WO2018179497A1 - Station-side device migration method, station-side device, station-side device transfer control method, and optical communication system - Google Patents

Station-side device migration method, station-side device, station-side device transfer control method, and optical communication system Download PDF

Info

Publication number
WO2018179497A1
WO2018179497A1 PCT/JP2017/032852 JP2017032852W WO2018179497A1 WO 2018179497 A1 WO2018179497 A1 WO 2018179497A1 JP 2017032852 W JP2017032852 W JP 2017032852W WO 2018179497 A1 WO2018179497 A1 WO 2018179497A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
side device
signal
optical
wavelength band
Prior art date
Application number
PCT/JP2017/032852
Other languages
French (fr)
Japanese (ja)
Inventor
船田 知之
大助 梅田
成斗 田中
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019508519A priority Critical patent/JP6900997B2/en
Publication of WO2018179497A1 publication Critical patent/WO2018179497A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to a station side device migration method, a station side device, a station side device transmission control method, and an optical communication system.
  • optical communication having a transmission capacity of 100 Gbps has been proposed.
  • 100 G-EPON Ethernet (registered trademark) Passive Optical Network
  • 25 Gbps 25.8 Gbps
  • these four optical signals are multiplexed according to a wavelength division multiplexing (WDM) system. Wavelength multiplexed light is transmitted through an optical fiber.
  • WDM wavelength division multiplexing
  • Patent Document 1 discloses an optical transceiver in which four optical devices each having a transmission rate of 10 Gbps are integrated.
  • the optical transceiver multiplexes four optical signals having different wavelengths from each other, and equivalently realizes transmission speeds of 40 Gbps and 100 Gbps.
  • a migration method for a station-side device for an optical communication system wherein an uplink signal having a wavelength included in a first wavelength band for a first transmission rate is received by a reception unit of the station-side device. And configuring at least one of the first wavelength band and the second wavelength band included in the second wavelength band for a transmission rate different from the first transmission rate.
  • the transmission unit of the station side device can transmit the downlink signal using one wavelength
  • the reception unit can receive the uplink signal
  • the reflected return light of the downlink signal can be attenuated by the wavelength filter in front of the reception unit In this way, a step of configuring the station side device is provided.
  • a station apparatus includes a receiving unit configured to be able to receive an uplink signal having a wavelength included in a first wavelength band for a first transmission rate, and a first wavelength band
  • a transmitting unit configured to transmit a downlink signal using at least one wavelength included in the second wavelength band having a transmission rate different from the first transmission rate and overlapping at least part of the first transmission rate;
  • a wavelength filter that is provided in the preceding stage and attenuates the reflected return light that returns to the reception unit of the downstream signal.
  • the station side apparatus transmission control method includes a step of receiving an uplink signal having a wavelength included in the first wavelength band for the first transmission rate by the receiving unit of the station side apparatus; A downlink signal using at least one wavelength included in the second wavelength band for a transmission speed different from the first transmission speed and overlapping at least a part of the first wavelength band is transmitted by the transmitter of the station side device A step of transmitting, and a step of attenuating the reflected return light of the downstream signal by a wavelength filter provided in a preceding stage of the receiving unit.
  • An optical communication system includes a first home-side device configured to transmit an uplink signal having a wavelength included in a first wavelength band for a first transmission rate, A second signal configured to receive a downlink signal having at least one wavelength included in a second wavelength band that overlaps at least a part of the first wavelength band and is different from the first transmission speed.
  • the station-side device includes a receiving unit configured to receive an upstream signal, a transmitting unit configured to transmit a downstream signal, and reflected return light that is provided upstream of the receiving unit and returns to the downstream signal receiving unit. And a wavelength filter for attenuating.
  • a migration method for a station-side device for an optical communication system wherein an uplink signal having a wavelength included in a first wavelength band for a first transmission rate is received by a reception unit of the station-side device.
  • the transmission unit of the station side device using the at least one wavelength included in the second wavelength band for a transmission rate different from the first transmission rate.
  • a station side device migration method for an optical communication system is a station side device migration method including an optical transceiver including a transmission unit, the method being for a first transmission rate.
  • the transmission unit can transmit the downlink signal using at least one wavelength included in the wavelength band of the signal
  • the reception unit can receive the uplink signal
  • the reflected return light of the downlink signal is the wavelength at the preceding stage of the reception unit.
  • Configuring the station side device so that it can be attenuated by the filter, and exchanging the optical transceiver to change the number of wavelengths used for the downlink signal.
  • a migration method for a station-side device for an optical communication system wherein an uplink signal having a wavelength included in a first wavelength band for a first transmission rate is received by a reception unit of the station-side device.
  • the second wavelength band for the transmission speed different from the first transmission speed overlapping with at least a part of the receivable wavelength band of the receiving unit.
  • the transmitting unit of the station side device can transmit the downlink signal using at least one wavelength
  • the receiving unit can receive the uplink signal
  • the reflected return light of the downlink signal is transmitted by the wavelength filter in the front stage of the receiving unit. Configuring the station-side device to be attenuated, and replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
  • a station side device migration method for an optical communication system is a station side device migration method including an optical transceiver including a transmission unit, the method being for a first transmission rate.
  • a step of configuring the station-side device so that an upstream signal having a wavelength included in the first wavelength band of the first side can be received by the receiving unit of the station-side device, and overlapping at least a part of the receivable wavelength band of the receiving unit, And the transmission unit can transmit the downlink signal using at least one wavelength included in the second wavelength band for the transmission rate different from the first transmission rate, and the reception unit can receive the uplink signal
  • the step of configuring the station side apparatus and the optical transceiver are exchanged so that the reflected return light of the downstream signal can be attenuated by the wavelength filter in the front stage of the receiving unit, and used for the downstream signal. And a step of changing the number of that wavelength.
  • FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment.
  • FIG. 2 is a schematic diagram for explaining one example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON.
  • FIG. 3 is a diagram illustrating a configuration example of a station-side apparatus capable of coexisting 10G-EPON and 100G-EPON.
  • FIG. 4 is a schematic diagram for explaining reception of an uplink signal by the station side apparatus shown in FIG.
  • FIG. 5 is a diagram showing another configuration example of the station side apparatus capable of coexisting 10G-EPON and 100G-EPON.
  • FIG. 6 is a schematic diagram for explaining reception of an uplink signal by the station side device shown in FIG. FIG.
  • FIG. 7 is a diagram showing one study example of a station side device for coexistence of GE-PON, 10G-EPON, and 100G-EPON.
  • FIG. 8 is a diagram showing another examination example of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON.
  • FIG. 9 is a diagram showing still another example of examination of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON.
  • FIG. 10 is a diagram for explaining reception of an uplink signal by the station-side apparatus illustrated in FIGS. 7 to 9.
  • FIG. 11 is a diagram illustrating a configuration for solving the problem of an increase in branch loss in the configuration illustrated in FIGS.
  • FIG. 12 is a diagram illustrating an example of the allocation of the wavelength of the uplink signal for each ODN in the configuration illustrated in FIG.
  • FIG. 13 is a diagram for explaining problems in the configuration of the station-side device shown in FIG.
  • FIG. 14 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the upstream wavelength specification of 1000BASE-PX10, which is one of the standards of IEEE802.3.
  • FIG. 15 is a schematic diagram for explaining the spectrum of an FP-LD (Fabry-Perot type semiconductor laser) light source for 1000BASE-PX10.
  • FIG. 12 is a diagram illustrating an example of the allocation of the wavelength of the uplink signal for each ODN in the configuration illustrated in FIG.
  • FIG. 13 is a diagram for explaining problems in the configuration of the station-side device shown in FIG.
  • FIG. 14 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the upstream wavelength specification of 1000BASE-PX10, which is one of
  • FIG. 16 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the 1000BASE-PX20 (20 km) upstream wavelength specification, which is one of the standards of IEEE 802.3.
  • FIG. 17 is a schematic diagram for explaining the spectrum of a single longitudinal mode oscillation type DFB-LD.
  • FIG. 18 is a diagram illustrating an example of an actual specification range of an uplink transmitter applied to GE-PON (1000BASE-PX10).
  • FIG. 19 is a schematic diagram illustrating the characteristics of a wavelength filter for cutting reflected return light having a 100 G downstream wavelength.
  • FIG. 20 is a diagram showing a schematic configuration of one example of a station-side apparatus according to an embodiment of the present invention.
  • FIG. 21 is a diagram for explaining an example of the migration scenario of the station side device.
  • FIG. 22 is a schematic diagram illustrating an example of a wavelength arrangement of the GE-PON upstream wavelength and the 100GE-EPON downstream reflected reflected light at the stage (Day 3) when 100G-EPON is mounted.
  • FIG. 23 is a schematic configuration diagram of an optical communication system in a stage (Day 0) where GE-PON and 10G-EPON coexist.
  • FIG. 24 is a schematic configuration diagram of an optical communication system in a stage (Day 1) in which GE-PON, 10G-EPON, and 25G-EPON coexist.
  • FIG. 25 is a schematic configuration diagram of an optical communication system in a stage (Day 2) in which GE-PON, 10G-EPON, 25G-EPON, and 50G-EPON coexist.
  • FIG. 26 is a schematic configuration diagram of an optical communication system configuration in a stage (Day 3) in which 10G-EPON, 25G-EPON, 50G-EPON, and 100G-EPON coexist.
  • FIG. 27 is a diagram for explaining the overall configuration of the optical communication system according to the embodiment of the present invention.
  • FIG. 28 is a schematic diagram for explaining another example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON.
  • FIG. 29 is a diagram illustrating another example of the migration scenario of the station side device.
  • FIG. 30 is a diagram showing a schematic configuration of another example of the station side apparatus according to the embodiment of the present invention.
  • An object of the present disclosure is to enable coexistence of optical communications even when wavelength bands overlap between optical communications having different transmission capacities. [Effects of the present disclosure] Based on the above, even when wavelength bands overlap between optical communications having different transmission capacities, the optical communications can be made coexistent.
  • a station side apparatus migration method for an optical communication system transmits an uplink signal having a wavelength included in a first wavelength band for a first transmission rate to a station side apparatus. And the step of configuring the station-side device so that it can be received by the receiver, and included in the second wavelength band that overlaps at least a part of the first wavelength band and has a transmission rate different from the first transmission rate.
  • the transmission unit of the station side device can transmit the downlink signal using the at least one wavelength that is transmitted, the reception unit can receive the uplink signal, and the reflected light of the downlink signal is the wavelength filter in the previous stage of the reception unit Configuring the station side device so as to be attenuated by.
  • the optical communications can be made coexistent.
  • the step of configuring the station-side device so that the transmission unit of the station-side device can transmit a downlink signal using at least one wavelength includes the transmission unit having one wavelength within the second wavelength band.
  • the step of configuring the station side device so that the downlink signal can be transmitted using, and the configuration of the station side device so that the transmission unit can transmit the downlink signal using two or more wavelengths within the second wavelength band Steps.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the transmission unit can multiplex all of a plurality of predetermined wavelengths in the second wavelength band and transmit the downstream signal, and the reception unit can transmit the upstream signal. And a step of configuring the station side device so that the reflected return light can be attenuated by the wavelength filter.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the method further includes the step of replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the station side device includes an optical transceiver including at least a transmission unit.
  • the station side apparatus migration method further includes the step of changing the number of wavelengths used for the downlink signal by exchanging the optical transceiver.
  • a station apparatus includes a receiving unit configured to be able to receive an uplink signal having a wavelength included in a first wavelength band for a first transmission rate, A transmission unit configured to transmit a downlink signal using at least one wavelength included in a second wavelength band that overlaps at least a part of the wavelength band and is different from the first transmission rate; A wavelength filter that is provided upstream of the reception unit and attenuates reflected return light that returns to the reception unit of the downstream signal.
  • the transmission unit is configured to transmit a downlink signal using one wavelength in the second wavelength band.
  • the transmission unit is configured to transmit a downlink signal using two or more wavelengths within the second wavelength band.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the transmission unit is configured to be able to transmit a downlink signal by multiplexing all of a plurality of predetermined wavelengths in the second wavelength band.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the reception unit of the station side apparatus receives an uplink signal having a wavelength included in the first wavelength band for the first transmission rate. And a downlink signal using at least one wavelength included in the second wavelength band, which overlaps at least a part of the first wavelength band and is different from the first transmission speed, in the second wavelength band.
  • the transmitting step includes a step in which the transmitting unit transmits a downlink signal using one wavelength within the second wavelength band.
  • the transmitting step includes a step in which the transmitting unit transmits a downlink signal using a plurality of wavelengths within the second wavelength band.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the transmitting step includes a step in which the transmitting unit multiplexes all of a plurality of predetermined wavelengths in the second wavelength band and transmits a downlink signal.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • An optical communication system is configured to transmit an uplink signal having a wavelength included in a first wavelength band for a first transmission rate. And a downlink signal having at least one wavelength included in the second wavelength band for a transmission speed different from the first transmission speed and overlapping at least a part of the first wavelength band.
  • the station-side device includes a receiving unit configured to receive an upstream signal, a transmitting unit configured to transmit a downstream signal, and reflected return light that is provided upstream of the receiving unit and returns to the downstream signal receiving unit. And a wavelength filter for attenuating.
  • the optical communications can be made coexistent.
  • the transmission unit is configured to transmit a downlink signal using one wavelength within the second wavelength band.
  • the optical communications can be made coexistent.
  • the transmission unit is configured to transmit a downlink signal using two or more wavelengths within the second wavelength band.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the transmission unit is configured to be able to transmit a downlink signal by multiplexing all of a plurality of predetermined wavelengths in the second wavelength band.
  • optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
  • the first home side apparatus includes a Fabry-Perot type semiconductor laser as a light source for transmitting an upstream signal.
  • the reflected light can be weakened by the wavelength filter while reducing the attenuation of the upstream signal by the wavelength filter in the station side device.
  • the first home apparatus includes a single longitudinal mode distributed feedback semiconductor laser as a light source for transmitting an upstream signal.
  • the reflected light can be weakened by the wavelength filter while reducing the attenuation of the upstream signal by the wavelength filter in the station side device.
  • a station side apparatus migration method for an optical communication system transmits an uplink signal having a wavelength included in a first wavelength band for a first transmission rate to a station side apparatus. And a step of configuring the station-side device so that it can be received by the receiver, and transmission by the station-side device using at least one wavelength included in the second wavelength band for a transmission rate different from the first transmission rate.
  • the station side device is configured so that the transmission unit can transmit the downlink signal, the reception unit can receive the uplink signal, and the reflected return light of the downlink signal can be attenuated by the wavelength filter in the preceding stage of the reception unit And replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
  • a migration method for a station-side device for an optical communication system is a migration method for a station-side device including an optical transceiver including a transmission unit, and the method includes the first transmission.
  • the transmission unit can transmit a downstream signal using at least one wavelength included in the second wavelength band of the first signal, the upstream signal can be received by the reception unit, and the reflected return light of the downstream signal is transmitted from the reception unit. It comprises the steps of configuring the station side device so that it can be attenuated by the preceding wavelength filter, and changing the number of wavelengths used for the downlink signal by exchanging the optical transceiver.
  • a station side apparatus migration method for an optical communication system transmits an uplink signal having a wavelength included in a first wavelength band for a first transmission rate to a station side apparatus. And a second wavelength band for a transmission rate that overlaps at least a part of the receivable wavelength band of the reception unit and that is different from the first transmission rate.
  • the transmission unit of the station side device can transmit the downlink signal using at least one wavelength included in the signal, the uplink signal can be received by the reception unit, and the reflected return light of the downlink signal is transmitted to the upstream of the reception unit. Configuring the station-side device to be attenuated by the wavelength filter, and replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
  • a migration method for a station-side device for an optical communication system is a migration method for a station-side device including an optical transceiver including a transmission unit, and the method includes a first transmission.
  • the station-side device Configuring the station-side device so that an uplink signal having a wavelength included in the first wavelength band for speed can be received by the receiving unit of the station-side device, and at least a part of the receivable wavelength band of the receiving unit
  • the transmission unit can transmit a downlink signal using at least one wavelength included in the second wavelength band for a transmission rate different from the first transmission rate, and the reception unit can receive an uplink signal
  • the step of configuring the station side device so that the reflected return light of the downstream signal can be attenuated by the wavelength filter in the front stage of the receiving unit, and the optical transceiver And a step of changing the number of wavelengths needed.
  • Gbps may be simply expressed as “G” for simplification.
  • 1 Gbps, 10 Gbps, and 100 Gbps may be represented as “1G”, “10G”, and “100G”, respectively, in the following description.
  • FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment.
  • a PON (Passive Optical Network) system 300 is an optical communication system according to an embodiment.
  • the PON system 300 includes a station side device 301, a home side device 302, a PON line 303, and an optical splitter 304.
  • the “station-side device” and “home-side device” can be realized by “OLT (Optical Line Terminal)” and “ONU (Optical Network Unit)”.
  • the station-side device 301 is installed in, for example, a communication company's office.
  • the station side device 301 mounts a host substrate (not shown).
  • an optical transceiver (not shown) that converts electrical signals and optical signals into each other.
  • the home device 302 is installed on the user side. Each of the plurality of home side devices 302 is connected to the station side device 301 via the PON line 303.
  • the PON line 303 is an optical communication line composed of an optical fiber.
  • the PON line 303 includes a trunk optical fiber 305 and at least one branch optical fiber 306.
  • the optical splitter 304 is connected to the trunk optical fiber 305 and the branch optical fiber 306.
  • a plurality of home devices 302 can be connected to the PON line 303.
  • the optical signal transmitted from the station side device 301 passes through the PON line 303 and is branched to a plurality of home side devices 302 by the optical splitter 304.
  • the optical signal transmitted from each home apparatus 302 is focused by the optical splitter 304 and sent to the station apparatus 301 through the PON line 303.
  • the optical splitter 304 passively branches or multiplexes the signal from the input signal without requiring any external power supply.
  • a wavelength-multiplexed PON system in which a plurality of wavelengths are assigned to an upstream signal or a downstream signal and a plurality of wavelengths are wavelength-multiplexed to form an upstream signal or a downstream signal has been studied.
  • a wavelength of 25 Gbps to a signal having a transmission capacity of 25 Gbps per wavelength for upstream and downstream and multiplex them.
  • a gradual expansion (upgrade) of transmission capacity can be considered.
  • FIG. 2 is a schematic diagram for explaining one example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON.
  • the wavelength band assigned to the upstream (US) is 1260-1360 nm (1290-1330 nm in the Reduced specification), and the wavelength band assigned to the downstream (DS) is 1480-1500 nm.
  • the wavelength band assigned to the upstream is 1260-1280 nm
  • the wavelength band assigned to the downstream is 1575-1580 nm.
  • Standardization is in progress for wavelengths used in 100G-EPON.
  • four wavelengths ⁇ t1 to ⁇ t4 used for 25 Gbps transmission are arranged in the wavelength band of 1285 to 1310 nm.
  • four wavelengths ⁇ r1 to ⁇ r4 each used for 25 Gbps transmission are arranged in the wavelength band of 1335 to 1360 nm. Therefore, according to the wavelength arrangement shown in FIG. 2, the downstream wavelength band of 100G-EPON overlaps at least a part (the longer wavelength side) of the upstream wavelength band of GE-PON.
  • the upstream wavelength band and downstream wavelength band of 100G-EPON do not overlap either the upstream wavelength band or downstream wavelength band of 10G-EPON. Therefore, 10G-EPON and 100G-EPON can coexist.
  • FIG. 3 is a diagram showing a configuration example of a station-side device capable of coexisting 10G-EPON and 100G-EPON.
  • FIG. 4 is a schematic diagram for explaining reception of an uplink signal by the station side apparatus shown in FIG.
  • the station side device 301 includes an optical transceiver 141 and an electric processing LSI 43.
  • the optical transceiver 141 supports lanes of 10 Gbps ⁇ 1 and 25 Gbps ⁇ 1.
  • the optical transceiver 141 includes an optical wavelength demultiplexer (MUX / DMUX) 42, an electrical processing LSI 43, optical transmitters 51 and 56, and optical receivers 61 and 66.
  • MUX / DMUX optical wavelength demultiplexer
  • the optical wavelength demultiplexer 42 is connected to the PON line 303.
  • the optical wavelength multiplexer / demultiplexer 42 is mounted on the optical transceiver 141 in order to transmit a plurality of optical signals having different wavelengths on the PON line 303.
  • the optical wavelength demultiplexer 42 multiplexes the optical signal having the wavelength ⁇ t0 and the optical signal having the wavelength ⁇ t1 and outputs the wavelength multiplexed signal to the PON line 303.
  • the optical wavelength demultiplexer 42 receives the wavelength multiplexed signal from the PON line 303 and separates the wavelength multiplexed signal into two optical signals (wavelengths ⁇ r0 and ⁇ r1).
  • the optical transmitter 56 receives an electrical signal from the electrical processing LSI 43 and converts the electrical signal into an optical signal having a wavelength ⁇ t0.
  • the optical transmitter 51 receives an electrical signal from the electrical processing LSI 43 and converts the electrical signal into an optical signal having a wavelength ⁇ t1.
  • the optical signal with wavelength ⁇ t0 is a 10G downstream signal
  • the optical signal with wavelength ⁇ t1 is a 25G downstream signal.
  • the optical receiver 66 receives the optical signal having the wavelength ⁇ r0 from the PON line 303 through the optical wavelength demultiplexer 42 and converts the optical signal into an electrical signal.
  • the optical receiving unit 66 outputs the electrical signal to the electrical processing LSI 43.
  • the optical receiver 61 receives the optical signal having the wavelength ⁇ r1 from the PON line 303 through the optical wavelength demultiplexer 42 and converts the optical signal into an electrical signal.
  • the optical receiver 61 outputs the electrical signal to the electrical processing LSI 43.
  • the optical signal with wavelength ⁇ r0 is a 10G downstream signal
  • the optical signal with wavelength ⁇ r1 is a 25G downstream signal.
  • the electrical processing LSI 43 performs various processes on the electrical signal output from the optical transceiver 141. On the other hand, the electrical processing LSI 43 generates an electrical signal to be input to the optical transceiver 141.
  • the electrical processing LSI 43 can support multilane distribution control.
  • the electrical processing LSI 43 can realize 100 Gbps transmission by four lanes of 25 Gbps. By changing the number of lanes, the electrical processing LSI 43 can support transmission speeds of 25 Gbps, 50 Gbps, and 100 Gbps.
  • the optical signal having the wavelength ⁇ r0 and the optical signal having the wavelength ⁇ r1 coexist in the PON line 303 by the wavelength division multiplexing (WDM) method.
  • the optical signal with wavelength ⁇ r0 and the optical signal with wavelength ⁇ r1 can be separated in the station side device 301 by the optical wavelength demultiplexer 42 (see FIG. 3). Therefore, these optical signals can overlap in time.
  • FIG. 5 is a diagram showing another configuration example of the station side apparatus capable of coexisting 10G-EPON and 100G-EPON.
  • FIG. 6 is a schematic diagram for explaining reception of an uplink signal by the station side device shown in FIG.
  • optical transceiver 141A is different from optical transceiver 141 shown in FIG. 3 in that optical receiver 141A includes optical receivers 61A (Rx0 & Rx1) instead of optical receivers 61 and 66.
  • the optical receiver 61A can be realized by a dual rate optical receiver circuit.
  • Various known configurations can be applied to the configuration of the optical receiver 61A.
  • the optical signal having the wavelength ⁇ r0 and the optical signal having the wavelength ⁇ r1 coexist in the PON line 303 by time division multiplexing (TDM).
  • TDM time division multiplexing
  • the optical receiver 61A receives the optical signal with the wavelength ⁇ r0 and the optical signal with the wavelength ⁇ r1 that are time-division multiplexed.
