WO2018179455A1 - Polymer having reactive silicon-containing group and production method therefor - Google Patents

Polymer having reactive silicon-containing group and production method therefor Download PDF

Info

Publication number
WO2018179455A1
WO2018179455A1 PCT/JP2017/018337 JP2017018337W WO2018179455A1 WO 2018179455 A1 WO2018179455 A1 WO 2018179455A1 JP 2017018337 W JP2017018337 W JP 2017018337W WO 2018179455 A1 WO2018179455 A1 WO 2018179455A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
carbon atoms
unsubstituted
reactive silicon
Prior art date
Application number
PCT/JP2017/018337
Other languages
French (fr)
Japanese (ja)
Inventor
山田 哲郎
宗直 廣神
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2018179455A1 publication Critical patent/WO2018179455A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups

Definitions

  • the present invention relates to a polymer having a reactive silicon-containing group and a method for producing the same, and more specifically, as a silicon group that can be crosslinked by forming a siloxane bond (hereinafter also referred to as “reactive silicon group”).
  • the present invention relates to a polymer containing an alkoxy group bonded to a silicon atom at a molecular chain end and a method for producing the same.
  • reactive silicon groups especially alkoxysilyl groups
  • polymers having reactive silicon groups are cured by crosslinking and curing in the presence of moisture or moisture.
  • these polymers those whose main chain is a polyoxyalkylene polymer are generally known as modified silicones, and those whose main chain is a silicon-containing compound are generally known as end-capped silicones. It has been.
  • a curable composition using a polymer having a reactive silicon group as typified by these is liquid at room temperature and has a characteristic of becoming a rubber elastic body upon curing. It is widely used for coating agents, adhesives, architectural sealants, etc.
  • the room temperature curable compositions disclosed in Patent Documents 1 and 2 have low reactivity with moisture in the air and insufficient curability, so that sufficient curability at room temperature is ensured.
  • a catalyst such as an organotin compound
  • the organotin compound is concerned about toxicity to the human body and the environment. In recent years, environmental regulations have become strict, and its use is avoided.
  • Patent Document 3 discloses an alkoxysilyl end-capped polymer obtained by reacting a polymer having a hydroxyl group at a terminal with isocyanate silane or the like in order to improve reactivity.
  • the compound of Patent Document 3 although the reactivity is improved to some extent, when it does not contain a curing catalyst, its curability is very slow, and when used as a room temperature curable composition, the curability is low. Not only is it insufficient, but when we actually confirmed the curability when using an amine compound as a curing catalyst, the curability is still not satisfactory and there is room for improvement in terms of curability. .
  • the present invention has been made in view of the above circumstances, and in both cases where no curing catalyst is contained and when an amine compound is used as a curing catalyst, fast curability is good and the reactivity is excellent in safety. It is an object of the present invention to provide a polymer having a silicon-containing group and a method for producing the same.
  • the present inventors have determined that a predetermined polymer containing a specific tertiary amino-methylene-silyl bond as a linking group between the alkoxysilyl group at the molecular chain terminal and the main chain structure And a method for producing the same, and a composition containing this polymer is suitable as a curable composition for forming a material such as a coating agent, an adhesive, and a sealant, in order to give a cured product excellent in rapid curing.
  • the headline and the present invention were completed.
  • the present invention Polyurethane, polyurea, polyoxyalkylene, polycarbonate, polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, poly Ether sulfone, polyether ether ketone, polysiloxane, polysiloxane-polyurethane copolymer and polysiloxane-polyurea copolymer, and a main chain skeleton selected from these copolymers, and in one molecule
  • a polymer having one reactive silicon-containing group represented by the following structural formula (2); Wherein R 1 , R 2 , R 3 and m represent the same meaning as described above, R 5 represents the same meaning as described above independently of each other, and R 6 represents the same meaning as described above independently of each other.
  • A represents polyurethane, polyurea, polyoxyalkylene, polycarbonate, polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, Polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polysiloxane, polysiloxane-polyurethane copolymer and polysiloxane-polyurea copolymer, and These copolymers Represents a divalent linking group having a structure selected et.) 3.
  • the polymer having 1 or 2 reactive silicon-containing groups represented by the following formula (3): (Wherein R 6 and X each independently represent the same meaning as described above, and Y each independently represents an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon, Represents an aralkylene group having 7 to 20 atoms or an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, n represents an integer of 1 or more, and Z represents a polyurethane, polyurea, polyoxyalkylene, polycarbonate , Polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, poly Siloxane, Polys
  • a polymer whose molecular chain ends are blocked with an isocyanate group or an isothiocyanate group, and a compound of formula (5) (In the formula, R 1 , R 2 , R 3 , R 5 and m have the same meaning as described above.)
  • A) a curable composition comprising a polymer having a reactive silicon-containing group according to any one of 1 to 5, 10. Further, (B) 9 curable composition containing a curing catalyst, 11.
  • An adhesive comprising any one of the curable compositions of 9 to 11, 14 A cured article obtained by curing any of the curable compositions of 9 to 11, 15.
  • a cured article having an adhesive layer formed by curing 13 adhesives is provided.
  • the polymer having a reactive silicon-containing group of the present invention has good fast curability even when an amine compound is used as a curing catalyst so as not to contain an organotin compound, and further the curing catalyst. Even if it does not contain, the fast curability is good.
  • the compound of the present invention having such properties can be suitably used as a main agent (base polymer) such as a coating agent, an adhesive, and a sealant.
  • the polymer having a reactive silicon-containing group according to the present invention has a polymer main chain and at least one reactive silicon-containing group represented by the following structural formula (1) in one molecule, which is bonded to the main chain. .
  • R 1 s are unsubstituted or substituted alkyl groups having 1 to 10, preferably 1 to 4 carbon atoms, or unsubstituted or substituted carbon atoms having 6 to Represents an aryl group of 10 and R 2 independently of each other is an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, or an unsubstituted or substituted carbon atom 6 Represents an aryl group of ⁇ 10.
  • the alkyl group having 1 to 10 carbon atoms may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl, n-propyl, i- Linear or branched alkyl groups such as propyl, n-butyl, s-butyl, t-butyl, n-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl group, Examples thereof include cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups.
  • aryl group having 6 to 10 carbon atoms include phenyl, tolyl, xylyl, ⁇ -naphthyl, ⁇ -naphthyl group and the like. Some or all of the hydrogen atoms in these groups may be substituted with a halogen atom such as an alkyl group, an aryl group, F, Cl, or Br, a cyano group, or the like. Examples include chloropropyl group, 3,3,3-trifluoropropyl group, 2-cyanoethyl group and the like.
  • R ⁇ 1 >, R ⁇ 2 >, a methyl group, an ethyl group, and a phenyl group are preferable, and a methyl group is more preferable from the surface of sclerosis
  • R 3 s independently of each other are unsubstituted or substituted alkyl groups having 1 to 10, preferably 1 to 6 carbon atoms, or unsubstituted or substituted carbon atoms having 6 to 6 carbon atoms. It represents a 10 aryl group, R 3 together are bonded, an unsubstituted or substituted C 1 -C 10, preferably an alkylene group having 1 to 4 carbon atoms or an unsubstituted or substituted C 6 -C, 20 arylene groups are represented, and examples of these alkyl groups and aryl groups include the same groups as those exemplified above for R 1 and R 2 .
  • alkylene group having 1 to 10 carbon atoms in R 3 include methylene, ethylene, trimethylene, propylene, tetramethylene, isobutylene, dimethylethylene, pentamethylene, 2,2-dimethyltrimethylene, hexamethylene, heptamethylene Linear or branched alkylene groups such as octamethylene, nonamethylene, decylene (decamethylene) groups; cycloalkylene groups such as cyclopentylene groups and cyclohexylene groups.
  • Examples of the arylene group having 6 to 20 carbon atoms include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, oxybisphenylene, sulfonebisphenylene, toluenediyl, xylenediyl, naphthalenediyl group and the like. And an arylene group. Some or all of the hydrogen atoms in these groups may be substituted with a halogen atom such as an alkyl group, an aryl group, F, Cl, or Br, a cyano group, or the like. Examples thereof include a chlorotrimethylene group, a 2,3,3-trifluorotrimethylene group, and a 2-chloro-1,4-phenylene group.
  • R 3 when R 3 is not bonded to each other and does not form a ring, R 3 is preferably a methyl, ethyl, t-butyl, or phenyl group, which is advantageous in terms of curability, availability, productivity, and cost. In consideration, methyl and t-butyl groups are more preferable.
  • R 3 when R 3 is bonded to each other to form a ring, R 3 is preferably methylene or ethylene group. In view of curability, availability, productivity, and cost, methylene group is more preferable. preferable.
  • R 5 represents an unsubstituted or substituted alkylene group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms.
  • alkylene group for R 5 include the same groups as those exemplified for R 3 above. Among them, methylene and ethylene groups are preferable, and in consideration of curability, availability, productivity, and cost. An ethylene group is more preferable.
  • R 6 is a hydrogen atom or an unsubstituted or substituted C 1 -C 10, preferably an alkyl group having 1 to 4 carbon atoms, examples of the alkyl group, the above R 1 The thing similar to the illustrated group is mentioned.
  • R 6 a hydrogen atom, a methyl group, and a phenyl group are preferable, and a hydrogen atom is more preferable in consideration of curability, availability, productivity, and cost.
  • X represents O (oxygen atom) or S (sulfur atom), and O is preferable in consideration of curability, availability, productivity, and cost.
  • M represents an integer of 1 to 3, preferably 2 to 3, more preferably 3 from the viewpoint of reactivity.
  • the polymer of the present invention is a polymer having at least one reactive silicon group represented by the structural formula (1) in one molecule
  • the structure of the main chain skeleton to which the reactive silicon group is linked is particularly limited.
  • the main chain skeleton may have a linear structure, a branched structure, or a crosslinked structure.
  • main chain skeleton of the polymer of the present invention include: polyurethane; polyurea; polyoxyalkylene (polyether); polycarbonate; polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, Polyesters such as amorphous polyarylate and liquid crystal polymer; polyamide; polyimide; polyamideimide; poly (meth) acrylate; polystyrene; polyethylene, polypropylene, polyvinyl chloride, cyclic polyolefin, polybutadiene, polyisoprene, polyisobutylene, styrene-butadiene copolymer Polymer, polychloroprene, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, isobutylene-iso Polyethylene, such as polyole
  • polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane- Polyurethane copolymers and (dimethyl) polysiloxane-polyurea copolymers are preferred.
  • polyurethane, polyurea, polyoxyalkylene (polyether), (Dimethyl) polysiloxane-polyurethane copolymer and (dimethyl) polysiloxane-polyurea copolymer are more preferred, and polyurethane, polyurea and polyoxyalkylene (polyether) are even more preferred.
  • the polymer of the present invention at least one reactive silicon group represented by the structural formula (1) is contained in one molecule at the molecular chain terminal, but the structural formula (1) contained in one molecule. If the average number of reactive silicon groups represented by is less than 1, the curability of the composition containing this as the main agent and the mechanical properties of the cured product become insufficient. On the other hand, if there are too many reactive silicon groups, the crosslink density becomes too high, and the resulting cured product may not exhibit good mechanical properties, or the storage stability of the composition may deteriorate. Therefore, the number of reactive silicon groups contained in one molecule is preferably 1.1 to 5, more preferably 2 to 4, and even more preferably 2 (for example, one at each end of the molecular chain). Each).
  • the polymer of the present invention those represented by the following structural formula (2) are preferable.
  • the mechanical properties of the obtained cured product and the storage stability of the composition are further improved. Become.
  • R 1 , R 2 , R 3 and m represent the same meaning as described above, R 5 represents the same meaning as described above independently of each other, and R 6 represents the same as defined above independently of each other.
  • the same meaning is represented and X represents the same meaning as the above independently of each other.
  • A is not particularly limited as long as A is a divalent linking group having a structure corresponding to the above-described polymer main chain skeleton, and similarly to the above, a linear structure in the main chain skeleton, It may have a branched structure or a crosslinked structure.
  • A include: polyurethane; polyurea; polyoxyalkylene (polyether); polycarbonate; polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, amorphous polyarylate, liquid crystal polymer Polyamide; Polyimide; Polyamideimide; Poly (meth) acrylate; Polystyrene; Polyethylene, Polypropylene, Polyvinyl chloride, Cyclic polyolefin, Polybutadiene, Polyisoprene, Polyisobutylene, Styrene-butadiene copolymer, Polychloroprene, Acrylonitrile— Butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, isobutylene-isoprene copolymer, ethylene Polyolefin such as propylene copolymer, ethylene-propylene (
  • A includes polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) )
  • a divalent linking group containing a polysiloxane-polyurea copolymer is preferable.
  • polyurethane, polyurea, polyoxyalkylene (polyether) Divalent linking groups containing (dimethyl) polysiloxane-polyurethane copolymer and (dimethyl) polysiloxane-polyurea copolymer are more preferred, and contain polyurethane, polyurea, polyoxyalkylene (polyether) structure A divalent linking group is more preferred.
  • a in the above formula (2) is represented by the following structural formula (3).
  • R 6 and X each independently represent the same meaning as described above.
  • Y is independently of each other an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, an unsubstituted or substituted aralkylene group having 7 to 20 carbon atoms, or an unsubstituted or substituted carbon atom having 6 to 20 carbon atoms.
  • Specific examples of the alkylene group having 1 to 20 carbon atoms include the same groups as those exemplified above for R 3 , but a chain portion and a cyclic portion represented by the following formula (A) are included. It may be a divalent group that coexists.
  • Examples of the arylene group having 6 to 20 carbon atoms include the same groups as those exemplified for R 3 above.
  • Specific examples of the aralkylene group having 7 to 20 carbon atoms include methylene bisphenylene, dimethylmethylene bisphenylene, ethylene bisphenylene, and tetramethylene bisphenylene groups.
  • some or all of hydrogen atoms of these groups may be substituted with a halogen atom such as an alkyl group, an aryl group, F, Cl, or Br, a cyano group, or the like. Specific examples thereof include difluoromethylene.
  • a bisphenylene group etc. are mentioned.
  • Y is preferably hexamethylene, methylenebisphenylene, 1,4-phenylene, toluenediyl, naphthalenediyl, or a divalent group represented by the above formula (A), and is curable or easily available.
  • hexamethylene, methylenebisphenylene, toluenediyl, and a divalent group represented by the above formula (A) are more preferable, represented by the above formula (A). Divalent groups are even more preferred.
  • N in the formula (3) is a number of 1 or more, but is preferably 1 to 1,000, more preferably 1 to 500, from the viewpoint of mechanical properties of the resulting cured product and workability of the composition. Is even more preferable.
  • Z is not particularly limited as long as Z is a divalent linking group containing a structure corresponding to the above-described polymer main chain skeleton, and as described above, the structure is linear in the main chain skeleton. It may have a structure, a branched structure, or a crosslinked structure.
  • Z include: polyurethane; polyurea; polyoxyalkylene (polyether); polycarbonate; polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, amorphous polyarylate, liquid crystal polymer Polyamide; Polyimide; Polyamideimide; Poly (meth) acrylate; Polystyrene; Polyethylene, Polypropylene, Polyvinyl chloride, Cyclic polyolefin, Polybutadiene, Polyisoprene, Polyisobutylene, Styrene-butadiene copolymer, Polychloroprene, Acrylonitrile— Butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, isobutylene-isoprene copolymer, ethylene Polyolefin such as propylene copolymer, ethylene-propylene (
  • Z polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) )
  • a divalent linking group containing a polysiloxane-polyurea copolymer is preferable.
  • polyurethane, polyurea, polyoxyalkylene (polyether) Divalent linking groups containing (dimethyl) polysiloxane-polyurethane copolymer and (dimethyl) polysiloxane-polyurea copolymer are more preferred, and contain polyurethane, polyurea, polyoxyalkylene (polyether) structure And more preferably a divalent linking group From the viewpoint of the storage stability of the mechanical properties and composition of the product, a divalent linking group having a polyoxyalkylene structure are particularly preferred.
  • the polyoxyalkylene structure may have any of a linear structure, a branched structure, and a crosslinked structure. From the viewpoint of the mechanical properties of the resulting cured product and the storage stability of the composition, the polyoxyalkylene structure is linear. A polyoxyalkylene structure is preferred.
  • the polyoxyalkylene structure being “linear” means that the divalent oxyalkylene groups, which are repeating units constituting the polyoxyalkylene structure, are linearly linked. This means that each oxyalkylene group itself may be linear or branched (for example, a propyleneoxy group such as —CH 2 CH (CH 3 ) O—).
  • the polymer of the present invention preferably has a linear structure in which Z in the above formula (3) has a repeating unit represented by the following structural formula (4).
  • the mechanical properties of the resulting cured product and the storage stability of the composition are further improved.
  • R 4 is not particularly limited as long as it is a divalent hydrocarbon group, preferably a divalent aliphatic hydrocarbon group, but it is linear or branched having 1 to 14 carbon atoms.
  • a chain alkylene group is preferable, and a linear or branched alkylene group having 2 to 4 carbon atoms is more preferable.
  • Examples of the alkylene group include the same groups as those exemplified for R 3 above.
  • p is an integer of 1 or more, but is preferably 5 to 700, more preferably 10 to 500, and still more preferably 20 to 300, from the viewpoint of mechanical properties of the obtained cured product and workability of the composition. . When p is 2 or more, a plurality of R 4 may be the same or different from each other.
  • the main chain skeleton of the oxyalkylene polymer may be composed of one type of repeating units represented by the above formula (4), or may be composed of two or more types of repeating units.
  • a polymer containing propylene oxide (—CH 2 CH (CH 3 ) O—) as a main component is preferable from the viewpoint of durability.
  • the number average molecular weight of the polymer of the present invention is not particularly limited, but the workability is improved within the appropriate range of the viscosity of the curable composition containing the polymer, and sufficient curability is imparted.
  • the number average molecular weight is preferably 200 to 200,000, more preferably 1,000 to 100,000.
  • the number average molecular weight in this invention is a polystyrene conversion value in a gel permeation chromatography (GPC) analysis (hereinafter the same).
  • the viscosity of the polymer of the present invention is not particularly limited, but it is considered that the viscosity of the curable composition containing the polymer is within an appropriate range to improve workability and provide sufficient curability. Accordingly, the viscosity is preferably 10 to 200,000 mPa ⁇ s, more preferably 50 to 100,000 mPa ⁇ s, and particularly preferably 100 to 50,000 mPa ⁇ s.
  • the viscosity is a value measured at 25 ° C. by a B-type rotational viscometer.
  • the polymer of the present invention described above is a compound having a polymer having a molecular chain end blocked with an isocyanate group or an isothiocyanate group, and a secondary amino group, a tertiary amino group and an alkoxysilyl group represented by the following formula (5): (Hereinafter referred to as “secondary-tertiary diaminosilane”). More specifically, a urea bond or thiourea is formed between the isocyanate group or isothiocyanate group of the polymer whose molecular chain end is blocked with an isocyanate group or isothiocyanate group and the secondary amino group of the secondary-tertiary diaminosilane. A reaction to form a bond (urea reaction or thiourea reaction) is performed.
  • secondary-tertiary diaminosilane represented by the above formula (5) include N- (trimethoxysilylmethyl) piperazine, N- (methyldimethoxysilylmethyl) piperazine, N- (dimethylmethoxysilylmethyl).
  • Piperazine N- (triethoxysilylmethyl) piperazine, N- (methyldiethoxysilylmethyl) piperazine, N- (dimethylethoxysilylmethyl) piperazine, N- (trimethoxysilylmethyl) imidazolidine, N- (methyldimethoxysilyl) Methyl) imidazolidine, N- (dimethylmethoxysilylmethyl) imidazolidine, N- (triethoxysilylmethyl) imidazolidine, N- (methyldiethoxysilylmethyl) imidazolidine, N- (dimethylethoxysilylmethyl) imidazolidine, N, N'-dimethyl -N- (trimethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (methyldimethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (dimethylmethoxysilylmethyl) ethylenediamine
  • the structure of the main chain skeleton to which these groups are linked is particularly limited.
  • the main chain skeleton may have a linear structure, a branched structure, or a crosslinked structure. Among these, a linear structure is preferable from the viewpoint of mechanical properties of the obtained cured product and storage stability of the composition.
  • polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) polysiloxane-poly Urea copolymers are preferred, and in view of curability, availability, productivity, and cost, polyurethane, polyurea, polyoxyalkylene (polyether), (dimethyl) polysiloxane-polyurethane copolymer, ( (Dimethyl) polysiloxane-polyurea copolymer is more preferred , Polyurethanes, polyureas, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) polysi
  • the polymer whose molecular chain terminal is blocked with an isocyanate group or isothiocyanate group contains at least one isocyanate group or isothiocyanate group in one molecule, but the isocyanate group contained in one molecule.
  • the number of isothiocyanate groups on average is less than 1, the curability of the composition of the present invention and the mechanical properties of the cured product become insufficient.
  • the crosslinking density becomes too high, and the resulting cured product may not exhibit good mechanical properties, or the storage stability of the composition may deteriorate. Therefore, the number of isocyanate groups or isothiocyanate groups contained in one molecule is 1 or more, preferably 1.1 to 5, more preferably 2 to 4, and still more preferably 2 (for example, molecular chain One at each end).
  • a polymer represented by the following structural formula (6) is preferable as the polymer whose molecular chain terminal is blocked with an isocyanate group or an isothiocyanate group.
  • a polymer represented by the following structural formula (6) is preferable as the polymer whose molecular chain terminal is blocked with an isocyanate group or an isothiocyanate group.
  • X represents O (oxygen atom) or S (sulfur atom) independently of each other, but O is preferable from the viewpoint of curability, availability, productivity, and cost.
  • a polymer compound which is available as a commercially available product is a polyol compound whose molecular chain terminal is blocked with a hydroxyl group.
  • a urethanization reaction or a thiourethanization reaction between a hydroxyl group and an isocyanate group or isothiocyanate group of a polyisocyanate compound or polyisothiocyanate compound (generally known as an isocyanate prepolymer) It may be used.
  • the structure of the main chain skeleton to which the hydroxyl group is linked is not particularly limited as long as the polyol compound having the molecular chain end blocked with a hydroxyl group has a hydroxyl group at the molecular chain end. May have a linear structure, a branched structure, or a crosslinked structure. Among these, a linear structure is preferable from the viewpoint of mechanical properties of the obtained cured product and storage stability of the composition.
  • polystyrene resin examples include polyoxyalkylene polyol (polyether polyol), polyester polyol, acrylic polyol, epoxy polyol, polyolefin polyol, fluorine-containing polyol, ⁇ , ⁇ -hydroxyalkyl ( Dimethyl) polysiloxane and the like. These may be used as a single component, or may be used as a mixture or copolymer by combining two or more components.
  • polyoxyalkylene polyols polyether polyols
  • polyester polyols polyolefin polyols
  • ⁇ , ⁇ -hydroxyalkyl (dimethyl) polysiloxanes are preferred as the polyol compounds whose molecular chain ends are blocked with hydroxyl groups, and are curable.
  • polyoxyalkylene polyol (polyether polyol) and ⁇ , ⁇ -hydroxyalkyl (dimethyl) polysiloxane are more preferable, and polyoxyalkylene polyol (polyether polyol). Is even more preferable.
  • the polyol compound whose molecular chain end is blocked with a hydroxyl group contains at least one hydroxyl group in one molecule, but the average number of hydroxyl groups contained in one molecule is less than one.
  • curing material will become inadequate.
  • the number of hydroxyl groups contained in one molecule is 1 or more, preferably 1.1 to 5, more preferably 2 to 4, and even more preferably 2 (for example, at both ends of the molecular chain, respectively). One by one).
  • polyol compound whose molecular chain end is blocked with a hydroxyl group those represented by the following structural formula (7) are preferable.
  • the mechanical properties of the resulting cured product and the composition Storage stability is further improved.
  • polyol compound in which the molecular chain terminal is blocked with a hydroxyl group include those represented by the following structural formulas, but are not limited thereto, and the molecular chain terminal is blocked with a hydroxyl group. Any polyol compound can be used.
  • the number average molecular weight of the polyol compound in which the molecular chain terminal is blocked with a hydroxyl group is not particularly limited, but it is sufficient to improve workability by setting the viscosity of the curable composition of the present invention within an appropriate range.
  • the number average molecular weight is preferably 200 to 50,000, more preferably 1,000 to 20,000.
  • the polyisocyanate compound or polyisothiocyanate compound is not particularly limited as long as it contains at least two isocyanate groups or isothiocyanate groups in one molecule at the molecular chain end, and is not limited in the main chain skeleton. May have a linear structure, a branched structure, or a crosslinked structure. Among these, those containing a linear structure and / or a branched structure are preferred from the viewpoint of the mechanical properties of the resulting cured product and the storage stability of the composition.
  • the polyisocyanate compound or polyisothiocyanate compound contains at least two isocyanate groups or isothiocyanate groups in one molecule, but the number of isocyanate groups or isothiocyanate groups contained in one molecule. If the average number is less than 2, the curability of the composition containing the polymer of the present invention prepared using this as a main ingredient and the mechanical properties of the cured product become insufficient. On the other hand, if there are too many isocyanate groups or isothiocyanate groups, the crosslinking density becomes too high, and the resulting cured product may not exhibit good mechanical properties, or the storage stability of the composition may deteriorate. Therefore, the number of isocyanate groups or isothiocyanate groups contained in one molecule is 2 or more, preferably 2 to 5, more preferably 2 to 4, and even more preferably 2 (for example, both molecular chains One at each end).
  • polyisocyanate compound or polyisothiocyanate compound those represented by the following structural formula (8) are preferable.
  • the mechanical properties of the resulting cured product and the storage stability of the composition are obtained. Is even better.
  • polyisocyanate compound or polyisothiocyanate compound examples include hexamethylene diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, 4,4'-bis- (isocyanatemethyl) -diphenylmethane, polymethylene polyphenyl polyisocyanate, and phenylene.
  • hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, toluene diisocyanate are preferred, and hexamethylene diisocyanate and isophorone diisocyanate are more preferred.
  • the production method is not particularly limited. What is necessary is just to select suitably from the well-known manufacturing method currently used by the urethanation reaction.
  • the reaction ratio of the polyol compound whose molecular chain end is blocked with a hydroxyl group and the polyisocyanate compound or polyisothiocyanate compound suppresses by-products during the urethanization reaction or thiourethanization reaction
  • the isocyanate group or isothiocyanate group of the polyisocyanate compound or polyisothiocyanate compound is 1 mol of the hydroxyl group in the polyol compound whose molecular chain end is blocked with a hydroxyl group.
  • a ratio of greater than 1 mol to 100 mol or less is preferred, a ratio of 1.1 to 50 mol is more preferred, and a ratio of 1.2 to 10 mol is even more preferred.
  • a catalyst may not be used, but a catalyst may be used for improving the reaction rate.
  • the catalyst may be appropriately selected from those generally used in the urethanization reaction or thiourethanation reaction, and specific examples thereof include dibutyltin oxide, dioctyltin oxide, tin (II) bis (2-ethyl). Hexanoate), dibutyltin dilaurate, dioctyltin dilaurate and the like.
  • the amount of the catalyst used may be a catalytic amount, but is usually 0.001 to 1% by mass based on the total of the polyol compound and the polyisocyanate compound or polyisothiocyanate compound whose molecular chain ends are blocked with a hydroxyl group.
  • a solvent that does not adversely influence the reaction can be used in the urethanization reaction or thiourethanation reaction.
  • hydrocarbon solvents such as pentane, hexane, heptane, octane, decane and cyclohexane
  • aromatic solvents such as benzene, toluene and xylene
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • formamide Amide solvents such as N, N-dimethylformamide, pyrrolidone and N-methylpyrrolidone, ester solvents such as ethyl acetate, butyl acetate, ⁇ -butyrolactone, propylene glycol-1-monomethyl ether-2-acetate; diethyl ether
  • examples include ether solvents such as dibutyl ether, cyclopentyl methyl ether, tetrahydrofur
  • the reaction temperature during the urethanization reaction or thiourethanization reaction is not particularly limited, but is preferably 25 to 90 ° C. in consideration of suppressing side reactions such as allophanatization while making the reaction rate appropriate. 40 to 80 ° C. is more preferable.
  • the reaction time is not particularly limited, but is usually 10 minutes to 24 hours.
  • the polymer having a reactive silicon-containing group of the present invention is obtained by reacting a polymer whose molecular chain end is blocked with an isocyanate group or an isothiocyanate group and a secondary-tertiary diaminosilane represented by the above formula (5).
  • the specific method is not particularly limited, and may be appropriately selected from known production methods generally used in the urea reaction or thiourea reaction. More specifically, the reaction ratio between the secondary / tertiary diaminosilane represented by the above formula (5) and the polymer whose molecular chain terminal is blocked with an isocyanate group or an isothiocyanate group is represented by urea reaction or thiourea.
  • the ratio of the isocyanate group or isothiocyanate group in the polymer whose molecular chain end is blocked with an isocyanate group or isothiocyanate group is preferably 0.1 to 2.0 mol, and the ratio of 0.4 to 1.5 mol is preferable. More preferably, the ratio of 0.8 to 1.2 mol is even more preferable.
  • a catalyst may be used to improve the reaction rate.
  • the catalyst may be appropriately selected from those generally used in urea reaction or thiourea reaction, and specific examples thereof include dibutyltin oxide, dioctyltin oxide, tin (II) bis (2-ethylhexa). Noate), dibutyltin dilaurate, dioctyltin dilaurate and the like.
  • the catalyst may be used in any catalytic amount, but is usually the sum of the secondary and tertiary diaminosilane represented by the above formula (5) and the polymer whose molecular chain ends are blocked with isocyanate groups or isothiocyanate groups.
  • the content is 0.001 to 1% by mass.
  • a solvent that does not adversely influence the reaction can be used for the urea reaction or thiourea reaction.
  • hydrocarbon solvents such as pentane, hexane, heptane, octane, decane and cyclohexane
  • aromatic solvents such as benzene, toluene and xylene
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • formamide Amide solvents such as N, N-dimethylformamide, pyrrolidone and N-methylpyrrolidone, ester solvents such as ethyl acetate, butyl acetate, ⁇ -butyrolactone, propylene glycol-1-monomethyl ether-2-acetate; diethyl ether
  • examples include ether solvents such as dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran,
  • the reaction temperature at the time of urea reaction or thiourea reaction is not particularly limited, but it is preferably 0 to 90 ° C. in consideration of suppressing side reactions such as allophanatization while making the reaction rate appropriate. 25 to 80 ° C. is more preferable.
  • the reaction time is not particularly limited, but is usually 10 minutes to 24 hours.
  • the first curable composition, the coating agent composition and the adhesive composition of the present invention are (A) at least one in one molecule. It contains a polymer containing a reactive silicon group represented by the structural formula (1) at the molecular chain terminal, and (B) a curing catalyst.
  • the polymer of the above component (A) is derived from the structure of the polymer, and a cured product obtained by coating or adhering using a composition containing this polymer has excellent curability compared to conventional compositions. give.
  • the curing catalyst (B) used in the first composition of the present invention promotes a reaction in which a hydrolyzable group contained in a polymer having a reactive silicon-containing group (A) is hydrolytically condensed with moisture in the air. It is a component that accelerates the curing of the composition and is added for efficient curing.
  • the curing catalyst is not particularly limited as long as it is a curing catalyst used for curing a general moisture condensation curable composition.
  • alkyltin compounds such as dibutyltin oxide and dioctyltin oxide.
  • Alkyltriester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctoate, dioctyltin dioctoate, dioctyltin diversate; tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium , Titanate esters such as dipropoxybis (acetylacetonato) titanium, titanium diisopropoxybis (ethylacetoacetate), titanium isopropoxyoctylene glycol, and titanium chelate compounds Partially hydrolyzed products thereof: zinc naphthen
  • 3-aminopropyltrimethoxysilane and tetramethylguanidylpropyltrimethoxysilane are more preferred because they contain no organotin compound and are less toxic. From the viewpoint of curability of the composition, tetraaminosilane is preferred. Methylguanidylpropyltrimethoxysilane is particularly preferred.
  • the addition amount of the curing catalyst is not particularly limited, but considering that the workability is improved by adjusting the curing rate to an appropriate range, 0.01 to 15 parts by mass is preferable, and 0.1 to 5 parts by mass is more preferable.
  • the second curable composition, coating agent composition and adhesive composition of the present invention (hereinafter sometimes collectively referred to as the second composition) contain (A) component, but (B) cure. It does not contain a catalyst.
  • the polymer having a reactive silicon-containing group (A) of the present invention is derived from the structure of the polymer, and (B) a coating treatment using a composition containing a polymer without containing a curing catalyst.
  • the cured product obtained by the adhesion treatment gives a cured product that is superior to the conventional composition in terms of curability.
  • the first and second compositions of the present invention may contain a solvent.
  • the solvent is not particularly limited as long as it has the ability to dissolve the component (A). Specific examples thereof include hydrocarbon solvents such as pentane, hexane, heptane, octane, decane, and cyclohexane; benzene , Aromatic solvents such as toluene and xylene; amide solvents such as formamide, N, N-dimethylformamide, pyrrolidone and N-methylpyrrolidone, ethyl acetate, butyl acetate, ⁇ -butyrolactone, propylene glycol-1-monomethyl ether Ester solvents such as 2-acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; and ether solvents such as diethyl ether, dibutyl ether, cyclopentyl methyl
  • aromatic solvents such as toluene and xylene are preferable from the viewpoints of solubility and volatility.
  • the amount of the solvent added is preferably 10 to 20,000 parts by mass, more preferably 100 to 10,000 parts by mass with respect to 100 parts by mass of component (A).
  • the first and second compositions of the present invention include an adhesion improver, an inorganic and organic ultraviolet absorber, a storage stability improver, a plasticizer, a filler, a pigment, and a fragrance depending on the purpose of use.
  • Various additives such as can be added.
  • the coating composition of the present invention described above is applied to the surface of a solid substrate and cured to form a coating layer, whereby a coated solid substrate is obtained, and the adhesive composition of the present invention is applied to the solid substrate. After applying another solid base material on the surface, and then curing the composition to form an adhesive layer, an adhesive laminate can be obtained.
  • the application method of each composition is not particularly limited, and specific examples thereof are appropriately selected from known methods such as spray coating, spin coating, dip coating, roller coating, brush coating, bar coating, and flow coating. Can do.
  • the solid substrate is not particularly limited, and specific examples thereof include epoxy resins, phenol resins, polyimide resins, polycarbonate resins such as polycarbonates and polycarbonate blends, acrylic resins such as poly (methyl methacrylate), poly (ethylene Terephthalate), poly (butylene terephthalate), polyester resins such as unsaturated polyester resin, polyamide resin, acrylonitrile-styrene copolymer resin, styrene-acrylonitrile-butadiene copolymer resin, polyvinyl chloride resin, polystyrene resin, polystyrene and polyphenylene Organic resin base materials such as ether blends, cellulose acetate butyrate, polyethylene resin; metal base materials such as iron plate, copper plate, steel plate; paint application surface; glass; ceramic; concrete; Sheet; textile; wood, stone, tile, inorganic filler such as (hollow) silica, titania, zirconia, alumina; glass fiber including glass fiber, glass tape, glass
  • the hydrolysis and condensation reaction of the polymer having a reactive silicon-containing group proceeds.
  • any humidity of 10 to 100% RH may be used. In general, the higher the humidity, the faster the hydrolysis proceeds. Therefore, moisture may be added to the atmosphere as desired.
  • the curing reaction temperature and time can be appropriately changed according to factors such as the substrate used, the moisture concentration, the catalyst concentration, and the type of hydrolyzable group.
  • the curing reaction temperature is preferably about 25 ° C. from the viewpoint of workability, etc., but in order to accelerate the curing reaction, it is cured by heating within a range not exceeding the heat resistance temperature of the substrate to be used. May be.
  • the curing reaction time is usually about 1 minute to 1 week from the viewpoint of workability and the like.
  • the composition of the present invention cures well even at room temperature, and therefore, even when room temperature curing is indispensable for on-site construction or the like, there is no stickiness (tack) on the surface of the coating film in several minutes to several hours, and curability. Although it is excellent in workability, the heat treatment may be performed within a range not exceeding the heat-resistant temperature of the substrate.
  • the viscosity is a value measured at 25 ° C. using a B-type rotational viscometer
  • the molecular weight and the degree of polymerization are measured by GPC (gel permeation chromatograph). These are the number average molecular weight and number average degree of polymerization calculated in terms of polystyrene.
  • Example 1-2 Synthesis of polymer 2
  • a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 100 g of both end hydroxyl groups-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl groups).
  • 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour.
  • reaction product was a pale yellow transparent liquid having a number average molecular weight of 9,000 and a viscosity of 5,100 mPa ⁇ s.
  • Example 1-3 Synthesis of polymer 3
  • 100 g of both ends hydroxyl group-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C.
  • 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour.
  • Example 1-4 Synthesis of polymer 4 In a 200 mL separable flask equipped with a stirrer, a reflux condenser, and a thermometer, 100 g of polypropylene glycol containing hydroxyl groups at both ends having a number average molecular weight of 5,100 and a polymerization degree of 50 (terminal hydroxyl groups) Of 0.070 mol in terms of functional group) and heated to 90 ° C. Into this, 24.3 g of toluene diisocyanate (the amount of functional group of isocyanate group was 0.14 mol) was added and stirred with heating at 90 ° C. for 1 hour.
  • reaction product was a pale yellow transparent liquid having a number average molecular weight of 17,400 and a viscosity of 32,000 mPa ⁇ s.
  • Example 1-6 Synthesis of polymer 6 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of polypropylene glycol containing both hydroxyl groups at a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour.
  • Example 1-7 Synthesis of polymer 7 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of polypropylene glycol containing both end hydroxyl groups having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour.
  • Example 1-9 Synthesis of polymer 9
  • a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer was mixed with a hydroxyl group-containing polypropylene glycol / polyethylene glycol having a number average molecular weight of 5,200 and a polymerization degree of 65.
  • a polymer 100 g (polypropylene glycol structural unit / polyethylene glycol structural unit molar ratio 25/75, terminal hydroxyl group equivalent 0.068 mol) was charged and heated to 90 ° C.
  • 30.2 g of isophorone diisocyanate (the amount of functional group of isocyanate group was 0.14 mol) was added and heated and stirred at 90 ° C.
  • reaction product was a pale yellow transparent liquid having a number average molecular weight of 6,400 and a viscosity of 1,260 mPa ⁇ s.
  • Example 1-10 Synthesis of polymer 10 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, ⁇ , ⁇ -hydroxypropyl (dimethyl) poly having a number average molecular weight of 15,000 and a polymerization degree of 200 was added. 100 g of siloxane (0.013 mol in terms of functional group of terminal hydroxyl group) was charged and heated to 90 ° C. Into this, 5.8 g of isophorone diisocyanate (functional amount of isocyanate group: 0.026 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour.
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 16,800 and a viscosity of 16,000 mPa ⁇ s.
  • reaction product was a pale yellow transparent liquid having a number average molecular weight of 8,000, a degree of polymerization of 130, and a viscosity of 3,700 mPa ⁇ s.
  • N-phenylaminomethyltrimethoxysilane (secondary amino group functional group amount: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
  • the obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 8,700 and a viscosity of 5,000 mPa ⁇ s.
  • reaction product was a colorless and transparent liquid, and had a number average molecular weight of 11,300 and a viscosity of 7,500 mm 2 / s.
  • N-2- (aminoethyl) -aminomethyltrimethoxysilane (secondary amino group functional group amount: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Gelled and a reaction product could not be obtained.
  • composition and cured film [Example 2-1] 100 parts by mass of the polymer 1 obtained in Example 1-1 above and 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane as a curing catalyst were uniformly mixed using a stirrer while blocking moisture. A composition was prepared. The obtained composition was subjected to bar coater No. 5 under air at 25 ° C. and 50% RH. 14 was applied to a glass plate and dried and cured for 1 day in air at 25 ° C. and 50% RH to prepare a cured film.
  • Example 2-2 to 2-10 and Comparative Examples 2-1 to 2-5 Except for changing the polymer 1 of Example 2-1 to the polymers 2 to 10 obtained in Examples 1-2 to 1-10 and the polymers 11 to 15 obtained in Comparative Examples 1-1 to 1-5, respectively. Produced a composition and a cured film in the same manner as in Example 2-1.
  • Example 2-11 The composition and curing were carried out in the same manner as in Example 2-1, except that 5 parts by mass of 3-aminopropyltrimethoxysilane was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. A coating was prepared.
  • Example 2-12 A composition and a cured film were prepared in the same manner as in Example 2-1, except that 5 parts by mass of dioctyltin diversate was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. .
  • Example 2-13 The composition was the same as in Example 2-1, except that 2 parts by mass of titanium diisopropoxybis (ethylacetoacetate) was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. And cured coatings were prepared.
  • Example 2-14 A composition and a cured film were produced in the same manner as in Example 2-1, except that tetramethylguanidylpropyltrimethoxysilane was not used.
  • Example 2-15 A composition and a cured film were produced in the same manner as in Example 2-7, except that tetramethylguanidylpropyltrimethoxysilane was not used.
  • Comparative Example 2-6 A composition and a cured film were prepared in the same manner as in Comparative Example 2-1, except that tetramethylguanidylpropyltrimethoxysilane was not used.
  • Comparative Example 2-7 A composition and a cured film were prepared in the same manner as in Comparative Example 2-2 except that tetramethylguanidylpropyltrimethoxysilane was not used.
  • Comparative Example 2-8 A composition and a cured film were produced in the same manner as in Comparative Example 2-4 except that tetramethylguanidylpropyltrimethoxysilane was not used.
  • Comparative Example 2-9 A composition and a cured film were produced in the same manner as in Comparative Example 2-5 except that tetramethylguanidylpropyltrimethoxysilane was not used.
  • a cured film having excellent curability can be obtained by using the polymer having a reactive silicon-containing group of the present invention. Moreover, even when an amine compound is used as a curing catalyst so as not to contain a highly toxic organotin compound, a curable composition having good curability, which was difficult with the prior art, can be obtained. Furthermore, even if it does not contain a curing catalyst, a curable composition having good curability can be obtained.

