WO2018179185A1 - Motion control device and external display device - Google Patents

Motion control device and external display device Download PDF

Info

Publication number
WO2018179185A1
WO2018179185A1 PCT/JP2017/013077 JP2017013077W WO2018179185A1 WO 2018179185 A1 WO2018179185 A1 WO 2018179185A1 JP 2017013077 W JP2017013077 W JP 2017013077W WO 2018179185 A1 WO2018179185 A1 WO 2018179185A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
unit
input
module
control
Prior art date
Application number
PCT/JP2017/013077
Other languages
French (fr)
Japanese (ja)
Inventor
陽 ▲高▼橋
友典 安藤
史雄 米谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/013077 priority Critical patent/WO2018179185A1/en
Priority to JP2018506457A priority patent/JPWO2018179185A1/en
Publication of WO2018179185A1 publication Critical patent/WO2018179185A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction

Definitions

  • the present invention relates to a motion control device and an external display device for controlling the operation of a machine or device having a drive device.
  • a synchronous encoder is attached to a rotating body serving as a reference for the synchronous control, and in the method of driving the target servo motor according to the signal, an encoder (master axis) that determines the timing of the synchronous control is used.
  • Electronic cam control that realizes synchronous control using cam data that associates the phase (position within one rotation) with the position of a servo motor (slave axis) to be controlled is widely known.
  • Patent Document 1 a synchronous control program having a plurality of output software modules for one drive software module is displayed on one screen as a setting means for electronic cam control, and a parameter setting screen is displayed on this screen.
  • a multi-axis synchronous control device is disclosed in which status information of each software module or a waveform graph of a drive software module or an output software module is displayed and this display is switched to set electronic cam control.
  • Patent Document 2 when IO (Input Output) control of a peripheral device is performed in accordance with the timing of synchronous control of a servo motor, the state of the IO signal in addition to the cam data of the electronic cam control A technique is disclosed in which data is also stored and output again at the time of occurrence of an abnormality or at the time of adjustment to operate the control symmetry axis in the reverse direction, and further repeatedly forward and reverse.
  • IO Input Output
  • Patent Document 1 which is one of the above-described conventional examples, the work from software design to debugging can be performed only by setting parameters, but the object of electronic cam control is a servo motor.
  • the position is limited to the position of the signal, and it is not intended for signals other than the position of the servo motor, such as controlling the speed or torque, such as digital signal ON / OFF and analog operation amount.
  • IO control such as OFF and analog operation amount
  • a separate program needs to be created using a ladder language.
  • the electronic cam control is not intended for the IO control, there is a problem that the synchronization between the electronic cam control and the IO control cannot be guaranteed, and the timing adjustment between the electronic cam control and the IO control is not easy.
  • Patent Document 2 which is one of the above-described conventional examples, it is possible to realize IO control in conjunction with servo cam electronic cam control.
  • the state of the IO signal generated by the program created using the ladder language is simultaneously recorded in the cam data between the master and slave axes, and the operation is reproduced. Or, in the forward / reverse operation, it is not necessary to separately create a program using a ladder language.
  • Patent Document 2 does not consider efficient adjustment of the entire control timing between a plurality of axes or between a plurality of IO devices. Further, in the technique disclosed in Patent Document 2, it is disclosed that the slave axis only follows the position of the master axis. The slave axis is the speed of the axis, the analog input value of the sensor that is the IO device, or the time. There is no disclosure of following a control amount other than the position of the master axis, and there is a problem that it is necessary to separately create a program that associates electronic cam control with IO control.
  • the present invention has been made in view of the above, and is a motion control capable of performing synchronous control by integrating electronic cam control and IO control of a servo motor without using a separately created program using a ladder language.
  • the object is to obtain a device.
  • the present invention is a motion control apparatus in which a drive device and an output device are connected, and performs output control of the output device with an output pattern corresponding to input data.
  • the electronic cam control of the driving device is performed, and the control block describing the electronic cam control of the driving device and the control block describing the output control of the output device are represented by the same type of block.
  • the motion control device has the effect that the electronic cam control and IO control of the servo motor can be integrated and controlled synchronously without using a separately created program using a ladder language.
  • the block diagram which shows the function of the motion control apparatus which concerns on embodiment The figure which shows the setting screen of the output module in the synchronous setting of the motion control apparatus which concerns on embodiment
  • FIG. 1 is a block diagram showing functions of a motion control apparatus according to an embodiment of the present invention.
  • the motion control apparatus shown in FIG. 1 includes an input unit 11 to which data is input from an input device, and a library based on a library created by a user while performing electronic cam control based on data from the input unit 11.
  • a calculation unit 12 that performs calculation and an output unit 13 that outputs data to an output device are provided.
  • the data given to the input unit 11 can be exemplified by the phase and temperature of the synchronous encoder, and the data outputted by the output unit 13 is exemplified by the position command to the servo motor and the output intensity of the laser control device can do.
  • the calculation unit 12 calculates the position of the servo motor to be output to the output unit 13 based on the data from the input unit 11 and the control amount to be output to the output device. That is, the motion control apparatus shown in FIG. 1 executes motion control and IO control in the same arithmetic unit. This calculation is executed by electronic cam control using cam data or a calculation library in which a user describes an operation using mathematical expressions.
  • the input unit 11 and the output unit 13 illustrated in FIG. 1 may be connected not only to actual devices but also to virtual devices that simulate the input / output thereof.
  • the virtual device is a virtual device inside the motion control device that can simulate the input / output state of the sensor or servo motor and can input / output data based on the simulated input / output state to the input unit 11 and the output unit 13.
  • FIG. 2 is a diagram showing a setting screen of the output module 25 in the synchronous setting of the motion control apparatus according to the embodiment of the present invention.
  • the setting screen shown in FIG. 2 is displayed on a display device connected to the motion control device, and device configuration parameters, cam patterns, and a mathematical expression library are selected from the module selection screen 20-2. And then transferred to the motion control device.
  • FIG. 2 shows a first input module 21-1, a first input setting screen 21-1a for setting a device connected to the first input module 21-1, and a first input module 21-1.
  • a first library operation module 22-1 connected to the first library, a first library setting read screen 22-1a for setting the library operation, and a first switch connected to the first library operation module 22-1 Connected to the module 23-1, the nth input module 21-n, the nth library operation module 22-n connected to the nth input module 21-n, and the nth library operation module 22-n N-th switch 23-n, a synthesis module 24 connected from the first switch module 23-1 to the n-th switch module 23-n, and a synthesis module
  • An output module 25 for outputting a result obtained by converting the result calculated by the synthesis module 24 into an output corresponding to the phase of the input by the cam pattern module 27, and an output module;
  • An output setting screen 26 for setting a device connected to 25 is shown.
  • n is a natural number larger than 1, and although not shown, n input modules are provided. Since the setting screen shown in FIG. 2 is a setting screen for the output module 25, the number of outputs is one.
  • the control block describing the motion control of the driving device, the input control of the input device, and the output control of the output device are expressed by modules having the same format block, and input data per cycle. The electronic cam can be controlled while controlling the driving device with an output pattern according to the above.
  • Each of the first to nth input modules 21-1 to 21-n in FIG. 2 is related to the input unit 11 in FIG. 1 which is a block diagram showing the function of the motion control apparatus according to the present embodiment. It is done.
  • the input unit 11 includes devices such as a digital input unit, an analog input unit, a servo amplifier, and an encoder.
  • the output module 25 in FIG. 2 corresponds to the output unit 13 in FIG.
  • the output unit 13 includes devices such as a digital output unit, an analog output unit, and a servo amplifier.
  • the digital input unit item and the analog input unit item on the first input setting screen 21-1a for setting the device connected to the first input module 21-1 are set by selecting the input device. Is to do.
  • the library operation module 22-n, switch module 23-n, synthesis module 24, and cam pattern module 27 in FIG. 2 are associated with the operation unit 12 in FIG.
  • the first library operation module 22-1 to the n-th library operation module 22-n allocate a mathematical expression library constructed in a programming language such as C language on the library setting read screen 22-1a, and the first input module 21- An operation is performed on input data of the 1st to n-th input modules 21-n. Examples of this calculation include a calculation using a PID calculation formula, a Gray code conversion formula and a smooth averaging formula, and an integer four arithmetic calculation.
  • FIG. 2 shows a cam pattern 27 of the output module 25 and a cam pattern setting screen 27-a for creating the cam pattern 27.
  • the cam pattern 27 is an operation pattern that is created by drawing of an electronic cam curve by the user on the cam pattern setting screen 27-a or is taken in from an external electronic cam file.
  • the y-axis is calculated according to the cam pattern 27 based on the x-axis data (main axis phase data) of the cam pattern 27, and the motion is output to the output device selected on the output setting screen 26 as the output of the output module 25.
  • An output value is output from the control device.
  • the first switch 23-1 is provided to switch whether or not to use the output of the library operation module 22-1 based on the input data from the first input module 21-1
  • the nth switch 23- n is provided for switching whether to use the output of the library operation module 22-n based on the input data from the nth input module 21-n.
  • the synthesis module 24 switches the first switch 23-1 to the nth switch 23-n from the on / off state among the computation results of the first library computation module 22-1 to the nth library computation module 23-n. Add / subtract multiple inputs correspondingly.
  • the calculation module 28 includes a first library calculation module 22-1 to an nth library calculation module 22-n, a first switch 23-1 to an nth switch 23-n, a synthesis module 24, a cam pattern, 27 and corresponds to the calculation unit 12 of FIG.
  • FIG. 3 is a functional block diagram showing the motion control system 10 including the motion control apparatus according to the embodiment.
  • the motion control system 10 illustrated in FIG. 3 includes an input device 14, a drive device 120 that is a drive device, a motion control device 130, an output device 15, and a setting device 150.
  • the input device 14 includes a digital data input unit 111, an analog data input unit 112, a network input unit 113, and bus synchronous communication units 114a, 114b, and 114c.
  • the digital data input unit 111 outputs digital data input to the motion control device 130.
  • the analog data input unit 112 outputs analog data input to the motion control device 130.
  • the network input unit 113 outputs network device data input to the motion control device 130.
  • the bus synchronization communication unit 114 a is connected to the digital data input unit 111
  • the bus synchronization communication unit 114 b is connected to the analog data input unit 112
  • the bus synchronization communication unit 114 c is connected to the network input unit 113.
  • Each of the bus synchronization communication units 114a, 114b, and 114c together with the bus synchronization communication unit 131 in the motion control device 130, synchronizes the input timing of each input device while correcting variations in input timing between hardware. Data acquired by the input device 14 is transferred to the calculation unit 134 through the input unit 133 in the motion control device 130.
  • the drive device 120 includes a current position and speed acquisition unit 121 that acquires the current position and speed of the drive shaft, an internal status information acquisition unit 122 that acquires internal status information in the drive device 120, and a servo drive that controls the drive shaft.
  • a control unit 123 and a servo communication synchronization communication unit 124 that synchronizes with the servo communication synchronization communication unit 132 in the motion control device 130 are provided.
  • the servo communication synchronization communication unit 124 together with the servo communication synchronization communication unit 132 in the motion control device 130, synchronizes the input timing from the drive device 120 while correcting the variation in the input timing between hardware.
  • Data acquired by the driving device 120 is transferred to the arithmetic unit 134 through the input unit 133.
  • the drive device 120 operates as an input device that inputs data for executing control to the motion control device 130 as described above, and as an output device that controls the motor based on the result calculated by the motion control device 130. Also works.
  • the motion control device 130 includes a bus synchronization communication unit 131, 131a, a servo communication synchronization communication unit 132, an input unit 133, a calculation unit 134, an output unit 135, a virtual axis realization unit 136, and a library execution unit 137.
  • the motion control device 130 is based on the input data acquired from the input unit 133, the synchronization parameter set by the setting device 150 and stored in the synchronization parameter storage unit 138a, and the calculation formula stored in the library storage unit 138c.
  • the motion control device 130 calculates the y-axis according to the cam pattern based on the x-axis data (principal axis phase data). The calculated value is output to the drive device 120 through the servo communication synchronous communication unit 132 or output to the output device 15 through the bus synchronous communication unit 131a.
  • the bus synchronous communication unit 131 acquires each input data at a specific simultaneous timing from the bus synchronous communication units 114a, 114b, and 114c for the purpose of suppressing variations in input / output timing between hardware, and inputs the input data to the input unit 133. Forward.
  • the servo communication synchronization communication unit 132 synchronizes with the servo communication synchronization communication unit 124.
  • the input unit 133 synchronizes with the input data from the input device 14 synchronized with the processing of the motion control device 130 via the bus synchronization communication unit 131 and with the processing of the motion control device 130 via the servo communication synchronization communication unit 124.
  • the input data from the driving device 120 is converted into data that can be input to the calculation unit 134.
  • the calculation unit 134 includes data passed from the input unit 133, cam pattern data stored in the electronic cam pattern storage unit 138 b, a formula library calculation formula passed from the library execution unit 137, and an internal timer 115. Based on the passed data, output data to be passed to the output unit 135 is calculated.
  • the library execution unit 137 expands the mathematical expression library stored in the library storage unit 138c, and provides a calculation formula of the mathematical expression library created by the user to the calculation unit 134.
  • the virtual axis realization unit 136 is a functional module for providing the arithmetic unit 134 with arbitrary data such as a test operation command in the same format as the driving device 120, for example, when there is no actual device.
  • the internal timer 115 is a timer provided in the motion control device 130 and provides time information to the calculation unit 134.
  • the computing unit 134 can also perform electronic cam control by an operation pattern with the horizontal axis as time by performing computation based on time information provided from the internal timer 115.
  • the synchronization parameter storage unit 138a stores the synchronization parameter of the combination state of each module on the display screen shown in FIG. 2 output from the synchronization parameter setting unit 151 in the setting device 150.
  • the electronic cam pattern storage unit 138 b stores the electronic cam pattern constructed by the electronic cam construction unit 155 in the setting device 150.
  • the library storage unit 138 c stores the mathematical expression library read by the library reading unit 152 in the setting device 150.
  • the asynchronous control calculation unit 139 indicates a control calculation unit that performs calculation for controlling one or a plurality of devices that do not require synchronous control in the motion control apparatus 130, and is a program that is created by a user and does not require synchronization.
  • the output unit 135 converts the output data from the calculation unit 134 into data that can be output to the output device 15 or the driving device 120.
  • the output device 15 includes a bus synchronous communication unit 141a, 141b, 141c, a digital data output unit 142, an analog data output unit 143, and a network output unit 144.
  • the bus synchronization communication unit 141a is connected to the digital data output unit 142
  • the bus synchronization communication unit 141b is connected to the analog data output unit 143
  • the bus synchronization communication unit 141c is connected to the network output unit 144.
  • the output from the output unit 135 in the motion control device 130 is the same as the digital data output unit 142, the analog data output unit 143, and the network output unit 144 in the output device 15.
  • the digital data output unit 142 outputs digital data according to data from the motion control device 130.
  • the analog data output unit 143 outputs analog data according to the data from the motion control device 130.
  • the network output unit 144 outputs the calculation result data from the motion control device 130 to an external network.
  • the setting device 150 is a device that can be connected to the motion control device 130 at the time of setting, and can be disconnected from the motion control device 130 when the motion control device 130 operates, and is realized by a computer as an example.
  • the setting device 150 includes a synchronization parameter setting unit 151, a library reading unit 152, a synchronization setting screen display unit 153, an IF unit 154, and an electronic cam construction unit 155.
  • the synchronization parameter setting unit 151 sets the synchronization parameters of the modules such as the synchronization parameter setting of the input device 14 and the output device 15 constructed by the synchronization setting screen display unit 153, the switch setting and the calculation module, and the information on the combination state Are stored in the synchronization parameter storage unit 138a so that the motion control device 130 can refer to them.
  • the library reading unit 152 reads the mathematical expression library constructed by the library construction device 160 by the setting device 150 and stores it in the library storage unit 138c in the motion control device 130.
  • the synchronization setting screen display unit 153 is a display unit that displays each output setting screen shown in FIG. 2 and screens shown in FIGS.
  • the synchronization setting screen display unit 153 may be mounted on a display device that is connected to the motion control device 130 included in the motion control system 10 and can be disconnected.
  • the IF unit 154 is an input device that can be operated by the user, and outputs the operation content to the synchronization setting screen display unit 153 when setting is input, and reflects the operation content on the display screen.
  • the electronic cam construction unit 155 provides electronic cam curve setting means using the synchronization setting screen display unit 153 and the IF unit 154, and stores them in the electronic cam pattern storage unit 138b so that the motion control device 130 can refer to them.
  • the library construction device 160 edits the C language and converts (compiles) it into a format that can be executed by the motion control device 130.
  • the mathematical expression library is read by the library reading unit 152 and stored in the library storage unit 138c of the motion control device 130.
  • FIG. 4 is a block diagram showing a hardware configuration for realizing the motion control system 10 shown in FIG.
  • the motion control system 10 illustrated in FIG. 4 includes an input device 14, a drive device 120, a motion control device 130, an output device 15, and a setting device 150.
  • the input device 14 includes a sensor 211, an AD conversion unit 212 that is connected to the sensor 211 and converts analog data into digital data, a switch 213, and a digital data input unit 214 that is connected to the switch 213 and receives an on / off signal. And a network device 215 and a network 216 connected to the network device 215 to which data is input.
  • the driving device 120 includes a servo amplifier 221 and a motor 222 driven by the servo amplifier 221.
  • the motion control device 130 includes a bus 231 that can transfer data, a CPU (Central Processing Unit) 232, a ROM (Read Only Memory) 233, a RAM (Random Access Memory) 234, and a servo communication circuit 235.
  • the bus synchronous communication unit 131 illustrated in FIG. 3 is realized by the bus 231 illustrated in FIG.
  • the servo communication synchronous communication unit 132 shown in FIG. 3 is realized by the servo communication circuit 235 shown in FIG.
  • the programs for realizing the input unit 133, the calculation unit 134, the output unit 135, the virtual axis realization unit 136, and the library execution unit 137 shown in FIG. 3 are stored in the ROM 233 shown in FIG. 4, and the CPU 232 shown in FIG.
  • the synchronization parameter storage unit 138a, the electronic cam pattern storage unit 138b, the library storage unit 138c, the internal timer, and the virtual axis shown in FIG. 3 are stored in the ROM 233 shown in FIG.
  • the asynchronous control calculation unit 139 may be stored in the ROM 233 illustrated in FIG. 4 and executed by the CPU 232 and the RAM 234.
  • the output device 15 receives an analog conversion unit 241 to which data from the motion control device 130 is input, a laser 242 controlled by analog data output from the analog conversion unit 241, and data from the motion control device 130.
  • the setting device 150 includes a display 251, a CPU 252, a ROM 253, and a RAM 254.
  • the synchronization setting screen display unit 153 shown in FIG. 3 is realized by the display 251 shown in FIG.
  • a program for realizing the synchronization parameter setting unit 151, the library reading unit 152, and the electronic cam construction unit 155 shown in FIG. 3 is stored in the ROM 253 shown in FIG. 4, and is calculated using the CPU 252 and the RAM 254 shown in FIG. By implementing this, these configurations are realized.
  • the IF unit 154 illustrated in FIG. 3 is not illustrated, any input device that can be operated by the user may be used, and examples of the input device include a mouse and a keyboard.
  • the hardware configuration of the library construction device 160 is not shown, but is the same as that of the setting device 150.
  • Examples of the sensor 211 connected to the AD conversion unit 212 include a pressure sensor, an acceleration sensor, a temperature sensor, a current sensor, a voltage sensor, and an illuminance sensor.
  • An image sensor can be exemplified as the switch 213 connected to the digital data input unit 214.
  • Examples of the network device 215 connected to the network 216 include a large-scale database via a touch panel and the Internet. The data input from the servo amplifier 221 can exemplify the current rotation speed, the current position, the acceleration alarm state, and the magnetic pole position.
  • the network device 246 connected to the network 245 can be exemplified by a large-scale database via a touch panel and the Internet.
  • Examples of data output to the servo amplifier 221 include command rotation speed, command position, and command acceleration.
  • the motion control system 10 shown in FIG. 3 can be realized by the hardware of the motion control system 10 shown in FIG.
  • FIG. 5 is a diagram showing an example of a real device configuration of a motion control system including the motion control device according to the embodiment, which operates according to the screen shown in FIG. 6 to be described later.
  • the output of the laser for cutting the member is changed in an optimum pattern in accordance with the position where the member is conveyed to the left and right.
  • FIG. 5 shows an example in which the motion control apparatus operates according to an internal program rather than operating according to an external signal.
  • FIG. 5 includes a master input unit 401 that is a virtual axis that serves as a master for the synchronization timing of each output, a servo motor 402 that is an analog output motor that conveys a member, a laser output device 403 that outputs an analog output laser, A motion control device 404 to which a network output is connected and a temperature sensor 405 for measuring a member temperature during laser cutting are shown.
  • the virtual axis 401 is a virtual servo motor that operates at a speed set by the user.
  • the servo motor 402 and the laser output device 403 operate in synchronization with the speed and phase of the virtual axis 401.
  • the temperature sensor 405 measures the member temperature.
  • the slave cam 412 is a servo motor 402, and the slave cam 413 is a laser output device 403.
  • the electronic cam pattern 412a describes the operation of the servo motor 402.
  • the electronic cam pattern 412a is an operation pattern that reciprocates in accordance with the phase of the horizontal axis that is a virtual axis.
  • the cam pattern 413a describes the output intensity of the laser beam.
  • the cam pattern 413a is a pattern having the maximum intensity near the center of the phase of the horizontal axis that is the virtual axis.
  • the temperature of the member during operation of the servo motor 402 and the laser output device 403 is measured by the temperature sensor 405.
  • the output of the laser output device 403 is output by adding the output intensity according to the phase of the virtual main axis by the slave cam 413 and the value calculated by the calculation module 503 based on the temperature data acquired from the temperature sensor 405. For this reason, it is possible to perform laser cutting with the optimum intensity by irradiating the laser beam with the intensity synchronized with the position of the member and executing the feedback control including the actual temperature in synchronization.
  • the laser output strength and the cutting position that is the position of the transport axis can be adjusted, and a program created in a ladder language is not required. It is possible to realize such control that the servo motor motion control and IO control are integrated only by parameter setting and adjustment, and the laser output is changed in accordance with the cam operation and temperature.
  • FIG. 6 is a diagram showing a synchronization setting screen in the actual apparatus configuration example of the motion control apparatus shown in FIG.
  • the input module 501 represents an input from a virtual servo motor that exists in the program of the master input unit 401 shown in FIG.
  • the input module 502 represents an input from the temperature sensor 405 shown in FIG.
  • the calculation module 503 performs a calculation based on the temperature data from the temperature sensor 405.
  • the switch module 504 selects whether to transmit the calculation result of the calculation module 503 to the output.
  • the synthesis module 505 synthesizes the input from the input module 502 and the data of the switch module 504.
  • the cam pattern 506 describes the operation of the motor indicated by the slave cam 412 shown in FIG.
  • the cam pattern 507 describes the intensity of the laser output indicated by the slave cam 413 shown in FIG.
  • the output module 508 represents the servo motor 402.
  • the output module 509 represents the laser output device 403.
  • the output module 508 is connected to the input module 501 of the synchronization setting screen 2 via the cam data 506.
  • the input module 501 is connected to the synthesis module 505, the input module 502 is connected to the arithmetic module 503, and the arithmetic module 503 is connected to the switch 504.
  • the synthesis module 505 is connected to the output module 509 via the cam pattern 507.
  • FIG. 7 is a diagram illustrating a synchronization setting screen of another motion control device according to the embodiment.
  • the motion control device on which the screen shown in FIG. 7 is displayed is a device that monitors the temperature of a member via a network by cutting the member with a motor according to the strength of the laser according to the conveyance position and temperature.
  • the same output settings are collectively displayed on one screen.
  • the output module 301 is connected to the input module 311 of the synchronization setting screen 2 via the cam data 351.
  • the output module 301 is a conveyance shaft.
  • the input module 311 is connected to the calculation module 321, the calculation module 321 is connected to the switch 331, and the switch 331 is connected to the synthesis module 341.
  • the input module 311 is a virtual axis serving as a common master axis for performing electronic cam control in conjunction with the output module 301 serving as a transport axis and the output module 302 serving as a laser output.
  • the input module 312 is connected to the switch 332, and the switch 332 is connected to the synthesis module 341.
  • the input module 312 is an AD unit temperature sensor and monitors the temperature of the member.
  • the output side of the synthesis module 341 is connected to the output module 302 via the cam data 352.
  • the output module 302 is a laser output connected to the DA unit.
  • the communication module 303 is connected to the calculation module 322 via the cam data 353, and the calculation module 322 is connected to the input module 312 of the synchronization setting screen 2.
  • the arithmetic module 322 is an arithmetic library module that converts data input from the input module 312 into a format to be transmitted from the communication module 303.
  • the output module 301 uses the cam pattern of the cam data 351, the output module 302 uses the cam pattern of the cam data 352, and the communication module 303 uses the cam pattern of the cam data 353.
  • the communication module 303 is a communication function module for monitoring communication temperature data.
  • the input value of the movement amount of the virtual axis from the input module 311 is 100
  • the temperature of the temperature sensor from the input module 312 is 53
  • the calculation in the calculation module 321 is performed.
  • the output value from the synthesis module 341 is 154, that is, the laser output value of the output module 302 is the input of the input module 311.
  • the control is performed to increase or decrease the intensity of the laser based on the cam data 352 in conjunction with the position of the conveyance axis connected to the value, the temperature of the input module 312 which is a temperature sensor, and the correction value of the calculation module 321.
  • the output module 301 that is the transport axis performs transport, but the output value from the synthesis module 341 is 0, so the laser of the output module 302 is stopped. It becomes control.
  • the output value from the synthesis module 341 is 101, and the laser output that is not affected by the input module 311 that is a temperature sensor only according to the input of the input module 311. It becomes control of.
  • the output value from the synthesis module 341 is 53, and the laser output is controlled only by the value of the input module 312 which is a temperature sensor.
  • the output module 302 searches for the output value from the synthesis module 341 from the x-axis of the cam pattern of the cam data 352, and outputs the y-axis value corresponding to the x-axis value as the output value of the output module 302.
  • the output module 302 outputs laser light based on this output value.
  • the output module 301 takes 100 which is the input value from the input module 311 on the x axis of the cam data 351, outputs the value of the y axis at this time as the output value of the output module 301, and drives the motor of the conveyance axis. .
  • the communication module 303 refers to 53 which is an input value from the input module 312 on the x axis of the cam data 353, and is connected to the motion control device using the y axis value at this time as the output value of the communication module 303. Output to a network unit and send temperature information to a database on the network.
  • FIG. 8 is a flowchart showing the operation of the motion control apparatus according to the embodiment.
  • the input unit 133 reads the synchronization parameter input from the synchronization parameter storage unit 138a and passes it to the calculation unit 134 (S11). That is, it is determined by S11 which input data of the input device 14 is read.
  • the calculation unit 134 reads the library from the library storage unit 138c via the library execution unit 137 (S12). An existing calculation function may be used instead of this library. Thereby, preparation for calculation is performed.
  • the calculation unit 134 performs a calculation based on the input data acquired from the input unit 133 and the combination constructed by the synchronization setting screen display unit 153 (S13).
  • the combination constructed by the synchronization setting screen display unit 153 is a combination state of each module on the display screen shown in FIG. 2, and is stored in the synchronization parameter storage unit 138a. Then, the calculation unit 134 determines the current switch state inside the motion control device (S14), performs a combination calculation with the input result of another input unit (S15), and the library based on the library read in S12. An operation is performed (S16). Then, the calculation unit 134 sets the calculation result so far as the x-axis of the cam pattern, and outputs the y-axis data to the output unit 135 (S17).
  • the output unit 135 outputs the data to the set output device 15 or the driving device 120 based on the data in the synchronization parameter storage unit 138a and the data passed from the calculation unit 134 (S18). End.
  • the motion control device repeatedly executes input and output while taking the synchronization timing, so that complicated control that integrates IO control and motion control can be performed without requiring a program created in a ladder language. This can be realized only by setting patterns and parameters.
  • motion control and IO control can be integrated and controlled by setting parameters and creating cam patterns without using a program language.
  • the motion control apparatus has a configuration in which the driving device 120 and the output device 15 are connected, and simultaneously performs output control of the output device 15 with an output pattern corresponding to input data per cycle.
  • a control block that performs electronic cam control of the drive device 120 and describes the electronic cam control of the drive device 120 and a control block that describes output control of the output device 15 are expressed by blocks of the same format as shown in FIG. The Further, when the input device 14 is connected to the motion control apparatus according to the embodiment, the drive device 120 and the output device 15 can be controlled using input data of the connected input device 14.
  • a screen for setting the parameters of the cam pattern of the electronic cam control of the driving device 120, and the output device 15 A screen for setting control parameters is displayed on one screen.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