  • the optical receiver 61A separates the received signal into a 10G upstream signal and a 25G upstream signal.
  • 10G-EPON and 100G-EPON can coexist by WDM regarding downstream. Further, 10G-EPON and 100G-EPON can coexist in WDM or TDM with respect to uplink. However, as shown in FIG. 2, the upstream wavelength band of 100GE-PON and the downstream wavelength band overlap with the upstream wavelength band of GE-PON. For this reason, it is necessary to examine the configuration of the station side device in which GE-PON and 100G-EPON can coexist.
  • FIG. 7 is a diagram showing one study example of a station side device for coexistence of GE-PON, 10G-EPON, and 100G-EPON.
  • the optical transmission / reception unit 131 includes an optical transmission unit 21, an optical reception unit 31, and an optical wavelength multiplexer / demultiplexer 44 in addition to the elements shown in FIG. 3.
  • the optical transmission / reception unit 131 may be realized by a combination of a 10G / 25G optical transceiver and a 1G optical transceiver, or may be realized by a single optical transceiver.
  • the optical wavelength demultiplexer 42 and the optical wavelength demultiplexer 44 are connected to the optical fiber transmission line 310 via an optical splitter 307 (1 ⁇ 2 optical splitter).
  • the optical fiber transmission line 310 is connected to ODNs (Optical Distribution Network) 311 to 314 through an optical splitter 308 (4 ⁇ 1 optical splitter).
  • ODNs Optical Distribution Network
  • the optical transmission unit 21 receives the 1G downstream signal from the electrical processing LSI 43 and transmits the downstream signal as an optical signal having the wavelength ⁇ t0 ′.
  • the optical receiver 31 receives an upstream signal from a home device (not shown) via the optical fiber transmission line 310 and the optical splitter 308.
  • the optical signal having the wavelength ⁇ t0 ′ is a 1G downstream signal. Accordingly, the receivable wavelength band of the optical receiver 31 includes the upstream (US) band (1260 nm-1360 nm) of GE-PON.
  • the optical transceiver 131 is configured with a 1G optical transceiver and a 25G / 50G / 100G optical transceiver.
  • the optical splitter 307 is an essential component.
  • FIG. 8 is a diagram showing another examination example of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON.
  • the optical transceiver 131 includes an optical transmitter 21, an optical receiver 31, and an optical wavelength demultiplexer 44 in addition to the configuration shown in FIG. The following description will not be repeated for elements common to the elements shown in FIG.
  • FIG. 9 is a diagram showing still another examination example of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON.
  • the optical transmission / reception unit 131 includes an optical reception unit 31 ⁇ / b> A instead of the optical reception unit 31.
  • the optical receiver 31A is an optical receiver that supports dual rates (1G, 10G).
  • the 10G downstream signal (wavelength ⁇ t0) from the optical transmitter 56 is sent to the optical wavelength demultiplexer 44. Further, the optical receiver 66 is omitted.
  • FIG. 10 is a diagram for explaining the reception of the uplink signal by the station side apparatus shown in FIGS.
  • a 1G upstream signal (wavelength ⁇ r0 '), a 10G upstream signal (wavelength ⁇ r0), and a 25G upstream signal (wavelength ⁇ r1) are time-division multiplexed.
  • the electrical processing LSI 43 collectively manages the transmission timing of the upstream signal from each home device. Specifically, the electrical processing LSI 43 gives an upstream signal transmission permission to each home-side apparatus.
  • the 10G upstream signal and the 25G upstream signal may coexist by WDM.
  • the 1G upstream wavelength band includes a 10G upstream wavelength band and a 100G upstream wavelength band. Accordingly, the optical wavelength demultiplexer 44 shown in FIGS. 7 to 9 cannot separate the 1G upstream signal from the 10G upstream signal or the 100G upstream signal.
  • the optical receiver 31 is configured to be able to receive light in the 1G upstream wavelength range.
  • the optical receiver 31 receives not only the 1G upstream signal but also the 10G upstream signal and the 100G upstream signal. Since the reception electrical band of the optical receiver 31 is about 1 GHz, the optical receiver 31 can correctly reproduce the 1G upstream signal, but cannot correctly reproduce the 10G upstream signal and the 100G upstream signal. Therefore, the electrical processing LSI 43 can recognize only the 1G upstream signal among the signals transmitted from the optical receiver 31.
  • FIG. 11 is a diagram showing a configuration for solving the problem of an increase in branch loss in the configuration shown in FIGS.
  • the optical wavelength demultiplexer 42 and the optical wavelength demultiplexer 44 of the station side device 301 are connected to an optical splitter 309 (4 ⁇ 2 splitter) on the ODN.
  • the optical splitters 307 and 308 shown in FIG. 9 are integrated into the optical splitter 309.
  • the optical splitter 309 is an essential component. .
  • the branching loss due to the optical splitter 309 is about the same as the branching loss (for example, about 6 to 7 dB) of the optical splitter 308 shown in FIG. According to the configuration shown in FIG. 11, since the optical splitter 307 does not exist, no branching loss due to the optical splitter 307 occurs.
  • FIG. 12 is a diagram showing an example of the allocation of the wavelength of the uplink signal for each ODN in the configuration shown in FIG. As shown in FIG. 12, since time-division multiplexed uplink signals are transmitted, it is possible to reduce the influence of overlapping between the 1G upstream wavelength band, the 10G upstream wavelength band, and the 100G upstream wavelength band.
  • FIG. 13 is a diagram for explaining a problem in the configuration of the station-side device shown in FIG. As shown in FIG. 13, for example, reflected return light of a 100G downstream signal is generated. The wavelength of the reflected return light is included in the wavelength band of the 1G upstream signal. Since the downstream signal is continuous light, the reflected return light of the downstream signal necessarily becomes an interference wave.
  • IEEE 802.3 stipulates that the level of reflected return light (Optical return loss of ODN) of GE-PON and 10G-EPON is 20 dB min. If a 100G-EPON downstream signal (4 wavelengths) of up to +10 dBm per wave is attenuated by 26 dB due to the loss of the branching splitter (6 dB in the round trip) + 20 dB of reflection at the ODN, the reflected return light of 4 wavelengths of -16 dBm is reflected. Return to the station side device 301. The reflected return light passes through the optical wavelength demultiplexer 44 and enters the optical receiver 31A.
  • a receiver for receiving an upstream signal of GE-PON needs to normally receive light of about -30 dBm.
  • the optical receiver 31A must satisfy this specification. Considering the high sensitivity of the optical receiving unit 31A as described above, the reflected return light is converted into a wavelength filter so that the intensity of the reflected return light of the 100G downstream signal is sufficiently reduced before being input to the optical receiving unit 31A. It is necessary to attenuate with.
  • a filter for attenuating a 100 G downstream signal by about 30 dB is disposed in the front stage of the optical receiver 31 A or the front stage of the optical wavelength demultiplexer 44.
  • the attenuated reflected return light is sufficiently smaller than the 1G upstream signal received by the optical receiver 31A.
  • the upstream wavelength of GE-PON (1260-1360 nm) and the downstream wavelength of 100G-EPON (there are four wavelengths at 1335-1360 nm) are in the same wavelength region.
  • the reflected return light of the 100 G downstream signal can be attenuated by the wavelength filter, there is a problem that the reflected return light and the 1 G upstream signal cannot be separated by the optical wavelength demultiplexer 44.
  • IEEE 802.3 which is a standard related to GE-PON, assumes that a multi-longitudinal mode oscillation type optical transmitter such as FP-LD (Fabry-Perot type semiconductor laser) is used for an upstream transmitter.
  • FP-LD Fabry-Perot type semiconductor laser
  • the RMS (root mean square) spectral width has a great influence on transmission characteristics. For this reason, the multi-longitudinal mode oscillation type optical transmitter is required to have a narrower RMS spectral width as the oscillation wavelength of the transmitter becomes farther from the zero dispersion wavelength (about 1310 nm) of the optical fiber.
  • FIG. 14 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the upstream wavelength specification of 1000BASE-PX10, which is one of the standards of IEEE802.3.
  • FIG. 15 is a schematic diagram for explaining the spectrum of an FP-LD (Fabry-Perot type semiconductor laser) light source for 1000BASE-PX10.
  • FP-LD Fabry-Perot type semiconductor laser
  • FP-LD is generally used for multi-longitudinal mode oscillation type optical transmitters.
  • the RMS spectrum width of the FP-LD of the multi-longitudinal mode oscillation type optical transmitter is about 1.5 to 3 nm.
  • the temperature change of the center wavelength is large in the FP-LD. In the example shown in FIG. 15, the temperature change of the center wavelength of the FP-LD is about 40 nm. Therefore, the upstream transmitter using the FP-LD light source can satisfy the mask specification of 1000BASE-PX10 shown in FIG.
  • FIG. 16 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the 1000BASE-PX20 (20 km) upstream wavelength specification, which is one of the standards of IEEE 802.3.
  • the width of the allowable RMS spectrum is smaller than that in 1000BASE-PX10.
  • FP-LD it is difficult to satisfy the mask specification of 1000BASE-PX20.
  • an upstream transmitter using a single longitudinal mode oscillation type DFB-LD (distributed feedback semiconductor laser) element is generally used.
  • FIG. 17 is a schematic diagram for explaining the spectrum of a single longitudinal mode oscillation type DFB-LD.
  • the single longitudinal mode oscillation type DFB-LD has the characteristics that the RMS spectral width is smaller than that of the FP-LD and the temperature change of the center wavelength is small.
  • the temperature change of the center wavelength of the DFB-LD is about 7 nm.
  • the DFB-LD it is possible to achieve an upstream wavelength in a band of 1290 nm to 1330 nm, which is sufficiently narrow with respect to the specification of 1260 nm to 1360 nm in IEEE.
  • the upstream wavelength specification is defined as a wavelength band of 1260-1360 nm. Since the wavelength band of the 100G downstream signal overlaps a part of the wavelength band of the 1G upstream signal (long wavelength side band), the 1G upstream signal and the reflected return light of the 100G downstream signal are separated by the optical wavelength demultiplexer. Is difficult.
  • the upstream wavelength is defined and operated in a band slightly narrower than the band of FP-LD, such as 1290-1330 nm. There are many cases.
  • the 1 G upstream wavelength band is shorter than the 100 G downstream wavelength band. Although located on the side, unlike the case of FP-LD, it is far from the band of the 100G downstream wavelength. Therefore, the reflected return light of the 100G downstream signal and the 1G upstream signal can be separated by the optical wavelength demultiplexer.
  • the upstream wavelength specification is defined within the wavelength band of 1260-1360 nm.
  • FIG. 18 is a diagram showing an example of an actual specification range of an uplink transmitter applied to GE-PON (1000BASE-PX10).
  • the specification range of the center wavelength is 1260-1360 nm.
  • the specification range of the center wavelength of the actual optical transceiver is defined to be, for example, 1270 nm or more and 1350 nm or less in consideration of the RMS spectrum width of the FP-LD.
  • the RMS spectrum width of FP-LD is generally about 2 nm to 3 nm.
  • the center wavelength is 1350 nm and the RMS spectral width is 3 nm, 68% of the optical output power falls within the range of 1347-1353 nm, and 95% of the optical output power falls within the range of 1343-1356 nm.
  • FIG. 19 is a schematic diagram illustrating the characteristics of a wavelength filter for cutting reflected return light having a 100 G downstream wavelength.
  • FIG. 20 is a diagram showing a schematic configuration of one example of a station-side apparatus according to an embodiment of the present invention.
  • the station side device 301 includes optical transceivers 151A and 151B.
  • the optical transceiver 151A is an optical transceiver for 25G / 50G / 100G-EPON, and includes an optical wavelength multiplexer / demultiplexer 42, an optical transmitter 51 (Tx1), and an optical receiver 61 (Rx1).
  • the optical transceiver 151B is an optical transceiver for 1G and 10G, and includes an optical wavelength demultiplexer 44, an optical transmitter 21 (Tx0 '), and an optical receiver 31A (Rx0). The following description will not be repeated for the same elements as those shown in FIG.
  • a wavelength filter 71 for attenuating reflected return light having a wavelength of 100 G downstream is disposed in front of the optical wavelength demultiplexer 44.
  • the wavelength filter 71 has a characteristic of attenuating light having an upstream wavelength of 1353 nm or less and light having a downstream wavelength of 1490 nm to 1580 nm while attenuating light having an upstream wavelength of 1357 nm or more and 1360 nm or less.
  • the wavelength filter 71 receives the reflected return light of one wavelength ( ⁇ t1) of the 100G downstream signal while receiving the upstream signal of the GE-PON with a slight filter loss (for example, about 0.5 dB) even in the worst case. Can be cut.
  • the wavelength filter 71 having the above pass band, the reflected light of the signal having the wavelengths ⁇ t2, ⁇ t3, and ⁇ t4 among the 100G downstream signals cannot be cut by the wavelength filter 71. Therefore, in this embodiment, with the migration of the station-side device 301, the wavelength filter is replaced, and the reflected return light of the signal having the wavelengths ⁇ t2, ⁇ t3, and ⁇ t4 is cut. As the steps progress from Day 0 to Day 3, the number of wavelengths used for the 100G downlink signal increases, so the wavelength band of the 100G downlink signal widens and more overlaps with the wavelength band of the 1G uplink signal. In this embodiment, the wavelength filter 71 is replaced with a wavelength filter capable of attenuating the reflected return light of the 100 G downstream signal in such a case.
  • FIG. 21 is a diagram for explaining an example of the migration scenario of the station side device. 20 and 21, GE-PON (1000BASE-PX10), GE-PON (1000BASE-PX20), and 10G-EPON are mounted in the Day 0 stage. That is, GE-PON and 10G-EPON coexist. At this stage, it is not necessary to provide a wavelength filter for cutting the reflected return light of the 100G downstream signal in the station side device.
  • 25G-EPON is mounted, and GE-PON, 10G-EPON and 25G-EPON coexist. 50G-EPON and 100G-EPON have not been installed or are not in operation.
  • the upstream wavelength light of 1353 nm or less and the downstream wavelength light of 1490 nm to 1580 nm are passed, while the upstream wavelength light of 1357 nm to 1360 nm is attenuated.
  • the wavelength filter to be provided is provided on the reception side of the 1G upstream signal of the station side device (the front stage of the optical wavelength demultiplexer 44).
  • the wavelength arrangement of downstream signals in 50G-EPON is 1359 ⁇ 1 nm and 1349 ⁇ 1 nm.
  • the wavelength filter used in the Day 1 stage is replaced with a wavelength filter having a shorter cutoff wavelength.
  • a wavelength filter 71 that passes light having an upstream wavelength of 1330 nm or less and light having a downstream wavelength of 1490 nm to 1580 nm while attenuating light having an upstream wavelength of 1335 nm to 1360 nm is a 1G upstream signal of the station side device.
  • the receiving side the front stage of the optical wavelength demultiplexer 44.
  • the transmitter of the station side device 301 uses the more wavelengths (wavelengths ⁇ d1 and ⁇ d2 shown in FIG. 21) included in the 100G-EPON downstream wavelength band as compared to the Day1 stage.
  • the wavelength filter used in the Day 1 stage is not only the reflected return light of the 25 G downstream signal (downstream signal of the wavelength ⁇ d1) in the Day1 stage, but also the added downstream signal (downstream of the wavelength ⁇ d2). In order to attenuate the reflected return light of the signal), it is replaced with a wavelength filter having a shorter cutoff wavelength.
  • 100G-EPON is mounted, and GE-PON, 10G-EPON, 25G-EPON, 50G-EPON and 100G-EPON coexist.
  • the wavelength arrangement of downstream signals in 100G-EPON is 1359 ⁇ 1 nm, 1349 ⁇ 1 nm, 1344 ⁇ 1 nm, and 1339 ⁇ 1 nm.
  • the light of the upstream wavelength of 1330 nm or less and the light of the downstream wavelength of 1490 nm to 1580 nm are passed, while 1335 nm or more and 1360 nm or less
  • the wavelength filter 71 for attenuating the upstream wavelength light is provided on the receiving side of the 1G upstream signal of the station side device (the front stage of the optical wavelength demultiplexer 44).
  • FIG. 22 is a schematic diagram illustrating an example of the wavelength arrangement of the GE-PON upstream wavelength and the 100GE-EPON downstream return reflected light at the stage where the 100G-EPON is mounted (Day 3).
  • the home device of GE-PON conforms to 1000BASE-PX20. That is, this home-side apparatus has a single longitudinal mode oscillation type DFB-LD element as a light source for transmitting an upstream signal. Even when the temperature change of the center wavelength is taken into consideration, the upstream wavelength of the GE-PON can be sufficiently separated from the wavelength of the reflected return light of the downstream signal of 100 G-EPON to the short wavelength side.
  • the wavelength filter can not only pass the upstream signal of the GE-PON with a small loss, but can cut the reflected return light of the downstream signal of the 100 G-EPON.
  • FIG. 23 is a schematic configuration diagram of an optical communication system at a stage (Day 0) where GE-PON and 10G-EPON coexist.
  • An optical transceiver 151, electrical processing LSIs 2A and 2B, and an upstream bandwidth allocation control LSI 3 are mounted on the host substrate 1A.
  • the optical transceiver 151 can support both 1 Gbps (wavelength ⁇ 0 ′) and 10 Gbps (wavelength ⁇ 0) transmission capacities.
  • the electric processing LSI 2A supports one lane (10 Gbps ⁇ 1) of 10 Gbps.
  • the electrical processing LSI 2A receives a 10G upstream signal from the optical transceiver 151 and outputs a 10G downstream signal to the optical transceiver 151.
  • the electric processing LSI 2B supports one lane of 1 Gbps (1 Gbps ⁇ 1).
  • the electrical processing LSI 2B receives the 1G upstream signal from the optical transceiver 151 and outputs the 1G downstream signal to the optical transceiver 151.
  • Each of the electrical processing LSIs 2A and 2B is configured to be able to communicate with the outside of the host substrate 1A.
  • the uplink bandwidth allocation control LSI 3 executes control for allocating the bandwidth of the uplink signal transmitted by each of the plurality of home side devices 302.
  • FIG. 24 is a schematic configuration diagram of an optical communication system at a stage (Day 1) in which GE-PON, 10G-EPON, and 25G-EPON coexist.
  • Day 1 stage the home side apparatus 302 corresponding to 25 Gbps is introduced into the optical communication system.
  • the host substrate 1A may be replaced with a host substrate 1B.
  • an optical transceiver 161, electrical processing LSIs 2, 2A, 2B, and an upstream bandwidth allocation control LSI 3 are mounted on the host substrate 1B.
  • the optical transceiver 161 can support 1 Gbps (wavelength ⁇ 0 ′), 10 Gbps (wavelength ⁇ 0), and 25 Gbps (wavelength ⁇ 1).
  • a plurality of optical transceivers supporting a single wavelength or a plurality of wavelengths may be employed in place of the optical transceiver 161.
  • the electric processing LSI 2 supports 4 lanes of 25 Gbps (25 Gbps ⁇ 4).
  • the electrical processing LSI 2 receives a 25 G upstream signal from the optical transceiver 141 and transmits a 25 G downstream signal to the optical transceiver 141.
  • FIG. 25 is a schematic configuration diagram of an optical communication system at a stage (Day 2) in which GE-PON, 10G-EPON, 25G-EPON and 50G-EPON coexist.
  • a home side device 302 corresponding to 50 Gbps is introduced into the optical communication system.
  • the optical transceiver 161 (see FIG. 24) is replaced with the optical transceiver 171.
  • the optical transceiver 171 is an optical transceiver of 1 Gbps (wavelength ⁇ 0 ′), 10 Gbps (wavelength ⁇ 0), and 25 Gbps ⁇ 2 wavelengths (wavelengths ⁇ 1 and ⁇ 2).
  • a plurality of optical transceivers supporting a single wavelength or a plurality of wavelengths may be employed instead of the optical transceiver 171.
  • FIG. 26 is a schematic configuration diagram of an optical communication system configuration in a stage (Day 3) in which 10G-EPON, 25G-EPON, 50G-EPON and 100G-EPON coexist.
  • the optical transceiver 171 (see FIG. 25) is replaced with the optical transceiver 181.
  • the optical transceiver 181 is an optical transceiver of 1 Gbps (wavelength ⁇ 0 ′), 10 Gbps (wavelength ⁇ 0), and 25 Gbps ⁇ 4 wavelengths (wavelengths ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4).
  • a plurality of optical transceivers supporting a single wavelength or a plurality of wavelengths may be employed instead of the optical transceiver 181.
  • FIG. 27 is a diagram for explaining the overall configuration of the optical communication system according to the embodiment of the present invention.
  • a home apparatus is connected to each of the ODNs 311 to 314 via an optical splitter.
  • ODN 311 representatively shows home devices 302a, 302b, 302c, and 302d connected via an optical splitter 315 (4 ⁇ 1 optical splitter).
  • the home-side device 302a is a home-side device compliant with GE-PON (1000BASE-PX10), and includes a WDM filter 81a, an optical transmission unit 82a, and an optical reception unit 83a.
  • the WDM filter 81a is a filter for separating a GE-PON upstream signal (wavelength of 1260-1360 nm) and a GE-PON downstream signal (wavelength of 1480-1500 nm).
  • the optical transmitter 82a includes a semiconductor laser (LD) 84a as a light source.
  • the semiconductor laser 84a is an FP-LD.
  • the optical receiver 83a includes a photodiode (PD) 86a as a light receiving element.
  • PD photodiode
  • the home device 302b is a home device compliant with GE-PON (1000BASE-PX20), and includes a WDM filter 81b, an optical transmitter 82b, and an optical receiver 83b. Similar to the WDM filter 81a, the WDM filter 81b is a filter for separating the GE-PON upstream signal (wavelength of 1260-1360 nm) and the GE-PON downstream signal (wavelength of 1480-1500 nm).
  • the optical transmitter 82b includes a semiconductor laser 84b and an isolator 85b.
  • the semiconductor laser 84b is a DFB-LD.
  • the optical receiver 83b includes a photodiode 86b.
  • the home side device 302c is a home side device compliant with 10G-EPON, and includes a WDM filter 81c, an optical transmission unit 82c, and an optical reception unit 83c.
  • the WDM filter 81c is a filter for separating a 10G-EPON upstream signal (wavelength of 1260-1280 nm) and a 10G-EPON downstream signal (wavelength of 1575-1580 nm).
  • the optical transmitter 82c includes a semiconductor laser 84c and an isolator 85c.
  • the semiconductor laser 84c is a DFB-LD.
  • the light receiving unit 83c includes a photodiode 86c.
  • the home side device 302d is a home side device compliant with 25G-EPON, and includes a WDM filter 81d, an optical transmission unit 82d, and an optical reception unit 83d.
  • the WDM filter 81d is a filter for separating a 25G-EPON upstream signal (wavelength of 1287 to 1290 nm) and a 25G-EPON downstream signal (wavelength of 1357 to 1360 nm).
  • the optical transmitter 82d includes a semiconductor laser 84d and an isolator 85d.
  • the semiconductor laser 84d is a DFB-LD.
  • the optical receiver 83d includes a photodiode 86d.
  • Uplink signals transmitted from each of the home side devices 302 a to 302 d are reflected by the ODN 311.
  • the reflected return light of the upstream signal (attenuated by 20 dB or more) is input to each of the home side devices 302a, 302b, 302c, and 302d.
  • a downlink signal (attenuated by 15 dB to 29 dB in the ODN) having a transmission rate different from the transmission rate of the home device is input to each home device as interference light.
  • the WDM filter 81a can cut the reflected return light from the ODN 311 of the 25G downstream signal and the 25G upstream signal.
  • reflected return light from the ODN 311 of the 25G downstream signal and the 25G upstream signal is incident.
  • the FP-LD transmitter has high resistance to reflected return light. Due to the reflection return light resistance of the semiconductor laser 84a, the influence of the return light to the semiconductor laser 84a can be reduced without an isolator.
  • the WDM filter (WDM filters 81b and 81c) can cut the 25G downstream signal and the reflected return light from the ODN 311 of the 25G upstream signal.
  • the isolator (85b and 85c) can cut the reflected return light from the ODN 311 of the 25G downstream signal and the 25G upstream signal.
  • a 1G downlink signal and a 10G downlink signal are input to the home device 302d. These downstream signals are cut by the WDM filter 81d. Therefore, the influence of the 1G downlink signal and the 10G downlink signal can be avoided on both the reception side and the transmission side of the home side apparatus 302d.
  • the reflected return light from each ODN 311 of the 1G upstream signal and the 10G upstream signal is input to the home-side apparatus 302d.
  • the reflected return light can be cut by the WDM filter 81d.
  • the reflected return light can be cut by the isolator 85d. Therefore, the influence of the reflected return light from the ODN 311 of the 1G upstream signal and the 10G upstream signal can be avoided on both the reception side and the transmission side of the home side apparatus 302d.
  • the station side device 301 includes optical transceivers 151A and 151B.
  • the optical transceiver 151 ⁇ / b> A includes optical transmitters 51 and 56 and an optical receiver 61.
  • the optical transmitter 51 includes a semiconductor laser 51a and an isolator 51b.
  • the optical transmitter 56 includes a semiconductor laser 56a and an isolator 56b.
  • the optical receiver 61 includes a photodiode 61a.
  • the optical transceiver 151B includes an optical transmitter 21 and an optical receiver 32.
  • the optical transmitter 21 includes a semiconductor laser 21a and an isolator 21b.
  • the optical receiver 32 includes a photodiode 32a.
  • the optical receiver 32 is an optical receiver that supports dual rates (1G, 10G). That is, the receivable wavelength band of the optical receiver 31A includes the 1G upstream wavelength band (1260 nm-1360 nm). This wavelength band includes a 10G upstream wavelength band and a 100G upstream wavelength band.
  • DFB-LD is used for all of the semiconductor lasers 51a, 56a, and 21a that are light sources.
  • the reflected light of the upstream signal and the downstream signal from the station side device 301 is reflected to the semiconductor laser (51 a, 56 a, 21 a) by the isolator (51 b, 56 b, 21 b). Input can be prevented.
  • the optical wavelength demultiplexer 42 passes only the 25G upstream signal out of the input optical signal and the input reflected return light to the optical receiver 61. Further, uplink signals from the home side devices 302a to 302d are time-division multiplexed. Therefore, the reception of the 25G upstream signal by the optical receiver 61 can be prevented from being affected by the upstream signal of other transmission rates and the reflected return light.
  • a wavelength filter 71 is provided in the preceding stage of the optical wavelength demultiplexer 44.
  • the reflected light of the 25G downstream signal is cut by the wavelength filter 71.
  • the optical wavelength demultiplexer 44 passes only the upstream optical signal out of the upstream optical signal, the 1G downstream reflected reflected light, and the 10G downstream reflected reflected light input from the ODN side, to the optical receiver 32. Further, uplink signals from the home side devices 302a to 302d are time-division multiplexed. Therefore, the reception of the 1G upstream signal and the 10G upstream signal by the optical receiver 32 can be prevented from being affected by the reflected return light of the 25G upstream signal and the downstream signal from the station side device 301.
  • FIG. 28 is a schematic diagram for explaining another example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON.
  • 100 GE-PON upstream three wavelengths ( ⁇ r2, ⁇ r3, ⁇ r4) for transmission of 25 Gbps are arranged in the wavelength band of 1285-1310 nm, and one wavelength is the same wavelength as the upstream wavelength band of 10G-EPON.
  • the wavelength arrangement shown in FIG. 28 is different from the wavelength arrangement shown in FIG.
  • the embodiment of the present invention can also be applied to the case of the wavelength arrangement shown in FIG.
  • FIG. 29 is a diagram illustrating another example of the migration scenario of the station side device. Referring to FIG. 29, 10G-EPON is not introduced in Day 0. In this respect, the scenario shown in FIG. 29 is different from the scenario shown in FIG.
  • FIG. 30 is a diagram showing a schematic configuration of another example of the station side apparatus according to the embodiment of the present invention.
  • the optical transceiver 131 includes an optical transceiver 151C and an optical transceiver 151D.
  • the optical transceiver 151C is a 25G / 50G / 100G optical transceiver, and includes an optical wavelength multiplexer / demultiplexer 42, an optical transmitter 51, an optical transmitter 56, and an optical receiver 61.
  • the optical transceiver 151D is a 1G optical transceiver, and includes an optical wavelength demultiplexer 44, an optical transmitter 21, and an optical receiver 31.
  • an optical transmitter 56 for transmitting a 10G downstream signal (wavelength ⁇ t0) and an optical transmitter 51 for transmitting a 25G downstream signal (wavelength ⁇ t0) are coupled to the optical wavelength demultiplexer 42.
  • the optical receiver 61 can receive an uplink signal at a dual rate of 25 Gbps and 10 Gbps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

