WO2018179424A1 - 点群処理システム - Google Patents

点群処理システム Download PDF

Info

Publication number
WO2018179424A1
WO2018179424A1 PCT/JP2017/013824 JP2017013824W WO2018179424A1 WO 2018179424 A1 WO2018179424 A1 WO 2018179424A1 JP 2017013824 W JP2017013824 W JP 2017013824W WO 2018179424 A1 WO2018179424 A1 WO 2018179424A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
image
point
cloud data
candidates
Prior art date
Application number
PCT/JP2017/013824
Other languages
English (en)
French (fr)
Inventor
俊二 菅谷
Original Assignee
株式会社オプティム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプティム filed Critical 株式会社オプティム
Priority to JP2018550477A priority Critical patent/JP6495560B2/ja
Priority to PCT/JP2017/013824 priority patent/WO2018179424A1/ja
Publication of WO2018179424A1 publication Critical patent/WO2018179424A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces

Definitions

  • the present invention relates to a point cloud processing system, method, and program.
  • a technique is known in which an unmanned air vehicle such as a drone is used to photograph the sky and the distance to the ground is measured by a radar.
  • An attempt has been made to acquire three-dimensional point cloud data of a field such as a construction site using this technique (see, for example, Patent Document 1).
  • the point cloud data includes three-dimensional coordinate data and color data. Then, using these three-dimensional coordinate data and color data, a soil volume calculation for making the designed land is performed from an aerial image taken by an unmanned air vehicle.
  • the present invention has been made in view of such a demand, and an object of the present invention is to provide a system that makes it possible to accurately extract or delete a desired region from point cloud data.
  • the present invention provides the following solutions.
  • the invention is a point cloud processing system for processing three-dimensional point cloud data, Obtaining means for obtaining three-dimensional point cloud data including the color and three-dimensional coordinates of a point to be processed; Parameter storage means for storing a plurality of candidates in advance for parameters relating to the analysis method of the point to be processed; With respect to the three-dimensional point cloud data, parameters are changed according to each of a plurality of candidates stored in the parameter storage means, and the point cloud reflecting the change is imaged in a predetermined dimension for each of the plurality of candidates.
  • Candidate image display means for displaying receives means for receiving selection of a desired image among a plurality of types of candidate images displayed on the candidate image display means;
  • a point group processing system comprising: a selection result display unit that displays an image received by the reception unit.
  • parameters relating to the analysis method of the point to be processed are changed to display a plurality of candidates, and a desired image is displayed from the plurality of candidates. It can be displayed as a selection result. Therefore, it is possible to provide a system that can accurately extract or delete an area desired by a user from a point cloud image.
  • the invention according to the second feature is the invention according to the first feature, Learning means for learning a correlation between the three-dimensional point cloud data and an image parameter received by the receiving means;
  • Learning means for learning a correlation between the three-dimensional point cloud data and an image parameter received by the receiving means There is provided a point cloud processing system, further comprising: an updating unit that updates a candidate stored in the parameter storage unit based on a result learned by the learning unit.
  • the correlation between the three-dimensional point cloud data and the parameter is learned, and the candidate stored in the parameter storage means is updated based on the learning result. Therefore, it is possible to further increase the accuracy of accurately extracting or deleting a region desired by the user from the point cloud image.
  • FIG. 1 is a block diagram showing a hardware configuration and software functions of a point cloud processing system 1 in the present embodiment.
  • FIG. 2 is a flowchart showing a point cloud processing method according to this embodiment.
  • FIG. 3 is an example of the parameter storage area 333.
  • FIG. 4 is an example when a candidate image of 3D point cloud data is displayed on the image display unit 34.
  • FIG. 5 shows an example when one image is selected from the plurality of candidate images shown in FIG.
  • FIG. 1 is a block diagram for explaining the hardware configuration and software functions of a point cloud processing system 1 according to this embodiment.
  • the point cloud processing system 1 is a system for processing 3D point cloud data.
  • the point cloud processing system 1 is connected to an aerial imaging apparatus 10 that captures an imaging target, wirelessly communicates with the aerial imaging apparatus 10, a controller 20 that controls the aerial imaging apparatus 10, and the aerial imaging apparatus 10. And a point cloud processing device 30 for processing an image (three-dimensional point cloud data).
  • the aerial imaging device 10 is not particularly limited as long as it is a device that can shoot a subject to be photographed from the sky.
  • the aerial imaging apparatus 10 may be a radio controlled airplane or an unmanned aerial vehicle called a drone. In the following description, it is assumed that the aerial imaging apparatus 10 is a drone.
  • the aerial imaging apparatus 10 is powered by a battery 11 that functions as a power source for the aerial imaging apparatus 10, a motor 12 that operates with electric power supplied from the battery 11, and the motor 12. And a rotor 13.
  • the aerial imaging device 10 also includes a control unit 14 that controls the operation of the aerial imaging device 10, a position detection unit 15 that transmits position information of the aerial imaging device 10 to the control unit 14, and a control signal from the control unit 14.
  • a driver circuit 16 for driving the motor 12, a camera 17 for taking an aerial image of an object to be photographed in accordance with a control signal from the control unit 14, a control program executed by the microcomputer of the control unit 14, and the like are stored in advance. 17 includes a storage unit 18 for storing an image taken by the camera.
  • the aerial imaging apparatus 10 includes a wireless communication unit 19 that performs wireless communication with the controller 20.
  • a main body structure (frame or the like) having a predetermined shape.
  • a main body structure (frame or the like) having a predetermined shape a similar one to a known drone may be adopted.
  • the battery 11 is a primary battery or a secondary battery, and supplies power to each component in the aerial imaging apparatus 10.
  • the battery 11 may be fixed to the aerial imaging apparatus 100 or may be detachable.
  • the motor 12 functions as a drive source for rotating the rotor 13 with electric power supplied from the battery 11.
  • the aerial imaging device 10 can be levitated and flying.
  • the controller 14 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • control unit 14 implements the photographing module 141 by reading a predetermined program.
  • the control unit 14 controls the motor 12 to perform flight control (control of ascending, descending, horizontal movement, etc.) of the aerial imaging apparatus 10.