The purpose of the present invention is to obtain a motion control device capable of integrating servo motor electronic cam control and I/O control together and thereby performing synchronization control without using a program that is separately created using a ladder language. This motion control device (130), to which a drive device (120) and an output device (15) are connected, controls the output of the output device (15) by producing an output pattern in accordance with input data, and at the same time performs electronic cam control of the drive device (120), wherein a control block for describing the electronic cam control of the drive device (120) and a control block for describing the output control of the output device (15) are represented in the same block format.

Description

モーション制御装置及び外部表示装置Motion control device and external display device
 本発明は、駆動装置を有する機械又は装置の動作を制御するモーション制御装置及び外部表示装置に関する。 The present invention relates to a motion control device and an external display device for controlling the operation of a machine or device having a drive device.
 従来、サーボモータの同期制御として、同期制御の基準となる回転体に同期エンコーダを取り付け、その信号に従い対象となるサーボモータを駆動する方式において、同期制御のタイミングを決定するエンコーダ(マスタ軸)の位相(1回転内の位置)と制御対象となるサーボモータ(スレーブ軸)の位置とを対応付けるカムデータを用いて同期制御を実現する電子カム制御が広く知られている。 Conventionally, as a synchronous control of a servo motor, a synchronous encoder is attached to a rotating body serving as a reference for the synchronous control, and in the method of driving the target servo motor according to the signal, an encoder (master axis) that determines the timing of the synchronous control is used. Electronic cam control that realizes synchronous control using cam data that associates the phase (position within one rotation) with the position of a servo motor (slave axis) to be controlled is widely known.
 従来例である特許文献1には、電子カム制御の設定手段として一つの駆動ソフトウェアモジュールに対して複数の出力ソフトウェアモジュールを有する同期制御プログラムを1画面に表示し、この画面に、パラメータの設定画面、各ソフトウェアモジュールのステータス情報又は駆動ソフトウェアモジュール若しくは出力ソフトウェアモジュールの波形グラフを表示してこの表示を切り替えることにより、電子カム制御の設定を行う多軸同期制御装置が開示されている。 In Patent Document 1 as a conventional example, a synchronous control program having a plurality of output software modules for one drive software module is displayed on one screen as a setting means for electronic cam control, and a parameter setting screen is displayed on this screen. A multi-axis synchronous control device is disclosed in which status information of each software module or a waveform graph of a drive software module or an output software module is displayed and this display is switched to set electronic cam control.
 また、他の従来例である特許文献2には、サーボモータの同期制御のタイミングに合わせて周辺装置のIO(Input Output)制御を行う場合、電子カム制御のカムデータに加えてIO信号の状態データも合わせて記憶し、異常発生時又は調整時に再度出力することで制御対称軸を逆方向に動作させ、更には繰り返し正逆動作させる技術が開示されている。 In addition, in Patent Document 2 as another conventional example, when IO (Input Output) control of a peripheral device is performed in accordance with the timing of synchronous control of a servo motor, the state of the IO signal in addition to the cam data of the electronic cam control A technique is disclosed in which data is also stored and output again at the time of occurrence of an abnormality or at the time of adjustment to operate the control symmetry axis in the reverse direction, and further repeatedly forward and reverse.
特許第5174992号公報Japanese Patent No. 5174992 特開2004-246498号公報JP 2004-246498 A
 しかしながら、上記の従来例の一つである特許文献1に開示された技術によれば、パラメータの設定のみでソフトウェア設計からデバッグまでの作業を行うことはできるものの、電子カム制御の対象はサーボモータの位置に限定されており、速度又はトルクを制御する、あるいはサーボモータの位置以外の信号、例えばデジタル信号のON/OFFやアナログ操作量のような出力を対象としていないため、デジタル信号のON/OFFやアナログ操作量などのIO制御についてはラダー言語を用いて別途プログラムを作成する必要がある、という問題があった。また、電子カム制御がIO制御を対象としていないため、電子カム制御とIO制御との同期性が保証できず、電子カム制御とIO制御とのタイミングの調整が容易でない、という問題があった。 However, according to the technique disclosed in Patent Document 1 which is one of the above-described conventional examples, the work from software design to debugging can be performed only by setting parameters, but the object of electronic cam control is a servo motor. The position is limited to the position of the signal, and it is not intended for signals other than the position of the servo motor, such as controlling the speed or torque, such as digital signal ON / OFF and analog operation amount. For IO control such as OFF and analog operation amount, there is a problem that a separate program needs to be created using a ladder language. Further, since the electronic cam control is not intended for the IO control, there is a problem that the synchronization between the electronic cam control and the IO control cannot be guaranteed, and the timing adjustment between the electronic cam control and the IO control is not easy.
 一方で、上記の従来例の一つである特許文献2に開示された技術によれば、サーボモータの電子カム制御と連動したIO制御を実現可能である。特許文献2に開示された技術によれば、マスタスレーブ軸間のカムデータに、ラダー言語を用いて作成されたプログラムにより生成されたIO信号の状態を同時に記録し、再度呼び出すため、動作の再現又は正逆動作において、ラダー言語を用いて、プログラムを別途作成する必要がない。しかしながら、電子カム制御及びIO制御の位相の調整時、又は1サイクルの周期の一方の制御のみの変更時には、依然としてラダー言語を用いて、プログラムを別途作成する必要がある。また、特許文献2には、複数の軸間又は複数のIO機器間の全体の制御タイミングの調整を効率よく行うことは考慮されていない。また、特許文献2に開示された技術では、スレーブ軸はマスタ軸の位置に追従することのみが開示されており、スレーブ軸が、軸の速度、IO機器であるセンサのアナログ入力値又は時間といったマスタ軸の位置以外の制御量に追従することは開示されておらず、電子カム制御とIO制御とを関連付けるプログラムを別途作成する必要がある、という問題があった。 On the other hand, according to the technique disclosed in Patent Document 2 which is one of the above-described conventional examples, it is possible to realize IO control in conjunction with servo cam electronic cam control. According to the technique disclosed in Patent Document 2, the state of the IO signal generated by the program created using the ladder language is simultaneously recorded in the cam data between the master and slave axes, and the operation is reproduced. Or, in the forward / reverse operation, it is not necessary to separately create a program using a ladder language. However, when adjusting the phase of the electronic cam control and the IO control, or when changing only one control of one cycle period, it is still necessary to separately create a program using the ladder language. Further, Patent Document 2 does not consider efficient adjustment of the entire control timing between a plurality of axes or between a plurality of IO devices. Further, in the technique disclosed in Patent Document 2, it is disclosed that the slave axis only follows the position of the master axis. The slave axis is the speed of the axis, the analog input value of the sensor that is the IO device, or the time. There is no disclosure of following a control amount other than the position of the master axis, and there is a problem that it is necessary to separately create a program that associates electronic cam control with IO control.
 本発明は、上記に鑑みてなされたものであって、ラダー言語を用いて別途作成されたプログラムを用いることなく、サーボモータの電子カム制御とIO制御とを統合して同期制御可能なモーション制御装置を得ることを目的とする。 The present invention has been made in view of the above, and is a motion control capable of performing synchronous control by integrating electronic cam control and IO control of a servo motor without using a separately created program using a ladder language. The object is to obtain a device.
 上述した課題を解決し、目的を達成するために、本発明は、駆動機器及び出力機器が接続されたモーション制御装置であって、入力データに応じた出力パターンで前記出力機器の出力制御を行うと同時に前記駆動機器の電子カム制御を行い、前記駆動機器の電子カム制御を記述する制御ブロックと、前記出力機器の出力制御を記述する制御ブロックとが同一形式のブロックで表現されることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a motion control apparatus in which a drive device and an output device are connected, and performs output control of the output device with an output pattern corresponding to input data. At the same time, the electronic cam control of the driving device is performed, and the control block describing the electronic cam control of the driving device and the control block describing the output control of the output device are represented by the same type of block. And
 本発明に係るモーション制御装置は、ラダー言語を用いて別途作成されたプログラムを用いることなく、サーボモータの電子カム制御とIO制御とを統合して同期制御可能であるという効果を奏する。 The motion control device according to the present invention has the effect that the electronic cam control and IO control of the servo motor can be integrated and controlled synchronously without using a separately created program using a ladder language.
実施の形態に係るモーション制御装置の機能を示すブロック図The block diagram which shows the function of the motion control apparatus which concerns on embodiment 実施の形態に係るモーション制御装置の同期設定における出力モジュールの設定画面を示す図The figure which shows the setting screen of the output module in the synchronous setting of the motion control apparatus which concerns on embodiment 実施の形態に係るモーション制御装置を含むモーション制御システムを示す機能ブロック図Functional block diagram showing a motion control system including a motion control device according to an embodiment 図3に示すモーション制御システムを実現するハードウェアの構成を示すブロック図The block diagram which shows the structure of the hardware which implement | achieves the motion control system shown in FIG. 図6に示す画面によって動作する、実施の形態に係るモーション制御装置を含むモーション制御システムの実装置構成例を示す図The figure which shows the example of an actual apparatus structure of the motion control system which operate | moves with the screen shown in FIG. 図5に示すモーション制御装置の実装置構成例における同期設定の画面を示す図The figure which shows the screen of the synchronous setting in the actual apparatus structural example of the motion control apparatus shown in FIG. 実施の形態に係る、他のモーション制御装置の同期設定後の画面を示す図The figure which shows the screen after the synchronous setting of the other motion control apparatus based on embodiment 実施の形態に係るモーション制御装置の動作を示すフローチャートThe flowchart which shows operation | movement of the motion control apparatus which concerns on embodiment
 以下に、本発明の実施の形態に係るモーション制御装置及び外部表示装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a motion control device and an external display device according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態に係るモーション制御装置の機能を示すブロック図である。図1に示すモーション制御装置は、入力機器からデータが入力される入力部11と、入力部11からのデータをもとに、電子カム制御を行いつつユーザが作成したライブラリに基づく演算であるライブラリ演算を行う演算部12と、出力機器へデータを出力する出力部13とを備える。なお、入力部11に与えられるデータとしては、同期エンコーダの位相、温度などを例示することができ、出力部13が出力するデータにはサーボモータへの位置指令及びレーザ制御装置の出力強度を例示することができる。
Embodiment.
FIG. 1 is a block diagram showing functions of a motion control apparatus according to an embodiment of the present invention. The motion control apparatus shown in FIG. 1 includes an input unit 11 to which data is input from an input device, and a library based on a library created by a user while performing electronic cam control based on data from the input unit 11. A calculation unit 12 that performs calculation and an output unit 13 that outputs data to an output device are provided. The data given to the input unit 11 can be exemplified by the phase and temperature of the synchronous encoder, and the data outputted by the output unit 13 is exemplified by the position command to the servo motor and the output intensity of the laser control device can do.
 演算部12は、入力部11からのデータに基づき出力部13へ出力するサーボモータの位置などの演算と、出力機器へ出力する制御量の演算を行う。すなわち、図1に示すモーション制御装置は、モーション制御とIO制御とを同一の演算部にて実行する。この演算は、カムデータを用いた電子カム制御又はユーザが数式により動作を記述する演算ライブラリによって実行される。 The calculation unit 12 calculates the position of the servo motor to be output to the output unit 13 based on the data from the input unit 11 and the control amount to be output to the output device. That is, the motion control apparatus shown in FIG. 1 executes motion control and IO control in the same arithmetic unit. This calculation is executed by electronic cam control using cam data or a calculation library in which a user describes an operation using mathematical expressions.
 なお、図1に示す入力部11及び出力部13には、実在の機器のみならず、その入出力を模擬した仮想機器が接続されてもよい。なお、仮想機器とは、センサ又はサーボモータの入出力状態を模擬し、この模擬した入出力状態に基づくデータを入力部11及び出力部13へ入出力可能なモーション制御装置内部の仮想的な機器をいう。 Note that the input unit 11 and the output unit 13 illustrated in FIG. 1 may be connected not only to actual devices but also to virtual devices that simulate the input / output thereof. The virtual device is a virtual device inside the motion control device that can simulate the input / output state of the sensor or servo motor and can input / output data based on the simulated input / output state to the input unit 11 and the output unit 13. Say.