A migration method for a station-side device for an optical communication system, said method including: a step for forming a station-side device so as to be capable of receiving in a reception unit an uplink signal having a wavelength included in a first wavelength band, and a step for forming a station-side device so as to be capable of using at least one wavelength included in a second wavelength band overlapping at least a portion of the first wavelength band to transmit a downlink signal, and capable of receiving an uplink signal by means of a reception unit, and capable of attenuating reflected return light of the downlink signal by means of a wavelength filter at a stage prior to the reception unit.

Description

局側装置のマイグレーション方法、局側装置、局側装置の伝送制御方法および光通信システムStation side device migration method, station side device, station side device transmission control method, and optical communication system
 本発明は、局側装置のマイグレーション方法、局側装置、局側装置の伝送制御方法および光通信システムに関する。本出願は、2017年3月29日に出願した日本特許出願である特願2017-066011号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present invention relates to a station side device migration method, a station side device, a station side device transmission control method, and an optical communication system. This application claims priority based on Japanese Patent Application No. 2017-0666011 which is a Japanese patent application filed on March 29, 2017. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 光通信における伝送容量は飛躍的に高められている。近年では、100Gbpsの伝送容量を有する光通信が提案されている。たとえば、100G-EPON(Ethernet(登録商標) Passive Optical Network)では、速度25.8Gbps(以下では「25Gbps」と表記する)の互いに波長が異なる4本の光信号が送信される。具体的には、これら4本の光信号は波長分割多重(WDM)方式に従って多重化される。波長多重光は、光ファイバを通して伝送される。 The transmission capacity in optical communication has been dramatically increased. In recent years, optical communication having a transmission capacity of 100 Gbps has been proposed. For example, in 100 G-EPON (Ethernet (registered trademark) Passive Optical Network), four optical signals having different wavelengths are transmitted at a speed of 25.8 Gbps (hereinafter referred to as “25 Gbps”). Specifically, these four optical signals are multiplexed according to a wavelength division multiplexing (WDM) system. Wavelength multiplexed light is transmitted through an optical fiber.
 たとえば米国特許出願公開第2016/0149643号明細書(特許文献1)は、各々が10Gbpsの伝送速度を有する4つの光デバイスが集積化された光トランシーバを開示する。光トランシーバは、互いに波長が異なる4本の光信号を多重化して、40Gbpsおよび100Gbpsの伝送速度を等価的に実現する。 For example, US Patent Application Publication No. 2016/0149643 (Patent Document 1) discloses an optical transceiver in which four optical devices each having a transmission rate of 10 Gbps are integrated. The optical transceiver multiplexes four optical signals having different wavelengths from each other, and equivalently realizes transmission speeds of 40 Gbps and 100 Gbps.
米国特許出願公開第2016/0149643号明細書US Patent Application Publication No. 2016/0149643
 本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて局側装置の送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップとを備える。 According to an aspect of the present invention, there is provided a migration method for a station-side device for an optical communication system, wherein an uplink signal having a wavelength included in a first wavelength band for a first transmission rate is received by a reception unit of the station-side device. And configuring at least one of the first wavelength band and the second wavelength band included in the second wavelength band for a transmission rate different from the first transmission rate. The transmission unit of the station side device can transmit the downlink signal using one wavelength, the reception unit can receive the uplink signal, and the reflected return light of the downlink signal can be attenuated by the wavelength filter in front of the reception unit In this way, a step of configuring the station side device is provided.
 本発明の一態様に係る局側装置は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を受信可能に構成された受信部と、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて下り信号を送信可能に構成された送信部と、受信部の前段に設けられて、下り信号の受信部に戻る反射戻り光を減衰させる波長フィルタとを備える。 A station apparatus according to an aspect of the present invention includes a receiving unit configured to be able to receive an uplink signal having a wavelength included in a first wavelength band for a first transmission rate, and a first wavelength band A transmitting unit configured to transmit a downlink signal using at least one wavelength included in the second wavelength band having a transmission rate different from the first transmission rate and overlapping at least part of the first transmission rate; A wavelength filter that is provided in the preceding stage and attenuates the reflected return light that returns to the reception unit of the downstream signal.
 本発明の一態様に係る局側装置の伝送制御方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部により受信するステップと、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いた下り信号を局側装置の送信部により送信するステップと、下り信号の反射戻り光を、受信部の前段に設けられた波長フィルタにより減衰させるステップとを備える。 The station side apparatus transmission control method according to one aspect of the present invention includes a step of receiving an uplink signal having a wavelength included in the first wavelength band for the first transmission rate by the receiving unit of the station side apparatus; A downlink signal using at least one wavelength included in the second wavelength band for a transmission speed different from the first transmission speed and overlapping at least a part of the first wavelength band is transmitted by the transmitter of the station side device A step of transmitting, and a step of attenuating the reflected return light of the downstream signal by a wavelength filter provided in a preceding stage of the receiving unit.
 本発明の一態様に係る光通信システムは、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を送信するように構成された第1の宅側装置と、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を有する下り信号を受信可能に構成された第2の宅側装置と、第1の宅側装置および第2の宅側装置に接続された光通信回線と、光通信回線に接続された局側装置とを備える。局側装置は、上り信号を受信可能に構成された受信部と、下り信号を送信可能に構成された送信部と、受信部の前段に設けられて、下り信号の受信部に戻る反射戻り光を減衰させる波長フィルタとを含む。 An optical communication system according to an aspect of the present invention includes a first home-side device configured to transmit an uplink signal having a wavelength included in a first wavelength band for a first transmission rate, A second signal configured to receive a downlink signal having at least one wavelength included in a second wavelength band that overlaps at least a part of the first wavelength band and is different from the first transmission speed. A home side device, an optical communication line connected to the first home side device and the second home side device, and a station side device connected to the optical communication line. The station-side device includes a receiving unit configured to receive an upstream signal, a transmitting unit configured to transmit a downstream signal, and reflected return light that is provided upstream of the receiving unit and returns to the downstream signal receiving unit. And a wavelength filter for attenuating.
 本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて局側装置の送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップとを備える。 According to an aspect of the present invention, there is provided a migration method for a station-side device for an optical communication system, wherein an uplink signal having a wavelength included in a first wavelength band for a first transmission rate is received by a reception unit of the station-side device. The transmission unit of the station side device using the at least one wavelength included in the second wavelength band for a transmission rate different from the first transmission rate. Configuring the station side device so that the signal can be transmitted, the uplink signal can be received by the receiving unit, and the reflected return light of the downlink signal can be attenuated by the wavelength filter in the preceding stage of the receiving unit; Replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
 本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、送信部を含む光トランシーバを含む局側装置のマイグレーション方法であって、方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、光トランシーバを交換して、下り信号に用いられる波長の数を変更するステップとを備える。 A station side device migration method for an optical communication system according to an aspect of the present invention is a station side device migration method including an optical transceiver including a transmission unit, the method being for a first transmission rate. A step of configuring the station-side device so that an upstream signal having a wavelength included in the first wavelength band can be received by the receiving unit of the station-side device, and a second for a transmission rate different from the first transmission rate. The transmission unit can transmit the downlink signal using at least one wavelength included in the wavelength band of the signal, the reception unit can receive the uplink signal, and the reflected return light of the downlink signal is the wavelength at the preceding stage of the reception unit. Configuring the station side device so that it can be attenuated by the filter, and exchanging the optical transceiver to change the number of wavelengths used for the downlink signal.
 本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、受信部の受信可能波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて局側装置の送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップとを備える。 According to an aspect of the present invention, there is provided a migration method for a station-side device for an optical communication system, wherein an uplink signal having a wavelength included in a first wavelength band for a first transmission rate is received by a reception unit of the station-side device. In the second wavelength band for the transmission speed different from the first transmission speed, overlapping with at least a part of the receivable wavelength band of the receiving unit. The transmitting unit of the station side device can transmit the downlink signal using at least one wavelength, the receiving unit can receive the uplink signal, and the reflected return light of the downlink signal is transmitted by the wavelength filter in the front stage of the receiving unit. Configuring the station-side device to be attenuated, and replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
 本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、送信部を含む光トランシーバを含む局側装置のマイグレーション方法であって、方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、受信部の受信可能波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、光トランシーバを交換して、下り信号に用いられる波長の数を変更するステップとを備える。 A station side device migration method for an optical communication system according to an aspect of the present invention is a station side device migration method including an optical transceiver including a transmission unit, the method being for a first transmission rate. A step of configuring the station-side device so that an upstream signal having a wavelength included in the first wavelength band of the first side can be received by the receiving unit of the station-side device, and overlapping at least a part of the receivable wavelength band of the receiving unit, And the transmission unit can transmit the downlink signal using at least one wavelength included in the second wavelength band for the transmission rate different from the first transmission rate, and the reception unit can receive the uplink signal, In addition, the step of configuring the station side apparatus and the optical transceiver are exchanged so that the reflected return light of the downstream signal can be attenuated by the wavelength filter in the front stage of the receiving unit, and used for the downstream signal. And a step of changing the number of that wavelength.
図1は、一実施形態に係る光通信システムの構成例を示した図である。FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment. 図2は、GE-PON、10G-EPONおよび100G-EPONの波長配置の1つの例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining one example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON. 図3は、10G-EPONと100G-EPONとを共存可能な局側装置の構成例を示した図である。FIG. 3 is a diagram illustrating a configuration example of a station-side apparatus capable of coexisting 10G-EPON and 100G-EPON. 図4は、図3に示された局側装置による上り信号の受信を説明するための模式図である。FIG. 4 is a schematic diagram for explaining reception of an uplink signal by the station side apparatus shown in FIG. 図5は、10G-EPONと100G-EPONとを共存可能な局側装置の他の構成例を示した図である。FIG. 5 is a diagram showing another configuration example of the station side apparatus capable of coexisting 10G-EPON and 100G-EPON. 図6は、図5に示された局側装置による上り信号の受信を説明するための模式図である。FIG. 6 is a schematic diagram for explaining reception of an uplink signal by the station side device shown in FIG. 図7は、GE-PONと10G-EPONと100G-EPONとを共存させるための局側装置の1つの検討例を示した図である。FIG. 7 is a diagram showing one study example of a station side device for coexistence of GE-PON, 10G-EPON, and 100G-EPON. 図8は、GE-PONと10G-EPONと25G,50G,100G-EPONとを共存させるための局側装置の別の検討例を示した図である。FIG. 8 is a diagram showing another examination example of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON. 図9は、GE-PONと10G-EPONと25G,50G,100G-EPONとを共存させるための局側装置のさらに別の検討例を示した図である。FIG. 9 is a diagram showing still another example of examination of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON. 図10は、図7から図9に示した局側装置による上り信号の受信を説明するための図である。FIG. 10 is a diagram for explaining reception of an uplink signal by the station-side apparatus illustrated in FIGS. 7 to 9. 図11は、図7から図9に示された構成における、分岐ロスの増加の課題点を解決するための構成を示した図である。FIG. 11 is a diagram illustrating a configuration for solving the problem of an increase in branch loss in the configuration illustrated in FIGS. 7 to 9. 図12は、図11に示された構成において、ODNごとの上り信号の波長の割り当ての例を示した図である。FIG. 12 is a diagram illustrating an example of the allocation of the wavelength of the uplink signal for each ODN in the configuration illustrated in FIG. 図13は、図11に示された局側装置の構成における課題点を説明するための図である。FIG. 13 is a diagram for explaining problems in the configuration of the station-side device shown in FIG. 図14は、IEEE802.3の規格の1つである1000BASE-PX10の上り波長仕様に従う、波長とRMSスペクトル幅のマスクとの関係を示した図である。FIG. 14 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the upstream wavelength specification of 1000BASE-PX10, which is one of the standards of IEEE802.3. 図15は、1000BASE-PX10用FP-LD(ファブリペロー型半導体レーザ)光源のスペクトルを説明する模式図である。FIG. 15 is a schematic diagram for explaining the spectrum of an FP-LD (Fabry-Perot type semiconductor laser) light source for 1000BASE-PX10. 図16は、IEEE802.3の規格の1つである1000BASE-PX20(20km)上り波長仕様に従う、波長とRMSスペクトル幅のマスクとの関係を示した図である。FIG. 16 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the 1000BASE-PX20 (20 km) upstream wavelength specification, which is one of the standards of IEEE 802.3. 図17は、単一縦モード発振型DFB-LDのスペクトルを説明する模式図である。FIG. 17 is a schematic diagram for explaining the spectrum of a single longitudinal mode oscillation type DFB-LD. 図18は、GE-PON(1000BASE-PX10)に適用される上り送信器の実際の仕様範囲の例を示した図である。FIG. 18 is a diagram illustrating an example of an actual specification range of an uplink transmitter applied to GE-PON (1000BASE-PX10). 図19は、100G下り波長の反射戻り光をカットするための波長フィルタの特性について説明した模式図である。FIG. 19 is a schematic diagram illustrating the characteristics of a wavelength filter for cutting reflected return light having a 100 G downstream wavelength. 図20は、本発明の実施の形態に係る局側装置の1つの例の概略的構成を示した図である。FIG. 20 is a diagram showing a schematic configuration of one example of a station-side apparatus according to an embodiment of the present invention. 図21は、局側装置のマイグレーションのシナリオの一例を説明した図である。FIG. 21 is a diagram for explaining an example of the migration scenario of the station side device. 図22は、100G-EPONが実装された段階(Day3)でのGE-PONの上り波長と100GE-EPONの下り信号の反射戻り光との波長配置の例を説明した模式図である。FIG. 22 is a schematic diagram illustrating an example of a wavelength arrangement of the GE-PON upstream wavelength and the 100GE-EPON downstream reflected reflected light at the stage (Day 3) when 100G-EPON is mounted. 図23は、GE-PONと10G-EPONとが共存する段階(Day0)における、光通信システムの概略構成図である。FIG. 23 is a schematic configuration diagram of an optical communication system in a stage (Day 0) where GE-PON and 10G-EPON coexist. 図24は、GE-PON、10G-EPONおよび25G-EPONが共存する段階(Day1)における、光通信システムの概略構成図である。FIG. 24 is a schematic configuration diagram of an optical communication system in a stage (Day 1) in which GE-PON, 10G-EPON, and 25G-EPON coexist. 図25は、GE-PON、10G-EPON、25G-EPONおよび50G-EPONが共存する段階(Day2)における、光通信システムの概略構成図である。FIG. 25 is a schematic configuration diagram of an optical communication system in a stage (Day 2) in which GE-PON, 10G-EPON, 25G-EPON, and 50G-EPON coexist. 図26は、10G-EPON、25G-EPON、50G-EPONおよび100G-EPONが共存する段階(Day3)における、光通信システム構成の概略構成図である。FIG. 26 is a schematic configuration diagram of an optical communication system configuration in a stage (Day 3) in which 10G-EPON, 25G-EPON, 50G-EPON, and 100G-EPON coexist. 図27は、本発明の実施の形態に係る光通信システムの全体的な構成を説明するための図である。FIG. 27 is a diagram for explaining the overall configuration of the optical communication system according to the embodiment of the present invention. 図28は、GE-PON、10G-EPONおよび100G-EPONの波長配置の別の例を説明するための模式図である。FIG. 28 is a schematic diagram for explaining another example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON. 図29は、局側装置のマイグレーションのシナリオの他の例を説明した図である。FIG. 29 is a diagram illustrating another example of the migration scenario of the station side device. 図30は、本発明の実施の形態に係る局側装置の他の例の概略的構成を示した図である。FIG. 30 is a diagram showing a schematic configuration of another example of the station side apparatus according to the embodiment of the present invention.
[本開示が解決しようとする課題]
 新たな伝送容量の光通信システムを導入する場合、その光通信システムと、既存の伝送容量の光通信システムとの間で波長の配置が問題になる可能性がある。たとえば100G-EPONの上り波長および下り波長の標準化が進められている。一案によれば、100G-EPONの上り波長および下り波長がGE-PONの上りの波長帯に含まれうる。このため単純には、GE-PONと100G-EPONとは共存できない。
[Problems to be solved by this disclosure]
When an optical communication system with a new transmission capacity is introduced, there is a possibility that wavelength arrangement becomes a problem between the optical communication system and an optical communication system with an existing transmission capacity. For example, standardization of the upstream wavelength and downstream wavelength of 100G-EPON is in progress. According to one proposal, the upstream wavelength and downstream wavelength of 100G-EPON can be included in the upstream wavelength band of GE-PON. Therefore, simply, GE-PON and 100G-EPON cannot coexist.
 本開示の目的は、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能にすることである。
[本開示の効果]
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能にすることができる。
An object of the present disclosure is to enable coexistence of optical communications even when wavelength bands overlap between optical communications having different transmission capacities.
[Effects of the present disclosure]
Based on the above, even when wavelength bands overlap between optical communications having different transmission capacities, the optical communications can be made coexistent.
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
 (1)本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて局側装置の送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップとを備える。 (1) According to one aspect of the present invention, a station side apparatus migration method for an optical communication system transmits an uplink signal having a wavelength included in a first wavelength band for a first transmission rate to a station side apparatus. And the step of configuring the station-side device so that it can be received by the receiver, and included in the second wavelength band that overlaps at least a part of the first wavelength band and has a transmission rate different from the first transmission rate The transmission unit of the station side device can transmit the downlink signal using the at least one wavelength that is transmitted, the reception unit can receive the uplink signal, and the reflected light of the downlink signal is the wavelength filter in the previous stage of the reception unit Configuring the station side device so as to be attenuated by.
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能にすることができる。 According to the above, even when wavelength bands overlap between optical communications having different transmission capacities, the optical communications can be made coexistent.
 (2)好ましくは、局側装置の送信部が少なくとも1つの波長を用いて下り信号を送信可能なように局側装置を構成するステップは、送信部が第2の波長帯域内の1つの波長を用いて下り信号を送信可能ように局側装置を構成するステップと、送信部が第2の波長帯域内の2以上の波長を用いて下り信号を送信可能なように局側装置を構成するステップとを含む。 (2) Preferably, the step of configuring the station-side device so that the transmission unit of the station-side device can transmit a downlink signal using at least one wavelength includes the transmission unit having one wavelength within the second wavelength band. The step of configuring the station side device so that the downlink signal can be transmitted using, and the configuration of the station side device so that the transmission unit can transmit the downlink signal using two or more wavelengths within the second wavelength band Steps.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (3)好ましくは、局側装置のマイグレーション方法は、送信部が第2の波長帯域内の予め規定された複数の波長のすべてを多重化して下り信号を送信可能であり、受信部が上り信号を受信可能であり、かつ、反射戻り光が波長フィルタによって減衰可能なように、局側装置を構成するステップをさらに備える。 (3) Preferably, in the migration method of the station side device, the transmission unit can multiplex all of a plurality of predetermined wavelengths in the second wavelength band and transmit the downstream signal, and the reception unit can transmit the upstream signal. And a step of configuring the station side device so that the reflected return light can be attenuated by the wavelength filter.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (4)好ましくは、波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップをさらに備える。 (4) Preferably, the method further includes the step of replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (5)好ましくは、局側装置は、少なくとも送信部を含む光トランシーバを含む。局側装置のマイグレーション方法は、光トランシーバを交換して、下り信号に用いられる波長の数を変更するステップをさらに備える。 (5) Preferably, the station side device includes an optical transceiver including at least a transmission unit. The station side apparatus migration method further includes the step of changing the number of wavelengths used for the downlink signal by exchanging the optical transceiver.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量を増大させることを容易に実現することができる。 According to the above, it is possible to easily increase the transmission capacity of optical communication using the second wavelength band.
 (6)本発明の一態様に係る局側装置は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を受信可能に構成された受信部と、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて下り信号を送信可能に構成された送信部と、受信部の前段に設けられて、下り信号の受信部に戻る反射戻り光を減衰させる波長フィルタとを備える。 (6) A station apparatus according to an aspect of the present invention includes a receiving unit configured to be able to receive an uplink signal having a wavelength included in a first wavelength band for a first transmission rate, A transmission unit configured to transmit a downlink signal using at least one wavelength included in a second wavelength band that overlaps at least a part of the wavelength band and is different from the first transmission rate; A wavelength filter that is provided upstream of the reception unit and attenuates reflected return light that returns to the reception unit of the downstream signal.
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能な局側装置を実現することができる。 According to the above, even when wavelength bands overlap between optical communications having different transmission capacities, a station-side device capable of coexisting those optical communications can be realized.
 (7)好ましくは、送信部は、第2の波長帯域内の1つの波長を用いて下り信号を送信可能ように構成される。 (7) Preferably, the transmission unit is configured to transmit a downlink signal using one wavelength in the second wavelength band.
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能な局側装置を実現することができる。 According to the above, even when wavelength bands overlap between optical communications having different transmission capacities, a station-side device capable of coexisting those optical communications can be realized.
 (8)好ましくは、送信部は、第2の波長帯域内の2以上の波長を用いて下り信号を送信可能ように構成される。 (8) Preferably, the transmission unit is configured to transmit a downlink signal using two or more wavelengths within the second wavelength band.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (9)好ましくは、送信部は、第2の波長帯域内の予め規定された複数の波長のすべてを多重化して下り信号を送信可能なように構成される。 (9) Preferably, the transmission unit is configured to be able to transmit a downlink signal by multiplexing all of a plurality of predetermined wavelengths in the second wavelength band.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (10)本発明の一態様に係る局側装置の伝送制御方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部により受信するステップと、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いた下り信号を局側装置の送信部により送信するステップと、下り信号の反射戻り光を、受信部の前段に設けられた波長フィルタにより減衰させるステップとを備える。 (10) In the transmission control method for the station side apparatus according to the aspect of the present invention, the reception unit of the station side apparatus receives an uplink signal having a wavelength included in the first wavelength band for the first transmission rate. And a downlink signal using at least one wavelength included in the second wavelength band, which overlaps at least a part of the first wavelength band and is different from the first transmission speed, in the second wavelength band. A step of transmitting by the transmission unit, and a step of attenuating the reflected return light of the downstream signal by a wavelength filter provided in a preceding stage of the reception unit.
