WO2018179205A1 - Battery electrode, method for manufacturing same, and device for manufacturing electrode - Google Patents

Battery electrode, method for manufacturing same, and device for manufacturing electrode Download PDF

Info

Publication number
WO2018179205A1
WO2018179205A1 PCT/JP2017/013219 JP2017013219W WO2018179205A1 WO 2018179205 A1 WO2018179205 A1 WO 2018179205A1 JP 2017013219 W JP2017013219 W JP 2017013219W WO 2018179205 A1 WO2018179205 A1 WO 2018179205A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gap
electrode
base material
coating
Prior art date
Application number
PCT/JP2017/013219
Other languages
French (fr)
Japanese (ja)
Inventor
乙幡 牧宏
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2017/013219 priority Critical patent/WO2018179205A1/en
Priority to JP2019508004A priority patent/JP6908103B2/en
Publication of WO2018179205A1 publication Critical patent/WO2018179205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery electrode, a manufacturing method thereof, and an electrode manufacturing apparatus.
  • Secondary batteries are widely used as power sources for portable devices such as mobile phones, digital cameras, and notebook PCs, and as power sources for vehicles and homes.
  • a lithium ion secondary battery having a high energy density and a light weight is an energy storage device indispensable for life.
  • a battery element of a wound secondary battery has a structure in which a long positive electrode and a negative electrode are wound a plurality of times in a state of being overlapped while being separated by a separator.
  • the stacked type has a structure in which positive electrodes and negative electrodes are alternately stacked via separators.
  • Secondary batteries tend to increase in capacity year after year. Therefore, if a short circuit occurs, the secondary battery may generate more heat, so it is important to improve the safety of the secondary battery.
  • a technique for improving the safety of the secondary battery for example, a technique is known in which an insulating layer is formed in a range extending over both the surface of the active material layer and the exposed surface of the current collector (Patent Document 1). .
  • an insulating member is formed so as to cover a boundary portion between a coated portion (portion where the positive electrode active material layer is formed) and an uncoated portion (portion where the positive electrode active material layer is not formed). As shown in FIG. 2 of the same document, one end portion of the insulating member is located on the thin portion of the positive electrode active material layer, and the other end portion is located on the uncoated portion ((0030). ) Paragraph). The insulating member is applied by a die coater (paragraph (0037)).
  • the gap between the current collector foil and the tip of the coating die is set to a thickness approximately equal to the wet thickness of the slurry in the uncoated portion, and the active material thickness in the coated portion. + Wet thickness is set. Thereby, a uniform insulating layer can be applied.
  • an insulating member is applied with a gap wider than the sum of the thickness of the applied portion and the wet thickness at the boundary between the coated portion and the uncoated portion of the active material layer (with a margin). Need to be provided).
  • the distance (gap) between the die tip and the substrate is usually set to be approximately equal to the wet thickness determined by the coating liquid discharge amount and the line speed.
  • the gap is set larger than the wet thickness, a portion that is not coated at the boundary portion is generated as shown in FIGS. is there.
  • the present invention has been made in view of the problems as described above, and the purpose thereof is to form an insulating layer on the surface of the active material layer before and after the boundary of the intermittent coating portion with a die coater. It is to provide a battery electrode that can be coated with a margin so that the tip of the die coater and the active material layer do not come in contact with each other and a manufacturing method thereof.
  • the present invention is a method for producing an electrode, wherein a second layer is applied to at least a boundary portion between the base material and the first layer with respect to a base material partially formed with a first layer, In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate.
  • the second layer is coated with a second gap smaller than the gap
  • the third layer is coated on the first layer by adding the thickness of the first layer to the first gap. It is the manufacturing method of the electrode which makes it.
  • the present invention is a method for producing an electrode, wherein a second layer is applied to at least a boundary portion between the first layer and the substrate with respect to the substrate on which the first layer is formed in part.
  • the thickness of the first layer is added to the first gap corresponding to the wet thickness determined by the coating liquid discharge amount and the moving speed of the base material.
  • the second gap is applied with a third gap, and a fourth gap which is smaller than the third gap and larger than the thickness of the first layer in the region before the boundary on the first layer.
  • the present invention provides a base material, a first layer formed on at least a part of the base material, a boundary between the first layer and the base material on at least the first layer and the base material.
  • a battery electrode comprising: a second layer formed across the boundary portion, on the first layer, and on the base material and having a thickness that decreases in this order.
  • the present invention is formed across the boundary between the substrate, the first layer formed on at least a part of the substrate, at least the substrate on the first layer, on the boundary,
  • a battery electrode comprising: a second layer having a thickness that decreases in this order in a region adjacent to the boundary portion on the first layer on the base material.
  • the present invention also includes a transport mechanism for transporting the base material partially formed of the first layer; A coating die for applying a material to the substrate; A control circuit for controlling the position of the coating die; With The control circuit includes: In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate.
  • the second layer is applied with a second gap smaller than the gap, and on the first layer, the third gap is applied by adding the thickness of the first layer to the first gap, or Or
  • On the first layer, the gap between the coating device and the first layer is applied, the second layer is applied with the third gap, and the region on the first layer before the boundary portion is the third layer.
  • the second layer is applied with a fourth gap that is smaller than the gap and larger than the thickness of the first layer, and the second layer is applied with the first gap on the substrate.
  • An electrode manufacturing apparatus that controls a position of the coating die.
  • the margin is provided so that the tip of the die coater and the active material layer do not contact without interrupting the insulating layer. It is possible to provide a battery electrode that can be applied with a coating and a method for producing the same.
  • FIG. 6 is a schematic cross-sectional view showing that when a gap is set larger than the wet thickness in order to provide a margin at the boundary, a portion that is not coated is generated at the boundary.
  • FIGS. 1A and 1B are schematic cross-sectional views showing a process of forming a second layer 12 with a coating apparatus 14 on a base material 10 on which a first layer 11 is partially formed.
  • coating is performed from the lower side (base material 10 side) to the higher side (first layer 11 side) across the boundary portion 15.
  • a first layer 11 is formed on a part of the substrate 10.
  • the second layer 12 is applied by discharging the coating liquid from the coating device 14 so as to straddle at least the step of the boundary portion 15 on the substrate 10 and the first layer 11.
  • the substrate 10 is moved to the right in the drawing at a constant speed without moving the coating apparatus 14.
  • a right-pointing arrow in FIG. 1 indicates a direction in which the substrate 10 is moved.
  • the one in which the first layer is formed on the base material or the one in which the first layer and the second layer are formed on the base material is referred to herein as a battery electrode. It may be simply abbreviated as an electrode.
  • a gap 16 is set between the coating device 14 and the substrate 10.
  • the gap is a distance between the tip portion discharged from the coating liquid of the coating apparatus and the substrate.
  • the coating thickness (hereinafter referred to as wet thickness) of the second layer 12 is determined from the coating liquid discharge amount per predetermined time of the coating device 14 and the moving speed of the substrate 10.
  • the size of the gap 16 at a location away from the boundary 15 is set to be the same as the wet thickness. This gap 16 is defined as a first gap.
  • the gap When approaching the boundary 15 (point A in FIG. 1A), the gap is intentionally changed to a gap 16 'smaller than the gap 16. Then, a part of the discharged coating liquid is not applied as the second layer, but is stored as a liquid reservoir 13 at the front end portion of the front surface of the coating apparatus.
  • This gap 16 ' is defined as a second gap.
  • an appropriate distance is taken in front of the boundary portion 15 (appropriate “running distance” is set)
  • a sufficient amount of liquid pool can be collected, and the accumulated liquid pool gathers at the boundary portion 15 and
  • the second layer is sufficiently thicker than before and after.
  • the thick coating 18 serves as a margin for preventing the first layer 11 or the substrate 10 from being exposed.
  • the gap 16 ′′ is a total value of the thickness of the first layer 11 and the thickness of the gap 16 (first gap). This gap is the third gap.
  • the second layer 12 may be applied to the entire surface of the base material 10 and the first layer 11, or may be applied only before and after the boundary portion 15 at a minimum.
  • the first embodiment is a case where the coating is performed from the lower side (base material side) to the higher side (first layer side) across the boundary portion 15.
  • FIGS. 2A and 2B are schematic cross-sectional views for explaining the second embodiment.
  • the coating liquid is discharged from the coating device 24 so as to straddle the boundary portion 25 between the base material 20 and the first layer 21, thereby coating the second layer 22.
  • the base material 20 is moved to the right side of the drawing at a constant speed without moving the coating device 24.
  • a right-pointing arrow in FIG. 2 indicates a direction in which the substrate 20 is moved.
  • a gap 26 (third gap) is set between the coating device 24 and the substrate 20.
  • the wet thickness (first gap) of the second layer 22 is determined from the coating liquid discharge amount per predetermined time of the coating device 24 and the moving speed of the substrate 20.
  • the size of the gap 26 in the region away from the boundary portion 25 on the second layer 22 is set to a size (third gap) obtained by adding the thickness of the first layer 21 to the wet thickness. Therefore, on the second layer 22 in a region away from the boundary portion 25, the second layer is applied with the same thickness as the first gap.
  • the gap When approaching the boundary portion 25 (point B in FIG. 2A), the gap is intentionally changed to a gap 26 '(fourth gap) smaller than the third gap.
  • the difference between the third gap and the fourth gap may be approximately the same as the difference between the first gap and the second gap in the first embodiment.
  • the distance between the boundary portion 25 and the point B may be the same as the distance between the boundary portion 15 and the point A in FIG.
  • a part of the discharged coating liquid is not applied as the second layer, but is stored as a liquid reservoir 23 at the front end portion of the front surface of the coating apparatus.
  • a sufficient amount of liquid can be stored, and a second layer sufficiently thicker than before and after the boundary portion 25 can be applied.
  • This thick coating 28 serves as a margin for preventing the first layer 21 or the substrate 20 from being exposed.
  • the gap is reduced to the first gap to form the gap 26 ′′.
  • FIG. 3 is a schematic diagram for explaining a third embodiment of the present invention, and is a diagram showing an example of continuously producing battery electrodes by intermittent coating.
  • the die coater 300 includes at least one backup roller 301 on which the current collector foil 30 is bridged, and a coating die 34 disposed so as to face the surface of the current collector foil 30.
  • the die coater 300 also includes a drive mechanism (not shown) that moves the coating die 34 forward and backward (having an actuator, a link mechanism, etc.), a mechanism that discharges material from the nozzle 34a of the coating die 34, and their operations.
  • the coating die 34 is configured to move forward and backward with respect to the backup roller 301.
  • the insulating layer 32 rotates in the direction indicated by the arrow in FIG. 3 and is coated at a predetermined thickness at a predetermined position from the bottom to the top.
  • a material obtained by intermittently coating the active material layer 31 on one surface of the current collector foil 30 at a predetermined interval is stretched over the backup roller 301.
  • the die coater 300 is provided with a detector 39.
  • the detector 39 detects the position of the end portion of the active material layer 31 formed on the conveyed current collector foil using a difference in light reflectance from the current collector foil 30 or the like.
  • the detector 39 is, for example, an imaging device such as a CCD (Charge Coupled Device) camera, a reflectance measuring device using laser light, or the like.
  • the detector 39 is electrically connected to the control circuit 302.
  • the control circuit 302 controls the gap between the coating die 34 and the current collector foil 30 or the active material layer 31 from the positions of both ends of the active material layer 31 detected by the detector 39 and the rotational speed of the backup roller 301. Calculate timing. Based on the calculation result, as described in the first and second embodiments, a thick coating 38 of the insulating layer 32 is formed at the boundary.
  • control circuit 302 may be configured to control the rotation operation of the backup roller 301 and / or other drive rollers (not shown).
  • the control circuit 302 may include a microcomputer having a CPU (Central Processing Unit), a memory, and the like, and the operation of the control circuit 302 may be controlled by a computer program.
  • CPU Central Processing Unit
  • the current collector foil 30 is a long member drawn from a roll (not shown).
  • the control circuit 302 controls the position of the coating die 34 and the discharge at an appropriate timing in accordance with the rotation of the backup roller 301, thereby collecting the current material in which the active material layer 31 is intermittently formed.
  • An insulating layer 32 is intermittently applied on the foil 30. In FIG. 3, the insulating layer 32 is intermittently applied to the top and side surfaces of the active material layer 31, and a region where the insulating layer 32 is not applied is provided on the current collector foil 30 between the adjacent active material layers 31. However, it may be applied to the entire surface.
  • FIG. 4 is a schematic plan view showing a process of manufacturing the battery electrode from the intermittently coated electrode.
  • the current collector foil 30 is cut along a cutting line 40a parallel to the length direction thereof (this process is also referred to as “slit”) to form a plurality of long members.
  • the electrode is further punched into the shape of the electrode cutting line 40b, whereby a final electrode as shown in FIG. 4C is obtained.
  • the negative electrode can be manufactured in the same manner as the positive electrode.
  • FIG. 3 the active material layer 31 and the insulating layer 32 are formed only on one surface of the current collector foil 30, but the active material layer and the insulating layer may be formed on both surfaces of the current collector foil 30.
  • the end portion of the insulating layer 32 is described as an ideal shape, but may be tapered as shown in FIGS. It is desirable that the end portion of the active material layer 31 is covered without being interrupted so long as it does not become higher than the height of the insulating layer 32 on the active material layer 31 (active material layer thickness + insulating layer thickness).
  • FIG. 5 is a schematic diagram for explaining a fourth embodiment of the present invention, and is a diagram showing another example of continuously producing battery electrodes by intermittent coating.
  • the die coater 400 is different from the die coater 300 in that it includes two coating dies (coating dies 54 and 55) and film thickness meters 56, 56 ′, and 56 ′′.
  • the first film thickness meter 56 is disposed upstream of the first backup roller 401, and the second film thickness meter 56 ′ is disposed between the first backup roller 401 and the second backup roller 402,
  • the third film thickness meter 56 ′′ is disposed downstream of the second backup roller 402.
  • the control circuit and the edge detector of the active material layer are omitted.
  • the active material layer 41 is intermittently applied at a predetermined interval on one surface of the current collector foil 40 by the coating die 54.
  • the insulating layer 52 is applied with a coating die 55.
  • 401 and 402 are backup rollers.
  • the film thickness meters 56, 56 ', and 56 "measure the film thicknesses of the current collector foil 40, the active material layer 41, and the insulating layer 52, respectively.
  • the film thickness meter As the film thickness meter, a known film thickness meter such as a radiation ( ⁇ -ray, ⁇ -ray, X-ray) film thickness meter or a laser film thickness meter can be used. According to such a configuration, the thickness of the current collector foil 40, the active material layer 51, and the insulating layer 52 on the active material layer can be derived. In addition, it is good also as a structure which provides only one or only two among three film thickness meters. Further, a camera for detecting coating defects may be provided at any one or both of the positions of the film thickness meters 56 ′ and 56 ′′. In FIG.
  • the insulating layer 52 is intermittently applied to the top and side surfaces of the active material layer 41, and a region where the insulating layer 52 is not applied is provided on the current collector foil 40 between the adjacent active material layers 41. However, it may be applied to the entire surface.
  • the end portion of the insulating layer 52 is described as an ideal shape, but may be tapered as shown in FIGS. 1 and 2. It is desirable that the end portion of the active material layer 41 is covered without being interrupted as long as it does not become higher than the height of the insulating layer 52 on the active material layer 41 (active material layer thickness + insulating layer thickness).
  • FIG. 6 is a schematic diagram for explaining a method for controlling the gap.
  • the coating apparatus is a die coater, it is first conceivable that the die 60 main body approaches or leaves.
  • the die tip portion is constituted by a piezoelectric body 61, and a voltage is applied to the piezoelectric body to expand and contract to bring the die close or close.
  • FIG. 6B there is a method in which a mechanism for changing the angle of the die body with respect to the electrode is provided so that the gap is tilted in the traveling direction when the gap is reduced.
  • a rotating shaft 62 passing through the die central axis is provided on the opposite side of the die body from the electrode so that the angle can be varied with respect to the electrode. If the rotation shaft and the die body are fixed, the rotation shaft may not be in the die body.
  • FIG. 6C there is also a method of controlling the gap by moving the position of the backup roller 63 up and down and changing the position of the electrode mounted thereon.
  • the upper and lower sides of the die body and the methods shown in FIGS. 6A, 6B, and 6C may be appropriately combined.
  • the lithium ion secondary battery 1 includes a battery element 400 and an outer container 450 that encloses the battery element 400 together with an electrolyte, as shown in FIGS. 7, 8A, and 8B.
  • the battery element 400 in the stacked lithium ion secondary battery 1 has a structure in which the positive electrode 100 and the negative electrode 200 are alternately and repeatedly stacked while being separated by a separator 350 as shown in FIG.
  • a separator is provided between the positive electrode and the negative electrode, but may not be provided.
  • an insulating layer can also serve as a separator by forming an insulating layer on at least one of the positive electrode and the negative electrode facing the counter electrode.
  • the positive electrode 100 is formed by forming an active material layer or the like on a current collector, and includes a positive electrode active material forming portion 110 and a positive electrode active material layer non-forming portion 120 in which no active material layer is formed to provide a lead portion. And have.
  • the negative electrode 200 also has an active material layer formed on a current collector, and has a negative electrode active material forming part 210 and a negative electrode active material non-forming part 220.
  • Each positive electrode active material non-formed part is bundled by ultrasonic bonding or the like to form a positive electrode lead part 410 as shown in FIG.
  • the negative electrode active material non-forming portions 220 are also bundled to form a negative electrode lead portion 420.
  • the positive electrode lead portion 410 and the negative electrode lead portion 420 are electrically connected to the positive electrode terminal 430 and the negative electrode terminal 440, respectively.
  • the battery element 400 is enclosed in the outer container 450 so that the positive electrode terminal 430 and the negative electrode terminal 440 are drawn out of the outer container 450.
  • the outer container 450 may be made of a known material and configuration. For example, it may be formed of a film member in which an inner surface layer 460 made of a heat sealing resin, a metal layer 470 made of an aluminum thin film, and a surface layer 480 made of a protective resin are laminated.
  • FIG. 9A is a schematic cross-sectional view showing only one electrode taken out from the lithium ion secondary battery 1 of FIG. 8B.
  • the current collector foil 155 is bent to connect to the positive terminal 430 or the negative terminal 440. Therefore, stress is applied to the boundary portion 150 between the current collector foil 155 and the active material layer, and the current collector foil may be broken or the insulating layer may be peeled off.
  • the insulating layer at the boundary is thick, it is strong against bending and high in strength.
  • FIG. 10 is a table showing experimental results when coating is performed from the low side to the high side across the step of the boundary portion 15.
  • a die coater is used as a coating apparatus, a current collector foil of a secondary battery as a base material, an active material layer of the secondary battery as a first layer, and an insulating layer as a second layer.
  • the discharge amount of the coating liquid from the die is always a constant amount.
  • the insulating layer Wet thickness and the active material layer thickness are respectively a coating thickness of the insulating layer and a coating thickness of the active material layer.
  • the gap change margin is a moving distance from a position where the gap, which has been reduced (gap 16 ′) to form the liquid reservoir 13, to a constant value (gap 16 ′′) from a position where the gap starts to increase. Since it takes a little time to raise the die, the die starts to rise before reaching the boundary 15 and reaches the gap 16 ′′ before the boundary 15.
  • the gap is controlled by moving the die up and down, but may be controlled by measuring the distance between the roll and the die tip using a known position sensor or the like.
  • the run-up distance is a distance obtained by shortening the gap to the gap 16 'and is a distance for forming a liquid pool.
  • the gap shortening rate indicates how much the gap should be reduced during the approach distance compared to the large gap area (gap 16) in front of it. In this embodiment, it is 0, 20, 50%. That is, the gap is reduced by 0%, 20%, and 50%, respectively, compared to before the gap is reduced.
  • also means that the step is not exposed and is covered with a thick insulating layer.
  • means that the step is covered with an insulating layer which is not as thick as in the case of ⁇ but has a sufficient thickness.
  • X means that the insulating layer was not covered with a step and there was a place where the step was exposed.
  • the material constituting the electrode will be described including the insulating layer. The following is an example, and the material is not particularly limited, and a known material can be used.
  • Examples of base materials are current collector foils and current collectors of secondary batteries, but aluminum, nickel, copper, silver, alloys thereof, and the like can be used as the positive electrode material.
  • the material for the negative electrode is the same as the material for the positive electrode, but in particular, copper, iron, nickel, chromium-based, molybdenum-based stainless steel, aluminum, aluminum alloy, or the like can be used.
  • An example of the first layer is an active material layer of a secondary battery.
  • the positive electrode active material include LiNiO 2 , Li y Ni (1-x) M x O 2 (formula A) (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B).
  • LiNi ⁇ Co ⁇ Mn ⁇ O 2 (0.75 ⁇ ⁇ ⁇ 0.85, 0.05 ⁇ ⁇ ⁇ 0.15, 0.10 ⁇ ⁇ ⁇ 0.20) may be mentioned.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like. Note that when the Ni content is increased (for example, exceeding 0.6), the energy density of the battery can be increased, but the present invention is effective even in such a case.
  • two or more compounds represented by the above may be used as a mixture, for example, NCM532 or NCM523 and NCM433 in a range of 9: 1 to 1: 9 (as a typical example) 2: 1) are also preferably used as a mixture.
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • the negative electrode active material contains metal and / or metal oxide and carbon as the negative electrode active material.
  • the metal include Li, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. . Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide examples include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof.
  • tin oxide or silicon oxide is included as the negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds.
  • 0.1 to 5% by mass of one or more elements selected from nitrogen, boron and sulfur can be added to the metal oxide.
  • the electrical conductivity of a metal oxide can be improved.
  • the electrical conductivity can be similarly improved by coating a metal or metal oxide with a conductive material such as carbon by a method such as vapor deposition.
  • Examples of carbon include graphite, amorphous carbon, diamond-like carbon, carbon nanotubes, and composites thereof.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • Metals and metal oxides are characterized by a lithium acceptability that is much greater than that of carbon. Therefore, the energy density of the battery can be improved by using a large amount of metal and metal oxide as the negative electrode active material.
  • the content ratio of the metal and / or metal oxide in the negative electrode active material is high.
  • a larger amount of metal and / or metal oxide is preferable because the capacity of the whole negative electrode increases.
  • the metal and / or metal oxide is preferably contained in the negative electrode in an amount of 0.1% by mass or more of the negative electrode active material, more preferably 1% by mass or more, and still more preferably 10% by mass or more.
  • the metal and / or metal oxide has a large volume change when lithium is occluded / released compared to carbon, and the electrical connection may be lost. It is below mass%.
  • the negative electrode active material is a material capable of reversibly receiving and releasing lithium ions in accordance with charge and discharge in the negative electrode, and does not include other binders.
  • the second layer is, for example, an insulating layer that covers the positive electrode or the negative electrode, and for example, an inorganic oxide can be used.
  • the inorganic oxide include magnesium oxide, silicon oxide, alumina, zirconia, oxide of titanium oxide, barium titanate, calcium titanate, lead titanate, ⁇ -LiAlO 2 , LiTiO 3 and the like.
  • An organic film can also be used as the insulating layer.
  • polypropylene, polyethylene, aramid, polyimide, polyamideimide, or the like can be used.
  • a method for producing an electrode in which a second layer is applied to at least a boundary portion between the base material and the first layer with respect to the base material partially formed with a first layer, In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is coated with a second gap smaller than the gap, and the third layer is coated on the first layer by adding the thickness of the first layer to the first gap.
  • a method for manufacturing an electrode in which a second layer is applied to at least a boundary portion between the base material and the first layer with respect to the base material partially formed with a first layer, In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is coated with a second gap smaller than the gap, and the third
  • Appendix 7 A method of manufacturing an electrode, wherein a second layer is applied to at least a boundary portion between the first layer and the substrate with respect to a substrate on which a first layer is formed in part, On the first layer, the thickness of the first layer is added to the first gap corresponding to the wet thickness determined by the coating liquid discharge amount and the moving speed of the base material.
  • the second gap is applied with a third gap, and a fourth gap which is smaller than the third gap and larger than the thickness of the first layer in the region before the boundary on the first layer.
  • the method for producing an electrode wherein the second layer is applied and the second layer is applied on the substrate with the first gap.
  • appendix 11 Any one of appendixes 7 to 10, wherein the second layer is applied with the third gap on the first layer, and then the second layer is applied with the fourth gap in the region before the boundary.
  • the method for producing an electrode according to one item. (Appendix 12) The change of the gap is performed by at least one of movement of a die constituting the coating apparatus, expansion and contraction of the tip of the die, change in angle of the die, or movement of a backup roll on which the substrate is placed. The manufacturing method of the electrode as described in any one. (Appendix 13) The first layer is coated on the substrate and dried, and then the second layer is coated, or the first layer is coated on the substrate and not dried.
  • the second layer decreasing in this order,
  • a battery electrode characterized by comprising: (Appendix 18) Base material, A first layer formed on at least a part of the substrate; It is formed across at least the boundary portion with the base material on the first layer, and the thickness is reduced in this order in the boundary portion, on the base material, and in the region adjacent to the boundary portion on the first layer.
  • the second layer A battery electrode characterized by comprising: (Appendix 19) The battery electrode according to appendix 17 or 18, wherein the first layer is a battery active material layer, the second layer is an insulating layer, and the base material is a current collector. (Appendix 20) A transport mechanism for transporting the base material partially formed of the first layer; A coating die for applying a material to the substrate; A control circuit for controlling the position of the coating die; With The control circuit includes: In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate.
  • the second layer is applied with a second gap smaller than the gap, and on the first layer, the third gap is applied by adding the thickness of the first layer to the first gap, or Or On the first layer, the gap between the coating device and the first layer is applied, the second layer is applied with the third gap, and the region on the first layer before the boundary portion is the third layer.
  • the second layer is applied with a fourth gap that is smaller than the gap and larger than the thickness of the first layer, and the second layer is applied with the first gap on the substrate.

