WO2018179344A1 - Plasma surface treatment method and plasma surface treatment apparatus - Google Patents

Plasma surface treatment method and plasma surface treatment apparatus Download PDF

Info

Publication number
WO2018179344A1
WO2018179344A1 PCT/JP2017/013619 JP2017013619W WO2018179344A1 WO 2018179344 A1 WO2018179344 A1 WO 2018179344A1 JP 2017013619 W JP2017013619 W JP 2017013619W WO 2018179344 A1 WO2018179344 A1 WO 2018179344A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular passage
surface treatment
plasma
tubular
treated
Prior art date
Application number
PCT/JP2017/013619
Other languages
French (fr)
Japanese (ja)
Inventor
賢二 高島
Original Assignee
株式会社イーツーラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イーツーラボ filed Critical 株式会社イーツーラボ
Priority to PCT/JP2017/013619 priority Critical patent/WO2018179344A1/en
Priority to JP2019508113A priority patent/JP6944634B2/en
Publication of WO2018179344A1 publication Critical patent/WO2018179344A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor

Definitions

  • the present invention relates to a plasma surface treatment method and a plasma surface treatment apparatus, and more particularly, to a surface treatment technique for an object to be processed which is an aggregate of small individuals.
  • the surface treatment is performed on the object to be treated.
  • a method of modifying the surface of the object to be treated by immersing the object to be treated in a chemical solution such as electrolytically oxidized water or ozone water for example, see Patent Document 1
  • ultraviolet light is applied to the object to be treated.
  • a method for modifying the surface of the object to be processed by irradiation see, for example, Patent Document 2
  • a method for modifying the surface of the object to be processed by spraying a processing gas that has been turned into plasma on the object to be processed for example, Patent Document 3 is known.
  • chopped fiber or milled fiber is generated by finely cutting or crushing used carbon fiber.
  • These chopped fibers and milled fibers are mainly used as a reinforcing material for synthetic resin (base material) or a conductivity imparting material. That is, when a synthetic resin molded product is manufactured, desired performance (for example, desired strength and conductivity) is imparted to the synthetic resin molded product by mixing the chopped fiber or milled fiber with the synthetic resin.
  • desired performance for example, desired strength and conductivity
  • micro-sized materials such as powders and carbon nanotubes with other materials such as liquids and synthetic resins
  • these materials are mixed before mixing.
  • Surface treatment is performed on the surface.
  • the method of immersing the object to be treated in the chemical solution requires a step of drying the object to be treated, and the number of steps required for the surface treatment increases, while the cost of discarding the used chemical solution is high. There is a problem that the labor and cost for the surface treatment are increased.
  • the method of irradiating the object to be processed with ultraviolet rays may cause leakage of ultraviolet rays when the object to be processed is folded or when the object to be processed has complicated irregularities. That is, there is a possibility that a part where the surface treatment is not performed or a part where the surface treatment is insufficient is generated without being irradiated with ultraviolet rays.
  • the target object may be scattered or dissipated by the spraying of the processing gas. That is, due to the scattering of the object to be processed, the contact between the object to be processed and the processing gas becomes insufficient, and the surface treatment may not be sufficiently performed.
  • the present invention has been made in view of such problems, and the object of the present invention is to ensure that the surface to be processed consisting of a collection of small individuals is surely leak-free and at a low cost.
  • An object of the present invention is to provide a plasma surface treatment method and a plasma surface treatment apparatus capable of performing treatment.
  • a plasma surface treatment method is directed to a tubular passage through which an object to be treated is dropped, and a process gas jet port is disposed along the arrangement direction of the tubular passage.
  • a plasma processing gas By injecting a plasma processing gas into the tubular passage from the processing gas jet port, a flow of the processing gas is formed in the tubular passage in a direction intersecting the arrangement direction of the tubular passage.
  • the object to be treated is introduced into the tubular passage from the upper end opening of the passage, and the treatment gas is brought into contact with the object to be treated in the process of passing the object to be treated through the tubular passage to perform surface treatment on the object to be treated. It is characterized by performing.
  • the object to be treated is a chopped fiber.
  • the object to be processed is a granular material.
  • a plasma surface treatment apparatus includes a tubular body having a tubular passage for dropping an object to be treated, and a jet of processing gas that faces the tubular passage and extends in the direction in which the tubular passage is disposed.
  • the plasma generating processing gas ejected from the jet outlet forms a processing gas flow in the tubular passage in a direction crossing the arrangement direction of the tubular passage. It is characterized by having a structure to make it.
  • the plasma generator is composed of two plasma generators arranged to face each other with the tubular body interposed therebetween, and the outlets of the plasma generators are mutually connected from the facing position. It is characterized by being shifted in position.
  • a suction device is provided on the lower end opening side of the tubular body for sucking out the object to be treated that stays in the tubular passage out of the tubular passage.
  • a recovery device for recovering the object to be processed that has passed through the tubular passage is provided on the lower end opening side of the tubular body.
  • the object to be treated is brought into contact with the plasmaized treatment gas in the tubular passage and is subjected to the surface treatment, so that the object to be treated is not scattered or dissipated during the surface treatment. Moreover, since the surface treatment is completed in the tubular passage, the surface treatment can be performed with few steps, and the surface treatment can be realized at a low cost.
  • the object to be processed introduced into the tubular passage falls while swirling in the tubular passage on the flow of the processing gas in the direction intersecting with the arrangement direction of the tubular passage. Can be taken longer. Therefore, the contact with the processing gas can be sufficiently achieved, and the surface treatment to the object to be processed can be reliably performed. Further, surface treatment without leakage can be performed even on an object to be processed having complicated irregularities.
  • FIG. 5A is a cross-sectional view schematically showing another embodiment of the electrode structure of the plasma generator in the plasma surface treatment apparatus, and FIG. 5A shows a case where the voltage application electrode is configured in a semicircular cross section, 5 (b) shows a case where the parallel plate method is used.
  • FIG. 1 and 2 show an example of a plasma surface treatment apparatus 1 according to the present invention.
  • the plasma surface treatment apparatus 1 shown in these drawings is a surface treatment apparatus in which a collection of small individuals is an object to be processed W.
  • an aggregate of small individuals to be processed W an aggregate having an individual size of several mm or less, an aggregate of several ⁇ m or less, an aggregate of several nm or less, or a few mm to several
  • an aggregate in which individuals of nm are mixed an aggregate in which individuals of nm are mixed.
  • a granular material, a chopped fiber, a milled fiber, a carbon nanotube, a pigment etc. are illustrated, for example.
  • examples of the type of surface treatment performed by the plasma surface treatment apparatus 1 include hydrophilicity improvement, dispersibility improvement, adhesion improvement, water repellency, surface reduction, organic substance removal, coating, and the like.
  • the plasma surface treatment apparatus 1 includes a tubular body 2 having a tubular passage 21 for dropping an object to be processed W, and a plasma generator 3 for supplying a plasma-treated processing gas to the tubular passage 21 as main parts, and a tubular passage.
  • a workpiece receiving portion 4 that accommodates the workpiece W to be introduced into 21, a suction device 5 that sucks out the workpiece W staying in the tubular passage 21, and a workpiece that has passed through the tubular passage 21.
  • a collection device 6 for collecting the body W.
  • the tubular body 2 is composed of an elongated hollow tubular member having a substantially annular cross section. As shown in FIG. 1, the tubular body 2 forms a tubular passage 21 by arranging elongated cavities therein in the vertical direction. That is, the tubular body 2 is arranged vertically so that the opening at one end is on the top and the opening at the other end is on the bottom.
  • the side surface of the tubular body 2 is provided with a gas introduction hole 22 for introducing the processing gas ejected from the plasma generator 3 into the tubular passage 21 (see FIG. 3).
  • the gas introduction hole 22 is formed of a slit-like long hole along the arrangement direction (vertical direction) of the tubular passage 21 and is formed through the side surface of the tubular body 2. .
  • the gas introduction hole 22 has a shape of the outlet 33 of the plasma generator 3 so that the processing gas injected from the outlet 33 of the processing gas in the plasma generator 3 can be introduced into the tubular passage 21 without leakage. It is formed according to. That is, in this embodiment, since the jet outlet 33 of the plasma generator 3 is comprised by a slit-shaped long hole, the gas introduction hole 22 is also comprised by the slit-shaped long hole according to this shape. In the present embodiment, the case where the gas introduction hole 22 is constituted by a single slit-like long hole has been shown. However, the gas introduction hole 22 may be formed of, for example, a plurality of slits along the arrangement direction of the tubular passage 21. It is also possible to configure by arranging the fine pores in a line.
  • the gas introduction hole 22 allows the processing gas introduced into the tubular passage 21 to flow in a direction intersecting the arrangement direction of the tubular passage 21 in the tubular passage 21 (specifically, an arrow in FIG. 2).