  • the control unit 14 controls the attitude of the aerial imaging apparatus 10 by controlling the motor 12 using a gyro (not shown) mounted on the aerial imaging apparatus 10.
  • the position detection unit 15 includes a LIDAR (Laser Imaging Detection and Ranging) technique and a GPS (Global Positioning System) technique.
  • LIDAR Laser Imaging Detection and Ranging
  • GPS Global Positioning System
  • the driver circuit 16 has a function of applying a voltage designated by a control signal from the control unit 14 to the motor 12. As a result, the driver circuit 16 can drive the motor 12 in accordance with the control signal from the control unit 14.
  • the camera 17 has a function of converting (imaging) an optical image captured by a lens into an image signal by an imaging element such as a CCD or a CMOS.
  • the type of the camera 17 may be selected as appropriate according to the image analysis method to be photographed.
  • the storage unit 18 is a device that stores data and files, and includes a data storage unit such as a hard disk, a semiconductor memory, a recording medium, or a memory card.
  • the storage unit 18 stores a control program storage area (not shown) for storing in advance a control program executed by the microcomputer of the control unit 14, and image data captured by the camera 17.
  • a group data storage area (not shown) and the like are provided.
  • the data stored in the three-dimensional point cloud data storage area can be transferred to the point cloud processing device 30 through a portable recording medium such as a USB memory or an SD card.
  • the wireless communication unit 19 is configured to be able to perform wireless communication with the controller 20 and receives a remote control signal from the controller 20.
  • the controller 20 has a function of operating the aerial imaging apparatus 10.
  • the controller 20 includes an operation unit 21 that is used by a user to steer the aerial imaging apparatus 10, a control unit 22 that controls the operation of the controller 20, a control program that is executed by a microcomputer of the control unit 22, and the like.
  • a storage unit 23 to be stored, a wireless communication unit 24 that wirelessly communicates with the aerial imaging apparatus 10, and an image display unit 25 that displays a predetermined image to the user are provided.
  • the wireless communication unit 24 is configured to be capable of wireless communication with the aerial imaging apparatus 10 and receives a remote control signal toward the aerial imaging apparatus 10.
  • the image display unit 25 may be integrated with a control device that controls the aerial imaging device 10, or may be separate from the control device. If integrated with the control device, the number of devices used by the user can be reduced, and convenience is enhanced.
  • examples of the image display unit 25 include portable terminal devices such as smartphones and tablet terminals that can be wirelessly connected to the wireless communication unit 19 of the aerial imaging device 10.
  • the control device is separate from the control device, an existing control device that does not have the image display unit 25 can be applied.
  • the point cloud processing device 30 has a function of processing three-dimensional point cloud data of a photographed image photographed using the camera of the aerial imaging device 10.
  • the point cloud processing device 30 includes an input unit 31 for a user to input command information, a control unit 32 for controlling the operation of the point cloud processing device 30, a control program executed by a microcomputer of the control unit 32, and the like. Is stored in advance, and an image display unit 34 for displaying a predetermined image to the user.
  • the control unit 32 implements an acquisition module 321, a candidate image display module 322, a reception module 323, a selection result display module 324, a learning module 325, and an update module 326 by reading a predetermined program.
  • the storage unit 33 stores a 3D point cloud database 331 that stores the 3D point cloud data stored in the storage unit 18 of the aerial imaging apparatus 10 transferred through a portable recording medium such as a USB memory or an SD card. And a parameter storage area 332 in which a plurality of candidates are stored in advance and parameters of the three-dimensional point cloud data are changed according to each of the plurality of candidates for parameters relating to the analysis method of the point to be processed.
  • a candidate image storage area 333 for temporarily storing candidate images to be stored, a selected image storage area 334 for storing images selected from the candidate images, and the like are provided.
  • FIG. 2 is a flowchart showing a point cloud processing method using the point cloud processing system 1. The processing executed by each hardware and the software module described above will be described.
  • Step S10 Acquisition of Captured 3D Point Cloud Data
  • the control unit 14 of the aerial imaging apparatus 10 of the point cloud processing system 1 executes the imaging module 141 and controls the camera 17 to image the imaging target. Then, the control unit 14 converts the image data captured by the camera 17 into the three-dimensional coordinate data detected by the position detection unit 15 (the latitude of each point constituting the three-dimensional point cloud data of the image captured by the camera 17, The longitude and height (for example, the height of a tree) are stored in a three-dimensional point cloud data storage area (not shown) of the storage unit 18.
  • the information stored in the 3D point cloud data storage area is stored in the 3D point cloud database 331 of the point cloud processing device 30 via the recording medium after the aerial imaging device 10 has landed.
  • the control unit 32 of the point cloud processing device 30 executes the acquisition module 321 to acquire 3D point cloud data including the color and 3D coordinates of the point to be processed.
  • Step S11 Parameter change of 3D point cloud data
  • the control unit 32 of the point cloud processing device 30 executes the candidate image display module 322, and a plurality of parameters related to the analysis method of the point to be processed are stored in advance in the parameter storage area 332 of the storage unit 33.
  • the parameter change for the three-dimensional point cloud data is performed.
  • the candidate image data obtained by the change is temporarily set in the candidate image storage area 333.
  • FIG. 3 shows an example of the parameter storage area 332.
  • the parameter storage area three candidates are set for four types of parameters (forest detection intensity, forest removal intensity, height resolution, and color resolution).
  • the parameter can be set in the range of 0 to 100.
  • the forest detection intensity is an intensity at which the control unit 32 detects the forest based on the point height (for example, tree height) and color for each point constituting the three-dimensional point cloud data. means.
  • the control unit 32 has a region 101 where the point indicates a forest only when the point height (for example, the height of a tree or crop) is high and the color is dark green (see FIG. 4). Recognize that In other cases, the area 102 is recognized as a flat area 102 (see FIG. 4).