Abstract

The purpose of the present invention is to provide: a battery electrode in which a coating layer can be formed in a boundary section with a sufficient margin; and a method for manufacturing same. To this end, this method for manufacturing an electrode is a method in which a second layer is coated on at least a boundary section between a first layer and a base material having a portion on which the first layer is formed. The method is characterized in that, in a region directly in front of the boundary section on the base material, with respect to the gap between a coating device and the base material, the second layer is coated with a second gap that is smaller than a first gap corresponding to a wet thickness that is determined by the amount of discharged coating fluid and by the moving speed of the base material, and coating is performed on the first layer with a third gap corresponding to the sum of the thickness of the first layer and the first gap.

Description

電池用電極、その製造方法及び電極製造装置Battery electrode, manufacturing method thereof, and electrode manufacturing apparatus
 本発明は、電池用電極、その製造方法および電極製造装置に関する。 The present invention relates to a battery electrode, a manufacturing method thereof, and an electrode manufacturing apparatus.
 二次電池は、携帯電話、デジタルカメラ、ノートPC等のポータブル機器の電源として、また、車両や家庭用の電源として広く普及している。中でも、高エネルギー密度で軽量なリチウムイオン二次電池は、生活に欠かせないエネルギー蓄積デバイスである。 Secondary batteries are widely used as power sources for portable devices such as mobile phones, digital cameras, and notebook PCs, and as power sources for vehicles and homes. Among them, a lithium ion secondary battery having a high energy density and a light weight is an energy storage device indispensable for life.
 二次電池は大別して捲回型と積層型とに分類される。捲回型二次電池の電池素子は、長尺の正極と負極とがセパレータによって隔離されつつ重ね合わされた状態で複数回巻かれた構造を有する。積層型のものは、正極と負極とをセパレータを介して交互に積層した構造となっている。 Secondary batteries are roughly classified into wound type and stacked type. A battery element of a wound secondary battery has a structure in which a long positive electrode and a negative electrode are wound a plurality of times in a state of being overlapped while being separated by a separator. The stacked type has a structure in which positive electrodes and negative electrodes are alternately stacked via separators.
 二次電池は年々大容量化する傾向にある。したがって、仮に短絡が発生した場合には、該二次電池はより発熱する可能性があるため、二次電池の安全性を向上させることが重要である。二次電池の安全性を向上させる方法としては、例えば、活物質層の表面と集電体の露出面の両方にまたがる範囲に、絶縁層を形成する技術が知られている(特許文献1)。 Secondary batteries tend to increase in capacity year after year. Therefore, if a short circuit occurs, the secondary battery may generate more heat, so it is important to improve the safety of the secondary battery. As a method for improving the safety of the secondary battery, for example, a technique is known in which an insulating layer is formed in a range extending over both the surface of the active material layer and the exposed surface of the current collector (Patent Document 1). .
 特許文献1では、塗布部(正極活物質層が形成されている部分)と未塗布部(正極活物質層が形成されていない部分)との境界部分を覆うように絶縁部材を形成する。同文献の図2に示すように、絶縁部材の一方の端部は正極活物質層の薄肉部の上に位置しており、他方の端部は未塗布部上に位置している((0030)段落)。絶縁部材の塗布はダイコータで行っている((0037)段落)。 In Patent Document 1, an insulating member is formed so as to cover a boundary portion between a coated portion (portion where the positive electrode active material layer is formed) and an uncoated portion (portion where the positive electrode active material layer is not formed). As shown in FIG. 2 of the same document, one end portion of the insulating member is located on the thin portion of the positive electrode active material layer, and the other end portion is located on the uncoated portion ((0030). ) Paragraph). The insulating member is applied by a die coater (paragraph (0037)).
特開2017-010644号公報Japanese Unexamined Patent Publication No. 2017-010644
 ダイコータで絶縁部材の塗工を行う場合、集電箔と塗工用ダイの先端との間のギャップは、未塗布部ではスラリーのウェット厚みとほぼ等しい厚みに設定され、塗布部では活物質厚み+ウェット厚みに設定される。これにより、均一な絶縁層を塗工することができる。 When coating insulating members with a die coater, the gap between the current collector foil and the tip of the coating die is set to a thickness approximately equal to the wet thickness of the slurry in the uncoated portion, and the active material thickness in the coated portion. + Wet thickness is set. Thereby, a uniform insulating layer can be applied.
 しかし、ギャップを、活物質層の間欠塗工部境界の膜厚変化に完璧に追随させて制御するのは困難である。そのためダイ先端と活物質層の接触を防ぐために、活物質層の塗布部と未塗布部の境界部では、塗布部厚みとウェット厚みの合計よりも広いギャップで絶縁部材を塗工する(マージンを設ける)必要がある。ダイコータによる塗工は、通常は、ダイ先端と基材までの距離(ギャップ)を、塗液吐出量とライン速度によって決まるウェット厚みとほぼ等しく設定する。しかし、境界部にマージンを設けたい場合に、ギャップをウェット厚みよりも大きく設定すると、図11(a)、(b)に示すように境界部で塗工されない部分が生じ、そこで短絡する虞がある。 However, it is difficult to control the gap by following the change in the film thickness at the boundary of the intermittently applied portion of the active material layer. Therefore, in order to prevent contact between the tip of the die and the active material layer, an insulating member is applied with a gap wider than the sum of the thickness of the applied portion and the wet thickness at the boundary between the coated portion and the uncoated portion of the active material layer (with a margin). Need to be provided). In the coating by the die coater, the distance (gap) between the die tip and the substrate is usually set to be approximately equal to the wet thickness determined by the coating liquid discharge amount and the line speed. However, when it is desired to provide a margin at the boundary portion, if the gap is set larger than the wet thickness, a portion that is not coated at the boundary portion is generated as shown in FIGS. is there.
 本発明は、上記のような課題に鑑みてなされたものであって、その目的は、ダイコータにて、活物質層の間欠塗工部境界前後の表面上に絶縁層を形成する際、絶縁層を途切れることなく、ダイコータ先端と活物質層が接触しないようにマージンを持って塗工できる電池用電極とその製造方法を提供することである。 The present invention has been made in view of the problems as described above, and the purpose thereof is to form an insulating layer on the surface of the active material layer before and after the boundary of the intermittent coating portion with a die coater. It is to provide a battery electrode that can be coated with a margin so that the tip of the die coater and the active material layer do not come in contact with each other and a manufacturing method thereof.
 本発明は、一部に第1層が形成された基材に対して、少なくとも前記基材と前記第1層の境界部に第2層を塗工する電極の製造方法であって、
前記基材上の前記境界部手前の領域では、塗工装置と前記基材のギャップを、前記塗工装置の塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップよりも小さい第2のギャップで前記第2層を塗工し、前記第1層上では前記第1のギャップに前記第1層の厚みを加えた第3のギャップで塗工することを特徴とする電極の製造方法である。
The present invention is a method for producing an electrode, wherein a second layer is applied to at least a boundary portion between the base material and the first layer with respect to a base material partially formed with a first layer,
In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is coated with a second gap smaller than the gap, and the third layer is coated on the first layer by adding the thickness of the first layer to the first gap. It is the manufacturing method of the electrode which makes it.
 また本発明は、一部に第1層が形成された基材に対して、少なくとも前記第1層と前記基材の境界部に第2層を塗工する電極の製造方法であって、
前記第1層上では、塗工装置と前記第1層のギャップを、塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップに前記第1層の厚みを加えた第3のギャップで前記第2層を塗工し、前記第1層上の前記境界部手前の領域では前記第3のギャップよりも小さくしかも前記第1層の厚みよりも大きい第4のギャップで前記第2層を塗工し、前記基材上では前記第1のギャップで前記第2層を塗工することを特徴とする電極の製造方法である。
Further, the present invention is a method for producing an electrode, wherein a second layer is applied to at least a boundary portion between the first layer and the substrate with respect to the substrate on which the first layer is formed in part.
On the first layer, the thickness of the first layer is added to the first gap corresponding to the wet thickness determined by the coating liquid discharge amount and the moving speed of the base material. The second gap is applied with a third gap, and a fourth gap which is smaller than the third gap and larger than the thickness of the first layer in the region before the boundary on the first layer. The method for producing an electrode according to claim 1, wherein the second layer is applied and the second layer is applied with the first gap on the substrate.
 また本発明は、基材、前記基材上の少なくとも一部に形成された第1層、少なくとも前記第1層上と前記基材上に、前記第一層と前記基材との境界部を跨いで形成され、前記境界部上、前記第1層上、前記基材上で厚みがこの順に小さくなっている第2層、を備えたことを特徴とする電池用電極である。 Further, the present invention provides a base material, a first layer formed on at least a part of the base material, a boundary between the first layer and the base material on at least the first layer and the base material. A battery electrode comprising: a second layer formed across the boundary portion, on the first layer, and on the base material and having a thickness that decreases in this order.
 また本発明は、基材、前記基材上の少なくとも一部に形成された第1層、少なくとも前記第1層上の前記基材との境界部を跨いで形成され、前記境界部上、前記基材上、前記第1層上の前記境界部に隣接する領域で、厚みがこの順に小さくなっている第2層、を備えたことを特徴とする電池用電極である。 Further, the present invention is formed across the boundary between the substrate, the first layer formed on at least a part of the substrate, at least the substrate on the first layer, on the boundary, A battery electrode comprising: a second layer having a thickness that decreases in this order in a region adjacent to the boundary portion on the first layer on the base material.
 また本発明は、第1層が一部に形成された基材を搬送する搬送機構と、
前記基材に対して材料を塗工する塗工用ダイと、
前記塗工用ダイの位置を制御する制御回路と、
を備え、
前記制御回路は、
前記基材上の前記境界部手前の領域では、塗工装置と前記基材のギャップを、前記塗工装置の塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップよりも小さい第2のギャップで第2層を塗工し、前記第1層上では前記第1のギャップに前記第1層の厚みを加えた第3のギャップで塗工するか、
または、
前記第1層上では、塗工装置と前記第1層のギャップを、前記第3のギャップで前記第2層を塗工し、前記第1層上の前記境界部手前の領域では前記第3のギャップよりも小さくしかも前記第1層の厚みよりも大きい第4のギャップで前記第2層を塗工し、前記基材上では前記第1のギャップで前記第2層を塗工するよう、
前記塗工用ダイの位置を制御することを特徴とする電極製造装置、である。
The present invention also includes a transport mechanism for transporting the base material partially formed of the first layer;
A coating die for applying a material to the substrate;
A control circuit for controlling the position of the coating die;
With
The control circuit includes:
In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is applied with a second gap smaller than the gap, and on the first layer, the third gap is applied by adding the thickness of the first layer to the first gap, or
Or
On the first layer, the gap between the coating device and the first layer is applied, the second layer is applied with the third gap, and the region on the first layer before the boundary portion is the third layer. The second layer is applied with a fourth gap that is smaller than the gap and larger than the thickness of the first layer, and the second layer is applied with the first gap on the substrate.
An electrode manufacturing apparatus that controls a position of the coating die.
 本発明によれば、ダイコータにて、活物質層の間欠塗工部境界前後の表面上に絶縁層を形成する際、絶縁層を途切れることなく、ダイコータ先端と活物質層が接触しないようにマージンを持って塗工できる電池用電極とその製造方法を提供することができる。 According to the present invention, when forming an insulating layer on the surface of the active material layer before and after the boundary of the intermittently coated portion in the die coater, the margin is provided so that the tip of the die coater and the active material layer do not contact without interrupting the insulating layer. It is possible to provide a battery electrode that can be applied with a coating and a method for producing the same.
本発明の第1の実施形態の電極形成工程を示す模式的断面図である。It is typical sectional drawing which shows the electrode formation process of the 1st Embodiment of this invention. 本発明の第2の実施形態の電極形成工程を示す模式的断面図である。It is typical sectional drawing which shows the electrode formation process of the 2nd Embodiment of this invention. 本発明の第3の実施形態を説明する模式図で、間欠塗工で連続的に電池用電極を製造する例を示す図である。It is a schematic diagram explaining the 3rd Embodiment of this invention, and is a figure which shows the example which manufactures the electrode for batteries continuously by intermittent coating. 間欠塗工された電極から電池用電極を製造する過程を示す模式的平面図である。It is a typical top view which shows the process in which the electrode for batteries is manufactured from the electrode applied intermittently. 本発明の第4の実施形態を説明する模式図で、間欠塗工で連続的に電池用電極を製造する別の例を示す図である。It is a schematic diagram explaining the 4th Embodiment of this invention, and is a figure which shows another example which manufactures the electrode for batteries continuously by intermittent coating. ギャップを制御するための方法を説明する模式図である。It is a schematic diagram explaining the method for controlling a gap. 本発明の実施例の電極の製造方法を示す模式的断面図である。It is typical sectional drawing which shows the manufacturing method of the electrode of the Example of this invention. 電池の構成を示す模式的断面図である。It is typical sectional drawing which shows the structure of a battery. 図8(b)の電池1から電極を1つだけ取り出して示した模式的断面図である。It is typical sectional drawing which took out and showed only one electrode from the battery 1 of FIG.8 (b). 本発明の実施例で、境界部15の段差を跨いで低い側から高い側に塗工した場合の実験結果を示す。In the Example of this invention, the experimental result at the time of coating from the low side to the high side across the level | step difference of the boundary part 15 is shown. 境界部にマージンを設けようとしてギャップをウェット厚みよりも大きく設定すると、境界部に塗工されない部分が生じることを示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing that when a gap is set larger than the wet thickness in order to provide a margin at the boundary, a portion that is not coated is generated at the boundary.
