WO2018179089A1 - Adsorbent, reaction vessel, carbon dioxide removal device, and carbon dioxide removal system - Google Patents

Adsorbent, reaction vessel, carbon dioxide removal device, and carbon dioxide removal system Download PDF

Info

Publication number
WO2018179089A1
WO2018179089A1 PCT/JP2017/012644 JP2017012644W WO2018179089A1 WO 2018179089 A1 WO2018179089 A1 WO 2018179089A1 JP 2017012644 W JP2017012644 W JP 2017012644W WO 2018179089 A1 WO2018179089 A1 WO 2018179089A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
carbon dioxide
gas
adsorption
carbon
Prior art date
Application number
PCT/JP2017/012644
Other languages
French (fr)
Japanese (ja)
Inventor
真裕 青嶌
保彦 吉成
中村 英博
大剛 小野寺
晃平 吉川
金枝 雅人
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019508384A priority Critical patent/JPWO2018179089A1/en
Priority to PCT/JP2017/012644 priority patent/WO2018179089A1/en
Publication of WO2018179089A1 publication Critical patent/WO2018179089A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an adsorbent, a reaction vessel, a carbon dioxide removal device, and a carbon dioxide removal system.
  • One of the causes of global warming is the emission of greenhouse gases.
  • the greenhouse gas include carbon dioxide (CO 2 ), methane (CH 4 ), and chlorofluorocarbons (CFCs and the like).
  • CO 2 carbon dioxide
  • CH 4 methane
  • CFCs and the like chlorofluorocarbons
  • Examples of a solution to the above problem include a method of removing carbon dioxide by a chemical absorption method, a physical absorption method, a membrane separation method, an adsorption separation method, a cryogenic separation method, or the like.
  • a method of separating and recovering carbon dioxide using a solid carbon dioxide adsorbent CO 2 separation and recovery method
  • a gas to be treated containing carbon dioxide is introduced into a reaction vessel filled with the adsorbent, and the adsorbent and the gas to be treated are brought into contact under atmospheric pressure or under pressure.
  • adsorb carbon dioxide to the adsorbent.
  • the adsorbent is heated or the inside of the reaction vessel is depressurized to desorb carbon dioxide from the adsorbent.
  • the adsorbent from which carbon dioxide has been desorbed can be used again for removing carbon dioxide by cooling or pressurizing.
  • zeolite is mainly used as an adsorbent.
  • carbon dioxide-containing gas is brought into contact with a zeolite-based adsorbent to adsorb carbon dioxide to the adsorbent, and then the adsorbent is heated to remove carbon dioxide.
  • a method for removing carbon is described.
  • exhaust gas discharged from a plant or the like may contain nitrogen oxides (NOx) in addition to carbon dioxide, and even if the exhaust gas is subjected to a denitration process, tens of ppm of NOx may remain.
  • NOx nitrogen oxides
  • an adsorbent solid carbon dioxide capturing material
  • zeolite zeolite
  • the present invention provides an adsorbent capable of suppressing a decrease in CO 2 adsorptivity in repeated use even when the gas to be treated containing carbon dioxide further contains nitrogen oxides (NOx) and moisture.
  • the purpose is to provide.
  • this invention aims at providing the carbon dioxide removal system provided with the reaction container provided with the said adsorption agent, the carbon dioxide removal apparatus provided with the said reaction container, and the said carbon dioxide removal apparatus.
  • the present invention is an adsorbent used for removing carbon dioxide from a gas to be treated containing carbon dioxide, and includes a core portion containing a metal oxide and a porous portion covering at least a part of the core portion.
  • An adsorbent comprising particles comprising:
  • the adsorbent according to the present invention even if the gas to be treated containing carbon dioxide further contains nitrogen oxides (NOx) and moisture, it is possible to suppress a decrease in CO 2 adsorptivity in repeated use. be able to. That is, according to the adsorbent according to the present invention, excellent cycle characteristics can be obtained even when the gas to be treated containing carbon dioxide further contains NOx and moisture.
  • NOx nitrogen oxides
  • exhaust gas discharged from a plant or the like may contain sulfur oxide (SOx) in addition to carbon dioxide, and even if the exhaust gas is subjected to a desulfurization process, tens of ppm of SOx may remain. .
  • SOx sulfur oxide
  • an adsorbent solid carbon dioxide capturing material
  • zeolite zeolite
  • the adsorbent according to the present invention even if the gas to be treated containing carbon dioxide further contains SOx and moisture, it is possible to suppress a decrease in CO 2 adsorptivity in repeated use. . That is, according to the adsorbent according to the present invention, excellent cycle characteristics can be obtained even when the gas to be treated containing carbon dioxide further contains SOx and moisture.
  • the metal oxide may include cerium. In this case, it is possible to further suppress a decrease in CO 2 adsorbability in repeated use.
  • the porous portion may include a carbon material. In this case, it is possible to further suppress a decrease in CO 2 adsorbability in repeated use.
  • the molar ratio of carbon to cerium in the adsorbent may be 1.3 to 11.0. In this case, it is possible to further suppress a decrease in CO 2 adsorbability in repeated use.
  • the present invention is an adsorbent comprising particles comprising a core part containing a metal oxide and a porous part covering at least a part of the core part, the carbon adsorbing carbon to the metal element in the adsorbent
  • An adsorbent having a molar ratio of 1.3 to 11.0 is provided.
  • the reaction container according to the present invention includes the adsorbent.
  • the adsorbent even when carbon dioxide is repeatedly removed from the gas to be treated containing NOx or SOx, the CO 2 adsorptivity of the adsorbent is unlikely to decrease. Therefore, according to the reaction container of the present invention, the carbon dioxide removal efficiency can be improved.
  • operations such as exchanging the adsorbent and removing NOx, SOx, etc. adsorbed on the adsorbent are necessary. According to such a reactor, such a work burden can be reduced.
  • the carbon dioxide removal apparatus according to the present invention includes the reaction vessel.
  • the carbon dioxide removal apparatus according to the present invention is excellent in carbon dioxide removal efficiency.
  • the carbon dioxide removal system according to the present invention includes the carbon dioxide removal device.
  • the carbon dioxide removal system according to the present invention is excellent in carbon dioxide removal efficiency.
  • the gas to be treated containing carbon dioxide further contains nitrogen oxides (NOx) and moisture, it is possible to suppress a decrease in CO 2 adsorption due to repeated use.
  • the gas to be treated containing carbon dioxide further contains sulfur oxide (SOx) and moisture, it is possible to suppress a decrease in CO 2 adsorptivity in repeated use. it can.
  • FIG. 1 is a schematic view showing a cross section of an embodiment of an adsorbent particle.
  • FIG. 2 is a schematic diagram illustrating an embodiment of a carbon dioxide removal system.
  • FIG. 3 is a schematic view showing another embodiment of the carbon dioxide removal system.
  • FIG. 4 is a graph showing the CO 2 adsorption amount maintenance rate of the adsorbents of Examples and Comparative Examples.
  • FIG. 5 is a graph showing the relationship between the cerium / carbon ratio (molar ratio) of the adsorbents of Examples and Comparative Examples and the CO 2 adsorption amount retention rate.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
  • the adsorbent (carbon dioxide scavenger) is an adsorbent used for removing (for example, recovering) carbon dioxide from a processing target gas (gas to be processed) containing carbon dioxide.
  • a particle (adsorbent particle) comprising a core part including a metal oxide and a porous part (porous covering part) covering at least a part of the core part.
  • the core portion has CO 2 adsorptivity. Therefore, by bringing the gas to be treated containing carbon dioxide into contact with the adsorbent, carbon dioxide comes into contact with the core through the pores provided in the porous portion, and carbon dioxide is adsorbed on the core. Thereby, carbon dioxide is removed from the gas to be treated.
  • the adsorbent according to the present embodiment suppresses a decrease in CO 2 adsorptivity in repeated use even when the gas to be treated containing carbon dioxide further contains nitrogen oxide (NOx) and moisture. (Excellent cycle characteristics can be obtained). Further, the adsorbent according to the present embodiment suppresses a decrease in CO 2 adsorptivity in repeated use even when the gas to be treated containing carbon dioxide further contains sulfur oxide (SOx) and moisture. (Excellent cycle characteristics can be obtained).
  • the adsorbent according to the present embodiment is particularly useful when removing carbon dioxide from a gas to be treated containing carbon dioxide, NOx, SOx, and moisture. The present inventors speculate as follows why the decrease in CO 2 adsorptivity in repeated use can be suppressed even when the adsorbent according to the present embodiment uses the gas to be treated as described above. is doing.
  • the deterioration of the adsorbent when using a gas to be treated containing carbon dioxide, poisoning components (NOx or SOx) and moisture is caused by adsorption of moisture on the surface of the adsorbent.
  • the poisoning component when the gas to be treated comes into contact with the adsorbent, the poisoning component is adsorbed on the surface of the adsorbent particles, and then moisture is co-adsorbed on the surface, whereby the moisture and the poisoning component react to react with the acid ( Nitric acid or sulfuric acid) is generated (as an example, a reaction in which nitric acid is generated by NOx and moisture is shown in the following formula).
  • a metal salt (nitrate or sulfate) is generated by the reaction between this acid and the metal oxide contained in the adsorbent. And it is believed that the decrease in CO 2 adsorptive adsorbents by the metal salt.
  • grains is coat
  • the adsorbent according to the present embodiment may include particles having a core-shell structure having a core part and a layered porous part.
  • the coverage of the porous part in the total surface area of the core part may be 10% or more, or 50% or more.
  • the coverage of the porous portion may be 100% or less as shown in FIG.
  • the adsorbent shown in FIG. 1 includes particles including a core portion 3 containing a metal oxide and a porous portion 5 covering at least a part of the core portion 3, and the entire core portion 3 is porous. Covered by the mass part 5.
  • the core includes at least a metal oxide.
  • the metal oxide may be a metal oxide containing one kind of metal element or a complex metal oxide containing multiple kinds of metal elements.
  • a metal oxide can be used individually by 1 type or in combination of 2 or more types.
  • the core part may be porous.
  • the metal element constituting the metal oxide is not particularly limited, and rare earth elements such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd); yttrium (Y), manganese (Mn), Transition metal elements such as iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), aluminum (Al), chromium (Cr), In (indium); sodium (Na), Typical metal elements such as magnesium (Mg) and silicon (Si) are listed.
  • the metal oxide preferably contains at least one metal element selected from the group consisting of rare earth metal elements and transition metal elements, and more preferably contains cerium, from the viewpoint of further improving cycle characteristics.
  • the metal oxide may be silica (SiO 2 ), alumina (Al 2 O 3 ), zeolite, or the like.
  • the metal oxide is at least one selected from the group consisting of silica, alumina or zeolite, rare earth metal (for example, cerium) and zirconium from the viewpoints of improvement in specific surface area, improvement in heat resistance, reduction in the amount of metal used, and the like.
  • An oxide (a composite oxide or the like) containing a seed metal may be supported.
  • the adsorptivity of carbon dioxide decreases. Therefore, it is common to remove moisture from the processing target gas before the processing target gas is brought into contact with the adsorbent.
  • the concentration of moisture in the gas to be treated is preferably reduced to 400 ppm or less, and reduced to 20 ppm or less. It is more preferable to do this.
  • the metal oxide containing cerium has excellent CO 2 adsorptivity even when the gas to be treated contains moisture.
  • the metal oxide may be, for example, a porous metal oxide (porous metal oxide) or a layered metal oxide (layered metal oxide).
  • a metal oxide having a large specific surface area is preferable. From such a viewpoint, a porous metal oxide is preferable.
  • the layered metal oxide may be an oxide obtained by firing a layered double hydroxide, for example.
  • the layered double hydroxide is also called a hydrotalcite compound and contains two or more kinds of metal elements, and the composition thereof can be represented by the following formula (1).
  • M (2+) is a divalent metal ion.
  • magnesium (Mg) ion, manganese (Mn) ion, iron (Fe) ion, cobalt (Co) ion, nickel (Ni) ion, copper It represents at least one metal ion selected from the group consisting of Cu) ions and zinc (Zn) ions.
  • M (3+) is a trivalent metal ion, for example, selected from the group consisting of aluminum (Al) ion, chromium (Cr), iron (Fe) ion, cobalt (Co) ion, and indium (In) ion. Represents at least one ion.
  • a (n ⁇ ) is an n-valent anion and represents, for example, at least one ion selected from the group consisting of carbonate ion, nitrate ion and sulfate ion.
  • M (2+) , M (3+) and A (n ⁇ ) may each be a single ion or a plurality of types of ions.
  • Examples of methods for synthesizing metal oxides include preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method.
  • the pH is adjusted to 7 to 7 by adding a basic compound such as ammonia, sodium hydroxide, calcium hydroxide to a solution containing an acidic salt of cerium (for example, nitrate). It may be adjusted to 10 for precipitation.
  • the precipitate may be used as it is or may be further oxidized by baking the precipitate.
  • Examples of the method for synthesizing the layered double hydroxide include preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method.
  • preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method.
  • a basic compound such as ammonia, sodium hydroxide, or calcium hydroxide is added. It may be precipitated by adjusting the pH to 8 to 11 by adding.
  • the resulting precipitate is a layered double hydroxide, and a metal oxide or a composite metal oxide can be obtained by firing the precipitate.
  • the firing temperature is not particularly limited, and may be, for example, 200 ° C. or higher.
  • the core part may contain components other than the metal oxide.
  • components other than the metal oxide include components derived from metal oxide precursors (for example, metal salts), solid organic compounds, and the like.
  • the solid organic compound a basic organic compound is preferable, and examples thereof include an organic compound having an amino group.
  • the content of the metal oxide in the core part may be 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total mass of the core part.
  • the content of the metal oxide may be 100% by mass or less based on the total mass of the core part.
  • the porous part covers at least a part of the core part.
  • the porous part is, for example, layered.
  • the porous part has a plurality of pores that communicate with the core part from the outside of the adsorbent particles.
  • the pores have a size that allows carbon dioxide to pass through, for example, and have a pore diameter of 0.001 to 1 ⁇ m, for example.
  • the porous portion includes at least one selected from the group consisting of a simple metal, a metal oxide, a carbon material, and an organic compound (resin or the like), for example.
  • the porous portion preferably contains a carbon material.
  • the porous portion preferably contains at least one element selected from the group consisting of alkali metals, alkaline earth metals, oxygen, nitrogen, boron and hydrogen. These elements may be contained in the porous portion separately from the carbon material, or may be incorporated in the carbon material.
  • a metal simple substance and a metal oxide come into contact with a poisoning component (NOx or SOx) and a gas to be treated containing moisture, it is considered that a metal salt (metal nitrate or metal sulfate) is generated by the mechanism described above.
  • the surface of the adsorbent particles preferably does not contain a single metal or a metal oxide from the viewpoint of further improving cycle characteristics.
  • the carbon material at least one selected from the group consisting of graphite, amorphous carbon, carbon fiber, and carbon nanotube can be used.
  • a carbon material can be used individually by 1 type or in combination of 2 or more types.
  • the carbon material may be a fired product of a carbon material precursor.
  • precursors of carbon materials phenol resin, naphthalene sulfonic acid resin, polyvinylidene chloride, carboxymethyl cellulose, polyacrylonitrile resin, polyvinyl chloride, gilsonite coke, petroleum-based or coal-based mesophase pitch, pyrrole, polypyrrole, polyvinylpyrrole , 3-methylpolypyrrole, vinylpyridine, polyvinylpyridine, imidazole, 2-methylimidazole, aniline, polyaniline, polyaminobismaleimide, polyimide, benzimidazole, polybenzoimidazole, polyamide, acrylonitrile, polyacrylonitrile, chitin , Chitosan, silk, hair, polyamino acid, nucleic acid, DNA, RNA, hydrazine, hydrazide, urea, salen, polycarbazole, polybismaleimide, tri
  • the content of the carbon material in the porous part may be 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total mass of the porous part. .
  • the content of the carbon material may be 100% by mass or less based on the total mass of the porous portion.
  • the thickness of the porous part is preferably 1 nm to 100 ⁇ m. If the thickness of the porous portion is 1 nm or more, excellent cycle characteristics are easily obtained. If the thickness of the porous portion is 100 ⁇ m or less, sufficient CO 2 adsorption is easily obtained.
  • a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method; a preparation method using a chemical reaction Etc.
  • the impregnation method after the material (core material) constituting the core part of the adsorbent particles is dispersed in the solvent after firing, the precursor of the porous part is added to the solvent, and the solvent is further removed.
  • an adsorbent precursor adsorbent particle precursor
  • the adsorbent (adsorbent particles) can be produced by firing the adsorbent precursor (adsorbent particle precursor).
  • the firing temperature may be, for example, 200 ° C. or higher.
  • the solvent is not particularly limited as long as it can dissolve the precursor of the porous portion.
  • the molar ratio of carbon to the metal element (for example, cerium) in the adsorbent is adjusted by adjusting the addition amount of the core material and the precursor of the porous portion, the kind of the precursor of the porous portion, and the like. The content of the carbon material in the part, the coverage and thickness of the porous part can be adjusted.
  • the precursor of the porous portion includes, for example, the above-described carbon material precursor.
  • the carbon material is obtained by firing the precursor of the carbon material.
  • the precursor of the porous portion includes, in addition to the precursor of the carbon material, an alkali metal or alkaline earth metal salt (for example, nitrate, carbonate, sulfate and acetate); oxygen, nitrogen, boron, hydrogen, etc. It may further contain an inorganic compound having an element.
  • an alkali metal or alkaline earth metal salt for example, nitrate, carbonate, sulfate and acetate
  • oxygen nitrogen, boron, hydrogen, etc.
  • It may further contain an inorganic compound having an element.
  • the precursor of a porous part contains the inorganic compound which has elements, such as oxygen, nitrogen, boron, and hydrogen
  • the porous part containing these elements is obtained.
  • firing is performed using a gas containing these elements (for example, oxygen gas, ammonia gas, and hydrogen gas).
  • a method using an organic compound containing these elements as a precursor of the carbon material may be combined.
  • the adsorbent particles according to this embodiment may be composed of only a core part and a porous part, and may further include parts other than the core part and the porous part.
  • the shape of the adsorbent particles is not particularly limited, and may be, for example, a powder shape, a pellet shape, a granular shape, a honeycomb shape, or the like.
  • the shape of the adsorbent particles may be determined in consideration of the required reaction rate, pressure loss, purity of the gas (adsorbed gas) adsorbed on the adsorbent (CO 2 purity), and the like.
  • the average particle diameter of the adsorbent particles may be, for example, 0.1 to 10 mm.
  • the average particle diameter can be measured with a laser diffractometer, a scanning electron microscope, or the like.
  • the specific surface area of the adsorbent particles is preferably 10 to 500 m 2 / g.
  • the specific surface area of the adsorbent particles is 10 m 2 / g or more, the CO 2 adsorption amount is high and desired performance as an adsorbent is easily obtained.
  • the specific surface area of the adsorbent particles is 500 m 2 / g or less, the ratio of the porous portion does not become too high, the amount of CO 2 adsorption per volume increases, and desired performance as an adsorbent is easily obtained.
  • the specific surface area can be measured by the BET multipoint method using BELSORP-mini (made by Nippon Bell Co., Ltd.) using a nitrogen adsorption method.
  • the adsorption temperature is set to 77 K
  • the measured value is used for the saturated vapor pressure P 0
  • the adsorption gas pressure P changes P with respect to P 0 in the range of 0.005 to 0.5.
  • the adsorption cross-sectional area of nitrogen is 0.162 nm 2 .
  • the content of the adsorbent particles may be 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total mass of the adsorbent.
  • the content of the carbon material may be 100% by mass or less based on the total mass of the porous portion.
  • the molar ratio of carbon to metal element in the adsorbent is preferably in the following range.
  • the molar ratio (carbon / metal element) is preferably 1.3 or more and more preferably greater than 1.3 from the viewpoint that a sufficient amount of coverage by the porous portion is easily obtained and excellent cycle characteristics are easily obtained.
  • Preferably, 1.4 or more is more preferable, and 1.5 or more is particularly preferable.
  • the molar ratio (carbon / metal element) is a case where the CO 2 adsorption / desorption cycle is repeated because the amount of water remaining in the porous portion is not excessive and adsorption of carbon dioxide is difficult to be inhibited.
  • the CO 2 adsorptivity is preferably 11.0 or less, more preferably less than 11.0, still more preferably 10.0 or less, and particularly preferably 8.0 or less.
  • the molar ratio (carbon / metal element) is preferably 9.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, and 6.0 or less from the viewpoint of easily obtaining a high CO 2 adsorption amount. Is particularly preferable, 4.0 or less is very preferable, 3.0 or less is very preferable, and 2.0 or less is even more preferable. From these viewpoints, the molar ratio (carbon / metal element) is preferably 1.3 to 11.0.
  • the molar ratio of carbon to cerium (carbon / cerium) in the adsorbent is preferably in the following range.
  • the molar ratio (carbon / cerium) is preferably 1.3 or more, more preferably greater than 1.3, from the viewpoint that a sufficient amount of coating by the porous portion is easily obtained and excellent cycle characteristics are easily obtained. 1.4 or more is more preferable, and 1.5 or more is particularly preferable.
  • the molar ratio (carbon / cerium) is such that even if the CO 2 adsorption / desorption cycle is repeated because the amount of water remaining in the porous portion is not excessive and adsorption of carbon dioxide is difficult to be inhibited.
  • the CO 2 adsorptivity is hardly lowered, it is preferably 11 or less, more preferably less than 11.0, further preferably 10.0 or less, and particularly preferably 8.0 or less.
  • the molar ratio (carbon / cerium) is preferably 9.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, and 6.0 or less from the viewpoint of easily obtaining a high CO 2 adsorption amount. Particularly preferred is 4.0 or less, very preferred is 3.0 or less, and most preferred is 2.0 or less. From these viewpoints, the molar ratio (carbon / cerium) is preferably 1.3 to 11.0.
  • the molar ratio can be measured by composition analysis of the adsorbent using a fluorescent X-ray analyzer (ZSX Primus 2, manufactured by Rigaku Corporation). Measurement conditions and measurement methods are as follows. X-ray tube: Rh target X-ray output: 3 kW Measurement chamber atmosphere: Vacuum Analysis diameter: 10mm ⁇ Measurement method: quantified by the fundamental parameter method using a sensitivity library
  • the method for removing carbon dioxide includes an adsorption step in which a treatment target gas containing carbon dioxide is brought into contact with an adsorbent to adsorb carbon dioxide onto the adsorbent.
  • the gas to be treated contains, for example, at least carbon dioxide (CO 2 ) and moisture (water vapor, H 2 O).
  • the gas to be treated may contain components other than carbon dioxide, for example, nitrogen oxide (NOx), sulfur oxide (SOx), oxygen (O 2 ), nitrogen (N 2 ), carbon monoxide (CO ), Volatile organic substances (VOC), and the like.
  • the adsorbent according to the present embodiment can exhibit excellent cycle characteristics when the gas to be treated contains carbon dioxide, moisture, NOx and / or SOx. Specific examples of such a gas to be treated include gas discharged from a plant (particularly a large-scale plant).
  • the CO 2 concentration in the gas to be treated is not particularly limited, and may be, for example, 0.0001 to 0.01% by volume, 0.011 to 0.1% by volume, or 0.11 to 0.1% by volume. It may be 10% by volume.
  • the adsorbent contains a metal oxide containing cerium
  • the CO 2 concentration may be 1000 ppm or less, 750 ppm or less, or 500 ppm or less based on the total volume of the gas to be treated. Also good.
  • the metal oxide containing cerium can exhibit excellent CO 2 adsorption when the CO 2 concentration is 1000 ppm or less.
  • the adsorbent contains a metal oxide containing cerium and the CO 2 concentration is in the above range, excellent CO 2 adsorbability is easily confirmed.
  • the CO 2 concentration may be 100 ppm or more on the basis of the total volume of the gas to be treated, from the viewpoint of easy removal of carbon dioxide, and 200 ppm The above may be sufficient and 400 ppm or more may be sufficient.
  • the NOx concentration in the processing target gas may be 0.0001% by volume or more based on the total volume of the processing target gas from the viewpoint of easy confirmation of excellent cycle characteristics. 0.001 volume% or more may be sufficient and 0.01 volume% or more may be sufficient.
  • the NOx concentration may be 10% by volume or less, 1% by volume or less, or 0.1% by volume or less, based on the total volume of the gas to be treated, from the viewpoint of easily maintaining CO 2 adsorption. It may be.
  • the SOx concentration in the processing target gas may be 0.0001% by volume or more on the basis of the total volume of the processing target gas from the viewpoint of easy confirmation of excellent cycle characteristics. 0.001 volume% or more may be sufficient and 0.01 volume% or more may be sufficient.
  • the SOx concentration may be 10% by volume or less, 1% by volume or less, or 0.1% by volume or less, based on the total volume of the gas to be treated, from the viewpoint of easily maintaining CO 2 adsorption. It may be.
  • the moisture concentration in the gas to be processed may be 0.0001% by volume or more, or 0.001% by volume or more based on the total volume of the gas to be processed, from the viewpoint of easy confirmation of excellent cycle characteristics. It may be 0.01% by volume or more.
  • the water concentration may be 10% by volume or less, 1% by volume or less, or 0.1% by volume or less, based on the total volume of the gas to be treated, from the viewpoint that the CO 2 adsorptivity is easily maintained. It may be.
  • the moisture concentration is preferably in the above range.
  • the amount of CO 2 adsorption can be adjusted by adjusting the temperature T 1 of the adsorbent when the gas to be treated is brought into contact with the adsorbent in the adsorption step.
  • the temperature T 1 may be ⁇ 20 to 100 ° C. or 10 to 40 ° C.
  • Temperature T 1 of the adsorbent may be adjusted by heating or cooling the adsorbent may be used in combination of heating and cooling. Further, the temperature T 1 of the indirect adsorbent may be adjusted by heating or cooling the processed gas.
  • a method of heating the adsorbent a method in which a heat medium (for example, heated gas or liquid) is brought into direct contact with the adsorbent; a heat medium (for example, heated gas or liquid) is circulated through a heat transfer tube, Examples include a method of heating the adsorbent by heat conduction from the heat transfer surface; a method of heating the adsorbent by an electric furnace that generates heat electrically, and the like.
  • a method for cooling the adsorbent a method in which a refrigerant (for example, a cooled gas or liquid) is directly brought into contact with the adsorbent; a refrigerant (for example, a cooled gas or liquid) is circulated through a heat transfer tube or the like, and heat transfer is performed.
  • a refrigerant for example, a cooled gas or liquid
  • the CO 2 adsorption amount can be adjusted by adjusting the total pressure of the atmosphere in which the adsorbent is present (for example, the total pressure in the reaction vessel containing the adsorbent).
  • the higher the total pressure the greater the amount of CO 2 adsorbed by the adsorbent.
  • the total pressure is preferably 0.1 atm or more, and more preferably 1 atm or more.
  • the total pressure may be 10 atm or less, 2 atm or less, or 1.3 atm or less from the viewpoint of energy saving.
  • the total pressure may be 5 atmospheres or more.
  • the total pressure of the atmosphere in which the adsorbent is present may be adjusted by pressurization or depressurization, and pressurization and depressurization may be used in combination.
  • Examples of a method for adjusting the total pressure include a method in which the pressure is mechanically adjusted by a pump, a compressor, and the like; a method in which a gas having a pressure different from the pressure in the ambient atmosphere of the adsorbent is introduced.
  • the carbon dioxide removal method according to this embodiment may further include a desorption step of desorbing (desorbing) carbon dioxide from the adsorbent after the adsorption step.
  • a method using the temperature dependence of the adsorption amount (temperature swing method; a method using the difference in the CO 2 adsorption amount of the adsorbent with temperature change); pressure of the adsorption amount
  • temperature swing method a method using the difference in the amount of CO 2 adsorbed by the adsorbent accompanying the pressure change
  • pressure swing method The method using the difference in the amount of CO 2 adsorbed by the adsorbent accompanying the pressure change
  • these methods may be used in combination (temperature / pressure swing method).
  • the temperature of the adsorbent in the desorption process is set higher than that in the adsorption process.
  • the method for heating the adsorbent include the same method as the method for heating the adsorbent in the above-described adsorption step; the method using the peripheral exhaust heat, and the like. From the viewpoint of reducing the energy required for heating, it is preferable to use the peripheral exhaust heat.
  • the temperature difference (T 2 ⁇ T 1 ) between the adsorbent temperature T 1 in the adsorption step and the adsorbent temperature T 2 in the desorption step may be 200 ° C. or less, or 100 ° C. or less from the viewpoint of energy saving. It may be 50 degrees C or less.
  • the temperature difference (T 2 ⁇ T 1 ) may be 10 ° C. or higher, 20 ° C. or higher, or 30 ° C. or higher from the viewpoint of easy desorption of carbon dioxide adsorbed on the adsorbent. Good.
  • Temperature T 2 of the adsorbent in the desorption step for example, may be 40 ⁇ 300 ° C., may be 50 ⁇ 200 ° C., may be 80 ⁇ 120 ° C..
  • the CO 2 adsorption amount increases as the total pressure of the atmosphere in which the adsorbent exists (for example, the total pressure in the container containing the adsorbent) increases. It is preferable to change so that the total pressure in the desorption process is lower than the total pressure.
  • the total pressure may be adjusted by pressurizing or depressurizing, and pressurization and depressurization may be used in combination.
  • a method for adjusting the total pressure for example, a method similar to the adsorption step described above can be used.
  • the total pressure in the desorption process may be the ambient atmospheric pressure (for example, 1 atmosphere) or less than 1 atmosphere from the viewpoint of increasing the amount of CO 2 desorption.
  • the carbon dioxide desorbed and recovered by the desorption process may be reused in the field where carbon dioxide is used.
  • the recovered carbon dioxide may be reused to increase the CO 2 concentration.
  • the adsorbent after the desorption process can be used again in the adsorption process.
  • the adsorption step and the desorption step may be repeatedly performed after the desorption step.
  • the adsorbent When the adsorbent is heated in the desorption step, the adsorbent may be cooled by the above-described method and used in the adsorption step.
  • the adsorbent may be cooled by bringing a gas containing carbon dioxide (for example, a treatment target gas containing carbon dioxide) into contact with the adsorbent.
  • the carbon dioxide removal method uses adsorption.
  • an impurity removal step of removing impurities such as SOx, NOx, and dust from the gas to be treated may be further provided before the adsorption step.
  • the impurity removal step can be performed using a removal device such as a denitration device, a desulfurization device, or a dust removal device, and the gas to be treated can be brought into contact with the adsorbent on the downstream side of these devices.
  • the adsorbent can be removed by heating the adsorbent as well as exchanging the adsorbent.
  • the adsorbent may be supported on a honeycomb-shaped base material or may be used by filling a reaction vessel. Further, a honeycomb-like base material carrying an adsorbent may be disposed and used in the reaction vessel.
  • the method of using the adsorbent may be determined in consideration of the required reaction rate, pressure loss, purity of the gas (adsorbed gas) adsorbed on the adsorbent (CO 2 purity), and the like.
  • the more voids between adsorbent particles (the higher the porosity) the smaller the pressure loss.
  • the porosity can be increased, so that the pressure loss can be reduced.
  • the reaction container according to the present embodiment includes the adsorbent according to the present embodiment.
  • the adsorbent is disposed (for example, filled) inside the reaction vessel.
  • the filling amount and arrangement position of the adsorbent are not particularly limited.
  • the adsorbent may be filled in the central portion of the reaction vessel or may be disposed on a part of the inner wall surface.
  • the reaction vessel may be a fixed bed type, a rotor type, or a fluidized bed type.
  • the rotor type and the fluidized bed type are systems in which the adsorbent itself is moved without switching the gas (circulation gas) to be circulated in the reaction vessel.
  • an adsorbent for example, a granular adsorbent
  • the temperature and pressure in the processing target gas or the reaction vessel are changed without moving the adsorbent itself.
  • wear of the adsorbent due to contact between the adsorbents or between the adsorbent and the reaction vessel can be reduced, and a decrease in the performance of the adsorbent can be suppressed.
  • the packing density can be increased, the porosity is low, and the amount of carbon dioxide removed per volume of the reaction vessel can be increased.
  • Examples of the rotor-type reaction container include a reaction container including a container, an adsorbent filling unit provided inside the container, and a partition plate for partitioning the gas flowing in the container.
  • the adsorbent filling portion is filled with an adsorbent.
  • This reaction vessel is internally divided into a plurality of regions by partition plates, and is divided into a carbon dioxide adsorption region, an adsorbent heating region (CO 2 desorption region), an adsorbent cooling region, etc., depending on the type of gas flowing. It has been.
  • each region can be determined by changing the position where the partition plate is installed, the flow time of the gas to be treated (time for adsorbing carbon dioxide), the heating time of the adsorbent (desorbing carbon dioxide) Time) and the cooling time of the adsorbent can be easily determined.
  • a honeycomb for example, a honeycomb rotor
  • an adsorbent may be disposed in the reaction vessel.
  • wear of the adsorbent itself can be reduced, and a decrease in the performance of the adsorbent can be suppressed.
  • two or more reaction vessels may be installed, and different adsorbents may be disposed in each reaction vessel.
  • different adsorbents may be arranged on the upstream side and the downstream side in the reaction vessel.
  • an adsorbent containing cerium oxide may be arranged on the upstream side
  • an adsorbent containing zeolite may be arranged on the downstream side.
  • the gas to be treated is circulated in the direction from the upstream side to the downstream side, and the heating gas is circulated in the direction from the downstream side to the upstream side.
  • CO 2 adsorption of the zeolite can be prevented to reduce.
  • the place where each adsorbent is supported may be divided in the honeycomb.
  • the fluidized bed type reaction vessel is configured such that, for example, the adsorbent can flow by power (conveyor, blower, etc.) by reducing the filling amount of the adsorbent.
  • a fluidized bed type reaction vessel for example, a reaction vessel in which a gas to be treated is circulated and a heating vessel in which a gas for heating is circulated are installed, and power (conveyor, blower, etc.) is used to adsorb the adsorbent ( For example, the adsorption and desorption of carbon dioxide may be repeated by moving a granular or powdery adsorbent between the reaction vessel and the heating vessel.
  • the configuration of piping, valves, etc. is simplified.
  • different porosity can be set during carbon dioxide adsorption and desorption.
  • the void ratio may be set to be low during desorption, and the purity (CO 2 purity) of the gas (adsorbed gas) adsorbed by the adsorbent may be increased.
  • carbon dioxide may be removed by blowing up the adsorbent with the gas instead of the conveyor. Since the number of machine parts is reduced compared to a conveyor, a simple configuration can be achieved.
  • the reaction container according to the present embodiment even when the CO 2 adsorption / desorption cycle is repeated, the CO 2 adsorptivity of the adsorbent is unlikely to be lowered, so that the carbon dioxide removal efficiency can be improved.
  • the CO 2 adsorptivity of the adsorbent decreases due to repeated use, operations such as exchanging the adsorbent and removing NOx, SOx, etc. adsorbed on the adsorbent are required. According to this, such work burden can be reduced.
  • the carbon dioxide removal system according to the present embodiment includes the carbon dioxide removal device according to the present embodiment, and a control unit for comprehensively controlling the carbon dioxide removal device.
  • the carbon dioxide removal system (air conditioning system etc.) concerning this embodiment may be provided with two or more carbon dioxide removal devices (air conditioning equipment etc.) concerning this embodiment.
  • the carbon dioxide removal system according to the present embodiment may include a control unit that comprehensively controls the operation of the plurality of carbon dioxide removal devices.
  • the carbon dioxide removal apparatus according to the present embodiment includes the reaction container according to the present embodiment.
  • carbon dioxide is adsorbed by the adsorbent when the gas to be treated introduced into the reaction container comes into contact with the adsorbent disposed in the reaction container.
  • the carbon dioxide removal system and the carbon dioxide removal device according to the present embodiment may be used to reduce the carbon dioxide concentration in the air-conditioning target space, and to reduce the carbon dioxide concentration in the gas discharged from the plant or the like to the outside air. May be used.
  • the air-conditioning target space may be, for example, a building; a vehicle; an automobile; a space station; a submersible; a food or chemical production plant.
  • the carbon dioxide removing device may be an air conditioner.
  • the air conditioner according to the present embodiment is an air conditioner used in an air conditioning target space including a processing target gas containing carbon dioxide.
  • the air conditioner according to the present embodiment includes a flow path connected to the air conditioning target space, and a removal unit (carbon dioxide removal unit) that removes carbon dioxide contained in the processing target gas as the reaction container according to the present embodiment. It is arranged in the flow path.
  • the adsorbent according to the present embodiment is disposed in the removal unit, and the adsorbent comes into contact with the processing target gas and carbon dioxide is adsorbed by the adsorbent.
  • an air conditioning method including an adsorption process in which a processing target gas in an air conditioning target space is brought into contact with an adsorbent to adsorb carbon dioxide to the adsorbent.
  • the details of the processing target gas containing carbon dioxide are the same as the processing target gas in the carbon dioxide removal method described above.
  • the air conditioning system 200 includes an air conditioner 100 and a control device (control unit) 110.
  • the air conditioner 100 includes a flow path 10, an exhaust fan (exhaust unit) 20, a concentration measuring device (concentration measuring unit) 30, an electric furnace (temperature control unit) 40, and a compressor (pressure control unit) 50. I have.
  • the flow path 10 is connected to an air-conditioning target space R including a processing target gas (indoor gas) containing carbon dioxide.
  • the flow path 10 includes a flow path section 10a, a flow path section 10b, a removal section (flow path section, carbon dioxide removal section) 10c, a flow path section 10d, a flow path section (circulation flow path) 10e,
  • the removal part 10c is arrange
  • the air conditioner 100 includes a removing unit 10c as a reaction container.
  • a valve 70 a that adjusts the presence or absence of the inflow of the processing target gas in the removing unit 10 c and a valve 70 b that adjusts the flow direction of the processing target gas are arranged.
  • the upstream end of the flow path part 10a is connected to the air conditioning target space R, and the downstream end of the flow path part 10a is connected to the upstream end of the flow path part 10b via the valve 70a.
  • the upstream end of the removal part 10c is connected to the downstream end of the flow path part 10b.
  • the downstream end of the removal part 10c is connected to the upstream end of the flow path part 10d.
  • a downstream side of the flow path portion 10d in the flow path 10 is branched into a flow path section 10e and a flow path section 10f.
  • the downstream end of the flow path portion 10d is connected to the upstream end of the flow path portion 10e and the upstream end of the flow path portion 10f via the valve 70b.
  • the downstream end of the flow path part 10e is connected to the air conditioning target space R.
  • the downstream end of the flow path portion 10f is connected to the outside air.
  • the adsorbent 80 which is an adsorbent according to the present embodiment, is disposed in the removing unit 10c.
  • the adsorbent 80 is filled in the central portion of the removal portion 10c. Two spaces are formed in the removal unit 10c via the adsorbent 80.
  • the removal unit 10c includes an upstream space S1, a central portion S2 filled with the adsorbent 80, and a downstream space S3. And have.
  • the space S1 is connected to the air conditioning target space R via the flow path portions 10a and 10b and the valve 70a, and the processing target gas containing carbon dioxide is supplied from the air conditioning target space R to the space S1 of the removal unit 10c. .
  • the processing target gas supplied to the removing unit 10c moves from the space S1 to the space S3 via the central part S2, and is then discharged from the removing unit 10c.
  • At least part of the carbon dioxide is removed from the processing target gas discharged from the air conditioning target space R in the removing unit 10c.
  • the processing target gas from which carbon dioxide has been removed may be returned to the air conditioning target space R by adjusting the valve 70b or may be discharged to the outside air outside the air conditioning apparatus 100.
  • the processing target gas discharged from the air conditioning target space R passes from upstream to downstream through the flow path part 10a, the flow path part 10b, the removal part 10c, the flow path part 10d, and the flow path part 10e. Can flow into R.
  • processing target gas discharged from the air conditioning target space R is discharged from the upstream to the downstream via the flow path part 10a, the flow path part 10b, the removal part 10c, the flow path part 10d, and the flow path part 10f. May be.
  • the exhaust fan 20 is disposed at the discharge position of the processing target gas in the air conditioning target space R.
  • the exhaust fan 20 discharges the processing target gas from the air conditioning target space R and supplies it to the removing unit 10c.
  • the concentration measuring device 30 measures the carbon dioxide concentration in the air conditioning target space R.
  • the concentration measuring device 30 is disposed in the air conditioning target space R.
  • the electric furnace 40 is disposed outside the removing unit 10c of the air conditioner 100, and can raise the temperature of the adsorbent 80.
  • the compressor 50 is connected to the removing unit 10c of the air conditioner 100, and can adjust the pressure in the removing unit 10c.
  • the control device 110 can perform overall operation control of the air conditioner 100. For example, based on the carbon dioxide concentration measured by the concentration measuring device 30, the presence or absence of inflow of the processing target gas in the removal unit 10c Can be controlled. Specifically, when the concentration measuring device 30 detects that the carbon dioxide concentration in the air-conditioning target space R has increased and reached a predetermined concentration due to exhalation or the like, concentration information is sent from the concentration measuring device 30 to the control device 110. Sent. The control device 110 that has received the concentration information opens the valve 70a and adjusts the gas discharged from the removal unit 10c so as to flow into the air-conditioning target space R through the flow channel unit 10d and the flow channel unit 10e.
  • control apparatus 110 operates the exhaust fan 20, and supplies process target gas from the air-conditioning object space R to the removal part 10c. Furthermore, the control device 110 operates the electric furnace 40 and / or the compressor 50 as necessary to adjust the temperature of the adsorbent 80, the pressure in the removal unit 10c, and the like.
  • the processing target gas supplied to the removing unit 10c moves from the space S1 to the space S3 via the central portion S2
  • the processing target gas comes into contact with the adsorbent 80, and carbon dioxide in the processing target gas is absorbed into the adsorbent 80. Adsorb to.
  • carbon dioxide is removed from the gas to be treated.
  • the gas from which carbon dioxide has been removed is supplied to the air-conditioning target space R through the flow path part 10d and the flow path part 10e.
  • the carbon dioxide adsorbed on the adsorbent 80 may be recovered in a state of being adsorbed on the adsorbent 80 without being desorbed from the adsorbent 80, or may be recovered after being desorbed from the adsorbent 80.
  • the electric furnace 40 and / or the compressor 50 are operated to adjust the temperature of the adsorbent 80, the pressure in the removal unit 10c, etc.
  • Carbon dioxide can be desorbed from 80.
  • the valve 70b is adjusted so that the gas discharged from the removing unit 10c (the gas containing the desorbed carbon dioxide) is discharged to the outside air through the flow path unit 10f.
  • the discharged carbon dioxide can be recovered.
  • the air conditioning system 210 includes a first air conditioner 100a, a second air conditioner 100b, a control device (control unit) 110, and a control device (control unit) 120.
  • the control device 120 controls the air conditioning operation of the first air conditioner 100a and the second air conditioner 100b by controlling the control device 110 described above in the first air conditioner 100a and the second air conditioner 100b. Control.
  • the control device 120 may adjust the air conditioning operations of the first air conditioner 100a and the second air conditioner 100b to be performed under the same conditions, and the first air conditioner 100a and the second air conditioner 100b. You may adjust so that air-conditioning operation may be performed on different conditions.
  • the control device 120 can transmit information regarding the presence or absence of the inflow of the processing target gas in the removal unit 10c to the control device 110.
  • the carbon dioxide removal device and the carbon dioxide removal system are not limited to the above-described embodiment, and may be appropriately changed without departing from the gist thereof.
  • the control content of the control unit of the carbon dioxide removal device is not limited to controlling the presence or absence of the inflow of the processing target gas in the reaction vessel, and the control unit may adjust the inflow amount of the processing target gas in the reaction vessel. Good.
  • the gas to be processed may be supplied to the reaction vessel using a blower instead of the exhaust fan.
  • the exhaust means may not be used.
  • the temperature control means and the pressure control means are not limited to the electric furnace and the compressor, and various means described above can be used in the adsorption process and the desorption process.
  • the temperature control means is not limited to the heating means, and may be a cooling means.
  • each of the air-conditioning target space, the carbon dioxide removal unit, the exhaust unit, the temperature control unit, the pressure control unit, the concentration measurement unit, and the like is not limited to one, and a plurality of units may be arranged.
  • the air conditioner includes a humidity controller for adjusting the dew point and relative humidity of the gas to be treated; a humidity measuring device for measuring the humidity of the air conditioning target space; a removal device such as a denitration device, a desulfurization device, and a dust removal device. May be.
  • Example 1 1.0 g of cerium oxide (CeO 2 ) and 0.072 g of polyacrylic acid were added to 10 mL of pure water, and then stirred at room temperature for 30 minutes to obtain a mixed solution.
  • the mixed solution was poured into a quartz boat and put into a box type electric furnace. After raising the temperature to 300 ° C. at 10 ° C./min in the air, firing was performed at 300 ° C. for 1 hour. Thereafter, the fired product obtained was naturally cooled and then taken out from the box-type electric furnace.
  • Adsorbent powder was obtained by grinding the fired product using a mortar and pestle.
  • the above method was repeated a plurality of times to obtain a necessary amount of adsorbent powder. Thereafter, using a mold having a diameter of 40 mm, the adsorbent powder was pelletized at 500 kgf by a press machine. Next, after the pellets are crushed, the adsorbent particles (core part and porous part covering the core part) are granulated (particle size: 0.5 to 1.0 mm) using a sieve. And an adsorbent (hereinafter simply referred to as “adsorbent”). The molar ratio of carbon to cerium in the adsorbent (carbon / cerium) was 1.3.
  • the molar ratio (carbon / cerium) was measured by composition analysis of the adsorbent using a fluorescent X-ray analyzer (ZSX Primus 2, manufactured by Rigaku Corporation). Measurement conditions and measurement methods were as follows. X-ray tube: Rh target X-ray output: 3 kW Measurement chamber atmosphere: Vacuum Analysis diameter: 10mm ⁇ Measurement method: quantified by the fundamental parameter method using a sensitivity library
  • Example 2 An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.143 g.
  • Example 3 An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.286 g.
  • Example 4 An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.429 g.
  • Example 5 An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.500 g.
  • Example 6 An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.572 g.
  • the CO 2 adsorption test and the cycle test were carried out by the following methods, and the CO 2 adsorption amount and the CO 2 adsorption amount maintenance rate of the adsorbents of the examples and comparative examples were determined. Note that the gas to be treated in the CO 2 adsorption test and the cycle test simulates the exhaust gas of a thermal power plant.
  • the CO 2 concentration at the outlet of the reaction tube was measured by a gas chromatograph (carrier gas: He), and gas introduction was continued until the CO 2 concentration measured at the outlet of the reaction tube was saturated.
  • CO 2 concentration was measured inlet and CO 2 adsorption amount from the difference between the CO 2 concentration in the outlet side of the reaction tube until saturated.
  • the CO 2 adsorption amount was evaluated by a relative value with the CO 2 adsorption amount in Comparative Example 1 being 1.00.
  • the mixed gas contained about 15% by volume of CO 2 , 5% by volume of O 2 , 300 ppm of SO 2 , and about 50% saturated steam at about 50 ° C. Except for using a mixed gas containing 80% by volume of N 2 , the CO 2 adsorption amount and the CO 2 adsorption amount maintenance rate were determined in the same procedure as the adsorption performance evaluation in the presence of NOx.