 図2は、本発明の実施の形態に係るモーション制御装置の同期設定における出力モジュール25の設定画面を示す図である。図2に示す設定画面は、モーション制御装置に接続される表示装置に表示されており、装置構成のパラメータ、カムパターン及び数式ライブラリが、モジュール選択画面20-2から選択され、設定画面20-1へ配置された後、モーション制御装置へ転送される。図2には、第1の入力モジュール21-1と、第1の入力モジュール21-1に接続された装置を設定する第1の入力設定画面21-1aと、第1の入力モジュール21-1に接続された第1のライブラリ演算モジュール22-1と、ライブラリの演算を設定する第1のライブラリ設定読み出し画面22-1aと、第1のライブラリ演算モジュール22-1に接続された第1のスイッチモジュール23-1と、第nの入力モジュール21-nと、第nの入力モジュール21-nに接続された第nのライブラリ演算モジュール22-nと、第nのライブラリ演算モジュール22-nに接続された第nのスイッチ23-nと、第1のスイッチモジュール23-1から第nのスイッチモジュール23-nに接続された合成モジュール24と、合成モジュール24の設定画面である合成設定画面24-aと、合成モジュール24で演算された結果をカムパターンモジュール27により入力の位相に応じた出力に変換した結果を出力する出力モジュール25と、出力モジュール25に接続された装置を設定する出力設定画面26とが示されている。なお、ここでnは1より大きい自然数であり、図示していないが、入力モジュールはn個設けられている。図2に示す設定画面は、出力モジュール25の設定画面であるので、出力は1個である。図2においては、駆動機器のモーション制御を記述する制御ブロックと、入力機器の入力制御と、出力機器の出力制御とが同一形式のブロックであるモジュールで表現されており、1サイクルあたりの入力データに応じた出力パターンで駆動機器を制御しつつ、電子カム制御が可能である。 FIG. 2 is a diagram showing a setting screen of the output module 25 in the synchronous setting of the motion control apparatus according to the embodiment of the present invention. The setting screen shown in FIG. 2 is displayed on a display device connected to the motion control device, and device configuration parameters, cam patterns, and a mathematical expression library are selected from the module selection screen 20-2. And then transferred to the motion control device. FIG. 2 shows a first input module 21-1, a first input setting screen 21-1a for setting a device connected to the first input module 21-1, and a first input module 21-1. A first library operation module 22-1 connected to the first library, a first library setting read screen 22-1a for setting the library operation, and a first switch connected to the first library operation module 22-1 Connected to the module 23-1, the nth input module 21-n, the nth library operation module 22-n connected to the nth input module 21-n, and the nth library operation module 22-n N-th switch 23-n, a synthesis module 24 connected from the first switch module 23-1 to the n-th switch module 23-n, and a synthesis module An output module 25 for outputting a result obtained by converting the result calculated by the synthesis module 24 into an output corresponding to the phase of the input by the cam pattern module 27, and an output module; An output setting screen 26 for setting a device connected to 25 is shown. Here, n is a natural number larger than 1, and although not shown, n input modules are provided. Since the setting screen shown in FIG. 2 is a setting screen for the output module 25, the number of outputs is one. In FIG. 2, the control block describing the motion control of the driving device, the input control of the input device, and the output control of the output device are expressed by modules having the same format block, and input data per cycle. The electronic cam can be controlled while controlling the driving device with an output pattern according to the above.
 図2における第1の入力モジュール21-1から第nの入力モジュール21-nの各々は、本実施の形態に係るモーション制御装置の機能を示すブロック図である図1における入力部11と関係付けられる。ここで、入力部11は、デジタル入力ユニット、アナログ入力ユニット、サーボアンプ、エンコーダなどの機器から構成される。図2における出力モジュール25は図1における出力部13に該当する。ここで、出力部13はデジタル出力ユニット、アナログ出力ユニット、サーボアンプなどの機器から構成される。図2において、第1の入力モジュール21-1に接続された装置を設定する第1の入力設定画面21-1aのデジタル入力ユニットの項目及びアナログ入力ユニットの項目は、入力機器を選択して設定するためのものである。 Each of the first to nth input modules 21-1 to 21-n in FIG. 2 is related to the input unit 11 in FIG. 1 which is a block diagram showing the function of the motion control apparatus according to the present embodiment. It is done. Here, the input unit 11 includes devices such as a digital input unit, an analog input unit, a servo amplifier, and an encoder. The output module 25 in FIG. 2 corresponds to the output unit 13 in FIG. Here, the output unit 13 includes devices such as a digital output unit, an analog output unit, and a servo amplifier. In FIG. 2, the digital input unit item and the analog input unit item on the first input setting screen 21-1a for setting the device connected to the first input module 21-1 are set by selecting the input device. Is to do.
 図2におけるライブラリ演算モジュール22-n、スイッチモジュール23-n、合成モジュール24及びカムパターンモジュール27は、図1における演算部12に関連付けられる。第1のライブラリ演算モジュール22-1から第nのライブラリ演算モジュール22-nは、C言語などのプログラミング言語で構築した数式ライブラリをライブラリ設定読み出し画面22-1aで割り付け、第1の入力モジュール21-1から第nの入力モジュール21-nの入力データに対して演算を行う。この演算には、PID演算式、グレイコード変換式及び平滑平均化式による演算と、整数の四則演算とを例示することができる。また、図2には、出力モジュール25のカムパターン27と、カムパターン27の作成を行うカムパターン設定画面27-aが示されている。カムパターン27は、カムパターン設定画面27-aにおける電子カム曲線のユーザによる描画で作成され、又は外部の電子カムファイルから取り込まれる運転パターンである。図2においては、カムパターン27のx軸のデータ(主軸の位相データ)を元に、カムパターン27に従いy軸を演算し、出力モジュール25の出力として出力設定画面26で選択した出力機器へモーション制御装置から出力値が出力される。 The library operation module 22-n, switch module 23-n, synthesis module 24, and cam pattern module 27 in FIG. 2 are associated with the operation unit 12 in FIG. The first library operation module 22-1 to the n-th library operation module 22-n allocate a mathematical expression library constructed in a programming language such as C language on the library setting read screen 22-1a, and the first input module 21- An operation is performed on input data of the 1st to n-th input modules 21-n. Examples of this calculation include a calculation using a PID calculation formula, a Gray code conversion formula and a smooth averaging formula, and an integer four arithmetic calculation. FIG. 2 shows a cam pattern 27 of the output module 25 and a cam pattern setting screen 27-a for creating the cam pattern 27. The cam pattern 27 is an operation pattern that is created by drawing of an electronic cam curve by the user on the cam pattern setting screen 27-a or is taken in from an external electronic cam file. In FIG. 2, the y-axis is calculated according to the cam pattern 27 based on the x-axis data (main axis phase data) of the cam pattern 27, and the motion is output to the output device selected on the output setting screen 26 as the output of the output module 25. An output value is output from the control device.
 第1のスイッチ23-1は、第1の入力モジュール21-1からの入力データに基づいたライブラリ演算モジュール22-1の出力を用いるか否かを切り換えるために設けられ、第nのスイッチ23-nは、第nの入力モジュール21-nからの入力データに基づいたライブラリ演算モジュール22-nの出力を用いるか否かを切り換えるために設けられている。合成モジュール24は、第1のライブラリ演算モジュール22-1から第nのライブラリ演算モジュール23-nの演算結果のうち、第1のスイッチ23-1から第nのスイッチ23-nのオンオフの状態に対応して入力される複数の入力を加減算する。演算モジュール28は、第1のライブラリ演算モジュール22-1から第nのライブラリ演算モジュール22-nと、第1のスイッチ23-1から第nのスイッチ23-nと、合成モジュール24と、カムパターン27とを含み、図1の演算部12と対応する。 The first switch 23-1 is provided to switch whether or not to use the output of the library operation module 22-1 based on the input data from the first input module 21-1, and the nth switch 23- n is provided for switching whether to use the output of the library operation module 22-n based on the input data from the nth input module 21-n. The synthesis module 24 switches the first switch 23-1 to the nth switch 23-n from the on / off state among the computation results of the first library computation module 22-1 to the nth library computation module 23-n. Add / subtract multiple inputs correspondingly. The calculation module 28 includes a first library calculation module 22-1 to an nth library calculation module 22-n, a first switch 23-1 to an nth switch 23-n, a synthesis module 24, a cam pattern, 27 and corresponds to the calculation unit 12 of FIG.
 図3は、実施の形態に係るモーション制御装置を含むモーション制御システム10を示す機能ブロック図である。図3に示すモーション制御システム10は、入力機器14と、駆動装置である駆動機器120と、モーション制御装置130と、出力機器15と、設定装置150とを備える。 FIG. 3 is a functional block diagram showing the motion control system 10 including the motion control apparatus according to the embodiment. The motion control system 10 illustrated in FIG. 3 includes an input device 14, a drive device 120 that is a drive device, a motion control device 130, an output device 15, and a setting device 150.
 入力機器14は、デジタルデータ入力部111と、アナログデータ入力部112と、ネットワーク入力部113と、バス同期通信部114a,114b,114cとを備える。デジタルデータ入力部111は、モーション制御装置130に入力されるデジタルデータを出力する。アナログデータ入力部112は、モーション制御装置130に入力されるアナログデータを出力する。ネットワーク入力部113は、モーション制御装置130に入力されるネットワーク機器のデータを出力する。バス同期通信部114aは、デジタルデータ入力部111に接続され、バス同期通信部114bは、アナログデータ入力部112に接続され、バス同期通信部114cは、ネットワーク入力部113に接続されている。バス同期通信部114a,114b,114cの各々は、モーション制御装置130内のバス同期通信部131とともに、ハードウェア間の入力タイミングのばらつきを修正しつつ各入力機器の入力タイミングの同期をとる。入力機器14で取得したデータは、モーション制御装置130内の入力部133を通って演算部134に転送される。 The input device 14 includes a digital data input unit 111, an analog data input unit 112, a network input unit 113, and bus synchronous communication units 114a, 114b, and 114c. The digital data input unit 111 outputs digital data input to the motion control device 130. The analog data input unit 112 outputs analog data input to the motion control device 130. The network input unit 113 outputs network device data input to the motion control device 130. The bus synchronization communication unit 114 a is connected to the digital data input unit 111, the bus synchronization communication unit 114 b is connected to the analog data input unit 112, and the bus synchronization communication unit 114 c is connected to the network input unit 113. Each of the bus synchronization communication units 114a, 114b, and 114c, together with the bus synchronization communication unit 131 in the motion control device 130, synchronizes the input timing of each input device while correcting variations in input timing between hardware. Data acquired by the input device 14 is transferred to the calculation unit 134 through the input unit 133 in the motion control device 130.
 駆動機器120は、駆動軸の現在位置及び速度を取得する現在位置及び速度取得部121と、駆動機器120内の内部ステータス情報を取得する内部ステータス情報取得部122と、駆動軸を制御するサーボ駆動制御部123と、モーション制御装置130内のサーボ通信同期通信部132と同期をとるサーボ通信同期通信部124とを備える。サーボ通信同期通信部124は、モーション制御装置130内のサーボ通信同期通信部132とともに、ハードウェア間の入力タイミングのばらつきを修正しつつ駆動機器120からの入力タイミングの同期をとる。駆動機器120で取得したデータは入力部133を通って演算部134に転送される。駆動機器120は、上記の通りモーション制御装置130に対して制御を実行するためのデータを入力する入力機器として動作するとともに、モーション制御装置130で演算された結果に基づきモータを制御する出力機器としても動作する。 The drive device 120 includes a current position and speed acquisition unit 121 that acquires the current position and speed of the drive shaft, an internal status information acquisition unit 122 that acquires internal status information in the drive device 120, and a servo drive that controls the drive shaft. A control unit 123 and a servo communication synchronization communication unit 124 that synchronizes with the servo communication synchronization communication unit 132 in the motion control device 130 are provided. The servo communication synchronization communication unit 124, together with the servo communication synchronization communication unit 132 in the motion control device 130, synchronizes the input timing from the drive device 120 while correcting the variation in the input timing between hardware. Data acquired by the driving device 120 is transferred to the arithmetic unit 134 through the input unit 133. The drive device 120 operates as an input device that inputs data for executing control to the motion control device 130 as described above, and as an output device that controls the motor based on the result calculated by the motion control device 130. Also works.
 モーション制御装置130は、バス同期通信部131,131aと、サーボ通信同期通信部132と、入力部133と、演算部134と、出力部135と、仮想軸実現部136と、ライブラリ実行部137と、同期パラメータ記憶部138aと、電子カムパターン記憶部138bと、ライブラリ記憶部138cと、非同期制御演算部139と、内部タイマ115とを備える。モーション制御装置130は、入力部133から取得した入力データと、設定装置150で設定されて同期パラメータ記憶部138aに記憶された同期パラメータと、ライブラリ記憶部138cに記憶された計算式とをもとに、電子カムパターン記憶部138bに記憶されているカムパターンのx軸とする入力データを参照する。そして、モーション制御装置130は、x軸のデータ(主軸の位相データ)を元に、カムパターンに従いy軸を演算する。演算値は、サーボ通信同期通信部132を通って駆動機器120へ出力され、又はバス同期通信部131aを通って出力機器15へ出力される。 The motion control device 130 includes a bus synchronization communication unit 131, 131a, a servo communication synchronization communication unit 132, an input unit 133, a calculation unit 134, an output unit 135, a virtual axis realization unit 136, and a library execution unit 137. A synchronization parameter storage unit 138a, an electronic cam pattern storage unit 138b, a library storage unit 138c, an asynchronous control calculation unit 139, and an internal timer 115. The motion control device 130 is based on the input data acquired from the input unit 133, the synchronization parameter set by the setting device 150 and stored in the synchronization parameter storage unit 138a, and the calculation formula stored in the library storage unit 138c. In addition, reference is made to input data for the x-axis of the cam pattern stored in the electronic cam pattern storage unit 138b. Then, the motion control device 130 calculates the y-axis according to the cam pattern based on the x-axis data (principal axis phase data). The calculated value is output to the drive device 120 through the servo communication synchronous communication unit 132 or output to the output device 15 through the bus synchronous communication unit 131a.