  • the intensity is high, the control unit 32 is a region where the point indicates a forest even when the height of the point (for example, the height of a tree or the height of a crop) is low or the color is yellow-green. 101 (see FIG. 4), and when the color is earthy, it is recognized as an area 102 (see FIG. 4) indicating a flat ground.
  • ⁇ Deforestation strength means the extent of excluding the region 101 (see FIG. 4) indicating the forest from the 3D point cloud data.
  • the control unit 32 has a high point height (for example, a tree height) and a low point height (for example, a tree height) as well as a region having a dark green color.
  • the region whose color is yellowish green is also changed from the display state to the non-display state as the region 101 (see FIG. 4) indicating the forest.
  • the control unit 32 displays the region 101 (see FIG. 4) indicating the forest only for the region where the height of the point (for example, the height of the tree) is high and the color is dark green. Change from state to hidden state.
  • a field or a vacant land with grass is not necessarily an area 101 (see FIG. 4) indicating a forest even if the color is green.
  • the region 102 (see FIG. 4) showing the forest is mistakenly recognized even though it is actually the region 102 (see FIG. 4) showing the flat ground, Of particular importance.
  • the area desired by the user (here, the area 101 indicating the forest (see FIG. 4)) is described as being deleted from the 3D point cloud data. It is also possible to set to extract a region desired by the user.
  • ⁇ Height resolution means the function of adjusting the accuracy of point height (for example, tree height). If the accuracy is high, the height of a point (for example, the height of a tree) is determined in centimeters. If the accuracy is low, the height of the point (eg, the height of the tree) is determined in meters.
  • the color resolution means a function that determines how far a color is judged with respect to the color.
  • the color resolution is high, for example, the RGB value is determined in one unit.
  • the color resolution is low, for example, the RGB value is determined in units of 10 units.
  • Step S12 Candidate Image Display of 3D Point Cloud Data
  • the dimension of the image to be displayed is not particularly limited.
  • the image display unit 34 may display a two-dimensional image as a two-dimensional image or three-dimensionally as a three-dimensional image.
  • FIG. 4 is an example when the point cloud reflecting the parameter change is displayed on the image display unit 34 two-dimensionally for each of the three candidates.
  • the three-dimensional point cloud data includes color information.
  • the two-dimensional image includes a region 101 indicating a forest and a region 102 indicating a flat ground.
  • the left side of the image display unit 34 displays an original image (image before changing parameters). On the right, various parameters are changed under the conditions stored in the three candidate images after the parameter change, that is, the parameter storage area 332, and the green area 101 indicating the forest is changed from the display state to the non-display state. The image is shown.
  • Candidate 1 has four types of parameters (forest detection intensity, deforestation intensity, height resolution, and color resolution) set relatively low. For this reason, the ratio of the area to be changed from the display state to the non-display state is small. Here, description will be made assuming that even the region 101 that actually indicates a forest is left as a display state.
  • Candidate 2 has four types of parameters set on average. Therefore, the ratio of the area to be changed from the display state to the non-display state is larger than that of candidate 1.
  • description will be made assuming that the region 101 indicating the forest is actually in a non-display state.
  • Candidate 3 has 4 types of parameters set relatively high. For this reason, the ratio of the area to be changed from the display state to the non-display state is large. Here, it is assumed that not only the region 101 indicating the forest but also the region 102 actually indicating the flat ground is partially hidden.
  • control unit 32 executes the reception module 323 and receives selection of a desired image among a plurality of types of candidate images displayed on the image display unit 34.
  • the cursor 103 is also displayed on the image display unit 34.
  • a user can select a desired image by placing the cursor 103 on one of candidates 1 to 3 and clicking.
  • control unit 32 executes the selection result display module 324 and displays the image selected in the process of step S13 on the image display unit 34.
  • the control unit 32 moves the data of the image selected in the process of step S13 among the plurality of candidate images set in the candidate image storage area 333 to the selection result storage area 334, and stores the data of the unselected image. delete. Then, the control unit 32 displays the image set in the selection result storage area 334 on the image display unit 34.
  • FIG. 5 shows a display example at that time. Since the user places the cursor 103 on the candidate 2 and clicks, the image of the candidate 2 is displayed large on the image display unit 34.
  • the area 101 indicating the forest that has been displayed is not displayed, and only the area 102 indicating the flat ground is displayed. At that time, not only the area where the ground surface is exposed, but also an area which is actually a flat land instead of a forest even if the color is green, such as a vacant land where fields and grass grow, is an area 102 indicating a flat ground. It is displayed correctly.
  • a parameter regarding the analysis method of the point to be processed is changed and a plurality of candidates are displayed as images, and a desired image is displayed as a selection result from the plurality of candidates. can do. Therefore, it is possible to provide the point cloud processing system 1 capable of accurately extracting or deleting a region desired by the user from the point cloud image.
  • Step S15 Learn the correlation between 3D point cloud data and parameters
  • the control unit 32 of the point cloud processing device 30 executes the learning module 325, and sets the three-dimensional point cloud data and the parameters of the candidate image selected in the process of step S13. It is preferable to learn the correlation with.
  • Step S16 Parameter update
  • the control part 32 performs the update module 326, and updates the candidate memorize
  • the correlation between the 3D point cloud data and the parameter is learned, and the candidate stored in the parameter storage area 332 is updated based on the learning result. Therefore, it is possible to further increase the accuracy of accurately extracting or deleting a region desired by the user from the point cloud image.
  • the means and functions described above are realized by a computer (including a CPU, an information processing apparatus, and various terminals) reading and executing a predetermined program.
  • the program is provided in a form recorded on a computer-readable recording medium such as a flexible disk, CD (CD-ROM, etc.), DVD (DVD-ROM, DVD-RAM, etc.).
  • the computer reads the program from the recording medium, transfers it to the internal storage device or the external storage device, stores it, and executes it.
  • the program may be recorded in advance in a storage device (recording medium) such as a magnetic disk, an optical disk, or a magneto-optical disk, and provided from the storage device to a computer via a communication line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