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能な状態において光信号の伝送を実現することができる。 According to the above, even when wavelength bands overlap between optical communications having different transmission capacities, it is possible to realize transmission of optical signals in a state in which those optical communications can coexist.
 (11)好ましくは、送信するステップは、送信部が第2の波長帯域内の1つの波長を用いて下り信号を送信するステップを含む。 (11) Preferably, the transmitting step includes a step in which the transmitting unit transmits a downlink signal using one wavelength within the second wavelength band.
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能な状態において光信号の伝送を実現することができる。 According to the above, even when wavelength bands overlap between optical communications having different transmission capacities, it is possible to realize transmission of optical signals in a state in which those optical communications can coexist.
 (12)好ましくは、送信するステップは、送信部が第2の波長帯域内の複数の波長を用いて下り信号を送信するステップを含む。 (12) Preferably, the transmitting step includes a step in which the transmitting unit transmits a downlink signal using a plurality of wavelengths within the second wavelength band.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (13)好ましくは、送信するステップは、送信部が第2の波長帯域内の予め規定された複数の波長のすべてを多重化して下り信号を送信するステップを含む。 (13) Preferably, the transmitting step includes a step in which the transmitting unit multiplexes all of a plurality of predetermined wavelengths in the second wavelength band and transmits a downlink signal.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (14)本発明の一態様に係る光通信システムは、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を送信するように構成された第1の宅側装置と、第1の波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を有する下り信号を受信可能に構成された第2の宅側装置と、第1の宅側装置および第2の宅側装置に接続された光通信回線と、光通信回線に接続された局側装置とを備える。局側装置は、上り信号を受信可能に構成された受信部と、下り信号を送信可能に構成された送信部と、受信部の前段に設けられて、下り信号の受信部に戻る反射戻り光を減衰させる波長フィルタとを含む。 (14) An optical communication system according to one aspect of the present invention is configured to transmit an uplink signal having a wavelength included in a first wavelength band for a first transmission rate. And a downlink signal having at least one wavelength included in the second wavelength band for a transmission speed different from the first transmission speed and overlapping at least a part of the first wavelength band. A second home-side device; an optical communication line connected to the first home-side device and the second home-side device; and a station-side device connected to the optical communication line. The station-side device includes a receiving unit configured to receive an upstream signal, a transmitting unit configured to transmit a downstream signal, and reflected return light that is provided upstream of the receiving unit and returns to the downstream signal receiving unit. And a wavelength filter for attenuating.
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能にすることができる。 According to the above, even when wavelength bands overlap between optical communications having different transmission capacities, the optical communications can be made coexistent.
 (15)好ましくは、送信部は、第2の波長帯域内の1つの波長を用いて下り信号を送信可能ように構成される。 (15) Preferably, the transmission unit is configured to transmit a downlink signal using one wavelength within the second wavelength band.
 上記によれば、異なる伝送容量の光通信の間で波長帯が重なる場合にも、それらの光通信を共存可能にすることができる。 According to the above, even when wavelength bands overlap between optical communications having different transmission capacities, the optical communications can be made coexistent.
 (16)好ましくは、送信部は、第2の波長帯域内の2以上の波長を用いて下り信号を送信可能ように構成される。 (16) Preferably, the transmission unit is configured to transmit a downlink signal using two or more wavelengths within the second wavelength band.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (17)好ましくは、送信部は、第2の波長帯域内の予め規定された複数の波長のすべてを多重化して下り信号を送信可能なように構成される。 (17) Preferably, the transmission unit is configured to be able to transmit a downlink signal by multiplexing all of a plurality of predetermined wavelengths in the second wavelength band.
 上記によれば、第2の波長帯域を用いる光通信の伝送容量が増大する場合においても、第1の波長帯域を用いる光通信と第2の波長帯域を用いる光通信とを共存可能にすることができる。 Based on the above, even when the transmission capacity of optical communication using the second wavelength band increases, optical communication using the first wavelength band and optical communication using the second wavelength band can coexist. Can do.
 (18)好ましくは、第1の宅側装置は、上り信号を送信するための光源として、ファブリペロー型半導体レーザを含む。 (18) Preferably, the first home side apparatus includes a Fabry-Perot type semiconductor laser as a light source for transmitting an upstream signal.
 上記によれば、局側装置において、波長フィルタによる上り信号の減衰を小さくしながら、反射戻り光を波長フィルタにより弱めることができる。 According to the above, the reflected light can be weakened by the wavelength filter while reducing the attenuation of the upstream signal by the wavelength filter in the station side device.
 (19)好ましくは、第1の宅側装置は、上り信号を送信するための光源として、単一縦モード分布帰還型半導体レーザを含む。 (19) Preferably, the first home apparatus includes a single longitudinal mode distributed feedback semiconductor laser as a light source for transmitting an upstream signal.
 上記によれば、局側装置において、波長フィルタによる上り信号の減衰を小さくしながら、反射戻り光を波長フィルタにより弱めることができる。 According to the above, the reflected light can be weakened by the wavelength filter while reducing the attenuation of the upstream signal by the wavelength filter in the station side device.
 (20)本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて局側装置の送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップとを備える。 (20) According to one aspect of the present invention, a station side apparatus migration method for an optical communication system transmits an uplink signal having a wavelength included in a first wavelength band for a first transmission rate to a station side apparatus. And a step of configuring the station-side device so that it can be received by the receiver, and transmission by the station-side device using at least one wavelength included in the second wavelength band for a transmission rate different from the first transmission rate. The station side device is configured so that the transmission unit can transmit the downlink signal, the reception unit can receive the uplink signal, and the reflected return light of the downlink signal can be attenuated by the wavelength filter in the preceding stage of the reception unit And replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
 上記によれば、異なる伝送容量の光通信を共存可能にすることができる。
 (21)本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、送信部を含む光トランシーバを含む局側装置のマイグレーション方法であって、方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、光トランシーバを交換して、下り信号に用いられる波長の数を変更するステップとを備える。
Based on the above, it is possible to allow optical communications having different transmission capacities to coexist.
(21) A migration method for a station-side device for an optical communication system according to an aspect of the present invention is a migration method for a station-side device including an optical transceiver including a transmission unit, and the method includes the first transmission. A step of configuring the station-side device so that an upstream signal having a wavelength included in the first wavelength band for speed can be received by the receiving unit of the station-side device, and a transmission rate different from the first transmission rate. The transmission unit can transmit a downstream signal using at least one wavelength included in the second wavelength band of the first signal, the upstream signal can be received by the reception unit, and the reflected return light of the downstream signal is transmitted from the reception unit. It comprises the steps of configuring the station side device so that it can be attenuated by the preceding wavelength filter, and changing the number of wavelengths used for the downlink signal by exchanging the optical transceiver.
 上記によれば、異なる伝送容量の光通信を共存可能にすることができる。
 (22)本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、受信部の受信可能波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて局側装置の送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップとを備える。
Based on the above, it is possible to allow optical communications having different transmission capacities to coexist.
(22) According to one aspect of the present invention, a station side apparatus migration method for an optical communication system transmits an uplink signal having a wavelength included in a first wavelength band for a first transmission rate to a station side apparatus. And a second wavelength band for a transmission rate that overlaps at least a part of the receivable wavelength band of the reception unit and that is different from the first transmission rate. The transmission unit of the station side device can transmit the downlink signal using at least one wavelength included in the signal, the uplink signal can be received by the reception unit, and the reflected return light of the downlink signal is transmitted to the upstream of the reception unit. Configuring the station-side device to be attenuated by the wavelength filter, and replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
 上記によれば、異なる伝送容量の光通信を共存可能にすることができる。
 (23)本発明の一態様に係る、光通信システムのための局側装置のマイグレーション方法は、送信部を含む光トランシーバを含む局側装置のマイグレーション方法であって、方法は、第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部において受信できるように、局側装置を構成するステップと、受信部の受信可能波長帯域の少なくとも一部に重なり、かつ第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて送信部が下り信号を送信可能であり、受信部により上り信号を受信可能であり、かつ、下り信号の反射戻り光が受信部の前段の波長フィルタによって減衰可能なように、局側装置を構成するステップと、光トランシーバを交換して、下り信号に用いられる波長の数を変更するステップとを備える。
Based on the above, it is possible to allow optical communications having different transmission capacities to coexist.
(23) A migration method for a station-side device for an optical communication system according to an aspect of the present invention is a migration method for a station-side device including an optical transceiver including a transmission unit, and the method includes a first transmission. Configuring the station-side device so that an uplink signal having a wavelength included in the first wavelength band for speed can be received by the receiving unit of the station-side device, and at least a part of the receivable wavelength band of the receiving unit The transmission unit can transmit a downlink signal using at least one wavelength included in the second wavelength band for a transmission rate different from the first transmission rate, and the reception unit can receive an uplink signal And the step of configuring the station side device so that the reflected return light of the downstream signal can be attenuated by the wavelength filter in the front stage of the receiving unit, and the optical transceiver And a step of changing the number of wavelengths needed.
 上記によれば、異なる伝送容量の光通信を共存可能にすることができる。
 [本発明の実施形態の詳細]
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
Based on the above, it is possible to allow optical communications having different transmission capacities to coexist.
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 以下において、簡略化のため「Gbps」を単に「G」と表すことがある。たとえば1Gbps、10Gbps、100Gbpsは、以下の説明において、それぞれ「1G」、「10G」、「100G」と表されることがある。 In the following, “Gbps” may be simply expressed as “G” for simplification. For example, 1 Gbps, 10 Gbps, and 100 Gbps may be represented as “1G”, “10G”, and “100G”, respectively, in the following description.
 図1は、一実施形態に係る光通信システムの構成例を示した図である。図1において、PON(Passive Optical Network)システム300は、一実施形態に係る光通信システムである。PONシステム300は、局側装置301と、宅側装置302と、PON回線303と、光スプリッタ304とを備える。「局側装置」および「宅側装置」は「OLT(Optical Line Terminal)」および「ONU(Optical Network Unit)」により実現可能である。 FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to an embodiment. In FIG. 1, a PON (Passive Optical Network) system 300 is an optical communication system according to an embodiment. The PON system 300 includes a station side device 301, a home side device 302, a PON line 303, and an optical splitter 304. The “station-side device” and “home-side device” can be realized by “OLT (Optical Line Terminal)” and “ONU (Optical Network Unit)”.
 局側装置301は、たとえば通信事業者の局舎に設置される。局側装置301は、ホスト基板(図示せず)を搭載する。ホスト基板には、電気信号と光信号とを相互に変換する光トランシーバ(図示せず)が接続される。 The station-side device 301 is installed in, for example, a communication company's office. The station side device 301 mounts a host substrate (not shown). Connected to the host substrate is an optical transceiver (not shown) that converts electrical signals and optical signals into each other.
 宅側装置302は、ユーザ側に設置される。複数の宅側装置302の各々は、PON回線303を介して局側装置301に接続される。 The home device 302 is installed on the user side. Each of the plurality of home side devices 302 is connected to the station side device 301 via the PON line 303.
 PON回線303は、光ファイバにより構成された光通信回線である。PON回線303は、幹線光ファイバ305、および、少なくとも1つの支線光ファイバ306を含む。光スプリッタ304は、幹線光ファイバ305および支線光ファイバ306に接続される。PON回線303には、複数の宅側装置302が接続可能である。 The PON line 303 is an optical communication line composed of an optical fiber. The PON line 303 includes a trunk optical fiber 305 and at least one branch optical fiber 306. The optical splitter 304 is connected to the trunk optical fiber 305 and the branch optical fiber 306. A plurality of home devices 302 can be connected to the PON line 303.
 局側装置301から送信された光信号は、PON回線303を通り、光スプリッタ304によって複数の宅側装置302へと分岐される。一方、各々の宅側装置302から送信された光信号は、光スプリッタ304によって集束されるとともに、PON回線303を通って局側装置301に送られる。光スプリッタ304は、外部からの電源供給を特に必要とすることなく、入力された信号から受動的に信号を分岐または多重する。 The optical signal transmitted from the station side device 301 passes through the PON line 303 and is branched to a plurality of home side devices 302 by the optical splitter 304. On the other hand, the optical signal transmitted from each home apparatus 302 is focused by the optical splitter 304 and sent to the station apparatus 301 through the PON line 303. The optical splitter 304 passively branches or multiplexes the signal from the input signal without requiring any external power supply.
 高速PONシステムとして、上り信号または下り信号に複数波長が割り当てられ、複数波長を波長多重して上り信号または下り信号を構成する波長多重型PONシステムが検討されている。たとえば100Gbps級PONでは、上りおよび下りに、1波長あたりの伝送容量が25Gbpsの信号をそれぞれ4波長割り当て、それらを波長多重する構成とすることができる。このような波長多重型PONシステムの導入シナリオとして、伝送容量の段階的な拡張(アップグレード)が考えられる。 As a high-speed PON system, a wavelength-multiplexed PON system in which a plurality of wavelengths are assigned to an upstream signal or a downstream signal and a plurality of wavelengths are wavelength-multiplexed to form an upstream signal or a downstream signal has been studied. For example, in a 100 Gbps class PON, it is possible to assign a wavelength of 25 Gbps to a signal having a transmission capacity of 25 Gbps per wavelength for upstream and downstream and multiplex them. As an introduction scenario of such a wavelength division multiplexing PON system, a gradual expansion (upgrade) of transmission capacity can be considered.
 たとえば100GE-PONの導入に先立ち、25G-EPONまたは50G-EPONを導入するというシナリオが想定される。以下に説明される図面において、「Day1」、「Day2」、「Day3」等は、伝送容量の拡張の段階の表記である。なお、伝送容量の拡張の段階を示す名称は特に限定されない。たとえば「世代」との用語を用いて、「第1世代」、「第2世代」のように段階を表記してもよい。また、以下の説明において「マイグレーション」とは、伝送容量の拡張のためのシステムの移行を意味する。さらに、伝送容量の小さいシステムが既に普及しているために、伝送容量の小さいシステムと伝送容量の大きいシステムとが共存する可能性がある。以下では、GE-PON、10G-EPONおよび100G-EPONが共存する実施の形態が説明される。 For example, a scenario is assumed in which 25G-EPON or 50G-EPON is introduced prior to the introduction of 100GE-PON. In the drawings described below, “Day 1”, “Day 2”, “Day 3”, and the like are notations at the stage of expansion of transmission capacity. The name indicating the stage of expansion of the transmission capacity is not particularly limited. For example, the term “generation” may be used to indicate a stage such as “first generation” or “second generation”. In the following description, “migration” means system migration for expansion of transmission capacity. Furthermore, since a system with a small transmission capacity is already popular, a system with a small transmission capacity and a system with a large transmission capacity may coexist. In the following, an embodiment in which GE-PON, 10G-EPON and 100G-EPON coexist will be described.
 図2は、GE-PON、10G-EPONおよび100G-EPONの波長配置の1つの例を説明するための模式図である。図2に示されるように、GE-PONでは、上り(US)に割り当てられた波長帯域は1260-1360nm(Reducedの仕様では1290-1330nm)であり、下り(DS)に割り当てられた波長帯域は1480-1500nmである。10G-EPONでは、上りに割り当てられた波長帯域は1260-1280nmであり、下りに割り当てられた波長帯域は1575-1580nmである。 FIG. 2 is a schematic diagram for explaining one example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON. As shown in FIG. 2, in GE-PON, the wavelength band assigned to the upstream (US) is 1260-1360 nm (1290-1330 nm in the Reduced specification), and the wavelength band assigned to the downstream (DS) is 1480-1500 nm. In 10G-EPON, the wavelength band assigned to the upstream is 1260-1280 nm, and the wavelength band assigned to the downstream is 1575-1580 nm.
 100G-EPONに使用される波長について、標準化が進められている。一案では、上りについては、1285-1310nmの波長帯域内に25Gbpsの伝送に各々用いられるλt1~λt4の4波長が配置される。下りについては、1335-1360nmの波長帯域内に、25Gbpsの伝送に各々用いられるλr1~λr4の4波長が配置される。したがって図2に示された波長配置によれば、100G-EPONの下り波長帯域は、GE-PONの上り波長帯域の少なくとも一部(波長の長い側)に重なっている。 Standardization is in progress for wavelengths used in 100G-EPON. In one proposal, for the uplink, four wavelengths λt1 to λt4 used for 25 Gbps transmission are arranged in the wavelength band of 1285 to 1310 nm. On the downstream side, four wavelengths λr1 to λr4 each used for 25 Gbps transmission are arranged in the wavelength band of 1335 to 1360 nm. Therefore, according to the wavelength arrangement shown in FIG. 2, the downstream wavelength band of 100G-EPON overlaps at least a part (the longer wavelength side) of the upstream wavelength band of GE-PON.
 100G-EPONの上りの波長帯域および下りの波長帯域は、10G-EPONの上りの波長帯域および下りの波長帯域のいずれにも重ならない。したがって10G-EPONと100G-EPONとは共存可能である。 The upstream wavelength band and downstream wavelength band of 100G-EPON do not overlap either the upstream wavelength band or downstream wavelength band of 10G-EPON. Therefore, 10G-EPON and 100G-EPON can coexist.
 波長の数を増やすことにより、25G-EPONから50G-EPONおよび100G-EPONへの拡張を実現できる。したがって、以下に説明する図面においては、特に区別する必要のない限り、100GE-PONの前段階のシステムに相当する25G-EPONを実装するための構成を示す。 * Expansion from 25G-EPON to 50G-EPON and 100G-EPON can be realized by increasing the number of wavelengths. Therefore, in the drawings described below, a configuration for mounting 25G-EPON corresponding to a system in the previous stage of 100GE-PON is shown unless it is particularly necessary to distinguish.
 図3は、10G-EPONと100G-EPONとを共存可能な局側装置の構成例を示した図である。図4は、図3に示された局側装置による上り信号の受信を説明するための模式図である。図3および図4を参照して、局側装置301は、光トランシーバ141と、電気処理LSI43とを含む。 FIG. 3 is a diagram showing a configuration example of a station-side device capable of coexisting 10G-EPON and 100G-EPON. FIG. 4 is a schematic diagram for explaining reception of an uplink signal by the station side apparatus shown in FIG. With reference to FIGS. 3 and 4, the station side device 301 includes an optical transceiver 141 and an electric processing LSI 43.
 光トランシーバ141は、10Gbps×1および25Gbps×1のレーンをサポートする。光トランシーバ141は、光波長多重分離器(MUX/DMUX)42と、電気処理LSI43と、光送信部51,56と、光受信部61,66とを含む。 The optical transceiver 141 supports lanes of 10 Gbps × 1 and 25 Gbps × 1. The optical transceiver 141 includes an optical wavelength demultiplexer (MUX / DMUX) 42, an electrical processing LSI 43, optical transmitters 51 and 56, and optical receivers 61 and 66.
 光波長多重分離器42は、PON回線303に接続される。光波長多重分離器42は、複数の異なる波長の光信号をPON回線303上で伝送するために光トランシーバ141に実装される。具体的には、光波長多重分離器42は、波長λt0の光信号と、波長λt1の光信号とを多重化して、PON回線303に波長多重信号を出力する。一方、光波長多重分離器42は、PON回線303から波長多重信号を受けて、その波長多重信号を、2つの光信号(波長λr0,λr1)に分離する。 The optical wavelength demultiplexer 42 is connected to the PON line 303. The optical wavelength multiplexer / demultiplexer 42 is mounted on the optical transceiver 141 in order to transmit a plurality of optical signals having different wavelengths on the PON line 303. Specifically, the optical wavelength demultiplexer 42 multiplexes the optical signal having the wavelength λt0 and the optical signal having the wavelength λt1 and outputs the wavelength multiplexed signal to the PON line 303. On the other hand, the optical wavelength demultiplexer 42 receives the wavelength multiplexed signal from the PON line 303 and separates the wavelength multiplexed signal into two optical signals (wavelengths λr0 and λr1).
 光送信部56(Tx0)は、電気処理LSI43から電気信号を受信して、その電気信号を波長λt0の光信号に変換する。光送信部51(Tx1)は、電気処理LSI43から電気信号を受信して、その電気信号を波長λt1の光信号に変換する。波長λt0の光信号は10G下り信号であり、波長λt1の光信号は25G下り信号である。 The optical transmitter 56 (Tx0) receives an electrical signal from the electrical processing LSI 43 and converts the electrical signal into an optical signal having a wavelength λt0. The optical transmitter 51 (Tx1) receives an electrical signal from the electrical processing LSI 43 and converts the electrical signal into an optical signal having a wavelength λt1. The optical signal with wavelength λt0 is a 10G downstream signal, and the optical signal with wavelength λt1 is a 25G downstream signal.
 光受信部66(Rx0)は、波長λr0の光信号を、光波長多重分離器42を通じてPON回線303から受信して、その光信号を電気信号に変換する。光受信部66は、その電気信号を電気処理LSI43へと出力する。光受信部61(Rx1)は、波長λr1の光信号を、光波長多重分離器42を通じてPON回線303から受信して、その光信号を電気信号に変換する。光受信部61は、その電気信号を電気処理LSI43へと出力する。波長λr0の光信号は、10G下り信号であり、波長λr1の光信号は、25G下り信号である。 The optical receiver 66 (Rx0) receives the optical signal having the wavelength λr0 from the PON line 303 through the optical wavelength demultiplexer 42 and converts the optical signal into an electrical signal. The optical receiving unit 66 outputs the electrical signal to the electrical processing LSI 43. The optical receiver 61 (Rx1) receives the optical signal having the wavelength λr1 from the PON line 303 through the optical wavelength demultiplexer 42 and converts the optical signal into an electrical signal. The optical receiver 61 outputs the electrical signal to the electrical processing LSI 43. The optical signal with wavelength λr0 is a 10G downstream signal, and the optical signal with wavelength λr1 is a 25G downstream signal.
 電気処理LSI43は、光トランシーバ141から出力された電気信号に対して各種の処理を施す。一方、電気処理LSI43は、光トランシーバ141に入力されるべき電気信号を生成する。電気処理LSI43は、マルチレーン分配制御をサポートすることができる。 The electrical processing LSI 43 performs various processes on the electrical signal output from the optical transceiver 141. On the other hand, the electrical processing LSI 43 generates an electrical signal to be input to the optical transceiver 141. The electrical processing LSI 43 can support multilane distribution control.
 一実施形態では、電気処理LSI43は、25Gbpsの4つのレーンによって、100Gbpsの伝送を実現することができる。レーン数を変更することによって、電気処理LSI43は、25Gbps,50Gbps,100Gbpsの伝送速度をサポートすることができる。 In one embodiment, the electrical processing LSI 43 can realize 100 Gbps transmission by four lanes of 25 Gbps. By changing the number of lanes, the electrical processing LSI 43 can support transmission speeds of 25 Gbps, 50 Gbps, and 100 Gbps.
 図4に示されるように、波長λr0の光信号と、波長λr1の光信号とは波長分割多重(WDM)方式により、PON回線303に共存する。光波長多重分離器42(図3を参照)により、波長λr0の光信号と、波長λr1の光信号とは局側装置301において分離可能である。したがって、これらの光信号は時間的に重なりあうことができる。 As shown in FIG. 4, the optical signal having the wavelength λr0 and the optical signal having the wavelength λr1 coexist in the PON line 303 by the wavelength division multiplexing (WDM) method. The optical signal with wavelength λr0 and the optical signal with wavelength λr1 can be separated in the station side device 301 by the optical wavelength demultiplexer 42 (see FIG. 3). Therefore, these optical signals can overlap in time.
 図5は、10G-EPONと100G-EPONとを共存可能な局側装置の他の構成例を示した図である。図6は、図5に示された局側装置による上り信号の受信を説明するための模式図である。図5を参照して、光トランシーバ141Aは、光受信部61,66に代えて光受信部61A(Rx0&Rx1)を含む点において、図3に示された光トランシーバ141と異なる。光受信部61Aはデュアルレートの光受信回路によって実現可能である。光受信部61Aの構成には、既知の種々の構成を適用することができる。 FIG. 5 is a diagram showing another configuration example of the station side apparatus capable of coexisting 10G-EPON and 100G-EPON. FIG. 6 is a schematic diagram for explaining reception of an uplink signal by the station side device shown in FIG. Referring to FIG. 5, optical transceiver 141A is different from optical transceiver 141 shown in FIG. 3 in that optical receiver 141A includes optical receivers 61A (Rx0 & Rx1) instead of optical receivers 61 and 66. The optical receiver 61A can be realized by a dual rate optical receiver circuit. Various known configurations can be applied to the configuration of the optical receiver 61A.
 図6に示されるように、波長λr0の光信号と、波長λr1の光信号とは時分割多重(TDM)により、PON回線303に共存する。光受信部61Aは、時分割多重された波長λr0の光信号および波長λr1の光信号を受信する。光受信部61Aは、受信した信号を、10G上り信号と25G上り信号とに分離する。 As shown in FIG. 6, the optical signal having the wavelength λr0 and the optical signal having the wavelength λr1 coexist in the PON line 303 by time division multiplexing (TDM). The optical receiver 61A receives the optical signal with the wavelength λr0 and the optical signal with the wavelength λr1 that are time-division multiplexed. The optical receiver 61A separates the received signal into a 10G upstream signal and a 25G upstream signal.