Abstract

A polymer which has a main-chain skeleton comprising a given polymer, e.g., a polyurethane, polyurea, or polyoxyalkylene, and which has, in the molecule, at least one reactive silicon-containing group represented by structural formula (1). The polymer has satisfactory rapid-curing properties regardless of whether no curing catalyst is contained or an amine-based compound is used as a curing catalyst. The polymer is highly safe. (R1 and R2 each independently represent a C1-10 alkyl, etc.; two R3's each independently represent a C1-10 alkyl, etc. or are bonded to each other to represent a C1-10 alkylene, etc.; R5 represents a C1-10 alkylene; R6 represents a hydrogen atom, etc.; X represents O, S, etc.; m is an integer of 1 to 3; and * indicates a linking bond.)

Description

反応性ケイ素含有基を有するポリマーおよびその製造方法Polymer having reactive silicon-containing group and method for producing the same
 本発明は、反応性ケイ素含有基を有するポリマーおよびその製造方法に関し、さらに詳述すると、シロキサン結合を形成することにより架橋し得るケイ素基(以下、「反応性ケイ素基」とも称す。)として、ケイ素原子に結合したアルコキシ基を分子鎖末端に含有するポリマーおよびその製造方法に関する。 The present invention relates to a polymer having a reactive silicon-containing group and a method for producing the same, and more specifically, as a silicon group that can be crosslinked by forming a siloxane bond (hereinafter also referred to as “reactive silicon group”). The present invention relates to a polymer containing an alkoxy group bonded to a silicon atom at a molecular chain end and a method for producing the same.
 反応性ケイ素基、特にアルコキシシリル基は、水分存在下にて加水分解縮合する性質を有していることから、この反応性ケイ素基を有するポリマーは、水分または湿気の存在下で架橋硬化する硬化性組成物として用いることができる。
 これらのポリマーの中でも、その主鎖がポリオキシアルキレン系重合体であるものは、一般的に変成シリコーンとして知られ、その主鎖がケイ素含有化合物であるものは、一般的に末端封鎖シリコーンとして知られている。また、これらに代表されるような反応性ケイ素基を有するポリマーを用いた硬化性組成物は、室温では液状であり、硬化によりゴム弾性体となる特徴を有しており、その特徴を利用してコーティング剤、接着剤、建築用シーラント等に広く用いられている。
Since reactive silicon groups, especially alkoxysilyl groups, have the property of hydrolytic condensation in the presence of moisture, polymers having reactive silicon groups are cured by crosslinking and curing in the presence of moisture or moisture. Can be used as a composition.
Among these polymers, those whose main chain is a polyoxyalkylene polymer are generally known as modified silicones, and those whose main chain is a silicon-containing compound are generally known as end-capped silicones. It has been. In addition, a curable composition using a polymer having a reactive silicon group as typified by these is liquid at room temperature and has a characteristic of becoming a rubber elastic body upon curing. It is widely used for coating agents, adhesives, architectural sealants, etc.
 分子鎖末端に反応性ケイ素基を有するポリマーの製造方法については、数多くの提案がなされており、既に工業的に生産されているものもある。
 例えば、主鎖がポリオキシアルキレン基で、分子鎖末端がアルコキシシリル基の化合物として、主鎖がポリオキシプロピレンで、分子鎖両末端にメチルジメトキシシリル基が結合したポリマーなどが知られており、このようなポリマーの代表例として、アルコキシシリル末端封鎖ポリオキシアルキレン系化合物を主剤(ベースポリマー)とする室温硬化性組成物が知られている(特許文献1,2)。
 しかし、特許文献1,2に開示された室温硬化性組成物は、空気中の水分との反応性が低く、硬化性が不十分であることから、室温で十分な硬化性を確保するためには一般に有機スズ系化合物等の触媒の添加が不可欠であるものの、有機スズ系化合物は、人体や環境への毒性が懸念され、近年環境規制が厳しくなっており、その使用が敬遠されている。
Numerous proposals have been made for a method for producing a polymer having a reactive silicon group at the molecular chain terminal, and some have already been industrially produced.
For example, as a compound in which the main chain is a polyoxyalkylene group and the molecular chain terminal is an alkoxysilyl group, a polymer in which the main chain is polyoxypropylene and a methyldimethoxysilyl group is bonded to both ends of the molecular chain is known. As a typical example of such a polymer, a room temperature curable composition containing an alkoxysilyl end-capped polyoxyalkylene compound as a main agent (base polymer) is known (Patent Documents 1 and 2).
However, the room temperature curable compositions disclosed in Patent Documents 1 and 2 have low reactivity with moisture in the air and insufficient curability, so that sufficient curability at room temperature is ensured. In general, however, it is indispensable to add a catalyst such as an organotin compound, but the organotin compound is concerned about toxicity to the human body and the environment. In recent years, environmental regulations have become strict, and its use is avoided.
 また、特許文献3では、反応性向上のために、末端に水酸基を有するポリマーとイソシアネートシラン等を反応させたアルコキシシリル末端封鎖ポリマーが開示されている。
 しかし、特許文献3の化合物では、反応性はある程度改善されているものの、硬化触媒を含有しない場合にはその硬化性は非常に緩慢であり、室温硬化性組成物として使用するにあたっては硬化性が不十分であるのみならず、アミン系化合物を硬化触媒として用いた際の硬化性を実際に確認したところ、その硬化性は未だ満足のいくものではなく、硬化性という点で改良の余地がある。
Patent Document 3 discloses an alkoxysilyl end-capped polymer obtained by reacting a polymer having a hydroxyl group at a terminal with isocyanate silane or the like in order to improve reactivity.
However, in the compound of Patent Document 3, although the reactivity is improved to some extent, when it does not contain a curing catalyst, its curability is very slow, and when used as a room temperature curable composition, the curability is low. Not only is it insufficient, but when we actually confirmed the curability when using an amine compound as a curing catalyst, the curability is still not satisfactory and there is room for improvement in terms of curability. .
特開2004-099908号公報JP 2004-099908 A 特開2010-209205号公報JP 2010-209205 A 特表2004-518801号公報JP-T-2004-518801
 本発明は、上記事情に鑑みなされたもので、硬化触媒を含有しない場合、およびアミン系化合物を硬化触媒として用いた場合のいずれにおいても速硬化性が良好であり、安全性に優れた反応性ケイ素含有基を有するポリマーおよびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in both cases where no curing catalyst is contained and when an amine compound is used as a curing catalyst, fast curability is good and the reactivity is excellent in safety. It is an object of the present invention to provide a polymer having a silicon-containing group and a method for producing the same.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、分子鎖末端のアルコキシシリル基と主鎖構造との連結基として特定の3級アミノ-メチレン-シリル結合を含有する、所定のポリマーおよびその製造方法を見出すとともに、このポリマーを含む組成物が、速硬化性に優れる硬化物を与えるため、コーティング剤、接着剤、シーラント等の材料を形成する硬化性組成物として好適であることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have determined that a predetermined polymer containing a specific tertiary amino-methylene-silyl bond as a linking group between the alkoxysilyl group at the molecular chain terminal and the main chain structure And a method for producing the same, and a composition containing this polymer is suitable as a curable composition for forming a material such as a coating agent, an adhesive, and a sealant, in order to give a cured product excellent in rapid curing. The headline and the present invention were completed.
 すなわち、本発明は、
1. ポリウレタン、ポリ尿素、ポリオキシアルキレン、ポリカーボネート、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリ(メタ)アクリレート、ポリスチレン、ポリオレフィン、ポリビニルエステル、ポリテトラフルオロエチレン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリシロキサン、ポリシロキサン-ポリウレタン共重合体およびポリシロキサン-ポリ尿素共重合体、並びにこれらの共重合体から選ばれる主鎖骨格を有し、かつ、1分子中に少なくとも1個の下記構造式(1)で表される反応性ケイ素含有基を有するポリマー、
Figure JPOXMLDOC01-appb-C000007
(式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表すか、R3同士が結合した、非置換もしくは置換の炭素原子数1~10のアルキレン基、または非置換もしくは置換の炭素原子数6~20のアリーレン基を表し、R5は、非置換もしくは置換の炭素原子数1~10のアルキレン基を表し、R6は、水素原子、または非置換もしくは置換の炭素原子数1~10のアルキル基を表し、Xは、OまたはSを表し、mは、1~3の整数を表し、*は、結合手を表す。)
2. 下記構造式(2)で表される1の反応性ケイ素含有基を有するポリマー、
Figure JPOXMLDOC01-appb-C000008
(式中、R1、R2、R3およびmは、前記と同じ意味を表し、R5は、互いに独立して前記と同じ意味を表し、R6は、互いに独立して前記と同じ意味を表し、Xは、互いに独立して前記と同じ意味を表し、Aは、ポリウレタン、ポリ尿素、ポリオキシアルキレン、ポリカーボネート、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリ(メタ)アクリレート、ポリスチレン、ポリオレフィン、ポリビニルエステル、ポリテトラフルオロエチレン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリシロキサン、ポリシロキサン-ポリウレタン共重合体およびポリシロキサン-ポリ尿素共重合体、並びにこれらの共重合体から選ばれる構造を有する二価の連結基を表す。)
3. 前記Aが、下記式(3)で表される1または2の反応性ケイ素含有基を有するポリマー、
Figure JPOXMLDOC01-appb-C000009
(式中、R6およびXは、互いに独立して前記と同じ意味を表し、Yは、互いに独立して、非置換もしくは置換の炭素原子数1~20のアルキレン基、非置換もしくは置換の炭素原子数7~20のアラルキレン基、または非置換もしくは置換の炭素原子数6~20のアリーレン基を表し、nは、1以上の整数を表し、Zは、ポリウレタン、ポリ尿素、ポリオキシアルキレン、ポリカーボネート、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリ(メタ)アクリレート、ポリスチレン、ポリオレフィン、ポリビニルエステル、ポリテトラフルオロエチレン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリシロキサン、ポリシロキサン-ポリウレタン共重合体およびポリシロキサン-ポリ尿素共重合体、並びにこれらの共重合体から選ばれる構造を有する二価の連結基を表し、*は結合手を表す。)
4. 前記Zが、ポリオキシアルキレン構造を有する二価の連結基である1~3のいずれかの反応性ケイ素含有基を有するポリマー、
5. 前記ポリオキシアルキレン構造を有する二価の連結基が、下記式(4)で表される1~4のいずれかの反応性ケイ素含有基を有するポリマー、
Figure JPOXMLDOC01-appb-C000010
(式中、R4は、2価炭化水素基を表し、pは、1以上の整数を表し、*は結合手を表す。)
6. 分子鎖末端が、イソシアネート基またはイソチオシアネート基で封鎖されたポリマーと、式(5)
Figure JPOXMLDOC01-appb-C000011
(式中、R1、R2、R3、R5およびmは、前記と同じ意味を表す。)
で表される、2級アミノ基、3級アミノ基およびアルコキシシリル基を有する化合物とを反応させることを特徴とする1~5のいずれかの反応性ケイ素含有基を有するポリマーの製造方法、
7. 前記分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーが、下記式(6)で表される6の反応性ケイ素含有基を有するポリマーの製造方法、
Figure JPOXMLDOC01-appb-C000012
(式中、Aは、前記と同じ意味を表す。Xは、互いに独立してOまたはSを表す。)
8. 前記式(6)中のAが、ポリオキシアルキレン構造を有する二価の連結基である7の反応性ケイ素含有基を有するポリマーの製造方法、
9. (A)1~5のいずれかの反応性ケイ素含有基を有するポリマーを含む硬化性組成物、
10. 更に、(B)硬化触媒を含有する9の硬化性組成物、
11. 前記(B)硬化触媒が、アミン系化合物である10の硬化性組成物、
12. 9~11のいずれかの硬化性組成物からなるコーティング剤、
13. 9~11のいずれかの硬化性組成物からなる接着剤、
14. 9~11のいずれかの硬化性組成物が硬化してなる硬化物品、
15. 12のコーティング剤が硬化してなる被覆層を有する硬化物品、
16. 13の接着剤が硬化してなる接着層を有する硬化物品
を提供する。
That is, the present invention
1. Polyurethane, polyurea, polyoxyalkylene, polycarbonate, polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, poly Ether sulfone, polyether ether ketone, polysiloxane, polysiloxane-polyurethane copolymer and polysiloxane-polyurea copolymer, and a main chain skeleton selected from these copolymers, and in one molecule A polymer having at least one reactive silicon-containing group represented by the following structural formula (1):
Figure JPOXMLDOC01-appb-C000007
(Wherein, R 1 s , independently of each other, represent an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, and R 2 represents Independent of each other, it represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, and R 3 , independently of each other, is unsubstituted or Represents a substituted alkyl group having 1 to 10 carbon atoms, or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, or an unsubstituted or substituted carbon atom having 1 to 10 carbon atoms in which R 3 is bonded to each other. Represents an alkylene group, or an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, R 5 represents an unsubstituted or substituted alkylene group having 1 to 10 carbon atoms, R 6 represents a hydrogen atom, or Non-replacement Ku denotes an alkyl group having 1 to 10 carbon atoms substituted, X is represents O or S, m is an integer of 1-3, * represents a bond.)
2. A polymer having one reactive silicon-containing group represented by the following structural formula (2);
Figure JPOXMLDOC01-appb-C000008
Wherein R 1 , R 2 , R 3 and m represent the same meaning as described above, R 5 represents the same meaning as described above independently of each other, and R 6 represents the same meaning as described above independently of each other. X represents the same meaning as described above independently of each other, A represents polyurethane, polyurea, polyoxyalkylene, polycarbonate, polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, Polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polysiloxane, polysiloxane-polyurethane copolymer and polysiloxane-polyurea copolymer, and These copolymers Represents a divalent linking group having a structure selected et.)
3. The polymer having 1 or 2 reactive silicon-containing groups represented by the following formula (3):
Figure JPOXMLDOC01-appb-C000009
(Wherein R 6 and X each independently represent the same meaning as described above, and Y each independently represents an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon, Represents an aralkylene group having 7 to 20 atoms or an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, n represents an integer of 1 or more, and Z represents a polyurethane, polyurea, polyoxyalkylene, polycarbonate , Polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, poly Siloxane, Polysiloxane - represents polyurea copolymer, and a divalent linking group having a structure selected from these copolymers, * represents a bond) - polyurethane copolymers and polysiloxanes.
4). The polymer having a reactive silicon-containing group of any one of 1 to 3, wherein Z is a divalent linking group having a polyoxyalkylene structure;
5). A polymer in which the divalent linking group having a polyoxyalkylene structure has a reactive silicon-containing group of any one of 1 to 4 represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 4 represents a divalent hydrocarbon group, p represents an integer of 1 or more, and * represents a bond.)
6). A polymer whose molecular chain ends are blocked with an isocyanate group or an isothiocyanate group, and a compound of formula (5)
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 1 , R 2 , R 3 , R 5 and m have the same meaning as described above.)
A process for producing a polymer having a reactive silicon-containing group according to any one of 1 to 5, which comprises reacting a compound having a secondary amino group, a tertiary amino group and an alkoxysilyl group,
7). A method for producing a polymer in which the polymer having the molecular chain terminal blocked with an isocyanate group or an isothiocyanate group has 6 reactive silicon-containing groups represented by the following formula (6):
Figure JPOXMLDOC01-appb-C000012
(In the formula, A represents the same meaning as described above. X represents O or S independently of each other.)
8). A process for producing a polymer having 7 reactive silicon-containing groups, wherein A in the formula (6) is a divalent linking group having a polyoxyalkylene structure,
9. (A) a curable composition comprising a polymer having a reactive silicon-containing group according to any one of 1 to 5,
10. Further, (B) 9 curable composition containing a curing catalyst,
11. (10) the curable composition (B), wherein the curing catalyst is an amine compound;
12 A coating agent comprising any one of the curable compositions of 9 to 11,
13. An adhesive comprising any one of the curable compositions of 9 to 11,
14 A cured article obtained by curing any of the curable compositions of 9 to 11,
15. A cured article having a coating layer formed by curing 12 coating agents;
16. A cured article having an adhesive layer formed by curing 13 adhesives is provided.
 本発明の反応性ケイ素含有基を有するポリマーは、有機スズ系化合物を非含有とするためにアミン系化合物を硬化触媒として用いた場合であっても速硬化性が良好であり、さらには硬化触媒を含有しない場合であっても速硬化性が良好である。
 このような特性を有する本発明の化合物は、コーティング剤、接着剤、シーラント等の主剤(ベースポリマー)として好適に用いることができる。
The polymer having a reactive silicon-containing group of the present invention has good fast curability even when an amine compound is used as a curing catalyst so as not to contain an organotin compound, and further the curing catalyst. Even if it does not contain, the fast curability is good.
The compound of the present invention having such properties can be suitably used as a main agent (base polymer) such as a coating agent, an adhesive, and a sealant.
 以下、本発明について具体的に説明する。
 本発明に係る反応性ケイ素含有基を有するポリマーは、ポリマー主鎖と、この主鎖に結合する、1分子中に少なくとも1個の下記構造式(1)で示される反応性ケイ素含有基を有する。
Hereinafter, the present invention will be specifically described.
The polymer having a reactive silicon-containing group according to the present invention has a polymer main chain and at least one reactive silicon-containing group represented by the following structural formula (1) in one molecule, which is bonded to the main chain. .
Figure JPOXMLDOC01-appb-C000013
(式中、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, * represents a bond.)
 式(1)において、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~4のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~4のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表す。 In the formula (1), R 1 s , independently of each other, are unsubstituted or substituted alkyl groups having 1 to 10, preferably 1 to 4 carbon atoms, or unsubstituted or substituted carbon atoms having 6 to Represents an aryl group of 10 and R 2 independently of each other is an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, or an unsubstituted or substituted carbon atom 6 Represents an aryl group of ˜10.
 上記R1およびR2において、炭素原子数1~10のアルキル基としては、直鎖状、環状、分枝状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等の直鎖または分岐鎖アルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等のシクロアルキル基が挙げられる。
 また、炭素原子数6~10のアリール基の具体例としては、フェニル、トリル、キシリル、α-ナフチル、β-ナフチル基等が挙げられる。
 なお、これらの基の水素原子の一部または全部は、アルキル基、アリール基、F,Cl,Br等のハロゲン原子やシアノ基等で置換されていてもよく、その具体例としては、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等が挙げられる。
 これらの中でも、R1、R2としては、メチル基、エチル基、フェニル基が好ましく、硬化性や入手の容易さ、生産性、コストの面からメチル基がより好ましい。
In the above R 1 and R 2 , the alkyl group having 1 to 10 carbon atoms may be linear, cyclic or branched, and specific examples thereof include methyl, ethyl, n-propyl, i- Linear or branched alkyl groups such as propyl, n-butyl, s-butyl, t-butyl, n-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl group, Examples thereof include cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups.
Specific examples of the aryl group having 6 to 10 carbon atoms include phenyl, tolyl, xylyl, α-naphthyl, β-naphthyl group and the like.
Some or all of the hydrogen atoms in these groups may be substituted with a halogen atom such as an alkyl group, an aryl group, F, Cl, or Br, a cyano group, or the like. Examples include chloropropyl group, 3,3,3-trifluoropropyl group, 2-cyanoethyl group and the like.
Among these, as R < 1 >, R < 2 >, a methyl group, an ethyl group, and a phenyl group are preferable, and a methyl group is more preferable from the surface of sclerosis | hardenability, availability, productivity, and cost.
 式(1)において、R3は、互いに独立して、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~6のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表すか、R3同士が結合した、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~4のアルキレン基、または非置換もしくは置換の炭素原子数6~20のアリーレン基を表し、これらのアルキル基およびアリール基としては、上記R1およびR2で例示した基と同様のものが挙げられる。 In the formula (1), R 3 s independently of each other are unsubstituted or substituted alkyl groups having 1 to 10, preferably 1 to 6 carbon atoms, or unsubstituted or substituted carbon atoms having 6 to 6 carbon atoms. It represents a 10 aryl group, R 3 together are bonded, an unsubstituted or substituted C 1 -C 10, preferably an alkylene group having 1 to 4 carbon atoms or an unsubstituted or substituted C 6 -C, 20 arylene groups are represented, and examples of these alkyl groups and aryl groups include the same groups as those exemplified above for R 1 and R 2 .
 R3における炭素原子数1~10のアルキレン基の具体例としては、メチレン、エチレン、トリメチレン、プロピレン、テトラメチレン、イソブチレン、ジメチルエチレン、ペンタメチレン、2,2-ジメチルトリメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デシレン(デカメチレン)基等の直鎖または分岐鎖アルキレン基;シクロペンチレン基、シクロヘキシレン基等のシクロアルキレン基などが挙げられる。
 また、炭素原子数6~20のアリーレン基としては、1,2-フェニレン、1,3-フェニレン、1,4-フェニレン、オキシビスフェニレン、スルホンビスフェニレン、トルエンジイル、キシレンジイル、ナフタレンジイル基等のアリーレン基などが挙げられる。
 なお、これらの基の水素原子の一部または全部は、アルキル基、アリール基、F,Cl,Br等のハロゲン原子やシアノ基等で置換されていてもよく、その具体例としては、3-クロロトリメチレン基、2,3,3-トリフルオロトリメチレン基、2-クロロ-1,4-フェニレン基等が挙げられる。
Specific examples of the alkylene group having 1 to 10 carbon atoms in R 3 include methylene, ethylene, trimethylene, propylene, tetramethylene, isobutylene, dimethylethylene, pentamethylene, 2,2-dimethyltrimethylene, hexamethylene, heptamethylene Linear or branched alkylene groups such as octamethylene, nonamethylene, decylene (decamethylene) groups; cycloalkylene groups such as cyclopentylene groups and cyclohexylene groups.
Examples of the arylene group having 6 to 20 carbon atoms include 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, oxybisphenylene, sulfonebisphenylene, toluenediyl, xylenediyl, naphthalenediyl group and the like. And an arylene group.
Some or all of the hydrogen atoms in these groups may be substituted with a halogen atom such as an alkyl group, an aryl group, F, Cl, or Br, a cyano group, or the like. Examples thereof include a chlorotrimethylene group, a 2,3,3-trifluorotrimethylene group, and a 2-chloro-1,4-phenylene group.
 これらの中でも、R3が互いに結合せず環を形成しない場合のR3としては、メチル、エチル、t-ブチル、フェニル基が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、メチル、t-ブチル基がより好ましい。
 一方、R3同士が互いに結合して環を形成する場合のR3としては、メチレン、エチレン基が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、メチレン基がより好ましい。
Of these, when R 3 is not bonded to each other and does not form a ring, R 3 is preferably a methyl, ethyl, t-butyl, or phenyl group, which is advantageous in terms of curability, availability, productivity, and cost. In consideration, methyl and t-butyl groups are more preferable.
On the other hand, when R 3 is bonded to each other to form a ring, R 3 is preferably methylene or ethylene group. In view of curability, availability, productivity, and cost, methylene group is more preferable. preferable.
 式(1)において、R5は、非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~4のアルキレン基を表す。
 R5のアルキレン基としては、上記R3で例示した基と同様のものが挙げられるが、中でも、メチレン、エチレン基が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、エチレン基がより好ましい。
In the formula (1), R 5 represents an unsubstituted or substituted alkylene group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms.
Examples of the alkylene group for R 5 include the same groups as those exemplified for R 3 above. Among them, methylene and ethylene groups are preferable, and in consideration of curability, availability, productivity, and cost. An ethylene group is more preferable.
 式(1)において、R6は、水素原子、または非置換もしくは置換の炭素原子数1~10、好ましくは炭素原子数1~4のアルキル基を表し、このアルキル基としては、上記R1で例示した基と同様のものが挙げられる。
 中でも、R6としては、水素原子、メチル基、フェニル基が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、水素原子がより好ましい。
In the formula (1), R 6 is a hydrogen atom or an unsubstituted or substituted C 1 -C 10, preferably an alkyl group having 1 to 4 carbon atoms, examples of the alkyl group, the above R 1 The thing similar to the illustrated group is mentioned.