  • the processing gas introduced into the tubular passage 21 is arranged so as to form a spiral flow). That is, the position of the gas introduction hole 22 is determined so that the injection direction of the processing gas introduced from the plasma generator 3 (see arrow B in FIG. 2) does not pass through the center of the tubular passage 21 (see FIG. 2), the processing gas introduced into the tubular passage 21 forms a spiral flow in the tubular passage 21.
  • the tubular body 2 is preferably made of an insulating material such as glass or ceramics, but has conductivity such as metal. It is also possible to form the tubular body 2 with a material.
  • the plasma generator 3 includes a box-shaped casing 31 that contains plasma generating means for converting a processing gas into plasma by dielectric barrier discharge.
  • the bottom plate 32 is provided with an ejection port 33 for ejecting plasma-treated processing gas.
  • the plasma generating means has a structure in which a voltage application electrode and a ground electrode are arranged opposite to each other with a certain interval, and one or both electrode facing surfaces of these electrodes are covered with a dielectric such as ceramics. Therefore, when a high frequency voltage is applied to the voltage application electrode, a dielectric barrier discharge is generated between both electrodes.
  • the plasma generator 3 supplies the processing gas between the electrodes during the discharge to turn the processing gas into plasma (plasma activation), and injects the plasma-ized processing gas to the outside from the ejection port 33. Yes.
  • the voltage application electrode 34 has a structure including a cylindrical outer peripheral surface 34a. And the voltage application electrode 34 of such a structure is arrange
  • the ground electrode has a structure in which the bottom plate 32 of the casing 31 also serves as an electrode. Specifically, a concave groove 32 a having a circular arc shape corresponding to the outer peripheral surface 34 a of the voltage application electrode 34 is formed on the surface of the bottom plate 32 on the voltage application electrode side, and the concave groove 32 a is formed on the voltage application electrode 34.
  • the electrode facing surface is configured.
  • a slit-like long hole serving as the processing gas jet port 33 is provided in the deepest portion of the concave groove 32 a corresponding to the entire length of the voltage application electrode 34.
  • the plasma generator 3 configured in this manner is arranged so that the processing gas jet port 33 faces the tubular passage 21 of the tubular body 2 and along the arrangement direction of the tubular passage 21. That is, the jet outlet 33 of the plasma generator 3 and the gas introduction hole 22 of the tubular body 2 are arranged with their positions aligned.
  • FIG. 5 shows another example of the electrode structure of the plasma generator 3.
  • the plasma generator 3 shown in FIG. 5A is obtained by modifying the electrode structure of the plasma generator shown in FIG.
  • the plasma generator 3 shown in FIG. 5A is configured by accommodating a voltage applying electrode 34 having a semicircular cross section in a hollow cylindrical solid dielectric 35.
  • a solid dielectric 35 is also disposed on the inner peripheral surface of the concave groove 32a of the bottom plate 32 that also serves as a ground electrode.
  • the plasma generator 3 shown in FIG. 5B shows a case where a so-called parallel plate type electrode structure is adopted as the electrode structure.
  • the electrode facing surfaces of the voltage application electrode 34 and the ground electrode 36 are both flat, and a dielectric barrier discharge is generated between the electrodes 34 and 36. It is composed.
  • each of the electrodes 34 and 36 is configured to have a thin plate shape on the bottom plate 32 side, thereby preventing capacitive coupling with the bottom plate 32.
  • the object to be processed W is made of a material having a large electrical resistance value such as metal, metal oxide, or carbon fiber (chopped fiber), the object to be processed W generates heat unless an electromagnetic shield structure is used. It will be damaged.
  • two plasma generators 3 and 3 are used as the plasma generator 3 constituting the plasma surface treatment apparatus 1, and each plasma generator 3 and 3 sandwiches the tubular body 2.
  • the jet outlets 33 and 33 of the respective plasma generators 3 and 3 are arranged so as to be shifted from each other so as to be processed in the tubular passage 21.
  • a gas vortex is formed. That is, the processing gas injected from each of the jet outlets 33, 33 is disposed in the tubular passage 21 by disposing the jet outlets 33, 33 of the respective plasma generators 3, 3 so as to be shifted from each other. It will act to form a vortex-like flow inside.
  • the object-to-be-processed container 4 is a box-shaped container that accommodates the object to be processed W to be introduced into the tubular passage 21, and the object to be processed W accommodated in the object-to-be-processed container 4 It is introduced into the tubular passage 21 from the upper end opening. Specifically, the bottom of the object-to-be-treated accommodation portion 4 and the upper end opening of the tubular passage 21 are connected via a tubular communication passage 41, and the object-to-be-treated accommodation portion 4 is connected via the communication passage 41. A workpiece W is introduced into the tubular passage 21.
  • the object to be processed W is A mechanism for dispersing, for example, a net-like sieve 42 such as a wire mesh is disposed in the communication passage 41, and the workpiece W is introduced into the tubular passage 21 while being dispersed by the sieve 42.
  • a net-like sieve 42 such as a wire mesh
  • the suction device 5 is a device for sucking out the workpiece W staying in the tubular passage 21 to the outside of the tubular passage 21, and is provided on the lower end opening side of the tubular passage 21.
  • the suction device 5 includes a device main body 51, a recovery cover 52 that surrounds the lower end opening of the tubular passage 21, and a suction path 53 that connects the recovery cover 52 and the device main body 51.
  • the suction device 6 by sucking out the air in the recovery cover 52 by suction by the apparatus main body 51, the recovery of the workpiece W by the recovery device 6 is assisted.
  • the backflow of the to-be-processed object W to the to-be-processed object accommodating part 4 side is also prevented by the suction by this suction device 5.
  • the collection device 6 is a device for collecting the workpiece W that has passed through the tubular passage 21, and is provided at the lower end opening of the tubular passage 21.
  • the collection device 6 includes a bag-like filter 61 that surrounds the lower end opening of the tubular passage 21, and the workpiece W sucked out from the tubular passage 21 is collected by the filter 61. It has become.
  • the workpieces W having different sizes are selected and filtered using three filters 61. That is, the large object W is collected by the inner filter 61 and the small object W is collected by the outer filter 61.
  • the filter 61 is composed of three sheets, but the number of filters can be changed as appropriate.
  • the sizes of the workpieces W to be filtered by the filters 61 can be the same.
  • the process gas converted into plasma is ejected from the ejection port 33 of the plasma generator 3 and is introduced into the tubular passage 21.
  • path 21 by process gas is formed.
  • the processing gas used at this time is appropriately selected according to the material of the workpiece W, the content of the surface treatment to be performed, and the like.
  • a mixed gas of nitrogen (N 2 ) gas and air (CDA: Clean Dry Air) is used as the processing gas.
  • the processing gas or the like in the tubular passage 21 is sucked to the lower end side of the tubular passage 21.
  • the flow of the processing gas in the tubular passage 21 is sucked out of the tubular passage 21 as a downward spiral flow as shown by an arrow A in FIG.
  • the suction by the suction device 5 causes the processing gas in the tubular passage 21 to be gently sucked out of the tubular passage 21. That is, the flow rate sucked by the suction device 5 is made slightly larger than the flow rate of the processing gas introduced from the plasma generators 3 and 3 into the tubular passage 21.
  • the object to be processed W introduced into the tubular passage 21 from the object-to-be-processed container 4 is introduced into the tubular passage 21 while being dispersed by the sieve 42.
  • the workpiece W introduced into the tubular passage 21 falls in the tubular passage 21 due to gravity.
  • the process gas in the tubular passage 21 causes the treatment object W to flow in the tubular passage 21 more than when it falls freely. The flight time is extended.
  • the workpiece W of the plasma surface treatment apparatus 1 since the workpiece W of the plasma surface treatment apparatus 1 according to the present invention is a collection of small individuals as described above, it rides on the flow of the processing gas when falling in the tubular passage 21. It falls while turning in the tubular passage 21, so that the hovering time in the tubular passage 21 becomes longer than that at the time of free fall.
  • the object to be processed W is brought into contact with the processing gas that has been converted into plasma in the tubular passage 21, whereby the surface treatment to the object to be processed W is performed.
  • the workpiece W that has been subjected to the surface treatment in the tubular passage 21 falls to the lower end opening of the tubular passage 21, and is then collected by the filter 61.
  • the surface treatment process is completed by removing the collected workpiece W from the filter 61.
  • the object to be processed W is surface-treated by being brought into contact with the process gas converted into plasma in the tubular passage 21, so that the object to be processed is subjected to the surface treatment. W is not scattered or dissipated, and the surface treatment of the workpiece W can be performed without waste.
  • the surface treatment since the surface treatment is completed in the tubular passage 21, the surface treatment can be performed with a small number of steps, and the surface treatment can be realized at a low cost.
  • the plasma surface treatment apparatus 1 for example, by changing the length dimension of the tubular body 2, the dwell time of the object to be treated W in the tubular passage 21 (in other words, the object to be treated W). Therefore, it is possible to appropriately perform the surface treatment on the workpiece W having different materials and shapes.
  • the case where the two plasma generators 3 and 3 are arranged to face each other is shown as the configuration of the plasma surface treatment apparatus 1, but the plasma surface treatment apparatus 1 includes only one plasma generator 3. It is also possible to configure. Conversely, it is also possible to configure a plasma surface treatment apparatus using three or four plasma generators 3.
  • the tubular body 2 is arranged in the vertical direction (vertical) is shown.
  • the tubular body 2 is tubular. It is also possible to arrange the body 2 at an angle.