 以下、図面を参照しながら本発明の実施形態について説明する。
(第1の実施形態)
 本発明の第1の実施形態の電池用電極製造方法について説明する。図1(a)、(b)、は一部に第1層11を形成した基材10上に、塗工装置14で第2層12を形成する工程を示す模式的断面図である。本実施形態では、境界部15を跨いで低い側(基材10側)から高い側(第1層11側)に塗工する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
The battery electrode manufacturing method according to the first embodiment of the present invention will be described. FIGS. 1A and 1B are schematic cross-sectional views showing a process of forming a second layer 12 with a coating apparatus 14 on a base material 10 on which a first layer 11 is partially formed. In the present embodiment, coating is performed from the lower side (base material 10 side) to the higher side (first layer 11 side) across the boundary portion 15.
 図1に示すように、基材10上の一部に第1層11が形成してある。少なくとも基材10と第1層11上にその境界部15の段差を跨ぐように塗工装置14から塗液を吐出させて、第2層12を塗工する。本実施形態では塗工装置14を動かさず、基材10を図面右向きに一定速度で動かす。図1中の右向きの矢印は基材10を動かす方向を示している。基材上に第1層を形成したもの、または基材上に第1層と第2層を形成したものを、ここではどちらも電池用電極と呼ぶ。なお単に電極と略称することもある。第2層12を形成するために塗工装置14と基材10の間にはギャップ16を設定する。なおギャップは塗工装置の塗液が吐出する先端部と基材との間の距離とする。塗工装置14の所定時間当たりの塗液吐出量と基材10の移動速度から、第2層12の塗工厚み(以下ウェット厚み)が決まる。境界部15から離れた箇所でのギャップ16の大きさは、そのウェット厚みと同じに設定する。このギャップ16を第1のギャップとする。 As shown in FIG. 1, a first layer 11 is formed on a part of the substrate 10. The second layer 12 is applied by discharging the coating liquid from the coating device 14 so as to straddle at least the step of the boundary portion 15 on the substrate 10 and the first layer 11. In the present embodiment, the substrate 10 is moved to the right in the drawing at a constant speed without moving the coating apparatus 14. A right-pointing arrow in FIG. 1 indicates a direction in which the substrate 10 is moved. The one in which the first layer is formed on the base material or the one in which the first layer and the second layer are formed on the base material is referred to herein as a battery electrode. It may be simply abbreviated as an electrode. In order to form the second layer 12, a gap 16 is set between the coating device 14 and the substrate 10. Note that the gap is a distance between the tip portion discharged from the coating liquid of the coating apparatus and the substrate. The coating thickness (hereinafter referred to as wet thickness) of the second layer 12 is determined from the coating liquid discharge amount per predetermined time of the coating device 14 and the moving speed of the substrate 10. The size of the gap 16 at a location away from the boundary 15 is set to be the same as the wet thickness. This gap 16 is defined as a first gap.
 境界部15に近づいたら(図1(a)のA地点)、ギャップをわざとギャップ16より小さいギャップ16’に変更する。すると吐出した塗液の一部は、第2層として塗膜されず、塗工装置前面の先端部に液溜り13として溜まる。このギャップ16’を第2のギャップとする。境界部15から手前で適切な距離を取る(適切な「助走距離」を設定する)と、液溜りを十分な量だけ溜めることができ、その溜まった液溜りが境界部15に集まって、その前後よりも十分厚い第2層になる。この厚い塗膜18が第1層11あるいは基材10が露出しないためのマージンとなる。 When approaching the boundary 15 (point A in FIG. 1A), the gap is intentionally changed to a gap 16 'smaller than the gap 16. Then, a part of the discharged coating liquid is not applied as the second layer, but is stored as a liquid reservoir 13 at the front end portion of the front surface of the coating apparatus. This gap 16 'is defined as a second gap. When an appropriate distance is taken in front of the boundary portion 15 (appropriate “running distance” is set), a sufficient amount of liquid pool can be collected, and the accumulated liquid pool gathers at the boundary portion 15 and The second layer is sufficiently thicker than before and after. The thick coating 18 serves as a margin for preventing the first layer 11 or the substrate 10 from being exposed.
 その後境界部の段差の直前の箇所でギャップを大きくしていく。制御の遅延等があるため、あまり境界部に接近してからギャップを大きくし始めると塗工装置先端が第1層11にぶつかって第1層を損傷させる。そのため適切な距離だけ手前でギャップを大きくし始める。ギャップ16’’は第1層11の厚みとギャップ16(第1のギャップ)の厚みを合計した値とする。このギャップを第3のギャップとする。 After that, increase the gap at the point just before the step at the boundary. Since there is a control delay or the like, if the gap starts to increase after approaching the boundary too much, the tip of the coating apparatus hits the first layer 11 and damages the first layer. Therefore, it starts to enlarge the gap just before the appropriate distance. The gap 16 ″ is a total value of the thickness of the first layer 11 and the thickness of the gap 16 (first gap). This gap is the third gap.
 なお、第1層11の塗工の最初からギャップ16の厚みで塗工せずギャップ16’の厚みで塗工することも可能である。基材10が十分平滑で凹凸が少なければ、基材10上の第1層を薄くしても基材10が露出することはない。また第2層12は基材10と第1層11の全面に塗工してもよいし、最低限境界部15の前後に塗工するだけでもよい。
(第2の実施形態)
 第1の実施形態は、境界部15を跨いで低い側(基材側)から高い側(第1層側)に塗工する場合である。しかし、その逆に、境界部25の段差を跨いで高い側から低い側に塗工して境界部に厚い塗膜を形成することも可能である。
In addition, it is also possible to apply with the thickness of the gap 16 ′ without applying the thickness of the gap 16 from the beginning of the application of the first layer 11. If the base material 10 is sufficiently smooth and has few irregularities, the base material 10 is not exposed even if the first layer on the base material 10 is thinned. Further, the second layer 12 may be applied to the entire surface of the base material 10 and the first layer 11, or may be applied only before and after the boundary portion 15 at a minimum.
(Second Embodiment)
The first embodiment is a case where the coating is performed from the lower side (base material side) to the higher side (first layer side) across the boundary portion 15. However, conversely, it is also possible to form a thick coating on the boundary portion by coating from the high side to the low side across the step of the boundary portion 25.
 図2(a)、(b)は第2の実施形態を説明するための模式的断面図である。基材20と第1層21の境界部25を跨ぐように塗工装置24から塗液を吐出させて、第2層22を塗工する。本実施形態でも塗工装置24を動かさず、基材20を図面右向きに一定速度で動かす。図2中の右向きの矢印は基材20を動かす方向を示している。第2層22を形成するために塗工装置24と基材20の間にはギャップ26(第3のギャップ)を設定する。塗工装置24の所定時間当たりの塗液吐出量と基材20の移動速度から、第2層22のウェット厚み(第1のギャップ)が決まる。第2層22上の、境界部25から離れた領域でのギャップ26の大きさは、そのウェット厚みに第1層21の厚みを加えた大きさ(第3のギャップ)に設定する。そのため境界部25から離れた領域の第2層22上では第1のギャップと同じ厚みで第2層が塗工される。 FIGS. 2A and 2B are schematic cross-sectional views for explaining the second embodiment. The coating liquid is discharged from the coating device 24 so as to straddle the boundary portion 25 between the base material 20 and the first layer 21, thereby coating the second layer 22. Also in this embodiment, the base material 20 is moved to the right side of the drawing at a constant speed without moving the coating device 24. A right-pointing arrow in FIG. 2 indicates a direction in which the substrate 20 is moved. In order to form the second layer 22, a gap 26 (third gap) is set between the coating device 24 and the substrate 20. The wet thickness (first gap) of the second layer 22 is determined from the coating liquid discharge amount per predetermined time of the coating device 24 and the moving speed of the substrate 20. The size of the gap 26 in the region away from the boundary portion 25 on the second layer 22 is set to a size (third gap) obtained by adding the thickness of the first layer 21 to the wet thickness. Therefore, on the second layer 22 in a region away from the boundary portion 25, the second layer is applied with the same thickness as the first gap.
 境界部25に近づいたら(図2(a)のB地点)、ギャップをわざと第3のギャップより小さいギャップ26’(第4のギャップ)に変更する。第3のギャップと第4のギャップの差は、第1の実施形態の第1のギャップと第2のギャップの差と同程度でよい。また境界部25とB地点との距離は、図1(a)の境界部15とA地点との間の距離も同程度でよい。すると、吐出した塗液の一部は、第2層として塗膜されず、塗工装置前面の先端部に液溜り23として溜まる。境界部25から手前で適切な距離を取ると、液溜りの量を十分溜めることができ、境界部25には、その前後よりも十分厚い第2層を塗工することができる。この厚い塗膜28が第1層21あるいは基材20が露出しないためのマージンとなる。 When approaching the boundary portion 25 (point B in FIG. 2A), the gap is intentionally changed to a gap 26 '(fourth gap) smaller than the third gap. The difference between the third gap and the fourth gap may be approximately the same as the difference between the first gap and the second gap in the first embodiment. Further, the distance between the boundary portion 25 and the point B may be the same as the distance between the boundary portion 15 and the point A in FIG. Then, a part of the discharged coating liquid is not applied as the second layer, but is stored as a liquid reservoir 23 at the front end portion of the front surface of the coating apparatus. When an appropriate distance is taken from the boundary portion 25 in front, a sufficient amount of liquid can be stored, and a second layer sufficiently thicker than before and after the boundary portion 25 can be applied. This thick coating 28 serves as a margin for preventing the first layer 21 or the substrate 20 from being exposed.
 その後塗工装置24先端が境界部25の段差を過ぎたら、ギャップを第1のギャップまで小さくしてギャップ26’’にする。 After that, when the tip of the coating device 24 passes the step of the boundary portion 25, the gap is reduced to the first gap to form the gap 26 ″.
 なお、第2層22は基材20と第1層21の全面に塗工してもよいし、最低限境界部25の前後に塗工するだけでもよい。
(第3の実施形態)
 図3は本発明の第3の実施形態を説明する模式図で、間欠塗工で連続的に電池用電極を製造する例を示す図である。ダイコータ300は、集電箔30が架け渡される少なくとも1つのバックアップローラ301と、集電箔30の表面に対向するように配置された塗工用ダイ34とを備えている。またダイコータ300は、塗工用ダイ34を進退移動させる不図示の駆動機構(アクチュエータ、リンク機構等を有する)と、塗工用ダイ34のノズル34aから材料を吐出させる機構と、それらの動作を制御する制御回路302とを備えている。塗工用ダイ34は、バックアップローラ301に対して進退移動可能に構成されている。塗工時には図3の矢印で示した方向に回転して下から上に向かって絶縁層32が所定の位置に所定の厚みで塗工される。
The second layer 22 may be applied to the entire surface of the base material 20 and the first layer 21, or may be applied only before and after the boundary 25.
(Third embodiment)
FIG. 3 is a schematic diagram for explaining a third embodiment of the present invention, and is a diagram showing an example of continuously producing battery electrodes by intermittent coating. The die coater 300 includes at least one backup roller 301 on which the current collector foil 30 is bridged, and a coating die 34 disposed so as to face the surface of the current collector foil 30. The die coater 300 also includes a drive mechanism (not shown) that moves the coating die 34 forward and backward (having an actuator, a link mechanism, etc.), a mechanism that discharges material from the nozzle 34a of the coating die 34, and their operations. And a control circuit 302 for controlling. The coating die 34 is configured to move forward and backward with respect to the backup roller 301. At the time of coating, the insulating layer 32 rotates in the direction indicated by the arrow in FIG. 3 and is coated at a predetermined thickness at a predetermined position from the bottom to the top.
 図3では、予め集電箔30の片面に活物質層31が所定の間隔で間欠塗工されたものがバックアップローラ301に掛け渡されている。 In FIG. 3, a material obtained by intermittently coating the active material layer 31 on one surface of the current collector foil 30 at a predetermined interval is stretched over the backup roller 301.
 またダイコータ300には、検出器39が設けられている。検出器39は、搬送される集電箔上に形成した活物質層31の端部の位置を、集電箔30との光の反射率の違い等を用いて検出する。検出器39は例えばCCD(Charge Coupled Device)カメラ等の撮像装置、レーザ光を利用した反射率測定装置等である。検出器39は、制御回路302に電気的に接続されている。制御回路302は、検出器39で検出した活物質層31の両端部の位置とバックアップローラ301の回転速度から、塗工用ダイ34と集電箔30あるいは活物質層31とのギャップを制御するタイミングを算出する。算出結果を基に、第1、第2の実施形態で述べたようにして、境界部に絶縁層32の厚い塗膜38を形成する。 Further, the die coater 300 is provided with a detector 39. The detector 39 detects the position of the end portion of the active material layer 31 formed on the conveyed current collector foil using a difference in light reflectance from the current collector foil 30 or the like. The detector 39 is, for example, an imaging device such as a CCD (Charge Coupled Device) camera, a reflectance measuring device using laser light, or the like. The detector 39 is electrically connected to the control circuit 302. The control circuit 302 controls the gap between the coating die 34 and the current collector foil 30 or the active material layer 31 from the positions of both ends of the active material layer 31 detected by the detector 39 and the rotational speed of the backup roller 301. Calculate timing. Based on the calculation result, as described in the first and second embodiments, a thick coating 38 of the insulating layer 32 is formed at the boundary.