 バス同期通信部131は、ハードウェア間の入出力タイミングのばらつきを抑えることを目的として特定の同時刻タイミングにおける各々の入力データをバス同期通信部114a,114b,114cから取得し、入力部133へ転送する。また、サーボ通信同期通信部132は、サーボ通信同期通信部124と同期をとる。 The bus synchronous communication unit 131 acquires each input data at a specific simultaneous timing from the bus synchronous communication units 114a, 114b, and 114c for the purpose of suppressing variations in input / output timing between hardware, and inputs the input data to the input unit 133. Forward. The servo communication synchronization communication unit 132 synchronizes with the servo communication synchronization communication unit 124.
 入力部133は、バス同期通信部131を経由してモーション制御装置130の処理に同期した入力機器14からの入力データと、サーボ通信同期通信部124を経由してモーション制御装置130の処理に同期した駆動機器120からの入力データとを演算部134に入力可能なデータに変換する。 The input unit 133 synchronizes with the input data from the input device 14 synchronized with the processing of the motion control device 130 via the bus synchronization communication unit 131 and with the processing of the motion control device 130 via the servo communication synchronization communication unit 124. The input data from the driving device 120 is converted into data that can be input to the calculation unit 134.
 演算部134は、入力部133から渡されたデータと、電子カムパターン記憶部138bに記憶されているカムパターンデータと、ライブラリ実行部137から渡された数式ライブラリの計算式と、内部タイマ115から渡されたデータとに基づき、出力部135へ渡す出力データを演算する。 The calculation unit 134 includes data passed from the input unit 133, cam pattern data stored in the electronic cam pattern storage unit 138 b, a formula library calculation formula passed from the library execution unit 137, and an internal timer 115. Based on the passed data, output data to be passed to the output unit 135 is calculated.
 ライブラリ実行部137は、ライブラリ記憶部138cに記憶された数式ライブラリを展開し、ユーザによって作成された数式ライブラリの計算式を演算部134に対して提供する。 The library execution unit 137 expands the mathematical expression library stored in the library storage unit 138c, and provides a calculation formula of the mathematical expression library created by the user to the calculation unit 134.
 仮想軸実現部136は、実際の機器が存在しない、例えばテスト用の動作指令などの任意のデータを駆動機器120と同様の形式で演算部134に対して提供するための機能モジュールである。 The virtual axis realization unit 136 is a functional module for providing the arithmetic unit 134 with arbitrary data such as a test operation command in the same format as the driving device 120, for example, when there is no actual device.
 内部タイマ115は、モーション制御装置130内に設けられたタイマであり、時刻情報を演算部134に提供する。演算部134は、内部タイマ115から提供される時刻情報に基づき演算を行うことで横軸を時間とする運転パターンにより電子カム制御を実現することも可能である。 The internal timer 115 is a timer provided in the motion control device 130 and provides time information to the calculation unit 134. The computing unit 134 can also perform electronic cam control by an operation pattern with the horizontal axis as time by performing computation based on time information provided from the internal timer 115.
 同期パラメータ記憶部138aは、設定装置150内の同期パラメータ設定部151が出力する、図2に示す表示画面における各モジュールの組み合わせ状態の同期パラメータを記憶する。電子カムパターン記憶部138bは、設定装置150内の電子カム構築部155にて構築された電子カムパターンを記憶する。ライブラリ記憶部138cは、設定装置150内のライブラリ読み取り部152にて読み取られた数式ライブラリを記憶する。    The synchronization parameter storage unit 138a stores the synchronization parameter of the combination state of each module on the display screen shown in FIG. 2 output from the synchronization parameter setting unit 151 in the setting device 150. The electronic cam pattern storage unit 138 b stores the electronic cam pattern constructed by the electronic cam construction unit 155 in the setting device 150. The library storage unit 138 c stores the mathematical expression library read by the library reading unit 152 in the setting device 150. *
 非同期制御演算部139は、モーション制御装置130内の同期制御が不要な1つ又は複数の機器を制御する演算を行う制御演算部を示し、ユーザにより作成された同期の必要のないプログラムである。 The asynchronous control calculation unit 139 indicates a control calculation unit that performs calculation for controlling one or a plurality of devices that do not require synchronous control in the motion control apparatus 130, and is a program that is created by a user and does not require synchronization.
 出力部135は、演算部134からの出力データをもとに、出力機器15又は駆動機器120へ出力可能なデータに変換する。 The output unit 135 converts the output data from the calculation unit 134 into data that can be output to the output device 15 or the driving device 120.
 出力機器15は、バス同期通信部141a,141b,141cと、デジタルデータ出力部142と、アナログデータ出力部143と、ネットワーク出力部144とを備える。バス同期通信部141aはデジタルデータ出力部142に接続され、バス同期通信部141bはアナログデータ出力部143に接続され、バス同期通信部141cはネットワーク出力部144に接続されている。バス同期通信部141a,141b,141cの各々は、モーション制御装置130内の出力部135からの出力が、出力機器15内のデジタルデータ出力部142、アナログデータ出力部143及びネットワーク出力部144へ同じタイミングで出力されるようタイミングの同期をとる。デジタルデータ出力部142は、モーション制御装置130からのデータに応じてデジタルデータを出力する。アナログデータ出力部143は、モーション制御装置130からのデータに応じてアナログデータを出力する。ネットワーク出力部144は、モーション制御装置130からの計算結果のデータを外部のネットワークに出力する。 The output device 15 includes a bus synchronous communication unit 141a, 141b, 141c, a digital data output unit 142, an analog data output unit 143, and a network output unit 144. The bus synchronization communication unit 141a is connected to the digital data output unit 142, the bus synchronization communication unit 141b is connected to the analog data output unit 143, and the bus synchronization communication unit 141c is connected to the network output unit 144. In each of the bus synchronous communication units 141a, 141b, and 141c, the output from the output unit 135 in the motion control device 130 is the same as the digital data output unit 142, the analog data output unit 143, and the network output unit 144 in the output device 15. Synchronize the timing so that it is output at the timing. The digital data output unit 142 outputs digital data according to data from the motion control device 130. The analog data output unit 143 outputs analog data according to the data from the motion control device 130. The network output unit 144 outputs the calculation result data from the motion control device 130 to an external network.
 設定装置150は、設定時にモーション制御装置130に接続可能であり、モーション制御装置130の動作時にはモーション制御装置130から切り離すことも可能な装置であり、一例としてコンピュータによって実現される。設定装置150は、同期パラメータ設定部151と、ライブラリ読み取り部152と、同期設定画面表示部153と、IF部154と、電子カム構築部155とを備える。 The setting device 150 is a device that can be connected to the motion control device 130 at the time of setting, and can be disconnected from the motion control device 130 when the motion control device 130 operates, and is realized by a computer as an example. The setting device 150 includes a synchronization parameter setting unit 151, a library reading unit 152, a synchronization setting screen display unit 153, an IF unit 154, and an electronic cam construction unit 155.
 同期パラメータ設定部151は、同期設定画面表示部153で構築された入力機器14と出力機器15との同期パラメータの設定、スイッチ設定及び演算モジュールといった各モジュールの同期パラメータの設定と、組み合わせ状態の情報とをモーション制御装置130が参照できるよう、同期パラメータ記憶部138aへ記憶させる。 The synchronization parameter setting unit 151 sets the synchronization parameters of the modules such as the synchronization parameter setting of the input device 14 and the output device 15 constructed by the synchronization setting screen display unit 153, the switch setting and the calculation module, and the information on the combination state Are stored in the synchronization parameter storage unit 138a so that the motion control device 130 can refer to them.
 ライブラリ読み取り部152は、ライブラリ構築装置160で構築した数式ライブラリを設定装置150に読み取り、モーション制御装置130内のライブラリ記憶部138cに記憶させる。 The library reading unit 152 reads the mathematical expression library constructed by the library construction device 160 by the setting device 150 and stores it in the library storage unit 138c in the motion control device 130.
 同期設定画面表示部153は、図2に示す各出力の設定画面及び後述する図6,7に示す画面を表示させる表示部である。同期設定画面表示部153は、モーション制御システム10に含まれるモーション制御装置130に接続されて切り離し可能な表示装置に搭載されていてもよい。 The synchronization setting screen display unit 153 is a display unit that displays each output setting screen shown in FIG. 2 and screens shown in FIGS. The synchronization setting screen display unit 153 may be mounted on a display device that is connected to the motion control device 130 included in the motion control system 10 and can be disconnected.
 IF部154は、ユーザが操作可能な入力機器であり、設定入力時に操作内容を同期設定画面表示部153に出力し、表示画面に操作内容を反映させる。 The IF unit 154 is an input device that can be operated by the user, and outputs the operation content to the synchronization setting screen display unit 153 when setting is input, and reflects the operation content on the display screen.
 電子カム構築部155は、同期設定画面表示部153及びIF部154を用いた電子カム曲線の設定手段を提供し、モーション制御装置130が参照できるよう電子カムパターン記憶部138bに記憶させる。 The electronic cam construction unit 155 provides electronic cam curve setting means using the synchronization setting screen display unit 153 and the IF unit 154, and stores them in the electronic cam pattern storage unit 138b so that the motion control device 130 can refer to them.
 ライブラリ構築装置160は、例えば数式ライブラリがC言語で記述されるものであった場合、C言語を編集し、モーション制御装置130が実行できる形式に変換(コンパイル)するものである。この数式ライブラリは、ライブラリ読み取り部152によって読み取られ、モーション制御装置130のライブラリ記憶部138cに記憶させる。 For example, when the mathematical expression library is described in C language, the library construction device 160 edits the C language and converts (compiles) it into a format that can be executed by the motion control device 130. The mathematical expression library is read by the library reading unit 152 and stored in the library storage unit 138c of the motion control device 130.
 図4は、図3に示すモーション制御システム10を実現するハードウェアの構成を示すブロック図である。図4に示すモーション制御システム10は、入力機器14と、駆動機器120と、モーション制御装置130と、出力機器15と、設定装置150とを備える。 FIG. 4 is a block diagram showing a hardware configuration for realizing the motion control system 10 shown in FIG. The motion control system 10 illustrated in FIG. 4 includes an input device 14, a drive device 120, a motion control device 130, an output device 15, and a setting device 150.
 入力機器14は、センサ211と、センサ211に接続されてアナログデータをデジタルデータに変換するAD変換ユニット212と、スイッチ213と、スイッチ213に接続されてオンオフ信号が入力されるデジタルデータ入力ユニット214と、ネットワーク機器215と、ネットワーク機器215に接続されてデータが入力されるネットワーク216とを備える。 The input device 14 includes a sensor 211, an AD conversion unit 212 that is connected to the sensor 211 and converts analog data into digital data, a switch 213, and a digital data input unit 214 that is connected to the switch 213 and receives an on / off signal. And a network device 215 and a network 216 connected to the network device 215 to which data is input.
 駆動機器120は、サーボアンプ221と、サーボアンプ221によって駆動されるモータ222とを備える。 The driving device 120 includes a servo amplifier 221 and a motor 222 driven by the servo amplifier 221.
 モーション制御装置130は、データ転送可能なバス231と、CPU(Central Processing Unit)232と、ROM(Read Only Memory)233と、RAM(Random Access Memory)234と、サーボ通信回路235とを備える。図3に示すバス同期通信部131は、図4に示すバス231によって実現される。図3に示すサーボ通信同期通信部132は、図4に示すサーボ通信回路235によって実現される。図3に示す入力部133、演算部134、出力部135、仮想軸実現部136及びライブラリ実行部137を実現するプログラムは図4に示すROM233に記憶されており、図4に示すCPU232と図4に示すRAM234とを用いて演算処理を行うことでこれらの構成が実現される。図3に示す同期パラメータ記憶部138aと、電子カムパターン記憶部138bと、ライブラリ記憶部138cと、内部タイマ及び仮想軸とは、図4に示すROM233に記憶されている。なお、非同期制御演算部139は、図4に示すROM233に記憶され、CPU232及びRAM234によって実行されればよい。 The motion control device 130 includes a bus 231 that can transfer data, a CPU (Central Processing Unit) 232, a ROM (Read Only Memory) 233, a RAM (Random Access Memory) 234, and a servo communication circuit 235. The bus synchronous communication unit 131 illustrated in FIG. 3 is realized by the bus 231 illustrated in FIG. The servo communication synchronous communication unit 132 shown in FIG. 3 is realized by the servo communication circuit 235 shown in FIG. The programs for realizing the input unit 133, the calculation unit 134, the output unit 135, the virtual axis realization unit 136, and the library execution unit 137 shown in FIG. 3 are stored in the ROM 233 shown in FIG. 4, and the CPU 232 shown in FIG. These configurations are realized by performing arithmetic processing using the RAM 234 shown in FIG. The synchronization parameter storage unit 138a, the electronic cam pattern storage unit 138b, the library storage unit 138c, the internal timer, and the virtual axis shown in FIG. 3 are stored in the ROM 233 shown in FIG. Note that the asynchronous control calculation unit 139 may be stored in the ROM 233 illustrated in FIG. 4 and executed by the CPU 232 and the RAM 234.
 出力機器15は、モーション制御装置130からのデータが入力されるアナログ変換ユニット241と、アナログ変換ユニット241が出力するアナログデータによって制御されるレーザ242と、モーション制御装置130からのデータが入力されるデジタルデータ出力ユニット243と、デジタルデータ出力ユニット243が出力するデータによって制御されるステッピングモータ244と、モーション制御装置130からのデータが入力されるネットワーク245と、ネットワーク245からのデータによって制御されるネットワーク機器246とを備える。 The output device 15 receives an analog conversion unit 241 to which data from the motion control device 130 is input, a laser 242 controlled by analog data output from the analog conversion unit 241, and data from the motion control device 130. Digital data output unit 243, stepping motor 244 controlled by data output from digital data output unit 243, network 245 to which data from motion control device 130 is input, and network controlled by data from network 245 Device 246.
