Specifically, the distribution control unit 11 distributes the setting flow to the distribution destination port when the free bandwidth of the one port 13 is equal to or lower than a predetermined level.
  • the configuration of the communication device 10 can suppress a reduction in the transmission capacity of multilink communication due to congestion of the communication path corresponding to the one port 13.
  • the distribution control unit 11 determines when the used bandwidth of the determination target flow among the plurality of flows set in the one port 13 is smaller than the free bandwidth of the distribution destination port. Decide to distribute the target flow to the destination port.
  • the configuration of the communication device 10 can suppress a reduction in the transmission capacity of the multilink communication due to congestion of the communication path corresponding to the distribution destination port as a result of distributing the flow.
  • FIG. 12 and FIG. 13 are diagrams illustrating an example of a forwarding table according to ⁇ Modification> of the second embodiment.
  • the forwarding table shown in FIG. 12 and FIG. 13 has a change flag (Change Flag) and an identifier of the post-change destination port (Changed Transmit Port) as items compared to the forwarding table shown in FIG. Yes.
  • Change Flag an identifier of the post-change destination port
  • Changed Transmit Port an identifier of the post-change destination port
  • the change flag indicates the presence / absence of redistribution
  • the post-change transfer destination port identifier is input to the item “change post-transfer destination port identifier”
  • the item “ The transfer destination port identifier before the change is input to “transfer destination port”.
  • the distribution control unit 11 By using such a forwarding table, for example, when the current available bandwidth of the communication path corresponding to the transfer destination port before the change is increased due to weather recovery or the like, the distribution control unit 11 On the other hand, it is possible to easily return to the original transfer destination port only by turning off the change flag of the forwarding table.
  • the communication device 10 according to the first embodiment and the second embodiment may have the following hardware configuration.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the communication apparatus.
  • the communication device 10 includes a processor 101, a memory 102, and a communication interface 103.
  • the distribution control unit 11, the determination unit 12, the flow counter 14, the path management processing unit 15, the table management unit 16, and the bandwidth calculation unit 18 of the communication device 10 described in the first embodiment and the second embodiment. Is realized by the processor 101 reading and executing a program stored in the memory 102.
  • the storage unit 17 of the communication device 10 described in the first embodiment and the second embodiment is realized by the memory 102.
  • the port 13 of the communication device 10 described in the first embodiment and the second embodiment is realized by the communication interface 103.
  • a communication apparatus that performs multilink communication with a communication partner apparatus using a plurality of communication paths in which one or more flows are set for each communication path, A distribution control unit that executes control to distribute a setting flow for the first communication path among the plurality of communication paths to a distribution destination communication path different from the first communication path; A determination unit that determines the distribution destination communication path based on an available bandwidth of each candidate communication path from a plurality of candidate communication paths other than the first communication path included in the plurality of communication paths; A communication device.
  • the determining unit selects a candidate communication path having the largest available bandwidth among the plurality of candidate communication paths as the distribution destination communication path.
  • the communication apparatus according to appendix 1.
  • the distribution control unit executes control to distribute the setting flow to the distribution destination communication path based on an available bandwidth of the first communication path.
  • the communication apparatus according to appendix 1 or 2.
  • the distribution control unit distributes the setting flow to the distribution destination communication path when an available bandwidth of the first communication path is a predetermined level or less.
  • the distribution control unit is configured to determine the determination target flow based on a use bandwidth of a determination target flow among a plurality of flows set in the first communication path and a free bandwidth of the distribution destination communication path. Determine whether to distribute to the distribution destination communication path, The communication device according to appendix 3 or 4.
  • the distribution control unit determines to distribute the determination target flow to the distribution destination communication path when a use bandwidth of the determination target flow is equal to or less than a free bandwidth of the distribution destination communication path.
  • the communication apparatus according to appendix 5.
  • the distribution control unit selects the determination target flow in order from a flow having a higher priority among a plurality of flows set in the first communication path.
  • the communication device according to appendix 5 or 6.
  • Appendix 10 An acquisition unit that acquires information on a currently available bandwidth for the communication section from a transmission device located in the communication section included in the first communication path; The distribution control unit calculates a free bandwidth of the first communication path by subtracting a sum of used bandwidths of a plurality of flows set in the first communication path from the currently available bandwidth. , The communication device according to any one of appendices 1 to 9.
  • Appendix 11 A plurality of communication ports respectively corresponding to the plurality of communication paths; The communication device according to any one of appendices 1 to 10.
  • Appendix 12 The plurality of flows are associated with VLAN identifiers.
  • the communication device according to any one of appendices 1 to 11.
  • a first communication device A first communication device; A second communication device that performs multilink communication with the first communication device simultaneously using a plurality of communication routes in which one or more flows are set for each communication route; A plurality of transmission devices respectively located in a plurality of communication sections included in each of the plurality of communication paths; Have Each transmission device transmits information on the currently available bandwidth for the corresponding communication section to the first communication device, The first communication device calculates an available bandwidth of each communication path based on the currently available bandwidth transmitted from each transmission device, and a plurality of other than the first communication path included in the plurality of communication paths. From the candidate communication paths, based on the available bandwidth of each candidate communication path, determine a distribution destination communication path, and executes control to distribute the setting flow for the first communication path to the distribution destination communication path, Communications system.