Abstract

An adsorbent used for removing carbon dioxide from a gas to be treated that contains carbon dioxide. The adsorbent includes particles 1 that comprise: a core 3 including a metal oxide; and a porous section 5 covering at least part of the core 3.

Description

吸着剤、反応容器、二酸化炭素除去装置及び二酸化炭素除去システムAdsorbent, reaction vessel, carbon dioxide removal device and carbon dioxide removal system
 本発明は、吸着剤、反応容器、二酸化炭素除去装置及び二酸化炭素除去システムに関する。 The present invention relates to an adsorbent, a reaction vessel, a carbon dioxide removal device, and a carbon dioxide removal system.
 地球温暖化の原因の一つとして、温室効果ガスの排出が挙げられる。温室効果ガスとしては、二酸化炭素(CO)、メタン(CH)、フロン類(CFCs等)などが挙げられる。温室効果ガスの中でも、二酸化炭素の影響が最も大きく、二酸化炭素(火力発電所、製鉄所等のプラントから排出される二酸化炭素など)の除去システムの構築が緊急の課題となっている。 One of the causes of global warming is the emission of greenhouse gases. Examples of the greenhouse gas include carbon dioxide (CO 2 ), methane (CH 4 ), and chlorofluorocarbons (CFCs and the like). Among greenhouse gases, the impact of carbon dioxide is the greatest, and the construction of a system for removing carbon dioxide (such as carbon dioxide discharged from thermal power plants and steelworks) has become an urgent issue.
 上記課題の解決策としては、例えば、化学吸収法、物理吸収法、膜分離法、吸着分離法、深冷分離法等により二酸化炭素を除去する方法が挙げられる。例えば、固体の二酸化炭素吸着剤を用いて二酸化炭素を分離及び回収する方法(CO分離回収法)が挙げられる。 Examples of a solution to the above problem include a method of removing carbon dioxide by a chemical absorption method, a physical absorption method, a membrane separation method, an adsorption separation method, a cryogenic separation method, or the like. For example, a method of separating and recovering carbon dioxide using a solid carbon dioxide adsorbent (CO 2 separation and recovery method) can be mentioned.
 吸着剤を用いた二酸化炭素除去システムでは、吸着剤を充填した反応容器に、二酸化炭素を含有する処理対象ガスを導入し、吸着剤と処理対象ガスとを大気圧下又は加圧下で接触させることで二酸化炭素を吸着剤に吸着させる。その後、例えば、吸着剤を加熱すること、又は、反応容器内を減圧することで吸着剤から二酸化炭素を脱離させる。二酸化炭素を脱離させた吸着剤は、冷却又は加圧することにより再度二酸化炭素の除去に使用することができる。 In a carbon dioxide removal system using an adsorbent, a gas to be treated containing carbon dioxide is introduced into a reaction vessel filled with the adsorbent, and the adsorbent and the gas to be treated are brought into contact under atmospheric pressure or under pressure. To adsorb carbon dioxide to the adsorbent. Thereafter, for example, the adsorbent is heated or the inside of the reaction vessel is depressurized to desorb carbon dioxide from the adsorbent. The adsorbent from which carbon dioxide has been desorbed can be used again for removing carbon dioxide by cooling or pressurizing.
 このような二酸化炭素除去システムにおいては、吸着剤としてゼオライトが主に用いられている。例えば下記特許文献1には、二酸化炭素を含有するガスをゼオライト系の吸着剤に接触させることで吸着剤に二酸化炭素を吸着させた後、吸着剤を加熱することで二酸化炭素を脱離させる二酸化炭素の除去方法が記載されている。 In such a carbon dioxide removal system, zeolite is mainly used as an adsorbent. For example, in Patent Document 1 below, carbon dioxide-containing gas is brought into contact with a zeolite-based adsorbent to adsorb carbon dioxide to the adsorbent, and then the adsorbent is heated to remove carbon dioxide. A method for removing carbon is described.
特表2010-527757号公報Special table 2010-527757
 ところで、プラント等から排出される排出ガスは、二酸化炭素の他に、窒素酸化物(NOx)を含有する場合があり、排出ガスを脱硝工程に供したとしても数十ppmのNOxが残存し得る。本発明者らの検討の結果、このように微量のNOxと共に水分(水蒸気、HO)を含有する処理対象ガスを用いる場合、ゼオライト等の吸着剤(固体系二酸化炭素捕捉材)が被毒し、CO吸着性が低下することが見出された。特許文献1においては、吸着剤のこのような被毒に関する議論はされておらず、また、このような事情を加味した二酸化炭素除去装置の構成について記載がない。 By the way, exhaust gas discharged from a plant or the like may contain nitrogen oxides (NOx) in addition to carbon dioxide, and even if the exhaust gas is subjected to a denitration process, tens of ppm of NOx may remain. . As a result of the study by the present inventors, when a gas to be treated containing moisture (water vapor, H 2 O) together with a small amount of NOx is used as described above, an adsorbent (solid carbon dioxide capturing material) such as zeolite is poisoned. It was found that the CO 2 adsorptivity decreases. In Patent Document 1, there is no discussion about such poisoning of the adsorbent, and there is no description about the configuration of the carbon dioxide removing device taking such circumstances into consideration.
 そこで、本発明は、二酸化炭素を含有する処理対象ガスが窒素酸化物(NOx)及び水分を更に含有する場合であっても、繰り返しの使用におけるCO吸着性の低下を抑制可能な吸着剤を提供することを目的とする。また、本発明は、前記吸着剤を備える反応容器、当該反応容器を備える二酸化炭素除去装置、及び、当該二酸化炭素除去装置を備える二酸化炭素除去システムを提供することを目的とする。 Therefore, the present invention provides an adsorbent capable of suppressing a decrease in CO 2 adsorptivity in repeated use even when the gas to be treated containing carbon dioxide further contains nitrogen oxides (NOx) and moisture. The purpose is to provide. Moreover, this invention aims at providing the carbon dioxide removal system provided with the reaction container provided with the said adsorption agent, the carbon dioxide removal apparatus provided with the said reaction container, and the said carbon dioxide removal apparatus.
 本発明は、二酸化炭素を含有する処理対象ガスから二酸化炭素を除去するために用いられる吸着剤であって、金属酸化物を含む芯部と、当該芯部の少なくとも一部を被覆する多孔質部と、を備える粒子を含む、吸着剤を提供する。 The present invention is an adsorbent used for removing carbon dioxide from a gas to be treated containing carbon dioxide, and includes a core portion containing a metal oxide and a porous portion covering at least a part of the core portion. An adsorbent comprising particles comprising:
 本発明に係る吸着剤によれば、二酸化炭素を含有する処理対象ガスが窒素酸化物(NOx)及び水分を更に含有する場合であっても、繰り返しの使用におけるCO吸着性の低下を抑制することができる。つまり、本発明に係る吸着剤によれば、二酸化炭素を含有する処理対象ガスがNOx及び水分を更に含有する場合であっても、優れたサイクル特性を得ることができる。 According to the adsorbent according to the present invention, even if the gas to be treated containing carbon dioxide further contains nitrogen oxides (NOx) and moisture, it is possible to suppress a decrease in CO 2 adsorptivity in repeated use. be able to. That is, according to the adsorbent according to the present invention, excellent cycle characteristics can be obtained even when the gas to be treated containing carbon dioxide further contains NOx and moisture.
 ところで、プラント等から排出される排出ガスは、二酸化炭素の他に、硫黄酸化物(SOx)を含有する場合があり、排出ガスを脱硫工程に供したとしても数十ppmのSOxが残存し得る。本発明者らの検討の結果、このように微量のSOxと共に水分を含有する処理対象ガスを用いる場合、ゼオライト等の吸着剤(固体系二酸化炭素捕捉材)が被毒し、CO吸着性が低下することが見出されている。一方、本発明に係る吸着剤によれば、二酸化炭素を含有する処理対象ガスがSOx及び水分を更に含有する場合であっても、繰り返しの使用におけるCO吸着性の低下を抑制することができる。つまり、本発明に係る吸着剤によれば、二酸化炭素を含有する処理対象ガスがSOx及び水分を更に含有する場合であっても、優れたサイクル特性を得ることができる。 By the way, exhaust gas discharged from a plant or the like may contain sulfur oxide (SOx) in addition to carbon dioxide, and even if the exhaust gas is subjected to a desulfurization process, tens of ppm of SOx may remain. . As a result of the study by the present inventors, when a gas to be treated containing moisture together with a small amount of SOx is used as described above, an adsorbent (solid carbon dioxide capturing material) such as zeolite is poisoned, and the CO 2 adsorptivity is low. It has been found to decrease. On the other hand, according to the adsorbent according to the present invention, even if the gas to be treated containing carbon dioxide further contains SOx and moisture, it is possible to suppress a decrease in CO 2 adsorptivity in repeated use. . That is, according to the adsorbent according to the present invention, excellent cycle characteristics can be obtained even when the gas to be treated containing carbon dioxide further contains SOx and moisture.
 前記金属酸化物は、セリウムを含んでもよい。この場合、繰り返しの使用におけるCO吸着性の低下を更に抑制することができる。 The metal oxide may include cerium. In this case, it is possible to further suppress a decrease in CO 2 adsorbability in repeated use.
 前記多孔質部は、炭素材料を含んでもよい。この場合、繰り返しの使用におけるCO吸着性の低下を更に抑制することができる。 The porous portion may include a carbon material. In this case, it is possible to further suppress a decrease in CO 2 adsorbability in repeated use.
 前記吸着剤中のセリウムに対する炭素のモル比は、1.3~11.0であってもよい。この場合、繰り返しの使用におけるCO吸着性の低下を更に抑制することができる。 The molar ratio of carbon to cerium in the adsorbent may be 1.3 to 11.0. In this case, it is possible to further suppress a decrease in CO 2 adsorbability in repeated use.
 また、本発明は、金属酸化物を含む芯部と、当該芯部の少なくとも一部を被覆する多孔質部と、を備える粒子を含む吸着剤であって、前記吸着剤中の金属元素に対する炭素のモル比が1.3~11.0である、吸着剤を提供する。 Further, the present invention is an adsorbent comprising particles comprising a core part containing a metal oxide and a porous part covering at least a part of the core part, the carbon adsorbing carbon to the metal element in the adsorbent An adsorbent having a molar ratio of 1.3 to 11.0 is provided.
 本発明に係る反応容器は、前記吸着剤を備える。前記吸着剤は、NOx又はSOxを含有する処理対象ガスからの二酸化炭素の除去を繰り返し行った場合でも吸着剤のCO吸着性が低下しにくい。そのため、本発明に係る反応容器によれば、二酸化炭素の除去効率を向上させることができる。また、繰り返しの使用によって吸着剤のCO吸着性が低下した場合には、吸着剤を交換する、吸着剤に吸着したNOx、SOx等を除去するなどの作業が必要となるが、本発明に係る反応器によれば、このような作業負担を低減することができる。 The reaction container according to the present invention includes the adsorbent. In the adsorbent, even when carbon dioxide is repeatedly removed from the gas to be treated containing NOx or SOx, the CO 2 adsorptivity of the adsorbent is unlikely to decrease. Therefore, according to the reaction container of the present invention, the carbon dioxide removal efficiency can be improved. In addition, when the CO 2 adsorptivity of the adsorbent decreases due to repeated use, operations such as exchanging the adsorbent and removing NOx, SOx, etc. adsorbed on the adsorbent are necessary. According to such a reactor, such a work burden can be reduced.
 本発明に係る二酸化炭素除去装置は、前記反応容器を備える。本発明に係る二酸化炭素除去装置は、二酸化炭素の除去効率に優れる。 The carbon dioxide removal apparatus according to the present invention includes the reaction vessel. The carbon dioxide removal apparatus according to the present invention is excellent in carbon dioxide removal efficiency.
 本発明に係る二酸化炭素除去システムは、前記二酸化炭素除去装置を備える。本発明に係る二酸化炭素除去システムは、二酸化炭素の除去効率に優れる。 The carbon dioxide removal system according to the present invention includes the carbon dioxide removal device. The carbon dioxide removal system according to the present invention is excellent in carbon dioxide removal efficiency.
 本発明によれば、二酸化炭素を含有する処理対象ガスが窒素酸化物(NOx)及び水分を更に含有する場合であっても、繰り返しの使用によるCO吸着性の低下を抑制することができる。また、本発明によれば、二酸化炭素を含有する処理対象ガスが硫黄酸化物(SOx)及び水分を更に含有する場合であっても、繰り返しの使用におけるCO吸着性の低下を抑制することができる。本発明によれば、二酸化炭素、水分及び被毒成分(NOx及び/又はSOx)を含有する処理対象ガスからの二酸化炭素の除去への、吸着剤の応用を提供できる。 According to the present invention, even if the gas to be treated containing carbon dioxide further contains nitrogen oxides (NOx) and moisture, it is possible to suppress a decrease in CO 2 adsorption due to repeated use. Further, according to the present invention, even if the gas to be treated containing carbon dioxide further contains sulfur oxide (SOx) and moisture, it is possible to suppress a decrease in CO 2 adsorptivity in repeated use. it can. According to the present invention, it is possible to provide an application of an adsorbent to the removal of carbon dioxide from a gas to be treated containing carbon dioxide, moisture and poisoning components (NOx and / or SOx).
図1は、吸着剤粒子の一実施形態の断面を示す模式図である。FIG. 1 is a schematic view showing a cross section of an embodiment of an adsorbent particle. 図2は、二酸化炭素除去システムの一実施形態を示す模式図である。FIG. 2 is a schematic diagram illustrating an embodiment of a carbon dioxide removal system. 図3は、二酸化炭素除去システムの他の一実施形態を示す模式図である。FIG. 3 is a schematic view showing another embodiment of the carbon dioxide removal system. 図4は、実施例及び比較例の吸着剤のCO吸着量維持率を示すグラフである。FIG. 4 is a graph showing the CO 2 adsorption amount maintenance rate of the adsorbents of Examples and Comparative Examples. 図5は、実施例及び比較例の吸着剤のセリウム/炭素比(モル比)とCO吸着量維持率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the cerium / carbon ratio (molar ratio) of the adsorbents of Examples and Comparative Examples and the CO 2 adsorption amount retention rate.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. The materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
<吸着剤>
 本実施形態に係る吸着剤(二酸化炭素捕捉剤)は、二酸化炭素を含有する処理対象ガス(処理の対象となるガス)から二酸化炭素を除去(例えば回収)するために用いられる吸着剤であって、金属酸化物を含む芯部と、当該芯部の少なくとも一部を被覆する多孔質部(多孔質状の被覆部)と、を備える粒子(吸着剤粒子)を含む。
<Adsorbent>
The adsorbent (carbon dioxide scavenger) according to the present embodiment is an adsorbent used for removing (for example, recovering) carbon dioxide from a processing target gas (gas to be processed) containing carbon dioxide. And a particle (adsorbent particle) comprising a core part including a metal oxide and a porous part (porous covering part) covering at least a part of the core part.
 芯部は、CO吸着性を有する。そのため、二酸化炭素を含有する処理対象ガスを吸着剤に接触させることで、多孔質部に設けられた細孔を通って二酸化炭素が芯部に接触し、二酸化炭素が芯部に吸着される。これにより、処理対象ガスから二酸化炭素が除去される。 The core portion has CO 2 adsorptivity. Therefore, by bringing the gas to be treated containing carbon dioxide into contact with the adsorbent, carbon dioxide comes into contact with the core through the pores provided in the porous portion, and carbon dioxide is adsorbed on the core. Thereby, carbon dioxide is removed from the gas to be treated.
 本実施形態に係る吸着剤は、二酸化炭素を含有する処理対象ガスが窒素酸化物(NOx)及び水分を更に含有する場合であっても、繰り返しの使用におけるCO吸着性の低下を抑制することができる(優れたサイクル特性を得ることができる)。また、本実施形態に係る吸着剤は、二酸化炭素を含有する処理対象ガスが硫黄酸化物(SOx)及び水分を更に含有する場合であっても、繰り返しの使用におけるCO吸着性の低下を抑制することができる(優れたサイクル特性を得ることができる)。本実施形態に係る吸着剤は、二酸化炭素、NOx、SOx及び水分を含有する処理対象ガスから二酸化炭素を除去する場合に特に有用である。本発明者らは、本実施形態に係る吸着剤が前記のような処理対象ガスを用いる場合にも、繰り返しの使用におけるCO吸着性の低下を抑制することができる理由について次のように推察している。 The adsorbent according to the present embodiment suppresses a decrease in CO 2 adsorptivity in repeated use even when the gas to be treated containing carbon dioxide further contains nitrogen oxide (NOx) and moisture. (Excellent cycle characteristics can be obtained). Further, the adsorbent according to the present embodiment suppresses a decrease in CO 2 adsorptivity in repeated use even when the gas to be treated containing carbon dioxide further contains sulfur oxide (SOx) and moisture. (Excellent cycle characteristics can be obtained). The adsorbent according to the present embodiment is particularly useful when removing carbon dioxide from a gas to be treated containing carbon dioxide, NOx, SOx, and moisture. The present inventors speculate as follows why the decrease in CO 2 adsorptivity in repeated use can be suppressed even when the adsorbent according to the present embodiment uses the gas to be treated as described above. is doing.
 まず、二酸化炭素、被毒成分(NOx又はSOx)及び水分を含有する処理対象ガスを用いた際の吸着剤の劣化(CO吸着性の低下)は、吸着剤表面への水分の吸着に起因すると考えられる。すなわち、前記処理対象ガスが吸着剤に接触した場合、被毒成分が吸着剤粒子の表面に吸着した後、水分がその表面に共吸着することで水分と被毒成分とが反応して酸(硝酸又は硫酸)が生成する(一例として、NOxと水分とにより硝酸が生成する反応を下記式に示す)。次いで、この酸と、吸着剤に含まれる金属酸化物とが反応することで金属塩(硝酸塩又は硫酸塩)が生成する。そして、この金属塩によって吸着剤のCO吸着性が低下すると考えられる。一方、本実施形態では、吸着剤粒子の芯部が多孔質部によって被覆されており、当該多孔質部によって芯部表面への水分の吸着が抑制されている。そのため、繰り返しの使用におけるCO吸着性の低下を抑制することができると推察される。
 NO + 1/2O → NO
 3NO + HO → 2HNO + NO
First, the deterioration of the adsorbent (reduction in CO 2 adsorptivity) when using a gas to be treated containing carbon dioxide, poisoning components (NOx or SOx) and moisture is caused by adsorption of moisture on the surface of the adsorbent. I think that. That is, when the gas to be treated comes into contact with the adsorbent, the poisoning component is adsorbed on the surface of the adsorbent particles, and then moisture is co-adsorbed on the surface, whereby the moisture and the poisoning component react to react with the acid ( Nitric acid or sulfuric acid) is generated (as an example, a reaction in which nitric acid is generated by NOx and moisture is shown in the following formula). Next, a metal salt (nitrate or sulfate) is generated by the reaction between this acid and the metal oxide contained in the adsorbent. And it is believed that the decrease in CO 2 adsorptive adsorbents by the metal salt. On the other hand, in this embodiment, the core part of adsorbent particle | grains is coat | covered with the porous part, and the adsorption | suction of the water | moisture content to the core part surface is suppressed by the said porous part. For this reason, it is presumed that a decrease in CO 2 adsorptivity in repeated use can be suppressed.
NO + 1 / 2O 2 → NO 2
3NO 2 + H 2 O → 2HNO 3 + NO
 本実施形態に係る吸着剤は、芯部と、層状の多孔質部とを有するコアシェル構造を備える粒子を含んでいてもよい。芯部の全表面積に占める多孔質部の被覆率は、10%以上であってもよく、50%以上であってもよい。多孔質部の被覆率は、図1に示すように、100%以下であってもよい。図1に示される吸着剤は、金属酸化物を含む芯部3と、芯部3の少なくとも一部を被覆する多孔質部5と、を備える粒子を含んでおり、芯部3の全体は多孔質部5により被覆されている。 The adsorbent according to the present embodiment may include particles having a core-shell structure having a core part and a layered porous part. The coverage of the porous part in the total surface area of the core part may be 10% or more, or 50% or more. The coverage of the porous portion may be 100% or less as shown in FIG. The adsorbent shown in FIG. 1 includes particles including a core portion 3 containing a metal oxide and a porous portion 5 covering at least a part of the core portion 3, and the entire core portion 3 is porous. Covered by the mass part 5.
(芯部)
 芯部は、少なくとも金属酸化物を含む。金属酸化物は、1種の金属元素を含有する金属酸化物であってもよく、複数種の金属元素を含有する複合金属酸化物であってもよい。金属酸化物は、1種を単独で又は2種以上を組み合わせて用いることができる。芯部は、多孔質状であってもよい。
(Core)
The core includes at least a metal oxide. The metal oxide may be a metal oxide containing one kind of metal element or a complex metal oxide containing multiple kinds of metal elements. A metal oxide can be used individually by 1 type or in combination of 2 or more types. The core part may be porous.
 金属酸化物を構成する金属元素としては、特に限定されず、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)等の希土類元素;イットリウム(Y)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、アルミニウム(Al)、クロム(Cr)、In(インジウム)等の遷移金属元素;ナトリウム(Na)、マグネシウム(Mg)、ケイ素(Si)等の典型金属元素などが挙げられる。金属酸化物は、サイクル特性に更に優れる観点から、希土類金属元素及び遷移金属元素からなる群より選ばれる少なくとも1種の金属元素を含むことが好ましく、セリウムを含むことがより好ましい。セリウムを含む金属酸化物としては、CeOx(x=1.5~2.0)等が挙げられ、具体的には、CeO、Ce等が挙げられる。金属酸化物は、シリカ(SiO)、アルミナ(Al)、ゼオライト等であってもよい。金属酸化物は、比表面積の向上、耐熱性の向上、使用金属量の低減等の観点から、シリカ、アルミナ又はゼオライトに、稀土類金属(例えばセリウム)及びジルコニウムからなる群より選択される少なくとも1種の金属を含む酸化物(複合酸化物等)が担持されていてもよい。 The metal element constituting the metal oxide is not particularly limited, and rare earth elements such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd); yttrium (Y), manganese (Mn), Transition metal elements such as iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), aluminum (Al), chromium (Cr), In (indium); sodium (Na), Typical metal elements such as magnesium (Mg) and silicon (Si) are listed. The metal oxide preferably contains at least one metal element selected from the group consisting of rare earth metal elements and transition metal elements, and more preferably contains cerium, from the viewpoint of further improving cycle characteristics. Examples of the metal oxide containing cerium include CeOx (x = 1.5 to 2.0), and specific examples include CeO 2 and Ce 2 O 3 . The metal oxide may be silica (SiO 2 ), alumina (Al 2 O 3 ), zeolite, or the like. The metal oxide is at least one selected from the group consisting of silica, alumina or zeolite, rare earth metal (for example, cerium) and zirconium from the viewpoints of improvement in specific surface area, improvement in heat resistance, reduction in the amount of metal used, and the like. An oxide (a composite oxide or the like) containing a seed metal may be supported.