Abstract

[Problem] To provide surface treatment technology capable of performing surface treatment on an object consisting of aggregates of small individual pieces in a manner that is thorough, reliable, and low-cost. [Solution] A spray port 33 for ionized treatment gas is disposed in a tubular passage 21 into which treatment object W is dropped. Spraying the ionized treatment gas into the tubular passage 21 from the spray port 33 forms, in the tubular passage 21, a treatment gas flow orthogonal to the direction in which the tubular passage is disposed. The treatment object W is then introduced through an opening on the upper end of the tubular passage 21, and surface treatment is performed on the treatment object W by bringing the treatment object W into contact with the treatment gas as the treatment object W is falling through the tubular passage 21.

Description

プラズマ表面処理方法およびプラズマ表面処理装置Plasma surface treatment method and plasma surface treatment apparatus
 この発明はプラズマ表面処理方法およびプラズマ表面処理装置に関し、より詳細には、小さな個体の集合体からなる被処理体の表面処理技術に関する。 The present invention relates to a plasma surface treatment method and a plasma surface treatment apparatus, and more particularly, to a surface treatment technique for an object to be processed which is an aggregate of small individuals.
 被処理体の親水性、分散性、付着性などの各種性能の向上を図る場合、被処理体に対して表面処理が行われる。 In order to improve various performances such as hydrophilicity, dispersibility, adhesion, etc. of the object to be treated, the surface treatment is performed on the object to be treated.
 表面処理の方法としては、被処理体を電解酸化水やオゾン水などの薬液に浸漬することによって被処理体の表面を改質する方法(たとえば、特許文献1参照)、被処理体に紫外線を照射することによって被処理体の表面を改質する方法(たとえば、特許文献2参照)、被処理体にプラズマ化した処理ガスを噴き付けることによって被処理体の表面を改質する方法(たとえば、特許文献3参照)が知られている。 As a surface treatment method, a method of modifying the surface of the object to be treated by immersing the object to be treated in a chemical solution such as electrolytically oxidized water or ozone water (for example, see Patent Document 1), ultraviolet light is applied to the object to be treated. A method for modifying the surface of the object to be processed by irradiation (see, for example, Patent Document 2), and a method for modifying the surface of the object to be processed by spraying a processing gas that has been turned into plasma on the object to be processed (for example, Patent Document 3) is known.
 ところで、近年、炭素繊維のリサイクルが注目されている。炭素繊維のリサイクルでは、使用済みの炭素繊維を細かく切断又は破砕することによってチョップドファイバやミルドファイバが生成される。これらチョップドファイバやミルドファイバは、主に、合成樹脂(母材)の強化材料や導電性付与材料として用いられる。すなわち、合成樹脂の成型品を製作する際に、チョップドファイバやミルドファイバを合成樹脂に混合することにより、合成樹脂の成型品に所望の性能(たとえば、所望の強度や導電性など)が付与される。チョップドファイバやミルドファイバを母材に混合する際には、母材との親和性や分散性などの向上を図る必要があるため、事前にチョップドファイバやミルドファイバの表面処理が行われる。 By the way, in recent years, the recycling of carbon fibers has attracted attention. In the recycling of carbon fiber, chopped fiber or milled fiber is generated by finely cutting or crushing used carbon fiber. These chopped fibers and milled fibers are mainly used as a reinforcing material for synthetic resin (base material) or a conductivity imparting material. That is, when a synthetic resin molded product is manufactured, desired performance (for example, desired strength and conductivity) is imparted to the synthetic resin molded product by mixing the chopped fiber or milled fiber with the synthetic resin. The When mixing a chopped fiber or a milled fiber with a base material, it is necessary to improve the affinity and dispersibility with the base material, and therefore surface treatment of the chopped fiber or milled fiber is performed in advance.
 また、炭素繊維のリサイクル以外の分野においても、たとえば、粉粒体やカーボンナノチューブのような微小サイズの材料を液体や合成樹脂などの他の材料と混合させる場合には、混合前にこれらの材料に対して表面処理が行われる。 Also, in fields other than carbon fiber recycling, for example, when mixing micro-sized materials such as powders and carbon nanotubes with other materials such as liquids and synthetic resins, these materials are mixed before mixing. Surface treatment is performed on the surface.
特開2016-141913号公報Japanese Unexamined Patent Publication No. 2016-141913 特開平8-188961号公報JP-A-8-188961 特開2014-220056号公報JP 2014-220056 A
 しかしながら、チョップドファイバ、粉粒体、カーボンナノチューブなどのように、個々の個体が小さい集合体を被処理体とする表面処理には以下の問題があり、その改善が望まれていた。 However, there are the following problems in the surface treatment that uses an aggregate in which individual individuals are small, such as chopped fibers, powder particles, and carbon nanotubes, and improvement has been desired.
(1)被処理体を薬液に浸漬する方法は、被処理体を乾燥させる工程が必要になり、表面処理にかかる工程数が増える一方で、使用後の薬液を廃棄するコストがかかるなど、全体として、表面処理にかかる手間やコストが高くなるという問題がある。 (1) The method of immersing the object to be treated in the chemical solution requires a step of drying the object to be treated, and the number of steps required for the surface treatment increases, while the cost of discarding the used chemical solution is high. There is a problem that the labor and cost for the surface treatment are increased.
(2)被処理体に紫外線を照射する方法は、たとえば、被処理体が折り重なっている場合や被処理体に複雑な凹凸がある場合などに、紫外線の照射漏れが生ずるおそれがある。すなわち、紫外線が当たらず、表面処理が行われない箇所や表面処理が不十分な箇所が発生するおそれがある。 (2) The method of irradiating the object to be processed with ultraviolet rays may cause leakage of ultraviolet rays when the object to be processed is folded or when the object to be processed has complicated irregularities. That is, there is a possibility that a part where the surface treatment is not performed or a part where the surface treatment is insufficient is generated without being irradiated with ultraviolet rays.
(3)プラズマ化した処理ガスを噴きつける方法は、処理ガスの噴き付けによって被処理体が飛散・散逸するおそれがある。つまり、被処理体の飛散により、被処理体と処理ガスとの接触が不十分となり、表面処理が十分になされないおそれがある。 (3) In the method of spraying the plasma-ized processing gas, the target object may be scattered or dissipated by the spraying of the processing gas. That is, due to the scattering of the object to be processed, the contact between the object to be processed and the processing gas becomes insufficient, and the surface treatment may not be sufficiently performed.
 本発明は、このような問題点に鑑みてなされたものであって、その目的とするところは、小さな個体の集合体からなる被処理体に対して、漏れなく確実に、しかも低コストで表面処理を行うことができるプラズマ表面処理方法およびプラズマ表面処理装置を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is to ensure that the surface to be processed consisting of a collection of small individuals is surely leak-free and at a low cost. An object of the present invention is to provide a plasma surface treatment method and a plasma surface treatment apparatus capable of performing treatment.
 上記目的を達成するため、本発明に係るプラズマ表面処理方法は、被処理体を落下させる管状通路に面して、該管状通路の配設方向に沿って処理ガスの噴出口を配置し、上記処理ガスの噴出口からプラズマ化された処理ガスを上記管状通路内に噴射することによって、上記管状通路内に管状通路の配設方向と交差する向きの処理ガスの流れを形成させつつ、上記管状通路の上端開口から管状通路内に上記被処理体を導入し、上記被処理体が管状通路内を通過する過程で上記被処理体に上記処理ガスを接触させて被処理体への表面処理を行うことを特徴とする。 In order to achieve the above object, a plasma surface treatment method according to the present invention is directed to a tubular passage through which an object to be treated is dropped, and a process gas jet port is disposed along the arrangement direction of the tubular passage. By injecting a plasma processing gas into the tubular passage from the processing gas jet port, a flow of the processing gas is formed in the tubular passage in a direction intersecting the arrangement direction of the tubular passage. The object to be treated is introduced into the tubular passage from the upper end opening of the passage, and the treatment gas is brought into contact with the object to be treated in the process of passing the object to be treated through the tubular passage to perform surface treatment on the object to be treated. It is characterized by performing.
 そして、その好適な実施態様として、上記被処理体は、チョップドファイバであることを特徴とする。 And as a preferred embodiment thereof, the object to be treated is a chopped fiber.
 また、他の好適な実施態様として、上記被処理体は、粉粒体であることを特徴とする。 Further, as another preferred embodiment, the object to be processed is a granular material.
 一方、本発明に係るプラズマ表面処理装置は、被処理体を落下させる管状通路を有する管状体と、上記管状通路に面し、かつ、上記管状通路の配設方向に沿って処理ガスの噴出口が配置されたプラズマ発生装置とを備えてなり、上記噴出口から噴射されるプラズマ化された処理ガスによって、上記管状通路内に管状通路の配設方向と交差する向きの処理ガスの流れを形成させる構造を備えたことを特徴とする。 On the other hand, a plasma surface treatment apparatus according to the present invention includes a tubular body having a tubular passage for dropping an object to be treated, and a jet of processing gas that faces the tubular passage and extends in the direction in which the tubular passage is disposed. The plasma generating processing gas ejected from the jet outlet forms a processing gas flow in the tubular passage in a direction crossing the arrangement direction of the tubular passage. It is characterized by having a structure to make it.
 そして、その好適な実施態様として、上記プラズマ発生装置は、上記管状体を挟んで対向配置される2基のプラズマ発生装置で構成され、各プラズマ発生装置の噴出口が、正対する位置から相互に位置をずらして配置されていることを特徴とする。 As a preferred embodiment thereof, the plasma generator is composed of two plasma generators arranged to face each other with the tubular body interposed therebetween, and the outlets of the plasma generators are mutually connected from the facing position. It is characterized by being shifted in position.
 また、他の好適な実施態様として、上記管状体の下端開口側に、上記管状通路内に滞留する被処理体を上記管状通路外に吸い出す吸引装置が備えられていることを特徴とする。 As another preferred embodiment, a suction device is provided on the lower end opening side of the tubular body for sucking out the object to be treated that stays in the tubular passage out of the tubular passage.
 さらに、他の好適な実施態様として、上記管状体の下端開口側に、上記管状通路を通過した被処理体を回収する回収装置が備えられていることを特徴とする。 Furthermore, as another preferred embodiment, a recovery device for recovering the object to be processed that has passed through the tubular passage is provided on the lower end opening side of the tubular body.