 なお、制御回路302が、バックアップローラ301および/または他の不図示の駆動ローラの回転動作も制御するように構成されていてもよい。制御回路302は、CPU(Central Processing Unit)、メモリ等を有するマイクロコンピュータを有し、コンピュータプログラムによって動作制御されるものであってもよい。 Note that the control circuit 302 may be configured to control the rotation operation of the backup roller 301 and / or other drive rollers (not shown). The control circuit 302 may include a microcomputer having a CPU (Central Processing Unit), a memory, and the like, and the operation of the control circuit 302 may be controlled by a computer program.
 集電箔30は不図示のロールから引き出された長尺な部材である。制御回路302が、バックアップローラ301の回転に合わせて適宜のタイミングで塗工用ダイ34の位置の制御、および、吐出の制御を行うことで、活物質層31が間欠的に形成された集電箔30上に絶縁層32が間欠塗工される。なお図3では絶縁層32を活物質層31の上面と側面に間欠塗工し、隣の活物質層31との間の集電箔30上には絶縁層32を塗工しない領域を設けたが、全面に塗工してもよい。 The current collector foil 30 is a long member drawn from a roll (not shown). The control circuit 302 controls the position of the coating die 34 and the discharge at an appropriate timing in accordance with the rotation of the backup roller 301, thereby collecting the current material in which the active material layer 31 is intermittently formed. An insulating layer 32 is intermittently applied on the foil 30. In FIG. 3, the insulating layer 32 is intermittently applied to the top and side surfaces of the active material layer 31, and a region where the insulating layer 32 is not applied is provided on the current collector foil 30 between the adjacent active material layers 31. However, it may be applied to the entire surface.
 図4は間欠塗工された電極から電池用電極を製造する過程を示す模式的平面図である。集電箔30は、図4(a)に示すように、その長さ方向に平行な切断線40aに沿って切断され(この工程を「スリット」ともいう)、複数の長尺部材となる。そして、図4(b)のように、さらに電極切断線40bの形状に打ち抜き、これにより、図4(c)のような最終的な電極が得られる。なお、負極も正極と同様に製作することができる。 FIG. 4 is a schematic plan view showing a process of manufacturing the battery electrode from the intermittently coated electrode. As shown in FIG. 4A, the current collector foil 30 is cut along a cutting line 40a parallel to the length direction thereof (this process is also referred to as “slit”) to form a plurality of long members. Then, as shown in FIG. 4B, the electrode is further punched into the shape of the electrode cutting line 40b, whereby a final electrode as shown in FIG. 4C is obtained. Note that the negative electrode can be manufactured in the same manner as the positive electrode.
 なお、図3では集電箔30の片面のみに活物質層31、絶縁層32を形成したが、集電箔30の両面に活物質層と絶縁層を形成してもよい。また図3では絶縁層32の端部は理想形として記載しているが、図1や図2のようにテーパ状になり得る。活物質層31上の絶縁層32の高さ(活物質層厚+絶縁層厚)より高くならない範囲で活物質層31の端部を絶縁層が途切れることなく覆っていることが望ましい。
(第4の実施形態)
 図5は本発明の第4の実施形態を説明する模式図で、間欠塗工で連続的に電池用電極を製造する別の例を示す図である。ダイコータ400では、塗工用ダイを2つ(塗工用ダイ54,55)備え、また膜厚計56、56’、56’’を備えている点で、ダイコータ300と構成上違いがある。第1の膜厚計56は第1のバックアップローラ401の上流に配置され、第2の膜厚計56’は第1のバックアップローラ401と第2のバックアップローラ402との間に配置され、第3の膜厚計56’’は第2のバックアップローラ402の下流に配置されている。なお図5では、制御回路と、活物質層の端部検出器は省略している。
In FIG. 3, the active material layer 31 and the insulating layer 32 are formed only on one surface of the current collector foil 30, but the active material layer and the insulating layer may be formed on both surfaces of the current collector foil 30. In FIG. 3, the end portion of the insulating layer 32 is described as an ideal shape, but may be tapered as shown in FIGS. It is desirable that the end portion of the active material layer 31 is covered without being interrupted so long as it does not become higher than the height of the insulating layer 32 on the active material layer 31 (active material layer thickness + insulating layer thickness).
(Fourth embodiment)
FIG. 5 is a schematic diagram for explaining a fourth embodiment of the present invention, and is a diagram showing another example of continuously producing battery electrodes by intermittent coating. The die coater 400 is different from the die coater 300 in that it includes two coating dies (coating dies 54 and 55) and film thickness meters 56, 56 ′, and 56 ″. The first film thickness meter 56 is disposed upstream of the first backup roller 401, and the second film thickness meter 56 ′ is disposed between the first backup roller 401 and the second backup roller 402, The third film thickness meter 56 ″ is disposed downstream of the second backup roller 402. In FIG. 5, the control circuit and the edge detector of the active material layer are omitted.
 まず、塗工用ダイ54によって集電箔40の片面に活物質層41を所定の間隔で間欠塗工する。活物質層41を塗工した後に、塗工用ダイ55で絶縁層52を塗工する。401、402はバックアップローラである。膜厚計56、56’、56’’はそれぞれ集電箔40、活物質層41、絶縁層52の膜厚を計測する。 First, the active material layer 41 is intermittently applied at a predetermined interval on one surface of the current collector foil 40 by the coating die 54. After the active material layer 41 is applied, the insulating layer 52 is applied with a coating die 55. 401 and 402 are backup rollers. The film thickness meters 56, 56 ', and 56 "measure the film thicknesses of the current collector foil 40, the active material layer 41, and the insulating layer 52, respectively.
 膜厚計としては、放射線(β線、γ線、X線)膜厚計や、レーザ膜厚計など、既知の膜厚計を用いることができる。このような構成によれば、集電箔40、活物質層51、活物質層上の絶縁層52の厚みを導出することができる。なお、3つの膜厚計のうち、いずれか1つのみ、または、2つのみを設ける構成としてもよい。また、膜厚計56’、56’’の位置のいずれか1つ、または両方に、塗工欠点検出用のカメラを設けても良い。なお図5では絶縁層52を活物質層41の上面と側面に間欠塗工し、隣の活物質層41との間の集電箔40上には絶縁層52を塗工しない領域を設けたが、全面に塗工してもよい。また図5では絶縁層52の端部は理想形として記載しているが、図1や図2のようにテーパ状になり得る。活物質層41上の絶縁層52の高さ(活物質層厚+絶縁層厚)より高くならない範囲で活物質層41の端部を絶縁層が途切れることなく覆っていることが望ましい。
(第5の実施形態)
 図6はギャップを制御するための方法を説明する模式図である。ギャップを制御するための方法としては、塗工装置を接近または離脱させて電極との間の距離を制御することが挙げられる。塗工装置がダイコータであれば、ダイ60本体を接近または離脱させることがまず考えられる。それ以外にも図6(a)に断面を示すように、ダイ先端部を圧電体61で構成し、圧電体に電圧を印加して伸縮させてダイを接近または離脱させる方法もある。
As the film thickness meter, a known film thickness meter such as a radiation (β-ray, γ-ray, X-ray) film thickness meter or a laser film thickness meter can be used. According to such a configuration, the thickness of the current collector foil 40, the active material layer 51, and the insulating layer 52 on the active material layer can be derived. In addition, it is good also as a structure which provides only one or only two among three film thickness meters. Further, a camera for detecting coating defects may be provided at any one or both of the positions of the film thickness meters 56 ′ and 56 ″. In FIG. 5, the insulating layer 52 is intermittently applied to the top and side surfaces of the active material layer 41, and a region where the insulating layer 52 is not applied is provided on the current collector foil 40 between the adjacent active material layers 41. However, it may be applied to the entire surface. In FIG. 5, the end portion of the insulating layer 52 is described as an ideal shape, but may be tapered as shown in FIGS. 1 and 2. It is desirable that the end portion of the active material layer 41 is covered without being interrupted as long as it does not become higher than the height of the insulating layer 52 on the active material layer 41 (active material layer thickness + insulating layer thickness).
(Fifth embodiment)
FIG. 6 is a schematic diagram for explaining a method for controlling the gap. As a method for controlling the gap, it is possible to control the distance from the electrode by moving the coating apparatus closer or away. If the coating apparatus is a die coater, it is first conceivable that the die 60 main body approaches or leaves. In addition, as shown in a cross section in FIG. 6A, there is also a method in which the die tip portion is constituted by a piezoelectric body 61, and a voltage is applied to the piezoelectric body to expand and contract to bring the die close or close.
 また、図6(b)に示すように、電極に対してダイ本体の角度を変える機構を持たせて、ギャップを小さくする時にダイの進行方向に傾ける方法もある。ダイ本体の電極とは反対側にダイ中心軸を通る回転軸62を設け、電極に対して角度可変になるようにする。なお回転軸とダイ本体との間を固定しておけば、回転軸はダイ本体の中になくてもよい。 Also, as shown in FIG. 6B, there is a method in which a mechanism for changing the angle of the die body with respect to the electrode is provided so that the gap is tilted in the traveling direction when the gap is reduced. A rotating shaft 62 passing through the die central axis is provided on the opposite side of the die body from the electrode so that the angle can be varied with respect to the electrode. If the rotation shaft and the die body are fixed, the rotation shaft may not be in the die body.
 さらに図6(c)に示すように、バックアップローラ63の位置を上下させてその上に載っている電極の位置を変えて、ギャップを制御する方法もある。なおダイ本体の上下、図6(a)、(b)、(c)の方法を適宜組み合わせて用いてもよい。
(第6の実施形態)
 第1~第5の実施形態の方法で製造された二次電池の構成の一例について説明する。
Further, as shown in FIG. 6C, there is also a method of controlling the gap by moving the position of the backup roller 63 up and down and changing the position of the electrode mounted thereon. Note that the upper and lower sides of the die body and the methods shown in FIGS. 6A, 6B, and 6C may be appropriately combined.
(Sixth embodiment)
An example of the configuration of the secondary battery manufactured by the methods of the first to fifth embodiments will be described.
 リチウムイオン二次電池1は、図7、図8(a)、(b)に示すように、電池素子400と、それを電解質とともに封入する外装容器450とを備えている。この積層型のリチウムイオン二次電池1における電池素子400は、図7に示すように、正極100と負極200とがセパレータ350によって隔離されながら交互に繰り返し積層された構造を有している。なおこの例では正極と負極の間にセパレータを設けているが、設けなくても良い。例えば、少なくとも正極または負極の一方の電極の、対極との対向面すべてに絶縁層を形成することで、絶縁層がセパレータを兼ねることができる。 The lithium ion secondary battery 1 includes a battery element 400 and an outer container 450 that encloses the battery element 400 together with an electrolyte, as shown in FIGS. 7, 8A, and 8B. The battery element 400 in the stacked lithium ion secondary battery 1 has a structure in which the positive electrode 100 and the negative electrode 200 are alternately and repeatedly stacked while being separated by a separator 350 as shown in FIG. In this example, a separator is provided between the positive electrode and the negative electrode, but may not be provided. For example, an insulating layer can also serve as a separator by forming an insulating layer on at least one of the positive electrode and the negative electrode facing the counter electrode.
 正極100は、集電体に活物質層等が形成されたものであり、正極活物質形成部110と、リード部を設けるために活物質層が形成されていない正極活物質層未形成部120とを有している。同様に、負極200も、集電体上に活物質層等が形成されたものであり、負極活物質形成部210と負極活物質未形成部220とを有している。 The positive electrode 100 is formed by forming an active material layer or the like on a current collector, and includes a positive electrode active material forming portion 110 and a positive electrode active material layer non-forming portion 120 in which no active material layer is formed to provide a lead portion. And have. Similarly, the negative electrode 200 also has an active material layer formed on a current collector, and has a negative electrode active material forming part 210 and a negative electrode active material non-forming part 220.
 それぞれの正極活物質未形成部は超音波接合等によって束ねられて、図8(a)に示すように、正極リード部410となっている。同様に、それぞれの負極活物質未形成部220も束ねられて負極リード部420となっている。正極リード部410と負極リード部420には、それぞれ正極端子430と負極端子440とに電気的に接続されている。 Each positive electrode active material non-formed part is bundled by ultrasonic bonding or the like to form a positive electrode lead part 410 as shown in FIG. Similarly, the negative electrode active material non-forming portions 220 are also bundled to form a negative electrode lead portion 420. The positive electrode lead portion 410 and the negative electrode lead portion 420 are electrically connected to the positive electrode terminal 430 and the negative electrode terminal 440, respectively.
 電池素子400は、正極端子430および負極端子440が外装容器450の外部に引き出されるように、外装容器450内に封入される。なお、外装容器450は既知の材質および構成のものを利用できる。例えば、熱融着樹脂からなる内面層460、アルミニウム薄膜からなる金属層470、保護用樹脂からなる表面層480が積層されたフィルム部材で形成されるものであってもよい。 The battery element 400 is enclosed in the outer container 450 so that the positive electrode terminal 430 and the negative electrode terminal 440 are drawn out of the outer container 450. The outer container 450 may be made of a known material and configuration. For example, it may be formed of a film member in which an inner surface layer 460 made of a heat sealing resin, a metal layer 470 made of an aluminum thin film, and a surface layer 480 made of a protective resin are laminated.
 電極の製造以外の電池の製造手順に関しても、基本的には既存の方法を用いることができる。すなわち、予め用意した正極100、負極200、セパレータ350を、図7のように交互に積層して電池素子400とする。そして、図8(a)に示すように正極端子430および負極端子440を電気的に接続した電池素子400を外装容器450内に電解質とともに密閉封止して、図8(b)に断面を示すようなリチウムイオン二次電池1を得る。 As for battery manufacturing procedures other than electrode manufacturing, existing methods can basically be used. That is, the positive electrode 100, the negative electrode 200, and the separator 350 prepared in advance are alternately stacked as shown in FIG. Then, as shown in FIG. 8A, the battery element 400 in which the positive electrode terminal 430 and the negative electrode terminal 440 are electrically connected is hermetically sealed together with the electrolyte in the outer container 450, and a cross section is shown in FIG. 8B. Such a lithium ion secondary battery 1 is obtained.