 図3および図5に示されるように、10G-EPONと100G-EPONとは、下りに関しては、WDMにより共存可能である。また、10G-EPONと100G-EPONとは、上りに関しては、WDMまたはTDMにより共存可能である。しかしながら、図2に示されるように、100GE-PONの上り用の波長帯域および下り用の波長帯域は、GE-PONの上り用の波長帯域に重なる。このために、GE-PONと100G-EPONとが共存可能な局側装置の構成を検討する必要がある。 As shown in FIG. 3 and FIG. 5, 10G-EPON and 100G-EPON can coexist by WDM regarding downstream. Further, 10G-EPON and 100G-EPON can coexist in WDM or TDM with respect to uplink. However, as shown in FIG. 2, the upstream wavelength band of 100GE-PON and the downstream wavelength band overlap with the upstream wavelength band of GE-PON. For this reason, it is necessary to examine the configuration of the station side device in which GE-PON and 100G-EPON can coexist.
 図7は、GE-PONと10G-EPONと100G-EPONとを共存させるための局側装置の1つの検討例を示した図である。光送受信部131は、図3に示された要素に加えて、光送信部21と、光受信部31と、光波長多重分離器44とを含む。なお、光送受信部131は、10G/25G光トランシーバと、1G光トランシーバとの組み合わせにより実現されてもよく、単一の光トランシーバによって実現されてもよい。 FIG. 7 is a diagram showing one study example of a station side device for coexistence of GE-PON, 10G-EPON, and 100G-EPON. The optical transmission / reception unit 131 includes an optical transmission unit 21, an optical reception unit 31, and an optical wavelength multiplexer / demultiplexer 44 in addition to the elements shown in FIG. 3. The optical transmission / reception unit 131 may be realized by a combination of a 10G / 25G optical transceiver and a 1G optical transceiver, or may be realized by a single optical transceiver.
 光波長多重分離器42と光波長多重分離器44とは光スプリッタ307(1×2光スプリッタ)を介して光ファイバ伝送路310に接続される。光ファイバ伝送路310は、光スプリッタ308(4×1光スプリッタ)を介してODN(Optical Distribution Network)311~314に接続される。 The optical wavelength demultiplexer 42 and the optical wavelength demultiplexer 44 are connected to the optical fiber transmission line 310 via an optical splitter 307 (1 × 2 optical splitter). The optical fiber transmission line 310 is connected to ODNs (Optical Distribution Network) 311 to 314 through an optical splitter 308 (4 × 1 optical splitter).
 光送信部21(Tx0’)は、電気処理LSI43から1G用の下り信号を受けて、その下り信号を、波長λt0’の光信号として送信する。光受信部31(Rx0’)は、光ファイバ伝送路310および光スプリッタ308を介して宅側装置(図示せず)からの上り信号を受信する。波長λt0’の光信号は1G下り信号である。したがって光受信部31の受信可能波長帯域は、GE-PONの上り(US)帯域(1260nm-1360nm)を含む。GE-PONの広範囲な上り波長帯域内に25G,50G,100Gの波長が含まれるので、光送受信部131を、1G用の光トランシーバと、25G/50G/100G用の光トランシーバとで構成する場合には、光スプリッタ307が必須の構成要素となる。 The optical transmission unit 21 (Tx0 ′) receives the 1G downstream signal from the electrical processing LSI 43 and transmits the downstream signal as an optical signal having the wavelength λt0 ′. The optical receiver 31 (Rx0 ′) receives an upstream signal from a home device (not shown) via the optical fiber transmission line 310 and the optical splitter 308. The optical signal having the wavelength λt0 ′ is a 1G downstream signal. Accordingly, the receivable wavelength band of the optical receiver 31 includes the upstream (US) band (1260 nm-1360 nm) of GE-PON. Since 25G, 50G, and 100G wavelengths are included in a wide range of upstream wavelength bands of GE-PON, the optical transceiver 131 is configured with a 1G optical transceiver and a 25G / 50G / 100G optical transceiver. The optical splitter 307 is an essential component.
 図8は、GE-PONと10G-EPONと25G,50G,100G-EPONとを共存させるための局側装置の別の検討例を示した図である。図8において、光送受信部131は、図3に示された構成に加えて、光送信部21と、光受信部31と、光波長多重分離器44とを含む。図7に示された要素と共通する要素については、以後の説明を繰り返さない。 FIG. 8 is a diagram showing another examination example of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON. 8, the optical transceiver 131 includes an optical transmitter 21, an optical receiver 31, and an optical wavelength demultiplexer 44 in addition to the configuration shown in FIG. The following description will not be repeated for elements common to the elements shown in FIG.
 図9は、GE-PONと10G-EPONと25G,50G,100G-EPONとを共存させるための局側装置のさらに別の検討例を示した図である。図9において、光送受信部131は光受信部31に代えて光受信部31Aを含む。光受信部31Aは、デュアルレート(1G,10G)に対応した光受信器である。図9に示された構成では、光送信部56からの10G下り信号(波長λt0)が光波長多重分離器44に送られる。さらに、光受信部66が省略される。 FIG. 9 is a diagram showing still another examination example of a station side device for coexistence of GE-PON, 10G-EPON, 25G, 50G, and 100G-EPON. In FIG. 9, the optical transmission / reception unit 131 includes an optical reception unit 31 </ b> A instead of the optical reception unit 31. The optical receiver 31A is an optical receiver that supports dual rates (1G, 10G). In the configuration shown in FIG. 9, the 10G downstream signal (wavelength λt0) from the optical transmitter 56 is sent to the optical wavelength demultiplexer 44. Further, the optical receiver 66 is omitted.
 図10は、図7から図9に示した局側装置による上り信号の受信を説明するための図である。図10に示すように、第1の例においては、1G上り信号(波長λr0’)、10G上り信号(波長λr0)および25G上り信号(波長λr1)が時分割多重される。各々の宅側装置からの上り信号の送信タイミングは、電気処理LSI43が一括で管理する。具体的には、電気処理LSI43は、各宅側装置に対して上り信号の送信許可を与える。 FIG. 10 is a diagram for explaining the reception of the uplink signal by the station side apparatus shown in FIGS. As shown in FIG. 10, in the first example, a 1G upstream signal (wavelength λr0 '), a 10G upstream signal (wavelength λr0), and a 25G upstream signal (wavelength λr1) are time-division multiplexed. The electrical processing LSI 43 collectively manages the transmission timing of the upstream signal from each home device. Specifically, the electrical processing LSI 43 gives an upstream signal transmission permission to each home-side apparatus.
 10Gの上り波長帯と100G上り波長帯とが異なるので、図10の第2の例に示すように、10G上り信号と25G上り信号とがWDMによって共存してもよい。しかしながら図2に示す波長配置によれば、1Gの上り波長帯は、10G上り波長帯と100G上り波長帯とを含む。したがって、図7から図9に示された光波長多重分離器44は、1G上り信号を10G上り信号あるいは100G上り信号から分離できない。光受信部31は、1Gの上り波長帯の範囲の光を受信可能に構成されている。1Gの上り波長帯は10G上り波長帯と100G上り波長帯とを含むので、光受信部31は、1G上り信号だけでなく、10G上り信号および100G上り信号も受信する。光受信部31の受信電気帯域は1GHz程度であるため、光受信部31は、1G上り信号を正しく再生できるものの、10G上り信号および100G上り信号を正しく再生することができない。したがって電気処理LSI43は、光受信部31から送信された信号のうち、1G上り信号のみを認識することができる。 Since the 10G upstream wavelength band and the 100G upstream wavelength band are different, as shown in the second example of FIG. 10, the 10G upstream signal and the 25G upstream signal may coexist by WDM. However, according to the wavelength arrangement shown in FIG. 2, the 1G upstream wavelength band includes a 10G upstream wavelength band and a 100G upstream wavelength band. Accordingly, the optical wavelength demultiplexer 44 shown in FIGS. 7 to 9 cannot separate the 1G upstream signal from the 10G upstream signal or the 100G upstream signal. The optical receiver 31 is configured to be able to receive light in the 1G upstream wavelength range. Since the 1G upstream wavelength band includes the 10G upstream wavelength band and the 100G upstream wavelength band, the optical receiver 31 receives not only the 1G upstream signal but also the 10G upstream signal and the 100G upstream signal. Since the reception electrical band of the optical receiver 31 is about 1 GHz, the optical receiver 31 can correctly reproduce the 1G upstream signal, but cannot correctly reproduce the 10G upstream signal and the 100G upstream signal. Therefore, the electrical processing LSI 43 can recognize only the 1G upstream signal among the signals transmitted from the optical receiver 31.
 一方、図7から図9に示された構成によれば、光スプリッタ307において約3dBの分岐ロスが発生すると考えられる。この分岐ロスを相殺するためには、光送信部21の高パワー化および光受信部31の高感度化が必要になる。 On the other hand, according to the configuration shown in FIGS. 7 to 9, it is considered that a branching loss of about 3 dB occurs in the optical splitter 307. In order to cancel this branch loss, it is necessary to increase the power of the optical transmitter 21 and to increase the sensitivity of the optical receiver 31.
 図11は、図7から図9に示された構成における、分岐ロスの増加の課題点を解決するための構成を示した図である。図11に示した構成において、ODN上の光スプリッタ309(4×2スプリッタ)に、局側装置301の光波長多重分離器42および光波長多重分離器44が接続される。したがって、図9に示された光スプリッタ307,308は光スプリッタ309へと統合される。なお、光スプリッタ307と同じように、光送受信部131を、1G用の光トランシーバと、25G/50G/100G用の光トランシーバとで構成する場合には、光スプリッタ309が必須の構成要素となる。 FIG. 11 is a diagram showing a configuration for solving the problem of an increase in branch loss in the configuration shown in FIGS. In the configuration shown in FIG. 11, the optical wavelength demultiplexer 42 and the optical wavelength demultiplexer 44 of the station side device 301 are connected to an optical splitter 309 (4 × 2 splitter) on the ODN. Accordingly, the optical splitters 307 and 308 shown in FIG. 9 are integrated into the optical splitter 309. As in the case of the optical splitter 307, when the optical transmission / reception unit 131 includes a 1G optical transceiver and a 25G / 50G / 100G optical transceiver, the optical splitter 309 is an essential component. .
 光スプリッタ309による分岐ロスは、図9に示す光スプリッタ308の分岐ロス(たとえば約6~7dB)と同程度であることが知られている。図11に示された構成によれば光スプリッタ307が存在しないので、光スプリッタ307による分岐ロスが発生しない。 It is known that the branching loss due to the optical splitter 309 is about the same as the branching loss (for example, about 6 to 7 dB) of the optical splitter 308 shown in FIG. According to the configuration shown in FIG. 11, since the optical splitter 307 does not exist, no branching loss due to the optical splitter 307 occurs.
 図12は、図11に示された構成において、ODNごとの上り信号の波長の割り当ての例を示した図である。図12に示されるように、時分割多重された上り信号が伝送されるため、1Gの上り波長帯、10G上り波長帯および100G上り波長帯の間での重なりによる影響を小さくすることができる。 FIG. 12 is a diagram showing an example of the allocation of the wavelength of the uplink signal for each ODN in the configuration shown in FIG. As shown in FIG. 12, since time-division multiplexed uplink signals are transmitted, it is possible to reduce the influence of overlapping between the 1G upstream wavelength band, the 10G upstream wavelength band, and the 100G upstream wavelength band.
 図13は、図11に示された局側装置の構成における課題点を説明するための図である。図13に示されるように、たとえば100G下り信号の反射戻り光が発生する。この反射戻り光の波長は、1G上り信号の波長帯に含まれる。下り信号は連続光であるので、下り信号の反射戻り光は必然的に妨害波になる。 FIG. 13 is a diagram for explaining a problem in the configuration of the station-side device shown in FIG. As shown in FIG. 13, for example, reflected return light of a 100G downstream signal is generated. The wavelength of the reflected return light is included in the wavelength band of the 1G upstream signal. Since the downstream signal is continuous light, the reflected return light of the downstream signal necessarily becomes an interference wave.
 IEEE802.3においては、GE-PON,10G-EPONのODNの反射戻り光(Optical return loss of ODN)のレベルが20dB minであると規定される。1波あたり最大で+10dBmの100G-EPON下り信号(4波長)が、分岐スプリッタのロス(往復で6dB)+ODNでの反射20dBにより、26dB減衰したとすると、-16dBmの4波長の反射戻り光が、局側装置301に戻る。この反射戻り光が、光波長多重分離器44を通過して、光受信部31Aに入る。 IEEE 802.3 stipulates that the level of reflected return light (Optical return loss of ODN) of GE-PON and 10G-EPON is 20 dB min. If a 100G-EPON downstream signal (4 wavelengths) of up to +10 dBm per wave is attenuated by 26 dB due to the loss of the branching splitter (6 dB in the round trip) + 20 dB of reflection at the ODN, the reflected return light of 4 wavelengths of -16 dBm is reflected. Return to the station side device 301. The reflected return light passes through the optical wavelength demultiplexer 44 and enters the optical receiver 31A.
 GE-PONの上り信号を受信するための受信器は、約-30dBm程度の光を正常に受信する必要がある。光受信部31Aは、この仕様を満たさなくてはならない。上記のような光受信部31Aの高い感度を考慮すると、100G下り信号の反射戻り光が光受信部31Aに入力される前に、その強度が十分に小さくなるように、反射戻り光を波長フィルタで減衰させることが必要となる。 A receiver for receiving an upstream signal of GE-PON needs to normally receive light of about -30 dBm. The optical receiver 31A must satisfy this specification. Considering the high sensitivity of the optical receiving unit 31A as described above, the reflected return light is converted into a wavelength filter so that the intensity of the reflected return light of the 100G downstream signal is sufficiently reduced before being input to the optical receiving unit 31A. It is necessary to attenuate with.
 たとえば100G下り信号を30dB程度減衰させるフィルタを、光受信部31Aの前段あるいは光波長多重分離器44の前段に配置する。このフィルタにより、1G受信器(光受信部31A)への100G下り信号の反射戻り光の入力は、1波あたりで-46dBm(=-16-30)となり、4波合計で-40dBmとなる。減衰された反射戻り光は、光受信部31Aで受信される1G上り信号に比べて十分小さい。 For example, a filter for attenuating a 100 G downstream signal by about 30 dB is disposed in the front stage of the optical receiver 31 A or the front stage of the optical wavelength demultiplexer 44. With this filter, the input of the reflected return light of the 100G downstream signal to the 1G receiver (optical receiver 31A) is −46 dBm (= −16−30) per wave, and the total of the 4 waves is −40 dBm. The attenuated reflected return light is sufficiently smaller than the 1G upstream signal received by the optical receiver 31A.
 しかしながら、GE-PONの上り波長(1260-1360nm)と100G-EPONの下り波長(1335-1360nmに4波長存在)とは同じ波長領域にある。100G下り信号の反射戻り光を波長フィルタにより減衰することは可能であるものの、その反射戻り光と1G上り信号とが光波長多重分離器44により分離できないという課題がある。 However, the upstream wavelength of GE-PON (1260-1360 nm) and the downstream wavelength of 100G-EPON (there are four wavelengths at 1335-1360 nm) are in the same wavelength region. Although the reflected return light of the 100 G downstream signal can be attenuated by the wavelength filter, there is a problem that the reflected return light and the 1 G upstream signal cannot be separated by the optical wavelength demultiplexer 44.
 GE-PONに関する標準であるIEEE802.3は、FP-LD(ファブリペロー型半導体レーザ)のような多縦モード発振型光送信器が上り送信器に使用されることを想定する。多縦モード発振型光送信器の場合には、RMS(二乗平均平方根)スペクトル幅が伝送特性に与える影響が大きい。このため、多縦モード発振型光送信器では、送信器の発振波長が光ファイバのゼロ分散波長(約1310nm)から離れるほど狭いRMSスペクトル幅が求められる。 IEEE 802.3, which is a standard related to GE-PON, assumes that a multi-longitudinal mode oscillation type optical transmitter such as FP-LD (Fabry-Perot type semiconductor laser) is used for an upstream transmitter. In the case of a multi-longitudinal mode oscillation type optical transmitter, the RMS (root mean square) spectral width has a great influence on transmission characteristics. For this reason, the multi-longitudinal mode oscillation type optical transmitter is required to have a narrower RMS spectral width as the oscillation wavelength of the transmitter becomes farther from the zero dispersion wavelength (about 1310 nm) of the optical fiber.
 図14は、IEEE802.3の規格の1つである1000BASE-PX10の上り波長仕様に従う、波長とRMSスペクトル幅のマスクとの関係を示した図である。図15は、1000BASE-PX10用FP-LD(ファブリペロー型半導体レーザ)光源のスペクトルを説明する模式図である。 FIG. 14 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the upstream wavelength specification of 1000BASE-PX10, which is one of the standards of IEEE802.3. FIG. 15 is a schematic diagram for explaining the spectrum of an FP-LD (Fabry-Perot type semiconductor laser) light source for 1000BASE-PX10.
 多縦モード発振型光送信器にはFP-LDが一般的に利用される。一般的に、多縦モード発振型光送信器のFP-LDのRMSスペクトル幅は、1.5~3nm程度である。一般に、FP-LDでは、中心波長の温度変化が大きい。図15に示す例では、FP-LDの中心波長の温度変化は、40nm程度である。したがって、FP-LD光源を用いた上り送信器は、図14に示した1000BASE-PX10のマスク規定を満足することができる。 FP-LD is generally used for multi-longitudinal mode oscillation type optical transmitters. Generally, the RMS spectrum width of the FP-LD of the multi-longitudinal mode oscillation type optical transmitter is about 1.5 to 3 nm. In general, the temperature change of the center wavelength is large in the FP-LD. In the example shown in FIG. 15, the temperature change of the center wavelength of the FP-LD is about 40 nm. Therefore, the upstream transmitter using the FP-LD light source can satisfy the mask specification of 1000BASE-PX10 shown in FIG.
 図16は、IEEE802.3の規格の1つである1000BASE-PX20(20km)上り波長仕様に従う、波長とRMSスペクトル幅のマスクとの関係を示した図である。図16に示されるように、1000BASE-PX20では、許容RMSスペクトルの幅が1000BASE-PX10に比べて小さい。FP-LDでは、1000BASE-PX20のマスク規定を満足しにくい。1000BASE-PX20のマスク規定を満足するために、単一縦モード発振型のDFB-LD(分布帰還型半導体レーザ)素子を使った上り送信器が一般的に用いられる。 FIG. 16 is a diagram showing the relationship between the wavelength and the RMS spectral width mask according to the 1000BASE-PX20 (20 km) upstream wavelength specification, which is one of the standards of IEEE 802.3. As shown in FIG. 16, in 1000BASE-PX20, the width of the allowable RMS spectrum is smaller than that in 1000BASE-PX10. In FP-LD, it is difficult to satisfy the mask specification of 1000BASE-PX20. In order to satisfy the mask specification of 1000BASE-PX20, an upstream transmitter using a single longitudinal mode oscillation type DFB-LD (distributed feedback semiconductor laser) element is generally used.
 図17は、単一縦モード発振型DFB-LDのスペクトルを説明する模式図である。図17に示されるように、単一縦モード発振型のDFB-LDは、FP-LDに比べてRMSスペクトル幅が小さく、かつ、中心波長の温度変化が小さいという特徴を有する。たとえば図17に示した例では、DFB-LDの中心波長の温度変化は約7nmである。DFB-LDにより、IEEEでの1260nm-1360nmという仕様に対して十分に狭い、1290nm-1330nmという帯域での上り波長を達成することができる。 FIG. 17 is a schematic diagram for explaining the spectrum of a single longitudinal mode oscillation type DFB-LD. As shown in FIG. 17, the single longitudinal mode oscillation type DFB-LD has the characteristics that the RMS spectral width is smaller than that of the FP-LD and the temperature change of the center wavelength is small. For example, in the example shown in FIG. 17, the temperature change of the center wavelength of the DFB-LD is about 7 nm. With the DFB-LD, it is possible to achieve an upstream wavelength in a band of 1290 nm to 1330 nm, which is sufficiently narrow with respect to the specification of 1260 nm to 1360 nm in IEEE.
 GE-PON上り送信器の光源にFP-LDを用いる場合には、上り波長の仕様が、1260-1360nmの波長帯域として規定される。100G下り信号の波長帯域が1G上り信号の波長帯域の一部(長波長側の帯域)に重なるため、1G上り信号と100G下り信号の反射戻り光とを、光波長多重分離器で分離することは難しい。一方、GE-PON上り送信器の光源にDFB-LDを用いる場合には、上り波長は、1290-1330nmといった、FP-LDでの帯域よりもやや狭い帯域で仕様が規定されるとともに運用されることが多い。GE-PON上り送信器の光源にDFB-LDが用いられ、かつ100G下り信号の波長が1335nm以上に配置されている場合には、1G上り波長の帯域は、100G下り波長の帯域よりも短波長側に位置するものの、FP-LDの場合と異なり、100G下り波長の帯域から離れている。したがって光波長多重分離器によって、100G下り信号の反射戻り光と、1G上り信号とを分離することができる。一方、GE-PON上り送信器の光源にFP-LDが使われる場合には、上り波長の仕様が1260-1360nmの波長帯域内に規定される。上り送信器の光源にFP-LDが使われる場合には、100G-EPON下りの波長の反射戻り光を波長多重分離器で分離することは難しいと考えられる。 When FP-LD is used as the light source of the GE-PON upstream transmitter, the upstream wavelength specification is defined as a wavelength band of 1260-1360 nm. Since the wavelength band of the 100G downstream signal overlaps a part of the wavelength band of the 1G upstream signal (long wavelength side band), the 1G upstream signal and the reflected return light of the 100G downstream signal are separated by the optical wavelength demultiplexer. Is difficult. On the other hand, when DFB-LD is used as the light source of the GE-PON upstream transmitter, the upstream wavelength is defined and operated in a band slightly narrower than the band of FP-LD, such as 1290-1330 nm. There are many cases. When the DFB-LD is used as the light source of the GE-PON upstream transmitter and the wavelength of the 100 G downstream signal is arranged at 1335 nm or more, the 1 G upstream wavelength band is shorter than the 100 G downstream wavelength band. Although located on the side, unlike the case of FP-LD, it is far from the band of the 100G downstream wavelength. Therefore, the reflected return light of the 100G downstream signal and the 1G upstream signal can be separated by the optical wavelength demultiplexer. On the other hand, when FP-LD is used as the light source of the GE-PON upstream transmitter, the upstream wavelength specification is defined within the wavelength band of 1260-1360 nm. When FP-LD is used as the light source of the upstream transmitter, it is considered difficult to separate the reflected return light having the wavelength of 100G-EPON downstream by the wavelength demultiplexer.
 図18は、GE-PON(1000BASE-PX10)に適用される上り送信器の実際の仕様範囲の例を示した図である。IEEE802.3で規定された送信波長マスクを満足するための、中心波長の仕様範囲は1260-1360nmである。これに対して、実際の光トランシーバの中心波長の仕様範囲は、FP-LDのRMSスペクトル幅を考慮して、たとえば1270nm以上、1350nm以下に規定される。 FIG. 18 is a diagram showing an example of an actual specification range of an uplink transmitter applied to GE-PON (1000BASE-PX10). In order to satisfy the transmission wavelength mask defined by IEEE 802.3, the specification range of the center wavelength is 1260-1360 nm. On the other hand, the specification range of the center wavelength of the actual optical transceiver is defined to be, for example, 1270 nm or more and 1350 nm or less in consideration of the RMS spectrum width of the FP-LD.
 FP-LDのRMSスペクトル幅は一般的に2nm-3nm程度である。中心波長が1350nm、かつRMSスペクトル幅が3nmである場合には、光出力パワーの68%が1347-1353nmの範囲に入り、光出力パワーの95%が1343-1356nmの範囲に入る。 The RMS spectrum width of FP-LD is generally about 2 nm to 3 nm. When the center wavelength is 1350 nm and the RMS spectral width is 3 nm, 68% of the optical output power falls within the range of 1347-1353 nm, and 95% of the optical output power falls within the range of 1343-1356 nm.
 図19は、100G下り波長の反射戻り光をカットするための波長フィルタの特性について説明した模式図である。図20は、本発明の実施の形態に係る局側装置の1つの例の概略的構成を示した図である。図19および図20を参照して、局側装置301は、光トランシーバ151A,151Bを含む。光トランシーバ151Aは、25G/50G/100G-EPON用光トランシーバであり、光波長多重分離器42と、光送信部51(Tx1)と、光受信部61(Rx1)とを含む。光トランシーバ151Bは、1G,10G用光トランシーバであり、光波長多重分離器44と、光送信部21(Tx0’)と、光受信部31A(Rx0)とを含む。図13に示した要素と同一の要素について、以後の説明を繰り返さない。 FIG. 19 is a schematic diagram illustrating the characteristics of a wavelength filter for cutting reflected return light having a 100 G downstream wavelength. FIG. 20 is a diagram showing a schematic configuration of one example of a station-side apparatus according to an embodiment of the present invention. Referring to FIG. 19 and FIG. 20, the station side device 301 includes optical transceivers 151A and 151B. The optical transceiver 151A is an optical transceiver for 25G / 50G / 100G-EPON, and includes an optical wavelength multiplexer / demultiplexer 42, an optical transmitter 51 (Tx1), and an optical receiver 61 (Rx1). The optical transceiver 151B is an optical transceiver for 1G and 10G, and includes an optical wavelength demultiplexer 44, an optical transmitter 21 (Tx0 '), and an optical receiver 31A (Rx0). The following description will not be repeated for the same elements as those shown in FIG.
 光波長多重分離器44の前段に、100G下り波長の反射戻り光を減衰させるための波長フィルタ71が配置される。波長フィルタ71は、1353nm以下の上り波長の光および1490nmから1580nmの下り波長の光を通す一方で、1357nm以上かつ1360nm以下の上り波長の光を減衰させるという特性を有する。これにより、GE-PONの上り信号を、ワーストケースでもわずかなフィルタロス(たとえば約0.5dB)で受信しながら、100G下り信号のうちの1波長(λt1)の反射戻り光を波長フィルタ71によりカットすることができる。 A wavelength filter 71 for attenuating reflected return light having a wavelength of 100 G downstream is disposed in front of the optical wavelength demultiplexer 44. The wavelength filter 71 has a characteristic of attenuating light having an upstream wavelength of 1353 nm or less and light having a downstream wavelength of 1490 nm to 1580 nm while attenuating light having an upstream wavelength of 1357 nm or more and 1360 nm or less. Thus, the wavelength filter 71 receives the reflected return light of one wavelength (λt1) of the 100G downstream signal while receiving the upstream signal of the GE-PON with a slight filter loss (for example, about 0.5 dB) even in the worst case. Can be cut.
 上記の通過帯域を有する波長フィルタ71の場合、100G下り信号のうち、波長λt2,λt3,λt4を有する信号の反射戻り光は波長フィルタ71でカットすることができない。したがって、この実施の形態では、局側装置301のマイグレーションに伴い、波長フィルタを交換して、波長λt2,λt3,λt4を有する信号の反射戻り光をカットする。Day0からDay3へと段階が進むにしたがい、100G下り信号に使用される波長の数が増えるので、100G下り信号の波長帯域が広がり、1G上り信号の波長帯域により多く重なる。この実施の形態では、上記波長フィルタ71を、このような場合の100G下り信号の反射戻り光を減衰可能な波長フィルタに交換する。 In the case of the wavelength filter 71 having the above pass band, the reflected light of the signal having the wavelengths λt2, λt3, and λt4 among the 100G downstream signals cannot be cut by the wavelength filter 71. Therefore, in this embodiment, with the migration of the station-side device 301, the wavelength filter is replaced, and the reflected return light of the signal having the wavelengths λt2, λt3, and λt4 is cut. As the steps progress from Day 0 to Day 3, the number of wavelengths used for the 100G downlink signal increases, so the wavelength band of the 100G downlink signal widens and more overlaps with the wavelength band of the 1G uplink signal. In this embodiment, the wavelength filter 71 is replaced with a wavelength filter capable of attenuating the reflected return light of the 100 G downstream signal in such a case.
 図21は、局側装置のマイグレーションのシナリオの一例を説明した図である。図20および図21を参照して、Day0の段階では、GE-PON(1000BASE-PX10)、GE-PON(1000BASE-PX20)、10G-EPONが実装される。すなわちGE-PONと10G-EPONとが共存する。この段階では、100G下り信号の反射戻り光をカットするための波長フィルタを局側装置に設ける必要はない。 FIG. 21 is a diagram for explaining an example of the migration scenario of the station side device. 20 and 21, GE-PON (1000BASE-PX10), GE-PON (1000BASE-PX20), and 10G-EPON are mounted in the Day 0 stage. That is, GE-PON and 10G-EPON coexist. At this stage, it is not necessary to provide a wavelength filter for cutting the reflected return light of the 100G downstream signal in the station side device.
 Day1の段階では、25G-EPONが実装されて、GE-PON、10G-EPONおよび25G-EPONが共存する。50G-EPONおよび100G-EPONは未導入または運用休止の状態である。この段階では、25G下り信号の反射戻り光をカットするために、1353nm以下の上り波長の光および1490nmから1580nmの下り波長の光を通す一方で、1357nm以上かつ1360nm以下の上り波長の光を減衰させる波長フィルタが、局側装置の1G上り信号の受信側(光波長多重分離器44の前段)に設けられる。 At the stage of Day 1, 25G-EPON is mounted, and GE-PON, 10G-EPON and 25G-EPON coexist. 50G-EPON and 100G-EPON have not been installed or are not in operation. At this stage, in order to cut the reflected return light of the 25G downstream signal, the upstream wavelength light of 1353 nm or less and the downstream wavelength light of 1490 nm to 1580 nm are passed, while the upstream wavelength light of 1357 nm to 1360 nm is attenuated. The wavelength filter to be provided is provided on the reception side of the 1G upstream signal of the station side device (the front stage of the optical wavelength demultiplexer 44).