Among these, as R 6 , a hydrogen atom, a methyl group, and a phenyl group are preferable, and a hydrogen atom is more preferable in consideration of curability, availability, productivity, and cost.
 式(1)において、Xは、O(酸素原子)またはS(硫黄原子)を表し、硬化性や入手の容易さ、生産性、コストの面を考慮すると、Oが好ましい。
 また、mは、1~3の整数を表すが、反応性の観点から2~3が好ましく、3がより好ましい。
In Formula (1), X represents O (oxygen atom) or S (sulfur atom), and O is preferable in consideration of curability, availability, productivity, and cost.
M represents an integer of 1 to 3, preferably 2 to 3, more preferably 3 from the viewpoint of reactivity.
 本発明のポリマーは、1分子中に少なくとも1個の上記構造式(1)で示される反応性ケイ素基を有するポリマーであれば、当該反応性ケイ素基が連結する主鎖骨格の構造は特に限定されるものではなく、その主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。 If the polymer of the present invention is a polymer having at least one reactive silicon group represented by the structural formula (1) in one molecule, the structure of the main chain skeleton to which the reactive silicon group is linked is particularly limited. The main chain skeleton may have a linear structure, a branched structure, or a crosslinked structure.
 本発明のポリマーの主鎖骨格の具体例としては、ポリウレタン;ポリ尿素;ポリオキシアルキレン(ポリエーテル);ポリカーボネート;ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、非晶ポリアリレート、液晶ポリマー等のポリエステル;ポリアミド;ポリイミド;ポリアミドイミド;ポリ(メタ)アクリレート;ポリスチレン;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、環状ポリオレフィン、ポリブタジエン、ポリイソプレン、ポリイソブチレン、スチレン-ブタジエン共重合体、ポリクロロプレン、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、イソブチレン-イソプレン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-環状オレフィン共重合体等のポリオレフィン、ポリ酢酸ビニル等のポリビニルエステル;ポリテトラフルオロエチレン;ポリアセタール;ポリフェニレンエーテル;ポリフェニレンスルファイド;ポリサルフォン;ポリエーテルサルフォン;ポリエーテルエーテルケトン;(ジメチル)ポリシロキサン、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体等が挙げられ、これら単独の主鎖でも、2種以上の成分の共重合体からなる主鎖でもよい。 Specific examples of the main chain skeleton of the polymer of the present invention include: polyurethane; polyurea; polyoxyalkylene (polyether); polycarbonate; polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, Polyesters such as amorphous polyarylate and liquid crystal polymer; polyamide; polyimide; polyamideimide; poly (meth) acrylate; polystyrene; polyethylene, polypropylene, polyvinyl chloride, cyclic polyolefin, polybutadiene, polyisoprene, polyisobutylene, styrene-butadiene copolymer Polymer, polychloroprene, acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, isobutylene-iso Polyethylene, such as polyolefin copolymer such as len copolymer, ethylene-propylene copolymer, ethylene-propylene-cyclic olefin copolymer, polyvinyl acetate; polytetrafluoroethylene; polyacetal; polyphenylene ether; polyphenylene sulfide; polysulfone; poly Ether sulfone; polyether ether ketone; (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) polysiloxane-polyurea copolymer, and the like. It may be a main chain composed of a copolymer of more than one component.
 これらの中でも、本発明のポリマーの主鎖骨格としては、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、ポリエステル、ポリ(メタ)アクリレート、ポリオレフィン、(ジメチル)ポリシロキサン、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体がより好ましく、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)がより一層好ましい。 Among these, as the main chain skeleton of the polymer of the present invention, polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane- Polyurethane copolymers and (dimethyl) polysiloxane-polyurea copolymers are preferred. In view of curability, availability, productivity, and cost, polyurethane, polyurea, polyoxyalkylene (polyether), (Dimethyl) polysiloxane-polyurethane copolymer and (dimethyl) polysiloxane-polyurea copolymer are more preferred, and polyurethane, polyurea and polyoxyalkylene (polyether) are even more preferred.
 また、本発明のポリマーでは、1分子中に少なくとも1個の上記構造式(1)で示される反応性ケイ素基を分子鎖末端に含有するが、1分子中に含まれる上記構造式(1)で示される反応性ケイ素基の数が平均して1個未満であると、これを主剤として含有する組成物の硬化性およびその硬化物の機械特性が不十分になる。
 一方、反応性ケイ素基が多すぎると架橋密度が高くなりすぎるため、得られる硬化物が良好な機械特性を示さなくなったり、組成物の保存安定性が悪化したりするおそれがある。そのため、1分子中に含まれる反応性ケイ素基の数は、好ましくは1.1~5個、より好ましくは2~4個、より一層好ましくは2個(例えば、分子鎖両末端にそれぞれ1個ずつ)である。
Further, in the polymer of the present invention, at least one reactive silicon group represented by the structural formula (1) is contained in one molecule at the molecular chain terminal, but the structural formula (1) contained in one molecule. If the average number of reactive silicon groups represented by is less than 1, the curability of the composition containing this as the main agent and the mechanical properties of the cured product become insufficient.
On the other hand, if there are too many reactive silicon groups, the crosslink density becomes too high, and the resulting cured product may not exhibit good mechanical properties, or the storage stability of the composition may deteriorate. Therefore, the number of reactive silicon groups contained in one molecule is preferably 1.1 to 5, more preferably 2 to 4, and even more preferably 2 (for example, one at each end of the molecular chain). Each).
 したがって、本発明のポリマーとしては、下記構造式(2)で表されるものが好ましく、このようなポリマーを用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。 Therefore, as the polymer of the present invention, those represented by the following structural formula (2) are preferable. By using such a polymer, the mechanical properties of the obtained cured product and the storage stability of the composition are further improved. Become.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(2)において、R1、R2、R3およびmは、上記と同じ意味を表し、R5は、互いに独立して上記と同じ意味を表し、R6は、互いに独立して上記と同じ意味を表し、Xは、互いに独立して上記と同じ意味を表す。
 Aは、上述したポリマー主鎖骨格に相当する構造を含有する二価の連結基であれば、その構造は特に限定されるものではなく、上記と同様、主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。
In the formula (2), R 1 , R 2 , R 3 and m represent the same meaning as described above, R 5 represents the same meaning as described above independently of each other, and R 6 represents the same as defined above independently of each other. The same meaning is represented and X represents the same meaning as the above independently of each other.
A is not particularly limited as long as A is a divalent linking group having a structure corresponding to the above-described polymer main chain skeleton, and similarly to the above, a linear structure in the main chain skeleton, It may have a branched structure or a crosslinked structure.
 Aの具体例としては、ポリウレタン;ポリ尿素;ポリオキシアルキレン(ポリエーテル);ポリカーボネート;ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、非晶ポリアリレート、液晶ポリマー等のポリエステル;ポリアミド;ポリイミド;ポリアミドイミド;ポリ(メタ)アクリレート;ポリスチレン;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、環状ポリオレフィン、ポリブタジエン、ポリイソプレン、ポリイソブチレン、スチレン-ブタジエン共重合体、ポリクロロプレン、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、イソブチレン-イソプレン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-環状オレフィン共重合体等のポリオレフィン、ポリ酢酸ビニル等のポリビニルエステル;ポリテトラフルオロエチレン;ポリアセタール;ポリフェニレンエーテル;ポリフェニレンスルファイド;ポリサルフォン;ポリエーテルサルフォン;ポリエーテルエーテルケトン;(ジメチル)ポリシロキサン、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体等のポリマー構造を含有する二価の連結基が挙げられ、これらを単独で含有する二価の連結基でも、2種以上の成分の共重合体からなる二価の連結基でもよい。 Specific examples of A include: polyurethane; polyurea; polyoxyalkylene (polyether); polycarbonate; polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, amorphous polyarylate, liquid crystal polymer Polyamide; Polyimide; Polyamideimide; Poly (meth) acrylate; Polystyrene; Polyethylene, Polypropylene, Polyvinyl chloride, Cyclic polyolefin, Polybutadiene, Polyisoprene, Polyisobutylene, Styrene-butadiene copolymer, Polychloroprene, Acrylonitrile— Butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, isobutylene-isoprene copolymer, ethylene Polyolefin such as propylene copolymer, ethylene-propylene-cyclic olefin copolymer, polyvinyl ester such as polyvinyl acetate; polytetrafluoroethylene; polyacetal; polyphenylene ether; polyphenylene sulfide; polysulfone; polyethersulfone; polyetherether Ketones: (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) polysiloxane-polyurea copolymer and other divalent linking groups containing a polymer structure. It may be a divalent linking group contained or a divalent linking group comprising a copolymer of two or more components.
 これらの中でも、Aとしては、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、ポリエステル、ポリ(メタ)アクリレート、ポリオレフィン、(ジメチル)ポリシロキサン、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体を含有する二価の連結基が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体を含有する二価の連結基がより好ましく、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)構造を含有する二価の連結基がより一層好ましい。 Among these, A includes polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) ) A divalent linking group containing a polysiloxane-polyurea copolymer is preferable. In view of curability, availability, productivity, and cost, polyurethane, polyurea, polyoxyalkylene (polyether) Divalent linking groups containing (dimethyl) polysiloxane-polyurethane copolymer and (dimethyl) polysiloxane-polyurea copolymer are more preferred, and contain polyurethane, polyurea, polyoxyalkylene (polyether) structure A divalent linking group is more preferred.
 すなわち、本発明のポリマーとしては、上記式(2)中のAが下記構造式(3)で表されるものが好ましく、このようなポリマーを用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。 That is, as the polymer of the present invention, it is preferable that A in the above formula (2) is represented by the following structural formula (3). By using such a polymer, the mechanical properties and composition of the cured product obtained are obtained. The storage stability of the product is further improved.
Figure JPOXMLDOC01-appb-C000015
(式中、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, * represents a bond.)
 式(3)において、R6およびXは、互いに独立して上記と同じ意味を表す。
 Yは、互いに独立して、非置換もしくは置換の炭素原子数1~20のアルキレン基、非置換もしくは置換の炭素原子数7~20のアラルキレン基、または非置換もしくは置換の炭素原子数6~20のアリーレン基を表す。
 炭素原子数1~20のアルキレン基の具体例としては、上記R3で例示した基と同様のものが挙げられるが、下記式(A)で表されるような鎖状部分と環状部分とが共存する2価の基であってもよい。
In the formula (3), R 6 and X each independently represent the same meaning as described above.
Y is independently of each other an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, an unsubstituted or substituted aralkylene group having 7 to 20 carbon atoms, or an unsubstituted or substituted carbon atom having 6 to 20 carbon atoms. Represents an arylene group.
Specific examples of the alkylene group having 1 to 20 carbon atoms include the same groups as those exemplified above for R 3 , but a chain portion and a cyclic portion represented by the following formula (A) are included. It may be a divalent group that coexists.
Figure JPOXMLDOC01-appb-C000016
(式中、Meはメチル基を、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, Me represents a methyl group, and * represents a bond.)
 炭素原子数6~20のアリーレン基としては、上記R3で例示した基と同様のものが挙げられる。
 炭素数7~20のアラルキレン基の具体例としては、メチレンビスフェニレン、ジメチルメチレンビスフェニレン、エチレンビスフェニレン、テトラメチレンビスフェニレン基等が挙げられる。なお、これらの基の水素原子の一部または全部が、アルキル基、アリール基、F,Cl,Br等のハロゲン原子やシアノ基等で置換されていてもよく、その具体例としては、ジフルオロメチレンビスフェニレン基等が挙げられる。
 これらの中でも、Yとしては、ヘキサメチレン、メチレンビスフェニレン、1,4-フェニレン、トルエンジイル、ナフタレンジイル、上記式(A)で表される2価の基が好ましく、硬化性や入手の容易さ、生産性、コスト、環境配慮の面を考慮すると、ヘキサメチレン、メチレンビスフェニレン、トルエンジイル、上記式(A)で表される2価の基がより好ましく、上記式(A)で表される2価の基がより一層好ましい。
Examples of the arylene group having 6 to 20 carbon atoms include the same groups as those exemplified for R 3 above.
Specific examples of the aralkylene group having 7 to 20 carbon atoms include methylene bisphenylene, dimethylmethylene bisphenylene, ethylene bisphenylene, and tetramethylene bisphenylene groups. In addition, some or all of hydrogen atoms of these groups may be substituted with a halogen atom such as an alkyl group, an aryl group, F, Cl, or Br, a cyano group, or the like. Specific examples thereof include difluoromethylene. A bisphenylene group etc. are mentioned.
Among these, Y is preferably hexamethylene, methylenebisphenylene, 1,4-phenylene, toluenediyl, naphthalenediyl, or a divalent group represented by the above formula (A), and is curable or easily available. In view of productivity, cost, and environmental considerations, hexamethylene, methylenebisphenylene, toluenediyl, and a divalent group represented by the above formula (A) are more preferable, represented by the above formula (A). Divalent groups are even more preferred.
 式(3)におけるnは1以上の数であるが、得られる硬化物の機械特性や組成物の作業性の観点から、1~1,000が好ましく、1~500がより好ましく、1~100がより一層好ましい。
 また、Zは、上述したポリマー主鎖骨格に相当する構造を含有する二価の連結基であれば、その構造は特に限定されるものではなく、上記と同様、主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。
N in the formula (3) is a number of 1 or more, but is preferably 1 to 1,000, more preferably 1 to 500, from the viewpoint of mechanical properties of the resulting cured product and workability of the composition. Is even more preferable.
Z is not particularly limited as long as Z is a divalent linking group containing a structure corresponding to the above-described polymer main chain skeleton, and as described above, the structure is linear in the main chain skeleton. It may have a structure, a branched structure, or a crosslinked structure.
 Zの具体例としては、ポリウレタン;ポリ尿素;ポリオキシアルキレン(ポリエーテル);ポリカーボネート;ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、非晶ポリアリレート、液晶ポリマー等のポリエステル;ポリアミド;ポリイミド;ポリアミドイミド;ポリ(メタ)アクリレート;ポリスチレン;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、環状ポリオレフィン、ポリブタジエン、ポリイソプレン、ポリイソブチレン、スチレン-ブタジエン共重合体、ポリクロロプレン、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、イソブチレン-イソプレン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-環状オレフィン共重合体等のポリオレフィン、ポリ酢酸ビニル等のポリビニルエステル;ポリテトラフルオロエチレン;ポリアセタール;ポリフェニレンエーテル;ポリフェニレンスルファイド;ポリサルフォン;ポリエーテルサルフォン;ポリエーテルエーテルケトン;(ジメチル)ポリシロキサン、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体等のポリマー構造を含有する二価の連結基が挙げられ、これらを単独で含有する二価の連結基でも、2種以上の成分の共重合体からなる二価の連結基でもよい。 Specific examples of Z include: polyurethane; polyurea; polyoxyalkylene (polyether); polycarbonate; polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, amorphous polyarylate, liquid crystal polymer Polyamide; Polyimide; Polyamideimide; Poly (meth) acrylate; Polystyrene; Polyethylene, Polypropylene, Polyvinyl chloride, Cyclic polyolefin, Polybutadiene, Polyisoprene, Polyisobutylene, Styrene-butadiene copolymer, Polychloroprene, Acrylonitrile— Butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, isobutylene-isoprene copolymer, ethylene Polyolefin such as propylene copolymer, ethylene-propylene-cyclic olefin copolymer, polyvinyl ester such as polyvinyl acetate; polytetrafluoroethylene; polyacetal; polyphenylene ether; polyphenylene sulfide; polysulfone; polyethersulfone; polyetherether Ketones: (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) polysiloxane-polyurea copolymer and other divalent linking groups containing a polymer structure. It may be a divalent linking group contained or a divalent linking group comprising a copolymer of two or more components.
 これらの中でも、Zとしては、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、ポリエステル、ポリ(メタ)アクリレート、ポリオレフィン、(ジメチル)ポリシロキサン、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体を含有する二価の連結基が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体を含有する二価の連結基がより好ましく、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)構造を含有する二価の連結基がより一層好ましく、得られる硬化物の機械特性および組成物の保存安定性の観点から、ポリオキシアルキレン構造を有する2価の連結基が特に好ましい。 Among these, as Z, polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) ) A divalent linking group containing a polysiloxane-polyurea copolymer is preferable. In view of curability, availability, productivity, and cost, polyurethane, polyurea, polyoxyalkylene (polyether) Divalent linking groups containing (dimethyl) polysiloxane-polyurethane copolymer and (dimethyl) polysiloxane-polyurea copolymer are more preferred, and contain polyurethane, polyurea, polyoxyalkylene (polyether) structure And more preferably a divalent linking group From the viewpoint of the storage stability of the mechanical properties and composition of the product, a divalent linking group having a polyoxyalkylene structure are particularly preferred.
 上記ポリオキシアルキレン構造は、直鎖状構造、分岐状構造、および架橋構造のいずれを有していてもよいが、得られる硬化物の機械特性および組成物の保存安定性の観点から、直鎖状ポリオキシアルキレン構造が好ましい。
 なお、本発明においてポリオキシアルキレン構造が「直鎖状」であるとは、当該ポリオキシアルキレン構造を構成する繰り返し単位である2価のオキシアルキレン基同士が直鎖状に連結していることを意味するものであって、各オキシアルキレン基自体は直鎖状であっても分岐状(例えば、-CH2CH(CH3)O-等のプロピレンオキシ基)であってもよい。
The polyoxyalkylene structure may have any of a linear structure, a branched structure, and a crosslinked structure. From the viewpoint of the mechanical properties of the resulting cured product and the storage stability of the composition, the polyoxyalkylene structure is linear. A polyoxyalkylene structure is preferred.
In the present invention, the polyoxyalkylene structure being “linear” means that the divalent oxyalkylene groups, which are repeating units constituting the polyoxyalkylene structure, are linearly linked. This means that each oxyalkylene group itself may be linear or branched (for example, a propyleneoxy group such as —CH 2 CH (CH 3 ) O—).
 したがって、本発明のポリマーとしては、上記式(3)中のZが下記構造式(4)で表される繰り返し単位を有する直鎖構造のものが好ましく、このようなポリマーを用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。 Accordingly, the polymer of the present invention preferably has a linear structure in which Z in the above formula (3) has a repeating unit represented by the following structural formula (4). The mechanical properties of the resulting cured product and the storage stability of the composition are further improved.
Figure JPOXMLDOC01-appb-C000017
(式中、*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000017
(In the formula, * represents a bond.)
 式(4)において、R4は、2価の炭化水素基、好ましくは2価の脂肪族炭化水素基であれば特に限定されるものではないが、炭素原子数1~14の直鎖または分岐鎖のアルキレン基が好ましく、炭素原子数2~4の直鎖または分岐鎖のアルキレン基がより好ましい。なお、アルキレン基としては、上記R3で例示した基と同様のものが挙げられる。
 また、pは、1以上の整数であるが、得られる硬化物の機械特性や組成物の作業性の観点から、5~700が好ましく、10~500がより好ましく、20~300がより一層好ましい。なお、pが2以上の場合、複数存在するR4は互いに同一でも異なっていてもよい。
In the formula (4), R 4 is not particularly limited as long as it is a divalent hydrocarbon group, preferably a divalent aliphatic hydrocarbon group, but it is linear or branched having 1 to 14 carbon atoms. A chain alkylene group is preferable, and a linear or branched alkylene group having 2 to 4 carbon atoms is more preferable. Examples of the alkylene group include the same groups as those exemplified for R 3 above.
Further, p is an integer of 1 or more, but is preferably 5 to 700, more preferably 10 to 500, and still more preferably 20 to 300, from the viewpoint of mechanical properties of the obtained cured product and workability of the composition. . When p is 2 or more, a plurality of R 4 may be the same or different from each other.
 上記式(4)の-OR4-で表される単位の具体例としては、-OCH2-、-OCH2CH2-、-OCH2CH2CH2-、-OCH2CH(CH3)-、-OCH2CH(CH2CH3)-、-OCH2C(CH32-、-OCH2CH2CH2CH2-等が挙げられる。 Specific examples of the unit represented by —OR 4 — in the above formula (4) include —OCH 2 —, —OCH 2 CH 2 —, —OCH 2 CH 2 CH 2 —, —OCH 2 CH (CH 3 ). -, -OCH 2 CH (CH 2 CH 3 )-, -OCH 2 C (CH 3 ) 2- , -OCH 2 CH 2 CH 2 CH 2- and the like.
 本発明において、上記オキシアルキレン系重合体の主鎖骨格は、上記式(4)で表される繰り返し単位のうち1種類からなってもよいし、2種類以上の繰り返し単位からなってもよい。特に、コーティング剤、接着剤、シーラント等の材料に使用される場合には、耐久性の観点からプロピレンオキシド(-CH2CH(CH3)O-)を主成分とする重合体が好ましい。 In the present invention, the main chain skeleton of the oxyalkylene polymer may be composed of one type of repeating units represented by the above formula (4), or may be composed of two or more types of repeating units. In particular, when used for materials such as a coating agent, an adhesive, and a sealant, a polymer containing propylene oxide (—CH 2 CH (CH 3 ) O—) as a main component is preferable from the viewpoint of durability.
 本発明のポリマーの数平均分子量は、特に限定されるものではないが、当該ポリマーを含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、数平均分子量200~200,000が好ましく、1,000~100,000がより好ましい。なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)分析におけるポリスチレン換算値である(以下、同様)。 The number average molecular weight of the polymer of the present invention is not particularly limited, but the workability is improved within the appropriate range of the viscosity of the curable composition containing the polymer, and sufficient curability is imparted. In view of the above, the number average molecular weight is preferably 200 to 200,000, more preferably 1,000 to 100,000. In addition, the number average molecular weight in this invention is a polystyrene conversion value in a gel permeation chromatography (GPC) analysis (hereinafter the same).
 本発明のポリマーの粘度は、特に限定されるものではないが、当該ポリマーを含む硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、粘度が10~200,000mPa・sのものが好ましく、より好ましくは50~100,000mPa・s、特に好ましくは100~50,000mPa・sのものである。ここで、粘度は、B型回転粘度計による25℃における測定値である。 The viscosity of the polymer of the present invention is not particularly limited, but it is considered that the viscosity of the curable composition containing the polymer is within an appropriate range to improve workability and provide sufficient curability. Accordingly, the viscosity is preferably 10 to 200,000 mPa · s, more preferably 50 to 100,000 mPa · s, and particularly preferably 100 to 50,000 mPa · s. Here, the viscosity is a value measured at 25 ° C. by a B-type rotational viscometer.
 上述した本発明のポリマーは、分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーと、下記式(5)で表される2級アミノ基、3級アミノ基およびアルコキシシリル基を有する化合物(以下、2級-3級ジアミノシランという)とを反応させて得ることができる。
 より具体的には、分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーのイソシアネート基またはイソチオシアネート基と、2級-3級ジアミノシランの2級アミノ基との間でウレア結合またはチオウレア結合を形成する反応(ウレア化反応またはチオウレア化反応)を行う。
The polymer of the present invention described above is a compound having a polymer having a molecular chain end blocked with an isocyanate group or an isothiocyanate group, and a secondary amino group, a tertiary amino group and an alkoxysilyl group represented by the following formula (5): (Hereinafter referred to as “secondary-tertiary diaminosilane”).
More specifically, a urea bond or thiourea is formed between the isocyanate group or isothiocyanate group of the polymer whose molecular chain end is blocked with an isocyanate group or isothiocyanate group and the secondary amino group of the secondary-tertiary diaminosilane. A reaction to form a bond (urea reaction or thiourea reaction) is performed.