 ところで、ゼオライトは、水分を含有する処理対象ガスに接触すると、二酸化炭素の吸着性が低下する。そのため、処理対象ガスを吸着剤に接触させる前段で、処理対象ガスから水分を除去することが一般的である。例えば、前記特許文献1に記載の二酸化炭素の除去方法においては、処理対象ガスが水分を含有する場合には、処理対象ガスにおける水分の濃度を400ppm以下に低減することが好ましく、20ppm以下に低減することがより好ましいとされている。一方、セリウムを含む金属酸化物は、処理対象ガスが水分を含有する場合であっても優れたCO吸着性を有する。 By the way, if the zeolite contacts the gas to be treated containing moisture, the adsorptivity of carbon dioxide decreases. Therefore, it is common to remove moisture from the processing target gas before the processing target gas is brought into contact with the adsorbent. For example, in the carbon dioxide removal method described in Patent Document 1, when the gas to be treated contains moisture, the concentration of moisture in the gas to be treated is preferably reduced to 400 ppm or less, and reduced to 20 ppm or less. It is more preferable to do this. On the other hand, the metal oxide containing cerium has excellent CO 2 adsorptivity even when the gas to be treated contains moisture.
 金属酸化物は、例えば、多孔質状の金属酸化物(多孔質金属酸化物)又は層状の金属酸化物(層状金属酸化物)であってもよい。金属酸化物としては、比表面積の大きい金属酸化物が好ましく、このような観点では、多孔質状の金属酸化物が好ましい。 The metal oxide may be, for example, a porous metal oxide (porous metal oxide) or a layered metal oxide (layered metal oxide). As the metal oxide, a metal oxide having a large specific surface area is preferable. From such a viewpoint, a porous metal oxide is preferable.
 層状金属酸化物は、例えば、層状複水酸化物を焼成して得られる酸化物であってもよい。層状複水酸化物は、ハイドロタルサイト状化合物とも呼ばれ、2種類以上の金属元素を含み、その組成は下記式(1)で表すことができる。
 [M(2+) 1-x(3+) (OH)][A(n-) x/n・yHO]・・・(1)
The layered metal oxide may be an oxide obtained by firing a layered double hydroxide, for example. The layered double hydroxide is also called a hydrotalcite compound and contains two or more kinds of metal elements, and the composition thereof can be represented by the following formula (1).
[M (2+) 1-x M (3+) x (OH) 2 ] [A (n−) x / n · yH 2 O] (1)
 上記式においてM(2+)は2価の金属イオンであり、例えば、マグネシウム(Mg)イオン、マンガン(Mn)イオン、鉄(Fe)イオン、コバルト(Co)イオン、ニッケル(Ni)イオン、銅(Cu)イオン及び亜鉛(Zn)イオンからなる群より選択される少なくとも1種の金属イオンを表す。M(3+)は3価の金属イオンであり、例えば、アルミニウム(Al)イオン、クロム(Cr)、鉄(Fe)イオン、コバルト(Co)イオン、及びインジウム(In)イオンからなる群より選択される少なくとも1種のイオンを表す。A(n-)はn価の陰イオンであり、例えば、炭酸イオン、硝酸イオン及び硫酸イオンからなる群より選択される少なくとも1種のイオンを表す。上記式(1)において、M(2+)、M(3+)及びA(n-)は、それぞれ単一のイオンであってもよく、複数種のイオンであってもよい。 In the above formula, M (2+) is a divalent metal ion. For example, magnesium (Mg) ion, manganese (Mn) ion, iron (Fe) ion, cobalt (Co) ion, nickel (Ni) ion, copper ( It represents at least one metal ion selected from the group consisting of Cu) ions and zinc (Zn) ions. M (3+) is a trivalent metal ion, for example, selected from the group consisting of aluminum (Al) ion, chromium (Cr), iron (Fe) ion, cobalt (Co) ion, and indium (In) ion. Represents at least one ion. A (n−) is an n-valent anion and represents, for example, at least one ion selected from the group consisting of carbonate ion, nitrate ion and sulfate ion. In the above formula (1), M (2+) , M (3+) and A (n−) may each be a single ion or a plurality of types of ions.
 金属酸化物を合成する方法としては、含浸法、混練法、共沈法、ゾルゲル法等の調製方法が挙げられる。例えば、セリウムを含む金属酸化物を合成する方法では、セリウムの酸性塩(例えば硝酸塩)を含む溶液に、アンモニア、水酸化ナトリウム、水酸化カルシウム等の塩基性の化合物を加えることでpHを7~10に調整して沈殿させてもよい。沈殿により酸化物が形成される場合には、沈殿物をそのまま用いてもよく、沈殿物を焼成することにより更に酸化させてもよい。 Examples of methods for synthesizing metal oxides include preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method. For example, in the method of synthesizing a metal oxide containing cerium, the pH is adjusted to 7 to 7 by adding a basic compound such as ammonia, sodium hydroxide, calcium hydroxide to a solution containing an acidic salt of cerium (for example, nitrate). It may be adjusted to 10 for precipitation. When an oxide is formed by precipitation, the precipitate may be used as it is or may be further oxidized by baking the precipitate.
 層状複水酸化物を合成する方法としては、含浸法、混練法、共沈法、ゾルゲル法等の調製方法が挙げられる。例えば、層状複水酸化物を合成する方法では、Mgを含む硝酸塩及びAlを含む硝酸塩を含有する溶液に炭酸ナトリウムを添加した後、アンモニア、水酸化ナトリウム、水酸化カルシウム等の塩基性の化合物を加えることでpHを8~11に調整して沈殿させてもよい。得られる沈殿物は層状複水酸化物であり、沈殿物を焼成することで金属酸化物又は複合金属酸化物を得ることができる。焼成温度は、特に限定されず、例えば200℃以上であってもよい。 Examples of the method for synthesizing the layered double hydroxide include preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method. For example, in the method of synthesizing a layered double hydroxide, after adding sodium carbonate to a solution containing nitrate containing Mg and nitrate containing Al, a basic compound such as ammonia, sodium hydroxide, or calcium hydroxide is added. It may be precipitated by adjusting the pH to 8 to 11 by adding. The resulting precipitate is a layered double hydroxide, and a metal oxide or a composite metal oxide can be obtained by firing the precipitate. The firing temperature is not particularly limited, and may be, for example, 200 ° C. or higher.
 芯部は、金属酸化物以外の成分を含んでいてもよい。このような成分としては、金属酸化物の前駆体(例えば金属塩)由来の成分、固体の有機化合物等が挙げられる。固体の有機化合物としては、塩基性を有する有機化合物が好ましく、例えば、アミノ基を有する有機化合物が挙げられる。 The core part may contain components other than the metal oxide. Examples of such components include components derived from metal oxide precursors (for example, metal salts), solid organic compounds, and the like. As the solid organic compound, a basic organic compound is preferable, and examples thereof include an organic compound having an amino group.
 芯部における金属酸化物の含有量は、芯部の全質量を基準として、80質量%以上であってもよく、90質量%以上であってもよく、95質量%以上であってもよい。金属酸化物の含有量は、芯部の全質量を基準として100質量%以下であってもよい。 The content of the metal oxide in the core part may be 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total mass of the core part. The content of the metal oxide may be 100% by mass or less based on the total mass of the core part.
(多孔質部)
 多孔質部は、芯部の少なくとも一部を被覆している。多孔質部は、例えば、層状である。多孔質部は、吸着剤粒子の外部から芯部に通じる複数の細孔を有している。前記細孔は、例えば、二酸化炭素を透過可能な大きさを有しており、例えば、0.001~1μmの細孔径を有する。
(Porous part)
The porous part covers at least a part of the core part. The porous part is, for example, layered. The porous part has a plurality of pores that communicate with the core part from the outside of the adsorbent particles. The pores have a size that allows carbon dioxide to pass through, for example, and have a pore diameter of 0.001 to 1 μm, for example.
 多孔質部は、例えば、金属単体、金属酸化物、炭素材料及び有機化合物(樹脂等)からなる群より選択される少なくとも1種を含む。多孔質部は、炭素材料を含むことが好ましい。多孔質部が炭素材料を含む場合、処理対象ガス中の水分が多孔質部に吸着されやすいため、サイクル特性に更に優れる。多孔質部が炭素材料を含む場合、多孔質部は、アルカリ金属、アルカリ土類金属、酸素、窒素、ホウ素及び水素からなる群より選択される少なくとも1種の元素を更に含むことが好ましい。これらの元素は、炭素材料とは別に多孔質部に含まれていてもよく、炭素材料中に組み込まれていてもよい。ただし、金属単体及び金属酸化物が被毒成分(NOx又はSOx)及び水分を含む処理対象ガスと接触した場合、上述のメカニズムによって金属塩(金属硝酸塩又は金属硫酸塩)が生成すると考えられるため、吸着剤粒子の表面は、サイクル特性に更に優れる観点から、金属単体及び金属酸化物を含まないことが好ましい。 The porous portion includes at least one selected from the group consisting of a simple metal, a metal oxide, a carbon material, and an organic compound (resin or the like), for example. The porous portion preferably contains a carbon material. When the porous portion contains a carbon material, the moisture in the gas to be treated is easily adsorbed by the porous portion, and therefore the cycle characteristics are further excellent. When the porous part contains a carbon material, the porous part preferably further contains at least one element selected from the group consisting of alkali metals, alkaline earth metals, oxygen, nitrogen, boron and hydrogen. These elements may be contained in the porous portion separately from the carbon material, or may be incorporated in the carbon material. However, when a metal simple substance and a metal oxide come into contact with a poisoning component (NOx or SOx) and a gas to be treated containing moisture, it is considered that a metal salt (metal nitrate or metal sulfate) is generated by the mechanism described above. The surface of the adsorbent particles preferably does not contain a single metal or a metal oxide from the viewpoint of further improving cycle characteristics.
 炭素材料としては、グラファイト、アモルファスカーボン、カーボンファイバー及びカーボンナノチューブからなる群より選択される少なくとも1種を用いることができる。炭素材料は、1種を単独で又は2種以上を組み合わせて用いることができる。 As the carbon material, at least one selected from the group consisting of graphite, amorphous carbon, carbon fiber, and carbon nanotube can be used. A carbon material can be used individually by 1 type or in combination of 2 or more types.
 炭素材料は、炭素材料の前駆体の焼成物であってもよい。炭素材料の前駆体としては、フェノール樹脂、ナフタリンスルホン酸樹脂、ポリ塩化ビニリデン、カルボキシルメチルセルロース、ポリアクリロニトリル樹脂、ポリ塩化ビニル、ギルソナイトコークス、石油系又は石炭系メソフェーズピッチ、ピロール、ポリピロール、ポリビニルピロール、3-メチルポリピロール、ビニルピリジン、ポリビニルピリジン、イミダゾール、2-メチルイミダゾ-ル、アニリン、ポリアニリン、ポリアミノビスマレイミド、ポリイミド、ベンゾイミダゾ-ル、ポリベンゾイミダゾ-ル、ポリアミド、アクリロニトリル、ポリアクリロニトリル、キチン、キトサン、絹、毛、ポリアミノ酸、核酸、DNA、RNA、ヒドラジン、ヒドラジド、尿素、サレン、ポリカルバゾール、ポリビスマレイミド、トリアジン、メラミン、メラミン樹脂、ポリアミドイミド樹脂、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、フタロシアニン、フェナントロリン、リボフラビン等が挙げられる。炭素材料の前駆体は、1種を単独で又は2種以上を組み合わせて用いることができる。 The carbon material may be a fired product of a carbon material precursor. As precursors of carbon materials, phenol resin, naphthalene sulfonic acid resin, polyvinylidene chloride, carboxymethyl cellulose, polyacrylonitrile resin, polyvinyl chloride, gilsonite coke, petroleum-based or coal-based mesophase pitch, pyrrole, polypyrrole, polyvinylpyrrole , 3-methylpolypyrrole, vinylpyridine, polyvinylpyridine, imidazole, 2-methylimidazole, aniline, polyaniline, polyaminobismaleimide, polyimide, benzimidazole, polybenzoimidazole, polyamide, acrylonitrile, polyacrylonitrile, chitin , Chitosan, silk, hair, polyamino acid, nucleic acid, DNA, RNA, hydrazine, hydrazide, urea, salen, polycarbazole, polybismaleimide, triazine Melamine, melamine resin, polyamide-imide resins, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, phthalocyanine, phenanthroline, riboflavin, and the like. The precursor of a carbon material can be used individually by 1 type or in combination of 2 or more types.
 多孔質部における炭素材料の含有量は、多孔質部の全質量を基準として、80質量%以上であってもよく、90質量%以上であってもよく、95質量%以上であってもよい。炭素材料の含有量は、多孔質部の全質量を基準として100質量%以下であってもよい。 The content of the carbon material in the porous part may be 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total mass of the porous part. . The content of the carbon material may be 100% by mass or less based on the total mass of the porous portion.
 多孔質部の厚さは、1nm~100μmが好ましい。多孔質部の厚さが1nm以上であれば、優れたサイクル特性が得られやすい。多孔質部の厚さが100μm以下であれば、充分なCO吸着性が得られやすい。 The thickness of the porous part is preferably 1 nm to 100 μm. If the thickness of the porous portion is 1 nm or more, excellent cycle characteristics are easily obtained. If the thickness of the porous portion is 100 μm or less, sufficient CO 2 adsorption is easily obtained.
 芯部の少なくとも一部を多孔質部で被覆する方法としては、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法等の物理的調製方法;化学反応を利用した調製方法などが挙げられる。例えば、含浸法では、焼成後に吸着剤粒子の芯部を構成する材料(芯材)を溶媒中に分散させた後、多孔質部の前駆体をその溶媒へ添加し、さらに、溶媒を除去することにより吸着剤の前駆体(吸着剤粒子の前駆体)を得る。次いで、吸着剤の前駆体(吸着剤粒子の前駆体)を焼成することで吸着剤(吸着剤粒子)を製造できる。焼成温度は、例えば200℃以上であってもよい。溶媒は、多孔質部の前駆体を溶解し得るものであれば特に限定されない。上記方法では、芯材及び多孔質部の前駆体の添加量、多孔質部の前駆体の種類等を調整することにより、吸着剤中の金属元素(例えばセリウム)に対する炭素のモル比、多孔質部における炭素材料の含有量、多孔質部の被覆率及び厚さ等を調整することができる。 As a method of covering at least a part of the core portion with the porous portion, a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method; a preparation method using a chemical reaction Etc. For example, in the impregnation method, after the material (core material) constituting the core part of the adsorbent particles is dispersed in the solvent after firing, the precursor of the porous part is added to the solvent, and the solvent is further removed. Thus, an adsorbent precursor (adsorbent particle precursor) is obtained. Next, the adsorbent (adsorbent particles) can be produced by firing the adsorbent precursor (adsorbent particle precursor). The firing temperature may be, for example, 200 ° C. or higher. The solvent is not particularly limited as long as it can dissolve the precursor of the porous portion. In the above method, the molar ratio of carbon to the metal element (for example, cerium) in the adsorbent is adjusted by adjusting the addition amount of the core material and the precursor of the porous portion, the kind of the precursor of the porous portion, and the like. The content of the carbon material in the part, the coverage and thickness of the porous part can be adjusted.
 多孔質部の前駆体は、例えば、上述の炭素材料の前駆体を含む。この場合、炭素材料の前駆体が焼成されることで炭素材料が得られる。多孔質部の前駆体は、炭素材料の前駆体の他に、アルカリ金属又はアルカリ土類金属の塩(例えば、硝酸塩、炭酸塩、硫酸塩及び酢酸塩);酸素、窒素、ホウ素、水素等の元素を有する無機化合物などを更に含んでいてもよい。多孔質部の前駆体がアルカリ金属又はアルカリ土類金属の塩を含む場合、アルカリ金属又はアルカリ土類金属を含む多孔質部が得られる。また、多孔質部の前駆体が酸素、窒素、ホウ素、水素等の元素を有する無機化合物を含む場合、これらの元素を含む多孔質部が得られる。なお、酸素、窒素、ホウ素、水素等の元素を含む多孔質部を得る方法としては、上記の他に、これらの元素を含むガス(例えば、酸素ガス、アンモニアガス及び水素ガス)を用いて焼成を行う方法、炭素材料の前駆体として、これらの元素を有する有機化合物を用いる方法等が挙げられる。本実施形態では、これらの方法を組み合わせてもよい。 The precursor of the porous portion includes, for example, the above-described carbon material precursor. In this case, the carbon material is obtained by firing the precursor of the carbon material. The precursor of the porous portion includes, in addition to the precursor of the carbon material, an alkali metal or alkaline earth metal salt (for example, nitrate, carbonate, sulfate and acetate); oxygen, nitrogen, boron, hydrogen, etc. It may further contain an inorganic compound having an element. When the precursor of the porous part contains an alkali metal or alkaline earth metal salt, a porous part containing an alkali metal or alkaline earth metal is obtained. Moreover, when the precursor of a porous part contains the inorganic compound which has elements, such as oxygen, nitrogen, boron, and hydrogen, the porous part containing these elements is obtained. In addition to the above, as a method for obtaining a porous portion containing elements such as oxygen, nitrogen, boron, and hydrogen, firing is performed using a gas containing these elements (for example, oxygen gas, ammonia gas, and hydrogen gas). And a method using an organic compound containing these elements as a precursor of the carbon material. In the present embodiment, these methods may be combined.
 本実施形態に係る吸着剤粒子は、芯部及び多孔質部のみからなっていてもよく、芯部及び多孔質部以外の部分を更に備えていてもよい。 The adsorbent particles according to this embodiment may be composed of only a core part and a porous part, and may further include parts other than the core part and the porous part.
 吸着剤粒子の形状は、特に限定されず、例えば、粉状、ペレット状、粒状、ハニカム状等であってもよい。吸着剤粒子の形状は、必要となる反応速度、圧力損失、吸着剤に吸着されるガス(吸着ガス)の純度(CO純度)等を勘案して決定すればよい。 The shape of the adsorbent particles is not particularly limited, and may be, for example, a powder shape, a pellet shape, a granular shape, a honeycomb shape, or the like. The shape of the adsorbent particles may be determined in consideration of the required reaction rate, pressure loss, purity of the gas (adsorbed gas) adsorbed on the adsorbent (CO 2 purity), and the like.
 吸着剤粒子の平均粒径は、例えば、0.1~10mmであってもよい。平均粒径は、レーザ回折計、走査電子顕微鏡等により測定できる。 The average particle diameter of the adsorbent particles may be, for example, 0.1 to 10 mm. The average particle diameter can be measured with a laser diffractometer, a scanning electron microscope, or the like.
 吸着剤粒子の比表面積は、10~500m/gが好ましい。吸着剤粒子の比表面積が10m/g以上であれば、CO吸着量が高く、吸着剤として所望の性能が得られやすい。吸着剤粒子の比表面積が500m/g以下であれば、多孔質部の割合が高くなりすぎず、体積あたりのCO吸着量が高くなり、吸着剤として所望の性能が得られやすい。比表面積は、窒素吸着法を用いたBELSORP-mini(日本ベル株式会社製)によりBET多点法で測定できる。具体的には、吸着温度を77Kとし、飽和蒸気圧Pは実測値を用い、吸着ガス圧PはPに対するPを0.005~0.5の範囲で変化させる。なお、窒素の吸着断面積は0.162nmとする。 The specific surface area of the adsorbent particles is preferably 10 to 500 m 2 / g. When the specific surface area of the adsorbent particles is 10 m 2 / g or more, the CO 2 adsorption amount is high and desired performance as an adsorbent is easily obtained. When the specific surface area of the adsorbent particles is 500 m 2 / g or less, the ratio of the porous portion does not become too high, the amount of CO 2 adsorption per volume increases, and desired performance as an adsorbent is easily obtained. The specific surface area can be measured by the BET multipoint method using BELSORP-mini (made by Nippon Bell Co., Ltd.) using a nitrogen adsorption method. Specifically, the adsorption temperature is set to 77 K, the measured value is used for the saturated vapor pressure P 0 , and the adsorption gas pressure P changes P with respect to P 0 in the range of 0.005 to 0.5. Note that the adsorption cross-sectional area of nitrogen is 0.162 nm 2 .
 吸着剤粒子の含有量は、吸着剤の全質量を基準として、80質量%以上であってもよく、90質量%以上であってもよく、95質量%以上であってもよい。炭素材料の含有量は、多孔質部の全質量を基準として100質量%以下であってもよい。 The content of the adsorbent particles may be 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total mass of the adsorbent. The content of the carbon material may be 100% by mass or less based on the total mass of the porous portion.