 Day2の段階では、50G-EPONが実装されて、GE-PON、10G-EPON、25G-EPONおよび50G-EPONが共存する。100G-EPONは未導入または運用休止の状態である。なお、図21に示すシナリオでは、Day2の段階において、GE-PON(1000BASE-PX10)に準拠した宅側装置が、10G-EPON用の宅側装置にアップグレードされる。 At the stage of Day 2, 50G-EPON is mounted, and GE-PON, 10G-EPON, 25G-EPON and 50G-EPON coexist. 100G-EPON has not been installed or is in a suspended state. In the scenario shown in FIG. 21, at the stage of Day 2, the home device conforming to GE-PON (1000BASE-PX10) is upgraded to a home device for 10G-EPON.
 50G-EPONでの下り信号の波長配置は1359±1nmおよび1349±1nmである。25G-EPONおよび50G-EPONの下り信号の反射戻り光をカットするために、Day1の段階で用いられた波長フィルタは、カットオフ波長のより短い波長フィルタに交換される。具体的には、1330nm以下の上り波長の光および1490nmから1580nmの下り波長の光を通す一方で、1335nm以上かつ1360nm以下の上り波長の光を減衰させる波長フィルタ71が局側装置の1G上り信号の受信側(光波長多重分離器44の前段)に設けられる。Day2の段階では、Day1の段階に比べて、100G-EPONの下り波長帯域に含まれる、より多くの波長(図21に示す波長λd1およびλd2)を用いて局側装置301の送信部が下り信号を送信する。この実施の形態では、Day1の段階で用いられた波長フィルタを、Day1の段階での25G下り信号(波長λd1の下り信号)の反射戻り光だけでなく、追加された下り信号(波長λd2の下り信号)の反射戻り光を減衰させるために、カットオフ波長のより短い波長フィルタに交換する。 The wavelength arrangement of downstream signals in 50G-EPON is 1359 ± 1 nm and 1349 ± 1 nm. In order to cut the reflected return light of the downstream signals of 25G-EPON and 50G-EPON, the wavelength filter used in the Day 1 stage is replaced with a wavelength filter having a shorter cutoff wavelength. Specifically, a wavelength filter 71 that passes light having an upstream wavelength of 1330 nm or less and light having a downstream wavelength of 1490 nm to 1580 nm while attenuating light having an upstream wavelength of 1335 nm to 1360 nm is a 1G upstream signal of the station side device. Are provided on the receiving side (the front stage of the optical wavelength demultiplexer 44). In the Day2 stage, the transmitter of the station side device 301 uses the more wavelengths (wavelengths λd1 and λd2 shown in FIG. 21) included in the 100G-EPON downstream wavelength band as compared to the Day1 stage. Send. In this embodiment, the wavelength filter used in the Day 1 stage is not only the reflected return light of the 25 G downstream signal (downstream signal of the wavelength λd1) in the Day1 stage, but also the added downstream signal (downstream of the wavelength λd2). In order to attenuate the reflected return light of the signal), it is replaced with a wavelength filter having a shorter cutoff wavelength.
 Day3の段階において、100G-EPONが実装され、GE-PON、10G-EPON、25G-EPON、50G-EPONおよび100G-EPONが共存する。100G-EPONでの下り信号の波長配置は、1359±1nm、1349±1nm、1344±1nm、および1339±1nmである。25G-EPON、50G-EPONおよび100G-EPONの下り信号の反射戻り光をカットするために、1330nm以下の上り波長の光および1490nmから1580nmの下り波長の光を通す一方で、1335nm以上かつ1360nm以下の上り波長の光を減衰させる波長フィルタ71が局側装置の1G上り信号の受信側(光波長多重分離器44の前段)に設けられる。 At the stage of Day 3, 100G-EPON is mounted, and GE-PON, 10G-EPON, 25G-EPON, 50G-EPON and 100G-EPON coexist. The wavelength arrangement of downstream signals in 100G-EPON is 1359 ± 1 nm, 1349 ± 1 nm, 1344 ± 1 nm, and 1339 ± 1 nm. In order to cut the reflected return light of the downstream signals of 25G-EPON, 50G-EPON and 100G-EPON, the light of the upstream wavelength of 1330 nm or less and the light of the downstream wavelength of 1490 nm to 1580 nm are passed, while 1335 nm or more and 1360 nm or less The wavelength filter 71 for attenuating the upstream wavelength light is provided on the receiving side of the 1G upstream signal of the station side device (the front stage of the optical wavelength demultiplexer 44).
 図22は、100G-EPONが実装された段階(Day3)でのGE-PONの上り波長と100GE-EPONの下り信号の反射戻り光との波長配置の例を説明した模式図である。なお、前提として、GE-PONの宅側装置は、1000BASE-PX20に準拠したものであるとする。すなわち、この宅側装置は、上り信号を送出するための光源として単一縦モード発振型のDFB-LD素子を有する。中心波長の温度変化を考慮したとしても、GE-PONの上り波長を、100G-EPONの下り信号の反射戻り光の波長から短波長側に十分に離すことができる。したがって、1330nm以下の波長の光を通し、かつ、1335nm以上の波長の光を減衰させる波長フィルタを用いることができる。その波長フィルタは、GE-PONの上り信号を、少ないロスで通過させることができるだけでなく、100G-EPONの下り信号の反射戻り光をカットすることができる。 FIG. 22 is a schematic diagram illustrating an example of the wavelength arrangement of the GE-PON upstream wavelength and the 100GE-EPON downstream return reflected light at the stage where the 100G-EPON is mounted (Day 3). As a premise, it is assumed that the home device of GE-PON conforms to 1000BASE-PX20. That is, this home-side apparatus has a single longitudinal mode oscillation type DFB-LD element as a light source for transmitting an upstream signal. Even when the temperature change of the center wavelength is taken into consideration, the upstream wavelength of the GE-PON can be sufficiently separated from the wavelength of the reflected return light of the downstream signal of 100 G-EPON to the short wavelength side. Therefore, it is possible to use a wavelength filter that transmits light having a wavelength of 1330 nm or less and attenuates light having a wavelength of 1335 nm or more. The wavelength filter can not only pass the upstream signal of the GE-PON with a small loss, but can cut the reflected return light of the downstream signal of the 100 G-EPON.
 図23は、GE-PONと10G-EPONとが共存する段階(Day0)における、光通信システムの概略構成図である。光トランシーバ151と、電気処理LSI2A,2Bと、上り帯域割当制御LSI3がホスト基板1Aに搭載される。光トランシーバ151は、1Gbps(波長λ0’)および10Gbps(波長λ0)の両方の伝送容量をサポートできる。 FIG. 23 is a schematic configuration diagram of an optical communication system at a stage (Day 0) where GE-PON and 10G-EPON coexist. An optical transceiver 151, electrical processing LSIs 2A and 2B, and an upstream bandwidth allocation control LSI 3 are mounted on the host substrate 1A. The optical transceiver 151 can support both 1 Gbps (wavelength λ 0 ′) and 10 Gbps (wavelength λ 0) transmission capacities.
 電気処理LSI2Aは、10Gbpsの1レーン(10Gbps×1)をサポートする。電気処理LSI2Aは、光トランシーバ151から10Gの上り信号を受けるとともに、光トランシーバ151に10G下り信号を出力する。 The electric processing LSI 2A supports one lane (10 Gbps × 1) of 10 Gbps. The electrical processing LSI 2A receives a 10G upstream signal from the optical transceiver 151 and outputs a 10G downstream signal to the optical transceiver 151.
 電気処理LSI2Bは、1Gbpsの1レーン(1Gbps×1)をサポートする。電気処理LSI2Bは、光トランシーバ151から1G上り信号を受けるとともに、光トランシーバ151に1G下り信号を出力する。 The electric processing LSI 2B supports one lane of 1 Gbps (1 Gbps × 1). The electrical processing LSI 2B receives the 1G upstream signal from the optical transceiver 151 and outputs the 1G downstream signal to the optical transceiver 151.
 電気処理LSI2A,2Bの各々は、ホスト基板1Aの外部と通信可能に構成される。上り帯域割当制御LSI3は、複数の宅側装置302の各々が送信する上り信号の帯域を割り当てるための制御を実行する。 Each of the electrical processing LSIs 2A and 2B is configured to be able to communicate with the outside of the host substrate 1A. The uplink bandwidth allocation control LSI 3 executes control for allocating the bandwidth of the uplink signal transmitted by each of the plurality of home side devices 302.
 図24は、GE-PON、10G-EPONおよび25G-EPONが共存する段階(Day1)における、光通信システムの概略構成図である。Day1の段階において、25Gbpsに対応した宅側装置302が、光通信システムに導入される。ホスト基板1Aは、ホスト基板1Bに交換されてもよい。ホスト基板1Bには、光トランシーバ161と、電気処理LSI2,2A,2Bと、上り帯域割当制御LSI3とが搭載される。 FIG. 24 is a schematic configuration diagram of an optical communication system at a stage (Day 1) in which GE-PON, 10G-EPON, and 25G-EPON coexist. In the Day 1 stage, the home side apparatus 302 corresponding to 25 Gbps is introduced into the optical communication system. The host substrate 1A may be replaced with a host substrate 1B. On the host substrate 1B, an optical transceiver 161, electrical processing LSIs 2, 2A, 2B, and an upstream bandwidth allocation control LSI 3 are mounted.
 光トランシーバ161は、1Gbps(波長λ0’)、10Gbps(波長λ0)および25Gbps(波長λ1)をサポートできる。単一または複数の波長をサポートする複数の光トランシーバを、光トランシーバ161に代えて採用してもよい。 The optical transceiver 161 can support 1 Gbps (wavelength λ0 ′), 10 Gbps (wavelength λ0), and 25 Gbps (wavelength λ1). A plurality of optical transceivers supporting a single wavelength or a plurality of wavelengths may be employed in place of the optical transceiver 161.
 電気処理LSI2は、25Gbpsの4レーン(25Gbps×4)をサポートする。電気処理LSI2は、光トランシーバ141から25Gの上り信号を受けるとともに光トランシーバ141に25Gの下り信号を送信する。 The electric processing LSI 2 supports 4 lanes of 25 Gbps (25 Gbps × 4). The electrical processing LSI 2 receives a 25 G upstream signal from the optical transceiver 141 and transmits a 25 G downstream signal to the optical transceiver 141.
 図25は、GE-PON、10G-EPON、25G-EPONおよび50G-EPONが共存する段階(Day2)における、光通信システムの概略構成図である。50Gbpsに対応した宅側装置302が、光通信システムに導入される。Day2の段階では、光トランシーバ161(図24を参照)が、光トランシーバ171に交換される。光トランシーバ171は、1Gbps(波長λ0’)、10Gbps(波長λ0)および25Gbps×2波長(波長λ1,λ2)の光トランシーバである。単一または複数の波長をサポートする複数の光トランシーバを、光トランシーバ171に代えて採用してもよい。 FIG. 25 is a schematic configuration diagram of an optical communication system at a stage (Day 2) in which GE-PON, 10G-EPON, 25G-EPON and 50G-EPON coexist. A home side device 302 corresponding to 50 Gbps is introduced into the optical communication system. In the Day 2 stage, the optical transceiver 161 (see FIG. 24) is replaced with the optical transceiver 171. The optical transceiver 171 is an optical transceiver of 1 Gbps (wavelength λ0 ′), 10 Gbps (wavelength λ0), and 25 Gbps × 2 wavelengths (wavelengths λ1 and λ2). A plurality of optical transceivers supporting a single wavelength or a plurality of wavelengths may be employed instead of the optical transceiver 171.
 図26は、10G-EPON、25G-EPON、50G-EPONおよび100G-EPONが共存する段階(Day3)における、光通信システム構成の概略構成図である。Day3の段階では、光トランシーバ171(図25を参照)が、光トランシーバ181に交換される。光トランシーバ181は、1Gbps(波長λ0’)、10Gbps(波長λ0)および25Gbps×4波長(波長λ1,λ2,λ3,λ4)の光トランシーバである。単一または複数の波長をサポートする複数の光トランシーバを、光トランシーバ181に代えて採用してもよい。 FIG. 26 is a schematic configuration diagram of an optical communication system configuration in a stage (Day 3) in which 10G-EPON, 25G-EPON, 50G-EPON and 100G-EPON coexist. In the Day 3 stage, the optical transceiver 171 (see FIG. 25) is replaced with the optical transceiver 181. The optical transceiver 181 is an optical transceiver of 1 Gbps (wavelength λ0 ′), 10 Gbps (wavelength λ0), and 25 Gbps × 4 wavelengths (wavelengths λ1, λ2, λ3, λ4). A plurality of optical transceivers supporting a single wavelength or a plurality of wavelengths may be employed instead of the optical transceiver 181.
 図27は、本発明の実施の形態に係る光通信システムの全体的な構成を説明するための図である。ODN311~314の各々に、光スプリッタを介して宅側装置が接続される。図27では、ODN311に、光スプリッタ315(4×1光スプリッタ)を介して接続された宅側装置302a,302b,302c,302dが代表的に示される。 FIG. 27 is a diagram for explaining the overall configuration of the optical communication system according to the embodiment of the present invention. A home apparatus is connected to each of the ODNs 311 to 314 via an optical splitter. In FIG. 27, ODN 311 representatively shows home devices 302a, 302b, 302c, and 302d connected via an optical splitter 315 (4 × 1 optical splitter).
 宅側装置302aは、GE-PON(1000BASE-PX10)に準拠した宅側装置であり、WDMフィルタ81aと、光送信部82aと、光受信部83aとを含む。WDMフィルタ81aは、GE-PONの上り信号(1260-1360nmの波長)およびGE-PONの下り信号(1480-1500nmの波長)を分離するためのフィルタである。 The home-side device 302a is a home-side device compliant with GE-PON (1000BASE-PX10), and includes a WDM filter 81a, an optical transmission unit 82a, and an optical reception unit 83a. The WDM filter 81a is a filter for separating a GE-PON upstream signal (wavelength of 1260-1360 nm) and a GE-PON downstream signal (wavelength of 1480-1500 nm).
 光送信部82aは、光源としての半導体レーザ(LD)84aを含む。半導体レーザ84aは、FP-LDである。光受信部83aは、受光素子としてのフォトダイオード(PD)86aを含む。 The optical transmitter 82a includes a semiconductor laser (LD) 84a as a light source. The semiconductor laser 84a is an FP-LD. The optical receiver 83a includes a photodiode (PD) 86a as a light receiving element.
 宅側装置302bは、GE-PON(1000BASE-PX20)に準拠した宅側装置であり、WDMフィルタ81bと、光送信部82bと、光受信部83bとを含む。WDMフィルタ81aと同じく、WDMフィルタ81bは、GE-PONの上り信号(1260-1360nmの波長)およびGE-PONの下り信号(1480-1500nmの波長)を分離するためのフィルタである。 The home device 302b is a home device compliant with GE-PON (1000BASE-PX20), and includes a WDM filter 81b, an optical transmitter 82b, and an optical receiver 83b. Similar to the WDM filter 81a, the WDM filter 81b is a filter for separating the GE-PON upstream signal (wavelength of 1260-1360 nm) and the GE-PON downstream signal (wavelength of 1480-1500 nm).
 光送信部82bは、半導体レーザ84bと、アイソレータ85bとを含む。半導体レーザ84bは、DFB-LDである。光受信部83bは、フォトダイオード86bを含む。 The optical transmitter 82b includes a semiconductor laser 84b and an isolator 85b. The semiconductor laser 84b is a DFB-LD. The optical receiver 83b includes a photodiode 86b.
 宅側装置302cは、10G-EPONに準拠した宅側装置であり、WDMフィルタ81cと、光送信部82cと、光受信部83cとを含む。WDMフィルタ81cは、10G-EPONの上り信号(1260-1280nmの波長)および10G-EPONの下り信号(1575-1580nmの波長)を分離するためのフィルタである。 The home side device 302c is a home side device compliant with 10G-EPON, and includes a WDM filter 81c, an optical transmission unit 82c, and an optical reception unit 83c. The WDM filter 81c is a filter for separating a 10G-EPON upstream signal (wavelength of 1260-1280 nm) and a 10G-EPON downstream signal (wavelength of 1575-1580 nm).
 光送信部82cは、半導体レーザ84cと、アイソレータ85cとを含む。半導体レーザ84cは、DFB-LDである。光受信部83cは、フォトダイオード86cを含む。 The optical transmitter 82c includes a semiconductor laser 84c and an isolator 85c. The semiconductor laser 84c is a DFB-LD. The light receiving unit 83c includes a photodiode 86c.
 宅側装置302dは、25G-EPONに準拠した宅側装置であり、WDMフィルタ81dと、光送信部82dと、光受信部83dとを含む。WDMフィルタ81dは、25G-EPONの上り信号(1287-1290nmの波長)および25G-EPONの下り信号(1357-1360nmの波長)を分離するためのフィルタである。 The home side device 302d is a home side device compliant with 25G-EPON, and includes a WDM filter 81d, an optical transmission unit 82d, and an optical reception unit 83d. The WDM filter 81d is a filter for separating a 25G-EPON upstream signal (wavelength of 1287 to 1290 nm) and a 25G-EPON downstream signal (wavelength of 1357 to 1360 nm).
 光送信部82dは、半導体レーザ84dと、アイソレータ85dとを含む。半導体レーザ84dは、DFB-LDである。光受信部83dは、フォトダイオード86dを含む。 The optical transmitter 82d includes a semiconductor laser 84d and an isolator 85d. The semiconductor laser 84d is a DFB-LD. The optical receiver 83d includes a photodiode 86d.
 宅側装置302a~302dの各々から送出された上り信号は、ODN311において反射する。その上り信号の反射戻り光(20dB以上減衰される)は、宅側装置302a,302b,302c,302dの各々に入力される。さらに、各宅側装置には、その宅側装置の伝送速度とは異なる伝送速度の下り信号(ODNにおいて15dB~29dB減衰される)が妨害光として入力される。 Uplink signals transmitted from each of the home side devices 302 a to 302 d are reflected by the ODN 311. The reflected return light of the upstream signal (attenuated by 20 dB or more) is input to each of the home side devices 302a, 302b, 302c, and 302d. Further, a downlink signal (attenuated by 15 dB to 29 dB in the ODN) having a transmission rate different from the transmission rate of the home device is input to each home device as interference light.
 宅側装置302aの受信側においては、WDMフィルタ81aにより、25G下り信号、および25G上り信号のODN311からの反射戻り光をカットすることができる。宅側装置302aの送信側においては、25G下り信号、および25G上り信号のODN311からの反射戻り光が入射する。一般に、FP-LD送信器の反射戻り光耐性は強い。半導体レーザ84aの反射戻り光耐性により、アイソレータが無くとも、半導体レーザ84aへの戻り光の影響を小さくすることができる。 On the receiving side of the home side apparatus 302a, the WDM filter 81a can cut the reflected return light from the ODN 311 of the 25G downstream signal and the 25G upstream signal. On the transmission side of the home side apparatus 302a, reflected return light from the ODN 311 of the 25G downstream signal and the 25G upstream signal is incident. Generally, the FP-LD transmitter has high resistance to reflected return light. Due to the reflection return light resistance of the semiconductor laser 84a, the influence of the return light to the semiconductor laser 84a can be reduced without an isolator.
 宅側装置302b,302cの各々の受信側では、WDMフィルタ(WDMフィルタ81b,81c)により、25G下り信号、および25G上り信号のODN311からの反射戻り光をカットすることができる。宅側装置302b,302cの各々の送信側では、アイソレータ(85b,85c)により、25G下り信号、および25G上り信号のODN311からの反射戻り光をカットすることができる。 On the receiving side of each of the home side devices 302b and 302c, the WDM filter (WDM filters 81b and 81c) can cut the 25G downstream signal and the reflected return light from the ODN 311 of the 25G upstream signal. On the transmitting side of each of the home side devices 302b and 302c, the isolator (85b and 85c) can cut the reflected return light from the ODN 311 of the 25G downstream signal and the 25G upstream signal.
 宅側装置302dには、1G下り信号および10G下り信号が入力される。これらの下り信号はWDMフィルタ81dによりカットされる。したがって、宅側装置302dの受信側および送信側の両方において、1G下り信号および10G下り信号の影響を回避することができる。 A 1G downlink signal and a 10G downlink signal are input to the home device 302d. These downstream signals are cut by the WDM filter 81d. Therefore, the influence of the 1G downlink signal and the 10G downlink signal can be avoided on both the reception side and the transmission side of the home side apparatus 302d.
 1G上り信号および10G上り信号の各々のODN311からの反射戻り光が宅側装置302dに入力する。宅側装置302dの受信側では、反射戻り光をWDMフィルタ81dによりカットすることができる。宅側装置302dの送信側では、反射戻り光を、アイソレータ85dによりカットすることができる。したがって、宅側装置302dの受信側および送信側の両方において、1G上り信号および10G上り信号のODN311からの反射戻り光の影響を回避することができる。 The reflected return light from each ODN 311 of the 1G upstream signal and the 10G upstream signal is input to the home-side apparatus 302d. On the receiving side of the home side apparatus 302d, the reflected return light can be cut by the WDM filter 81d. On the transmitting side of the home device 302d, the reflected return light can be cut by the isolator 85d. Therefore, the influence of the reflected return light from the ODN 311 of the 1G upstream signal and the 10G upstream signal can be avoided on both the reception side and the transmission side of the home side apparatus 302d.
 局側装置301は、光トランシーバ151A,151Bを含む。光トランシーバ151Aは、光送信部51,56と光受信部61とを含む。光送信部51は、半導体レーザ51aと、アイソレータ51bとを含む。光送信部56は、半導体レーザ56aと、アイソレータ56bとを含む。光受信部61は、フォトダイオード61aを含む。 The station side device 301 includes optical transceivers 151A and 151B. The optical transceiver 151 </ b> A includes optical transmitters 51 and 56 and an optical receiver 61. The optical transmitter 51 includes a semiconductor laser 51a and an isolator 51b. The optical transmitter 56 includes a semiconductor laser 56a and an isolator 56b. The optical receiver 61 includes a photodiode 61a.
 光トランシーバ151Bは、光送信部21と光受信部32とを含む。光送信部21は、半導体レーザ21aと、アイソレータ21bとを含む。光受信部32は、フォトダイオード32aを含む。光受信部32は、デュアルレート(1G,10G)に対応した光受信器である。すなわち、光受信部31Aの受信可能波長帯域は1G上り波長帯(1260nm-1360nm)を含んでいる。この波長帯には、10G上り波長帯と100G上り波長帯とが含まれる。 The optical transceiver 151B includes an optical transmitter 21 and an optical receiver 32. The optical transmitter 21 includes a semiconductor laser 21a and an isolator 21b. The optical receiver 32 includes a photodiode 32a. The optical receiver 32 is an optical receiver that supports dual rates (1G, 10G). That is, the receivable wavelength band of the optical receiver 31A includes the 1G upstream wavelength band (1260 nm-1360 nm). This wavelength band includes a 10G upstream wavelength band and a 100G upstream wavelength band.
 光源である半導体レーザ51a,56a,21aには、いずれもDFB-LDが用いられる。光送信部51,56,21の各々については、アイソレータ(51b,56b,21b)により、上り信号、および局側装置301からの下り信号の反射戻り光が半導体レーザ(51a,56a,21a)に入力することを防ぐことができる。 DFB-LD is used for all of the semiconductor lasers 51a, 56a, and 21a that are light sources. For each of the optical transmitters 51, 56, and 21, the reflected light of the upstream signal and the downstream signal from the station side device 301 is reflected to the semiconductor laser (51 a, 56 a, 21 a) by the isolator (51 b, 56 b, 21 b). Input can be prevented.
 光波長多重分離器42は、入力された光信号および入力された反射戻り光のうち25G上り信号のみを光受信部61に通す。さらに、宅側装置302a~302dからの上り信号は時分割多重される。したがって光受信部61による25G上り信号の受信が、他の伝送速度の上り信号、および反射戻り光の影響を受けることを防ぐことができる。 The optical wavelength demultiplexer 42 passes only the 25G upstream signal out of the input optical signal and the input reflected return light to the optical receiver 61. Further, uplink signals from the home side devices 302a to 302d are time-division multiplexed. Therefore, the reception of the 25G upstream signal by the optical receiver 61 can be prevented from being affected by the upstream signal of other transmission rates and the reflected return light.
 光波長多重分離器44の前段には波長フィルタ71が設けられる。波長フィルタ71によって、25G下り信号の反射戻り光がカットされる。光波長多重分離器44は、ODN側から入力された上り光信号、1G下り信号の反射戻り光、および10G下り信号の反射戻り光のうち、上り光信号のみを光受信部32に通す。さらに、宅側装置302a~302dからの上り信号は時分割多重される。したがって光受信部32による1G上り信号および10G上り信号の受信が、25G上り信号および、局側装置301からの下り信号の反射戻り光の影響を受けることを防ぐことができる。 A wavelength filter 71 is provided in the preceding stage of the optical wavelength demultiplexer 44. The reflected light of the 25G downstream signal is cut by the wavelength filter 71. The optical wavelength demultiplexer 44 passes only the upstream optical signal out of the upstream optical signal, the 1G downstream reflected reflected light, and the 10G downstream reflected reflected light input from the ODN side, to the optical receiver 32. Further, uplink signals from the home side devices 302a to 302d are time-division multiplexed. Therefore, the reception of the 1G upstream signal and the 10G upstream signal by the optical receiver 32 can be prevented from being affected by the reflected return light of the 25G upstream signal and the downstream signal from the station side device 301.
 本発明の実施の形態は、図2に示された波長配置の場合においてのみ実現可能であるように限定されるものではない。図28は、GE-PON、10G-EPONおよび100G-EPONの波長配置の別の例を説明するための模式図である。100GE-PONの上りについては、1285-1310nmの波長帯域内に25Gbpsの伝送用の3つの波長(λr2,λr3,λr4)が配置され、1つの波長が10G-EPONの上りの波長帯と同じ波長帯に配置される。この点において、図28に示した波長配置は、図2に示した波長配置と相違する。しかしながら、本発明の実施の形態は、図28に示した波長配置の場合においても適用することができる。 The embodiment of the present invention is not limited to be realized only in the case of the wavelength arrangement shown in FIG. FIG. 28 is a schematic diagram for explaining another example of wavelength arrangement of GE-PON, 10G-EPON, and 100G-EPON. For 100 GE-PON upstream, three wavelengths (λr2, λr3, λr4) for transmission of 25 Gbps are arranged in the wavelength band of 1285-1310 nm, and one wavelength is the same wavelength as the upstream wavelength band of 10G-EPON. Arranged in a belt. In this respect, the wavelength arrangement shown in FIG. 28 is different from the wavelength arrangement shown in FIG. However, the embodiment of the present invention can also be applied to the case of the wavelength arrangement shown in FIG.
 また、局側装置のマイグレーションのシナリオは、図21に示されるように限定されるものではない。図29は、局側装置のマイグレーションのシナリオの他の例を説明した図である。図29を参照して、Day0において10G-EPONは導入されていない。この点において、図29に示されたシナリオは図21に示されたシナリオと相違する。 Also, the migration scenario of the station side device is not limited as shown in FIG. FIG. 29 is a diagram illustrating another example of the migration scenario of the station side device. Referring to FIG. 29, 10G-EPON is not introduced in Day 0. In this respect, the scenario shown in FIG. 29 is different from the scenario shown in FIG.
 図29に示されたシナリオの場合には、局側装置は、10G光トランシーバの機能を25G/50G/100G光トランシーバ側に実装することができる。図30は、本発明の実施の形態に係る局側装置の他の例の概略的構成を示した図である。図30に示すように、光送受信部131は、光トランシーバ151Cと光トランシーバ151Dとを含む。光トランシーバ151Cは、25G/50G/100G光トランシーバであり、光波長多重分離器42と、光送信部51と、光送信部56と、光受信部61とを含む。光トランシーバ151Dは、1G光トランシーバであり、光波長多重分離器44と、光送信部21と、光受信部31とを含む。 In the case of the scenario shown in FIG. 29, the station side device can implement the function of the 10G optical transceiver on the 25G / 50G / 100G optical transceiver side. FIG. 30 is a diagram showing a schematic configuration of another example of the station side apparatus according to the embodiment of the present invention. As shown in FIG. 30, the optical transceiver 131 includes an optical transceiver 151C and an optical transceiver 151D. The optical transceiver 151C is a 25G / 50G / 100G optical transceiver, and includes an optical wavelength multiplexer / demultiplexer 42, an optical transmitter 51, an optical transmitter 56, and an optical receiver 61. The optical transceiver 151D is a 1G optical transceiver, and includes an optical wavelength demultiplexer 44, an optical transmitter 21, and an optical receiver 31.
 光トランシーバ151Aにおいて、10G下り信号(波長λt0)を送信するための光送信部56と、25G下り信号(波長λt0)を送信するための光送信部51とが光波長多重分離器42に結合される。光受信部61は、25Gbpsおよび10Gbpsのデュアルレートで上り信号を受信することができる。 In the optical transceiver 151A, an optical transmitter 56 for transmitting a 10G downstream signal (wavelength λt0) and an optical transmitter 51 for transmitting a 25G downstream signal (wavelength λt0) are coupled to the optical wavelength demultiplexer 42. The The optical receiver 61 can receive an uplink signal at a dual rate of 25 Gbps and 10 Gbps.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
1A,1B ホスト基板、2,2A,2B,43 電気処理LSI、3 上り帯域割当制御LSI、21,51,56,82a,82b,82c,82d 光送信部、21a,51a,56a,84a,84b,84c,84d 半導体レーザ、21b,51b,56b,85b,85c,85d アイソレータ、31,31A,32,61,61A,66,83a,83b,83c,83d 光受信部32a,61a,86b,86c,86d フォトダイオード、42,44 光波長多重分離器、71 波長フィルタ、81a,81b,81c,81d WDMフィルタ、131 光送受信部、141,141A,151,151A,151B,151C,151D,161,171,181 光トランシーバ、300 PONシステム、301 局側装置、302,302a,302b,302c,302d 宅側装置、303 PON回線、304,307,308,309,315 光スプリッタ、305 幹線光ファイバ、306 支線光ファイバ、310 光ファイバ伝送路。 1A, 1B Host board, 2, 2A, 2B, 43 Electrical processing LSI, 3 Uplink bandwidth allocation control LSI, 21, 51, 56, 82a, 82b, 82c, 82d Optical transmitter, 21a, 51a, 56a, 84a, 84b , 84c, 84d semiconductor lasers, 21b, 51b, 56b, 85b, 85c, 85d isolators, 31, 31A, 32, 61, 61A, 66, 83a, 83b, 83c, 83d, optical receivers 32a, 61a, 86b, 86c, 86d photodiode, 42, 44 optical wavelength demultiplexer, 71 wavelength filter, 81a, 81b, 81c, 81d WDM filter, 131 optical transceiver, 141, 141A, 151, 151A, 151B, 151C, 151D, 161, 171, 181 Optical transceiver, 300 PON system 301 station side device, 302,302a, 302b, 302c, 302d network unit, 303 PON line, 304,307,308,309,315 optical splitter, 305 trunk optical fiber, 306 branch optical fiber 310 optical fiber transmission line.