Figure JPOXMLDOC01-appb-C000018
(式中、R1、R2、R3、R5およびmは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000018
(In the formula, R 1 , R 2 , R 3 , R 5 and m have the same meaning as described above.)
 上記式(5)で表される2級-3級ジアミノシランの具体例としては、N-(トリメトキシシリルメチル)ピペラジン、N-(メチルジメトキシシリルメチル)ピペラジン、N-(ジメチルメトキシシリルメチル)ピペラジン、N-(トリエトキシシリルメチル)ピペラジン、N-(メチルジエトキシシリルメチル)ピペラジン、N-(ジメチルエトキシシリルメチル)ピペラジン、N-(トリメトキシシリルメチル)イミダゾリジン、N-(メチルジメトキシシリルメチル)イミダゾリジン、N-(ジメチルメトキシシリルメチル)イミダゾリジン、N-(トリエトキシシリルメチル)イミダゾリジン、N-(メチルジエトキシシリルメチル)イミダゾリジン、N-(ジメチルエトキシシリルメチル)イミダゾリジン、N,N′-ジメチル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジメチル-N-(メチルジメトキシシリルメチル)エチレンジアミン、N,N′-ジメチル-N-(ジメチルメトキシシリルメチル)エチレンジアミン、N,N′-ジメチル-N-(トリエトキシシリルメチル)エチレンジアミン、N,N′-ジメチル-N-(メチルジエトキシシリルメチル)エチレンジアミン、N,N′-ジメチル-N-(ジメチルエトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(メチルジメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(ジメチルメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(トリエトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(メチルジエトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(ジメチルエトキシシリルメチル)エチレンジアミン、N,N′-ジフェニル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジフェニル-N-(メチルジメトキシシリルメチル)エチレンジアミン、N,N′-ジフェニル-N-(ジメチルメトキシシリルメチル)エチレンジアミン、N,N′-ジフェニル-N-(トリエトキシシリルメチル)エチレンジアミン、N,N′-ジフェニル-N-(メチルジエトキシシリルメチル)エチレンジアミン、N,N′-ジフェニル-N-(ジメチルエトキシシリルメチル)エチレンジアミンおよび下記構造式で表されるもの等が挙げられるが、これらに限定されることなく、上記式(5)で表される2級-3級ジアミノシランであれば用いることができる。 Specific examples of the secondary-tertiary diaminosilane represented by the above formula (5) include N- (trimethoxysilylmethyl) piperazine, N- (methyldimethoxysilylmethyl) piperazine, N- (dimethylmethoxysilylmethyl). Piperazine, N- (triethoxysilylmethyl) piperazine, N- (methyldiethoxysilylmethyl) piperazine, N- (dimethylethoxysilylmethyl) piperazine, N- (trimethoxysilylmethyl) imidazolidine, N- (methyldimethoxysilyl) Methyl) imidazolidine, N- (dimethylmethoxysilylmethyl) imidazolidine, N- (triethoxysilylmethyl) imidazolidine, N- (methyldiethoxysilylmethyl) imidazolidine, N- (dimethylethoxysilylmethyl) imidazolidine, N, N'-dimethyl -N- (trimethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (methyldimethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (dimethylmethoxysilylmethyl) ethylenediamine, N, N'- Dimethyl-N- (triethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (methyldiethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (dimethylethoxysilylmethyl) ethylenediamine, N, N '-Di-t-butyl-N- (trimethoxysilylmethyl) ethylenediamine, N, N'-di-t-butyl-N- (methyldimethoxysilylmethyl) ethylenediamine, N, N'-di-t-butyl-N- ( Dimethylmethoxysilylmethyl) ethylenediamine, N, N'-di-t- Cyl-N- (triethoxysilylmethyl) ethylenediamine, N, N'-di-t-butyl-N- (methyldiethoxysilylmethyl) ethylenediamine, N, N'-di-t-butyl-N- (dimethylethoxysilylmethyl) ) Ethylenediamine, N, N'-diphenyl-N- (trimethoxysilylmethyl) ethylenediamine, N, N'-diphenyl-N- (methyldimethoxysilylmethyl) ethylenediamine, N, N'-diphenyl-N- (dimethylmethoxysilyl) Methyl) ethylenediamine, N, N'-diphenyl-N- (triethoxysilylmethyl) ethylenediamine, N, N'-diphenyl-N- (methyldiethoxysilylmethyl) ethylenediamine, N, N'-diphenyl-N- (dimethyl) Ethoxysilylmethyl) ethylenediamine and below Although not limited to these, any secondary-tertiary diaminosilane represented by the above formula (5) can be used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 これらの中でも、加水分解性の観点から、N-(トリメトキシシリルメチル)ピペラジン、N-(メチルジメトキシシリルメチル)ピペラジン、N-(トリエトキシシリルメチル)ピペラジン、N,N′-ジメチル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジメチル-N-(メチルジメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(メチルジメトキシシリルメチル)エチレンジアミン、N,N′-ジフェニル-N-(トリメトキシシリルメチル)エチレンジアミンが好ましく、N-(トリメトキシシリルメチル)ピペラジン、N-(メチルジメトキシシリルメチル)ピペラジン、N,N′-ジメチル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジメチル-N-(メチルジメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(メチルジメトキシシリルメチル)エチレンジアミンがより好ましく、N-(トリメトキシシリルメチル)ピペラジン、N,N′-ジメチル-N-(トリメトキシシリルメチル)エチレンジアミン、N,N′-ジt-ブチル-N-(トリメトキシシリルメチル)エチレンジアミンがより好ましい。 Among these, from the viewpoint of hydrolyzability, N- (trimethoxysilylmethyl) piperazine, N- (methyldimethoxysilylmethyl) piperazine, N- (triethoxysilylmethyl) piperazine, N, N′-dimethyl-N— (Trimethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (methyldimethoxysilylmethyl) ethylenediamine, N, N'-di-t-butyl-N- (trimethoxysilylmethyl) ethylenediamine, N, N'- Di-t-butyl-N- (methyldimethoxysilylmethyl) ethylenediamine, N, N'-diphenyl-N- (trimethoxysilylmethyl) ethylenediamine is preferred, N- (trimethoxysilylmethyl) piperazine, N- (methyldimethoxysilyl) Methyl) piperazine, N, N'-dimethyl- -(Trimethoxysilylmethyl) ethylenediamine, N, N'-dimethyl-N- (methyldimethoxysilylmethyl) ethylenediamine, N, N'-di-t-butyl-N- (trimethoxysilylmethyl) ethylenediamine, N, N ' -Di-t-butyl-N- (methyldimethoxysilylmethyl) ethylenediamine is more preferable, N- (trimethoxysilylmethyl) piperazine, N, N'-dimethyl-N- (trimethoxysilylmethyl) ethylenediamine, N, N ' -Di-t-butyl-N- (trimethoxysilylmethyl) ethylenediamine is more preferred.
 上記分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーは、イソシアネート基またはイソチオシアネート基を分子鎖末端に含有するポリマーであれば、これらの基が連結する主鎖骨格の構造は特に限定されるものではなく、その主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。
 これらの中でも、得られる硬化物の機械特性および組成物の保存安定性の観点から、直鎖状構造が好ましい。
If the polymer having the molecular chain terminal blocked with an isocyanate group or isothiocyanate group is a polymer containing an isocyanate group or isothiocyanate group at the molecular chain terminal, the structure of the main chain skeleton to which these groups are linked is particularly limited. The main chain skeleton may have a linear structure, a branched structure, or a crosslinked structure.
Among these, a linear structure is preferable from the viewpoint of mechanical properties of the obtained cured product and storage stability of the composition.
 分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーの主鎖骨格の具体例としては、上記式(1)で表されるポリマーの主骨格で例示したものと同様のものが挙げられるが、中でも、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、ポリエステル、ポリ(メタ)アクリレート、ポリオレフィン、(ジメチル)ポリシロキサン、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体が好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)、(ジメチル)ポリシロキサン-ポリウレタン共重合体、(ジメチル)ポリシロキサン-ポリ尿素共重合体がより好ましく、ポリウレタン、ポリ尿素、ポリオキシアルキレン(ポリエーテル)がより一層好ましい。 Specific examples of the main chain skeleton of the polymer whose molecular chain terminal is blocked with an isocyanate group or an isothiocyanate group include those exemplified for the main skeleton of the polymer represented by the above formula (1). Among them, polyurethane, polyurea, polyoxyalkylene (polyether), polyester, poly (meth) acrylate, polyolefin, (dimethyl) polysiloxane, (dimethyl) polysiloxane-polyurethane copolymer, (dimethyl) polysiloxane-poly Urea copolymers are preferred, and in view of curability, availability, productivity, and cost, polyurethane, polyurea, polyoxyalkylene (polyether), (dimethyl) polysiloxane-polyurethane copolymer, ( (Dimethyl) polysiloxane-polyurea copolymer is more preferred , Polyurethanes, polyureas, polyoxyalkylene (polyether) is more preferable.
 また、分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーは、1分子中に少なくとも1個のイソシアネート基またはイソチオシアネート基を分子鎖末端に含有するが、1分子中に含まれるイソシアネート基またはイソチオシアネート基の数が平均して1個未満であると、本発明の組成物の硬化性およびその硬化物の機械特性が不十分になる。
 一方、イソシアネート基またはイソチオシアネート基が多すぎると架橋密度が高くなりすぎるため、得られる硬化物が良好な機械特性を示さなくなったり、組成物の保存安定性が悪化したりするおそれがある。そのため、1分子中に含まれるイソシアネート基またはイソチオシアネート基の数は1個以上であり、好ましくは1.1~5個、より好ましくは2~4個、更に好ましくは2個(例えば、分子鎖両末端にそれぞれ1個ずつ)である。
In addition, the polymer whose molecular chain terminal is blocked with an isocyanate group or isothiocyanate group contains at least one isocyanate group or isothiocyanate group in one molecule, but the isocyanate group contained in one molecule. Alternatively, if the number of isothiocyanate groups on average is less than 1, the curability of the composition of the present invention and the mechanical properties of the cured product become insufficient.
On the other hand, if there are too many isocyanate groups or isothiocyanate groups, the crosslinking density becomes too high, and the resulting cured product may not exhibit good mechanical properties, or the storage stability of the composition may deteriorate. Therefore, the number of isocyanate groups or isothiocyanate groups contained in one molecule is 1 or more, preferably 1.1 to 5, more preferably 2 to 4, and still more preferably 2 (for example, molecular chain One at each end).
 したがって、分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーとしては、下記構造式(6)で表されるものが好ましく、このようなポリマーを用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。 Therefore, as the polymer whose molecular chain terminal is blocked with an isocyanate group or an isothiocyanate group, a polymer represented by the following structural formula (6) is preferable. By using such a polymer, mechanical properties of the obtained cured product are obtained. Further, the storage stability of the composition is further improved.
Figure JPOXMLDOC01-appb-C000020
(式中、Aは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000020
(In the formula, A represents the same meaning as described above.)
 式(6)において、Xは、互いに独立してO(酸素原子)またはS(硫黄原子)を表すが、硬化性や入手の容易さ、生産性、コストの面からOが好ましい。 In the formula (6), X represents O (oxygen atom) or S (sulfur atom) independently of each other, but O is preferable from the viewpoint of curability, availability, productivity, and cost.
 式(6)で表される分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーとしては、市販品として入手可能なものを用いても、分子鎖末端が水酸基で封鎖されたポリオール化合物の水酸基と、ポリイソシアネート化合物またはポリイソチオシアネート化合物のイソシアネート基またはイソチオシアネート基との間でウレタン化反応またはチオウレタン化反応を行うことにより調製したもの(一般的にイソシアネートプレポリマーとして公知である)を用いてもよい。 As the polymer in which the molecular chain terminal represented by the formula (6) is blocked with an isocyanate group or an isothiocyanate group, a polymer compound which is available as a commercially available product is a polyol compound whose molecular chain terminal is blocked with a hydroxyl group. Prepared by performing a urethanization reaction or a thiourethanization reaction between a hydroxyl group and an isocyanate group or isothiocyanate group of a polyisocyanate compound or polyisothiocyanate compound (generally known as an isocyanate prepolymer) It may be used.
 上記分子鎖末端が水酸基で封鎖されたポリオール化合物は、水酸基を分子鎖末端に含有するものであれば、水酸基が連結する主鎖骨格の構造は特に限定されるものではなく、その主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。
 これらの中でも、得られる硬化物の機械特性および組成物の保存安定性の観点から、直鎖状構造が好ましい。
The structure of the main chain skeleton to which the hydroxyl group is linked is not particularly limited as long as the polyol compound having the molecular chain end blocked with a hydroxyl group has a hydroxyl group at the molecular chain end. May have a linear structure, a branched structure, or a crosslinked structure.
Among these, a linear structure is preferable from the viewpoint of mechanical properties of the obtained cured product and storage stability of the composition.
 分子鎖末端が水酸基で封鎖されたポリオール化合物の具体例としては、ポリオキシアルキレンポリオール(ポリエーテルポリオール)、ポリエステルポリオール、アクリルポリオール、エポキシポリオール、ポリオレフィンポリオール、ふっ素含有ポリオール、α,ω-ヒドロキシアルキル(ジメチル)ポリシロキサン等が挙げられ、これらは単独の成分で用いても、2種以上の成分を組み合わせて混合物または共重合体として用いてもよい。
 これらの中でも、分子鎖末端が水酸基で封鎖されたポリオール化合物としては、ポリオキシアルキレンポリオール(ポリエーテルポリオール)、ポリエステルポリオール、ポリオレフィンポリオール、α,ω-ヒドロキシアルキル(ジメチル)ポリシロキサンが好ましく、硬化性や入手の容易さ、生産性、コストの面を考慮すると、ポリオキシアルキレンポリオール(ポリエーテルポリオール)、α,ω-ヒドロキシアルキル(ジメチル)ポリシロキサンがより好ましく、ポリオキシアルキレンポリオール(ポリエーテルポリオール)がより一層好ましい。
Specific examples of the polyol compound whose molecular chain end is blocked with a hydroxyl group include polyoxyalkylene polyol (polyether polyol), polyester polyol, acrylic polyol, epoxy polyol, polyolefin polyol, fluorine-containing polyol, α, ω-hydroxyalkyl ( Dimethyl) polysiloxane and the like. These may be used as a single component, or may be used as a mixture or copolymer by combining two or more components.
Among these, polyoxyalkylene polyols (polyether polyols), polyester polyols, polyolefin polyols, and α, ω-hydroxyalkyl (dimethyl) polysiloxanes are preferred as the polyol compounds whose molecular chain ends are blocked with hydroxyl groups, and are curable. In view of availability, productivity, and cost, polyoxyalkylene polyol (polyether polyol) and α, ω-hydroxyalkyl (dimethyl) polysiloxane are more preferable, and polyoxyalkylene polyol (polyether polyol). Is even more preferable.
 また、上記分子鎖末端が水酸基で封鎖されたポリオール化合物は、1分子中に少なくとも1個の水酸基を分子鎖末端に含有するが、1分子中に含まれる水酸基の数が平均して1個未満であると、これを用いて調製された本発明のポリマーを主剤として含有する組成物の硬化性およびその硬化物の機械特性が不十分になる。
 一方、水酸基が多すぎると架橋密度が高くなりすぎるため、得られる硬化物が良好な機械特性を示さなくなったり、組成物の保存安定性が悪化したりするおそれがある。そのため、1分子中に含まれる水酸基の数は1個以上であり、好ましくは1.1~5個、より好ましくは2~4個、より一層好ましくは2個(例えば、分子鎖両末端にそれぞれ1個ずつ)である。
Further, the polyol compound whose molecular chain end is blocked with a hydroxyl group contains at least one hydroxyl group in one molecule, but the average number of hydroxyl groups contained in one molecule is less than one. When it is, the sclerosis | hardenability of the composition containing the polymer of this invention prepared using this as a main ingredient, and the mechanical characteristic of the cured | curing material will become inadequate.
On the other hand, if there are too many hydroxyl groups, the crosslinking density becomes too high, and the resulting cured product may not show good mechanical properties, or the storage stability of the composition may deteriorate. Therefore, the number of hydroxyl groups contained in one molecule is 1 or more, preferably 1.1 to 5, more preferably 2 to 4, and even more preferably 2 (for example, at both ends of the molecular chain, respectively). One by one).
 したがって、分子鎖末端が水酸基で封鎖されたポリオール化合物としては、下記構造式(7)で表されるものが好ましく、このような化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。 Therefore, as the polyol compound whose molecular chain end is blocked with a hydroxyl group, those represented by the following structural formula (7) are preferable. By using such a compound, the mechanical properties of the resulting cured product and the composition Storage stability is further improved.
Figure JPOXMLDOC01-appb-C000021
(式中、R4およびpは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000021
(In the formula, R 4 and p have the same meaning as described above.)
 上記分子鎖末端が水酸基で封鎖されたポリオール化合物の具体例としては、下記構造式で表されるもの等が挙げられるが、これらに限定されるものではなく、分子鎖末端が水酸基で封鎖されたポリオール化合物であれば用いることができる。 Specific examples of the polyol compound in which the molecular chain terminal is blocked with a hydroxyl group include those represented by the following structural formulas, but are not limited thereto, and the molecular chain terminal is blocked with a hydroxyl group. Any polyol compound can be used.
Figure JPOXMLDOC01-appb-C000022
(式中、pは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000022
(Wherein p represents the same meaning as described above.)
 上記分子鎖末端が水酸基で封鎖されたポリオール化合物の数平均分子量は、特に限定されるものではないが、本発明の硬化性組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、数平均分子量200~50,000が好ましく、1,000~20,000がより好ましい。 The number average molecular weight of the polyol compound in which the molecular chain terminal is blocked with a hydroxyl group is not particularly limited, but it is sufficient to improve workability by setting the viscosity of the curable composition of the present invention within an appropriate range. In view of imparting sufficient curability, the number average molecular weight is preferably 200 to 50,000, more preferably 1,000 to 20,000.
 一方、上記ポリイソシアネート化合物またはポリイソチオシアネート化合物は、1分子中に少なくとも2個のイソシアネート基またはイソチオシアネート基を分子鎖末端に含有するものであれば特に限定されるものではなく、主鎖骨格中に直鎖状構造、分岐状構造、または架橋構造を有していてもよい。
 これらの中でも、得られる硬化物の機械特性および組成物の保存安定性の観点から、直鎖状構造および/または分岐状構造を含むものが好ましい。
On the other hand, the polyisocyanate compound or polyisothiocyanate compound is not particularly limited as long as it contains at least two isocyanate groups or isothiocyanate groups in one molecule at the molecular chain end, and is not limited in the main chain skeleton. May have a linear structure, a branched structure, or a crosslinked structure.
Among these, those containing a linear structure and / or a branched structure are preferred from the viewpoint of the mechanical properties of the resulting cured product and the storage stability of the composition.
 また、上記ポリイソシアネート化合物またはポリイソチオシアネート化合物は、1分子中に少なくとも2個のイソシアネート基またはイソチオシアネート基を分子鎖末端に含有するが、1分子中に含まれるイソシアネート基またはイソチオシアネート基の数が平均して2個未満であると、これを用いて調製された本発明のポリマーを主剤として含有する組成物の硬化性およびその硬化物の機械特性が不十分になる。
 一方、イソシアネート基またはイソチオシアネート基が多すぎると架橋密度が高くなりすぎるため、得られる硬化物が良好な機械特性を示さなくなったり、組成物の保存安定性が悪化したりするおそれがある。そのため、1分子中に含まれるイソシアネート基またはイソチオシアネート基の数は2個以上であり、好ましくは2~5個、より好ましくは2~4個、より一層好ましくは2個(例えば、分子鎖両末端にそれぞれ1個ずつ)である。
The polyisocyanate compound or polyisothiocyanate compound contains at least two isocyanate groups or isothiocyanate groups in one molecule, but the number of isocyanate groups or isothiocyanate groups contained in one molecule. If the average number is less than 2, the curability of the composition containing the polymer of the present invention prepared using this as a main ingredient and the mechanical properties of the cured product become insufficient.
On the other hand, if there are too many isocyanate groups or isothiocyanate groups, the crosslinking density becomes too high, and the resulting cured product may not exhibit good mechanical properties, or the storage stability of the composition may deteriorate. Therefore, the number of isocyanate groups or isothiocyanate groups contained in one molecule is 2 or more, preferably 2 to 5, more preferably 2 to 4, and even more preferably 2 (for example, both molecular chains One at each end).
 したがって、ポリイソシアネート化合物またはポリイソチオシアネート化合物としては、下記構造式(8)で表されるものが好ましく、このような化合物を用いることで、得られる硬化物の機械特性および組成物の保存安定性がさらに良好となる。 Therefore, as the polyisocyanate compound or polyisothiocyanate compound, those represented by the following structural formula (8) are preferable. By using such a compound, the mechanical properties of the resulting cured product and the storage stability of the composition are obtained. Is even better.
Figure JPOXMLDOC01-appb-C000023
(式中、XおよびYは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000023
(In the formula, X and Y represent the same meaning as described above.)
 上記ポリイソシアネート化合物またはポリイソチオシアネート化合物の具体例としては、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、4,4′-ビス-(イソシアネートメチル)-ジフェニルメタン、ポリメチレンポリフェニルポリイソシアネート、フェニレンジイソシアネート、トルエンジイソシアネート、キシレンジイソシアネート、テトラメチルキシレンジイソシアネート、ナフタレンジイソシアネート、トリス(6-イソシアネートヘキシル)イソシアヌレート、ヘキサメチレンジイソチオシアネート、4,4′-メチレンビス(シクロヘキシルイソチオシアネート)、シクロヘキサンジイソチオシアネート、3-イソチオシアナトメチル-3,5,5-トリメチルシクロヘキシルイソチオシアネート、フェニレンジイソチオシアネート、トルエンジイソチオシアネート、4,4′-メチレンジ(フェニルイソチオシアネート)等が挙げられ、これらの中でも、これを用いて調製された本発明のポリマーを主剤として含有する組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、トルエンジイソシアネートが好ましく、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートがより好ましい。 Specific examples of the polyisocyanate compound or polyisothiocyanate compound include hexamethylene diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, 4,4'-bis- (isocyanatemethyl) -diphenylmethane, polymethylene polyphenyl polyisocyanate, and phenylene. Diisocyanate, toluene diisocyanate, xylene diisocyanate, tetramethylxylene diisocyanate, naphthalene diisocyanate, tris (6-isocyanatohexyl) isocyanurate, hexamethylene diisothiocyanate, 4,4'-methylenebis (cyclohexyl isothiocyanate), cyclohexane diisothiocyanate, 3 -Isothiocyanato -3,5,5-trimethylcyclohexyl isothiocyanate, phenylene diisothiocyanate, toluene diisothiocyanate, 4,4'-methylenedi (phenylisothiocyanate), and the like. Considering that the viscosity of the composition containing the polymer of the present invention as a main ingredient is improved within a suitable range and workability is improved, and sufficient curability is given, hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, toluene diisocyanate Are preferred, and hexamethylene diisocyanate and isophorone diisocyanate are more preferred.
 上記式(6)で表される分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーを調製する場合、その製造方法は特に限定されるものではないが、一般的にウレタン化反応またはチオウレタン化反応で使用されている公知の製造方法から適宜選択すればよい。
 より具体的には、分子鎖末端が水酸基で封鎖されたポリオール化合物と、ポリイソシアネート化合物またはポリイソチオシアネート化合物との反応割合は、ウレタン化反応またはチオウレタン化反応時の副生物を抑制するとともに、得られるポリマーの保存安定性や特性を高めることを考慮すると、分子鎖末端が水酸基で封鎖されたポリオール化合物中の水酸基1molに対し、ポリイソシアネート化合物またはポリイソチオシアネート化合物のイソシアネート基またはイソチオシアネート基が1molより大きく100mol以下となる割合が好ましく、1.1~50molとなる割合がより好ましく、1.2~10molとなる割合がより一層好ましい。
When preparing a polymer in which the molecular chain terminal represented by the above formula (6) is blocked with an isocyanate group or an isothiocyanate group, the production method is not particularly limited. What is necessary is just to select suitably from the well-known manufacturing method currently used by the urethanation reaction.
More specifically, the reaction ratio of the polyol compound whose molecular chain end is blocked with a hydroxyl group and the polyisocyanate compound or polyisothiocyanate compound suppresses by-products during the urethanization reaction or thiourethanization reaction, In consideration of enhancing the storage stability and characteristics of the resulting polymer, the isocyanate group or isothiocyanate group of the polyisocyanate compound or polyisothiocyanate compound is 1 mol of the hydroxyl group in the polyol compound whose molecular chain end is blocked with a hydroxyl group. A ratio of greater than 1 mol to 100 mol or less is preferred, a ratio of 1.1 to 50 mol is more preferred, and a ratio of 1.2 to 10 mol is even more preferred.
 また、上記ウレタン化反応またはチオウレタン化反応時には、触媒を使用しなくてもよいが、反応速度向上のため触媒を使用してもよい。
 触媒としては、一般的にウレタン化反応またはチオウレタン化反応で使用されているものから適宜選択すればよく、その具体例としては、ジブチルスズオキシド、ジオクチルスズオキシド、スズ(II)ビス(2-エチルヘキサノエート)、ジブチルスズジラウレート、ジオクチルスズジラウレート等が挙げられる。
 触媒の使用量は触媒量であればよいが、通常、分子鎖末端が水酸基で封鎖されたポリオール化合物とポリイソシアネート化合物またはポリイソチオシアネート化合物の合計に対して0.001~1質量%である。