 図8(b)の絶縁層180、185が上述の実施形態で述べた第2層である。この例では集電箔155の両面を絶縁層で被覆している。図9(a)は図8(b)のリチウムイオン二次電池1から電極を1つだけ取り出して示した模式的断面図である。集電箔155は正極端子430または負極端子440に接続するために曲げられる。そのため集電箔155と活物質層の境界部150にストレスがかかり、集電箔の破断や絶縁層が剥離する可能性がある。しかし本実施形態では境界部の絶縁層が厚いため、曲げに強く強度が高い。そのため集電箔の破断や絶縁層が剥離する可能性を低くすることができる。一方図9(b)のように境界部の絶縁層が厚くない場合は曲げに弱く、境界部150にストレスがかかり、集電箔の破断や絶縁層が剥離する可能性がある。 The insulating layers 180 and 185 in FIG. 8B are the second layers described in the above embodiment. In this example, both surfaces of the current collector foil 155 are covered with an insulating layer. FIG. 9A is a schematic cross-sectional view showing only one electrode taken out from the lithium ion secondary battery 1 of FIG. 8B. The current collector foil 155 is bent to connect to the positive terminal 430 or the negative terminal 440. Therefore, stress is applied to the boundary portion 150 between the current collector foil 155 and the active material layer, and the current collector foil may be broken or the insulating layer may be peeled off. However, in this embodiment, since the insulating layer at the boundary is thick, it is strong against bending and high in strength. Therefore, it is possible to reduce the possibility of breakage of the current collector foil and peeling of the insulating layer. On the other hand, when the insulating layer at the boundary is not thick as shown in FIG. 9B, it is vulnerable to bending, stress is applied to the boundary 150, and the current collector foil may break or the insulating layer may peel off.
 図10は境界部15の段差を跨いで低い側から高い側に塗工した場合の実験結果を示す表である。本実施例では塗工装置としてダイコータ、基材として二次電池の集電箔、第1層として二次電池の活物質層、第2層として絶縁層を用いている。なおダイからの塗液の吐出量は常に一定量である。絶縁層Wet厚みと活物質層厚みはそれぞれ、絶縁層の塗工厚み、活物質層の塗工厚みである。 FIG. 10 is a table showing experimental results when coating is performed from the low side to the high side across the step of the boundary portion 15. In this embodiment, a die coater is used as a coating apparatus, a current collector foil of a secondary battery as a base material, an active material layer of the secondary battery as a first layer, and an insulating layer as a second layer. The discharge amount of the coating liquid from the die is always a constant amount. The insulating layer Wet thickness and the active material layer thickness are respectively a coating thickness of the insulating layer and a coating thickness of the active material layer.
 またギャップ変更マージンは、液溜り13を形成するために小さく(ギャップ16’)していたギャップを、大きくし始める箇所から一定値(ギャップ16’’)にするまでの移動距離である。ダイを上昇させるためにわずかではあるが時間がかかるので、境界部15に到達する手前で、ダイの上昇を始め、しかも同じく境界部15の手前でギャップ16’’に到達するようにする。本実施例では0.7、1.5mmの二種類である。ギャップはダイを上下させることで制御するが、既知の位置センサ等を用いてロールとダイ先端との距離を計測して制御すればよい。また助走距離はギャップをギャップ16’に短縮している距離であり、液溜りを形成するための距離である。本実施例では0、3、5mmの三種類である。ギャップ短縮割合は、助走距離の最中に、その手前のギャップの大きい領域(ギャップ16)と比べて、ギャップをどの程度小さくすれば良いかを示す。本実施例では0,20,50%である。つまりギャップを小さくする前に比べて、それぞれ0%、20%、50%だけ小さくする。 Further, the gap change margin is a moving distance from a position where the gap, which has been reduced (gap 16 ′) to form the liquid reservoir 13, to a constant value (gap 16 ″) from a position where the gap starts to increase. Since it takes a little time to raise the die, the die starts to rise before reaching the boundary 15 and reaches the gap 16 ″ before the boundary 15. In this embodiment, there are two types of 0.7 and 1.5 mm. The gap is controlled by moving the die up and down, but may be controlled by measuring the distance between the roll and the die tip using a known position sensor or the like. The run-up distance is a distance obtained by shortening the gap to the gap 16 'and is a distance for forming a liquid pool. In this embodiment, there are three types of 0, 3, and 5 mm. The gap shortening rate indicates how much the gap should be reduced during the approach distance compared to the large gap area (gap 16) in front of it. In this embodiment, it is 0, 20, 50%. That is, the gap is reduced by 0%, 20%, and 50%, respectively, compared to before the gap is reduced.
 なお図11のNo.1、4は比較例である。この2つはギャップ変更マージンはゼロであるが、これは境界部の段差の手前でギャップ16をギャップ16’に縮めず(ギャップ短縮割合=0%)ギャップ16のままで塗工したことを意味する。 In addition, No. in FIG. Reference numerals 1 and 4 are comparative examples. In these two cases, the gap change margin is zero, which means that the gap 16 is not shortened to the gap 16 ′ (gap shortening ratio = 0%) before the step of the boundary portion, and the coating is performed with the gap 16 as it is. To do.
 また判定の○は段差が露出せず厚い絶縁層で被覆されたことを意味する。△は○の場合ほどには厚くないが十分な厚みの絶縁層で段差が被覆されたことを意味する。×は絶縁層が段差で被覆されず段差が露出した場所があったことを意味する。 ◯ also means that the step is not exposed and is covered with a thick insulating layer. Δ means that the step is covered with an insulating layer which is not as thick as in the case of ○ but has a sufficient thickness. X means that the insulating layer was not covered with a step and there was a place where the step was exposed.
 図10で、No.1のギャップ短縮割合=0%の場合は段差が露出した(判定×)。一方No.2,3のように、ギャップ変更マージンを1.5mm、助走距離を5mm取り、ギャップ短縮割合を20%,50%にして塗工すれば、それぞれ判定△、○となり、厚い絶縁層で段差を被覆できた。絶縁層Wet厚みと活物質層厚みが異なるNo.4,5,6の場合もNo.1、2、3の場合と同じことが言える。
またNo.7,8はギャップ変更マージンを0.7mmと小さくし、助走距離を3mmと短くした場合である。この場合も段差が露出せず厚い絶縁層で被覆された。
In FIG. When the gap shortening ratio of 1 is 0%, a step is exposed (determination x). On the other hand, no. As shown in 2 and 3, if the gap change margin is 1.5 mm, the run-up distance is 5 mm, and the gap shortening ratio is 20% and 50%, the coating will be judged as △ and ○, respectively. We were able to coat. The insulating layer Wet thickness and the active material layer thickness are different. Nos. 4, 5 and 6 are also No. The same can be said for cases 1, 2 and 3.
No. 7 and 8 are cases in which the gap change margin is reduced to 0.7 mm and the running distance is shortened to 3 mm. Also in this case, the step was not exposed and was covered with a thick insulating layer.
 なお第2の実施形態のように、境界部25の段差を跨いで高い側から低い側に塗工する場合も同様であり、図10で述べた絶縁層Wet厚み、活物質層厚み等が同じであれば、上述のギャップ変更マージン、助走距離、ギャップの短縮割合も同じでよい。
(電極構成材料)
 ここで電極を構成する材料について絶縁層も含めて述べる。以下は例示であり、材料は特に限定されず、既知の材料を用いることができる。
The same applies to the case of coating from the high side to the low side across the step of the boundary 25 as in the second embodiment, and the insulating layer Wet thickness, the active material layer thickness, etc. described in FIG. 10 are the same. If so, the gap change margin, the approach distance, and the gap reduction ratio may be the same.
(Electrode constituent material)
Here, the material constituting the electrode will be described including the insulating layer. The following is an example, and the material is not particularly limited, and a known material can be used.
 基材の例は二次電池の集電箔、集電体であるが、正極用材料としてはアルミニウム、ニッケル、銅、銀、それらの合金等を用いることができる。負極用材料も正極用材料と同様であるが、特に銅、鉄・ニッケル・クロム系・モリブデン系のステンレス、アルミニウム、アルミニウム合金等を用いることができる。 Examples of base materials are current collector foils and current collectors of secondary batteries, but aluminum, nickel, copper, silver, alloys thereof, and the like can be used as the positive electrode material. The material for the negative electrode is the same as the material for the positive electrode, but in particular, copper, iron, nickel, chromium-based, molybdenum-based stainless steel, aluminum, aluminum alloy, or the like can be used.
 第1層の例は二次電池の活物質層であるが、正極活物質としては例えば、LiNiO、LiNi(1-x)・・・(式A)(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である)を用いることができる。 An example of the first layer is an active material layer of a secondary battery. Examples of the positive electrode active material include LiNiO 2 , Li y Ni (1-x) M x O 2 (formula A) (where 0 ≦ x <1, 0 <y ≦ 1.2, and M is at least one element selected from the group consisting of Co, Al, Mn, Fe, Ti, and B).
 また例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)なども挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
なおNiの含有量を高くすると(例えば0.6を超える)、電池のエネルギー密度を高くすることができるが、本発明はそのような場合でも有効である。
Also, for example, Li α Ni β Co γ Mn δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2), Li α Ni β Co γ Al δ O 2 (0 <α ≦ 1.2, preferably 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, preferably β ≧ 0.7, γ ≦ 0.2), etc. In particular, LiNi β Co γ Mn δ O 2 (0.75 ≦ β ≦ 0.85, 0.05 ≦ γ ≦ 0.15, 0.10 ≦ δ ≦ 0.20) may be mentioned. More specifically, for example, LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
Note that when the Ni content is increased (for example, exceeding 0.6), the energy density of the battery can be increased, but the present invention is effective even in such a case.
 また、上述の(式A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、(式A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。 In addition, two or more compounds represented by the above (formula A) may be used as a mixture, for example, NCM532 or NCM523 and NCM433 in a range of 9: 1 to 1: 9 (as a typical example) 2: 1) are also preferably used as a mixture. Furthermore, in (Formula A), a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。 Other than the above, as the positive electrode active material, for example, LiMnO 2 , Li x Mn 2 O 4 (0 <x <2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 <x < 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 . Furthermore, a material in which these metal oxides are partially substituted with Al, Fe, P, Ti, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, etc. Can also be used. Any of the positive electrode active materials described above can be used alone or in combination of two or more.
 また負極活物質は金属および/または金属酸化物ならびに炭素を負極活物質として含む。金属としては、例えば、Li、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は2種以上混合して用いてもよい。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。 Also, the negative electrode active material contains metal and / or metal oxide and carbon as the negative electrode active material. Examples of the metal include Li, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. . Moreover, you may use these metals or alloys in mixture of 2 or more types. These metals or alloys may contain one or more non-metallic elements.
 金属酸化物としては、例えば、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。本実施形態では、負極活物質として酸化スズもしくは酸化シリコンを含むことが好ましく、酸化シリコンを含むことがより好ましい。これは、酸化シリコンが、比較的安定で他の化合物との反応を引き起こしにくいからである。また、金属酸化物に、窒素、ホウ素および硫黄の中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。また、金属や金属酸化物を、たとえば蒸着などの方法で、炭素等の導電物質を用いて被覆することでも、同様に電気伝導度を向上させることができる。 Examples of the metal oxide include silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and composites thereof. In this embodiment, it is preferable that tin oxide or silicon oxide is included as the negative electrode active material, and it is more preferable that silicon oxide is included. This is because silicon oxide is relatively stable and hardly causes a reaction with other compounds. In addition, for example, 0.1 to 5% by mass of one or more elements selected from nitrogen, boron and sulfur can be added to the metal oxide. By carrying out like this, the electrical conductivity of a metal oxide can be improved. In addition, the electrical conductivity can be similarly improved by coating a metal or metal oxide with a conductive material such as carbon by a method such as vapor deposition.
 炭素としては、例えば、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。 Examples of carbon include graphite, amorphous carbon, diamond-like carbon, carbon nanotubes, and composites thereof. Here, graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
 金属および金属酸化物は、リチウムの受容能力が炭素に比べて遥かに大きいことが特徴である。したがって、負極活物質として金属および金属酸化物を多く使用することで電池のエネルギー密度を改善することができる。高エネルギー密度を達成するため、負極活物質中の金属および/または金属酸化物の含有比率が高い方が好ましい。金属および/または金属酸化物は、多いほど負極全体としての容量が増加するので好ましい。金属および/または金属酸化物は、負極活物質の0.1質量%以上の量で負極に含まれることが好ましく、1質量%以上がより好ましく、10質量%以上が更に好ましい。しかしながら、金属および/または金属酸化物は、炭素にくらべてリチウムを吸蔵・放出した際の体積変化が大きくなり、電気的な接合が失われる場合があることから、99質量%以下、好ましくは90質量%以下である。上述した通り、負極活物質は、負極中の充放電に伴いリチウムイオンを可逆的に受容、放出可能な材料であり、それ以外の結着剤などは含まない。 Metals and metal oxides are characterized by a lithium acceptability that is much greater than that of carbon. Therefore, the energy density of the battery can be improved by using a large amount of metal and metal oxide as the negative electrode active material. In order to achieve a high energy density, it is preferable that the content ratio of the metal and / or metal oxide in the negative electrode active material is high. A larger amount of metal and / or metal oxide is preferable because the capacity of the whole negative electrode increases. The metal and / or metal oxide is preferably contained in the negative electrode in an amount of 0.1% by mass or more of the negative electrode active material, more preferably 1% by mass or more, and still more preferably 10% by mass or more. However, the metal and / or metal oxide has a large volume change when lithium is occluded / released compared to carbon, and the electrical connection may be lost. It is below mass%. As described above, the negative electrode active material is a material capable of reversibly receiving and releasing lithium ions in accordance with charge and discharge in the negative electrode, and does not include other binders.