Claims (23)

  1.  光通信システムのための局側装置のマイグレーション方法であって、
     第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を前記局側装置の受信部において受信できるように、前記局側装置を構成するステップと、
     前記第1の波長帯域の少なくとも一部に重なり、かつ前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて前記局側装置の送信部が下り信号を送信可能であり、前記受信部により前記上り信号を受信可能であり、かつ、前記下り信号の反射戻り光が前記受信部の前段の波長フィルタによって減衰可能なように、前記局側装置を構成するステップとを備える、局側装置のマイグレーション方法。
    A station side device migration method for an optical communication system, comprising:
    Configuring the station side device such that an upstream signal having a wavelength included in the first wavelength band for the first transmission rate can be received by the receiving unit of the station side device;
    The transmitter of the station side device uses at least one wavelength included in a second wavelength band for a transmission speed different from the first transmission speed and overlapping at least a part of the first wavelength band. The station-side device so that it can transmit a downlink signal, can receive the uplink signal by the receiving unit, and can attenuate the reflected return light of the downlink signal by a wavelength filter in the preceding stage of the receiving unit The station side apparatus migration method comprising the steps of:
  2.  前記局側装置の前記送信部が前記少なくとも1つの波長を用いて前記下り信号を送信可能なように前記局側装置を構成するステップは、
     前記送信部が前記第2の波長帯域内の1つの波長を用いて前記下り信号を送信可能ように前記局側装置を構成するステップと、
     前記送信部が前記第2の波長帯域内の2以上の波長を用いて前記下り信号を送信可能なように前記局側装置を構成するステップとを含む、請求項1に記載の局側装置のマイグレーション方法。
    The step of configuring the station side device so that the transmitting unit of the station side device can transmit the downlink signal using the at least one wavelength,
    Configuring the station-side device so that the transmission unit can transmit the downlink signal using one wavelength within the second wavelength band; and
    The station side apparatus according to claim 1, further comprising a step of configuring the station side apparatus so that the transmission unit can transmit the downlink signal using two or more wavelengths within the second wavelength band. Migration method.
  3.  前記送信部が前記第2の波長帯域内の予め規定された複数の波長のすべてを多重化して前記下り信号を送信可能であり、前記受信部が前記上り信号を受信可能であり、かつ、前記反射戻り光が前記波長フィルタによって減衰可能なように、前記局側装置を構成するステップをさらに備える、請求項1または請求項2に記載の局側装置のマイグレーション方法。 The transmitter is capable of transmitting all of the plurality of predetermined wavelengths within the second wavelength band to transmit the downlink signal, the receiver is capable of receiving the uplink signal, and The station side apparatus migration method according to claim 1, further comprising a step of configuring the station side apparatus so that reflected return light can be attenuated by the wavelength filter.
  4.  前記波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップをさらに備える、請求項1から請求項3のいずれか1項に記載の局側装置のマイグレーション方法。 The station side apparatus migration method according to any one of claims 1 to 3, further comprising a step of replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
  5.  前記局側装置は、少なくとも前記送信部を含む光トランシーバを含み、
     前記光トランシーバを交換して、前記下り信号に用いられる波長の数を変更するステップをさらに備える、請求項1から請求項4のいずれか1項に記載の局側装置のマイグレーション方法。
    The station side device includes an optical transceiver including at least the transmission unit,
    The station side apparatus migration method according to any one of claims 1 to 4, further comprising a step of changing the number of wavelengths used for the downlink signal by exchanging the optical transceiver.
  6.  第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を受信可能に構成された受信部と、
     前記第1の波長帯域の少なくとも一部に重なり、かつ、前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて下り信号を送信可能に構成された送信部と、
     前記受信部の前段に設けられて、前記下り信号の前記受信部に戻る反射戻り光を減衰させる波長フィルタとを備える、局側装置。
    A receiver configured to be able to receive an upstream signal having a wavelength included in the first wavelength band for the first transmission rate;
    A configuration in which a downlink signal can be transmitted using at least one wavelength included in a second wavelength band that overlaps at least a part of the first wavelength band and has a transmission speed different from the first transmission speed. The transmitted part,
    A station-side device, comprising: a wavelength filter that is provided in a preceding stage of the receiving unit and attenuates reflected return light returning to the receiving unit of the downlink signal.
  7.  前記送信部は、前記第2の波長帯域内の1つの波長を用いて前記下り信号を送信可能ように構成される、請求項6に記載の局側装置。 The station-side device according to claim 6, wherein the transmission unit is configured to be able to transmit the downlink signal using one wavelength within the second wavelength band.
  8.  前記送信部は、前記第2の波長帯域内の2以上の波長を用いて前記下り信号を送信可能ように構成される、請求項6または請求項7に記載の局側装置。 The station-side device according to claim 6 or 7, wherein the transmission unit is configured to be able to transmit the downlink signal using two or more wavelengths within the second wavelength band.
  9.  前記送信部は、前記第2の波長帯域内の予め規定された複数の波長のすべてを多重化して前記下り信号を送信可能なように構成される、請求項6から請求項8のいずれか1項に記載の局側装置。 The transmission unit according to any one of claims 6 to 8, wherein the transmission unit is configured to be capable of transmitting the downlink signal by multiplexing all of a plurality of predetermined wavelengths in the second wavelength band. The station side apparatus as described in a term.
  10.  第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を局側装置の受信部により受信するステップと、
     前記第1の波長帯域の少なくとも一部に重なり、かつ前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いた下り信号を前記局側装置の送信部により送信するステップと、
     前記下り信号の反射戻り光を、前記受信部の前段に設けられた波長フィルタにより減衰させるステップとを備える、局側装置の伝送制御方法。
    Receiving an upstream signal having a wavelength included in the first wavelength band for the first transmission rate by the receiving unit of the station side device;
    A downlink signal using at least one wavelength included in a second wavelength band that overlaps at least a part of the first wavelength band and is different from the first transmission speed is transmitted to the station side device. Transmitting by the transmitting unit;
    And a step of attenuating the reflected return light of the downstream signal by a wavelength filter provided in a preceding stage of the receiving unit.
  11.  前記送信するステップは、前記送信部が前記第2の波長帯域内の1つの波長を用いて前記下り信号を送信するステップを含む、請求項10に記載の局側装置の伝送制御方法。 11. The transmission control method for a station-side device according to claim 10, wherein the transmitting step includes a step in which the transmitting unit transmits the downlink signal using one wavelength within the second wavelength band.
  12.  前記送信するステップは、前記送信部が前記第2の波長帯域内の複数の波長を用いて前記下り信号を送信するステップを含む、請求項10または請求項11に記載の局側装置の伝送制御方法。 The transmission control of the station side device according to claim 10 or 11, wherein the transmitting step includes a step in which the transmitting unit transmits the downlink signal using a plurality of wavelengths within the second wavelength band. Method.
  13.  前記送信するステップは、前記送信部が前記第2の波長帯域内の予め規定された複数の波長のすべてを多重化して前記下り信号を送信するステップを含む、請求項10から請求項12のいずれか1項に記載の局側装置の伝送制御方法。 The transmission step includes a step in which the transmission unit multiplexes all of a plurality of predefined wavelengths in the second wavelength band and transmits the downlink signal. The station side apparatus transmission control method according to claim 1.
  14.  第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を送信するように構成された第1の宅側装置と、
     前記第1の波長帯域の少なくとも一部に重なり、かつ前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を有する下り信号を受信可能に構成された第2の宅側装置と、
     前記第1の宅側装置および前記第2の宅側装置に接続された光通信回線と、
     前記光通信回線に接続された局側装置とを備え、前記局側装置は、
     前記上り信号を受信可能に構成された受信部と、
     前記下り信号を送信可能に構成された送信部と、
     前記受信部の前段に設けられて、前記下り信号の前記受信部に戻る反射戻り光を減衰させる波長フィルタとを含む、光通信システム。
    A first premises device configured to transmit an upstream signal having a wavelength included in a first wavelength band for a first transmission rate;
    A downlink signal having at least one wavelength included in a second wavelength band that overlaps at least a part of the first wavelength band and is different from the first transmission speed is configured to be received. A second home device;
    An optical communication line connected to the first home-side device and the second home-side device;
    A station side device connected to the optical communication line, the station side device,
    A receiving unit configured to receive the uplink signal;
    A transmission unit configured to transmit the downlink signal;
    An optical communication system, comprising: a wavelength filter that is provided in a preceding stage of the receiving unit and attenuates reflected return light of the downlink signal that returns to the receiving unit.
  15.  前記送信部は、前記第2の波長帯域内の1つの波長を用いて前記下り信号を送信可能ように構成される、請求項14に記載の光通信システム。 The optical communication system according to claim 14, wherein the transmission unit is configured to be able to transmit the downlink signal using one wavelength within the second wavelength band.
  16.  前記送信部は、前記第2の波長帯域内の2以上の波長を用いて前記下り信号を送信可能ように構成される、請求項14または請求項15に記載の光通信システム。 The optical communication system according to claim 14 or 15, wherein the transmission unit is configured to be able to transmit the downlink signal using two or more wavelengths within the second wavelength band.
  17.  前記送信部は、前記第2の波長帯域内の予め規定された複数の波長のすべてを多重化して前記下り信号を送信可能なように構成される、請求項14から請求項16のいずれか1項に記載の光通信システム。 The transmission unit according to any one of claims 14 to 16, wherein the transmission unit is configured to be capable of transmitting the downlink signal by multiplexing all of a plurality of predetermined wavelengths in the second wavelength band. The optical communication system according to item.
  18.  前記第1の宅側装置は、前記上り信号を送信するための光源として、ファブリペロー型半導体レーザを含む、請求項14から請求項17のいずれか1項に記載の光通信システム。 The optical communication system according to any one of claims 14 to 17, wherein the first home device includes a Fabry-Perot semiconductor laser as a light source for transmitting the uplink signal.
  19.  前記第1の宅側装置は、前記上り信号を送信するための光源として、単一縦モード分布帰還型半導体レーザを含む、請求項14から請求項17のいずれか1項に記載の光通信システム。 The optical communication system according to any one of claims 14 to 17, wherein the first home device includes a single longitudinal mode distributed feedback semiconductor laser as a light source for transmitting the uplink signal. .
  20.  光通信システムのための局側装置のマイグレーション方法であって、
     第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を前記局側装置の受信部において受信できるように、前記局側装置を構成するステップと、
     前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて前記局側装置の送信部が下り信号を送信可能であり、前記受信部により前記上り信号を受信可能であり、かつ、前記下り信号の反射戻り光が前記受信部の前段の波長フィルタによって減衰可能なように、前記局側装置を構成するステップと、
     前記波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップとを備える、局側装置のマイグレーション方法。
    A station side device migration method for an optical communication system, comprising:
    Configuring the station side device such that an upstream signal having a wavelength included in the first wavelength band for the first transmission rate can be received by the receiving unit of the station side device;
    The transmission unit of the station side device can transmit a downlink signal using at least one wavelength included in a second wavelength band for a transmission rate different from the first transmission rate, and the reception unit can transmit the uplink signal Configuring the station-side device so that a signal can be received, and the reflected return light of the downlink signal can be attenuated by a wavelength filter in the front stage of the receiving unit;
    Replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
  21.  光通信システムのための局側装置のマイグレーション方法であって、前記局側装置は、送信部を含む光トランシーバを含み、
     第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を前記局側装置の受信部において受信できるように、前記局側装置を構成するステップと、
     前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて前記送信部が下り信号を送信可能であり、前記受信部により前記上り信号を受信可能であり、かつ、前記下り信号の反射戻り光が前記受信部の前段の波長フィルタによって減衰可能なように、前記局側装置を構成するステップと、
     前記光トランシーバを交換して、前記下り信号に用いられる波長の数を変更するステップとを備える、局側装置のマイグレーション方法。
    A station side device migration method for an optical communication system, wherein the station side device includes an optical transceiver including a transmitter,
    Configuring the station side device such that an upstream signal having a wavelength included in the first wavelength band for the first transmission rate can be received by the receiving unit of the station side device;
    The transmission unit can transmit a downlink signal using at least one wavelength included in a second wavelength band for a transmission rate different from the first transmission rate, and the reception unit can receive the uplink signal And configuring the station side device so that the reflected return light of the downlink signal can be attenuated by the wavelength filter in the front stage of the receiving unit, and
    And exchanging the optical transceiver to change the number of wavelengths used for the downlink signal.
  22.  光通信システムのための局側装置のマイグレーション方法であって、
     第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を前記局側装置の受信部において受信できるように、前記局側装置を構成するステップと、
     前記受信部の受信可能波長帯域の少なくとも一部に重なり、かつ前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて前記局側装置の送信部が下り信号を送信可能であり、前記受信部により前記上り信号を受信可能であり、かつ、前記下り信号の反射戻り光が前記受信部の前段の波長フィルタによって減衰可能なように、前記局側装置を構成するステップと、
     前記波長フィルタを、より短いカットオフ波長を有する波長フィルタに交換するステップとを備える、局側装置のマイグレーション方法。
    A station side device migration method for an optical communication system, comprising:
    Configuring the station side device such that an upstream signal having a wavelength included in the first wavelength band for the first transmission rate can be received by the receiving unit of the station side device;
    Transmission of the station side device using at least one wavelength that overlaps at least a part of the receivable wavelength band of the receiving unit and is included in a second wavelength band for a transmission speed different from the first transmission speed The station can transmit a downlink signal, the reception unit can receive the uplink signal, and the reflected return light of the downlink signal can be attenuated by a wavelength filter in front of the reception unit. Configuring a side device;
    Replacing the wavelength filter with a wavelength filter having a shorter cutoff wavelength.
  23.  光通信システムのための局側装置のマイグレーション方法であって、前記局側装置は、送信部を含む光トランシーバを含み、
     第1の伝送速度のための第1の波長帯域に含まれる波長を持つ上り信号を前記局側装置の受信部において受信できるように、前記局側装置を構成するステップと、
     前記受信部の受信可能波長帯域の少なくとも一部に重なり、かつ前記第1の伝送速度と異なる伝送速度のための第2の波長帯域に含まれる少なくとも1つの波長を用いて前記送信部が下り信号を送信可能であり、前記受信部により前記上り信号を受信可能であり、かつ、前記下り信号の反射戻り光が前記受信部の前段の波長フィルタによって減衰可能なように、前記局側装置を構成するステップと、
     前記光トランシーバを交換して、前記下り信号に用いられる波長の数を変更するステップとを備える、局側装置のマイグレーション方法。
    A station side device migration method for an optical communication system, wherein the station side device includes an optical transceiver including a transmitter,
    Configuring the station side device such that an upstream signal having a wavelength included in the first wavelength band for the first transmission rate can be received by the receiving unit of the station side device;
    The transmission unit transmits a downlink signal using at least one wavelength that overlaps at least a part of the receivable wavelength band of the reception unit and is included in a second wavelength band for a transmission rate different from the first transmission rate. The station-side device is configured such that the uplink signal can be received by the receiver, and the reflected return light of the downlink signal can be attenuated by the wavelength filter in the preceding stage of the receiver And steps to
    And exchanging the optical transceiver to change the number of wavelengths used for the downlink signal.
PCT/JP2017/032852 2017-03-29 2017-09-12 Station-side device migration method, station-side device, station-side device transfer control method, and optical communication system WO2018179497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019508519A JP6900997B2 (en) 2017-03-29 2017-09-12 Station-side device migration method, station-side device, station-side device transmission control method, and optical communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066011 2017-03-29
JP2017-066011 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018179497A1 true WO2018179497A1 (en) 2018-10-04