In the urethanization reaction or thiourethanation reaction, a catalyst may not be used, but a catalyst may be used for improving the reaction rate.
The catalyst may be appropriately selected from those generally used in the urethanization reaction or thiourethanation reaction, and specific examples thereof include dibutyltin oxide, dioctyltin oxide, tin (II) bis (2-ethyl). Hexanoate), dibutyltin dilaurate, dioctyltin dilaurate and the like.
The amount of the catalyst used may be a catalytic amount, but is usually 0.001 to 1% by mass based on the total of the polyol compound and the polyisocyanate compound or polyisothiocyanate compound whose molecular chain ends are blocked with a hydroxyl group.
 さらに、上記ウレタン化反応またはチオウレタン化反応には、反応に悪影響を及ぼさない溶媒を用いることができる。
 その具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ホルムアミド、N,N-ジメチルホルムアミド、ピロリドン、N-メチルピロリドン等のアミド系溶媒、酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコール-1-モノメチルエーテル-2-アセタート等のエステル系溶媒;ジエチルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
Furthermore, a solvent that does not adversely influence the reaction can be used in the urethanization reaction or thiourethanation reaction.
Specific examples thereof include hydrocarbon solvents such as pentane, hexane, heptane, octane, decane and cyclohexane; aromatic solvents such as benzene, toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; formamide Amide solvents such as N, N-dimethylformamide, pyrrolidone and N-methylpyrrolidone, ester solvents such as ethyl acetate, butyl acetate, γ-butyrolactone, propylene glycol-1-monomethyl ether-2-acetate; diethyl ether, Examples include ether solvents such as dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, and 1,4-dioxane. These may be used alone or in combination of two or more.
 ウレタン化反応またはチオウレタン化反応時の反応温度は、特に限定されるものではないが、反応速度を適切にしつつ、アロファネート化等の副反応を抑制することを考慮すると、25~90℃が好ましく、40~80℃がより好ましい。
 反応時間は特に制限されないが、通常10分~24時間である。
The reaction temperature during the urethanization reaction or thiourethanization reaction is not particularly limited, but is preferably 25 to 90 ° C. in consideration of suppressing side reactions such as allophanatization while making the reaction rate appropriate. 40 to 80 ° C. is more preferable.
The reaction time is not particularly limited, but is usually 10 minutes to 24 hours.
 本発明の反応性ケイ素含有基を有するポリマーは、分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーと、上記式(5)で表される2級-3級ジアミノシランとを反応させて得ることができる。
 その具体的な方法は特に限定されるものではなく、一般的にウレア化反応またはチオウレア化反応で使用されている公知の製造方法から適宜選択すればよい。
 より具体的には、上記式(5)で表される2級-3級ジアミノシランと、分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーとの反応割合は、ウレア化反応またはチオウレア化反応の副生物を抑制するとともに、得られるポリマーの保存安定性や特性を高めることを考慮すると、上記式(5)で表される2級-3級ジアミノシラン中の2級アミノ基1molに対し、分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマー中のイソシアネート基またはイソチオシアネート基が0.1~2.0molとなる割合が好ましく、0.4~1.5molとなる割合がより好ましく、0.8~1.2molとなる割合がより一層好ましい。
The polymer having a reactive silicon-containing group of the present invention is obtained by reacting a polymer whose molecular chain end is blocked with an isocyanate group or an isothiocyanate group and a secondary-tertiary diaminosilane represented by the above formula (5). Can be obtained.
The specific method is not particularly limited, and may be appropriately selected from known production methods generally used in the urea reaction or thiourea reaction.
More specifically, the reaction ratio between the secondary / tertiary diaminosilane represented by the above formula (5) and the polymer whose molecular chain terminal is blocked with an isocyanate group or an isothiocyanate group is represented by urea reaction or thiourea. In consideration of suppressing the by-product of the polymerization reaction and enhancing the storage stability and properties of the resulting polymer, 1 mol of the secondary amino group in the secondary-tertiary diaminosilane represented by the above formula (5) On the other hand, the ratio of the isocyanate group or isothiocyanate group in the polymer whose molecular chain end is blocked with an isocyanate group or isothiocyanate group is preferably 0.1 to 2.0 mol, and the ratio of 0.4 to 1.5 mol is preferable. More preferably, the ratio of 0.8 to 1.2 mol is even more preferable.
 また、上記ウレア化反またはチオウレア化反応時には、触媒を使用しなくてもよいが、反応速度向上のため触媒を使用してもよい。
 触媒としては、一般的にウレア化反応またはチオウレア化反応で使用されているものから適宜選択すればよく、その具体例としては、ジブチルスズオキシド、ジオクチルスズオキシド、スズ(II)ビス(2-エチルヘキサノエート)、ジブチルスズジラウレート、ジオクチルスズジラウレート等が挙げられる。
 触媒の使用量は触媒量であればよいが、通常、上記式(5)で表される2級-3級ジアミノシランと分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーの合計に対して0.001~1質量%である。
In addition, during the urea reaction or thiourea reaction, it is not necessary to use a catalyst, but a catalyst may be used to improve the reaction rate.
The catalyst may be appropriately selected from those generally used in urea reaction or thiourea reaction, and specific examples thereof include dibutyltin oxide, dioctyltin oxide, tin (II) bis (2-ethylhexa). Noate), dibutyltin dilaurate, dioctyltin dilaurate and the like.
The catalyst may be used in any catalytic amount, but is usually the sum of the secondary and tertiary diaminosilane represented by the above formula (5) and the polymer whose molecular chain ends are blocked with isocyanate groups or isothiocyanate groups. The content is 0.001 to 1% by mass.
 さらに、上記ウレア化反応またはチオウレア化反応には、反応に悪影響を及ぼさない溶媒を用いることができる。
 その具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ホルムアミド、N,N-ジメチルホルムアミド、ピロリドン、N-メチルピロリドン等のアミド系溶媒、酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコール-1-モノメチルエーテル-2-アセタート等のエステル系溶媒;ジエチルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
Furthermore, a solvent that does not adversely influence the reaction can be used for the urea reaction or thiourea reaction.
Specific examples thereof include hydrocarbon solvents such as pentane, hexane, heptane, octane, decane and cyclohexane; aromatic solvents such as benzene, toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; formamide Amide solvents such as N, N-dimethylformamide, pyrrolidone and N-methylpyrrolidone, ester solvents such as ethyl acetate, butyl acetate, γ-butyrolactone, propylene glycol-1-monomethyl ether-2-acetate; diethyl ether, Examples include ether solvents such as dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, and 1,4-dioxane. These may be used alone or in combination of two or more.
 ウレア化反応またはチオウレア化反応時の反応温度は、特に限定されるものではないが、反応速度を適切にしつつ、アロファネート化等の副反応を抑制することを考慮すると、0~90℃が好ましく、25~80℃がより好ましい。
 反応時間は特に制限されないが、通常10分~24時間である。
The reaction temperature at the time of urea reaction or thiourea reaction is not particularly limited, but it is preferably 0 to 90 ° C. in consideration of suppressing side reactions such as allophanatization while making the reaction rate appropriate. 25 to 80 ° C. is more preferable.
The reaction time is not particularly limited, but is usually 10 minutes to 24 hours.
 本発明の第1の硬化性組成物、コーティング剤組成物および接着剤組成物(以下、まとめて第1の組成物という場合もある)は、上述した(A)1分子中に少なくとも1個の上記構造式(1)で示される反応性ケイ素基を分子鎖末端に含有するポリマー、および(B)硬化触媒を含むものである。
 上記(A)成分のポリマーは、当該ポリマーの構造に由来し、これを含有する組成物を用いて被覆処理や接着処理してなる硬化物品の硬化性が従来の組成物に比べ優れた硬化物を与える。
The first curable composition, the coating agent composition and the adhesive composition of the present invention (hereinafter sometimes collectively referred to as the first composition) are (A) at least one in one molecule. It contains a polymer containing a reactive silicon group represented by the structural formula (1) at the molecular chain terminal, and (B) a curing catalyst.
The polymer of the above component (A) is derived from the structure of the polymer, and a cured product obtained by coating or adhering using a composition containing this polymer has excellent curability compared to conventional compositions. give.
 本発明の第1の組成物で用いられる硬化触媒(B)は、(A)反応性ケイ素含有基を有するポリマーに含まれる加水分解性基が空気中の水分で加水分解縮合される反応を促進し、組成物の硬化を促進させる成分であり、効率的に硬化させるために添加される。 The curing catalyst (B) used in the first composition of the present invention promotes a reaction in which a hydrolyzable group contained in a polymer having a reactive silicon-containing group (A) is hydrolytically condensed with moisture in the air. It is a component that accelerates the curing of the composition and is added for efficient curing.
 硬化触媒としては、一般的な湿気縮合硬化型組成物の硬化に用いられる硬化触媒であれば特に限定されるものではなく、その具体例としては、ジブチル錫オキシド、ジオクチル錫オキシド等のアルキル錫化合物;ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫ジオクトエート、ジオクチル錫ジオクトエート、ジオクチル錫ジバーサテート等のアルキル錫エステル化合物;テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタンジイソプロポキシビス(エチルアセトアセテート)、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル、およびチタンキレート化合物並びにそれらの部分加水分解物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト、三水酸化アルミニウム、アルミニウムアルコラート、アルミニウムアシレート、アルミニウムアシレートの塩、アルミノシロキシ化合物、アルミニウムキレート化合物等の有機金属化合物;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、ビス[3-(トリメトキシシリル)プロピル]アミン、ビス[3-(トリエトキシシリル)プロピル]アミン、N,N′-ビス[3-(トリメトキシシリル)プロピル]エタン-1,2-ジアミン、N,N′-ビス[3-(トリエトキシシリル)プロピル]エタン-1,2-ジアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノアルキル基置換アルコキシシラン;ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物およびその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリエトキシシラン、テトラメチルグアニジルプロピルメチルジエトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシランおよびシロキサン;N,N,N’,N’,N'',N''-ヘキサメチル-N'''-[3-(トリメトキシシリル)プロピル]-ホスホリミディックトリアミド等のホスファゼン塩基を含有するシランおよびシロキサン等が挙げられ、これらは単独で用いても、2種以上の組み合わせて用いてもよい。 The curing catalyst is not particularly limited as long as it is a curing catalyst used for curing a general moisture condensation curable composition. Specific examples thereof include alkyltin compounds such as dibutyltin oxide and dioctyltin oxide. Alkyltriester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctoate, dioctyltin dioctoate, dioctyltin diversate; tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium , Titanate esters such as dipropoxybis (acetylacetonato) titanium, titanium diisopropoxybis (ethylacetoacetate), titanium isopropoxyoctylene glycol, and titanium chelate compounds Partially hydrolyzed products thereof: zinc naphthenate, zinc stearate, zinc-2-ethyl octoate, iron-2-ethylhexoate, cobalt-2-ethylhexoate, manganese-2-ethylhexoate Organometallic compounds such as cobalt naphthenate, aluminum trihydroxide, aluminum alcoholate, aluminum acylate, aluminum acylate salt, aluminosyloxy compound, aluminum chelate compound; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N -Β (Ami Ethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysilane, bis [3- (trimethoxysilyl) propyl] amine, bis [3- (triethoxysilyl) propyl] Amines, N, N′-bis [3- (trimethoxysilyl) propyl] ethane-1,2-diamine, N, N′-bis [3- (triethoxysilyl) propyl] ethane-1,2-diamine, Aminoalkyl group-substituted alkoxysilanes such as N-phenyl-3-aminopropyltrimethoxysilane; amine compounds such as hexylamine and dodecylamine phosphate and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; potassium acetate; Lower fats of alkali metals such as sodium acetate and lithium oxalate Salt; dialkylhydroxylamine such as dimethylhydroxylamine, diethylhydroxylamine; tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltriethoxysilane, tetramethylguanidyl Silanes and siloxanes containing guanidyl groups such as propylmethyldiethoxysilane and tetramethylguanidylpropyltris (trimethylsiloxy) silane; N, N, N ′, N ′, N ″, N ″ -hexamethyl-N Examples include silanes and siloxanes containing phosphazene bases such as' ''-[3- (trimethoxysilyl) propyl] -phosphorimidic triamide, and these may be used alone or in combination of two or more. May be.
 これらの中でも、より反応性に優れることから、ジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、テトライソプロポキシチタン、テトラn-ブトキシチタン、チタンジイソプロポキシビス(エチルアセトアセテート)、3-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、ビス[3-(トリメトキシシリル)プロピル]アミン、N,N′-ビス[3-(トリメトキシシリル)プロピル]エタン-1,2-ジアミン、テトラメチルグアニジルプロピルトリメトキシシランが好ましく、組成物の硬化性の観点からジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、3-アミノプロピルトリメトキシシラン、テトラメチルグアニジルプロピルトリメトキシシランがより好ましく、有機スズ系化合物を非含有とし、より低毒性とすることから、3-アミノプロピルトリメトキシシラン、テトラメチルグアニジルプロピルトリメトキシシランがより一層好ましく、組成物の硬化性の観点からテトラメチルグアニジルプロピルトリメトキシシランが特に好ましい。 Among these, since it is more excellent in reactivity, dioctyltin dilaurate, dioctyltin diversate, tetraisopropoxy titanium, tetra n-butoxy titanium, titanium diisopropoxy bis (ethylacetoacetate), 3-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, bis [3- (trimethoxysilyl) propyl] amine, N, N′-bis [3- (trimethoxysilyl) propyl] ethane-1,2- Diamine and tetramethylguanidylpropyltrimethoxysilane are preferred, and dioctyltin dilaurate, dioctyltin divertate, 3-aminopropyltrimethoxysilane, and tetramethylguanidylpropyltrimethoxysilane are more preferred from the viewpoint of curability of the composition. In addition, 3-aminopropyltrimethoxysilane and tetramethylguanidylpropyltrimethoxysilane are more preferred because they contain no organotin compound and are less toxic. From the viewpoint of curability of the composition, tetraaminosilane is preferred. Methylguanidylpropyltrimethoxysilane is particularly preferred.
 (B)硬化触媒の添加量は、特に限定されるものではないが、硬化速度を適切な範囲に調整して作業性を向上させることを考慮すると、(A)成分100質量部に対して、0.01~15質量部が好ましく、0.1~5質量部がより好ましい。 (B) The addition amount of the curing catalyst is not particularly limited, but considering that the workability is improved by adjusting the curing rate to an appropriate range, 0.01 to 15 parts by mass is preferable, and 0.1 to 5 parts by mass is more preferable.
 本発明の第2の硬化性組成物、コーティング剤組成物および接着剤組成物(以下、まとめて第2の組成物という場合もある)は、(A)成分を含有するが、(B)硬化触媒を含有しないものである。
 本発明の(A)反応性ケイ素含有基を有するポリマーは、当該ポリマーの構造に由来し、(B)硬化触媒を含有せずとも、(A)ポリマーを含有する組成物を用いて被覆処理や接着処理してなる硬化物品の硬化性が従来の組成物に比べ優れた硬化物を与える。
The second curable composition, coating agent composition and adhesive composition of the present invention (hereinafter sometimes collectively referred to as the second composition) contain (A) component, but (B) cure. It does not contain a catalyst.
The polymer having a reactive silicon-containing group (A) of the present invention is derived from the structure of the polymer, and (B) a coating treatment using a composition containing a polymer without containing a curing catalyst. The cured product obtained by the adhesion treatment gives a cured product that is superior to the conventional composition in terms of curability.
 さらに、本発明の第1および第2の組成物は、溶剤を含んでいてもよい。
 溶剤としては、(A)成分の溶解能を有していれば特に限定されるものではなく、その具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の炭化水素系溶剤;ベンゼン、トルエン、キシレン等の芳香族系溶剤;ホルムアミド、N,N-ジメチルホルムアミド、ピロリドン、N-メチルピロリドン等のアミド系溶剤、酢酸エチル、酢酸ブチル、γ-ブチロラクトン、プロピレングリコール-1-モノメチルエーテル-2-アセタート等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;ジエチルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶剤などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、溶解性および揮発性等の観点から、トルエン、キシレン等の芳香族系溶剤が好ましい。
 溶剤の添加量は、(A)成分100質量部に対して、10~20,000質量部が好ましく、100~10,000質量部がより好ましい。
Furthermore, the first and second compositions of the present invention may contain a solvent.
The solvent is not particularly limited as long as it has the ability to dissolve the component (A). Specific examples thereof include hydrocarbon solvents such as pentane, hexane, heptane, octane, decane, and cyclohexane; benzene , Aromatic solvents such as toluene and xylene; amide solvents such as formamide, N, N-dimethylformamide, pyrrolidone and N-methylpyrrolidone, ethyl acetate, butyl acetate, γ-butyrolactone, propylene glycol-1-monomethyl ether Ester solvents such as 2-acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; and ether solvents such as diethyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, and 1,4-dioxane. Used alone It may also be used in combination of two or more thereof.
Among these, aromatic solvents such as toluene and xylene are preferable from the viewpoints of solubility and volatility.
The amount of the solvent added is preferably 10 to 20,000 parts by mass, more preferably 100 to 10,000 parts by mass with respect to 100 parts by mass of component (A).
 なお、本発明の第1および第2の組成物には、使用目的に応じて、接着性改良剤、無機および有機の紫外線吸収剤、保存安定性改良剤、可塑剤、充填剤、顔料、香料等の各種添加剤を添加することができる。 The first and second compositions of the present invention include an adhesion improver, an inorganic and organic ultraviolet absorber, a storage stability improver, a plasticizer, a filler, a pigment, and a fragrance depending on the purpose of use. Various additives such as can be added.
 以上説明した本発明のコーティング組成物を固体基材の表面に塗布し、硬化させて被覆層を形成することで被覆固体基材が得られ、また、本発明の接着剤組成物を固体基材の表面に塗布し、さらにその上に他の固体基材を積層した後、組成物を硬化させて接着層を形成することで接着積層体が得られる。
 各組成物の塗布方法は特に限定されず、その具体例としては、スプレーコート、スピンコート、ディップコート、ローラーコート、刷毛塗り、バーコート、フローコート等の公知の方法から適宜選択して用いることができる。
The coating composition of the present invention described above is applied to the surface of a solid substrate and cured to form a coating layer, whereby a coated solid substrate is obtained, and the adhesive composition of the present invention is applied to the solid substrate. After applying another solid base material on the surface, and then curing the composition to form an adhesive layer, an adhesive laminate can be obtained.
The application method of each composition is not particularly limited, and specific examples thereof are appropriately selected from known methods such as spray coating, spin coating, dip coating, roller coating, brush coating, bar coating, and flow coating. Can do.
 固体基材としては特に限定されず、その具体例としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリカーボネート類およびポリカーボネートブレンド等のポリカーボネート樹脂、ポリ(メタクリル酸メチル)等のアクリル系樹脂、ポリ(エチレンテレフタレート)やポリ(ブチレンテレフタレート)、不飽和ポリエステル樹脂等のポリエステル樹脂、ポリアミド樹脂、アクリロニトリル-スチレン共重合体樹脂、スチレン-アクリロニトリル-ブタジエン共重合体樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリスチレンとポリフェニレンエーテルのブレンド、セルロースアセテートブチレート、ポリエチレン樹脂等の有機樹脂基材;鉄板、銅板、鋼板等の金属基材;塗料塗布面;ガラス;セラミック;コンクリート;スレート板;テキスタイル;木材、石材、瓦、(中空)シリカ、チタニア、ジルコニア、アルミナ等の無機フィラー;ガラス繊維をはじめとしたガラスクロス、ガラステープ、ガラスマット、ガラスペーパー等のガラス繊維製品などが挙げられ、基材の材質および形状については特に限定されるものではない。 The solid substrate is not particularly limited, and specific examples thereof include epoxy resins, phenol resins, polyimide resins, polycarbonate resins such as polycarbonates and polycarbonate blends, acrylic resins such as poly (methyl methacrylate), poly (ethylene Terephthalate), poly (butylene terephthalate), polyester resins such as unsaturated polyester resin, polyamide resin, acrylonitrile-styrene copolymer resin, styrene-acrylonitrile-butadiene copolymer resin, polyvinyl chloride resin, polystyrene resin, polystyrene and polyphenylene Organic resin base materials such as ether blends, cellulose acetate butyrate, polyethylene resin; metal base materials such as iron plate, copper plate, steel plate; paint application surface; glass; ceramic; concrete; Sheet; textile; wood, stone, tile, inorganic filler such as (hollow) silica, titania, zirconia, alumina; glass fiber including glass fiber, glass tape, glass mat, glass paper, etc. The material and shape of the substrate are not particularly limited.
 本発明の組成物は、雰囲気中の水分と接触することで、(A)反応性ケイ素含有基を有するポリマーの加水分解縮合反応が進行する。雰囲気中の水分の指標としては10~100%RHの任意の湿度でよく、一般に、湿度が高い程早く加水分解が進行するため、所望により雰囲気中に水分を加えてもよい。
 硬化反応温度および時間は、使用する基材、水分濃度、触媒濃度、および加水分解性基の種類等の因子に応じて適宜変更し得る。硬化反応温度は通常、作業性等の観点から25℃付近の常温であることが好ましいが、硬化反応を促進するために、使用する基材の耐熱温度を超えない範囲内に加熱して硬化させてもよい。硬化反応時間は通常、作業性等の観点から1分から1週間程度である。
When the composition of the present invention is brought into contact with moisture in the atmosphere, (A) the hydrolysis and condensation reaction of the polymer having a reactive silicon-containing group proceeds. As an index of moisture in the atmosphere, any humidity of 10 to 100% RH may be used. In general, the higher the humidity, the faster the hydrolysis proceeds. Therefore, moisture may be added to the atmosphere as desired.
The curing reaction temperature and time can be appropriately changed according to factors such as the substrate used, the moisture concentration, the catalyst concentration, and the type of hydrolyzable group. Usually, the curing reaction temperature is preferably about 25 ° C. from the viewpoint of workability, etc., but in order to accelerate the curing reaction, it is cured by heating within a range not exceeding the heat resistance temperature of the substrate to be used. May be. The curing reaction time is usually about 1 minute to 1 week from the viewpoint of workability and the like.
 本発明の組成物は、常温でも良好に硬化が進行するため、特に、現場施工などで室温硬化が必須となる場合でも、数分から数時間で塗膜表面のベタツキ(タック)がなくなり、硬化性および作業性に優れているが、基材の耐熱温度を超えない範囲内に加熱処理を行っても構わない。 The composition of the present invention cures well even at room temperature, and therefore, even when room temperature curing is indispensable for on-site construction or the like, there is no stickiness (tack) on the surface of the coating film in several minutes to several hours, and curability. Although it is excellent in workability, the heat treatment may be performed within a range not exceeding the heat-resistant temperature of the substrate.
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、下記において、粘度は、B型回転粘度計による25℃における測定値であり、分子量及び重合度(ジメチルポリシロキサンまたはポリオキシアルキレン単位の繰り返し数)は、GPC(ゲルパーミエーションクロマトグラフ)測定により求めたポリスチレン換算の数平均分子量および数平均重合度である。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to these Examples.
In the following, the viscosity is a value measured at 25 ° C. using a B-type rotational viscometer, and the molecular weight and the degree of polymerization (the number of repeating dimethylpolysiloxane or polyoxyalkylene units) are measured by GPC (gel permeation chromatograph). These are the number average molecular weight and number average degree of polymerization calculated in terms of polystyrene.
[1]反応性ケイ素含有基を有するポリマーの合成
[実施例1-1]ポリマー1の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(トリメトキシシリルメチル)ピペラジン8.6g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量9,100、粘度5,300mPa・sであった。