 設定装置150は、ディスプレイ251と、CPU252と、ROM253と、RAM254とを備える。図3に示す同期設定画面表示部153は、図4に示すディスプレイ251によって実現される。図3に示す同期パラメータ設定部151、ライブラリ読み取り部152及び電子カム構築部155を実現するプログラムは、図4に示すROM253に記憶されており、図4に示すCPU252とRAM254とを用いて演算処理を行うことでこれらの構成が実現される。図3に示すIF部154は図示していないが、ユーザが操作可能な入力機器であればよく、入力機器にはマウス及びキーボードを例示することができる。 The setting device 150 includes a display 251, a CPU 252, a ROM 253, and a RAM 254. The synchronization setting screen display unit 153 shown in FIG. 3 is realized by the display 251 shown in FIG. A program for realizing the synchronization parameter setting unit 151, the library reading unit 152, and the electronic cam construction unit 155 shown in FIG. 3 is stored in the ROM 253 shown in FIG. 4, and is calculated using the CPU 252 and the RAM 254 shown in FIG. By implementing this, these configurations are realized. Although the IF unit 154 illustrated in FIG. 3 is not illustrated, any input device that can be operated by the user may be used, and examples of the input device include a mouse and a keyboard.
 なお、ライブラリ構築装置160のハードウェア構成は図示していないが、設定装置150と同様である。 The hardware configuration of the library construction device 160 is not shown, but is the same as that of the setting device 150.
 AD変換ユニット212に接続するセンサ211には、圧力センサ、加速度センサ、温度センサ、電流センサ、電圧センサ及び照度センサを例示することができる。デジタルデータ入力ユニット214に接続するスイッチ213には、画像センサを例示することができる。ネットワーク216に接続するネットワーク機器215には、タッチパネル及びインターネットを介した大規模データベースを例示することができる。サーボアンプ221から入力されるデータには、現在回転速度、現在位置、加速度アラーム状態及び磁極位置を例示することができる。 Examples of the sensor 211 connected to the AD conversion unit 212 include a pressure sensor, an acceleration sensor, a temperature sensor, a current sensor, a voltage sensor, and an illuminance sensor. An image sensor can be exemplified as the switch 213 connected to the digital data input unit 214. Examples of the network device 215 connected to the network 216 include a large-scale database via a touch panel and the Internet. The data input from the servo amplifier 221 can exemplify the current rotation speed, the current position, the acceleration alarm state, and the magnetic pole position.
 ネットワーク245に接続されるネットワーク機器246には、タッチパネル及びインターネットを介した大規模データベースを例示することができる。サーボアンプ221に出力されるデータには、指令回転速度、指令位置及び指令加速度を例示することができる。 The network device 246 connected to the network 245 can be exemplified by a large-scale database via a touch panel and the Internet. Examples of data output to the servo amplifier 221 include command rotation speed, command position, and command acceleration.
 以上説明したように、図4に示すモーション制御システム10のハードウェアによって図3に示すモーション制御システム10を実現することができる。 As described above, the motion control system 10 shown in FIG. 3 can be realized by the hardware of the motion control system 10 shown in FIG.
 図5は、後述する図6に示す画面によって動作する、実施の形態に係るモーション制御装置を含むモーション制御システムの実装置構成例を示す図である。この実装置構成例では、部材を左右に搬送する位置に合わせて、部材をカットするレーザの出力を最適となるパターンで変化させるものである。図5には、モーション制御装置が外部からの信号により動作するのではなく、内部のプログラムに従って動作する例を示している。 FIG. 5 is a diagram showing an example of a real device configuration of a motion control system including the motion control device according to the embodiment, which operates according to the screen shown in FIG. 6 to be described later. In this actual apparatus configuration example, the output of the laser for cutting the member is changed in an optimum pattern in accordance with the position where the member is conveyed to the left and right. FIG. 5 shows an example in which the motion control apparatus operates according to an internal program rather than operating according to an external signal.
 図5には、各出力の同期タイミングのマスタの役割を持つ仮想軸であるマスタ入力部401、部材を搬送するアナログ出力モータであるサーボモータ402、アナログ出力のレーザを出力するレーザ出力装置403、ネットワーク出力が接続されているモーション制御装置404及びレーザカット中の部材温度を計測する温度センサ405が示されている。仮想軸401はユーザの設定した速度などで動作する仮想サーボモータである。仮想軸401の速度及び位相に合わせて、サーボモータ402及びレーザ出力装置403が同期動作する。温度センサ405は、部材温度を計測する。なお、スレーブカム412は、サーボモータ402であり、スレーブカム413は、レーザ出力装置403である。 FIG. 5 includes a master input unit 401 that is a virtual axis that serves as a master for the synchronization timing of each output, a servo motor 402 that is an analog output motor that conveys a member, a laser output device 403 that outputs an analog output laser, A motion control device 404 to which a network output is connected and a temperature sensor 405 for measuring a member temperature during laser cutting are shown. The virtual axis 401 is a virtual servo motor that operates at a speed set by the user. The servo motor 402 and the laser output device 403 operate in synchronization with the speed and phase of the virtual axis 401. The temperature sensor 405 measures the member temperature. The slave cam 412 is a servo motor 402, and the slave cam 413 is a laser output device 403.
 電子カムパターン412aは、サーボモータ402の動作を記述する。電子カムパターン412aは、仮想軸である横軸の位相に合わせて往復運動を行う運転パターンである。カムパターン413aは、レーザビームの出力強度を記述する。カムパターン413aは、仮想軸である横軸の位相の中心近傍で最大の強度となるパターンである。 The electronic cam pattern 412a describes the operation of the servo motor 402. The electronic cam pattern 412a is an operation pattern that reciprocates in accordance with the phase of the horizontal axis that is a virtual axis. The cam pattern 413a describes the output intensity of the laser beam. The cam pattern 413a is a pattern having the maximum intensity near the center of the phase of the horizontal axis that is the virtual axis.
 また、サーボモータ402及びレーザ出力装置403の動作時の部材の温度は温度センサ405で計測される。レーザ出力装置403の出力は、スレーブカム413によって仮想主軸の位相に従った出力強度と、温度センサ405から取得した温度データにより演算モジュール503で演算される値と合算されて出力される。このため、部材の位置に同期した強度でレーザビームを照射するとともに実際の温度からなるフィードバック制御を同期して実行することで最適な強度でレーザ切断を実行することができる。 Further, the temperature of the member during operation of the servo motor 402 and the laser output device 403 is measured by the temperature sensor 405. The output of the laser output device 403 is output by adding the output intensity according to the phase of the virtual main axis by the slave cam 413 and the value calculated by the calculation module 503 based on the temperature data acquired from the temperature sensor 405. For this reason, it is possible to perform laser cutting with the optimum intensity by irradiating the laser beam with the intensity synchronized with the position of the member and executing the feedback control including the actual temperature in synchronization.
 また、スレーブカム412の位相とスレーブカム413の位相とをずらすことで、レーザ出力の強さと搬送軸の位置であるカット位置を調整することができ、ラダー言語で作成されるプログラムを必要とせず、パラメータの設定及び調整のみでサーボモータのモーション制御とIO制御とを統合し、カムの動作及び温度に連動してレーザ出力を変化させる、といった制御を実現することが可能である。 Further, by shifting the phase of the slave cam 412 and the phase of the slave cam 413, the laser output strength and the cutting position that is the position of the transport axis can be adjusted, and a program created in a ladder language is not required. It is possible to realize such control that the servo motor motion control and IO control are integrated only by parameter setting and adjustment, and the laser output is changed in accordance with the cam operation and temperature.
 図6は、図5に示すモーション制御装置の実装置構成例における同期設定の画面を示す図である。入力モジュール501は、図5に示すマスタ入力部401のプログラム中に存在する仮想サーボモータからの入力を表す。入力モジュール502は、図5に示す温度センサ405からの入力を表す。演算モジュール503は、温度センサ405からの温度データをもとに演算を行う。スイッチモジュール504は、演算モジュール503の演算結果を出力に伝達するかを選択する。合成モジュール505は、入力モジュール502からの入力とスイッチモジュール504のデータとを合成する。カムパターン506は、図5に示すスレーブカム412で示されたモータの動作を記述する。カムパターン507は、図5に示すスレーブカム413で示されたレーザ出力の強度を記述する。出力モジュール508は、サーボモータ402を表す。出力モジュール509は、レーザ出力装置403を表す。 FIG. 6 is a diagram showing a synchronization setting screen in the actual apparatus configuration example of the motion control apparatus shown in FIG. The input module 501 represents an input from a virtual servo motor that exists in the program of the master input unit 401 shown in FIG. The input module 502 represents an input from the temperature sensor 405 shown in FIG. The calculation module 503 performs a calculation based on the temperature data from the temperature sensor 405. The switch module 504 selects whether to transmit the calculation result of the calculation module 503 to the output. The synthesis module 505 synthesizes the input from the input module 502 and the data of the switch module 504. The cam pattern 506 describes the operation of the motor indicated by the slave cam 412 shown in FIG. The cam pattern 507 describes the intensity of the laser output indicated by the slave cam 413 shown in FIG. The output module 508 represents the servo motor 402. The output module 509 represents the laser output device 403.
 同期設定画面1において、出力モジュール508はカムデータ506を経由して同期設定画面2の入力モジュール501に接続されている。 In the synchronization setting screen 1, the output module 508 is connected to the input module 501 of the synchronization setting screen 2 via the cam data 506.
 同期設定画面2において、入力モジュール501は合成モジュール505に接続され、入力モジュール502は演算モジュール503に接続され、演算モジュール503はスイッチ504に接続されている。合成モジュール505は、カムパターン507を経由して出力モジュール509に接続されている。 In the synchronization setting screen 2, the input module 501 is connected to the synthesis module 505, the input module 502 is connected to the arithmetic module 503, and the arithmetic module 503 is connected to the switch 504. The synthesis module 505 is connected to the output module 509 via the cam pattern 507.
 図7は、実施の形態に係る、他のモーション制御装置の同期設定の画面を示す図である。図7に示す画面が表示されるモーション制御装置は、モータで部材を搬送しつつ搬送位置と温度に応じたレーザの強さでカットし、ネットワーク経由で部材の温度をモニタリングする装置である。図7に示す画面には、図2で設定した同期設定画面の3つを設定後、同一の出力設定であるものをまとめて1画面に表示している。 FIG. 7 is a diagram illustrating a synchronization setting screen of another motion control device according to the embodiment. The motion control device on which the screen shown in FIG. 7 is displayed is a device that monitors the temperature of a member via a network by cutting the member with a motor according to the strength of the laser according to the conveyance position and temperature. In the screen shown in FIG. 7, after setting the three synchronization setting screens set in FIG. 2, the same output settings are collectively displayed on one screen.
 同期設定画面1において、出力モジュール301はカムデータ351を経由して同期設定画面2の入力モジュール311に接続されている。出力モジュール301は搬送軸である。 In the synchronization setting screen 1, the output module 301 is connected to the input module 311 of the synchronization setting screen 2 via the cam data 351. The output module 301 is a conveyance shaft.
 同期設定画面2において、入力モジュール311は演算モジュール321に接続され、演算モジュール321はスイッチ331に接続され、スイッチ331は合成モジュール341に接続されている。入力モジュール311は搬送軸である出力モジュール301とレーザ出力である出力モジュール302を連動して電子カム制御するため共通のマスタ軸となる仮想軸である。入力モジュール312はスイッチ332に接続され、スイッチ332は合成モジュール341に接続されている。入力モジュール312はADユニット温度センサであり部材の温度を監視する。合成モジュール341の出力側はカムデータ352を経由して出力モジュール302に接続されている。出力モジュール302はDAユニットに接続されたレーザ出力である。 In the synchronization setting screen 2, the input module 311 is connected to the calculation module 321, the calculation module 321 is connected to the switch 331, and the switch 331 is connected to the synthesis module 341. The input module 311 is a virtual axis serving as a common master axis for performing electronic cam control in conjunction with the output module 301 serving as a transport axis and the output module 302 serving as a laser output. The input module 312 is connected to the switch 332, and the switch 332 is connected to the synthesis module 341. The input module 312 is an AD unit temperature sensor and monitors the temperature of the member. The output side of the synthesis module 341 is connected to the output module 302 via the cam data 352. The output module 302 is a laser output connected to the DA unit.
 同期設定画面3において、通信モジュール303はカムデータ353を経由して演算モジュール322に接続され、演算モジュール322は同期設定画面2の入力モジュール312に接続されている。なお、演算モジュール322は、入力モジュール312から入力されたデータを通信モジュール303から送信する形式に変換する演算ライブラリモジュールである。 In the synchronization setting screen 3, the communication module 303 is connected to the calculation module 322 via the cam data 353, and the calculation module 322 is connected to the input module 312 of the synchronization setting screen 2. Note that the arithmetic module 322 is an arithmetic library module that converts data input from the input module 312 into a format to be transmitted from the communication module 303.
 なお、出力モジュール301ではカムデータ351のカムパターンが用いられ、出力モジュール302ではカムデータ352のカムパターンが用いられ、通信モジュール303ではカムデータ353のカムパターンが用いられる。通信モジュール303は通信温度データモニタ用の通信機能モジュールである。 The output module 301 uses the cam pattern of the cam data 351, the output module 302 uses the cam pattern of the cam data 352, and the communication module 303 uses the cam pattern of the cam data 353. The communication module 303 is a communication function module for monitoring communication temperature data.