【課題】点群データから所望の領域を正確に抽出又は削除可能なシステムを提供する。 【解決手段】本発明の点群処理システム1は、空撮装置10と、コントローラ20と、点群処理装置30とを備える。点群処理装置30の制御部32は、取得モジュール321を実行し、空撮装置10が撮影した処理対象における点の色及び3次元座標を含む3次元点群データを取得し、記憶部33の3次元点群データベース331に記憶する。続いて、制御部32は、候補画像表示モジュール322を実行し、処理の対象となる点の解析手法に関するパラメータについて、パラメータ記憶領域332に記憶される複数の候補についてパラメータの変更を行い、画像表示部34に表示する。そして、制御部32は、受付モジュール323を実行し、複数の候補画像のうち、所望の画像の選択を受け付け、続いて、選択結果表示モジュール324を実行し、選択を受け付けた画像を表示する。

Description

点群処理システム
 本発明は、点群処理システム、方法及びプログラムに関する。
 ドローン等の無人飛行体で上空を撮影し、地面までの距離をレーダで測定する技術が知られている。この技術を利用して、建設現場等のフィールドの3次元点群データを取得する試みがされている(例えば、特許文献1参照)。点群データは、三次元座標データと色彩データとを含んで構成される。そして、これら三次元座標データと色彩データを用いて、無人飛行体による空撮画像から、設計した造成地にする為の土量計算が行われる。
特開2016-194515号公報
 ところで、点群データを取得した後に、所望の領域のみを抽出したい、削除したい等のニーズがある。例えば、ある空き地を撮影した場合に、撮影した空き地の画像から、森林部分のみを抽出したい、削除したい等のニーズがある。その際、所望する森林部分のみを画像解析で選択させるが、例えば、点の色彩や高度等で区別して、人工知能に選択させても、適切に森林等の所定の領域を選択するのが困難な場合が多い。
 本発明は、このような要望に鑑みてなされたものであり、その目的は、点群データから所望の領域を正確に抽出あるいは削除することを可能にするシステムを提供することである。
 本発明では、以下のような解決手段を提供する。
 第1の特徴に係る発明は、3次元点群データを処理する点群処理システムであって、
 処理の対象となる点の色及び3次元座標を含む3次元点群データを取得する取得手段と、
 処理の対象となる点の解析手法に関するパラメータについて、複数の候補が予め記憶されるパラメータ記憶手段と、
 前記3次元点群データについて、前記パラメータ記憶手段に記憶される複数の候補のそれぞれにしたがってパラメータの変更を行い、前記変更を反映させた点群を、複数の候補のそれぞれについて所定の次元で画像表示する候補画像表示手段と、
 前記候補画像表示手段に表示される複数種類の候補画像のうち、所望の画像の選択を受け付ける受付手段と、
 前記受付手段により受け付けられた画像を表示する選択結果表示手段と、を備える点群処理システムを提供する。
 第1の特徴に係る発明によると、3次元点群データについて、処理の対象となる点の解析手法に関するパラメータの変更を施して複数の候補を画像表示し、これら複数の候補から所望の画像を選択結果として表示することができる。そのため、点群の画像から、ユーザが所望する領域を正確に抽出あるいは削除することが可能なシステムを提供できる。
 第2の特徴に係る発明は、第1の特徴に係る発明であって、
 前記3次元点群データと前記受付手段により受け付けられた画像のパラメータとの相関関係を学習する学習手段と、
 前記学習手段によって学習された結果に基づいて、前記パラメータ記憶手段に記憶される候補を更新する更新手段と、をさらに備える、点群処理システムを提供する。
 第2の特徴に係る発明によると、3次元点群データとパラメータとの相関関係が学習され、その学習の結果に基づいて、パラメータ記憶手段に記憶される候補が更新される。そのため、点群の画像から、ユーザが所望する領域を正確に抽出あるいは削除することの精度をよりいっそう高めることができる。
 本発明によれば、点群の画像から、ユーザが所望する領域を正確に抽出あるいは削除することが可能なシステムを提供できる。
図1は、本実施形態における点群処理システム1のハードウェア構成とソフトウェア機能を示すブロック図である。 図2は、本実施形態における点群処理方法を示すフローチャートである。 図3は、パラメータ記憶領域333の一例である。 図4は、画像表示部34に3次元点群データの候補画像を表示したときの一例である。 図5は、図4で示した複数の候補画像から一の画像が選択されたときの一例である。
 以下、本発明を実施するための形態について図を参照しながら説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。
<点群処理システム1の構成>
 図1は、本実施形態における点群処理システム1のハードウェア構成とソフトウェア機能を説明するためのブロック図である。点群処理システム1は、3次元点群データを処理するためのシステムである。
 点群処理システム1は、撮影対象を撮影する空撮装置10と、この空撮装置10と無線通信できるように接続され、空撮装置10を操縦するコントローラ20と、空撮装置10が撮影した画像(3次元点群データ)を処理する点群処理装置30とを含んで構成される。
〔空撮装置10〕
 空撮装置10は、撮影対象を空から撮影可能な装置であれば、特に限定されない。例えば、空撮装置10は、ラジコン飛行機であってもよいし、ドローンと呼ばれる無人飛行体であってもよい。以下では、空撮装置10がドローンであるものとして説明する。
 空撮装置10は、空撮装置10の電源として機能する電池11と、電池11から供給される電力で動作するモーター12と、モーター12の動作によって回転し、空撮装置10を浮上及び飛行させるローター13とを備える。
 また、空撮装置10は、空撮装置10の動作を制御する制御部14と、制御部14に空撮装置10の位置情報を伝える位置検出部15と、制御部14からの制御信号にしたがってモーター12を駆動するドライバー回路16と、制御部14からの制御信号にしたがって撮影対象を空撮するカメラ17と、制御部14のマイクロコンピューターで実行される制御プログラム等があらかじめ格納されるとともに、カメラ17が撮影した画像を記憶する記憶部18とを備える。
 そして、空撮装置10は、コントローラ20との間で無線通信する無線通信部19を備える。
 これらの構成要素は、所定形状の本体構造体(フレーム等)に搭載されている。所定形状の本体構造体(フレーム等)については、既知のドローンと同様なものを採用すればよい。
[電池11]
 電池11は、1次電池又は2次電池であり、空撮装置10内の各構成要素に電力を供給する。電池11は、空撮装置100に固定されていてもよいし、着脱可能としてもよい
[モーター12、ローター13]
 モーター12は、電池11から供給される電力でローター13を回転させるための駆動源として機能する。ローター13が回転することで、空撮装置10を浮上及び飛行させることができる。
[制御部14]
 制御部14は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備える。
 また、制御部14は、所定のプログラムを読み込むことで、撮影モジュール141を実現する。
 制御部14は、モーター12を制御して空撮装置10の飛行制御(上昇、下降、水平移動などの制御)を行う。また、制御部14は、空撮装置10に搭載されているジャイロ(図示省略)を使用して、モーター12を制御して空撮装置10の姿勢制御を行う。