[1] Synthesis of polymer having reactive silicon-containing group [Example 1-1] Synthesis of polymer 1 In a 200 mL separable flask equipped with a stirrer, reflux condenser and thermometer, a number average molecular weight of 7,800 and polymerization 100 g of both-end hydroxyl group-containing polypropylene glycol having a degree of 130 (0.039 mol in terms of functional group of the terminal hydroxyl group) was charged and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 8.6 g of N- (trimethoxysilylmethyl) piperazine (secondary amino group functional group amount: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 9,100 and a viscosity of 5,300 mPa · s.
[実施例1-2]ポリマー2の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(メチルジメトキシシリルメチル)ピペラジン8.0g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量9,000、粘度5,100mPa・sであった。
[Example 1-2] Synthesis of polymer 2 A 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 100 g of both end hydroxyl groups-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl groups). Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 8.0 g of N- (methyldimethoxysilylmethyl) piperazine (secondary amino group functional group amount 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 9,000 and a viscosity of 5,100 mPa · s.
[実施例1-3]ポリマー3の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(トリエトキシシリルメチル)ピペラジン10.2g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量9,200、粘度4,900mPa・sであった。
[Example 1-3] Synthesis of polymer 3 In a 200 mL separable flask equipped with a stirrer, reflux condenser and thermometer, 100 g of both ends hydroxyl group-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 10.2 g of N- (triethoxysilylmethyl) piperazine (secondary amino group functional group amount 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 9,200 and a viscosity of 4,900 mPa · s.
[実施例1-4]ポリマー4の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量5,100、重合度50の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.070モル)を仕込み、90℃に加熱した。その中に、トルエンジイソシアネート24.3g(イソシアネート基の官能基量0.14モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(トリメトキシシリルメチル)ピペラジン15.4g(2級アミノ基の官能基量0.070モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量6,500、粘度1,080mPa・sであった。
[Example 1-4] Synthesis of polymer 4 In a 200 mL separable flask equipped with a stirrer, a reflux condenser, and a thermometer, 100 g of polypropylene glycol containing hydroxyl groups at both ends having a number average molecular weight of 5,100 and a polymerization degree of 50 (terminal hydroxyl groups) Of 0.070 mol in terms of functional group) and heated to 90 ° C. Into this, 24.3 g of toluene diisocyanate (the amount of functional group of isocyanate group was 0.14 mol) was added and stirred with heating at 90 ° C. for 1 hour. Thereafter, 15.4 g of N- (trimethoxysilylmethyl) piperazine (secondary amino group functional group amount 0.070 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid, which had a number average molecular weight of 6,500 and a viscosity of 1,080 mPa · s.
[実施例1-5]ポリマー5の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量15,500、重合度250の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.025モル)およびジオクチルスズジラウレート0.1gを仕込み、90℃に加熱した。その中に、ヘキサメチレンジイソシアネート8.4g(イソシアネート基の官能基量0.050モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(トリメトキシシリルメチル)ピペラジン5.5g(2級アミノ基の官能基量0.025モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量17,400、粘度32,000mPa・sであった。
[Example 1-5] Synthesis of polymer 5 A 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 100 g of polypropylene glycol containing both hydroxyl groups at a number average molecular weight of 15,500 and a polymerization degree of 250 (terminal hydroxyl groups). In terms of functional group of 0.025 mol) and 0.1 g of dioctyltin dilaurate were charged and heated to 90 ° C. Into this, 8.4 g of hexamethylene diisocyanate (isocyanate group functional amount 0.050 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 5.5 g of N- (trimethoxysilylmethyl) piperazine (secondary amino group functional group amount 0.025 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 17,400 and a viscosity of 32,000 mPa · s.
[実施例1-6]ポリマー6の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N,N′-ジメチル-N-(トリメトキシシリルメチル)エチレンジアミン8.7g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量8,900、粘度4,900mPa・sであった。
[Example 1-6] Synthesis of polymer 6 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of polypropylene glycol containing both hydroxyl groups at a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 8.7 g of N, N′-dimethyl-N- (trimethoxysilylmethyl) ethylenediamine (secondary amino group functional group amount: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid, which had a number average molecular weight of 8,900 and a viscosity of 4,900 mPa · s.
[実施例1-7]ポリマー7の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N,N′-ジt-ブチル-N-(トリメトキシシリルメチル)エチレンジアミン12.0g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量9,100、粘度5,100mPa・sであった。
[Example 1-7] Synthesis of polymer 7 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of polypropylene glycol containing both end hydroxyl groups having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 12.0 g of N, N′-di-t-butyl-N- (trimethoxysilylmethyl) ethylenediamine (the amount of secondary amino group functional group: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. did. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 9,100 and a viscosity of 5,100 mPa · s.
[実施例1-8]ポリマー8の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、フェニレンジイソチオシアネート15.0g(イソチオシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N,N′-ジフェニル-N-(トリメトキシシリルメチル)エチレンジアミン13.5g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソチオシアネート基由来の吸収ピークが完全に消失し、代わりにチオウレア結合およびチオウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量9,500、粘度6,400mPa・sであった。
[Example 1-8] Synthesis of polymer 8 A 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 100 g of both end hydroxyl groups-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl groups). Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into that, 15.0 g of phenylene diisothiocyanate (functional amount of isothiocyanate group: 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 13.5 g of N, N′-diphenyl-N- (trimethoxysilylmethyl) ethylenediamine (the amount of secondary amino group functional group: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. By IR measurement, it was confirmed that the absorption peak derived from the isothiocyanate group of the raw material disappeared completely, and the absorption peak derived from the thiourea bond and thiourethane bond was generated instead, and the reaction was terminated.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 9,500 and a viscosity of 6,400 mPa · s.
[実施例1-9]ポリマー9の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量5,200、重合度65の両末端水酸基含有ポリプロピレングリコール/ポリエチレングリコール共重合体100g(ポリプロピレングリコールの構造単位/ポリエチレングリコールの構造単位のモル比が25/75、末端水酸基の官能基換算0.068モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート30.2g(イソシアネート基の官能基量0.14モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(トリメトキシシリルメチル)ピペラジン15.0g(2級アミノ基の官能基量0.068モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量6,400、粘度1,260mPa・sであった。
[Example 1-9] Synthesis of polymer 9 A 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer was mixed with a hydroxyl group-containing polypropylene glycol / polyethylene glycol having a number average molecular weight of 5,200 and a polymerization degree of 65. A polymer 100 g (polypropylene glycol structural unit / polyethylene glycol structural unit molar ratio 25/75, terminal hydroxyl group equivalent 0.068 mol) was charged and heated to 90 ° C. Into this, 30.2 g of isophorone diisocyanate (the amount of functional group of isocyanate group was 0.14 mol) was added and heated and stirred at 90 ° C. for 1 hour. Thereafter, 15.0 g of N- (trimethoxysilylmethyl) piperazine (secondary amino group functional group amount 0.068 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 6,400 and a viscosity of 1,260 mPa · s.
[実施例1-10]ポリマー10の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量15,000、重合度200のα,ω-ヒドロキシプロピル(ジメチル)ポリシロキサン100g(末端水酸基の官能基換算0.013モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート5.8g(イソシアネート基の官能基量0.026モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(トリメトキシシリルメチル)ピペラジン2.9g(2級アミノ基の官能基量0.013モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量16,800、粘度16,000mPa・sであった。
[Example 1-10] Synthesis of polymer 10 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, α, ω-hydroxypropyl (dimethyl) poly having a number average molecular weight of 15,000 and a polymerization degree of 200 was added. 100 g of siloxane (0.013 mol in terms of functional group of terminal hydroxyl group) was charged and heated to 90 ° C. Into this, 5.8 g of isophorone diisocyanate (functional amount of isocyanate group: 0.026 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 2.9 g of N- (trimethoxysilylmethyl) piperazine (secondary amino group functional group content 0.013 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a colorless and transparent liquid, and had a number average molecular weight of 16,800 and a viscosity of 16,000 mPa · s.
[比較例1-1]ポリマー11の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,600の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.040モル)およびイソシアネートメチルトリメトキシシラン7.1g(イソシアネート基の官能基量0.040モル)を仕込み、80℃に加熱した。その中に、ジオクチルスズジラウレート0.1gを投入し、80℃にて3時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量8,000、重合度130、粘度3,700mPa・sであった。
[Comparative Example 1-1] Synthesis of polymer 11 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of polypropylene glycol containing both end hydroxyl groups having a number average molecular weight of 7,600 (in terms of functional groups of terminal hydroxyl groups) 0.040 mol) and 7.1 g of isocyanate methyltrimethoxysilane (isocyanate group functional group amount 0.040 mol) were charged and heated to 80 ° C. The dioctyltin dilaurate 0.1g was thrown in in it, and it heat-stirred at 80 degreeC for 3 hours. By IR measurement, it was confirmed that the absorption peak derived from the isocyanate group of the raw material completely disappeared and an absorption peak derived from the urethane bond was generated instead, and the reaction was terminated.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 8,000, a degree of polymerization of 130, and a viscosity of 3,700 mPa · s.
[比較例1-2]ポリマー12の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-フェニルアミノメチルトリメトキシシラン8.9g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量8,700、粘度5,000mPa・sであった。
[Comparative Example 1-2] Synthesis of Polymer 12 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of both-end hydroxyl group-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 8.9 g of N-phenylaminomethyltrimethoxysilane (secondary amino group functional group amount: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 8,700 and a viscosity of 5,000 mPa · s.
[比較例1-3]ポリマー13の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,600の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.040モル)およびテトラメトキシシラン6.1g(0.040モル)を仕込み、80℃にて3時間加熱撹拌した。IR測定により原料の水酸基由来の吸収ピークが完全に消失したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量22,000、粘度6,800mPa・sであった。
[Comparative Example 1-3] Synthesis of polymer 13 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of polypropylene glycol containing both end hydroxyl groups having a number average molecular weight of 7,600 (in terms of functional groups of terminal hydroxyl groups) 0.040 mol) and 6.1 g (0.040 mol) of tetramethoxysilane were charged, and the mixture was heated and stirred at 80 ° C. for 3 hours. By IR measurement, it was confirmed that the absorption peak derived from the hydroxyl group of the raw material had completely disappeared, and the reaction was completed.
The obtained reaction product was a colorless and transparent liquid and had a number average molecular weight of 22,000 and a viscosity of 6,800 mPa · s.
[比較例1-4]ポリマー14の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-(3-トリメトキシシリルプロピル)ピペラジン9.7g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌した。IR測定により原料のイソシアネート基由来の吸収ピークが完全に消失し、代わりにウレア結合およびウレタン結合由来の吸収ピークが生成したことを確認し、反応終了とした。
 得られた反応生成物は、淡黄色透明液体であり、数平均分子量9,200、粘度5,300mPa・sであった。
[Comparative Example 1-4] Synthesis of polymer 14 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of both ends hydroxyl group-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 9.7 g of N- (3-trimethoxysilylpropyl) piperazine (secondary amino group functional group amount: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. It was confirmed that the absorption peak derived from the isocyanate group of the raw material disappeared completely by IR measurement, and that an absorption peak derived from a urea bond and a urethane bond was generated instead, and the reaction was completed.
The obtained reaction product was a pale yellow transparent liquid having a number average molecular weight of 9,200 and a viscosity of 5,300 mPa · s.
[比較例1-5]ポリマー15の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800の両末端アリル基含有ポリプロピレングリコール100g(末端アリル基の官能基換算0.039モル)、トリメトキシシラン4.8g(Si-H基の官能基量0.039モル)および白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン溶液0.15g(トリメトキシシラン1molに対し白金原子として1.0×10-4mol)を仕込み、80℃にて3時間加熱撹拌した。IR測定により原料のSi-H基由来の吸収ピークが完全に消失したことを確認し、反応終了とした。
 得られた反応生成物は、無色透明液体であり、数平均分子量11,300、粘度7,500mm2/sであった。
[Comparative Example 1-5] Synthesis of polymer 15 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of polypropylene glycol containing allyl groups at both ends with a number average molecular weight of 7,800 (functionality of terminal allyl groups) Group conversion 0.039 mol), trimethoxysilane 4.8 g (functional amount of Si—H group 0.039 mol) and platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex 0.15 g of toluene solution (1.0 × 10 −4 mol as a platinum atom with respect to 1 mol of trimethoxysilane) was added and stirred at 80 ° C. for 3 hours. It was confirmed by IR measurement that the absorption peak derived from the Si—H group of the raw material had completely disappeared, and the reaction was completed.
The obtained reaction product was a colorless and transparent liquid, and had a number average molecular weight of 11,300 and a viscosity of 7,500 mm 2 / s.
[比較例1-6]ポリマー16の合成
 撹拌機、還流冷却器および温度計を備えた200mLセパラブルフラスコに、数平均分子量7,800、重合度130の両末端水酸基含有ポリプロピレングリコール100g(末端水酸基の官能基換算0.039モル)を仕込み、90℃に加熱した。その中に、イソホロンジイソシアネート17.3g(イソシアネート基の官能基量0.078モル)を投入し、90℃にて1時間加熱撹拌した。その後、N-2-(アミノエチル)-アミノメチルトリメトキシシラン7.6g(2級アミノ基の官能基量0.039モル)を投入し、90℃にて1時間加熱撹拌したが、反応液がゲル化し、反応生成物を得ることはできなかった。
[Comparative Example 1-6] Synthesis of Polymer 16 In a 200 mL separable flask equipped with a stirrer, a reflux condenser and a thermometer, 100 g of both end hydroxyl groups-containing polypropylene glycol having a number average molecular weight of 7,800 and a polymerization degree of 130 (terminal hydroxyl group) Was converted to a functional group equivalent of 0.039 mol) and heated to 90 ° C. Into this, 17.3 g of isophorone diisocyanate (functional amount of isocyanate group 0.078 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Thereafter, 7.6 g of N-2- (aminoethyl) -aminomethyltrimethoxysilane (secondary amino group functional group amount: 0.039 mol) was added, and the mixture was heated and stirred at 90 ° C. for 1 hour. Gelled and a reaction product could not be obtained.
[2]組成物および硬化被膜の作製
[実施例2-1]
 上記実施例1-1で得られたポリマー1 100質量部と、硬化触媒であるテトラメチルグアニジルプロピルトリメトキシシラン0.5質量部とを撹拌機を用いて湿気遮断下で均一に混合し、組成物を調製した。
 得られた組成物を、25℃、50%RHの空気下でバーコーターNo.14を用いてガラス板に塗布し、25℃、50%RHの空気下で1日間乾燥・硬化させ、硬化被膜を作製した。
[2] Preparation of composition and cured film [Example 2-1]
100 parts by mass of the polymer 1 obtained in Example 1-1 above and 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane as a curing catalyst were uniformly mixed using a stirrer while blocking moisture. A composition was prepared.
The obtained composition was subjected to bar coater No. 5 under air at 25 ° C. and 50% RH. 14 was applied to a glass plate and dried and cured for 1 day in air at 25 ° C. and 50% RH to prepare a cured film.
[実施例2-2~2-10および比較例2-1~2-5]
 実施例2-1のポリマー1を、実施例1-2~1-10で得られたポリマー2~10、比較例1-1~1-5で得られたポリマー11~15にそれぞれ変更した以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[Examples 2-2 to 2-10 and Comparative Examples 2-1 to 2-5]
Except for changing the polymer 1 of Example 2-1 to the polymers 2 to 10 obtained in Examples 1-2 to 1-10 and the polymers 11 to 15 obtained in Comparative Examples 1-1 to 1-5, respectively. Produced a composition and a cured film in the same manner as in Example 2-1.
[実施例2-11]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、3-アミノプロピルトリメトキシシラン5質量部を硬化触媒として用いた以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[Example 2-11]
The composition and curing were carried out in the same manner as in Example 2-1, except that 5 parts by mass of 3-aminopropyltrimethoxysilane was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. A coating was prepared.
[実施例2-12]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、ジオクチル錫ジバーサテート5質量部を硬化触媒として用いた以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[Example 2-12]
A composition and a cured film were prepared in the same manner as in Example 2-1, except that 5 parts by mass of dioctyltin diversate was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. .
[実施例2-13]
 テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部に代えて、チタンジイソプロポキシビス(エチルアセトアセテート)2質量部を硬化触媒として用いた以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[Example 2-13]
The composition was the same as in Example 2-1, except that 2 parts by mass of titanium diisopropoxybis (ethylacetoacetate) was used as a curing catalyst instead of 0.5 parts by mass of tetramethylguanidylpropyltrimethoxysilane. And cured coatings were prepared.
[実施例2-14]
 テトラメチルグアニジルプロピルトリメトキシシランを用いなかった以外は、実施例2-1と同様にして組成物および硬化被膜を作製した。
[Example 2-14]
A composition and a cured film were produced in the same manner as in Example 2-1, except that tetramethylguanidylpropyltrimethoxysilane was not used.
[実施例2-15]
 テトラメチルグアニジルプロピルトリメトキシシランを用いなかった以外は、実施例2-7と同様にして組成物および硬化被膜を作製した。
[Example 2-15]
A composition and a cured film were produced in the same manner as in Example 2-7, except that tetramethylguanidylpropyltrimethoxysilane was not used.
[比較例2-6]
 テトラメチルグアニジルプロピルトリメトキシシランを用いなかった以外は、比較例2-1と同様にして組成物および硬化被膜を作製した。
[Comparative Example 2-6]
A composition and a cured film were prepared in the same manner as in Comparative Example 2-1, except that tetramethylguanidylpropyltrimethoxysilane was not used.
[比較例2-7]
 テトラメチルグアニジルプロピルトリメトキシシランを用いなかった以外は、比較例2-2と同様にして組成物および硬化被膜を作製した。
[Comparative Example 2-7]
A composition and a cured film were prepared in the same manner as in Comparative Example 2-2 except that tetramethylguanidylpropyltrimethoxysilane was not used.
[比較例2-8]
 テトラメチルグアニジルプロピルトリメトキシシランを用いなかった以外は、比較例2-4と同様にして組成物および硬化被膜を作製した。
[Comparative Example 2-8]
A composition and a cured film were produced in the same manner as in Comparative Example 2-4 except that tetramethylguanidylpropyltrimethoxysilane was not used.
[比較例2-9]
 テトラメチルグアニジルプロピルトリメトキシシランを用いなかった以外は、比較例2-5と同様にして組成物および硬化被膜を作製した。
[Comparative Example 2-9]
A composition and a cured film were produced in the same manner as in Comparative Example 2-5 except that tetramethylguanidylpropyltrimethoxysilane was not used.
 上記実施例2-1~2-15および比較例2-1~2-9で作製した硬化膜について下記の評価を実施した。それらの結果を表1~3に併せて示す。
〔指触乾燥時間〕
 上記塗布方法にて組成物をガラス板に塗布して得た試験片を25℃、50%RHの空気下に放置し、湿気硬化が進行することによって、塗布表面を指で圧しても塗膜が指に付着しなくなるまでの時間を示した。値が小さいほど硬化性は良好であることを示す。
The cured film prepared in Examples 2-1 to 2-15 and Comparative Examples 2-1 to 2-9 was evaluated as follows. The results are also shown in Tables 1 to 3.
[Finger touch drying time]
The test piece obtained by applying the composition to a glass plate by the above application method is left in air at 25 ° C. and 50% RH, and moisture curing proceeds, so that the coating surface can be applied even if the applied surface is pressed with a finger. Indicates the time until no longer sticks to the finger. It shows that sclerosis | hardenability is so favorable that a value is small.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表1~3に示されるように、実施例1-1~1-10で得られたポリマー1~10を用いた実施例2-1~2-15で作製した硬化被膜は、比較例2-1~2-9で作製した硬化被膜に比べ硬化性に優れており、さらには硬化触媒を含有しない場合であっても硬化性が良好であることがわかる。
 一方、比較例2-1~2-9で作製した硬化被膜は、十分な硬化性を確保することができていない。また、比較例2-5~2-9では、塗膜の硬化性が悪く、全く硬化が進行しなかった。
 また、比較例1-6では、反応液がゲル化し、反応生成物を得ることはできなかった。
As shown in Tables 1 to 3, the cured coatings produced in Examples 2-1 to 2-15 using the polymers 1 to 10 obtained in Examples 1-1 to 1-10 were used in Comparative Example 2- It can be seen that the cured film is excellent in curability as compared with the cured film prepared in 1 to 2-9, and further, the curability is good even when no curing catalyst is contained.
On the other hand, the cured coatings produced in Comparative Examples 2-1 to 2-9 cannot ensure sufficient curability. In Comparative Examples 2-5 to 2-9, the curability of the coating film was poor and the curing did not proceed at all.
In Comparative Example 1-6, the reaction solution gelled, and no reaction product could be obtained.
 以上説明したとおり、本発明の反応性ケイ素含有基を有するポリマーを用いれば、硬化性に優れた硬化被膜を得ることができる。また、毒性の高い有機スズ系化合物を非含有とするためにアミン系化合物を硬化触媒として用いた場合であっても、従来技術では困難であった硬化性が良好な硬化性組成物を得ることができ、さらには、硬化触媒を含有しない場合であっても硬化性が良好な硬化性組成物を得ることができる。 As described above, a cured film having excellent curability can be obtained by using the polymer having a reactive silicon-containing group of the present invention. Moreover, even when an amine compound is used as a curing catalyst so as not to contain a highly toxic organotin compound, a curable composition having good curability, which was difficult with the prior art, can be obtained. Furthermore, even if it does not contain a curing catalyst, a curable composition having good curability can be obtained.