 図7において、モーション制御装置の運転の一例として、入力モジュール311からの仮想軸の移動量の入力値が100であり、入力モジュール312からの温度センサの温度が53であり、演算モジュール321における演算では1を加算する演算が選択され、スイッチ331及びスイッチ332の双方が繋がっている場合には合成モジュール341からの出力値は154であり、すなわち出力モジュール302のレーザ出力値は入力モジュール311の入力値と連結した搬送軸の位置と、温度センサである入力モジュール312の温度と、演算モジュール321の補正値とに連動し、カムデータ352に基づいてレーザの強さが増減する制御となる。スイッチ331及びスイッチ332の双方が繋がっていない場合には搬送軸である出力モジュール301は搬送を行うが、合成モジュール341からの出力値は0であるため、出力モジュール302のレーザは停止している制御となる。スイッチ331が繋がっており、スイッチ332が繋がっていない場合には合成モジュール341からの出力値は101であり、入力モジュール311の入力にのみ応じ、温度センサである入力モジュール312には影響されないレーザ出力の制御となる。スイッチ331が繋がっておらず、スイッチ332が繋がっている場合には合成モジュール341からの出力値は53であり、温度センサである入力モジュール312の値にのみレーザ出力が左右される制御となる。 In FIG. 7, as an example of the operation of the motion control device, the input value of the movement amount of the virtual axis from the input module 311 is 100, the temperature of the temperature sensor from the input module 312 is 53, and the calculation in the calculation module 321 is performed. In the case where the operation of adding 1 is selected and both the switch 331 and the switch 332 are connected, the output value from the synthesis module 341 is 154, that is, the laser output value of the output module 302 is the input of the input module 311. The control is performed to increase or decrease the intensity of the laser based on the cam data 352 in conjunction with the position of the conveyance axis connected to the value, the temperature of the input module 312 which is a temperature sensor, and the correction value of the calculation module 321. When both the switch 331 and the switch 332 are not connected, the output module 301 that is the transport axis performs transport, but the output value from the synthesis module 341 is 0, so the laser of the output module 302 is stopped. It becomes control. When the switch 331 is connected and the switch 332 is not connected, the output value from the synthesis module 341 is 101, and the laser output that is not affected by the input module 311 that is a temperature sensor only according to the input of the input module 311. It becomes control of. When the switch 331 is not connected and the switch 332 is connected, the output value from the synthesis module 341 is 53, and the laser output is controlled only by the value of the input module 312 which is a temperature sensor.
 出力モジュール302は、カムデータ352のカムパターンのx軸から、合成モジュール341からの出力値を探索し、x軸の値に対応するy軸の値を出力モジュール302の出力値として出力する。出力モジュール302は、この出力値に基づくレーザ光を出力する。出力モジュール301は、カムデータ351のx軸に入力モジュール311からの入力値である100をとり、このときのy軸の値を出力モジュール301の出力値として出力し、搬送軸のモータを駆動する。同様に、通信モジュール303は、カムデータ353のx軸に入力モジュール312からの入力値である53を参照し、このときのy軸の値を通信モジュール303の出力値としてモーション制御装置に接続されたネットワークユニットへ出力し、ネットワーク上のデータベースへ温度情報を送信する。 The output module 302 searches for the output value from the synthesis module 341 from the x-axis of the cam pattern of the cam data 352, and outputs the y-axis value corresponding to the x-axis value as the output value of the output module 302. The output module 302 outputs laser light based on this output value. The output module 301 takes 100 which is the input value from the input module 311 on the x axis of the cam data 351, outputs the value of the y axis at this time as the output value of the output module 301, and drives the motor of the conveyance axis. . Similarly, the communication module 303 refers to 53 which is an input value from the input module 312 on the x axis of the cam data 353, and is connected to the motion control device using the y axis value at this time as the output value of the communication module 303. Output to a network unit and send temperature information to a database on the network.
 図8は、実施の形態に係るモーション制御装置の動作を示すフローチャートである。まず、処理をスタートし、入力部133は、同期パラメータ記憶部138aから入力された同期パラメータを読み出し、演算部134へ渡す(S11)。すなわち、S11によって、入力機器14のどの入力データを読むのかが決められる。次に、演算部134は、ライブラリ実行部137を経由してライブラリ記憶部138cからライブラリを読み出す(S12)。なお、このライブラリに代えて既存の計算関数が用いられてもよい。これにより、演算の準備が行われる。次に、演算部134は、入力部133から取得した入力データと、同期設定画面表示部153で構築した組み合わせとをもとに演算を行う(S13)。この同期設定画面表示部153で構築した組み合わせは、図2に示す表示画面における各モジュールの組み合わせ状態であり、同期パラメータ記憶部138aに記憶されている。そして、演算部134は、モーション制御装置内部の現在のスイッチ状態判定を行い(S14)、別の入力部の入力結果との合成演算を行い(S15)、S12で読み出したライブラリをもとにライブラリ演算を行う(S16)。そして、演算部134は、ここまでの演算結果をカムパターンのx軸とし、y軸のデータを出力部135へ出力する(S17)。最後に、出力部135は、同期パラメータ記憶部138aのデータと演算部134から渡されたデータとをもとに、設定された出力機器15又は駆動機器120へデータを出力し(S18)、処理をエンドする。このように、モーション制御装置が同期タイミングを取りつつ入出力を繰り返し実行することで、ラダー言語によって作成されたプログラムを必要とすることなく、IO制御とモーション制御とを統合した複雑な制御をカムパターン及びパラメータの設定のみで実現することができる。 FIG. 8 is a flowchart showing the operation of the motion control apparatus according to the embodiment. First, the processing is started, and the input unit 133 reads the synchronization parameter input from the synchronization parameter storage unit 138a and passes it to the calculation unit 134 (S11). That is, it is determined by S11 which input data of the input device 14 is read. Next, the calculation unit 134 reads the library from the library storage unit 138c via the library execution unit 137 (S12). An existing calculation function may be used instead of this library. Thereby, preparation for calculation is performed. Next, the calculation unit 134 performs a calculation based on the input data acquired from the input unit 133 and the combination constructed by the synchronization setting screen display unit 153 (S13). The combination constructed by the synchronization setting screen display unit 153 is a combination state of each module on the display screen shown in FIG. 2, and is stored in the synchronization parameter storage unit 138a. Then, the calculation unit 134 determines the current switch state inside the motion control device (S14), performs a combination calculation with the input result of another input unit (S15), and the library based on the library read in S12. An operation is performed (S16). Then, the calculation unit 134 sets the calculation result so far as the x-axis of the cam pattern, and outputs the y-axis data to the output unit 135 (S17). Finally, the output unit 135 outputs the data to the set output device 15 or the driving device 120 based on the data in the synchronization parameter storage unit 138a and the data passed from the calculation unit 134 (S18). End. In this way, the motion control device repeatedly executes input and output while taking the synchronization timing, so that complicated control that integrates IO control and motion control can be performed without requiring a program created in a ladder language. This can be realized only by setting patterns and parameters.
 以上説明した実施の形態によれば、プログラム言語を用いることなくパラメータの設定及びカムパターンの作成によりモーション制御とIO制御とを統合して制御することができる。 According to the embodiment described above, motion control and IO control can be integrated and controlled by setting parameters and creating cam patterns without using a program language.
 以上説明した実施の形態に係るモーション制御装置は、駆動機器120及び出力機器15が接続された構成であり、1サイクルあたりの入力データに応じた出力パターンで出力機器15の出力制御を行うと同時に駆動機器120の電子カム制御を行い、駆動機器120の電子カム制御を記述する制御ブロックと、出力機器15の出力制御を記述する制御ブロックとが図2に示すように同一形式のブロックで表現される。また、実施の形態に係るモーション制御装置に入力機器14が接続されている場合には、接続された入力機器14の入力データを用いて駆動機器120及び出力機器15を制御可能である。更には、実施の形態に係るモーション制御装置に接続される外部表示装置である同期設定画面表示部153では、駆動機器120の電子カム制御のカムパターンのパラメータを設定する画面と、出力機器15の制御パラメータを設定する画面とを1画面に表示する。 The motion control apparatus according to the embodiment described above has a configuration in which the driving device 120 and the output device 15 are connected, and simultaneously performs output control of the output device 15 with an output pattern corresponding to input data per cycle. A control block that performs electronic cam control of the drive device 120 and describes the electronic cam control of the drive device 120 and a control block that describes output control of the output device 15 are expressed by blocks of the same format as shown in FIG. The Further, when the input device 14 is connected to the motion control apparatus according to the embodiment, the drive device 120 and the output device 15 can be controlled using input data of the connected input device 14. Furthermore, in the synchronization setting screen display unit 153 that is an external display device connected to the motion control device according to the embodiment, a screen for setting the parameters of the cam pattern of the electronic cam control of the driving device 120, and the output device 15 A screen for setting control parameters is displayed on one screen.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 10 モーション制御システム、11 入力部、12 演算部、13 出力部、14 入力機器、15 出力機器、20-1 設定画面、20-2 モジュール選択画面、21-1 第1の入力モジュール、21-1a 第1の入力設定画面、21-n 第nの入力モジュール、22-1 第1の演算モジュール、22-1a 第1のライブラリ設定読み出し画面、22-n 第nの演算モジュール、23-1 第1のスイッチ、23-n 第nのスイッチ、24 合成モジュール、24-a 合成設定画面、25 出力モジュール、26 出力設定画面、27 カムパターン、27-a カムパターン設定画面、28 演算モジュール、111 デジタルデータ入力部、112 アナログデータ入力部、113 ネットワーク入力部、114a,114b,114c バス同期通信部、115 内部タイマ、120 駆動機器、121 現在位置及び速度取得部、122 内部ステータス情報取得部、123 サーボ駆動制御部、124 サーボ通信同期通信部、130 モーション制御装置、131,131a バス同期通信部、132 サーボ通信同期通信部、133 入力部、134 演算部、135 出力部、136 仮想軸実現部、137 ライブラリ実行部、138a 同期パラメータ記憶部、138b 電子カムパターン記憶部、138c ライブラリ記憶部、139 非同期制御演算部、141a,141b,141c バス同期通信部、142 デジタルデータ出力部、143 アナログデータ出力部、144 ネットワーク出力部、150 設定装置、151 同期パラメータ設定部、152 ライブラリ読み取り部、153 同期設定画面表示部、154 IF部、155 電子カム構築部、160 ライブラリ構築装置、211 センサ、212 AD変換ユニット、213 スイッチ、214 デジタルデータ入力ユニット、215,246 ネットワーク機器、216,245 ネットワーク、221 サーボアンプ、222 モータ、231 バス、232,252 CPU、233,253 ROM、234,254 RAM、235 サーボ通信回路、241 アナログ変換ユニット、242 レーザ、243 デジタルデータ出力ユニット、244 ステッピングモータ、251 ディスプレイ、301,302 出力モジュール、303 通信モジュール、311,312 入力モジュール、321,322 演算モジュール、331,332 スイッチ、341 合成モジュール、351,352,353 カムデータ、401 マスタ入力部、402 サーボモータ、403 レーザ出力装置、404 モーション制御装置、405 温度センサ、412,413 スレーブカム、412a 電子カムパターン、413a カムパターン、501,502 入力モジュール、503 演算モジュール、504 スイッチモジュール、505 合成モジュール、506,507 カムパターン、508,509 出力モジュール。 10 motion control system, 11 input unit, 12 calculation unit, 13 output unit, 14 input device, 15 output device, 20-1 setting screen, 20-2 module selection screen, 21-1 first input module, 21-1a First input setting screen, 21-n nth input module, 22-1 first arithmetic module, 22-1a first library setting read screen, 22-n nth arithmetic module, 23-1 first Switch, 23-n nth switch, 24 composition module, 24-a composition setting screen, 25 output module, 26 output setting screen, 27 cam pattern, 27-a cam pattern setting screen, 28 arithmetic module, 111 digital data Input unit, 112 Analog data input unit, 113 Network input unit, 1 4a, 114b, 114c Bus synchronous communication unit, 115 internal timer, 120 driving device, 121 current position and speed acquisition unit, 122 internal status information acquisition unit, 123 servo drive control unit, 124 servo communication synchronous communication unit, 130 motion control device 131, 131a Bus synchronous communication unit, 132 Servo communication synchronous communication unit, 133 input unit, 134 calculation unit, 135 output unit, 136 virtual axis realization unit, 137 library execution unit, 138a synchronization parameter storage unit, 138b electronic cam pattern storage Part, 138c library storage part, 139 asynchronous control arithmetic part, 141a, 141b, 141c bus synchronous communication part, 142 digital data output part, 143 analog data output part, 144 network output part, 150 setting device, 1 1 synchronization parameter setting unit, 152 library reading unit, 153 synchronization setting screen display unit, 154 IF unit, 155 electronic cam building unit, 160 library building device, 211 sensor, 212 AD conversion unit, 213 switch, 214 digital data input unit, 215,246 network equipment, 216,245 network, 221 servo amplifier, 222 motor, 231 bus, 232,252 CPU, 233,253 ROM, 234,254 RAM, 235 servo communication circuit, 241 analog conversion unit, 242 laser, 243 Digital data output unit, 244 stepping motor, 251 display, 301, 302 output module, 303 communication module, 311 312 input Force module, 321, 322 calculation module, 331, 332 switch, 341 synthesis module, 351, 352, 353 cam data, 401 master input unit, 402 servo motor, 403 laser output device, 404 motion control device, 405 temperature sensor, 412 , 413 slave cam, 412a electronic cam pattern, 413a cam pattern, 501, 502 input module, 503 arithmetic module, 504 switch module, 505 synthesis module, 506, 507 cam pattern, 508, 509 output module.