[位置検出部15]
 位置検出部15は、LIDAR(Laser Imaging Detection and Ranging)技術と、GPS(Global Positioning System)技術とを含んで構成される。これらLIDAR技術とGPS技術とを併用して、カメラ17が撮影した画像の3次元点群データを構成する各々の点の緯度、経度、高さ(例えば、木の高さ)を検出する。
[ドライバー回路16]
 ドライバー回路16は、制御部14からの制御信号より指定された電圧をモーター12に印加する機能を有する。これにより、ドライバー回路16は、制御部14からの制御信号にしたがってモーター12を駆動させることができる。
[カメラ17]
 カメラ17は、レンズにより取り込んだ光学像をCCDやCMOS等の撮像素子によって画像信号に変換(撮像)する機能を有する。カメラ17の種類は、撮影対象の画像解析手法によって適宜選択すればよい。
[記憶部18]
 記憶部18は、データやファイルを記憶する装置であって、ハードディスクや半導体メモリ、記録媒体、メモリカード等による、データのストレージ部を備える。記憶部18には、制御部14のマイクロコンピューターで実行される制御プログラム等をあらかじめ格納するための制御プログラム格納領域(図示せず)や、カメラ17によって撮影された画像データを、位置検出部15で検出した3次元座標データ(カメラ17が撮影した画像の3次元点群データを構成する各々の点の緯度、経度、高さ(例えば、木の高さ)のデータ)とともに記憶する3次元点群データ格納領域(図示せず)等が設けられている。
 なお、3次元点群データ格納領域に格納されるデータは、USBメモリ、SDカード等、携帯型の記録媒体を通じ、点群処理装置30に移すことができる。
[無線通信部19]
 無線通信部19は、コントローラ20と無線通信可能に構成され、コントローラ20から遠隔制御信号を受信する。
〔コントローラ20〕
 コントローラ20は、空撮装置10を操縦する機能を有する。コントローラ20は、ユーザが空撮装置10を操縦するため等に使用する操作部21と、コントローラ20の動作を制御する制御部22と、制御部22のマイクロコンピューターで実行される制御プログラム等があらかじめ格納される記憶部23と、空撮装置10との間で無線通信する無線通信部24と、ユーザに所定の画像を表示する画像表示部25とを備える。
 無線通信部24は、空撮装置10と無線通信可能に構成され、空撮装置10に向けて遠隔制御信号を受信する。
 画像表示部25は、空撮装置10を操縦する操縦装置と一体であってもよいし、操縦装置とは別体であってもよい。操縦装置と一体であれば、ユーザが使用する装置の数を少なくすることができ、利便性が高まる。操縦装置と別体である場合、画像表示部25として、空撮装置10の無線通信部19と無線接続可能な、スマートフォン、タブレット端末等の携帯端末装置が挙げられる。操縦装置と別体である場合、画像表示部25を有しない既存の操縦装置であっても応用可能というメリットを有する。
〔点群処理装置30〕
 点群処理装置30は、空撮装置10のカメラを用いて撮影された撮影画像の3次元点群データを処理する機能を有する。点群処理装置30は、ユーザが指令情報等を入力するための入力部31と、点群処理装置30の動作を制御する制御部32と、制御部32のマイクロコンピューターで実行される制御プログラム等があらかじめ格納される記憶部33と、ユーザに所定の画像を表示する画像表示部34とを備える。
 制御部32は、所定のプログラムを読み込むことで、取得モジュール321と、候補画像表示モジュール322と、受付モジュール323と、選択結果表示モジュール324と、学習モジュール325と、更新モジュール326とを実現する。
 記憶部33には、USBメモリ、SDカード等、携帯型の記録媒体を通じて移された、空撮装置10の記憶部18に記憶されていた3次元点群データを格納する3次元点群データベース331と、処理の対象となる点の解析手法に関するパラメータについて、複数の候補が予め記憶されるパラメータ記憶領域332と、複数の候補のそれぞれにしたがい、3次元点群データのパラメータ変更を行うことで得られる候補画像を一時的に記憶する候補画像記憶領域333と、候補画像の中から選択された画像を記憶する選択画像記憶領域334と等が設けられている。
<点群処理システム1を用いた点群処理方法を示すフローチャート>
 図2は、点群処理システム1を用いた点群処理方法を示すフローチャートである。上述した各ハードウェアと、ソフトウェアモジュールが実行する処理について説明する。
〔ステップS10:撮影された3次元点群データの取得〕
 まず、点群処理システム1の空撮装置10の制御部14は、撮影モジュール141を実行し、カメラ17に対して撮影対象を撮影する制御を行う。そして、制御部14は、カメラ17によって撮影された画像データを、位置検出部15で検出した3次元座標データ(カメラ17が撮影した画像の3次元点群データを構成する各々の点の緯度、経度、高さ(例えば、木の高さ))とともに、記憶部18の3次元点群データ格納領域(図示せず)に記憶する。
 3次元点群データ格納領域に記憶された情報は、空撮装置10の着陸後、記録媒体を介して点群処理装置30の3次元点群データベース331に記憶される。このようにして、点群処理装置30の制御部32は、取得モジュール321を実行し、処理の対象となる点の色及び3次元座標を含む3次元点群データを取得する。
〔ステップS11:3次元点群データのパラメータ変更〕
 続いて、点群処理装置30の制御部32は、候補画像表示モジュール322を実行し、処理の対象となる点の解析手法に関するパラメータについて、記憶部33のパラメータ記憶領域332に予め記憶される複数の候補のそれぞれにしたがって、3次元点群データについてのパラメータ変更を行う。変更によって得られる候補画像のデータは、候補画像記憶領域333に一時的にセットされる。
 図3は、パラメータ記憶領域332の一例である。パラメータ記憶領域には、4種類のパラメータ(森林検出強度、森林除去強度、高さ分解能、色分解能)について、3つの候補がセットされている。本実施形態では、パラメータは、0~100までの範囲で設定可能である。
 森林検出強度は、3次元点群データを構成する各々の点について、制御部32が、点の高さ(例えば、木の高さ)及び色彩に基づいて、森林であることを検出する強度を意味する。強度が低いと、制御部32は、点の高さ(例えば、木や作物の高さ)が高く、色彩が濃い緑色である場合に限り、その点が森林を示す領域101(図4参照)であると認識する。他の場合は、平地の領域102(図4参照)であると認識する。強度が高いと、制御部32は、点の高さ(例えば、木の高さや作物の高さ)が低い場合や、色彩が黄緑色である場合であっても、その点が森林を示す領域101(図4参照)であると認識し、色彩が土色である場合に、平地を示す領域102(図4参照)であると認識する。
 森林除去強度は、3次元点群データから、森林を示す領域101(図4参照)を除く程度を意味する。強度が高いと、制御部32は、点の高さ(例えば、木の高さ)が高く、色彩が濃い緑色である領域だけでなく、点の高さ(例えば、木の高さ)が低い場合や、色彩が黄緑色である領域についても、森林を示す領域101(図4参照)であるとして、表示状態から非表示状態に変更する。強度が低いと、制御部32は、点の高さ(例えば、木の高さ)が高く、色彩が濃い緑色である領域についてだけ、森林を示す領域101(図4参照)であるとして、表示状態から非表示状態に変更する。