 吸着剤中の金属元素に対する炭素のモル比(炭素/金属元素。炭素成分の合計量/金属元素の合計量)は、下記の範囲であることが好ましい。前記モル比(炭素/金属元素)は、多孔質部による充分な被覆量が得られやすく、優れたサイクル特性が得られやすい観点から、1.3以上が好ましく、1.3より大きいことがより好ましく、1.4以上が更に好ましく、1.5以上が特に好ましい。前記モル比(炭素/金属元素)は、多孔質部の内部における水分残存量が多くなりすぎず、二酸化炭素の吸着が阻害されにくいことから、COの吸脱着サイクルを繰り返した場合であってもCO吸着性が低下しにくい観点から、11.0以下が好ましく、11.0未満がより好ましく、10.0以下が更に好ましく、8.0以下が特に好ましい。前記モル比(炭素/金属元素)は、高いCO吸着量が得られやすい観点から、9.0以下が好ましく、8.0以下がより好ましく、7.0以下が更に好ましく、6.0以下が特に好ましく、4.0以下が極めて好ましく、3.0以下が非常に好ましく、2.0以下がより一層好ましい。これらの観点から、前記モル比(炭素/金属元素)は、1.3~11.0が好ましい。 The molar ratio of carbon to metal element in the adsorbent (carbon / metal element. Total amount of carbon components / total amount of metal element) is preferably in the following range. The molar ratio (carbon / metal element) is preferably 1.3 or more and more preferably greater than 1.3 from the viewpoint that a sufficient amount of coverage by the porous portion is easily obtained and excellent cycle characteristics are easily obtained. Preferably, 1.4 or more is more preferable, and 1.5 or more is particularly preferable. The molar ratio (carbon / metal element) is a case where the CO 2 adsorption / desorption cycle is repeated because the amount of water remaining in the porous portion is not excessive and adsorption of carbon dioxide is difficult to be inhibited. However, from the viewpoint that the CO 2 adsorptivity is hardly lowered, it is preferably 11.0 or less, more preferably less than 11.0, still more preferably 10.0 or less, and particularly preferably 8.0 or less. The molar ratio (carbon / metal element) is preferably 9.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, and 6.0 or less from the viewpoint of easily obtaining a high CO 2 adsorption amount. Is particularly preferable, 4.0 or less is very preferable, 3.0 or less is very preferable, and 2.0 or less is even more preferable. From these viewpoints, the molar ratio (carbon / metal element) is preferably 1.3 to 11.0.
 吸着剤中のセリウムに対する炭素のモル比(炭素/セリウム)は、下記の範囲であることが好ましい。前記モル比(炭素/セリウム)は、多孔質部による充分な被覆量が得られやすく、優れたサイクル特性が得られやすい観点から、1.3以上が好ましく、1.3より大きいことがより好ましく、1.4以上が更に好ましく、1.5以上が特に好ましい。前記モル比(炭素/セリウム)は、多孔質部の内部における水分残存量が多くなりすぎず、二酸化炭素の吸着が阻害されにくいことから、COの吸脱着サイクルを繰り返した場合であってもCO吸着性が低下しにくい観点から、11以下が好ましく、11.0未満がより好ましく、10.0以下が更に好ましく、8.0以下が特に好ましい。前記モル比(炭素/セリウム)は、高いCO吸着量が得られやすい観点から、9.0以下が好ましく、8.0以下がより好ましく、7.0以下が更に好ましく、6.0以下が特に好ましく、4.0以下が極めて好ましく、3.0以下が非常に好ましく、2.0以下がより一層好ましい。これらの観点から、前記モル比(炭素/セリウム)は、1.3~11.0が好ましい。 The molar ratio of carbon to cerium (carbon / cerium) in the adsorbent is preferably in the following range. The molar ratio (carbon / cerium) is preferably 1.3 or more, more preferably greater than 1.3, from the viewpoint that a sufficient amount of coating by the porous portion is easily obtained and excellent cycle characteristics are easily obtained. 1.4 or more is more preferable, and 1.5 or more is particularly preferable. The molar ratio (carbon / cerium) is such that even if the CO 2 adsorption / desorption cycle is repeated because the amount of water remaining in the porous portion is not excessive and adsorption of carbon dioxide is difficult to be inhibited. From the viewpoint that the CO 2 adsorptivity is hardly lowered, it is preferably 11 or less, more preferably less than 11.0, further preferably 10.0 or less, and particularly preferably 8.0 or less. The molar ratio (carbon / cerium) is preferably 9.0 or less, more preferably 8.0 or less, still more preferably 7.0 or less, and 6.0 or less from the viewpoint of easily obtaining a high CO 2 adsorption amount. Particularly preferred is 4.0 or less, very preferred is 3.0 or less, and most preferred is 2.0 or less. From these viewpoints, the molar ratio (carbon / cerium) is preferably 1.3 to 11.0.
 前記モル比は、蛍光X線分析装置(ZSX Primus2、株式会社リガク製)を用いた吸着剤の組成分析により測定できる。測定条件及び測定方法は、以下のとおりである。
 X線管:Rhターゲット
 X線出力:3kW
 測定室雰囲気:真空
 分析径:10mmΦ
 測定方法:感度ライブラリーを用いたファンダメンタルパラメーター法により定量
The molar ratio can be measured by composition analysis of the adsorbent using a fluorescent X-ray analyzer (ZSX Primus 2, manufactured by Rigaku Corporation). Measurement conditions and measurement methods are as follows.
X-ray tube: Rh target X-ray output: 3 kW
Measurement chamber atmosphere: Vacuum Analysis diameter: 10mmΦ
Measurement method: quantified by the fundamental parameter method using a sensitivity library
<二酸化炭素の除去方法>
 次に、本実施形態に係る吸着剤を用いた二酸化炭素の除去方法について説明する。二酸化炭素の除去方法は、二酸化炭素を含有する処理対象ガスを吸着剤に接触させて二酸化炭素を吸着剤に吸着させる吸着工程を備える。
<Method for removing carbon dioxide>
Next, a method for removing carbon dioxide using the adsorbent according to the present embodiment will be described. The method for removing carbon dioxide includes an adsorption step in which a treatment target gas containing carbon dioxide is brought into contact with an adsorbent to adsorb carbon dioxide onto the adsorbent.
 処理対象ガスは、例えば、少なくとも二酸化炭素(CO)及び水分(水蒸気、HO)を含有する。処理対象ガスは、二酸化炭素以外の成分を含有してもよく、例えば、窒素酸化物(NOx)、硫黄酸化物(SOx)、酸素(O)、窒素(N)、一酸化炭素(CO)、揮発性有機物(VOC)等を含有していてもよい。本実施形態に係る吸着剤は、処理対象ガスが、二酸化炭素と、水分と、NOx及び/又はSOxとを含有する場合に優れたサイクル特性を発揮できる。このような処理対象ガスの具体例としては、プラント(特に大規模プラント)等から排出されるガスなどが挙げられる。 The gas to be treated contains, for example, at least carbon dioxide (CO 2 ) and moisture (water vapor, H 2 O). The gas to be treated may contain components other than carbon dioxide, for example, nitrogen oxide (NOx), sulfur oxide (SOx), oxygen (O 2 ), nitrogen (N 2 ), carbon monoxide (CO ), Volatile organic substances (VOC), and the like. The adsorbent according to the present embodiment can exhibit excellent cycle characteristics when the gas to be treated contains carbon dioxide, moisture, NOx and / or SOx. Specific examples of such a gas to be treated include gas discharged from a plant (particularly a large-scale plant).
 処理対象ガスにおけるCO濃度は、特に限定されず、例えば、0.0001~0.01体積%であってもよく、0.011~0.1体積%であってもよく、0.11~10体積%であってもよい。一方、セリウムを含む金属酸化物を吸着剤が含む場合、CO濃度は、処理対象ガスの全体積基準で、1000ppm以下であってもよく、750ppm以下であってもよく、500ppm以下であってもよい。セリウムを含む金属酸化物は、CO濃度が1000ppm以下である場合に優れたCO吸着性を発揮できる。そのため、セリウムを含む金属酸化物を吸着剤が含む場合にCO濃度が上記範囲であれば、優れたCO吸着性が確認されやすい。また、セリウムを含む金属酸化物を吸着剤が含む場合、CO濃度は、二酸化炭素の除去量が多くなりやすい観点から、処理対象ガスの全体積基準で、100ppm以上であってもよく、200ppm以上であってもよく、400ppm以上であってもよい。 The CO 2 concentration in the gas to be treated is not particularly limited, and may be, for example, 0.0001 to 0.01% by volume, 0.011 to 0.1% by volume, or 0.11 to 0.1% by volume. It may be 10% by volume. On the other hand, when the adsorbent contains a metal oxide containing cerium, the CO 2 concentration may be 1000 ppm or less, 750 ppm or less, or 500 ppm or less based on the total volume of the gas to be treated. Also good. The metal oxide containing cerium can exhibit excellent CO 2 adsorption when the CO 2 concentration is 1000 ppm or less. Therefore, when the adsorbent contains a metal oxide containing cerium and the CO 2 concentration is in the above range, excellent CO 2 adsorbability is easily confirmed. Further, when the adsorbent contains a metal oxide containing cerium, the CO 2 concentration may be 100 ppm or more on the basis of the total volume of the gas to be treated, from the viewpoint of easy removal of carbon dioxide, and 200 ppm The above may be sufficient and 400 ppm or more may be sufficient.
 処理対象ガスがNOxを含有する場合、処理対象ガスにおけるNOx濃度は、優れたサイクル特性が確認されやすい観点から、処理対象ガスの全体積基準で、0.0001体積%以上であってもよく、0.001体積%以上であってもよく、0.01体積%以上であってもよい。NOx濃度は、CO吸着性が維持されやすい観点から、処理対象ガスの全体積基準で、10体積%以下であってもよく、1体積%以下であってもよく、0.1体積%以下であってもよい。 When the processing target gas contains NOx, the NOx concentration in the processing target gas may be 0.0001% by volume or more based on the total volume of the processing target gas from the viewpoint of easy confirmation of excellent cycle characteristics. 0.001 volume% or more may be sufficient and 0.01 volume% or more may be sufficient. The NOx concentration may be 10% by volume or less, 1% by volume or less, or 0.1% by volume or less, based on the total volume of the gas to be treated, from the viewpoint of easily maintaining CO 2 adsorption. It may be.
 処理対象ガスがSOxを含有する場合、処理対象ガスにおけるSOx濃度は、優れたサイクル特性が確認されやすい観点から、処理対象ガスの全体積基準で、0.0001体積%以上であってもよく、0.001体積%以上であってもよく、0.01体積%以上であってもよい。SOx濃度は、CO吸着性が維持されやすい観点から、処理対象ガスの全体積基準で、10体積%以下であってもよく、1体積%以下であってもよく、0.1体積%以下であってもよい。 When the processing target gas contains SOx, the SOx concentration in the processing target gas may be 0.0001% by volume or more on the basis of the total volume of the processing target gas from the viewpoint of easy confirmation of excellent cycle characteristics. 0.001 volume% or more may be sufficient and 0.01 volume% or more may be sufficient. The SOx concentration may be 10% by volume or less, 1% by volume or less, or 0.1% by volume or less, based on the total volume of the gas to be treated, from the viewpoint of easily maintaining CO 2 adsorption. It may be.
 処理対象ガスにおける水分濃度は、優れたサイクル特性が確認されやすい観点から、処理対象ガスの全体積基準で、0.0001体積%以上であってもよく、0.001体積%以上であってもよく、0.01体積%以上であってもよい。水分濃度は、CO吸着性が維持されやすい観点から、処理対象ガスの全体積基準で、10体積%以下であってもよく、1体積%以下であってもよく、0.1体積%以下であってもよい。特に、セリウムを含む金属酸化物を吸着剤が含む場合、水分濃度は上記範囲であることが好ましい。 The moisture concentration in the gas to be processed may be 0.0001% by volume or more, or 0.001% by volume or more based on the total volume of the gas to be processed, from the viewpoint of easy confirmation of excellent cycle characteristics. It may be 0.01% by volume or more. The water concentration may be 10% by volume or less, 1% by volume or less, or 0.1% by volume or less, based on the total volume of the gas to be treated, from the viewpoint that the CO 2 adsorptivity is easily maintained. It may be. In particular, when the adsorbent contains a metal oxide containing cerium, the moisture concentration is preferably in the above range.
 吸着工程において処理対象ガスを吸着剤に接触させる際の吸着剤の温度Tを調整することにより、CO吸着量を調整することができる。温度Tが高いほど吸着剤のCO吸着量が少なくなりやすい。温度Tは、-20~100℃であってもよく、10~40℃であってもよい。 The amount of CO 2 adsorption can be adjusted by adjusting the temperature T 1 of the adsorbent when the gas to be treated is brought into contact with the adsorbent in the adsorption step. The higher the temperature T 1, the smaller the CO 2 adsorption amount of the adsorbent. The temperature T 1 may be −20 to 100 ° C. or 10 to 40 ° C.
 吸着剤の温度Tは、吸着剤を加熱又は冷却することにより調整されてもよく、加熱及び冷却を併用してもよい。また、処理対象ガスを加熱又は冷却することにより間接的に吸着剤の温度Tを調整してもよい。吸着剤を加熱する方法としては、熱媒(例えば、加熱されたガス又は液体)を直接吸着剤に接触させる方法;伝熱管等に熱媒(例えば、加熱されたガス又は液体)を流通させ、伝熱面からの熱伝導により吸着剤を加熱する方法;電気的に発熱させた電気炉等により吸着剤を加熱する方法などが挙げられる。吸着剤を冷却する方法としては、冷媒(例えば、冷却されたガス又は液体)を直接吸着剤に接触させる方法;伝熱管等に冷媒(例えば、冷却されたガス又は液体)を流通させ、伝熱面からの熱伝導により冷却する方法などが挙げられる。 Temperature T 1 of the adsorbent may be adjusted by heating or cooling the adsorbent may be used in combination of heating and cooling. Further, the temperature T 1 of the indirect adsorbent may be adjusted by heating or cooling the processed gas. As a method of heating the adsorbent, a method in which a heat medium (for example, heated gas or liquid) is brought into direct contact with the adsorbent; a heat medium (for example, heated gas or liquid) is circulated through a heat transfer tube, Examples include a method of heating the adsorbent by heat conduction from the heat transfer surface; a method of heating the adsorbent by an electric furnace that generates heat electrically, and the like. As a method for cooling the adsorbent, a method in which a refrigerant (for example, a cooled gas or liquid) is directly brought into contact with the adsorbent; a refrigerant (for example, a cooled gas or liquid) is circulated through a heat transfer tube or the like, and heat transfer is performed. The method of cooling by the heat conduction from a surface etc. is mentioned.
 吸着工程において、吸着剤の存在する雰囲気の全圧(例えば、吸着剤を含む反応容器内の全圧)を調整することにより、CO吸着量を調整することができる。全圧が高いほど吸着剤のCO吸着量が多くなりやすい。全圧は、二酸化炭素の除去効率が更に向上する観点から、0.1気圧以上が好ましく、1気圧以上がより好ましい。全圧は、省エネルギーの観点から、10気圧以下であってもよく、2気圧以下であってもよく、1.3気圧以下であってもよい。全圧は、5気圧以上であってもよい。 In the adsorption step, the CO 2 adsorption amount can be adjusted by adjusting the total pressure of the atmosphere in which the adsorbent is present (for example, the total pressure in the reaction vessel containing the adsorbent). The higher the total pressure, the greater the amount of CO 2 adsorbed by the adsorbent. From the viewpoint of further improving the carbon dioxide removal efficiency, the total pressure is preferably 0.1 atm or more, and more preferably 1 atm or more. The total pressure may be 10 atm or less, 2 atm or less, or 1.3 atm or less from the viewpoint of energy saving. The total pressure may be 5 atmospheres or more.
 吸着剤の存在する雰囲気の全圧は、加圧又は減圧することにより調整されてもよく、加圧及び減圧を併用してもよい。全圧を調整する方法としては、ポンプ、コンプレッサー等により機械的に圧力を調整する方法;吸着剤の周辺雰囲気の圧力とは異なる圧力を有するガスを導入する方法などが挙げられる。 The total pressure of the atmosphere in which the adsorbent is present may be adjusted by pressurization or depressurization, and pressurization and depressurization may be used in combination. Examples of a method for adjusting the total pressure include a method in which the pressure is mechanically adjusted by a pump, a compressor, and the like; a method in which a gas having a pressure different from the pressure in the ambient atmosphere of the adsorbent is introduced.
 本実施形態に係る二酸化炭素の除去方法は、前記吸着工程後に、二酸化炭素を吸着剤から脱着(脱離)させる脱着工程を更に備えていてもよい。 The carbon dioxide removal method according to this embodiment may further include a desorption step of desorbing (desorbing) carbon dioxide from the adsorbent after the adsorption step.
 二酸化炭素を吸着剤から脱着させる方法としては、吸着量の温度依存性を利用する方法(温度スイング法。温度変化に伴う吸着剤のCO吸着量の差を利用する方法);吸着量の圧力依存性を利用する方法(圧力スイング法。圧力変化に伴う吸着剤のCO吸着量の差を利用する方法)等が挙げられ、これらの方法を併用してもよい(温度・圧力スイング法)。 As a method for desorbing carbon dioxide from the adsorbent, a method using the temperature dependence of the adsorption amount (temperature swing method; a method using the difference in the CO 2 adsorption amount of the adsorbent with temperature change); pressure of the adsorption amount The method using pressure dependence (pressure swing method. The method using the difference in the amount of CO 2 adsorbed by the adsorbent accompanying the pressure change) can be used, and these methods may be used in combination (temperature / pressure swing method). .
 吸着量の温度依存性を利用する方法では、例えば、脱着工程における吸着剤の温度を吸着工程よりも高くする。吸着剤を加熱する方法としては、上述した吸着工程において吸着剤を加熱する方法と同様の方法;周辺の排熱を利用する方法等が挙げられる。加熱に要するエネルギーを抑える観点からは、周辺の排熱を利用することが好ましい。 In the method using the temperature dependency of the adsorption amount, for example, the temperature of the adsorbent in the desorption process is set higher than that in the adsorption process. Examples of the method for heating the adsorbent include the same method as the method for heating the adsorbent in the above-described adsorption step; the method using the peripheral exhaust heat, and the like. From the viewpoint of reducing the energy required for heating, it is preferable to use the peripheral exhaust heat.
 吸着工程における吸着剤の温度Tと、脱着工程における吸着剤の温度Tとの温度差(T-T)は、省エネルギーの観点から、200℃以下であってもよく、100℃以下であってもよく、50℃以下であってもよい。温度差(T-T)は、吸着剤に吸着した二酸化炭素を脱着しやすい観点から、10℃以上であってもよく、20℃以上であってもよく、30℃以上であってもよい。脱着工程における吸着剤の温度Tは、例えば、40~300℃であってもよく、50~200℃であってもよく、80~120℃であってもよい。 The temperature difference (T 2 −T 1 ) between the adsorbent temperature T 1 in the adsorption step and the adsorbent temperature T 2 in the desorption step may be 200 ° C. or less, or 100 ° C. or less from the viewpoint of energy saving. It may be 50 degrees C or less. The temperature difference (T 2 −T 1 ) may be 10 ° C. or higher, 20 ° C. or higher, or 30 ° C. or higher from the viewpoint of easy desorption of carbon dioxide adsorbed on the adsorbent. Good. Temperature T 2 of the adsorbent in the desorption step, for example, may be 40 ~ 300 ° C., may be 50 ~ 200 ° C., may be 80 ~ 120 ° C..
 吸着量の圧力依存性を利用する方法では、吸着剤の存在する雰囲気の全圧(例えば、吸着剤を含む容器内の全圧)が高いほどCO吸着量が多くなることから、吸着工程の全圧よりも脱着工程の全圧が低圧となるように変化させることが好ましい。全圧は、加圧又は減圧することにより調整されてもよく、加圧及び減圧を併用してもよい。全圧を調整する方法としては、例えば、上述した吸着工程と同様の方法が挙げられる。脱着工程における全圧は、CO脱離量が多くなる観点から、周辺大気の圧力(例えば1気圧)であってもよく、1気圧未満であってもよい。 In the method using the pressure dependency of the adsorption amount, the CO 2 adsorption amount increases as the total pressure of the atmosphere in which the adsorbent exists (for example, the total pressure in the container containing the adsorbent) increases. It is preferable to change so that the total pressure in the desorption process is lower than the total pressure. The total pressure may be adjusted by pressurizing or depressurizing, and pressurization and depressurization may be used in combination. As a method for adjusting the total pressure, for example, a method similar to the adsorption step described above can be used. The total pressure in the desorption process may be the ambient atmospheric pressure (for example, 1 atmosphere) or less than 1 atmosphere from the viewpoint of increasing the amount of CO 2 desorption.
 脱着工程により脱着して回収された二酸化炭素は、二酸化炭素を利用する分野において再利用してもよい。例えば、温室栽培向けハウス等では、CO濃度を高めることで植物の成長が促進されることから、CO濃度を1000ppmレベルに高める場合がある。そのため、回収された二酸化炭素を、CO濃度を高めることに再利用してもよい。 The carbon dioxide desorbed and recovered by the desorption process may be reused in the field where carbon dioxide is used. For example, in greenhouse cultivation for house or the like, since the plant growth by increasing the CO 2 concentration is accelerated, which may increase the CO 2 concentration 1000ppm level. Therefore, the recovered carbon dioxide may be reused to increase the CO 2 concentration.
 脱着工程後の吸着剤は、再度、吸着工程に用いることができる。本実施形態に係る二酸化炭素の除去方法では、脱着工程後、吸着工程及び脱着工程を繰り返し行ってもよい。脱着工程において吸着剤を加熱した場合、上述の方法により吸着剤を冷却して吸着工程に用いてもよい。二酸化炭素を含有するガス(例えば、二酸化炭素を含有する処理対象ガス)を吸着剤に接触させることにより吸着剤を冷却してもよい。 The adsorbent after the desorption process can be used again in the adsorption process. In the carbon dioxide removal method according to this embodiment, the adsorption step and the desorption step may be repeatedly performed after the desorption step. When the adsorbent is heated in the desorption step, the adsorbent may be cooled by the above-described method and used in the adsorption step. The adsorbent may be cooled by bringing a gas containing carbon dioxide (for example, a treatment target gas containing carbon dioxide) into contact with the adsorbent.
 処理対象ガスがSOx、NOx、煤塵等を含有する場合(例えば、処理対象ガスが、石炭火力発電所等から排出される排ガスである場合)、本実施形態に係る二酸化炭素の除去方法は、吸着剤のCO吸着性を維持しやすい観点から、吸着工程の前に、処理対象ガスからSOx、NOx、煤塵等の不純物を除去する不純物除去工程を更に備えてもよい。不純物除去工程は、脱硝装置、脱硫装置、脱塵装置等の除去装置を用いて行うことが可能であり、これらの装置の下流側において、処理対象ガスを吸着剤に接触させることができる。また、吸着剤にSOx、NOx、煤塵等の不純物が吸着した場合には、吸着剤を交換することの他、吸着剤を加熱することによって、吸着剤に吸着した不純物を除去することもできる。 When the gas to be treated contains SOx, NOx, dust, or the like (for example, when the gas to be treated is exhaust gas discharged from a coal-fired power plant or the like), the carbon dioxide removal method according to this embodiment uses adsorption. From the viewpoint of easily maintaining the CO 2 adsorptivity of the agent, an impurity removal step of removing impurities such as SOx, NOx, and dust from the gas to be treated may be further provided before the adsorption step. The impurity removal step can be performed using a removal device such as a denitration device, a desulfurization device, or a dust removal device, and the gas to be treated can be brought into contact with the adsorbent on the downstream side of these devices. Further, when impurities such as SOx, NOx, and dust are adsorbed on the adsorbent, the adsorbent can be removed by heating the adsorbent as well as exchanging the adsorbent.