Abstract

通信装置(10)において決定部(12)は、マルチリンク通信に用いられる複数の通信経路のうちの一の通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定する。そして、振分制御部(11)は、上記一の通信経路に対する設定フローを、上記決定された振分先通信経路に振り分ける制御を実行する。

Description

通信装置、通信制御方法、及び通信システム
 本開示は、通信装置、通信制御方法、及び通信システムに関する。
 伝送容量を拡大するために、複数の通信経路を同時に用いたリンクアグリゲーション通信(つまり、マルチリンク通信)が提案されている(例えば、特許文献1)。特許文献1に開示されている技術では、2つの通信経路のうちの第1通信経路に割り当てられていたフローが、所定条件が満たされた場合に、第2通信経路に振り分けられる。
国際公開第2013/161213号 米国特許第9455927号明細書 欧州特許第2520052号明細書 米国特許第7336605号明細書
 ところで、マルチメディア化が進んだ現状では、通信量がかなり多くなっており、伝送容量の更なる拡大が望まれている。このため、多数の通信経路を同時に用いたアグリゲーション通信が普及していくと考えられる。
 しかしながら、上記関連技術では、通信経路が2つの場合を前提としているため、アグリゲーション通信で多数の通信経路を同時に用いる場合、好適な通信経路に対してフローを振り分けることができない可能性がある。
 本開示の目的は、好適な通信経路に対してフローを振り分けることができる、通信装置、通信制御方法、及び通信システムを提供することにある。
 本開示の第1の態様にかかる通信装置は、通信相手装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う通信装置であって、前記複数の通信経路のうちの第1通信経路に対する設定フローを前記第1通信経路と異なる振分先通信経路に振り分ける制御を実行する振分制御部と、前記複数の通信経路に含まれる前記第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、前記振分先通信経路を決定する決定部と、を有する。
 本開示の第2の態様にかかる通信制御方法は、通信相手装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う通信装置によって実行される通信制御方法であって、前記複数の通信経路に含まれる第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定し、前記第1通信経路に対する設定フローを前記振分先通信経路に振り分ける制御を実行する。
 本開示の第3の態様にかかる通信システムは、第1通信装置と、前記第1通信装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う第2通信装置と、前記複数の通信経路にそれぞれ含まれる複数の通信区間にそれぞれ位置する複数の伝送装置と、を有し、各伝送装置は、それぞれ対応する通信区間についての現状利用可能帯域幅に関する情報を前記第1通信装置へ送信し、前記第1通信装置は、前記各伝送装置から送信された現状利用可能帯域幅に基づいて、各通信経路の空き帯域幅を算出し、前記複数の通信経路に含まれる第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定し、前記第1通信経路に対する設定フローを前記振分先通信経路に振り分ける制御を実行する。
 本開示により、好適な通信経路に対してフローを振り分けることができる、通信装置、通信制御方法、及び通信システムを提供することができる。
第1実施形態の通信システムの一例を示す図である。 第1実施形態の送信側通信装置の一例を示すブロック図である。 第2実施形態の通信システムの説明に供する図である。 第2実施形態の送信側通信装置の一例を示すブロック図である。 第2実施形態のフォワーディングテーブルの一例を示す図である。 第2実施形態の管理テーブルの一例を示す図である。 第2実施形態の伝送装置の一例を示すブロック図である。 第2実施形態の送信側通信装置の処理動作の一例を示すフローチャートである。 第2実施形態の送信側通信装置の再振分制御の一例を示すフローチャートである。 フォワーディングテーブルの書き換えの説明に供する図である。 管理テーブルの書き換えの説明に供する図である。 第2実施形態の<変形例>のフォワーディングテーブルの一例を示す図である。 第2実施形態の<変形例>のフォワーディングテーブルの一例を示す図である。 通信装置のハードウェア構成の一例を示す図である。
 以下、図面を参照しつつ、実施形態について説明する。なお、実施形態において、同一又は同等の要素には、同一の符号を付し、重複する説明は省略される。
<第1実施形態>
 <通信システムの概要>
 図1は、第1実施形態の通信システムの一例を示す図である。図1において、通信システム1は、通信装置10と、通信装置20と、伝送装置30-1,30-2,30-3と、伝送装置40-1,40-2,40-3とを有している。なお、以下では、伝送装置30-1,30-2,30-3を総称して単に伝送装置30と呼ぶことがある。また、伝送装置40-1,40-2,40-3を総称して単に伝送装置40と呼ぶことがある。また、ここでは、説明を簡潔にするために、伝送装置30の数及び伝送装置40の数をそれぞれ3つとしているが、これに限定されるものではなく、4つ以上であってもよい。
 図1において、通信装置10は、リンクL1,L2,L3を介して、伝送装置30-1,30-2,30-3とそれぞれ接続されている。そして、伝送装置30-1,30-2,30-3は、無線区間W1,W2,W3を介して、伝送装置40-1,40-2,40-3とそれぞれ接続されている。そして、伝送装置40-1,40-2,40-3は、リンクL4,L5,L6を介して、通信装置20とそれぞれ接続されている。例えば、リンクL1、無線区間W1、及びリンクL4は、「第1通信経路」を構成している。また、リンクL2、無線区間W2、及びリンクL5は、「第2通信経路」を構成している。また、リンクL3、無線区間W3、及びリンクL6は、「第3通信経路」を構成している。
 そして、通信装置10は、通信装置20との間で、第1通信経路、第2通信経路、及び第3通信経路を同時に用いて、マルチリンク通信を行う。すなわち、マルチリンク通信は、複数の通信経路を1つの仮想的な通信回線として用いる通信である。以下では、通信装置10は、「送信側通信装置」と呼ばれることがあり、通信装置20は、通信装置10の「通信相手装置」と呼ばれることがある。
 また、通信装置10は、第1通信経路、第2通信経路、及び第3通信経路のそれぞれに対して、1つ又は複数のフローを設定する。そして、通信装置10は、或る送信元端末(図示せず)から送信された伝送フレームを受信すると、受信された伝送フレームに対応するフローが設定された通信経路に向けて、該受信された伝送フレームを送出する。
 ここで、通信装置10は、例えば、第1通信経路に対する設定フローを、第1通信経路以外の通信経路、つまり第2通信経路又は第3通信経路に再度設定する(つまり、再度振り分ける)ことがある。このとき、通信装置10は、第1通信経路以外の第2通信経路及び第3通信経路を複数の「候補通信経路」とし、複数の経路通信経路の中から、各候補通信経路の「空き帯域幅」に基づいて、「振分先通信経路」を決定する。そして、通信装置10は、第1通信経路に対する設定フローを、決定された振分先通信経路に振り分ける。これにより、好適な通信経路に対してフローを振り分けることができる。
 <送信側通信装置の構成例>