 例えば、田畑や草が生えた空き地等は、色彩が緑色であっても、必ずしも森林を示す領域101(図4参照)であるとはいえない。実際には平地を示す領域102(図4参照)であるにもかかわらず、誤って森林を示す領域101(図4参照)であると認識されるのを防ぐため、森林除去強度の設定は、特に重要である。
 なお、本実施形態では、3次元点群データから、ユーザが所望する領域(ここでは森林を示す領域101(図4参照))を削除するものとして説明しているが、3次元点群データから、ユーザが所望する領域を抽出する設定としてもよい。
 高さ分解能は、点の高さ(例えば、木の高さ)の精度を調整する機能を意味する。精度が高いと、点の高さ(例えば、木の高さ)をセンチメートル単位で判断する。精度が低いと、点の高さ(例えば、木の高さ)をメートル単位で判断する。
 色分解能は、色彩について、どこまでの色の違いで判断するかを定める機能を意味する。色分解能が高い場合、例えば、RGB値で、1単位で判断する。色分解能が低い場合、例えば、RGB値で、10単位で判断する。
〔ステップS12:3次元点群データの候補画像表示〕
 図2に戻る。3次元点群データについてのパラメータ変更が行われると、続いて、点群処理装置30の制御部32は、候補画像表示モジュール322を実行し、パラメータ変更を反映させた点群を、複数の候補のそれぞれについて所定の次元で画像表示部34に表示する。
 画像表示する画像の次元は、特に限定されるものではない。例えば、画像表示部34は、2次元画像として平面的に画像を表示してもよいし、3次元画像として立体的に表示してもよい。
 図4は、パラメータ変更を反映させた点群を、3つの候補のそれぞれについて2次元で画像表示部34に表示したときの一例である。3次元点群データには、色の情報を含まれている。図4の例では、2次元画像は、森林を示す領域101と、平地を示す領域102とを含む。
 画像表示部34の左には、元画像(パラメータ変更を行う前の画像)が表示されている。その右には、パラメータ変更後の3つの候補画像、すなわち、パラメータ記憶領域332に記憶されている条件で各種パラメータの変更を行い、森林を示す緑色の領域101を表示状態から非表示状態に変更したときの画像を示す。
 候補1は、4種類のパラメータ(森林検出強度、森林除去強度、高さ分解能、色分解能)が比較的低く設定されている。そのため、表示状態から非表示状態に変更する領域の割合が少ない。ここでは、実際には森林を示す領域101であっても、表示状態として残されているものとして説明する。
 候補2は、4種類のパラメータが平均的に設定されている。そのため、表示状態から非表示状態に変更する領域の割合が候補1よりも大きい。ここでは、実際には森林を示す領域101が適度に非表示状態になっているものとして説明する。
 候補3は、4種類のパラメータが比較的高く設定されている。そのため、表示状態から非表示状態に変更する領域の割合が多い。ここでは、森林を示す領域101だけでなく、実際には平地を示す領域102についても一部非表示状態になっているものとして説明する。
〔ステップS13:所望の画像の選択を受付〕
 図2に戻る。続いて、制御部32は、受付モジュール323を実行し、画像表示部34に表示される複数種類の候補画像のうち、所望の画像の選択を受け付ける。
 図4を参照しながら説明すると、画像表示部34には、カーソル103も表示されている。ユーザが、候補1から候補3のいずれかにカーソル103を合わせてクリックすることで、所望の画像の選択が可能となる。ここでは、ユーザが候補2にカーソル103を合わせてクリックするものとして説明する。
〔ステップS14:選択された画像を表示〕
 図2に戻る。続いて、制御部32は、選択結果表示モジュール324を実行し、ステップS13の処理で選択された画像を画像表示部34に表示する。
 制御部32は、候補画像記憶領域333にセットされていた複数の候補画像のうち、ステップS13の処理で選択された画像のデータを選択結果記憶領域334に移し、選択されなかった画像のデータを削除する。そして、制御部32は、選択結果記憶領域334にセットされた画像を画像表示部34に表示する。
 図5は、そのときの表示例を示す。ユーザは、候補2にカーソル103を合わせてクリックしたため、画像表示部34には、候補2の画像が大きく表示される。図4の表示例では表示されていた森林を示す領域101が非表示となり、平地を示す領域102だけが表示となっている。その際、地表がむき出しになっている領域だけでなく、田畑や草が生えた空き地等、色彩が緑色であっても、実際には森林でなく平地である領域も、平地を示す領域102として正しく表示されている。
 本実施形態によると、3次元点群データについて、処理の対象となる点の解析手法に関するパラメータの変更を施して複数の候補を画像表示し、これら複数の候補から所望の画像を選択結果として表示することができる。そのため、点群の画像から、ユーザが所望する領域を正確に抽出あるいは削除することが可能な点群処理システム1を提供できる。
〔ステップS15:3次元点群データとパラメータとの相関関係を学習〕
 必須ではないが、候補画像の精度を高めるため、点群処理装置30の制御部32は、学習モジュール325を実行し、3次元点群データと、ステップS13の処理で選択された候補画像のパラメータとの相関関係を学習することが好ましい。
〔ステップS16:パラメータの更新〕
 そして、制御部32は、更新モジュール326を実行し、ステップS15の処理で学習した結果に基づいて、パラメータ記憶領域332に記憶されている候補を更新する。そして、再びステップS11の処理を実行する際、点群処理装置30の制御部32は、更新後のパラメータ記憶領域332に記憶されたパラメータに基づいて、3次元点群データの変更処理を実行する。
 本実施形態によると、3次元点群データとパラメータとの相関関係が学習され、その学習の結果に基づいて、パラメータ記憶領域332に記憶される候補が更新される。そのため、点群の画像から、ユーザが所望する領域を正確に抽出あるいは削除することの精度をよりいっそう高めることができる。
 上述した手段、機能は、コンピュータ(CPU、情報処理装置、各種端末を含む)が、所定のプログラムを読み込んで、実行することによって実現される。プログラムは、例えば、フレキシブルディスク、CD(CD-ROMなど)、DVD(DVD-ROM、DVD-RAMなど)等のコンピュータ読取可能な記録媒体に記録された形態で提供される。この場合、コンピュータはその記録媒体からプログラムを読み取って内部記憶装置又は外部記憶装置に転送し記憶して実行する。また、そのプログラムを、例えば、磁気ディスク、光ディスク、光磁気ディスク等の記憶装置(記録媒体)に予め記録しておき、その記憶装置から通信回線を介してコンピュータに提供するようにしてもよい。
 以上、本発明の実施形態について説明したが、本発明は上述したこれらの実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。
 1  点群処理システム
 10 空撮装置
 11 電池
 12 モーター
 13 ローター
 14 制御部
 141 撮影モジュール
 15 位置検出部
 16 ドライバー回路
 17 カメラ
 18 記憶部
 19 無線通信部
 20 コントローラ
 30 点群処理装置
 31 入力部
 32 制御部
 321 取得モジュール
 322 候補画像表示モジュール
 323 受付モジュール
 324 選択結果表示モジュール
 325 学習モジュール
 326 更新モジュール
 33 記憶部
 331 3次元点群データベース
 332 パラメータ設定領域
 333 候補画像記憶領域
 333 選択結果記憶領域
 34 画像表示部