 本実施形態に係る二酸化炭素の除去方法では、前記吸着剤をハニカム状の基材に担持して用いてもよく、反応容器に充填して用いてもよい。また、吸着剤を担持したハニカム状の基材を反応容器内に配置して用いてもよい。吸着剤の使用方法は、必要となる反応速度、圧力損失、吸着剤に吸着されるガス(吸着ガス)の純度(CO純度)等を勘案して決定すればよい。 In the method for removing carbon dioxide according to the present embodiment, the adsorbent may be supported on a honeycomb-shaped base material or may be used by filling a reaction vessel. Further, a honeycomb-like base material carrying an adsorbent may be disposed and used in the reaction vessel. The method of using the adsorbent may be determined in consideration of the required reaction rate, pressure loss, purity of the gas (adsorbed gas) adsorbed on the adsorbent (CO 2 purity), and the like.
 吸着剤の使用時には、吸着剤粒子間の空隙が少ない(空隙率が低い)ほど、空隙内に残留する二酸化炭素以外のガス量が少なくなるため、吸着ガス中の二酸化炭素の純度を高めることができる。一方、吸着剤粒子間の空隙が多い(空隙率が高い)ほど、圧力損失を小さくすることができる。吸着剤をハニカムに担持して用いる場合、空隙率を高めることができることから圧力損失を小さくすることができる。 When using an adsorbent, the smaller the void between adsorbent particles (the lower the porosity), the smaller the amount of gas other than carbon dioxide remaining in the void, so that the purity of carbon dioxide in the adsorbed gas can be increased. it can. On the other hand, the more voids between adsorbent particles (the higher the porosity), the smaller the pressure loss. When the adsorbent is supported on the honeycomb and used, the porosity can be increased, so that the pressure loss can be reduced.
<反応容器>
 次に、本実施形態に係る反応容器について説明する。本実施形態に係る反応容器は、本実施形態に係る吸着剤を備える。反応容器において、吸着剤は反応容器の内部に配置(例えば充填)されている。吸着剤の充填量及び配置位置は特に限定されない。吸着剤は、例えば、反応容器の中央部に充填されていてもよく、内壁面の一部に配置されていてもよい。
<Reaction vessel>
Next, the reaction container according to this embodiment will be described. The reaction container according to the present embodiment includes the adsorbent according to the present embodiment. In the reaction vessel, the adsorbent is disposed (for example, filled) inside the reaction vessel. The filling amount and arrangement position of the adsorbent are not particularly limited. For example, the adsorbent may be filled in the central portion of the reaction vessel or may be disposed on a part of the inner wall surface.
 反応容器は、固定床式であってもよく、ローター式であってもよく、流動床式であってもよい。ローター式及び流動床式は、反応容器に流通させるガス(流通ガス)等の切り替えを行わず、吸着剤そのものを移動させる方式である。 The reaction vessel may be a fixed bed type, a rotor type, or a fluidized bed type. The rotor type and the fluidized bed type are systems in which the adsorbent itself is moved without switching the gas (circulation gas) to be circulated in the reaction vessel.
 固定床式の反応容器は、例えば、吸着剤(例えば粒状の吸着剤)を反応容器内に充填し、吸着剤自体は移動させずに処理対象ガス又は反応容器内の温度及び圧力を変化させることで二酸化炭素の吸着及び脱着を行うように構成されている。この方式では、吸着剤の移動が少ないため、吸着剤同士、又は吸着剤と反応容器との接触による吸着剤の摩耗を低減でき、吸着剤の性能の低下を抑えることができる。また、充填密度を高めることができるため、空隙率が低く、反応容器の容積あたりの二酸化炭素除去量を高めることができる。 In a fixed bed type reaction vessel, for example, an adsorbent (for example, a granular adsorbent) is filled in the reaction vessel, and the temperature and pressure in the processing target gas or the reaction vessel are changed without moving the adsorbent itself. And configured to perform adsorption and desorption of carbon dioxide. In this method, since there is little movement of the adsorbent, wear of the adsorbent due to contact between the adsorbents or between the adsorbent and the reaction vessel can be reduced, and a decrease in the performance of the adsorbent can be suppressed. Moreover, since the packing density can be increased, the porosity is low, and the amount of carbon dioxide removed per volume of the reaction vessel can be increased.
 ローター式の反応容器としては、例えば、容器と、容器内部に設けられた吸着剤充填部と、容器内に流通するガスを仕切るための仕切り板と、を備える反応容器が挙げられる。吸着剤充填部には吸着剤が充填されている。この反応容器は、内部が仕切り板によって複数の領域に仕切られており、流通するガスの種類によって、二酸化炭素吸着領域、吸着剤加熱領域(CO脱離領域)、吸着剤冷却領域等に分けられている。そのため、この方式では、吸着剤充填部を回転させることで、吸着剤を二酸化炭素吸着領域、吸着剤加熱領域(CO脱離領域)、吸着剤冷却領域等に移動させることができ、COの吸着、吸着剤の加熱(COの脱離)、吸着剤の冷却等の吸脱着サイクルを実施できる。この方式では、加熱用ガスを流通させて吸着剤を加熱し、COを脱離させる温度スイング法を行う場合等であっても、反応容器に流通させるガスの切り替えが不要であるため、配管、弁等の構成が簡潔になる。また、仕切り板を設置する位置を変化させることにより、各領域の大きさを決定できるため、処理対象ガスの流通時間(二酸化炭素を吸着させる時間)、吸着剤の加熱時間(二酸化炭素を脱離させる時間)、吸着剤の冷却時間等の比を容易に決めることができる。 Examples of the rotor-type reaction container include a reaction container including a container, an adsorbent filling unit provided inside the container, and a partition plate for partitioning the gas flowing in the container. The adsorbent filling portion is filled with an adsorbent. This reaction vessel is internally divided into a plurality of regions by partition plates, and is divided into a carbon dioxide adsorption region, an adsorbent heating region (CO 2 desorption region), an adsorbent cooling region, etc., depending on the type of gas flowing. It has been. Therefore, in this manner, by rotating the adsorbent filling portion, it is possible to move the adsorbent carbon dioxide adsorption region, the adsorbent heated region (CO 2 desorption region), the adsorbent cooling region like, CO 2 Adsorption / desorption cycles such as adsorption of adsorbent, heating of the adsorbent (desorption of CO 2 ), and cooling of the adsorbent can be performed. In this method, even when performing a temperature swing method in which heating gas is circulated to heat the adsorbent and CO 2 is desorbed, it is not necessary to switch the gas circulated to the reaction vessel. The configuration of valves and the like is simplified. In addition, since the size of each region can be determined by changing the position where the partition plate is installed, the flow time of the gas to be treated (time for adsorbing carbon dioxide), the heating time of the adsorbent (desorbing carbon dioxide) Time) and the cooling time of the adsorbent can be easily determined.
 上記ローター式では、吸着剤が担持されたハニカム(例えばハニカムローター)を反応容器内に配置してもよい。この場合、吸着剤がハニカムに担持されているため、吸着剤自体の摩耗を低減でき、吸着剤の性能の低下を抑えることができる。 In the rotor type, a honeycomb (for example, a honeycomb rotor) carrying an adsorbent may be disposed in the reaction vessel. In this case, since the adsorbent is supported on the honeycomb, wear of the adsorbent itself can be reduced, and a decrease in the performance of the adsorbent can be suppressed.
 また、上記ローター方式において2種以上の吸着剤を用いる場合には、2つ以上の反応容器を設置し、それぞれに異なる吸着剤を配置してもよく、1つの反応容器において、反応容器内の異なる箇所に吸着剤を配置してもよい。例えば、反応容器内の上流側と下流側にそれぞれ異なる吸着剤を配置してもよい。この場合、例えば、上流側にセリウム酸化物を含む吸着剤を配置し、下流側にゼオライトを含む吸着剤を配置してもよい。このような構成とすることにより、例えば、処理対象ガスは上流側から下流側の方向へ流通させ、加熱用ガスは下流側から上流側の方向へ流通させることで、ゼオライトに水分が接触してゼオライトのCO吸着性が低減することを抑制できる。また、吸着剤をハニカム(ハニカムローター)に担持させる場合、ハニカム内で各吸着剤の担持する場所を分けてもよい。 When two or more kinds of adsorbents are used in the rotor system, two or more reaction vessels may be installed, and different adsorbents may be disposed in each reaction vessel. You may arrange | position an adsorbent in a different location. For example, different adsorbents may be arranged on the upstream side and the downstream side in the reaction vessel. In this case, for example, an adsorbent containing cerium oxide may be arranged on the upstream side, and an adsorbent containing zeolite may be arranged on the downstream side. By adopting such a configuration, for example, the gas to be treated is circulated in the direction from the upstream side to the downstream side, and the heating gas is circulated in the direction from the downstream side to the upstream side. CO 2 adsorption of the zeolite can be prevented to reduce. Further, when the adsorbent is supported on the honeycomb (honeycomb rotor), the place where each adsorbent is supported may be divided in the honeycomb.
 流動床式の反応容器は、例えば、吸着剤の充填量を少なくすることで、動力(コンベヤ、ブロア等)によって吸着剤が流動可能なように構成されている。流動床式の反応容器を用いる場合、例えば、処理対象ガスが流通する反応容器と、加熱用のガスが流通する加熱用容器を設置し、動力(コンベヤ、ブロア等)を用いて、吸着剤(例えば、粒状又は粉状の吸着剤)を反応容器と加熱用容器の間で移動させることで、二酸化炭素の吸着と脱着を繰り返してもよい。この方式では、反応容器に流通させるガスの切り替えが不要であるため、配管、弁等の構成が簡潔になる。また、二酸化炭素の吸着時と脱着時において異なる空隙率を設定できる。例えば、脱着時には空隙率が低くなるよう設定し、吸着剤に吸着されるガス(吸着ガス)の純度(CO純度)を高めてもよい。ガス流量が非常に大きいガス(ボイラ排ガス等)を処理対象ガスとする場合には、コンベヤの代わりにガスにより吸着剤を吹き上げる方式で二酸化炭素の除去を行ってもよい。コンベヤと比較して機械部品が減るために簡潔な構成とできる。 The fluidized bed type reaction vessel is configured such that, for example, the adsorbent can flow by power (conveyor, blower, etc.) by reducing the filling amount of the adsorbent. In the case of using a fluidized bed type reaction vessel, for example, a reaction vessel in which a gas to be treated is circulated and a heating vessel in which a gas for heating is circulated are installed, and power (conveyor, blower, etc.) is used to adsorb the adsorbent ( For example, the adsorption and desorption of carbon dioxide may be repeated by moving a granular or powdery adsorbent between the reaction vessel and the heating vessel. In this method, since it is not necessary to switch the gas to be circulated in the reaction vessel, the configuration of piping, valves, etc. is simplified. Also, different porosity can be set during carbon dioxide adsorption and desorption. For example, the void ratio may be set to be low during desorption, and the purity (CO 2 purity) of the gas (adsorbed gas) adsorbed by the adsorbent may be increased. When a gas having a very large gas flow rate (boiler exhaust gas or the like) is used as a processing target gas, carbon dioxide may be removed by blowing up the adsorbent with the gas instead of the conveyor. Since the number of machine parts is reduced compared to a conveyor, a simple configuration can be achieved.
 本実施形態に係る反応容器によれば、COの吸脱着サイクルを繰り返した場合であっても吸着剤のCO吸着性が低下しにくいため、二酸化炭素の除去効率を向上させることができる。また、繰り返しの使用によって吸着剤のCO吸着性が低下した場合には、吸着剤を交換する、吸着剤に吸着したNOx、SOx等を除去する等の作業が必要となるが、この反応器によれば、このような作業負担を低減することができる。 According to the reaction container according to the present embodiment, even when the CO 2 adsorption / desorption cycle is repeated, the CO 2 adsorptivity of the adsorbent is unlikely to be lowered, so that the carbon dioxide removal efficiency can be improved. In addition, when the CO 2 adsorptivity of the adsorbent decreases due to repeated use, operations such as exchanging the adsorbent and removing NOx, SOx, etc. adsorbed on the adsorbent are required. According to this, such work burden can be reduced.
<二酸化炭素除去装置及び二酸化炭素除去システム>
 本実施形態に係る二酸化炭素除去システムは、本実施形態に係る二酸化炭素除去装置と、当該二酸化炭素除去装置を統括的に制御するための制御手段と、を備える。本実施形態に係る二酸化炭素除去システム(空調システム等)は、本実施形態に係る二酸化炭素除去装置(空調装置等)を複数備えていてもよい。本実施形態に係る二酸化炭素除去システムは、複数の二酸化炭素除去装置の運転を統括的に制御する制御部を備えていてもよい。本実施形態に係る二酸化炭素除去装置は、本実施形態に係る反応容器を備えている。
<Carbon dioxide removal device and carbon dioxide removal system>
The carbon dioxide removal system according to the present embodiment includes the carbon dioxide removal device according to the present embodiment, and a control unit for comprehensively controlling the carbon dioxide removal device. The carbon dioxide removal system (air conditioning system etc.) concerning this embodiment may be provided with two or more carbon dioxide removal devices (air conditioning equipment etc.) concerning this embodiment. The carbon dioxide removal system according to the present embodiment may include a control unit that comprehensively controls the operation of the plurality of carbon dioxide removal devices. The carbon dioxide removal apparatus according to the present embodiment includes the reaction container according to the present embodiment.
 本実施形態に係る二酸化炭素除去システム及び二酸化炭素除去装置では、反応容器内に導入された処理対象ガスが、反応容器内に配置された吸着剤に接触することで、二酸化炭素が吸着剤に吸着する。本実施形態に係る二酸化炭素除去システム及び二酸化炭素除去装置は、空調対象空間における二酸化炭素濃度を下げるために用いられてもよく、プラント等から外気に排出されるガス中の二酸化炭素濃度を下げるために用いられてもよい。空調対象空間は、例えば、ビル;車輛;自動車;宇宙ステーション;潜水艇;食品又は化学製品の製造プラント等であってもよい。 In the carbon dioxide removal system and the carbon dioxide removal apparatus according to the present embodiment, carbon dioxide is adsorbed by the adsorbent when the gas to be treated introduced into the reaction container comes into contact with the adsorbent disposed in the reaction container. To do. The carbon dioxide removal system and the carbon dioxide removal device according to the present embodiment may be used to reduce the carbon dioxide concentration in the air-conditioning target space, and to reduce the carbon dioxide concentration in the gas discharged from the plant or the like to the outside air. May be used. The air-conditioning target space may be, for example, a building; a vehicle; an automobile; a space station; a submersible; a food or chemical production plant.
 本実施形態に係る二酸化炭素除去装置は、空調装置であってもよい。本実施形態に係る空調装置は、二酸化炭素を含有する処理対象ガスを含む空調対象空間に用いられる空調装置である。本実施形態に係る空調装置は、空調対象空間に接続された流路を備え、本実施形態に係る反応容器として、処理対象ガスに含まれる二酸化炭素を除去する除去部(二酸化炭素除去部)が流路に配置されている。本実施形態に係る空調装置において、本実施形態に係る吸着剤が除去部に配置されており、吸着剤が処理対象ガスに接触して二酸化炭素が吸着剤に吸着する。本実施形態によれば、空調対象空間の処理対象ガスを吸着剤に接触させて二酸化炭素を吸着剤に吸着させる吸着工程を備える空調方法が提供される。なお、二酸化炭素を含有する処理対象ガスの詳細は、上述した二酸化炭素の除去方法における処理対象ガスと同様である。 The carbon dioxide removing device according to this embodiment may be an air conditioner. The air conditioner according to the present embodiment is an air conditioner used in an air conditioning target space including a processing target gas containing carbon dioxide. The air conditioner according to the present embodiment includes a flow path connected to the air conditioning target space, and a removal unit (carbon dioxide removal unit) that removes carbon dioxide contained in the processing target gas as the reaction container according to the present embodiment. It is arranged in the flow path. In the air conditioner according to the present embodiment, the adsorbent according to the present embodiment is disposed in the removal unit, and the adsorbent comes into contact with the processing target gas and carbon dioxide is adsorbed by the adsorbent. According to the present embodiment, there is provided an air conditioning method including an adsorption process in which a processing target gas in an air conditioning target space is brought into contact with an adsorbent to adsorb carbon dioxide to the adsorbent. The details of the processing target gas containing carbon dioxide are the same as the processing target gas in the carbon dioxide removal method described above.
 以下、図2及び図3を用いて、二酸化炭素除去システム及び二酸化炭素除去装置の例として、空調装置及び空調システムについて説明する。 Hereinafter, an air conditioner and an air conditioning system will be described as examples of the carbon dioxide removal system and the carbon dioxide removal device with reference to FIGS. 2 and 3.
 図2に示すように、空調システム200は、空調装置100と、制御装置(制御部)110と、を備えている。空調装置100は、流路10と、排気ファン(排気手段)20と、濃度測定器(濃度測定部)30と、電気炉(温度制御手段)40と、コンプレッサー(圧力制御手段)50と、を備えている。 As shown in FIG. 2, the air conditioning system 200 includes an air conditioner 100 and a control device (control unit) 110. The air conditioner 100 includes a flow path 10, an exhaust fan (exhaust unit) 20, a concentration measuring device (concentration measuring unit) 30, an electric furnace (temperature control unit) 40, and a compressor (pressure control unit) 50. I have.
 流路10は、二酸化炭素を含有する処理対象ガス(室内ガス)を含む空調対象空間Rに接続されている。流路10は、流路部10aと、流路部10bと、除去部(流路部。二酸化炭素除去部)10cと、流路部10dと、流路部(循環流路)10eと、流路部(排気流路)10fとを有しており、除去部10cは、流路10に配置されている。空調装置100は、反応容器として除去部10cを備えている。流路10には、除去部10cにおける処理対象ガスの流入の有無を調整するバルブ70aと、処理対象ガスの流れ方向を調整するバルブ70bとが配置されている。 The flow path 10 is connected to an air-conditioning target space R including a processing target gas (indoor gas) containing carbon dioxide. The flow path 10 includes a flow path section 10a, a flow path section 10b, a removal section (flow path section, carbon dioxide removal section) 10c, a flow path section 10d, a flow path section (circulation flow path) 10e, The removal part 10c is arrange | positioned at the flow path 10 with the path part (exhaust flow path) 10f. The air conditioner 100 includes a removing unit 10c as a reaction container. In the flow path 10, a valve 70 a that adjusts the presence or absence of the inflow of the processing target gas in the removing unit 10 c and a valve 70 b that adjusts the flow direction of the processing target gas are arranged.
 流路部10aの上流端は、空調対象空間Rに接続されており、流路部10aの下流端は、バルブ70aを介して流路部10bの上流端に接続されている。除去部10cの上流端は、流路部10bの下流端に接続されている。除去部10cの下流端は、流路部10dの上流端に接続されている。流路10における流路部10dより下流側は、流路部10e及び流路部10fに分岐している。流路部10dの下流端は、バルブ70bを介して流路部10eの上流端及び流路部10fの上流端に接続されている。流路部10eの下流端は、空調対象空間Rに接続されている。流路部10fの下流端は、外気に接続されている。 The upstream end of the flow path part 10a is connected to the air conditioning target space R, and the downstream end of the flow path part 10a is connected to the upstream end of the flow path part 10b via the valve 70a. The upstream end of the removal part 10c is connected to the downstream end of the flow path part 10b. The downstream end of the removal part 10c is connected to the upstream end of the flow path part 10d. A downstream side of the flow path portion 10d in the flow path 10 is branched into a flow path section 10e and a flow path section 10f. The downstream end of the flow path portion 10d is connected to the upstream end of the flow path portion 10e and the upstream end of the flow path portion 10f via the valve 70b. The downstream end of the flow path part 10e is connected to the air conditioning target space R. The downstream end of the flow path portion 10f is connected to the outside air.