 図2は、第1実施形態の送信側通信装置の一例を示すブロック図である。図2において、送信側通信装置である通信装置10は、振分制御部11と、決定部12と、ポート13-1,13-2,13-3とを有している。ポート13-1,13-2,13-3は、第1通信経路、第2通信経路、及び第3通信経路とそれぞれ対応している。以下では、ポート13-1,13-2,13-3を総称して単にポート13と呼ぶことがある。
 振分制御部11は、複数のフローのそれぞれに対して、第1通信経路、第2通信経路、及び第3通信経路のいずれかを対応づける。すなわち、第1通信経路、第2通信経路、及び第3通信経路のそれぞれには、1つ又は複数のフローが設定される。
 また、振分制御部11は、第1通信経路、第2通信経路、及び第3通信経路のうちの一の通信経路に対する設定フローを、一の通信経路と異なる振分先通信経路に振り分ける制御を実行する。例えば、振分制御部11は、上記一の通信経路の「空き帯域幅」に基づいて、上記一の通信経路に対する設定フローを振分先通信経路に振り分ける制御(つまり、設定フローを振分先通信経路に再設定する制御)を実行する。以下では、この制御を「再振分制御」と呼ぶことがある。
 そして、振分制御部11は、或る送信元端末(図示せず)から送信された伝送フレームを受信すると、受信された伝送フレームに対応するフローが設定されたポート13に向けて、該受信された伝送フレームを送出する。
 決定部12は、振分制御部11が再振分制御を実行する場合、第1通信経路、第2通信経路、及び第3通信経路のうちの上記一の通信経路以外の複数の候補通信経路から、各候補通信経路の「空き帯域幅」に基づいて、「振分先通信経路」を決定する。
 ポート13-1,13-2,13-3のそれぞれは、振分制御部11から受け取った伝送フレームを、対応するリンク(つまり、通信経路)へ送出する。
 以上のように第1実施形態によれば、通信装置10において決定部12は、マルチリンク通信に用いられる複数の通信経路のうちの一の通信経路以外の複数の候補通信経路から、各候補通信経路の「空き帯域幅」に基づいて、「振分先通信経路」を決定する。そして、振分制御部11は、上記一の通信経路に対する設定フローを、上記決定された振分先通信経路に振り分ける制御を実行する。
 この通信装置10の構成により、複数の候補通信経路のそれぞれの空き帯域幅に基づいて、振分先通信経路を決定することができるので、好適な通信経路に対してフローを振り分けることができる。
<第2実施形態>
 第2実施形態は、より具体的な実施形態に関する。なお、第2実施形態の通信システムの基本構成は、第1実施形態の通信システム1と同じなので、図1を参照して説明する。
 <通信システムの概要>
 第2実施形態の通信システム1において、通信装置10は、第1ネットワークに含まれている。また、通信装置20は、第2ネットワークに含まれている。また、伝送装置30-1,30-2,30-3と伝送装置40-1,40-2,40-3とは、第3ネットワークに含まれている。例えば、第1ネットワーク及び第2ネットワークは、Ethernet(登録商標)ネットワークであり、第3ネットワークは、無線ネットワークである。また、例えば、第1ネットワーク及び第2ネットワークは、Ethernet(登録商標)ネットワークであり、第3ネットワークは、有線ネットワークであってもよい。また、例えば、伝送装置30-1と伝送装置40-1とは無線ネットワークに含まれ、伝送装置30-2,30-3と伝送装置40-2,40-3とは有線ネットワークに含まれていてもよい。すなわち、第3ネットワークは、無線ネットワークと有線ネットワークとが混在していてもよい。要するに、第1ネットワーク、第2ネットワーク、及び第3ネットワークの種別は、特に限定されるものではない。
 そして、第1ネットワークと第2ネットワークとの間の通信経路における一部の通信区間は、第3ネットワークによってサポートされている。すなわち、図3に示すように、第1ネットワーク及び第2ネットワークは、第3ネットワークを基準として捉えると、「クライアントレイヤ」であり、逆に、第3ネットワークは、第1ネットワーク及び第2ネットワークを基準として捉えると、「サーバレイヤ」である。図3は、第2実施形態の通信システムの説明に供する図である。
 そして、図3に示すように、通信装置10及び通信装置20は、それぞれ、クライアントレイヤのOAM(Operations、Administration、Maintenance:運用・管理・保守機能)の終端(MEP:Maintenance End Point)である。また、伝送装置30及び伝送装置40は、それぞれ、サーバレイヤのOAMの終端である。
 そして、サーバレイヤは、クライアントレイヤに対して、帯域通知メッセージ(例えば、Ethernet(登録商標)帯域通知メッセージ:ETH-BNM)を通知する機能を有している。例えば、伝送装置30は、伝送装置30が位置する通信区間についての「現状利用可能帯域幅」に関する情報を含む帯域通知メッセージを通信装置10へ送信する。また、伝送装置40は、伝送装置40が位置する通信区間についての「現状利用可能帯域幅」に関する情報を含む帯域通知メッセージを通信装置20へ送信する。すなわち、伝送装置30及び伝送装置40は、帯域通知の終端でもある。
 そして、通信装置10は、各伝送装置30から送信された現状利用可能帯域幅に基づいて、マルチリンク通信に用いられる各通信経路の空き帯域幅を算出する。そして、通信装置10は、マルチリンク通信に用いられる複数の通信経路のうちの一の通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定する。そして、通信装置10は、上記一の通信経路に対する設定フローを、上記決定された振分先通信経路に振り分ける制御を実行する。
 <送信側通信装置の構成例>
 図4は、第2実施形態の送信側通信装置の一例を示すブロック図である。図4において、第2実施形態の送信側通信装置である通信装置10は、振分制御部11と、決定部12と、ポート13と、フローカウンタ14と、経路管理処理部15と、テーブル管理部16と、記憶部17と、帯域計算部18とを有している。
 フローカウンタ14は、ポート13(つまり、通信経路)に設定されているフロー毎のスループット(つまり、使用帯域幅)を取得し、取得したフロー毎の使用帯域幅をテーブル管理部16へ出力する。
 経路管理処理部15は、伝送装置30から送信された帯域通知メッセージを、ポート13を介して受け取り、受け取った帯域通知メッセージから現状利用可能帯域幅に関する情報を抽出する。経路管理処理部15は、メッセージ処理部15Aを有しており、この情報の抽出処理は、メッセージ処理部15Aによって行われる。ここで、経路管理処理部15は、例えば、ITU-T G.8013/Y.1731のETH-OAMに対応する機能部であり、メッセージ処理部15Aは、ITU-T G.8013/Y.1731のETH-BNに対応する機能部である。
 テーブル管理部16は、フローカウンタ14、経路管理処理部15、及び振分制御部11のそれぞれから受け取る情報を用いて、記憶部17に記憶されている「フォワーディングテーブル」及び「管理テーブル」を更新する。
 記憶部17は、フォワーディングテーブル17A及び管理テーブル17Bを記憶している。図5は、第2実施形態のフォワーディングテーブルの一例を示す図である。図6は、第2実施形態の管理テーブルの一例を示す図である。
 図5に示すようにフォワーディングテーブル17Aでは、各エントリにおいて、フロー番号と、フローの宛先端末(図示せず)のMACアドレスと、VLAN識別子(VLAN(Virtual LAN) ID)と、転送先ポートの識別子(Transmit Port)とが対応付けられている。図5における転送先ポート識別子のA,B,Cは、例えば、ポート13-1,13-2,13-3にそれぞれ対応している。