Family

ID=63674677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032852 WO2018179497A1 (en) 2017-03-29 2017-09-12 Station-side device migration method, station-side device, station-side device transfer control method, and optical communication system

Country Status (2)

Country Link
JP (1) JP6900997B2 (en)
WO (1) WO2018179497A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181588A1 (en) * 2020-03-12 2021-09-16 日本電信電話株式会社 Diagnostic device and diagnostic method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147024A (en) * 2010-01-15 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> Station-side device, subscriber-side device, optical communication system, and optical communication method
US20120039605A1 (en) * 2009-04-21 2012-02-16 Zte Corporation Wavelength Division Multiplexer Compatible with Two Types of Passive Optical Networks
JP2013504225A (en) * 2009-09-04 2013-02-04 中興通訊股▲ふん▼有限公司 Wavelength division multiplexing filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039605A1 (en) * 2009-04-21 2012-02-16 Zte Corporation Wavelength Division Multiplexer Compatible with Two Types of Passive Optical Networks
JP2013504225A (en) * 2009-09-04 2013-02-04 中興通訊股▲ふん▼有限公司 Wavelength division multiplexing filter
JP2011147024A (en) * 2010-01-15 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> Station-side device, subscriber-side device, optical communication system, and optical communication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181588A1 (en) * 2020-03-12 2021-09-16 日本電信電話株式会社 Diagnostic device and diagnostic method
JP7452626B2 (en) 2020-03-12 2024-03-19 日本電信電話株式会社 Diagnostic equipment and method

Also Published As

Publication number Publication date
JPWO2018179497A1 (en) 2020-02-06
JP6900997B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
US8417117B2 (en) DWDM and CWDM hybrid PON system and method
EP2819325B1 (en) Distributed base-station signal transmission system and communication system
JP5894298B2 (en) Discovery method, optical communication method, and optical communication system
US9124368B2 (en) Transceiver for use in fibre network
US20070286605A1 (en) Tunable bidirectional multiplexer/demultiplexer for optical transmission system
JP2003324393A (en) Bi-directional optical transmission system, and master and slave stations used therefor
US9432122B2 (en) Optical networking unit (ONU) packaging
CN102106103A (en) Optical network
KR20100092853A (en) A transmission device of low-noise light signals having a low-noise multi-wavelength light source, a transmission device of broadcast signals using a low-noise multi-wavelength light source, and an optical access network having the same
Taguchi et al. 100-ns λ-selective burst-mode transceiver for 40-km reach symmetric 40-Gbit/s WDM/TDM-PON
US20100129077A1 (en) Techniques for implementing a dual array waveguide filter for a wavelength division multiplexed passive optical network
WO2010009533A1 (en) Wdm pon rf/video broadcast overlay
KR20140076112A (en) Optical line terminal for monitoring and controlling of upstream/downstream optical signals
CN103314542B (en) For receiving light input signal and the method and apparatus transmitting optical output signal
US20170332159A1 (en) Upgrading PON Systems Using A Multi-Cycle Field AWG
Cheng Flexible TWDM PONs
KR100960110B1 (en) Optical Backhaul Network for Wireless Broadband Service
CN106160840B (en) Wave division multiplexing passive optical network optical fiber link distributed protection device and its guard method
JP6900997B2 (en) Station-side device migration method, station-side device, station-side device transmission control method, and optical communication system
WO2014180253A1 (en) Optical component and method supporting existence of two kinds of passive optical networks
US10419122B2 (en) Multiplexer/demultiplexer and passive optical network system
Asaka et al. High output power OLT/ONU transceivers for 40 Gbit/s symmetric-rate NG-PON2 systems
JP3615476B2 (en) Optical access system, access node device, and user node device
JP3808464B2 (en) Optical network unit, wavelength splitter, and optical wavelength division multiplexing access system
KR20130101961A (en) Optical line terminal for controlling and monitoring optical power and wavelength of downstream wdm optical signals in bidirectional wavelength-division-multiplexing optical network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903062

Country of ref document: EP

Kind code of ref document: A1