 除去部10cには、本実施形態に係る吸着剤である吸着剤80が配置されている。吸着剤80は、除去部10cの中央部に充填されている。除去部10cには、吸着剤80を介して2つの空間が形成されており、除去部10cは、上流側の空間S1と、吸着剤80が充填された中央部S2と、下流側の空間S3とを有している。空間S1は、流路部10a,10b及びバルブ70aを介して空調対象空間Rに接続されており、二酸化炭素を含有する処理対象ガスが空調対象空間Rから除去部10cの空間S1に供給される。除去部10cに供給された処理対象ガスは、中央部S2を経由して空間S1から空間S3へ移動した後、除去部10cから排出される。 The adsorbent 80, which is an adsorbent according to the present embodiment, is disposed in the removing unit 10c. The adsorbent 80 is filled in the central portion of the removal portion 10c. Two spaces are formed in the removal unit 10c via the adsorbent 80. The removal unit 10c includes an upstream space S1, a central portion S2 filled with the adsorbent 80, and a downstream space S3. And have. The space S1 is connected to the air conditioning target space R via the flow path portions 10a and 10b and the valve 70a, and the processing target gas containing carbon dioxide is supplied from the air conditioning target space R to the space S1 of the removal unit 10c. . The processing target gas supplied to the removing unit 10c moves from the space S1 to the space S3 via the central part S2, and is then discharged from the removing unit 10c.
 空調対象空間Rから排出された処理対象ガスは、除去部10cにおいて二酸化炭素の少なくとも一部が除去される。二酸化炭素が除去された処理対象ガスは、バルブ70bを調整することにより、空調対象空間Rに戻されてもよく、空調装置100の外部における外気へ排出されてもよい。例えば、空調対象空間Rから排出された処理対象ガスは、上流から下流にかけて、流路部10a、流路部10b、除去部10c、流路部10d及び流路部10eを経由して空調対象空間Rに流入することができる。また、空調対象空間Rから排出された処理対象ガスは、上流から下流にかけて、流路部10a、流路部10b、除去部10c、流路部10d及び流路部10fを経由して外気に排出されてもよい。 At least part of the carbon dioxide is removed from the processing target gas discharged from the air conditioning target space R in the removing unit 10c. The processing target gas from which carbon dioxide has been removed may be returned to the air conditioning target space R by adjusting the valve 70b or may be discharged to the outside air outside the air conditioning apparatus 100. For example, the processing target gas discharged from the air conditioning target space R passes from upstream to downstream through the flow path part 10a, the flow path part 10b, the removal part 10c, the flow path part 10d, and the flow path part 10e. Can flow into R. Further, the processing target gas discharged from the air conditioning target space R is discharged from the upstream to the downstream via the flow path part 10a, the flow path part 10b, the removal part 10c, the flow path part 10d, and the flow path part 10f. May be.
 排気ファン20は、空調対象空間Rにおける処理対象ガスの排出位置に配置されている。排気ファン20は、処理対象ガスを空調対象空間Rから排出して除去部10cへ供給する。 The exhaust fan 20 is disposed at the discharge position of the processing target gas in the air conditioning target space R. The exhaust fan 20 discharges the processing target gas from the air conditioning target space R and supplies it to the removing unit 10c.
 濃度測定器30は、空調対象空間Rの二酸化炭素濃度を測定する。濃度測定器30は、空調対象空間R内に配置されている。 The concentration measuring device 30 measures the carbon dioxide concentration in the air conditioning target space R. The concentration measuring device 30 is disposed in the air conditioning target space R.
 電気炉40は、空調装置100の除去部10cの外部に配置されており、吸着剤80の温度を昇温させることができる。コンプレッサー50は、空調装置100の除去部10cに接続されており、除去部10c内の圧力を調整することができる。 The electric furnace 40 is disposed outside the removing unit 10c of the air conditioner 100, and can raise the temperature of the adsorbent 80. The compressor 50 is connected to the removing unit 10c of the air conditioner 100, and can adjust the pressure in the removing unit 10c.
 制御装置110は、空調装置100の統括的な運転制御を行うことが可能であり、例えば、濃度測定器30で測定される二酸化炭素濃度に基づいて、除去部10cにおける処理対象ガスの流入の有無を制御することができる。具体的には、呼気等により空調対象空間R内の二酸化炭素濃度が上昇して所定濃度に達したことが濃度測定器30により検出された場合、濃度測定器30から制御装置110に濃度情報が送信される。濃度情報を受信した制御装置110は、バルブ70aを開放すると共に、除去部10cから排出されるガスが流路部10d及び流路部10eを介して空調対象空間Rに流入するように調整する。そして、制御装置110は、排気ファン20を稼働させて、空調対象空間Rから処理対象ガスを除去部10cへ供給する。さらに、制御装置110は、必要に応じて、電気炉40及び/又はコンプレッサー50を稼働させて、吸着剤80の温度、除去部10c内の圧力等を調整する。 The control device 110 can perform overall operation control of the air conditioner 100. For example, based on the carbon dioxide concentration measured by the concentration measuring device 30, the presence or absence of inflow of the processing target gas in the removal unit 10c Can be controlled. Specifically, when the concentration measuring device 30 detects that the carbon dioxide concentration in the air-conditioning target space R has increased and reached a predetermined concentration due to exhalation or the like, concentration information is sent from the concentration measuring device 30 to the control device 110. Sent. The control device 110 that has received the concentration information opens the valve 70a and adjusts the gas discharged from the removal unit 10c so as to flow into the air-conditioning target space R through the flow channel unit 10d and the flow channel unit 10e. And the control apparatus 110 operates the exhaust fan 20, and supplies process target gas from the air-conditioning object space R to the removal part 10c. Furthermore, the control device 110 operates the electric furnace 40 and / or the compressor 50 as necessary to adjust the temperature of the adsorbent 80, the pressure in the removal unit 10c, and the like.
 除去部10cに供給された処理対象ガスが中央部S2を経由して空間S1から空間S3へ移動するに際して、処理対象ガスが吸着剤80に接触し、処理対象ガス中の二酸化炭素が吸着剤80に吸着する。これにより、処理対象ガスから二酸化炭素が除去される。この場合、二酸化炭素が除去されたガスは、流路部10d及び流路部10eを介して空調対象空間Rに供給される。 When the processing target gas supplied to the removing unit 10c moves from the space S1 to the space S3 via the central portion S2, the processing target gas comes into contact with the adsorbent 80, and carbon dioxide in the processing target gas is absorbed into the adsorbent 80. Adsorb to. Thereby, carbon dioxide is removed from the gas to be treated. In this case, the gas from which carbon dioxide has been removed is supplied to the air-conditioning target space R through the flow path part 10d and the flow path part 10e.
 吸着剤80に吸着した二酸化炭素は、吸着剤80から脱着させることなく、吸着剤80に吸着した状態で回収されてもよく、吸着剤80から脱着させて回収してもよい。脱着工程においては、電気炉40及び/又はコンプレッサー50を稼働させて吸着剤80の温度、除去部10c内の圧力等を調整することにより、上述した温度スイング法、圧力スイング法等により、吸着剤80から二酸化炭素を脱着させることができる。この場合、例えば、バルブ70bは、除去部10cから排出されるガス(脱着した二酸化炭素を含有するガス)が流路部10fを介して外気に排出されるように調整されており、必要に応じて、排出される二酸化炭素を回収することができる。 The carbon dioxide adsorbed on the adsorbent 80 may be recovered in a state of being adsorbed on the adsorbent 80 without being desorbed from the adsorbent 80, or may be recovered after being desorbed from the adsorbent 80. In the desorption process, the electric furnace 40 and / or the compressor 50 are operated to adjust the temperature of the adsorbent 80, the pressure in the removal unit 10c, etc. Carbon dioxide can be desorbed from 80. In this case, for example, the valve 70b is adjusted so that the gas discharged from the removing unit 10c (the gas containing the desorbed carbon dioxide) is discharged to the outside air through the flow path unit 10f. Thus, the discharged carbon dioxide can be recovered.
 図3に示すように、空調システム210は、第1の空調装置100aと、第2の空調装置100bと、制御装置(制御部)110と、制御装置(制御部)120と、を備えている。制御装置120は、第1の空調装置100a及び第2の空調装置100bにおける上述の制御装置110を制御することにより、第1の空調装置100a及び第2の空調装置100bの空調運転を統括的に制御する。例えば、制御装置120は、第1の空調装置100a及び第2の空調装置100bの空調運転を同条件で行うように調整してもよく、第1の空調装置100a及び第2の空調装置100bの空調運転を異なる条件で行うように調整してもよい。制御装置120は、除去部10cにおける処理対象ガスの流入の有無等に関する情報を制御装置110に送信することができる。 As shown in FIG. 3, the air conditioning system 210 includes a first air conditioner 100a, a second air conditioner 100b, a control device (control unit) 110, and a control device (control unit) 120. . The control device 120 controls the air conditioning operation of the first air conditioner 100a and the second air conditioner 100b by controlling the control device 110 described above in the first air conditioner 100a and the second air conditioner 100b. Control. For example, the control device 120 may adjust the air conditioning operations of the first air conditioner 100a and the second air conditioner 100b to be performed under the same conditions, and the first air conditioner 100a and the second air conditioner 100b. You may adjust so that air-conditioning operation may be performed on different conditions. The control device 120 can transmit information regarding the presence or absence of the inflow of the processing target gas in the removal unit 10c to the control device 110.
 二酸化炭素除去装置及び二酸化炭素除去システムは、前記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。例えば、二酸化炭素除去装置の制御部の制御内容は、反応容器における処理対象ガスの流入の有無を制御することに限られず、制御部は、反応容器における処理対象ガスの流入量を調整してもよい。 The carbon dioxide removal device and the carbon dioxide removal system are not limited to the above-described embodiment, and may be appropriately changed without departing from the gist thereof. For example, the control content of the control unit of the carbon dioxide removal device is not limited to controlling the presence or absence of the inflow of the processing target gas in the reaction vessel, and the control unit may adjust the inflow amount of the processing target gas in the reaction vessel. Good.
 空調装置において、排気ファンに代えて送風機を用いて処理対象ガスを反応容器へ供給してもよく、自然対流により処理対象ガスが反応容器へ供給される場合には、排気手段を用いなくてもよい。また、温度制御手段及び圧力制御手段は、電気炉及びコンプレッサーに限定されるものでなく、吸着工程及び脱着工程において上述した各種の手段を用いることができる。温度制御手段は、加熱手段に限られず、冷却手段であってもよい。 In the air conditioner, the gas to be processed may be supplied to the reaction vessel using a blower instead of the exhaust fan. When the gas to be processed is supplied to the reaction vessel by natural convection, the exhaust means may not be used. Good. Further, the temperature control means and the pressure control means are not limited to the electric furnace and the compressor, and various means described above can be used in the adsorption process and the desorption process. The temperature control means is not limited to the heating means, and may be a cooling means.
 空調装置において、空調対象空間、二酸化炭素除去部、排気手段、温度制御手段、圧力制御手段、濃度測定部等のそれぞれは、一つに限られるものではなく、複数配置されていてもよい。空調装置は、処理対象ガスの露点及び相対湿度を調整するための調湿器;空調対象空間の湿度を測定する湿度測定器;脱硝装置、脱硫装置、脱塵装置等の除去装置などを備えていてもよい。 In the air conditioner, each of the air-conditioning target space, the carbon dioxide removal unit, the exhaust unit, the temperature control unit, the pressure control unit, the concentration measurement unit, and the like is not limited to one, and a plurality of units may be arranged. The air conditioner includes a humidity controller for adjusting the dew point and relative humidity of the gas to be treated; a humidity measuring device for measuring the humidity of the air conditioning target space; a removal device such as a denitration device, a desulfurization device, and a dust removal device. May be.
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in more detail using examples and comparative examples. However, the present invention is not limited to the following examples.
<吸着剤の製造>
(実施例1)
 1.0gのセリウム酸化物(CeO)と、0.072gのポリアクリル酸と、を10mLの純水中に添加した後、30分間室温で撹拌して混合液を得た。前記混合液を石英ボートに流し込み、これをボックス型電気炉に投入した。大気中、10℃/minで300℃まで昇温した後、300℃で1時間維持して焼成した。その後、得られた焼成物を自然冷却した後、ボックス型電気炉から取り出した。乳鉢及び乳棒を用いて焼成物を粉砕することにより吸着剤粉末を得た。
<Manufacture of adsorbent>
Example 1
1.0 g of cerium oxide (CeO 2 ) and 0.072 g of polyacrylic acid were added to 10 mL of pure water, and then stirred at room temperature for 30 minutes to obtain a mixed solution. The mixed solution was poured into a quartz boat and put into a box type electric furnace. After raising the temperature to 300 ° C. at 10 ° C./min in the air, firing was performed at 300 ° C. for 1 hour. Thereafter, the fired product obtained was naturally cooled and then taken out from the box-type electric furnace. Adsorbent powder was obtained by grinding the fired product using a mortar and pestle.
 前記の方法を複数回繰り返して必要量の吸着剤粉末を得た。その後、直径40mmの金型を使用して、プレス機により500kgfで吸着剤粉末をペレット化した。次いで、ペレットを破砕した後、篩を用いて粒状(粒径:0.5~1.0mm)に整粒して粒状の吸着剤粒子(芯部と、当該芯部を被覆する多孔質部と、を備える粒子)を含む吸着剤(以下、単に「吸着剤」という)を得た。吸着剤中のセリウムに対する炭素のモル比(炭素/セリウム)は、1.3であった。なお、本実施例では、蛍光X線分析装置(ZSX Primus2、株式会社リガク製)を用いた吸着剤の組成分析によりモル比(炭素/セリウム)を測定した。測定条件及び測定方法は、以下のとおりとした。
 X線管:Rhターゲット
 X線出力:3kW
 測定室雰囲気:真空
 分析径:10mmΦ
 測定方法:感度ライブラリーを用いたファンダメンタルパラメーター法により定量
The above method was repeated a plurality of times to obtain a necessary amount of adsorbent powder. Thereafter, using a mold having a diameter of 40 mm, the adsorbent powder was pelletized at 500 kgf by a press machine. Next, after the pellets are crushed, the adsorbent particles (core part and porous part covering the core part) are granulated (particle size: 0.5 to 1.0 mm) using a sieve. And an adsorbent (hereinafter simply referred to as “adsorbent”). The molar ratio of carbon to cerium in the adsorbent (carbon / cerium) was 1.3. In this example, the molar ratio (carbon / cerium) was measured by composition analysis of the adsorbent using a fluorescent X-ray analyzer (ZSX Primus 2, manufactured by Rigaku Corporation). Measurement conditions and measurement methods were as follows.
X-ray tube: Rh target X-ray output: 3 kW
Measurement chamber atmosphere: Vacuum Analysis diameter: 10mmΦ
Measurement method: quantified by the fundamental parameter method using a sensitivity library
(実施例2)
 ポリアクリル酸の使用量を0.143gに変えたことを除いて、実施例1と同様の手順で吸着剤を製造した。
(Example 2)
An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.143 g.
(実施例3)
 ポリアクリル酸の使用量を0.286gに変えたことを除いて、実施例1と同様の手順で吸着剤を製造した。
(Example 3)
An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.286 g.
(実施例4)
 ポリアクリル酸の使用量を0.429gに変えたことを除いて、実施例1と同様の手順で吸着剤を製造した。
Example 4
An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.429 g.
(実施例5)
 ポリアクリル酸の使用量を0.500gに変えたことを除いて、実施例1と同様の手順で吸着剤を製造した。
(Example 5)
An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.500 g.
(実施例6)
 ポリアクリル酸の使用量を0.572gに変えたことを除いて、実施例1と同様の手順で吸着剤を製造した。
(Example 6)
An adsorbent was produced in the same procedure as in Example 1 except that the amount of polyacrylic acid used was changed to 0.572 g.
(比較例1)
 ポリアクリル酸を加えなかったことを除いて、実施例1と同様の手順で吸着剤を製造した。
(Comparative Example 1)
An adsorbent was produced in the same procedure as in Example 1 except that no polyacrylic acid was added.
<評価>
 以下の方法によりCO吸着試験及びサイクル試験を実施し、実施例及び比較例の吸着剤のCO吸着量及びCO吸着量維持率を求めた。なお、CO吸着試験及びサイクル試験における処理対象ガスは、火力発電所の排ガスを模擬したものである。
<Evaluation>
The CO 2 adsorption test and the cycle test were carried out by the following methods, and the CO 2 adsorption amount and the CO 2 adsorption amount maintenance rate of the adsorbents of the examples and comparative examples were determined. Note that the gas to be treated in the CO 2 adsorption test and the cycle test simulates the exhaust gas of a thermal power plant.
(NOx存在下の評価)
[CO吸着試験]
 まず、メスシリンダーを用いて吸着剤20.0mLを量りとり、SUS製の反応管中に固定した。次いで、電気炉を用いて吸着剤の温度を50℃まで昇温させた後、電気炉で吸着剤の温度を50℃に保ちながら、15体積%のCOと、5体積%のOと、150ppmのNOと、約50℃での飽和水蒸気を含んだ80体積%のNとを含有する混合ガスを反応管に流通させた。混合ガスの流量は2000mL/minとした。反応管の出口のCO濃度をガスクロマトグラフ(キャリアガス:He)により測定し、反応管の出口で測定されるCO濃度が飽和するまでガスの導入を継続した。CO濃度が飽和するまでの反応管の入口側と出口側とのCO濃度の差分からCO吸着量を測定した。なお、CO吸着量は、比較例1におけるCO吸着量を1.00とする相対値により評価した。
(Evaluation in the presence of NOx)
[CO 2 adsorption test]
First, 20.0 mL of the adsorbent was weighed using a graduated cylinder and fixed in a SUS reaction tube. Then, after raising the temperature of the adsorbent to 50 ° C. using an electric furnace, the volume of the adsorbent is maintained at 50 ° C. in the electric furnace, and 15 vol% CO 2 , 5 vol% O 2 A mixed gas containing 150 ppm NO and 80% by volume of N 2 containing saturated water vapor at about 50 ° C. was circulated through the reaction tube. The flow rate of the mixed gas was 2000 mL / min. The CO 2 concentration at the outlet of the reaction tube was measured by a gas chromatograph (carrier gas: He), and gas introduction was continued until the CO 2 concentration measured at the outlet of the reaction tube was saturated. CO 2 concentration was measured inlet and CO 2 adsorption amount from the difference between the CO 2 concentration in the outlet side of the reaction tube until saturated. The CO 2 adsorption amount was evaluated by a relative value with the CO 2 adsorption amount in Comparative Example 1 being 1.00.
[サイクル試験]
 前記CO吸着試験と同様の方法により吸着剤にCOを吸着させた。次いで、電気炉で吸着剤の温度を200℃まで昇温させることにより吸着剤からCOを脱離させた。その後、反応管にNガスのみを流通させながら吸着剤の温度を50℃まで冷却した。この一連の工程(COの吸着、COの脱離及び冷却)を24サイクル繰り返し、下記式に基づきCO吸着量維持率を算出した。評価結果を表1、図4及び図5に示す。
 CO吸着量維持率(%)=(初回サイクル時のCO吸着量)/(24サイクル時のCO吸着量)×100
[Cycle test]
CO 2 was adsorbed on the adsorbent by the same method as in the CO 2 adsorption test. Subsequently, CO 2 was desorbed from the adsorbent by raising the temperature of the adsorbent to 200 ° C. in an electric furnace. Thereafter, the temperature of the adsorbent was cooled to 50 ° C. while only N 2 gas was passed through the reaction tube. This series of steps (CO 2 adsorption, CO 2 desorption and cooling) was repeated 24 cycles, and the CO 2 adsorption amount maintenance rate was calculated based on the following formula. The evaluation results are shown in Table 1, FIG. 4 and FIG.
CO 2 adsorption amount retention rate (%) = (CO 2 adsorption amount at the first cycle) / (CO 2 adsorption amount at the 24th cycle) × 100
(SOx存在下の評価)
 実施例2及び比較例1の吸着剤について、前記混合ガスとして、15体積%のCOと、5体積%のOと、300ppmのSOと、約50℃での飽和水蒸気を含んだ約80体積%のNとを含有する混合ガスを用いたこと以外は、NOx存在下の吸着性能評価と同様の手順でCO吸着量及びCO吸着量維持率を求めた。
(Evaluation in the presence of SOx)
For the adsorbents of Example 2 and Comparative Example 1, the mixed gas contained about 15% by volume of CO 2 , 5% by volume of O 2 , 300 ppm of SO 2 , and about 50% saturated steam at about 50 ° C. Except for using a mixed gas containing 80% by volume of N 2 , the CO 2 adsorption amount and the CO 2 adsorption amount maintenance rate were determined in the same procedure as the adsorption performance evaluation in the presence of NOx.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ポリアクリル酸を用いて、金属酸化物を含む芯部を被覆する多孔質部を形成した実施例では、サイクル試験後のCO吸着量維持率が高く、高いサイクル特性を有することが確認された。一方で、ポリアクリル酸を用いていない比較例では、サイクル試験後のCO吸着量維持率が実施例に比べて低かった。 In the example in which the porous part covering the core part containing the metal oxide was formed using polyacrylic acid, it was confirmed that the CO 2 adsorption amount retention rate after the cycle test was high and had high cycle characteristics. . On the other hand, in the comparative example using no polyacrylic acid, CO 2 adsorption amount retention rate after cycle test was low as compared with Examples.
 1…吸着剤粒子(粒子)、3…芯部、5…多孔質部、10c…除去部(反応容器)、80…吸着剤、100,100a,100b…空調装置(二酸化炭素除去装置)、200,210…空調システム(二酸化炭素除去システム)。 DESCRIPTION OF SYMBOLS 1 ... Adsorbent particle (particle), 3 ... Core part, 5 ... Porous part, 10c ... Removal part (reaction vessel), 80 ... Adsorbent, 100, 100a, 100b ... Air conditioner (carbon dioxide removal apparatus), 200 210 ... Air conditioning system (carbon dioxide removal system).