Claims (3)

  1.  駆動機器及び出力機器が接続されたモーション制御装置であって、
     入力データに応じた出力パターンで前記出力機器の出力制御を行うと同時に前記駆動機器の電子カム制御を行い、
     前記駆動機器の電子カム制御を記述する制御ブロックと、前記出力機器の出力制御を記述する制御ブロックとが同一形式のブロックで表現されることを特徴とするモーション制御装置。
    A motion control device to which a driving device and an output device are connected,
    At the same time as performing the output control of the output device in the output pattern according to the input data, the electronic cam control of the drive device
    A motion control apparatus characterized in that a control block describing electronic cam control of the driving device and a control block describing output control of the output device are expressed by blocks of the same format.
  2.  接続された入力機器の入力データを用いて前記駆動機器及び前記出力機器を制御可能であることを特徴とする請求項1に記載のモーション制御装置。 The motion control apparatus according to claim 1, wherein the drive device and the output device can be controlled using input data of a connected input device.
  3.  請求項1又は請求項2に記載のモーション制御装置に接続される外部表示装置であって、
     前記電子カム制御のカムパターンのパラメータを設定する画面と、前記出力機器の制御パラメータを設定する画面とを1画面に表示することを特徴とする外部表示装置。
    An external display device connected to the motion control device according to claim 1 or 2,
    An external display device that displays a screen for setting parameters of a cam pattern for the electronic cam control and a screen for setting control parameters for the output device on one screen.
PCT/JP2017/013077 2017-03-29 2017-03-29 Motion control device and external display device WO2018179185A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/013077 WO2018179185A1 (en) 2017-03-29 2017-03-29 Motion control device and external display device
JP2018506457A JPWO2018179185A1 (en) 2017-03-29 2017-03-29 Motion control device and external display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013077 WO2018179185A1 (en) 2017-03-29 2017-03-29 Motion control device and external display device