 図6に示すように管理テーブル17Bでは、各ポート識別子について、公称帯域幅(Nominal Bandwidth)と、現状利用可能帯域幅(Bandwidth)と、空き帯域幅(Free Bandwidth)と、各ポートに対して割り当てられているVLAN識別子と、各VLAN識別子に対応する使用帯域幅(Throuphput)とが対応付けられている。各ポートに対して割り当てられている各VLAN識別子は、1つのフローに対応する。例えば、図5において、ポートAの公称帯域幅(つまり、最大帯域幅)は100Mbpsであり、現状利用可能帯域幅は50Mbpsであり、空き帯域幅は0Mbpsである。そして、ポートAにおいてVLAN識別子100に対応するフローの使用帯域幅は10Mbpsであり、VLAN識別子200に対応するフローの使用帯域幅は20Mbpsであり、VLAN識別子300に対応するフローの使用帯域幅は30Mbpsである。一方で、ポートAにおいてVLAN識別子400,500,600にそれぞれ対応するフローの使用帯域幅はゼロである。すなわち、ポートAのフロー全体の使用帯域幅は、60Mbpsである。ここで、図5においてポートAの現状利用可能帯域幅は50MbpsでありポートAのフロー全体の使用帯域幅(60Mbps)よりも小さいため、ポートAの空き帯域幅はゼロとなっている。
 図4の説明に戻り、帯域計算部18は、記憶部17に記憶されている管理テーブルを参照することにより、各ポート13に対応する通信経路の空き帯域幅を算出する。具体的には、帯域計算部18は、管理テーブル17Bを参照して、マルチリンク通信に用いられるポート13-1,13-2,13-3のうちの着目ポートに関して、着目ポートに対応づけられている複数のフローのそれぞれの使用帯域幅の総和を算出する。そして、帯域計算部18は、管理テーブル17Bから着目ポートの現状利用可能帯域幅を読み出す。そして、帯域計算部18は、読み出した着目ポートの現状利用可能帯域幅から、着目ポートについて算出した使用帯域幅の総和を減算することによって、着目ポートの空き帯域幅を算出する。そして、帯域計算部18は、着目ポートをポート13-1,13-2,13-3の中で順次変更して、ポート13-1,13-2,13-3のそれぞれについての空き帯域幅を算出する。そして、帯域計算部18は、算出した各ポート13に対応する通信経路の空き帯域幅を振分制御部11へ出力する。
 振分制御部11は、複数のフローのそれぞれに対して、第1通信経路、第2通信経路、及び第3通信経路のいずれかを対応づける。例えば、振分制御部11は、伝送フレームを受け取ると、該伝送フレームに対応するフローの転送先ポートがフォワーディングテーブルにおいて規定されているか否かを判定する。規定さていない場合、振分制御部11は、ハッシュ関数等を用いて、該伝送フレームに対応するフローの転送先ポートを設定する。このフローに設定された転送先ポートに関する情報は、テーブル管理部16に出力されて、テーブル管理部16によってフォワーディングテーブルに反映される。一方、規定されている場合、振分制御部11は、その規定に従って、伝送フレームを該伝送フレームのフローに対応づけられている転送先ポートへ送出する。
 また、振分制御部11は、帯域計算部18で算出された空き帯域幅が所定レベル以下である一のポート13(つまり、通信経路)に対応づけられているフローを、上記一のポート13と異なる他のポート13(つまり、振分先通信経路)に振り分ける「再振分制御」を実行する。このとき、振分制御部11は、例えば、空き帯域幅が所定レベル以下である一のポート13に対応づけられている複数のフローのうちで優先度の高いフローから順番に「判定対象フロー」として選択する。この優先度は、例えば、使用帯域幅が大きい程高い。また、逆に、優先度は、空き帯域幅が小さい程高くすることもできる。そして、振分制御部11は、判定対象フローの使用帯域幅が振分先通信経路の空き帯域幅以下である場合、判定対象フローを振分先通信経路に振り分けることを決定する。一方、判定対象フローの使用帯域幅が振分先通信経路の空き帯域幅より大きい場合には、上記優先度に従って、次に優先度の高いフローが判定対象フローとされる。
 決定部12は、振分制御部11が再振分制御を実行する場合、上記一のポート13以外の振分先候補である複数のポート13(つまり、複数の候補通信経路)から、各候補通信経路の空き帯域幅に基づいて、上記の振分先通信経路を決定する。例えば、決定部12は、各候補通信経路の空き帯域幅に基づいて、複数の候補通信経路のうちで優先度の高い候補通信経路を振分先通信経路として決定する。この優先度は、例えば、空き帯域幅が大きい程高い。すなわち、この優先度に従えば、複数の候補通信経路のうちで空き帯域幅が最も大きい候補通信経路が、振分先通信経路として選択される。また、逆に、優先度は、空き帯域幅が小さい程高くすることもできる。そして、決定部12によって決定された振分先通信経路に関する情報は、振分制御部11へ出力される。そして、該情報は、振分制御部11を介してテーブル管理部16へ送出され、テーブル管理部16によってフォワーディングテーブルに反映される。
 <伝送装置の構成例>
 図7は、第2実施形態の伝送装置の一例を示すブロック図である。図7において、伝送装置30は、ポート31と、転送処理部32と、無線通信部33と、送信方式制御部34と、帯域監視部35と、メッセージ送信処理部36とを有している。
 ポート31は、伝送装置30と通信装置10との間のリンクLに対するインタフェースである。例えば、ポート31は、リンクLを介して伝送フレームを受け取り、該伝送フレームを転送処理部32へ出力する。また、ポート31は、メッセージ送信処理部36から受け取った帯域通知メッセージを、リンクLを介して通信装置10へ送信する。
 転送処理部32は、ポート31から受け取った伝送フレームに対して転送処理を施して、転送処理後の伝送フレームを無線通信部33へ出力する。例えば、転送処理部32は、転送処理として、送信方式制御部34で決定された送信方式に応じた送信処理(例えば、変調方式に応じた変調処理)を伝送フレームに対して実行する。すなわち、例えば、転送処理部32によって適応変調が実行される。
 無線通信部33は、転送処理部32から受け取った伝送フレームに対して無線送信処理を施して、該無線送信処理によって得られた無線信号を、無線区間Wを介して伝送装置40へ送信する。また、無線通信部33は、伝送装置40から送信された信号を受信し、受信信号に対して無線受信処理を実行する。そして、無線通信部33は、無線受信処理後の信号を送信方式制御部34へ出力する。
 送信方式制御部34は、無線通信部33から受け取った信号から通信品質情報を抽出し、抽出した通信品質情報に基づいて、送信方式(例えば、変調方式)を決定する。そして、送信方式制御部34は、決定した送信方式を示す情報を転送処理部32へ出力する。
 帯域監視部35は、送信方式制御部34によって決定された送信方式に対応する帯域幅を、「現状利用可能帯域幅」として算出する。例えば、悪天候等に起因して、無線区間Wの通信品質が悪化することがある。通信品質が悪化すると、送信方式制御部34によって、例えば、低次の変調方式が選択される。このため、無線区間Wにおける現状利用可能帯域幅が低下することになる。なお、帯域監視部35は、上記のサーバレイヤのMEPに対応する。
 メッセージ送信処理部36は、帯域監視部35で算出された現状利用可能帯域幅に関する情報を含む帯域通知メッセージを生成し、生成した帯域通知メッセージをポート31へ出力する。メッセージ送信処理部36は、例えば、ITU-T G.8013/Y.1731のETH-BNに対応する機能部である。
 <通信システムの動作例>