 また第2層は例えば正極又は負極を被覆する絶縁層であるが、例えば無機酸化物を用いることができる。無機酸化物の例としては、酸化マグネシウム、酸化ケイ素、アルミナ、ジルコニア、酸化チタンの酸化物、チタン酸バリウム、チタン酸カルシウム、チタン酸鉛、γ-LiAlO、LiTiO等が挙げられる。また絶縁層として有機膜も用いることができ、例えばポリプロピレン、ポリエチレン、アラミド、ポリイミド、ポリアミドイミド等を用いることができる。 The second layer is, for example, an insulating layer that covers the positive electrode or the negative electrode, and for example, an inorganic oxide can be used. Examples of the inorganic oxide include magnesium oxide, silicon oxide, alumina, zirconia, oxide of titanium oxide, barium titanate, calcium titanate, lead titanate, γ-LiAlO 2 , LiTiO 3 and the like. An organic film can also be used as the insulating layer. For example, polypropylene, polyethylene, aramid, polyimide, polyamideimide, or the like can be used.
 以上、本発明の幾つかの形態について図面を参照しながら説明したが、本発明は上記に説明した具体的な内容に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲内で適宜変更可能である。 As mentioned above, although several forms of this invention were demonstrated referring drawings, this invention is not necessarily limited to the specific content demonstrated above, suitably in the range which does not deviate from the meaning of this invention. It can be changed.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 一部に第1層が形成された基材に対して、少なくとも前記基材と前記第1層の境界部に第2層を塗工する電極の製造方法であって、
前記基材上の前記境界部手前の領域では、塗工装置と前記基材のギャップを、前記塗工装置の塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップよりも小さい第2のギャップで前記第2層を塗工し、前記第1層上では前記第1のギャップに前記第1層の厚みを加えた第3のギャップで塗工することを特徴とする電極の製造方法。
(付記2)
 前記境界部手前の前記基材上では、前記塗工装置と前記基材の間に前記塗工液の液溜りを形成しながら前記第2層を塗工する付記1に記載の電極の製造方法。
(付記3)
 前記第2のギャップで塗工したあと、前記境界部直前で、前記ギャップを前記第2のギャップから前記第3のギャップに変更して前記第2層を塗工する付記1または2に記載の電極の製造方法。
(付記4)
 前記第2のギャップとして、前記境界部の手前1mm以上の前記基材上で、前記第1のギャップから20%以上小さい距離にする付記1から3のいずれか一項に記載の電極の製造方法。
(付記5)
 前記境界部の手前1mm以上で、前記ギャップを、前記第1のギャップから20%以上50%以下の間で小さくする(付記4)に記載の電極の製造方法。
(付記6)
 前記基材上で前記第1のギャップで前記第2層を塗工し、次いで前記境界部手前の領域で前記第2のギャップで前記第2層を塗工する付記1から5のいずれか一項に記載の電極の製造方法。
(付記7)
 一部に第1層が形成された基材に対して、少なくとも前記第1層と前記基材の境界部に第2層を塗工する電極の製造方法であって、
前記第1層上では、塗工装置と前記第1層のギャップを、塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップに前記第1層の厚みを加えた第3のギャップで前記第2層を塗工し、前記第1層上の前記境界部手前の領域では前記第3のギャップよりも小さくしかも前記第1層の厚みよりも大きい第4のギャップで前記第2層を塗工し、前記基材上では前記第1のギャップで前記第2層を塗工することを特徴とする電極の製造方法。
(付記8)
 前記境界部手前の前記第1層上では、前記塗工装置と前記第1層の間に前記塗工液の液溜りを形成しながら前記第2層を塗工する付記7に記載の電極の製造方法。
(付記9)
 前記第4のギャップとして、前記境界部の手前1mm以上の前記第1層上で、前記第3のギャップから20%以上小さい距離にする付記7または8に記載の電極の製造方法。
(付記10)
 前記第4のギャップとして、前記境界部の手前1mm以上の前記第1層上で、前記第3のギャップから20%以上50%以下小さい距離にする付記7から9のいずれか一項に記載の電極の製造方法。
(付記11)
 前記第1層上で前記第3のギャップで前記第2層を塗工し、次いで前記境界部手前の領域で前記第4のギャップで前記第2層を塗工する付記7から10のいずれか一項に記載の電極の製造方法。
(付記12)
 前記ギャップの変化は、前記塗工装置を構成するダイの移動、前記ダイ先端部の伸縮、前記ダイの角度変化または前記基材を載せるバックアップロールの移動の少なくとも一つによって行う付記1から11のいずれか一項に記載の電極の製造方法。
(付記13)
 前記第1層を前記基材上に塗工し乾燥させた後前記第2層を塗工するか、または、前記第1層を前記基材上に塗工し乾燥させずに前記第2層を塗工する、付記1から12のいずれか一項に記載の電極の製造方法。
(付記14)
 前記第1層は電池の活物質層であり、前記第2層は絶縁層であり、前記基材は集電体である付記1から13のいずれか一項に記載の電極の製造方法。
(付記15)
 前記第1層は、前記基材上に間欠的に形成されている、付記1から14のいずれか一項に記載の電極の製造方法。
(付記16)
 前記塗工装置がダイコータである、付記1から15のいずれか一項に記載の電極の製造方法。
(付記17)
 基材、
前記基材上の少なくとも一部に形成された第1層、
少少なくとも前記第1層上と前記基材上に、前記第一層と前記基材との境界部を跨いで形成され、前記境界部上、前記第1層上、前記基材上で厚みがこの順に小さくなっている第2層、
を備えたことを特徴とする電池用電極。
(付記18)
 基材、
前記基材上の少なくとも一部に形成された第1層、
少なくとも前記第1層上の前記基材との境界部を跨いで形成され、前記境界部上、前記基材上、前記第1層上の前記境界部に隣接する領域で、厚みがこの順に小さくなっている第2層、
を備えたことを特徴とする電池用電極。
(付記19)
 前記第1層は電池の活物質層であり、前記第2層は絶縁層であり、前記基材は集電体である付記17または18に記載の電池用電極。
(付記20)
 第1層が一部に形成された基材を搬送する搬送機構と、
前記基材に対して材料を塗工する塗工用ダイと、
前記塗工用ダイの位置を制御する制御回路と、
を備え、
前記制御回路は、
前記基材上の前記境界部手前の領域では、塗工装置と前記基材のギャップを、前記塗工装置の塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップよりも小さい第2のギャップで第2層を塗工し、前記第1層上では前記第1のギャップに前記第1層の厚みを加えた第3のギャップで塗工するか、
または、
前記第1層上では、塗工装置と前記第1層のギャップを、前記第3のギャップで前記第2層を塗工し、前記第1層上の前記境界部手前の領域では前記第3のギャップよりも小さくしかも前記第1層の厚みよりも大きい第4のギャップで前記第2層を塗工し、前記基材上では前記第1のギャップで前記第2層を塗工するよう、
前記塗工用ダイの位置を制御することを特徴とする電極製造装置。
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A method for producing an electrode, in which a second layer is applied to at least a boundary portion between the base material and the first layer with respect to the base material partially formed with a first layer,
In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is coated with a second gap smaller than the gap, and the third layer is coated on the first layer by adding the thickness of the first layer to the first gap. A method for manufacturing an electrode.
(Appendix 2)
The method for producing an electrode according to appendix 1, wherein the second layer is applied on the base material before the boundary portion while forming a liquid pool of the coating liquid between the coating apparatus and the base material. .
(Appendix 3)
After applying with the second gap, immediately before the boundary portion, the gap is changed from the second gap to the third gap, and the second layer is applied. Electrode manufacturing method.
(Appendix 4)
The method for producing an electrode according to any one of appendices 1 to 3, wherein the second gap is a distance that is 20% or more smaller than the first gap on the base material 1 mm or more in front of the boundary portion. .
(Appendix 5)
The method for manufacturing an electrode according to (4), wherein the gap is reduced between 20% and 50% from the first gap at least 1 mm before the boundary portion.
(Appendix 6)
Any one of Supplementary Notes 1 to 5, wherein the second layer is applied with the first gap on the substrate, and then the second layer is applied with the second gap in a region before the boundary. The manufacturing method of the electrode as described in claim | item.
(Appendix 7)
A method of manufacturing an electrode, wherein a second layer is applied to at least a boundary portion between the first layer and the substrate with respect to a substrate on which a first layer is formed in part,
On the first layer, the thickness of the first layer is added to the first gap corresponding to the wet thickness determined by the coating liquid discharge amount and the moving speed of the base material. The second gap is applied with a third gap, and a fourth gap which is smaller than the third gap and larger than the thickness of the first layer in the region before the boundary on the first layer. The method for producing an electrode, wherein the second layer is applied and the second layer is applied on the substrate with the first gap.
(Appendix 8)
The electrode according to appendix 7, wherein the second layer is applied while forming a liquid pool of the coating liquid between the coating apparatus and the first layer on the first layer before the boundary portion. Production method.
(Appendix 9)
The method for manufacturing an electrode according to appendix 7 or 8, wherein the fourth gap is a distance that is 20% or more smaller than the third gap on the first layer that is 1 mm or more before the boundary.
(Appendix 10)
The fourth gap according to any one of appendices 7 to 9, wherein the fourth gap is set to a distance that is 20% or more and 50% or less smaller than the third gap on the first layer that is 1 mm or more before the boundary portion. Electrode manufacturing method.
(Appendix 11)
Any one of appendixes 7 to 10, wherein the second layer is applied with the third gap on the first layer, and then the second layer is applied with the fourth gap in the region before the boundary. The method for producing an electrode according to one item.
(Appendix 12)
The change of the gap is performed by at least one of movement of a die constituting the coating apparatus, expansion and contraction of the tip of the die, change in angle of the die, or movement of a backup roll on which the substrate is placed. The manufacturing method of the electrode as described in any one.
(Appendix 13)
The first layer is coated on the substrate and dried, and then the second layer is coated, or the first layer is coated on the substrate and not dried. The method for producing an electrode according to any one of appendices 1 to 12, wherein:
(Appendix 14)
The electrode manufacturing method according to any one of appendices 1 to 13, wherein the first layer is an active material layer of the battery, the second layer is an insulating layer, and the base is a current collector.
(Appendix 15)
The said 1st layer is a manufacturing method of the electrode as described in any one of Additional remarks 1-14 currently formed on the said base material intermittently.
(Appendix 16)
The method for manufacturing an electrode according to any one of appendices 1 to 15, wherein the coating apparatus is a die coater.
(Appendix 17)
Base material,
A first layer formed on at least a part of the substrate;
At least on the first layer and the base material, and formed across the boundary portion between the first layer and the base material, the thickness is on the boundary portion, on the first layer, on the base material. The second layer, decreasing in this order,
A battery electrode characterized by comprising:
(Appendix 18)
Base material,
A first layer formed on at least a part of the substrate;
It is formed across at least the boundary portion with the base material on the first layer, and the thickness is reduced in this order in the boundary portion, on the base material, and in the region adjacent to the boundary portion on the first layer. The second layer,
A battery electrode characterized by comprising:
(Appendix 19)
The battery electrode according to appendix 17 or 18, wherein the first layer is a battery active material layer, the second layer is an insulating layer, and the base material is a current collector.
(Appendix 20)
A transport mechanism for transporting the base material partially formed of the first layer;
A coating die for applying a material to the substrate;
A control circuit for controlling the position of the coating die;
With
The control circuit includes:
In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is applied with a second gap smaller than the gap, and on the first layer, the third gap is applied by adding the thickness of the first layer to the first gap, or
Or
On the first layer, the gap between the coating device and the first layer is applied, the second layer is applied with the third gap, and the region on the first layer before the boundary portion is the third layer. The second layer is applied with a fourth gap that is smaller than the gap and larger than the thickness of the first layer, and the second layer is applied with the first gap on the substrate.
An electrode manufacturing apparatus for controlling a position of the coating die.
1 リチウムイオン二次電池
10、20 基材
11、21 第1層
12、22 第2層
13、23 液溜り
14、24 塗工装置
15、25 境界部
16、16’、26、26’、26’’ ギャップ
18、28、38 厚い塗膜
30 集電箔
32 絶縁層
34 塗工用ダイ
39 検出器
40 集電箔
56、56’、56’’ 膜厚計
60 ダイ
61 圧電体
62 回転軸
63 バックアップローラ
100 正極
110 正極活物質形成部
120 正極活物質未形成部
155 集電箔
180、185 絶縁層
200 負極
210 負極活物質形成部
220 負極活物質未形成部
300 ダイコータ
301 バックアップローラ
302 制御回路
350 セパレータ
400 電池素子
410 正極リード部
420 負極リード部
430 正極端子
440 負極端子
450 外装容器
460 内面層
470 金属層
480 表面層
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 10, 20 Base material 11, 21 1st layer 12, 22 2nd layer 13, 23 Liquid reservoir 14, 24 Coating apparatus 15, 25 Boundary part 16, 16 ', 26, 26', 26 '' Gap 18, 28, 38 Thick coating film 30 Current collecting foil 32 Insulating layer 34 Coating die 39 Detector 40 Current collecting foil 56, 56 ', 56''Film thickness meter 60 Die 61 Piezoelectric body 62 Rotating shaft 63 Backup roller 100 Positive electrode 110 Positive electrode active material forming part 120 Positive electrode active material non-forming part 155 Current collecting foils 180 and 185 Insulating layer 200 Negative electrode 210 Negative electrode active material forming part 220 Negative electrode active material non-forming part 300 Die coater 301 Backup roller 302 Control circuit 350 Separator 400 Battery element 410 Positive electrode lead part 420 Negative electrode lead part 430 Positive electrode terminal 440 Negative electrode terminal 450 Exterior container 460 Inner surface layer 470 Metal layer 480 Surface layer