 本発明によれば、被処理体は、プラズマ化された処理ガスと管状通路内で接触して表面処理されるので、表面処理に際して被処理体が飛散・散逸するおそれがない。しかも、管状通路内で表面処理が完結するので、少ない工程で表面処理を行うことができ、低コストでの表面処理を実現できる。 According to the present invention, the object to be treated is brought into contact with the plasmaized treatment gas in the tubular passage and is subjected to the surface treatment, so that the object to be treated is not scattered or dissipated during the surface treatment. Moreover, since the surface treatment is completed in the tubular passage, the surface treatment can be performed with few steps, and the surface treatment can be realized at a low cost.
 また、管状通路内に導入された被処理体は、管状通路の配設方向と交差する向きの処理ガスの流れに乗って管状通路内を旋回しながら落下するので、管状通路内での滞空時間を長くとることができる。そのため、処理ガスとの接触を十分に図ることができ、被処理体への表面処理を確実に行うことができる。また、複雑な凹凸がある被処理体に対しても漏れのない表面処理を行うことができる。 In addition, the object to be processed introduced into the tubular passage falls while swirling in the tubular passage on the flow of the processing gas in the direction intersecting with the arrangement direction of the tubular passage. Can be taken longer. Therefore, the contact with the processing gas can be sufficiently achieved, and the surface treatment to the object to be processed can be reliably performed. Further, surface treatment without leakage can be performed even on an object to be processed having complicated irregularities.
本発明に係るプラズマ表面処理装置の構造を模式的に示した正面断面図である。It is front sectional drawing which showed typically the structure of the plasma surface treatment apparatus which concerns on this invention. 同プラズマ表面処理装置の構造を模式的に示した平面断面図である。It is the plane sectional view showing typically the structure of the plasma surface treatment apparatus. 同プラズマ表面処理装置における管状体とプラズマ発生装置の分解斜視図である。It is a disassembled perspective view of the tubular body and plasma generator in the plasma surface treatment apparatus. 同プラズマ表面処理装置におけるプラズマ発生装置の概略構成の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of schematic structure of the plasma generator in the plasma surface treatment apparatus. 同プラズマ表面処理装置におけるプラズマ発生装置の電極構造の他の実施例を模式的に示した断面図であり、図5(a)は、電圧印加電極を断面半円形に構成した場合を示し、図5(b)は平行平板方式で構成した場合を示している。FIG. 5A is a cross-sectional view schematically showing another embodiment of the electrode structure of the plasma generator in the plasma surface treatment apparatus, and FIG. 5A shows a case where the voltage application electrode is configured in a semicircular cross section, 5 (b) shows a case where the parallel plate method is used.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 図1および図2は、本発明に係るプラズマ表面処理装置1の一例を示している。これらの図に示すプラズマ表面処理装置1は、小さな個体の集合体を被処理体Wとする表面処理装置である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 show an example of a plasma surface treatment apparatus 1 according to the present invention. The plasma surface treatment apparatus 1 shown in these drawings is a surface treatment apparatus in which a collection of small individuals is an object to be processed W.
 ここで、被処理体Wとなる小さな個体の集合体としては、個体の大きさが数mm以下の集合体、数μm以下の集合体、数nm以下の集合体、または、これら数mm乃至数nmの個体が混ざった集合体などが例示される。具体的には、たとえば、粉粒体、チョップドファイバ、ミルドファイバ、カーボンナノチューブ、顔料などが例示される。 Here, as an aggregate of small individuals to be processed W, an aggregate having an individual size of several mm or less, an aggregate of several μm or less, an aggregate of several nm or less, or a few mm to several For example, an aggregate in which individuals of nm are mixed. Specifically, a granular material, a chopped fiber, a milled fiber, a carbon nanotube, a pigment etc. are illustrated, for example.
 また、プラズマ表面処理装置1で実行する表面処理の種類としては、たとえば、親水性向上、分散性向上、付着性向上、撥水化、表面還元、有機物除去、コーティングなどが例示される。 Further, examples of the type of surface treatment performed by the plasma surface treatment apparatus 1 include hydrophilicity improvement, dispersibility improvement, adhesion improvement, water repellency, surface reduction, organic substance removal, coating, and the like.
 プラズマ表面処理装置1は、被処理体Wを落下させる管状通路21を有する管状体2と、管状通路21にプラズマ化した処理ガスを供給するプラズマ発生装置3とを主要部として備えるとともに、管状通路21に導入する被処理体Wを収容する被処理体収容部4と、管状通路21内に滞留する被処理体Wを管状通路21外に吸い出す吸引装置5と、管状通路21を通過した被処理体Wを回収する回収装置6とを備えている。 The plasma surface treatment apparatus 1 includes a tubular body 2 having a tubular passage 21 for dropping an object to be processed W, and a plasma generator 3 for supplying a plasma-treated processing gas to the tubular passage 21 as main parts, and a tubular passage. A workpiece receiving portion 4 that accommodates the workpiece W to be introduced into 21, a suction device 5 that sucks out the workpiece W staying in the tubular passage 21, and a workpiece that has passed through the tubular passage 21. And a collection device 6 for collecting the body W.
 管状体2は、断面が略円環状の細長い中空管状の部材で構成されている。この管状体2は、図1に示すように、その内部の細長い空洞が上下方向に配設されることにより管状通路21を形成している。つまり、管状体2は、一方端の開口部が上、他方端の開口部が下になるように縦に配置される。 The tubular body 2 is composed of an elongated hollow tubular member having a substantially annular cross section. As shown in FIG. 1, the tubular body 2 forms a tubular passage 21 by arranging elongated cavities therein in the vertical direction. That is, the tubular body 2 is arranged vertically so that the opening at one end is on the top and the opening at the other end is on the bottom.
 管状体2の側面には、プラズマ発生装置3から噴き出される処理ガスを管状通路21内に導入するためのガス導入孔22が設けられている(図3参照)。本実施形態では、このガス導入孔22は、管状通路21の配設方向(上下方向)に沿ったスリット状の長孔で構成されており、管状体2の側面を貫通して形成されている。 The side surface of the tubular body 2 is provided with a gas introduction hole 22 for introducing the processing gas ejected from the plasma generator 3 into the tubular passage 21 (see FIG. 3). In the present embodiment, the gas introduction hole 22 is formed of a slit-like long hole along the arrangement direction (vertical direction) of the tubular passage 21 and is formed through the side surface of the tubular body 2. .
 ここで、このガス導入孔22は、プラズマ発生装置3における処理ガスの噴出口33から噴射される処理ガスを漏れなく管状通路21内に導入できるように、プラズマ発生装置3の噴出口33の形状に合わせて形成されている。すなわち、本実施形態では、プラズマ発生装置3の噴出口33がスリット状の長孔で構成されるので、この形状に合わせて、ガス導入孔22もスリット状の長孔で構成されている。なお、本実施形態では、ガス導入孔22を1本のスリット状の長孔で構成した場合を示したが、ガス導入孔22は、たとえば、管状通路21の配設方向に沿って複数のスリット状の細孔を一列に配置することによって構成することも可能である。 Here, the gas introduction hole 22 has a shape of the outlet 33 of the plasma generator 3 so that the processing gas injected from the outlet 33 of the processing gas in the plasma generator 3 can be introduced into the tubular passage 21 without leakage. It is formed according to. That is, in this embodiment, since the jet outlet 33 of the plasma generator 3 is comprised by a slit-shaped long hole, the gas introduction hole 22 is also comprised by the slit-shaped long hole according to this shape. In the present embodiment, the case where the gas introduction hole 22 is constituted by a single slit-like long hole has been shown. However, the gas introduction hole 22 may be formed of, for example, a plurality of slits along the arrangement direction of the tubular passage 21. It is also possible to configure by arranging the fine pores in a line.
 また、このガス導入孔22は、管状通路21内に導入された処理ガスが、該管状通路21内で管状通路21の配設方向と交差する向きの流れ(具体的には、図2の矢符Aに示すように、管状通路21内に導入された処理ガスが渦状の流れ)を形成するように配設されている。すなわち、ガス導入孔22は、プラズマ発生装置3から導入される処理ガスの噴出方向(図2の矢符B参照)が管状通路21の中心を通らないようにその位置が決定されており(図2参照)、これによって、管状通路21内に導入された処理ガスが管状通路21内で渦状の流れを形成するようになっている。 Further, the gas introduction hole 22 allows the processing gas introduced into the tubular passage 21 to flow in a direction intersecting the arrangement direction of the tubular passage 21 in the tubular passage 21 (specifically, an arrow in FIG. 2). As shown by the symbol A, the processing gas introduced into the tubular passage 21 is arranged so as to form a spiral flow). That is, the position of the gas introduction hole 22 is determined so that the injection direction of the processing gas introduced from the plasma generator 3 (see arrow B in FIG. 2) does not pass through the center of the tubular passage 21 (see FIG. 2), the processing gas introduced into the tubular passage 21 forms a spiral flow in the tubular passage 21.
 なお、本実施形態では、プラズマ発生装置3として2基のプラズマ発生装置3,3が管状体2を挟んで対向配置される構成を採用しているので、これに伴って、管状体2におけるガス導入孔22は、各プラズマ発生装置3の噴出口33ごとにそれぞれ1本づつ設けられている。 In addition, in this embodiment, since the two plasma generators 3 and 3 are employ | adopted as the plasma generator 3 and the opposing arrangement | positioning on both sides of the tubular body 2, the gas in the tubular body 2 is accompanied with this. One introduction hole 22 is provided for each ejection port 33 of each plasma generator 3.
 また、管状通路21内にはプラズマ化された処理ガスが導入されることから、管状体2はガラスやセラミックスなどの絶縁性の材料で構成しておくのが好ましいが、金属など導電性を有する材料で管状体2を構成することも可能である。 In addition, since the plasma processing gas is introduced into the tubular passage 21, the tubular body 2 is preferably made of an insulating material such as glass or ceramics, but has conductivity such as metal. It is also possible to form the tubular body 2 with a material.
 プラズマ発生装置3は、図3および図4に示すように、箱型の筐体31内に、誘電体バリア放電によって処理ガスをプラズマ化させるプラズマ発生手段を収容してなるもので、筐体31の底板32にプラズマ化された処理ガスを噴き出す噴出口33が備えられている。 As shown in FIG. 3 and FIG. 4, the plasma generator 3 includes a box-shaped casing 31 that contains plasma generating means for converting a processing gas into plasma by dielectric barrier discharge. The bottom plate 32 is provided with an ejection port 33 for ejecting plasma-treated processing gas.