Claims (16)

  1.  ポリウレタン、ポリ尿素、ポリオキシアルキレン、ポリカーボネート、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリ(メタ)アクリレート、ポリスチレン、ポリオレフィン、ポリビニルエステル、ポリテトラフルオロエチレン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリシロキサン、ポリシロキサン-ポリウレタン共重合体およびポリシロキサン-ポリ尿素共重合体、並びにこれらの共重合体から選ばれる主鎖骨格を有し、かつ、1分子中に少なくとも1個の下記構造式(1)で表される反応性ケイ素含有基を有するポリマー。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R2は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表し、R3は、互いに独立して、非置換もしくは置換の炭素原子数1~10のアルキル基、または非置換もしくは置換の炭素原子数6~10のアリール基を表すか、R3同士が結合した、非置換もしくは置換の炭素原子数1~10のアルキレン基、または非置換もしくは置換の炭素原子数6~20のアリーレン基を表し、R5は、非置換もしくは置換の炭素原子数1~10のアルキレン基を表し、R6は、水素原子、または非置換もしくは置換の炭素原子数1~10のアルキル基を表し、Xは、OまたはSを表し、mは、1~3の整数を表し、*は、結合手を表す。)
    Polyurethane, polyurea, polyoxyalkylene, polycarbonate, polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, poly Ether sulfone, polyether ether ketone, polysiloxane, polysiloxane-polyurethane copolymer and polysiloxane-polyurea copolymer, and a main chain skeleton selected from these copolymers, and in one molecule A polymer having at least one reactive silicon-containing group represented by the following structural formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 s , independently of each other, represent an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, and R 2 represents Independent of each other, it represents an unsubstituted or substituted alkyl group having 1 to 10 carbon atoms or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, and R 3 , independently of each other, is unsubstituted or Represents a substituted alkyl group having 1 to 10 carbon atoms, or an unsubstituted or substituted aryl group having 6 to 10 carbon atoms, or an unsubstituted or substituted carbon atom having 1 to 10 carbon atoms in which R 3 is bonded to each other. Represents an alkylene group, or an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, R 5 represents an unsubstituted or substituted alkylene group having 1 to 10 carbon atoms, R 6 represents a hydrogen atom, or Non-replacement Ku denotes an alkyl group having 1 to 10 carbon atoms substituted, X is represents O or S, m is an integer of 1-3, * represents a bond.)
  2.  下記構造式(2)で表される請求項1記載の反応性ケイ素含有基を有するポリマー。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2、R3およびmは前記と同じ意味を表し、R5は、互いに独立して前記と同じ意味を表し、R6は、互いに独立して前記と同じ意味を表し、Xは、互いに独立して前記と同じ意味を表し、Aは、ポリウレタン、ポリ尿素、ポリオキシアルキレン、ポリカーボネート、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリ(メタ)アクリレート、ポリスチレン、ポリオレフィン、ポリビニルエステル、ポリテトラフルオロエチレン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリシロキサン、ポリシロキサン-ポリウレタン共重合体およびポリシロキサン-ポリ尿素共重合体、並びにこれらの共重合体から選ばれる構造を有する二価の連結基を表す。)
    The polymer having a reactive silicon-containing group according to claim 1 represented by the following structural formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 , R 2 , R 3 and m represent the same meaning as described above, R 5 represents the same meaning as described above independently of each other, and R 6 represents the same meaning as described above independently of each other. X represents the same meaning as described above independently of each other, A represents polyurethane, polyurea, polyoxyalkylene, polycarbonate, polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, polyvinyl Ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polysiloxane, polysiloxane-polyurethane copolymer and polysiloxane-polyurea copolymer, and these A copolymer of It represents a divalent linking group having a structure selected.)
  3.  前記Aが、下記式(3)で表される請求項1または2記載の反応性ケイ素含有基を有するポリマー。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R6およびXは、互いに独立して前記と同じ意味を表し、Yは、互いに独立して、非置換もしくは置換の炭素原子数1~20のアルキレン基、非置換もしくは置換の炭素原子数7~20のアラルキレン基、または非置換もしくは置換の炭素原子数6~20のアリーレン基を表し、nは、1以上の整数を表し、Zは、ポリウレタン、ポリ尿素、ポリオキシアルキレン、ポリカーボネート、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリ(メタ)アクリレート、ポリスチレン、ポリオレフィン、ポリビニルエステル、ポリテトラフルオロエチレン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリシロキサン、ポリシロキサン-ポリウレタン共重合体およびポリシロキサン-ポリ尿素共重合体、並びにこれらの共重合体から選ばれる構造を有する二価の連結基を表し、*は結合手を表す。)
    The polymer having a reactive silicon-containing group according to claim 1 or 2, wherein the A is represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 6 and X each independently represent the same meaning as described above, and Y each independently represents an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon, Represents an aralkylene group having 7 to 20 atoms or an unsubstituted or substituted arylene group having 6 to 20 carbon atoms, n represents an integer of 1 or more, and Z represents a polyurethane, polyurea, polyoxyalkylene, polycarbonate , Polyester, polyamide, polyimide, polyamideimide, poly (meth) acrylate, polystyrene, polyolefin, polyvinyl ester, polytetrafluoroethylene, polyacetal, polyphenylene ether, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, poly Siloxane, Polysiloxane - represents polyurea copolymer, and a divalent linking group having a structure selected from these copolymers, * represents a bond) - polyurethane copolymers and polysiloxanes.
  4.  前記Zが、ポリオキシアルキレン構造を有する二価の連結基である請求項1~3のいずれか1項記載の反応性ケイ素含有基を有するポリマー。 The polymer having a reactive silicon-containing group according to any one of claims 1 to 3, wherein Z is a divalent linking group having a polyoxyalkylene structure.
  5.  前記ポリオキシアルキレン構造を有する二価の連結基が、下記式(4)で表される請求項1~4のいずれか1項記載の反応性ケイ素含有基を有するポリマー。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R4は、2価炭化水素基を表し、pは、1以上の整数を表し、*は結合手を表す。)
    The polymer having a reactive silicon-containing group according to any one of claims 1 to 4, wherein the divalent linking group having a polyoxyalkylene structure is represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 4 represents a divalent hydrocarbon group, p represents an integer of 1 or more, and * represents a bond.)
  6.  分子鎖末端が、イソシアネート基またはイソチオシアネート基で封鎖されたポリマーと、式(5)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1、R2、R3、R5およびmは、前記と同じ意味を表す。)
    で表される、2級アミノ基、3級アミノ基およびアルコキシシリル基を有する化合物とを反応させることを特徴とする請求項1~5のいずれか1項記載の反応性ケイ素含有基を有するポリマーの製造方法。
    A polymer whose molecular chain ends are blocked with an isocyanate group or an isothiocyanate group, and a compound of formula (5)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 1 , R 2 , R 3 , R 5 and m have the same meaning as described above.)
    The polymer having a reactive silicon-containing group according to any one of claims 1 to 5, which is reacted with a compound having a secondary amino group, a tertiary amino group and an alkoxysilyl group represented by the formula: Manufacturing method.
  7.  前記分子鎖末端がイソシアネート基またはイソチオシアネート基で封鎖されたポリマーが、下記式(6)で表される請求項6記載の反応性ケイ素含有基を有するポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Aは、前記と同じ意味を表す。Xは、互いに独立してOまたはSを表す。)
    The method for producing a polymer having a reactive silicon-containing group according to claim 6, wherein the polymer whose molecular chain terminal is blocked with an isocyanate group or an isothiocyanate group is represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, A represents the same meaning as described above. X represents O or S independently of each other.)
  8.  前記式(6)中のAが、ポリオキシアルキレン構造を有する二価の連結基である請求項7記載の反応性ケイ素含有基を有するポリマーの製造方法。 The method for producing a polymer having a reactive silicon-containing group according to claim 7, wherein A in the formula (6) is a divalent linking group having a polyoxyalkylene structure.
  9.  (A)請求項1~5のいずれか1項記載の反応性ケイ素含有基を有するポリマーを含む硬化性組成物。 (A) A curable composition comprising a polymer having a reactive silicon-containing group according to any one of claims 1 to 5.
  10.  更に、(B)硬化触媒を含有する請求項9記載の硬化性組成物。 The curable composition according to claim 9, further comprising (B) a curing catalyst.
  11.  前記(B)硬化触媒が、アミン系化合物である請求項10記載の硬化性組成物。 The curable composition according to claim 10, wherein the (B) curing catalyst is an amine compound.
  12.  請求項9~11のいずれか1項記載の硬化性組成物からなるコーティング剤。 A coating agent comprising the curable composition according to any one of claims 9 to 11.
  13.  請求項9~11のいずれか1項記載の硬化性組成物からなる接着剤。 An adhesive comprising the curable composition according to any one of claims 9 to 11.
  14.  請求項9~11のいずれか1項記載の硬化性組成物が硬化してなる硬化物品。 A cured article obtained by curing the curable composition according to any one of claims 9 to 11.
  15.  請求項12のコーティング剤が硬化してなる被覆層を有する硬化物品。 A cured article having a coating layer formed by curing the coating agent according to claim 12.
  16.  請求項13の接着剤が硬化してなる接着層を有する硬化物品。 A cured article having an adhesive layer formed by curing the adhesive according to claim 13.
PCT/JP2017/018337 2017-03-30 2017-05-16 Polymer having reactive silicon-containing group and production method therefor WO2018179455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067557 2017-03-30
JP2017067557A JP2017141467A (en) 2017-03-30 2017-03-30 Polymer having reactive silicon-containing group and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2018179455A1 true WO2018179455A1 (en) 2018-10-04