Publications (1)

Publication Number Publication Date
WO2018179185A1 true WO2018179185A1 (en) 2018-10-04

Family

ID=63677276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013077 WO2018179185A1 (en) 2017-03-29 2017-03-29 Motion control device and external display device

Country Status (2)

Country Link
JP (1) JPWO2018179185A1 (en)
WO (1) WO2018179185A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665008B2 (en) * 2001-10-25 2005-06-29 ファナック株式会社 Synchronization control method and synchronization control apparatus
JP5174992B1 (en) * 2012-01-27 2013-04-03 三菱電機株式会社 Display method of synchronous control program for driving control of multi-axis synchronous control device
WO2015063925A1 (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Program creating device, program creating method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462443B2 (en) * 2005-02-28 2010-05-12 オムロン株式会社 Parameter setting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665008B2 (en) * 2001-10-25 2005-06-29 ファナック株式会社 Synchronization control method and synchronization control apparatus
JP5174992B1 (en) * 2012-01-27 2013-04-03 三菱電機株式会社 Display method of synchronous control program for driving control of multi-axis synchronous control device
WO2015063925A1 (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Program creating device, program creating method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mitsubishi Motion Controller Q Series SSCNET III Taio", MITSUBISHI ELECTRIC CORP., February 2006 (2006-02-01), pages 7-8 - 25-28 *

Also Published As

Publication number Publication date
JPWO2018179185A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
US10761515B2 (en) Control system for controlling control object and control device for linking control applications in control system
JP6465620B2 (en) Control system and control method
JP5759013B2 (en) Control program, control method, and control apparatus
CN103403632B (en) Arithmetic element, servicing unit, output control method, display control method and program
CN104067187B (en) Multi-axis synchronized control device is carried out to the display packing of the synchro control program of drived control
US20070288220A1 (en) Method and Device for Simulating an Automation System
WO2010061524A1 (en) Power monitoring device, power monitoring method, and device for mounting component
EP3462261A1 (en) Information processing apparatus, information processing method and program
WO2021106467A1 (en) Control system, control device, and control method
WO2013145940A1 (en) Information processing device, information processing method, and program
WO2018179185A1 (en) Motion control device and external display device
WO2019202934A1 (en) Information processing system, information processing method, and information processing program
US20200333762A1 (en) Machine control system, machine controller, and vibration suppression command generation method
JP4733695B2 (en) Method and apparatus for simulation of automated systems
WO2020067286A1 (en) Control system, support device, and support program
JP2000315106A (en) Programmable controller
JP2005173849A (en) Automatic machine control system
WO2010134198A1 (en) Simulation apparatus and simulation program
WO2021166398A1 (en) Processing device and processing method
JP4234776B1 (en) Control device, control method, and control program
JP2018036945A (en) Simulator linkage device, control method of simulator linkage device, information processing program, and record medium
JP2009048396A (en) Simulator of motor motion
JP6225542B2 (en) Cooperative simulation device
WO2021145124A1 (en) Control device
WO2021024523A1 (en) Control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506457

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904136

Country of ref document: EP

Kind code of ref document: A1