 プラズマ発生手段は、電圧印加電極と接地電極とが一定の間隔を空けて対向配置され、これら電極の一方または双方の電極対向面がセラミックスなどの誘電体で覆われた構造とされている。そのため、電圧印加電極に高周波電圧を印加すると、両電極間に誘電体バリア放電が発生する。プラズマ発生装置3は、この放電中の電極間に処理ガスを供給することによって処理ガスをプラズマ化(プラズマ活性化)させ、プラズマ化した処理ガスを噴出口33から外部に噴射するようになっている。 The plasma generating means has a structure in which a voltage application electrode and a ground electrode are arranged opposite to each other with a certain interval, and one or both electrode facing surfaces of these electrodes are covered with a dielectric such as ceramics. Therefore, when a high frequency voltage is applied to the voltage application electrode, a dielectric barrier discharge is generated between both electrodes. The plasma generator 3 supplies the processing gas between the electrodes during the discharge to turn the processing gas into plasma (plasma activation), and injects the plasma-ized processing gas to the outside from the ejection port 33. Yes.
 ここで、プラズマ発生装置3の電極構造の一例について図4および図5に基づいて簡単に説明する。
 本実施形態に示すプラズマ発生装置3では、図4に示すように、電圧印加電極34は、円筒状の外周面34aを備えた構造とされる。そして、このような構造の電圧印加電極34が、筐体31の長手方向(図3の上下方向)のほぼ全長にわたって配設されている。なお、この電圧印加電極34の外周面34aはセラミックスなどの固体誘電体で覆われている。
Here, an example of the electrode structure of the plasma generator 3 will be briefly described with reference to FIGS. 4 and 5.
In the plasma generator 3 shown in the present embodiment, as shown in FIG. 4, the voltage application electrode 34 has a structure including a cylindrical outer peripheral surface 34a. And the voltage application electrode 34 of such a structure is arrange | positioned over the full length of the longitudinal direction (up-down direction of FIG. 3) of the housing | casing 31. As shown in FIG. The outer peripheral surface 34a of the voltage application electrode 34 is covered with a solid dielectric such as ceramics.
 一方、接地電極は、筐体31の底板32が電極を兼ねる構造とされている。具体的には、底板32の電圧印加電極側の面には、電圧印加電極34の外周面34aと対応する断面円弧状の凹状溝32aが形成されており、この凹状溝32aが電圧印加電極34との電極対向面を構成するようになっている。そして、この凹状溝32aの最深部に、処理ガスの噴出口33となるスリット状の長孔が、電圧印加電極34の全長に対応して設けられている。 On the other hand, the ground electrode has a structure in which the bottom plate 32 of the casing 31 also serves as an electrode. Specifically, a concave groove 32 a having a circular arc shape corresponding to the outer peripheral surface 34 a of the voltage application electrode 34 is formed on the surface of the bottom plate 32 on the voltage application electrode side, and the concave groove 32 a is formed on the voltage application electrode 34. The electrode facing surface is configured. In addition, a slit-like long hole serving as the processing gas jet port 33 is provided in the deepest portion of the concave groove 32 a corresponding to the entire length of the voltage application electrode 34.
 このように構成されたプラズマ発生装置3は、処理ガスの噴出口33が、管状体2の管状通路21に面するように、かつ、管状通路21の配設方向に沿うように配置される。すなわち、プラズマ発生装置3の噴出口33と管状体2のガス導入孔22は、両者の位置を合わせて配置される。 The plasma generator 3 configured in this manner is arranged so that the processing gas jet port 33 faces the tubular passage 21 of the tubular body 2 and along the arrangement direction of the tubular passage 21. That is, the jet outlet 33 of the plasma generator 3 and the gas introduction hole 22 of the tubular body 2 are arranged with their positions aligned.
 図5は、プラズマ発生装置3の電極構造の他の一例を示している。
 図5(a)に示すプラズマ発生装置3は、図4に示すプラズマ発生装置の電極構造を改変したものである。この5(a)に示すプラズマ発生装置3では、中空円筒状の固体誘電体35内に、半円形の断面を有する電圧印加電極34を収容することにより構成されてしている。そして、接地電極を兼ねる底板32の凹状溝32aの内周面にも固体誘電体35を配置している。
FIG. 5 shows another example of the electrode structure of the plasma generator 3.
The plasma generator 3 shown in FIG. 5A is obtained by modifying the electrode structure of the plasma generator shown in FIG. The plasma generator 3 shown in FIG. 5A is configured by accommodating a voltage applying electrode 34 having a semicircular cross section in a hollow cylindrical solid dielectric 35. A solid dielectric 35 is also disposed on the inner peripheral surface of the concave groove 32a of the bottom plate 32 that also serves as a ground electrode.
 図5(b)に示すプラズマ発生装置3は、電極構造としていわゆる平行平板式の電極構造を採用した場合を示している。この図5(b)に示すプラズマ発生装置3では、電圧印加電極34と接地電極36の電極対向面がともに平面で構成され、これら両電極34,36間で誘電体バリア放電が発生するように構成している。そして、この図5(b)に示す電極構造では、各電極34,36は、いずれも底板32側を薄板状に構成することで、底板32との容量結合の防止が図られている。 The plasma generator 3 shown in FIG. 5B shows a case where a so-called parallel plate type electrode structure is adopted as the electrode structure. In the plasma generator 3 shown in FIG. 5B, the electrode facing surfaces of the voltage application electrode 34 and the ground electrode 36 are both flat, and a dielectric barrier discharge is generated between the electrodes 34 and 36. It is composed. In the electrode structure shown in FIG. 5B, each of the electrodes 34 and 36 is configured to have a thin plate shape on the bottom plate 32 side, thereby preventing capacitive coupling with the bottom plate 32.
 ところで、図4および図5に示すプラズマ発生装置3では、いずれも筐体31の底板32が電気的に接地された電磁シールド構造とされている。これは、電圧印加電極34に印加される高周波電力によって、被処理体Wが破損するのを防止するためである。特に、被処理体Wが金属や金属酸化物、炭素繊維(チョップドファイバ)のように電気的な抵抗値が大きい材質である場合、電磁シールド構造を採用しなければ、被処理体Wが発熱・破損するからである。 Incidentally, in the plasma generator 3 shown in FIGS. 4 and 5, both have an electromagnetic shield structure in which the bottom plate 32 of the casing 31 is electrically grounded. This is to prevent the workpiece W from being damaged by the high frequency power applied to the voltage application electrode 34. In particular, if the object to be processed W is made of a material having a large electrical resistance value such as metal, metal oxide, or carbon fiber (chopped fiber), the object to be processed W generates heat unless an electromagnetic shield structure is used. It will be damaged.
 そして、本実施形態では、プラズマ表面処理装置1を構成するプラズマ発生装置3として、2基のプラズマ発生装置3,3が用いられており、各プラズマ発生装置3,3が管状体2を挟んで対向配置されている。具体的には、図2に示すように、各プラズマ発生装置3,3の噴出口33,33が、正対する位置から相互に位置をずらして配置されており、これによって管状通路21内に処理ガスの渦が形成されるようになっている。すなわち、各プラズマ発生装置3,3の各噴出口33,33が正対する位置から相互に位置をずらして配置されることにより、各噴出口33,33から噴射される処理ガスは、管状通路21内に渦状の流れを形成させるように作用することになる。 In this embodiment, two plasma generators 3 and 3 are used as the plasma generator 3 constituting the plasma surface treatment apparatus 1, and each plasma generator 3 and 3 sandwiches the tubular body 2. Opposed. Specifically, as shown in FIG. 2, the jet outlets 33 and 33 of the respective plasma generators 3 and 3 are arranged so as to be shifted from each other so as to be processed in the tubular passage 21. A gas vortex is formed. That is, the processing gas injected from each of the jet outlets 33, 33 is disposed in the tubular passage 21 by disposing the jet outlets 33, 33 of the respective plasma generators 3, 3 so as to be shifted from each other. It will act to form a vortex-like flow inside.
 被処理体収容部4は、管状通路21に導入する被処理体Wを収容する箱状の容器であって、この被処理体収容部4内に収容された被処理体Wが管状通路21の上端開口部から管状通路21内に導入されるようになっている。具体的には、被処理体収容部4の底部と管状通路21の上端開口部とが管状の連通路41を介して接続されており、この連通路41を介して被処理体収容部4から管状通路21内に被処理体Wが導入される。 The object-to-be-processed container 4 is a box-shaped container that accommodates the object to be processed W to be introduced into the tubular passage 21, and the object to be processed W accommodated in the object-to-be-processed container 4 It is introduced into the tubular passage 21 from the upper end opening. Specifically, the bottom of the object-to-be-treated accommodation portion 4 and the upper end opening of the tubular passage 21 are connected via a tubular communication passage 41, and the object-to-be-treated accommodation portion 4 is connected via the communication passage 41. A workpiece W is introduced into the tubular passage 21.
 なお、管状通路21内への被処理体Wの導入にあたっては、被処理体Wが塊の状態で管状通路21内に導入されるのを防止するため、本実施形態では、被処理体Wを分散させる機構、たとえば、金網などの網状のふるい42が連通路41内に配設されており、被処理体Wはこのふるい42によって分散された状態で管状通路21内に導入される。 In the introduction of the object to be processed W into the tubular passage 21, in order to prevent the object to be processed W from being introduced into the tubular passage 21 in a lump state, in this embodiment, the object to be processed W is A mechanism for dispersing, for example, a net-like sieve 42 such as a wire mesh is disposed in the communication passage 41, and the workpiece W is introduced into the tubular passage 21 while being dispersed by the sieve 42.
 吸引装置5は、管状通路21内に滞留する被処理体Wを管状通路21外に吸い出すための装置であり、管状通路21の下端開口部側に備えられている。具体的には、吸引装置5は、装置本体51と、管状通路21の下端開口部を囲繞する回収カバー52と、該回収カバー52と装置本体51とを連通させる吸引路53とで構成されており、装置本体51による吸引によって回収カバー52内の空気を吸い出すことで、回収装置6による被処理体Wの回収を補助するようになっている。なお、この吸引装置5による吸引により、被処理体収容部4側への被処理体Wの逆流も防止される。 The suction device 5 is a device for sucking out the workpiece W staying in the tubular passage 21 to the outside of the tubular passage 21, and is provided on the lower end opening side of the tubular passage 21. Specifically, the suction device 5 includes a device main body 51, a recovery cover 52 that surrounds the lower end opening of the tubular passage 21, and a suction path 53 that connects the recovery cover 52 and the device main body 51. In addition, by sucking out the air in the recovery cover 52 by suction by the apparatus main body 51, the recovery of the workpiece W by the recovery device 6 is assisted. In addition, the backflow of the to-be-processed object W to the to-be-processed object accommodating part 4 side is also prevented by the suction by this suction device 5.
 回収装置6は、管状通路21を通過した被処理体Wを回収するための装置であって、管状通路21の下端開口部に備えられている。本実施形態では、この回収装置6は、管状通路21の下端開口部を囲繞する袋状のフィルタ61で構成され、管状通路21から吸い出される被処理物Wがこのフィルタ61によって回収されるようになっている。 The collection device 6 is a device for collecting the workpiece W that has passed through the tubular passage 21, and is provided at the lower end opening of the tubular passage 21. In the present embodiment, the collection device 6 includes a bag-like filter 61 that surrounds the lower end opening of the tubular passage 21, and the workpiece W sucked out from the tubular passage 21 is collected by the filter 61. It has become.