 

Claims (4)

  1.  3次元点群データを処理する点群処理システムであって、
     処理の対象となる点の色及び3次元座標を含む3次元点群データを取得する取得手段と、
     処理の対象となる点の解析手法に関するパラメータについて、複数の候補が予め記憶されるパラメータ記憶手段と、
     前記3次元点群データについて、前記パラメータ記憶手段に記憶される複数の候補のそれぞれにしたがってパラメータの変更を行い、前記変更を反映させた点群を、複数の候補のそれぞれについて所定の次元で画像表示する候補画像表示手段と、
     前記候補画像表示手段に表示される複数種類の候補画像のうち、所望の画像の選択を受け付ける受付手段と、
     前記受付手段により受け付けられた画像を表示する選択結果表示手段と、を備える点群処理システム。
  2.  前記3次元点群データと前記受付手段により受け付けられた画像のパラメータとの相関関係を学習する学習手段と、
     前記学習手段によって学習された結果に基づいて、前記パラメータ記憶手段に記憶される候補を更新する更新手段と、をさらに備える、請求項1に記載の点群処理システム。
  3.  3次元点群データを処理する点群処理方法であって、
     処理の対象となる点の色及び3次元座標を含む3次元点群データを取得するステップと、
     処理の対象となる点の解析手法に関するパラメータについて、予め記憶される複数の候補のそれぞれにしたがって、前記3次元点群データについてのパラメータの変更を行い、前記変更を反映させた点群を、複数の候補のそれぞれについて所定の次元で画像表示するステップと、
     画像表示された複数種類の候補画像のうち、所望の画像の選択を受け付けるステップと、
     前記選択を受け付けた画像を表示するステップと、を備える点群処理方法。
  4.  点群処理システムに、
     処理の対象となる点の色及び3次元座標を含む3次元点群データを取得するステップと、
     処理の対象となる点の解析手法に関するパラメータについて、予め記憶される複数の候補のそれぞれにしたがって、前記3次元点群データについてのパラメータの変更を行い、前記変更を反映させた点群を、複数の候補のそれぞれについて所定の次元で画像表示するステップと、
     画像表示された複数種類の候補画像のうち、所望の画像の選択を受け付けるステップと、
     前記選択を受け付けた画像を表示するステップと、
    を実行させるためのプログラム。