Claims (20)

  1.  一部に第1層が形成された基材に対して、少なくとも前記基材と前記第1層の境界部に第2層を塗工する電極の製造方法であって、
    前記基材上の前記境界部手前の領域では、塗工装置と前記基材のギャップを、前記塗工装置の塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップよりも小さい第2のギャップで前記第2層を塗工し、前記第1層上では前記第1のギャップに前記第1層の厚みを加えた第3のギャップで塗工することを特徴とする電極の製造方法。
    A method for producing an electrode, in which a second layer is applied to at least a boundary portion between the base material and the first layer with respect to the base material partially formed with a first layer,
    In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is coated with a second gap smaller than the gap, and the third layer is coated on the first layer by adding the thickness of the first layer to the first gap. A method for manufacturing an electrode.
  2.  前記境界部手前の前記基材上では、前記塗工装置と前記基材の間に前記塗工液の液溜りを形成しながら前記第2層を塗工する請求項1に記載の電極の製造方法。 2. The electrode production according to claim 1, wherein the second layer is applied on the base material before the boundary part while forming a pool of the coating liquid between the coating apparatus and the base material. Method.
  3.  前記第2のギャップで塗工したあと、前記境界部直前で、前記ギャップを前記第2のギャップから前記第3のギャップに変更して前記第2層を塗工する請求項1または2に記載の電極の製造方法。 The coating of the second layer is performed by changing the gap from the second gap to the third gap immediately before the boundary after coating by the second gap. Of manufacturing the electrode.
  4.  前記第2のギャップとして、前記境界部の手前1mm以上の前記基材上で、前記第1のギャップから20%以上小さい距離にする請求項1から3のいずれか一項に記載の電極の製造方法。 The electrode according to any one of claims 1 to 3, wherein the second gap has a distance that is 20% or more smaller than the first gap on the base material 1 mm or more before the boundary. Method.
  5.  前記境界部の手前1mm以上で、前記ギャップを、前記第1のギャップから20%以上50%以下の間で小さくする請求項4に記載の電極の製造方法。 5. The method for manufacturing an electrode according to claim 4, wherein the gap is reduced by 20% or more and 50% or less from the first gap at least 1 mm before the boundary.
  6.  前記基材上で前記第1のギャップで前記第2層を塗工し、次いで前記境界部手前の領域で前記第2のギャップで前記第2層を塗工する請求項1から5のいずれか一項に記載の電極の製造方法。 The said 2nd layer is applied with the said 1st gap on the said base material, Then, the said 2nd layer is applied with the said 2nd gap in the area | region before the said boundary part. The method for producing an electrode according to one item.
  7.  一部に第1層が形成された基材に対して、少なくとも前記第1層と前記基材の境界部に第2層を塗工する電極の製造方法であって、
    前記第1層上では、塗工装置と前記第1層のギャップを、塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップに前記第1層の厚みを加えた第3のギャップで前記第2層を塗工し、前記第1層上の前記境界部手前の領域では前記第3のギャップよりも小さくしかも前記第1層の厚みよりも大きい第4のギャップで前記第2層を塗工し、前記基材上では前記第1のギャップで前記第2層を塗工することを特徴とする電極の製造方法。
    A method of manufacturing an electrode, wherein a second layer is applied to at least a boundary portion between the first layer and the substrate with respect to a substrate on which a first layer is formed in part,
    On the first layer, the thickness of the first layer is added to the first gap corresponding to the wet thickness determined by the coating liquid discharge amount and the moving speed of the base material. The second gap is applied with a third gap, and a fourth gap which is smaller than the third gap and larger than the thickness of the first layer in the region before the boundary on the first layer. The method for producing an electrode, wherein the second layer is applied and the second layer is applied on the substrate with the first gap.
  8.  前記境界部手前の前記第1層上では、前記塗工装置と前記第1層の間に前記塗工液の液溜りを形成しながら前記第2層を塗工する請求項7に記載の電極の製造方法。 The electrode according to claim 7, wherein the second layer is applied on the first layer before the boundary portion while forming a liquid pool of the coating liquid between the coating device and the first layer. Manufacturing method.
  9.  前記第4のギャップとして、前記境界部の手前1mm以上の前記第1層上で、前記第3のギャップから20%以上小さい距離にする請求項7または8に記載の電極の製造方法。 The method for manufacturing an electrode according to claim 7 or 8, wherein the fourth gap is a distance that is 20% or more smaller than the third gap on the first layer that is 1 mm or more in front of the boundary portion.
  10.  前記第4のギャップとして、前記境界部の手前1mm以上の前記第1層上で、前記第3のギャップから20%以上50%以下小さい距離にする請求項7から9のいずれか一項に記載の電極の製造方法。 10. The fourth gap according to claim 7, wherein the fourth gap is a distance that is 20% or more and 50% or less smaller than the third gap on the first layer that is 1 mm or more in front of the boundary portion. Of manufacturing the electrode.
  11.  前記第1層上で前記第3のギャップで前記第2層を塗工し、次いで前記境界部手前の領域で前記第4のギャップで前記第2層を塗工する請求項7から10のいずれか一項に記載の電極の製造方法。 11. The method according to claim 7, wherein the second layer is applied with the third gap on the first layer, and then the second layer is applied with the fourth gap in a region before the boundary. A method for producing the electrode according to claim 1.
  12.  前記ギャップの変化は、前記塗工装置を構成するダイの移動、前記ダイ先端部の伸縮、前記ダイの角度変化または前記基材を載せるバックアップロールの移動の少なくとも一つによって行う請求項1から11のいずれか一項に記載の電極の製造方法。 The gap is changed by at least one of movement of a die constituting the coating apparatus, expansion and contraction of the tip of the die, change in angle of the die, or movement of a backup roll on which the substrate is placed. The manufacturing method of the electrode as described in any one of these.
  13.  前記第1層を前記基材上に塗工し乾燥させた後前記第2層を塗工するか、または、前記第1層を前記基材上に塗工し乾燥させずに前記第2層を塗工する、請求項1から12のいずれか一項に記載の電極の製造方法。 The first layer is coated on the substrate and dried, and then the second layer is coated, or the first layer is coated on the substrate and not dried. The manufacturing method of the electrode as described in any one of Claim 1 to 12 which coats.
  14.  前記第1層は電池の活物質層であり、前記第2層は絶縁層であり、前記基材は集電体である請求項1から13のいずれか一項に記載の電極の製造方法。 The method for producing an electrode according to any one of claims 1 to 13, wherein the first layer is a battery active material layer, the second layer is an insulating layer, and the base is a current collector.
  15.  前記第1層は、前記基材上に間欠的に形成されている、請求項1から14のいずれか一項に記載の電極の製造方法。 The method for producing an electrode according to any one of claims 1 to 14, wherein the first layer is intermittently formed on the base material.
  16.  前記塗工装置がダイコータである、請求項1から15のいずれか一項に記載の電極の製造方法。 The electrode manufacturing method according to any one of claims 1 to 15, wherein the coating apparatus is a die coater.
  17.  基材、
    前記基材上の少なくとも一部に形成された第1層、
    少なくとも前記第1層上と前記基材上に、前記第一層と前記基材との境界部を跨いで形成され、前記境界部上、前記第1層上、前記基材上で厚みがこの順に小さくなっている第2層、
    を備えたことを特徴とする電池用電極。
    Base material,
    A first layer formed on at least a part of the substrate;
    At least on the first layer and the base material, the boundary between the first layer and the base material is formed, and the thickness is on the boundary portion, the first layer, and the base material. The second layer, which decreases in order,
    A battery electrode characterized by comprising:
  18.  基材、
    前記基材上の少なくとも一部に形成された第1層、
    少なくとも前記第1層上の前記基材との境界部を跨いで形成され、前記境界部上、前記基材上、前記第1層上の前記境界部に隣接する領域で、厚みがこの順に小さくなっている第2層、
    を備えたことを特徴とする電池用電極。
    Base material,
    A first layer formed on at least a part of the substrate;
    It is formed across at least the boundary portion with the base material on the first layer, and the thickness is reduced in this order in the boundary portion, on the base material, and in the region adjacent to the boundary portion on the first layer. The second layer,
    A battery electrode characterized by comprising:
  19.  前記第1層は電池の活物質層であり、前記第2層は絶縁層であり、前記基材は集電体である請求項17または18に記載の電池用電極。 The battery electrode according to claim 17 or 18, wherein the first layer is a battery active material layer, the second layer is an insulating layer, and the base is a current collector.
  20.  第1層が一部に形成された基材を搬送する搬送機構と、
    前記基材に対して材料を塗工する塗工用ダイと、
    前記塗工用ダイの位置を制御する制御回路と、
    を備え、
    前記制御回路は、
    前記基材上の前記境界部手前の領域では、塗工装置と前記基材のギャップを、前記塗工装置の塗液吐出量と前記基材の移動速度によって決まるウェット厚みに相当する第1のギャップよりも小さい第2のギャップで第2層を塗工し、前記第1層上では前記第1のギャップに前記第1層の厚みを加えた第3のギャップで塗工するか、
    または、
    前記第1層上では、塗工装置と前記第1層のギャップを、前記第3のギャップで前記第2層を塗工し、前記第1層上の前記境界部手前の領域では前記第3のギャップよりも小さくしかも前記第1層の厚みよりも大きい第4のギャップで前記第2層を塗工し、前記基材上では前記第1のギャップで前記第2層を塗工するよう、
    前記塗工用ダイの位置を制御することを特徴とする電極製造装置。
    A transport mechanism for transporting the base material partially formed of the first layer;
    A coating die for applying a material to the substrate;
    A control circuit for controlling the position of the coating die;
    With
    The control circuit includes:
    In the region before the boundary portion on the substrate, a gap between the coating device and the substrate is a first thickness corresponding to a wet thickness determined by a coating liquid discharge amount of the coating device and a moving speed of the substrate. The second layer is applied with a second gap smaller than the gap, and on the first layer, the third gap is applied by adding the thickness of the first layer to the first gap, or
    Or
    On the first layer, the gap between the coating device and the first layer is applied, the second layer is applied with the third gap, and the region on the first layer before the boundary portion is the third layer. The second layer is applied with a fourth gap that is smaller than the gap and larger than the thickness of the first layer, and the second layer is applied with the first gap on the substrate.
    An electrode manufacturing apparatus for controlling a position of the coating die.
PCT/JP2017/013219 2017-03-30 2017-03-30 Battery electrode, method for manufacturing same, and device for manufacturing electrode WO2018179205A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/013219 WO2018179205A1 (en) 2017-03-30 2017-03-30 Battery electrode, method for manufacturing same, and device for manufacturing electrode
JP2019508004A JP6908103B2 (en) 2017-03-30 2017-03-30 Electrodes for batteries, their manufacturing methods and electrode manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013219 WO2018179205A1 (en) 2017-03-30 2017-03-30 Battery electrode, method for manufacturing same, and device for manufacturing electrode