 図1に示すプラズマ表面処理装置1では、このフィルタ61として3枚のフィルタを用いた場合を示している。この図示例では、3枚のフィルタ61を用いて大きさの異なる被処理体Wを選別・濾過するように構成している。すなわち、内側のフィルタ61で大きな被処理体Wを回収し、外側のフィルタ61で小さな被処理体Wを回収するようにしている。 1 shows a case where three filters are used as the filter 61 in the plasma surface treatment apparatus 1 shown in FIG. In the illustrated example, the workpieces W having different sizes are selected and filtered using three filters 61. That is, the large object W is collected by the inner filter 61 and the small object W is collected by the outer filter 61.
 なお、本実施形態では、フィルタ61を3枚で構成した場合を示したが、フィルタの枚数は適宜変更可能である。また、各フィルタ61で濾過する被処理体Wの大きさはすべて同じとすることも可能である。 In the present embodiment, the case where the filter 61 is composed of three sheets is shown, but the number of filters can be changed as appropriate. In addition, the sizes of the workpieces W to be filtered by the filters 61 can be the same.
 次に、このように構成されたプラズマ表面処理装置1を用いた被処理体Wの表面処理手順について説明する。 Next, the surface treatment procedure of the workpiece W using the plasma surface treatment apparatus 1 configured as described above will be described.
(1)被処理体Wの表面処理にあたっては、まず、プラズマ発生装置3,3および吸引装置5を作動させる。 (1) In the surface treatment of the workpiece W, first, the plasma generators 3 and 3 and the suction device 5 are operated.
 プラズマ発生装置3の作動により、プラズマ発生装置3の噴出口33からプラズマ化された処理ガスが噴射され、管状通路21内に導入される。これにより、管状通路21内には、上述したように、処理ガスによる管状通路21の配設方向と交差する向きの渦状の流れが形成される。なお、このときに使用する処理ガスは、被処理体Wの材質や実施する表面処理の内容などに応じて適宜選択される。たとえば、処理ガスとして、窒素(N2)ガスと空気(CDA:Clean Dry Air)の混合ガスなどが用いられる。 By the operation of the plasma generator 3, the process gas converted into plasma is ejected from the ejection port 33 of the plasma generator 3 and is introduced into the tubular passage 21. Thereby, in the tubular channel | path 21, as mentioned above, the spiral flow of the direction which cross | intersects the arrangement | positioning direction of the tubular channel | path 21 by process gas is formed. The processing gas used at this time is appropriately selected according to the material of the workpiece W, the content of the surface treatment to be performed, and the like. For example, a mixed gas of nitrogen (N 2 ) gas and air (CDA: Clean Dry Air) is used as the processing gas.
 また、吸引装置5の作動により、管状通路21内の処理ガス等が管状通路21の下端側に吸引される。これにより、管状通路21内の処理ガスの流れは、図1の矢符Aに示すように、下向きの渦状の流れとなって管状通路21外に吸い出されるようになる。なお、この吸引装置5による吸引は、管状通路21内の処理ガスが緩やかに管状通路21外に吸い出されるようにする。つまり、プラズマ発生装置3,3から管状通路21内に導入される処理ガスの流量よりも吸引装置5によって吸引される流量がわずかに多くなるようにする。 Further, by the operation of the suction device 5, the processing gas or the like in the tubular passage 21 is sucked to the lower end side of the tubular passage 21. Thereby, the flow of the processing gas in the tubular passage 21 is sucked out of the tubular passage 21 as a downward spiral flow as shown by an arrow A in FIG. The suction by the suction device 5 causes the processing gas in the tubular passage 21 to be gently sucked out of the tubular passage 21. That is, the flow rate sucked by the suction device 5 is made slightly larger than the flow rate of the processing gas introduced from the plasma generators 3 and 3 into the tubular passage 21.
(2)次に、被処理体収容部4から管状通路21内に被処理体Wを導入する。 (2) Next, the target object W is introduced into the tubular passage 21 from the target object accommodating portion 4.
 被処理体収容部4から管状通路21内に導入される被処理体Wは、ふるい42によって分散されながら、管状通路21内に導入される。管状通路21内に導入された被処理体Wは、重力によって管状通路21内を落下するが、その際、管状通路21内の処理ガスの流れによって、自由落下する時よりも管状通路21内での滞空時間が延長される。 The object to be processed W introduced into the tubular passage 21 from the object-to-be-processed container 4 is introduced into the tubular passage 21 while being dispersed by the sieve 42. The workpiece W introduced into the tubular passage 21 falls in the tubular passage 21 due to gravity. At this time, the process gas in the tubular passage 21 causes the treatment object W to flow in the tubular passage 21 more than when it falls freely. The flight time is extended.
 すなわち、本発明に係るプラズマ表面処理装置1の被処理体Wは、上述したように、小さな個体の集合体であることから、管状通路21内を落下する際に、処理ガスの流れに乗って管状通路21内を旋回しながら落下することになり、管状通路21内での滞空時間が自由落下時よりも長くなる。 That is, since the workpiece W of the plasma surface treatment apparatus 1 according to the present invention is a collection of small individuals as described above, it rides on the flow of the processing gas when falling in the tubular passage 21. It falls while turning in the tubular passage 21, so that the hovering time in the tubular passage 21 becomes longer than that at the time of free fall.
 そして、この長い滞空時間中、被処理体Wは、管状通路21内においてプラズマ化された処理ガスとの接触が図られ、これによって被処理体Wへの表面処理が施される。 Then, during this long dwell time, the object to be processed W is brought into contact with the processing gas that has been converted into plasma in the tubular passage 21, whereby the surface treatment to the object to be processed W is performed.
 しかして、管状通路21内で表面処理が施された被処理体Wは、管状通路21の下端開口部まで落下し、その後、フィルタ61によって回収される。なお、回収した被処理体Wをフィルタ61から取り出すことで、表面処理工程が完了する。 However, the workpiece W that has been subjected to the surface treatment in the tubular passage 21 falls to the lower end opening of the tubular passage 21, and is then collected by the filter 61. In addition, the surface treatment process is completed by removing the collected workpiece W from the filter 61.
 このように、本発明に係るプラズマ表面処理装置によれば、被処理体Wは、管状通路21内でプラズマ化された処理ガスと接触することによって表面処理されるので、表面処理に際して被処理体Wが飛散・散逸することがなく、無駄なく被処理体Wの表面処理を行うことができる。しかも、管状通路21内で表面処理が完結するので、少ない工程で表面処理を行うことができ、低コストでの表面処理を実現できる。 As described above, according to the plasma surface treatment apparatus according to the present invention, the object to be processed W is surface-treated by being brought into contact with the process gas converted into plasma in the tubular passage 21, so that the object to be processed is subjected to the surface treatment. W is not scattered or dissipated, and the surface treatment of the workpiece W can be performed without waste. In addition, since the surface treatment is completed in the tubular passage 21, the surface treatment can be performed with a small number of steps, and the surface treatment can be realized at a low cost.
 また、管状通路21内に導入された被処理体Wは、管状通路21内を旋回しながら落下するので、管状通路21内での滞空時間を長くとることができる。その結果、被処理体Wと処理ガスとの接触を十分に図ることができ、被処理体Wへの表面処理を確実に行うことができる。さらに、複雑な凹凸がある被処理体Wに対しても漏れのない表面処理を行うことができる。 In addition, since the workpiece W introduced into the tubular passage 21 falls while turning in the tubular passage 21, it is possible to increase the time during which the tubular passage 21 stays. As a result, sufficient contact between the object to be processed W and the processing gas can be achieved, and the surface treatment to the object to be processed W can be reliably performed. Furthermore, surface treatment without leakage can be performed even on the workpiece W having complicated unevenness.
 また、本発明に係るプラズマ表面処理装置1では、たとえば、管状体2の長さ寸法を変更することによって、管状通路21内での被処理体Wの滞空時間(換言すれば、被処理体Wに対する表面処理の実施時間)を任意に変更することができるので、材質や形状の異なる被処理体Wに対して、適切な表面処理を行うことができる。 Further, in the plasma surface treatment apparatus 1 according to the present invention, for example, by changing the length dimension of the tubular body 2, the dwell time of the object to be treated W in the tubular passage 21 (in other words, the object to be treated W). Therefore, it is possible to appropriately perform the surface treatment on the workpiece W having different materials and shapes.
 なお、上述した実施形態はあくまでも本発明の好適な実施態様を示すものであって、本発明はこれらに限定されることなくその範囲内で種々の設計変更が可能である。 Note that the above-described embodiments merely show preferred embodiments of the present invention, and the present invention is not limited to these, and various design changes can be made within the scope thereof.
 たとえば、上述した実施形態では、プラズマ表面処理装置1の構成として、2基のプラズマ発生装置3,3を対向配置した場合を示したが、1基のプラズマ発生装置3のみでプラズマ表面処理装置1を構成することも可能である。また、反対に、3基または4基のプラズマ発生装置3を用いてプラズマ表面処理装置を構成することも可能である。 For example, in the above-described embodiment, the case where the two plasma generators 3 and 3 are arranged to face each other is shown as the configuration of the plasma surface treatment apparatus 1, but the plasma surface treatment apparatus 1 includes only one plasma generator 3. It is also possible to configure. Conversely, it is also possible to configure a plasma surface treatment apparatus using three or four plasma generators 3.
 また、上述した実施形態では、管状体2を上下方向(垂直)に配置した場合を示したが、処理ガスの流れに乗って被処理体Wが管状通路21内を落下可能であれば、管状体2を傾けて配置することも可能である。 Further, in the above-described embodiment, the case where the tubular body 2 is arranged in the vertical direction (vertical) is shown. However, if the workpiece W can fall in the tubular passage 21 by riding on the flow of the processing gas, the tubular body 2 is tubular. It is also possible to arrange the body 2 at an angle.
1      プラズマ表面処理装置
2      管状体
3      プラズマ発生装置
4      被処理体収容部
5      吸引装置
6      回収装置
21     管状通路
22     ガス導入孔
31     プラズマ発生装置の筐体
32     筐体の底板
33     処理ガスの噴出口
61     フィルタ
W      被処理体
DESCRIPTION OF SYMBOLS 1 Plasma surface treatment apparatus 2 Tubular body 3 Plasma generation apparatus 4 To-be-processed object accommodating part 5 Suction apparatus 6 Collection | recovery apparatus 21 Tubular channel | path 22 Gas introduction hole 31 Case 32 of plasma generation apparatus Bottom plate 33 Case 33 Filter W Workpiece