     
PCT/JP2017/013824 2017-03-31 2017-03-31 点群処理システム WO2018179424A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018550477A JP6495560B2 (ja) 2017-03-31 2017-03-31 点群処理システム
PCT/JP2017/013824 WO2018179424A1 (ja) 2017-03-31 2017-03-31 点群処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013824 WO2018179424A1 (ja) 2017-03-31 2017-03-31 点群処理システム

Publications (1)

Publication Number Publication Date
WO2018179424A1 true WO2018179424A1 (ja) 2018-10-04

Family

ID=63674813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013824 WO2018179424A1 (ja) 2017-03-31 2017-03-31 点群処理システム

Country Status (2)

Country Link
JP (1) JP6495560B2 (ja)
WO (1) WO2018179424A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198966A (ja) * 1986-02-27 1987-09-02 Canon Inc 画像処理装置
JP2004294358A (ja) * 2003-03-28 2004-10-21 Hitachi High-Technologies Corp 欠陥検査方法および装置
JP2005258578A (ja) * 2004-03-09 2005-09-22 Olympus Corp 画像処理プログラム、画像処理方法、画像処理装置及び記録媒体
JP2010287156A (ja) * 2009-06-15 2010-12-24 Mitsubishi Electric Corp モデル生成装置、モデル生成方法、モデル生成プログラム、点群画像生成方法および点群画像生成プログラム
JP2013039355A (ja) * 2011-07-19 2013-02-28 Toshiba Corp 画像処理システム、装置、方法及び医用画像診断装置
WO2015146658A1 (ja) * 2014-03-28 2015-10-01 株式会社日立産機システム 画像データ編集装置および画像データ編集方法ならびに画像データ編集プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198966A (ja) * 1986-02-27 1987-09-02 Canon Inc 画像処理装置
JP2004294358A (ja) * 2003-03-28 2004-10-21 Hitachi High-Technologies Corp 欠陥検査方法および装置
JP2005258578A (ja) * 2004-03-09 2005-09-22 Olympus Corp 画像処理プログラム、画像処理方法、画像処理装置及び記録媒体
JP2010287156A (ja) * 2009-06-15 2010-12-24 Mitsubishi Electric Corp モデル生成装置、モデル生成方法、モデル生成プログラム、点群画像生成方法および点群画像生成プログラム
JP2013039355A (ja) * 2011-07-19 2013-02-28 Toshiba Corp 画像処理システム、装置、方法及び医用画像診断装置
WO2015146658A1 (ja) * 2014-03-28 2015-10-01 株式会社日立産機システム 画像データ編集装置および画像データ編集方法ならびに画像データ編集プログラム

Also Published As

Publication number Publication date
JPWO2018179424A1 (ja) 2019-04-04
JP6495560B2 (ja) 2019-04-03

Similar Documents

Publication Publication Date Title
US11649052B2 (en) System and method for providing autonomous photography and videography
CN111448476B (zh) 在无人飞行器与地面载具之间共享绘图数据的技术
US11543836B2 (en) Unmanned aerial vehicle action plan creation system, method and program
CN109596118B (zh) 一种用于获取目标对象的空间位置信息的方法与设备
CN207117844U (zh) 多vr/ar设备协同系统
CN111415409B (zh) 一种基于倾斜摄影的建模方法、系统、设备和存储介质
JP6765512B2 (ja) 飛行経路生成方法、情報処理装置、飛行経路生成システム、プログラム及び記録媒体
KR101692709B1 (ko) 드론을 이용한 수치지도 제작 영상시스템
CN107205111A (zh) 摄像装置、移动装置、摄像系统、摄像方法和记录介质
CN112991440B (zh) 车辆的定位方法和装置、存储介质和电子装置
US11354897B2 (en) Output control apparatus for estimating recognition level for a plurality of taget objects, display control system, and output control method for operating output control apparatus
JP7501535B2 (ja) 情報処理装置、情報処理方法、情報処理プログラム
CN107238920B (zh) 一种基于望远镜设备的控制方法及装置
CN113660452A (zh) 系统、移动体以及信息处理装置
WO2020225979A1 (ja) 情報処理装置、情報処理方法、プログラム、及び情報処理システム
JP6495559B2 (ja) 点群処理システム
JP6495560B2 (ja) 点群処理システム
JP6495562B1 (ja) 無人飛行体による空撮システム、方法及びプログラム
JP2016218626A (ja) 画像管理装置、画像管理方法およびプログラム
CN113433566B (zh) 地图建构系统以及地图建构方法
CN114627252A (zh) 获取地表温度分布的无人机和地表温度分布图的获取方法
JP6471272B1 (ja) 長尺画像生成システム、方法及びプログラム
CN112154477A (zh) 图像处理方法、装置和可移动平台
Sambolek et al. Determining the Geolocation of a Person Detected in an Image Taken with a Drone
CN114071003A (zh) 一种基于光通信装置的拍摄方法和系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550477

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903704

Country of ref document: EP

Kind code of ref document: A1