Claims (8)

  1.  二酸化炭素を含有する処理対象ガスから二酸化炭素を除去するために用いられる吸着剤であって、
     金属酸化物を含む芯部と、当該芯部の少なくとも一部を被覆する多孔質部と、を備える粒子を含む、吸着剤。
    An adsorbent used to remove carbon dioxide from a gas to be treated containing carbon dioxide,
    An adsorbent comprising particles comprising a core part containing a metal oxide and a porous part covering at least a part of the core part.
  2.  前記金属酸化物がセリウムを含む、請求項1に記載の吸着剤。 The adsorbent according to claim 1, wherein the metal oxide contains cerium.
  3.  前記多孔質部が炭素材料を含む、請求項1又は2に記載の吸着剤。 The adsorbent according to claim 1 or 2, wherein the porous portion contains a carbon material.
  4.  前記吸着剤中のセリウムに対する炭素のモル比が1.3~11.0である、請求項1~3のいずれか一項に記載の吸着剤。 The adsorbent according to any one of claims 1 to 3, wherein a molar ratio of carbon to cerium in the adsorbent is 1.3 to 11.0.
  5.  金属酸化物を含む芯部と、当該芯部の少なくとも一部を被覆する多孔質部と、を備える粒子を含む吸着剤であって、
     前記吸着剤中の金属元素に対する炭素のモル比が1.3~11.0である、吸着剤。
    An adsorbent comprising particles comprising a core part containing a metal oxide and a porous part covering at least a part of the core part,
    The adsorbent, wherein the molar ratio of carbon to metal element in the adsorbent is 1.3 to 11.0.
  6.  請求項1~5のいずれか一項に記載の吸着剤を備える、反応容器。 A reaction vessel comprising the adsorbent according to any one of claims 1 to 5.
  7.  請求項6に記載の反応容器を備える、二酸化炭素除去装置。 A carbon dioxide removing device comprising the reaction vessel according to claim 6.
  8.  請求項7に記載の二酸化炭素除去装置を備える、二酸化炭素除去システム。 A carbon dioxide removal system comprising the carbon dioxide removal device according to claim 7.
PCT/JP2017/012644 2017-03-28 2017-03-28 Adsorbent, reaction vessel, carbon dioxide removal device, and carbon dioxide removal system WO2018179089A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019508384A JPWO2018179089A1 (en) 2017-03-28 2017-03-28 Adsorbent, reaction vessel, carbon dioxide removal device and carbon dioxide removal system
PCT/JP2017/012644 WO2018179089A1 (en) 2017-03-28 2017-03-28 Adsorbent, reaction vessel, carbon dioxide removal device, and carbon dioxide removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012644 WO2018179089A1 (en) 2017-03-28 2017-03-28 Adsorbent, reaction vessel, carbon dioxide removal device, and carbon dioxide removal system