 以上の構成を有する第2実施形態の通信システムの処理動作について説明する。ここでは、特に通信装置10の処理動作について説明する。
 図8は、第2実施形態の送信側通信装置の処理動作の一例を示すフローチャートである。図8に示す処理フローは、通信装置10が伝送フレームを受信することでスタートする。
 振分制御部11は、伝送フレームを受け取ると、該伝送フレームに対応する転送先ポートがフォワーディングテーブルにおいて既に設定されているか否かを判定する(ステップS11)。例えば、振分制御部11は、伝送フレームのヘッダ部分に含まれる宛先MACアドレス及びVLAN識別子の組み合わせに対応するエントリがフォワーディングテーブル17Aに存在するか否かを判定する。
 伝送フレームに対応する転送先ポートがフォワーディングテーブルにおいて未だ設定されていない場合(ステップS11NO)、振分制御部11は、伝送フレームに対応するフローの転送先ポートを設定する(ステップS12)。例えば、振分制御部11は、伝送フレームのMACアドレスとハッシュ関数とを用いることによって、転送先ポートを決定する。決定された転送先ポートの識別子と、伝送フレームのヘッダ部分に含まれる宛先MACアドレス及びVLAN識別子とは、テーブル管理部16に出力され、テーブル管理部16によってフォワーディングテーブル17Aに反映される。そして、処理ステップは、ステップS13へ進む。
 伝送フレームに対応する転送先ポートがフォワーディングテーブルにおいて既に設定されている場合(ステップS11YES)、処理ステップは、ステップS13へ進む。
 次いで、振分制御部11は、受け取った伝送フレームに対応する転送先ポートの空き帯域幅が所定レベル以下であるか否かを判定する(ステップS13)。「空き帯域幅が所定レベル以下」とは、例えば、空き帯域幅がゼロ以下であり、この場合、空き帯域幅が無いことと同義である。
 転送先ポートの空き帯域幅が所定レベルよりも大きい場合(ステップS13NO)、振分制御部11は、伝送フレームを該伝送フレームに対応する転送先ポートへ送出する(ステップS14)。例えば、図5のフロー番号5に対応する伝送フレームを受け取った場合、フロー番号5に対応する転送先ポートBの空き帯域幅がゼロではないので、振分制御部11は、伝送フローを転送先ポート識別子Bのポート13-2へ送出する。
 転送先ポートの空き帯域幅が所定レベル以下である場合(ステップS13YES)、振分制御部11は、「再振分制御」を実行する(ステップS15)。例えば、図5のフロー番号1に対応する伝送フレームを受け取った場合、フロー番号1に対応する転送先ポートAの空き帯域幅がゼロなので、振分制御部11は、「再振分制御」を実行する。
 図9は、第2実施形態の送信側通信装置の再振分制御の一例を示すフローチャートである。
 振分制御部11は、振分先ポートの決定を制御する(ステップS21)。具体的には、振分制御部11は、決定部12に対して、空き帯域幅が所定レベル以下である一のポート13以外の振分先候補である複数のポート13から、各振分先候補の空き帯域幅に基づいて、振分先ポートを決定させる。例えば、決定部12は、複数の振分先候補のうちで空き帯域幅が最も大きい振分先候補を振分先ポートとして決定する。例えば、図5のフロー番号1に対応する伝送フレームを受け取った場合、図6においてフロー番号1に対応する転送先ポートAの空き帯域幅がゼロなので、ポート識別子B及びポート識別子Cの2つのポートのうちで空き帯域幅が最も大きいポート識別子Cのポートが振分先ポートとして選択される。
 次いで、振分制御部11は、空き帯域幅が所定レベル以下である転送先ポートに対応付けられているN(Nは自然数)個のフローを使用帯域幅の大きい順にソートする(ステップS22)。なお、ここでは、上記優先度が「使用帯域幅が大きい程高い優先度」であることを前提にしているので、N個のフローを使用帯域幅の大きい順にソートしているが、上記優先度が「空き帯域幅が小さい程高い優先度」である場合には、逆に、N個のフローを使用帯域幅の小さい順にソートすることになる。
 次いで、振分制御部11は、n=1に設定し(ステップS23)、n(=1)番目のフローを判定対象フローとして選択する(ステップS24)。
 次いで、振分制御部11は、振分先ポートの空き帯域幅が判定対象フローの使用帯域幅よりも大きいか否かを判定する(ステップS25)。
 振分先ポートの空き帯域幅が判定対象フローの使用帯域幅以下である場合(ステップS25)、振分制御部11は、nの値をインクリメントし(ステップS26)、nがNよりも大きいか否か、つまり、判定対象フローとして選択されていないフローが存在するか否かを判定する(ステップS27)。
 判定対象フローとして選択されていないフローが存在する場合(ステップS27NO)、処理ステップは、ステップS24へ戻る。すなわち、使用帯域幅が次に大きいフローが判定対象フローとして選択される。一方、空き帯域幅が所定レベル以下である転送先ポートに対応付けられているすべてのフローが判定対象フローとして選択済みである場合(ステップS27YES)、再振分制御は終了して、処理ステップはステップS16へ進む。
 振分先ポートの空き帯域幅が判定対象フローの使用帯域幅よりも大きい場合(ステップS25YES)、振分制御部11は、判定対象フローを振分先ポートへ振り分ける(ステップS28)。そして、再振分制御は終了して、処理ステップはステップS16へ進む。
 ここで、上記のステップS22からステップS28では、例えば、図5,6の転送先ポートAに対応付けられているフローについて、次のように再振分制御が行われる。まず、ステップS22において転送先ポートAに対応付けられているフローについてソートした場合、VLAN識別子300のフロー、VLAN識別子200のフロー、VLAN識別子100のフローの順に順番がつけられる。そして、ステップS23,S24において、VLAN識別子300のフローが判定対象フローとして選択される。そして、ステップS25において、振分先ポートであるポート識別子Cのポートの空き帯域幅(図6では、100Mbps)がVLAN識別子300のフローの使用帯域幅(図6では、30Mbps)よりも大きいと判定される。そして、ステップS28において、VLAN識別子300がポート識別子Cのポートに振り分けられる。この結果、テーブル管理部16によって、図10に示すフォワーディングテーブル17AにおけるVLAN識別子300のフローの転送先ポート識別子がCに書き換えられ、図11に示す管理テーブル17Bにおけるポート識別子Cに対応するVLAN識別子300の使用帯域幅が30Mbpsに書き換えられる。図10は、フォワーディングテーブルの書き換えの説明に供する図である。図11は、管理テーブルの書き換えの説明に供する図である。
 図8の説明に戻り、振分制御部11は、伝送フレームを再振分後の転送先ポートへ送出する(ステップS16)。
 以上のように第2実施形態によれば、通信装置10において決定部12は、一のポート13以外の振分先候補である複数のポート13(つまり、複数の候補通信経路)から、各振分先候補の空き帯域幅に基づいて、振分先ポート(つまり、振分先通信経路)を決定する。具体的には、決定部12は、各候補通信経路の空き帯域幅に基づいて、複数の候補通信経路のうちで優先度の高い候補通信経路を振分先通信経路として決定する。この優先度は、空き帯域幅が大きい程高い。
 この通信装置10の構成により、空き帯域幅が大きい候補通信経路を振分先通信経路として決定することができるので、より好適な通信経路に対してフローを振り分けることができる。