Publications (1)

Publication Number Publication Date
WO2018179205A1 true WO2018179205A1 (en) 2018-10-04

Family

ID=63677313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013219 WO2018179205A1 (en) 2017-03-30 2017-03-30 Battery electrode, method for manufacturing same, and device for manufacturing electrode

Country Status (2)

Country Link
JP (1) JP6908103B2 (en)
WO (1) WO2018179205A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3534433A1 (en) * 2018-03-01 2019-09-04 Kabushiki Kaisha Toshiba Laminate and secondary battery
US20200274150A1 (en) * 2019-02-21 2020-08-27 Sanyo Electric Co., Ltd. Electrode and nonaqueous electrolyte secondary battery
JP2020191193A (en) * 2019-05-21 2020-11-26 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2021195851A1 (en) * 2020-03-30 2021-10-07 宁德新能源科技有限公司 Pole piece, electrode assembly using same, battery, and power utilization device
CN116979045A (en) * 2023-08-15 2023-10-31 洛阳理工学院 Composite silicon oxide negative electrode material and preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068279A (en) * 2001-08-28 2003-03-07 Nec Mobile Energy Kk Battery electrode and manufacturing method of the same
JP2004259625A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and method of manufacturing electrode used for the same
JP2009038016A (en) * 2007-07-09 2009-02-19 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2012030193A (en) * 2010-08-02 2012-02-16 Toppan Printing Co Ltd Intermittent coating apparatus, and intermittent coating method
WO2012035602A1 (en) * 2010-09-13 2012-03-22 トヨタ自動車株式会社 Battery electrode manufacturing method and battery electrode manufacturing device
JP2012115789A (en) * 2010-12-02 2012-06-21 Fuji Kikai Kogyo Kk Intermittent coating apparatus
JP2014049184A (en) * 2012-08-29 2014-03-17 Hitachi Ltd Manufacturing method and manufacturing apparatus of lithium ion secondary battery
WO2015087657A1 (en) * 2013-12-12 2015-06-18 Necエナジーデバイス株式会社 Secondary battery, and method for producing same
JP2016131941A (en) * 2015-01-21 2016-07-25 パナソニックIpマネジメント株式会社 Coating device and operation method of the same
JP2017010644A (en) * 2015-06-17 2017-01-12 Necエナジーデバイス株式会社 Manufacturing method of electrode for secondary battery, manufacturing device, and manufacturing method of secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068279A (en) * 2001-08-28 2003-03-07 Nec Mobile Energy Kk Battery electrode and manufacturing method of the same
JP2004259625A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, and method of manufacturing electrode used for the same
JP2009038016A (en) * 2007-07-09 2009-02-19 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2012030193A (en) * 2010-08-02 2012-02-16 Toppan Printing Co Ltd Intermittent coating apparatus, and intermittent coating method
WO2012035602A1 (en) * 2010-09-13 2012-03-22 トヨタ自動車株式会社 Battery electrode manufacturing method and battery electrode manufacturing device
JP2012115789A (en) * 2010-12-02 2012-06-21 Fuji Kikai Kogyo Kk Intermittent coating apparatus
JP2014049184A (en) * 2012-08-29 2014-03-17 Hitachi Ltd Manufacturing method and manufacturing apparatus of lithium ion secondary battery
WO2015087657A1 (en) * 2013-12-12 2015-06-18 Necエナジーデバイス株式会社 Secondary battery, and method for producing same
JP2016131941A (en) * 2015-01-21 2016-07-25 パナソニックIpマネジメント株式会社 Coating device and operation method of the same
JP2017010644A (en) * 2015-06-17 2017-01-12 Necエナジーデバイス株式会社 Manufacturing method of electrode for secondary battery, manufacturing device, and manufacturing method of secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3534433A1 (en) * 2018-03-01 2019-09-04 Kabushiki Kaisha Toshiba Laminate and secondary battery
US11411284B2 (en) 2018-03-01 2022-08-09 Kabushiki Kaisha Toshiba Laminate and secondary battery
US20200274150A1 (en) * 2019-02-21 2020-08-27 Sanyo Electric Co., Ltd. Electrode and nonaqueous electrolyte secondary battery
JP2020136117A (en) * 2019-02-21 2020-08-31 三洋電機株式会社 Electrode and nonaqueous electrolyte secondary battery
JP7160436B2 (en) 2019-02-21 2022-10-25 三洋電機株式会社 Electrodes, non-aqueous electrolyte secondary batteries
US11799074B2 (en) * 2019-02-21 2023-10-24 Sanyo Electric Co., Ltd. Electrode and nonaqueous electrolyte secondary battery
JP2020191193A (en) * 2019-05-21 2020-11-26 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7236030B2 (en) 2019-05-21 2023-03-09 トヨタ自動車株式会社 lithium ion secondary battery
WO2021195851A1 (en) * 2020-03-30 2021-10-07 宁德新能源科技有限公司 Pole piece, electrode assembly using same, battery, and power utilization device
CN116979045A (en) * 2023-08-15 2023-10-31 洛阳理工学院 Composite silicon oxide negative electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2018179205A1 (en) 2020-01-09
JP6908103B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2018179205A1 (en) Battery electrode, method for manufacturing same, and device for manufacturing electrode
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
US10593952B2 (en) Mechanical systems and methods for providing edge support and protection in semi-solid electrodes
JP6779221B2 (en) All-solid-state lithium battery
US10217988B2 (en) Secondary battery
JP6249493B2 (en) Non-aqueous electrolyte secondary battery
EP3032632B1 (en) Secondary battery and method for manufacturing same
EP3029763B1 (en) Secondary battery
WO2015087657A1 (en) Secondary battery, and method for producing same
JP4876531B2 (en) Negative electrode for lithium secondary battery and method for producing lithium secondary battery
EP3069407B1 (en) Laminating method
CN105324877A (en) Secondary battery having jelly roll-type electrode assembly having intermittent blank portion formed on positive electrode collector
JP2009301726A (en) Method for manufacturing of lithium-ion battery and method for manufacturing of lithium battery
JP4045270B2 (en) Energy device and manufacturing method thereof
US10886537B2 (en) Electrochemical devices and methods for making same
EP3739672A1 (en) Electrode assembly having improved connection structure between electrode tab and current collector and method for manufacturing same
US20180175365A1 (en) Secondary battery electrode, and secondary battery manufacturing method and manufacturing apparatus
JP2020510980A (en) Strip type electrode used for cylindrical jelly roll and lithium secondary battery including the same
JP2007317419A (en) Electrode for battery, manufacturing method therefor, and secondary battery
JP2005251417A (en) Thin film solid secondary battery
JP5076305B2 (en) Method for producing negative electrode for lithium secondary battery and method for producing lithium secondary battery
JP2007299764A5 (en)
JP5130737B2 (en) Nonaqueous electrolyte secondary battery
JP2008010419A (en) Manufacturing method of electrode for electrochemical element, and electrochemical element including it
JPWO2019059117A1 (en) Current collector and battery using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903477

Country of ref document: EP

Kind code of ref document: A1