Claims (7)

  1.  被処理体を落下させる管状通路に面して、該管状通路の配設方向に沿って処理ガスの噴出口を配置し、
     前記処理ガスの噴出口からプラズマ化された処理ガスを前記管状通路内に噴射することによって、前記管状通路内に管状通路の配設方向と交差する向きの処理ガスの流れを形成させつつ、前記管状通路の上端開口から管状通路内に前記被処理体を導入し、前記被処理体が管状通路内を通過する過程で前記被処理体に前記処理ガスを接触させて被処理体への表面処理を行う
    ことを特徴とするプラズマ表面処理方法。
    Facing the tubular passage where the object to be treated is dropped, a treatment gas spout is disposed along the arrangement direction of the tubular passage,
    By injecting a plasma processing gas into the tubular passage from the processing gas jet port, a flow of the processing gas is formed in the tubular passage in a direction intersecting the arrangement direction of the tubular passage. Surface treatment of the object to be treated by introducing the object to be treated into the tubular passage from the upper end opening of the tubular passage and bringing the object to be treated into contact with the object to be treated while the object passes through the tubular passage. Performing a plasma surface treatment method.
  2.  前記被処理体は、チョップドファイバであることを特徴とする請求項1に記載のプラズマ表面処理方法。 The plasma surface treatment method according to claim 1, wherein the object to be treated is a chopped fiber.
  3.  前記被処理体は、粉粒体であることを特徴とする請求項1に記載のプラズマ表面処理方法。 2. The plasma surface treatment method according to claim 1, wherein the object to be treated is a granular material.
  4.  被処理体を落下させる管状通路を有する管状体と、
     前記管状通路に面し、かつ、前記管状通路の配設方向に沿って処理ガスの噴出口が配置されたプラズマ発生装置とを備えてなり、
     前記噴出口から噴射されるプラズマ化された処理ガスによって、前記管状通路内に管状通路の配設方向と交差する向きの処理ガスの流れを形成させる構造を備えた
    ことを特徴とするプラズマ表面処理装置。
    A tubular body having a tubular passage for dropping an object to be treated;
    A plasma generator that faces the tubular passage and has a processing gas jet port disposed along a direction in which the tubular passage is disposed;
    A plasma surface treatment comprising: a structure in which a flow of a processing gas is formed in the tubular passage in a direction intersecting with an arrangement direction of the tubular passage by the plasma-ized processing gas ejected from the jet outlet. apparatus.
  5.  前記プラズマ発生装置は、前記管状体を挟んで対向配置される2基のプラズマ発生装置で構成され、
     各プラズマ発生装置の噴出口が、正対する位置から相互に位置をずらして配置されていることを特徴とする請求項4に記載のプラズマ表面処理装置。
    The plasma generator is composed of two plasma generators arranged opposite to each other with the tubular body interposed therebetween,
    The plasma surface treatment apparatus according to claim 4, wherein the jet outlets of the respective plasma generators are arranged with their positions shifted from each other.
  6.  前記管状体の下端開口側に、前記管状通路内に滞留する被処理体を前記管状通路外に吸い出す吸引装置が備えられていることを特徴とする請求項4または5に記載のプラズマ表面処理装置。 The plasma surface treatment apparatus according to claim 4 or 5, wherein a suction device for sucking out an object to be processed that stays in the tubular passage to the outside of the tubular passage is provided on a lower end opening side of the tubular body. .
  7.  前記管状体の下端開口側に、前記管状通路を通過した被処理体を回収する回収装置が備えられていることを特徴とする請求項4または5に記載のプラズマ表面処理装置。 6. The plasma surface treatment apparatus according to claim 4, wherein a recovery device for recovering the object to be processed that has passed through the tubular passage is provided on the lower end opening side of the tubular body.
PCT/JP2017/013619 2017-03-31 2017-03-31 Plasma surface treatment method and plasma surface treatment apparatus WO2018179344A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/013619 WO2018179344A1 (en) 2017-03-31 2017-03-31 Plasma surface treatment method and plasma surface treatment apparatus
JP2019508113A JP6944634B2 (en) 2017-03-31 2017-03-31 Plasma surface treatment method and plasma surface treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013619 WO2018179344A1 (en) 2017-03-31 2017-03-31 Plasma surface treatment method and plasma surface treatment apparatus