 また、通信装置10において振分制御部11は、マルチリンク通信に用いられる複数のポート13(つまり、複数の通信経路)のうちの一のポート13に設定されている設定フローを、一のポート13の空き帯域幅に基づいて、一のポート13以外の振分先ポートへ振り分ける制御を実行する。具体的には、振分制御部11は、上記一のポート13の空き帯域幅が所定レベル以下である場合に、上記設定フローを振分先ポートへ振り分ける。
 この通信装置10の構成により、上記一のポート13に対応する通信経路が輻輳することでマルチリンク通信の伝送容量が低下することを抑制することができる。
 また、通信装置10において振分制御部11は、上記一のポート13に設定されている複数のフローのうちの判定対象フローの使用帯域幅が振分先ポートの空き帯域幅より小さい場合、判定対象フローを振分先ポートに振り分けることを決定する。
 この通信装置10の構成により、フローを振り分けた結果として振分先ポートに対応する通信経路が輻輳してしまうことでマルチリンク通信の伝送容量が低下することを抑制することができる。
 <変形例>
 第2実施形態の通信装置10に対して次のような変形を施すことができる。図12及び図13は、第2実施形態の<変形例>のフォワーディングテーブルの一例を示す図である。
 図12及び図13に示したフォワーディングテーブルは、図5に示したフォワーディングテーブルと比べて、項目として、変更フラグ(Change Flag)と変更後転送先ポートの識別子(Changed Transmit Port)とが追加されている。例えば、図12のフロー番号3のフローがポート識別子Aのポートからポート識別子Cのポートへ振り分けられた場合、テーブル管理部16によって、図13に示すように、項目「転送先ポート」の値はAのままで、変更フラグがONとされ、項目「変更後転送先ポート識別子」の値としてCが入力される。すなわち、図12及び図13に示したフォワーディングテーブルにおいては、変更フラグは再振分の有無を示し、項目「変更後転送先ポート識別子」には変更後の転送先ポート識別子が入力され、項目「転送先ポート」には変更前の転送先ポート識別子が入力される。
 このようなフォワーディングテーブルを用いることにより、振分制御部11は、例えば、変更前の転送先ポートに対応する通信経路の現状利用可能帯域幅が天候回復等によって増えたときに、テーブル管理部16に対してフォワーディングテーブルの変更フラグをOFFにさせるだけで、元の転送先ポートに簡単に戻すことができる。
<他の実施形態>
 第1実施形態及び第2実施形態の通信装置10は、次のようなハードウェア構成を有していてもよい。図14は、通信装置のハードウェア構成の一例を示す図である。
 図14において、通信装置10は、プロセッサ101と、メモリ102と、通信インタフェース103とを有する。
 第1実施形態及び第2実施形態で説明した通信装置10の振分制御部11と、決定部12と、フローカウンタ14と、経路管理処理部15と、テーブル管理部16と、帯域計算部18とは、プロセッサ101がメモリ102に記憶されたプログラムを読み込んで実行することにより実現される。また、第1実施形態及び第2実施形態で説明した通信装置10の記憶部17は、メモリ102によって実現される。また、第1実施形態及び第2実施形態で説明した通信装置10のポート13は、通信インタフェース103によって実現される。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 通信相手装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う通信装置であって、
 前記複数の通信経路のうちの第1通信経路に対する設定フローを前記第1通信経路と異なる振分先通信経路に振り分ける制御を実行する振分制御部と、
 前記複数の通信経路に含まれる前記第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、前記振分先通信経路を決定する決定部と、
 を有する通信装置。
(付記2)
 前記決定部は、前記複数の候補通信経路のうちで空き帯域幅が最も大きい候補通信経路を、前記振分先通信経路として選択する、
 付記1記載の通信装置。
(付記3)
 前記振分制御部は、前記第1通信経路の空き帯域幅に基づいて、前記設定フローを前記振分先通信経路に振り分ける制御を実行する、
 付記1又は2に記載の通信装置。
(付記4)
 前記振分制御部は、前記第1通信経路の空き帯域幅が所定レベル以下である場合に、前記設定フローを前記振分先通信経路に振り分ける、
 付記3記載の通信装置。
(付記5)
 前記振分制御部は、前記第1通信経路に設定されている複数のフローのうちの判定対象フローの使用帯域幅と前記振分先通信経路の空き帯域幅とに基づいて、前記判定対象フローを前記振分先通信経路に振り分けるか否かを決定する、
 付記3又は4記載の通信装置。
(付記6)
 前記振分制御部は、前記判定対象フローの使用帯域幅が前記振分先通信経路の空き帯域幅以下である場合、前記判定対象フローを前記振分先通信経路に振り分けることを決定する、
 付記5記載の通信装置。
(付記7)
 前記振分制御部は、前記第1通信経路に設定された複数のフローのうちで優先度の高いフローから順番に前記判定対象フローとして選択する、
 付記5又は6記載の通信装置。
(付記8)
 前記優先度は、使用帯域幅が大きい程高い、
 付記7記載の通信装置。
(付記9)
 前記優先度は、使用帯域幅が小さい程高い、
 付記7記載の通信装置。
(付記10)
 前記第1通信経路に含まれる通信区間に位置する伝送装置から前記通信区間についての現状利用可能帯域幅に関する情報を取得する取得部を有し、
 前記振分制御部は、前記現状利用可能帯域幅から前記第1通信経路に設定されている複数のフローの使用帯域幅の総和を減算して、前記第1通信経路の空き帯域幅を算出する、
 付記1から9のいずれか1項に記載の通信装置。
(付記11)
 前記複数の通信経路にそれぞれ対応する複数の通信ポートを有する、
 付記1から10のいずれか1項に記載の通信装置。
(付記12)
 前記複数のフローは、VLAN識別子に対応づけられる、
 付記1から11のいずれか1項に記載の通信装置。
(付記13)
 通信相手装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う通信装置によって実行される通信制御方法であって、
 前記複数の通信経路に含まれる第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定し、
 前記第1通信経路に対する設定フローを前記振分先通信経路に振り分ける制御を実行する、
 通信制御方法。
(付記14)
 第1通信装置と、
 前記第1通信装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う第2通信装置と、
 前記複数の通信経路にそれぞれ含まれる複数の通信区間にそれぞれ位置する複数の伝送装置と、
 を有し、
 各伝送装置は、それぞれ対応する通信区間についての現状利用可能帯域幅に関する情報を前記第1通信装置へ送信し、
 前記第1通信装置は、前記各伝送装置から送信された現状利用可能帯域幅に基づいて、各通信経路の空き帯域幅を算出し、前記複数の通信経路に含まれる第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定し、前記第1通信経路に対する設定フローを前記振分先通信経路に振り分ける制御を実行する、
 通信システム。
 この出願は、2017年3月28日に出願された日本出願特願2017-062917を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 通信システム
10 通信装置
12 決定部
13 ポート
14 フローカウンタ
15 経路管理処理部
15A メッセージ処理部