Publications (1)

Publication Number Publication Date
WO2018179089A1 true WO2018179089A1 (en) 2018-10-04

Family

ID=63677924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012644 WO2018179089A1 (en) 2017-03-28 2017-03-28 Adsorbent, reaction vessel, carbon dioxide removal device, and carbon dioxide removal system

Country Status (2)

Country Link
JP (1) JPWO2018179089A1 (en)
WO (1) WO2018179089A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588278A (en) * 2020-11-06 2021-04-02 兰州城市学院 Method for adsorbing Cu (II) by using efficient polymer functionalized stirring rod SS/PPy/CS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988314A (en) * 1982-10-12 1984-05-22 ユニオン・カ−バイド・コ−ポレ−シヨン Abrasion resistant molecular sieve
JPH11290649A (en) * 1998-04-10 1999-10-26 Matsushita Refrig Co Ltd Carbon dioxide gas adsorbing agent, foamed heat insulation material and heat insulated box
JP2003515442A (en) * 1999-11-30 2003-05-07 エンゲルハード・コーポレーシヨン Method and apparatus for purifying the atmosphere
JP2004136164A (en) * 2002-10-16 2004-05-13 Masayuki Horio Carbon dioxide absorbing particles and manufacturing method therefor
JP2013059703A (en) * 2011-09-12 2013-04-04 Hitachi Ltd Carbon dioxide capturing material
JP2013523424A (en) * 2010-03-25 2013-06-17 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for protecting solid adsorbent and protected solid adsorbent
JP2015150500A (en) * 2014-02-14 2015-08-24 日立化成株式会社 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988314A (en) * 1982-10-12 1984-05-22 ユニオン・カ−バイド・コ−ポレ−シヨン Abrasion resistant molecular sieve
JPH11290649A (en) * 1998-04-10 1999-10-26 Matsushita Refrig Co Ltd Carbon dioxide gas adsorbing agent, foamed heat insulation material and heat insulated box
JP2003515442A (en) * 1999-11-30 2003-05-07 エンゲルハード・コーポレーシヨン Method and apparatus for purifying the atmosphere
JP2004136164A (en) * 2002-10-16 2004-05-13 Masayuki Horio Carbon dioxide absorbing particles and manufacturing method therefor
JP2013523424A (en) * 2010-03-25 2013-06-17 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for protecting solid adsorbent and protected solid adsorbent
JP2013059703A (en) * 2011-09-12 2013-04-04 Hitachi Ltd Carbon dioxide capturing material
JP2015150500A (en) * 2014-02-14 2015-08-24 日立化成株式会社 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588278A (en) * 2020-11-06 2021-04-02 兰州城市学院 Method for adsorbing Cu (II) by using efficient polymer functionalized stirring rod SS/PPy/CS

Also Published As

Publication number Publication date
JPWO2018179089A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
CA2941022C (en) Co2 removal device
EP2567751B1 (en) CO2 Sorbent
WO2018179351A1 (en) Carbon dioxide removal device and method for recovering carbon dioxide adsorption capacity of adsorbent
JP2019147710A (en) Method for producing cerium(iv) oxide, cerium(iv) oxide, adsorbent, method for removing carbon dioxide, and apparatus for removing carbon dioxide
Karami et al. Study of Al2O3 addition to synthetic Ca‐based sorbents for CO2 sorption capacity and stability in cyclic operations
WO2018179089A1 (en) Adsorbent, reaction vessel, carbon dioxide removal device, and carbon dioxide removal system
US20190255509A1 (en) Adsorbent, method for removing carbon dioxide, device for removing carbon dioxide, and system for removing carbon dioxide
JP2005087941A (en) Oxygen adsorbent and oxygen/nitrogen separating method using the same
WO2018003323A1 (en) Adsorbent and method for producing same, method for removing carbon dioxide, carbon dioxide removing device, and air conditioning device
US20190262795A1 (en) Adsorbent, method for removing carbon dioxide, carbon dioxide remover, and air conditioner
JP6721020B2 (en) CO2 removal device
JP6089579B2 (en) Carbon dioxide adsorbent, carbon dioxide recovery device using the same, and carbon dioxide recovery method
JP6721019B2 (en) CO2 removal device
EP3459627A1 (en) Adsorbent, method for producing same, method for removing carbon dioxide, device for removing carbon dioxide, and air conditioner
JP2019094229A (en) Liquid composition and manufacturing method therefor
JP2018001074A (en) Adsorbent and method for producing the same, method of removing carbon dioxide, and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903807

Country of ref document: EP

Kind code of ref document: A1