Family

ID=59628913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018337 WO2018179455A1 (en) 2017-03-30 2017-05-16 Polymer having reactive silicon-containing group and production method therefor

Country Status (2)

Country Link
JP (1) JP2017141467A (en)
WO (1) WO2018179455A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210301066A1 (en) * 2018-08-03 2021-09-30 Shin-Etsu Chemical Co., Ltd. Room-temperature-curable polybutadiene resin composition, method for producing same, and packaged circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168302A (en) * 1996-12-11 1998-06-23 Sunstar Eng Inc One-pack moisture-curing composition
JPH10176028A (en) * 1996-12-19 1998-06-30 Asahi Chem Ind Co Ltd Room temperature-curing resin composition and sealing material
JP2008523177A (en) * 2004-12-09 2008-07-03 ワッカー ケミー アクチエンゲゼルシャフト Alkoxysilane terminated prepolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168302A (en) * 1996-12-11 1998-06-23 Sunstar Eng Inc One-pack moisture-curing composition
JPH10176028A (en) * 1996-12-19 1998-06-30 Asahi Chem Ind Co Ltd Room temperature-curing resin composition and sealing material
JP2008523177A (en) * 2004-12-09 2008-07-03 ワッカー ケミー アクチエンゲゼルシャフト Alkoxysilane terminated prepolymer

Also Published As

Publication number Publication date
JP2017141467A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
KR101519459B1 (en) Cross-linkable materials based on organyl oxysilane-terminated polymers
JP4221301B2 (en) Crosslinkable polymer blends containing alkoxysilane-terminated polymers
ES2349850T3 (en) COMPOSITION CONTAINING SILICONE.
US7871675B2 (en) Silane-crosslinkable coating formulations
US9493691B2 (en) Moisture curable organopolysiloxane compositions
JP6269875B2 (en) Organosilicon compound and method for producing the same
JP2008530310A (en) Cross-linked silane-terminated polymer and sealing material composition produced using said polymer
US20170306096A1 (en) Moisture curable compositions
EP3594261B1 (en) Polyoxyalkylene group-containing organosilicon compound and method for producing same
US9663621B2 (en) Moisture curable compositions
KR20140081869A (en) Multi-component room-temperature-curable silicone elastomer composition
WO2019202796A1 (en) Polymer having reactive silicon-containing group and production method therefor
WO2018179455A1 (en) Polymer having reactive silicon-containing group and production method therefor
JP6642324B2 (en) Organopolysiloxane compound and coating composition containing the same
EP4059991A1 (en) Organopolysiloxane and coating composition containing same
JP7139995B2 (en) Organosilicon compound, method for producing the same, and curable composition
WO2019202795A1 (en) Organic silicon compound and production method therefor
JP7276214B2 (en) Organopolysiloxane and curable composition containing same
US11760900B2 (en) Condensation curable composition
WO2023199747A1 (en) Silane-modified copolymer, method for producing same, and composition containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903055

Country of ref document: EP

Kind code of ref document: A1