16 テーブル管理部
17 記憶部
17A フォワーディングテーブル
17B 管理テーブル
18 帯域計算部
20 通信装置
30 伝送装置
31 ポート
32 転送処理部
33 無線通信部
34 送信方式制御部
35 帯域監視部
36 メッセージ送信処理部
40 伝送装置

Claims (14)

  1.  通信相手装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う通信装置であって、
     前記複数の通信経路のうちの第1通信経路に対する設定フローを前記第1通信経路と異なる振分先通信経路に振り分ける制御を実行する振分制御手段と、
     前記複数の通信経路に含まれる前記第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、前記振分先通信経路を決定する決定手段と、
     を有する通信装置。
  2.  前記決定手段は、前記複数の候補通信経路のうちで空き帯域幅が最も大きい候補通信経路を、前記振分先通信経路として選択する、
     請求項1記載の通信装置。
  3.  前記振分制御手段は、前記第1通信経路の空き帯域幅に基づいて、前記設定フローを前記振分先通信経路に振り分ける制御を実行する、
     請求項1又は2に記載の通信装置。
  4.  前記振分制御手段は、前記第1通信経路の空き帯域幅が所定レベル以下である場合に、前記設定フローを前記振分先通信経路に振り分ける、
     請求項3記載の通信装置。
  5.  前記振分制御手段は、前記第1通信経路に設定されている複数のフローのうちの判定対象フローの使用帯域幅と前記振分先通信経路の空き帯域幅とに基づいて、前記判定対象フローを前記振分先通信経路に振り分けるか否かを決定する、
     請求項3又は4記載の通信装置。
  6.  前記振分制御手段は、前記判定対象フローの使用帯域幅が前記振分先通信経路の空き帯域幅以下である場合、前記判定対象フローを前記振分先通信経路に振り分けることを決定する、
     請求項5記載の通信装置。
  7.  前記振分制御手段は、前記第1通信経路に設定された複数のフローのうちで優先度の高いフローから順番に前記判定対象フローとして選択する、
     請求項5又は6記載の通信装置。
  8.  前記優先度は、使用帯域幅が大きい程高い、
     請求項7記載の通信装置。
  9.  前記優先度は、使用帯域幅が小さい程高い、
     請求項7記載の通信装置。
  10.  前記第1通信経路に含まれる通信区間に位置する伝送装置から前記通信区間についての現状利用可能帯域幅に関する情報を取得する取得手段を有し、
     前記振分制御手段は、前記現状利用可能帯域幅から前記第1通信経路に設定されている複数のフローの使用帯域幅の総和を減算して、前記第1通信経路の空き帯域幅を算出する、
     請求項1から9のいずれか1項に記載の通信装置。
  11.  前記複数の通信経路にそれぞれ対応する複数の通信ポートを有する、
     請求項1から10のいずれか1項に記載の通信装置。
  12.  前記複数のフローは、VLAN識別子に対応づけられる、
     請求項1から11のいずれか1項に記載の通信装置。
  13.  通信相手装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う通信装置によって実行される通信制御方法であって、
     前記複数の通信経路に含まれる第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定し、
     前記第1通信経路に対する設定フローを前記振分先通信経路に振り分ける制御を実行する、
     通信制御方法。
  14.  第1通信装置と、
     前記第1通信装置との間で、各通信経路に対して1つ又は複数のフローが設定されている複数の通信経路を同時に用いたマルチリンク通信を行う第2通信装置と、
     前記複数の通信経路にそれぞれ含まれる複数の通信区間にそれぞれ位置する複数の伝送装置と、
     を有し、
     各伝送装置は、それぞれ対応する通信区間についての現状利用可能帯域幅に関する情報を前記第1通信装置へ送信し、
     前記第1通信装置は、前記各伝送装置から送信された現状利用可能帯域幅に基づいて、各通信経路の空き帯域幅を算出し、前記複数の通信経路に含まれる第1通信経路以外の複数の候補通信経路から、各候補通信経路の空き帯域幅に基づいて、振分先通信経路を決定し、前記第1通信経路に対する設定フローを前記振分先通信経路に振り分ける制御を実行する、
     通信システム。
PCT/JP2018/004825 2017-03-28 2018-02-13 通信装置、通信制御方法、及び通信システム WO2018179922A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/496,729 US11012347B2 (en) 2017-03-28 2018-02-13 Communication apparatus, communication control method, and communication system for multilink communication simultaneously using a plurality of communication paths

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062917 2017-03-28
JP2017-062917 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179922A1 true WO2018179922A1 (ja) 2018-10-04

Family

ID=63675133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004825 WO2018179922A1 (ja) 2017-03-28 2018-02-13 通信装置、通信制御方法、及び通信システム

Country Status (2)

Country Link
US (1) US11012347B2 (ja)
WO (1) WO2018179922A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228397B2 (en) 2019-04-26 2022-01-18 Nec Corporation Wireless transmission system, wireless transmission device, wireless transmission method, and wireless transmission program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115392A (ja) * 2004-10-18 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> 動的伝送路振分回路及び方法
JP2013141082A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd 交換装置
WO2013125177A1 (ja) * 2012-02-22 2013-08-29 日本電気株式会社 通信装置とトラヒック制御方法