Publications (1)

Publication Number Publication Date
WO2018179344A1 true WO2018179344A1 (en) 2018-10-04

Family

ID=63674539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013619 WO2018179344A1 (en) 2017-03-31 2017-03-31 Plasma surface treatment method and plasma surface treatment apparatus

Country Status (2)

Country Link
JP (1) JP6944634B2 (en)
WO (1) WO2018179344A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779737C1 (en) * 2019-03-21 2022-09-12 Общество с ограниченной ответственностью "Нано Инвест" Device and method for processing fractionated material with medium-temperature plasma
CN115286952A (en) * 2022-08-30 2022-11-04 广东一纳科技有限公司 Graphene composite powder applied to electrophoretic paint, preparation method of graphene composite powder and electrophoretic paint

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248234A (en) * 1984-05-25 1985-12-07 Hitachi Ltd Device for treating powder body with plasma
JPS63230806A (en) * 1987-03-19 1988-09-27 Toyota Central Res & Dev Lab Inc Gas atomizing apparatus for producing metal powder
JPH11209106A (en) * 1998-01-23 1999-08-03 Denki Kagaku Kogyo Kk Production of spherical particle
JP2013122876A (en) * 2011-12-12 2013-06-20 Akitoshi Okino Surface processing method, and surface processing device
JP2014525820A (en) * 2011-05-23 2014-10-02 ナノシル エス.エー. Equipment and methods for functionalization of granular and powdered products
JP2014220056A (en) * 2013-05-07 2014-11-20 株式会社イー・スクエア Plasma surface treatment device
JP2016031916A (en) * 2014-07-30 2016-03-07 株式会社イーツーラボ Plasma surface treatment method, plasma surface treatment apparatus and plasma surface treatment system
US20160145520A1 (en) * 2012-11-19 2016-05-26 Abenz 81-40 Method and device for treating two-phase fragmented or pulverized material by non-isothermal reactive plasma flux

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248234A (en) * 1984-05-25 1985-12-07 Hitachi Ltd Device for treating powder body with plasma
JPS63230806A (en) * 1987-03-19 1988-09-27 Toyota Central Res & Dev Lab Inc Gas atomizing apparatus for producing metal powder
JPH11209106A (en) * 1998-01-23 1999-08-03 Denki Kagaku Kogyo Kk Production of spherical particle
JP2014525820A (en) * 2011-05-23 2014-10-02 ナノシル エス.エー. Equipment and methods for functionalization of granular and powdered products
JP2013122876A (en) * 2011-12-12 2013-06-20 Akitoshi Okino Surface processing method, and surface processing device
US20160145520A1 (en) * 2012-11-19 2016-05-26 Abenz 81-40 Method and device for treating two-phase fragmented or pulverized material by non-isothermal reactive plasma flux
JP2014220056A (en) * 2013-05-07 2014-11-20 株式会社イー・スクエア Plasma surface treatment device
JP2016031916A (en) * 2014-07-30 2016-03-07 株式会社イーツーラボ Plasma surface treatment method, plasma surface treatment apparatus and plasma surface treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779737C1 (en) * 2019-03-21 2022-09-12 Общество с ограниченной ответственностью "Нано Инвест" Device and method for processing fractionated material with medium-temperature plasma
CN115286952A (en) * 2022-08-30 2022-11-04 广东一纳科技有限公司 Graphene composite powder applied to electrophoretic paint, preparation method of graphene composite powder and electrophoretic paint
CN115286952B (en) * 2022-08-30 2023-10-03 广东一纳科技有限公司 Graphene composite powder applied to electrophoretic paint, preparation method of graphene composite powder and electrophoretic paint

Also Published As

Publication number Publication date
JP6944634B2 (en) 2021-10-06
JPWO2018179344A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
KR101918549B1 (en) Wet Type Dust Collector Using Electrospray and Vortex
CN105148817B (en) Method for treating particles, associated device and particles
JP6628639B2 (en) Plasma processing equipment
JP4658506B2 (en) Power supply circuit for generating pulsed arc plasma and pulsed arc plasma processing apparatus
CZ286310B6 (en) Method of making physically and chemically active medium by making use of plasma nozzle and the plasma nozzle per se
CN101731024A (en) Plasma source
JP2021120947A (en) Plasma processing device and plasma torch
BR112021007526A2 (en) air dust removal method and system
WO2018179344A1 (en) Plasma surface treatment method and plasma surface treatment apparatus
KR20140002599A (en) Electric sorting by means of corona discharge
JP2009233059A (en) Air cleaning apparatus
KR101951185B1 (en) Liquid Spray Apparatus for Wet Type Dust Collector
JP5501362B2 (en) Powder surface treatment apparatus and powder surface treatment method
JP6006393B1 (en) Plasma processing equipment
CN101449628A (en) Ion generator
JP2010029830A (en) Plasma treatment device
JP2014231047A (en) Electrostatic atomizer
CN108781498A (en) Plasma nozzle
KR101942658B1 (en) Fine Dust Trap With Plasma Discharge Source For Charging Particles
WO2006112020A1 (en) Charge elimination device
CN1181296C (en) Personal electric air feeder-regulator
KR20090063538A (en) Surface treatment system of nano-powder using atmospheric plasma
DE102007042436B3 (en) Method and device for charging, reloading or discharging of aerosol particles by ions, in particular into a diffusion-based bipolar equilibrium state
KR102421790B1 (en) Apparatus for dispersing nanomaterials using underwater plasma and a nanomaterial dispersion method using the apparatus for dispersing the same
JP6722461B2 (en) Powder processing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902622

Country of ref document: EP

Kind code of ref document: A1