JP2015050527A (ja) * 2013-08-30 2015-03-16 日本電信電話株式会社 パケット転送装置、パケット転送システム、およびパケット転送方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336605B2 (en) 2003-05-13 2008-02-26 Corrigent Systems, Inc. Bandwidth allocation for link aggregation
US8089882B2 (en) * 2007-03-23 2012-01-03 Hewlett-Packard Development Company, L.P. Load-aware network path configuration
JP5217266B2 (ja) * 2007-06-21 2013-06-19 富士通セミコンダクター株式会社 広帯域無線接続通信装置
US8472315B2 (en) * 2008-02-07 2013-06-25 Belair Networks Inc. Method and system for controlling link saturation of synchronous data across packet networks
US8223767B2 (en) 2009-12-31 2012-07-17 Telefonaktiebolaget L M Ericsson (Publ) Driven multicast traffic distribution on link-aggregate-group
US9219672B2 (en) * 2011-12-14 2015-12-22 Verizon Patent And Licensing Inc. Label switching or equivalent network multipath traffic control
CN104272681B (zh) 2012-04-27 2017-07-11 日本电气株式会社 通信系统和通信控制方法
US9455927B1 (en) 2012-10-25 2016-09-27 Sonus Networks, Inc. Methods and apparatus for bandwidth management in a telecommunications system
KR101571978B1 (ko) * 2013-08-28 2015-11-25 주식회사 케이티 멀티 플로우 그룹핑에 기반한 대역폭 제공 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006115392A (ja) * 2004-10-18 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> 動的伝送路振分回路及び方法
JP2013141082A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd 交換装置
WO2013125177A1 (ja) * 2012-02-22 2013-08-29 日本電気株式会社 通信装置とトラヒック制御方法
JP2015050527A (ja) * 2013-08-30 2015-03-16 日本電信電話株式会社 パケット転送装置、パケット転送システム、およびパケット転送方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228397B2 (en) 2019-04-26 2022-01-18 Nec Corporation Wireless transmission system, wireless transmission device, wireless transmission method, and wireless transmission program

Also Published As

Publication number Publication date
US11012347B2 (en) 2021-05-18
US20200036625A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US11134011B2 (en) Communication system, control device, communication method, and program
EP2911348B1 (en) Control device discovery in networks having separate control and forwarding devices
JP5935572B2 (ja) 基地局装置及びパケット振分け方法
JP4899643B2 (ja) ネットワーク構成装置
CN106464589A (zh) Ip网络中的部分软件定义网络交换机替换
US20120076014A1 (en) Method and apparatus for traffic engineering in shortest path bridged networks
US20120281575A1 (en) Dynamic route branching system and dynamic route branching method
CN101340374B (zh) 控制传输优先级的方法、系统、装置和用户网络边缘设备
CN102972009A (zh) 用于实施联合服务器选择和路径选择的系统与方法
US8369364B2 (en) Path multiplexing communication system, communication node, and communication method
US7280482B2 (en) Dynamic load distribution using local state information
CN106209669A (zh) 面向sdn数据中心网络最大概率路径流调度方法及装置
JP5869041B2 (ja) ネットワークトポロジ要求を物理ネットワークにマッピングする方法、コンピュータプログラム製品、モバイル通信システム及びネットワーク構成プラットフォーム
US20140112123A1 (en) Optimized seam allocation in an ethernet ring network
WO2016186861A1 (en) Method and apparatus for self-tuned adaptive routing
CN111049752A (zh) 多传输线路的负载均衡方法及装置
CN104158739A (zh) 一种ip流量工程管理方法以及装置
CN107770061B (zh) 转发报文的方法及转发设备
EP3474504B1 (en) Leaf-to-spine uplink bandwidth advertisement to leaf-connected servers
KR20180122513A (ko) Sdn 기반 네트워크 가상화 플랫폼의 네트워크 하이퍼바이저에서 트래픽 엔지니어링 방법 및 프레임워크
WO2018179922A1 (ja) 通信装置、通信制御方法、及び通信システム
US11831549B2 (en) Device and method for load balancing
CN113767597B (zh) 用于基于周期的负载均衡的网络设备、系统和方法
KR101524825B1 (ko) 무선 메쉬 네트워크에서의 패킷 라우팅 방법, 패킷 라우팅 제어 장치 및 패킷 라우팅 시스템
CN103248568B (zh) 路由器及其实现支持冗余无编号链路的数据转发方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP