WO2018178552A1 - Method for the production of 2,3,3,3-tetrafluoropropene - Google Patents

Method for the production of 2,3,3,3-tetrafluoropropene Download PDF

Info

Publication number
WO2018178552A1
WO2018178552A1 PCT/FR2018/050732 FR2018050732W WO2018178552A1 WO 2018178552 A1 WO2018178552 A1 WO 2018178552A1 FR 2018050732 W FR2018050732 W FR 2018050732W WO 2018178552 A1 WO2018178552 A1 WO 2018178552A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
tetrafluoropropene
phase
temperature
weight
Prior art date
Application number
PCT/FR2018/050732
Other languages
French (fr)
Inventor
Dominique Deur-Bert
Laurent Wendlinger
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2018178552A1 publication Critical patent/WO2018178552A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation

Definitions

  • the present invention relates to a process for producing 2,3,3,3-tetrafluoropropene, also known as HFO-1234yf.
  • the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene carried out at high pressure, preferably at a pressure of less than 10 bara.
  • Hydrofluorocarbons and in particular hydrofluoroolefins (HFOs), such as 2,3,3,3-tetrafluoropropene (HFO-1234yf), are compounds known for their properties as coolants and coolants, fire extinguishers, propellants, foaming agents , blowing agents, gaseous dielectrics, polymerization medium or monomer, carrier fluids, abrasive agents, drying agents and power generating unit fluids.
  • HFOs have been identified as desirable alternatives to HCFCs because of their low ODP (Ozone Depletion Potential or GWP) and GWP (Global Warming Potential) values.
  • ODP Ozone Depletion Potential
  • GWP Global Warming Potential
  • hydrofluoroolefin manufacturing processes involve a fluorination and / or dehydrohalogenation reaction. This type of reaction is carried out in the gas phase or in the liquid phase and generates impurities which must therefore be eliminated in order to obtain the desired compound in a degree of purity sufficient for the intended applications.
  • WO2012 / 098420 discloses the production of 2,3,3,3-tetrafluoropropene by a catalytic gas-phase fluorination process using 1,1,1,2,3-pentachloropropane and / or 1,1,1,2,3-pentachloropropane. , 2,2,3-pentachloropropane.
  • the process is carried out at a pressure of between 3 and 20 bar.
  • the flow of products from the catalytic fluorination reactor is purified by distillation.
  • WO2013 / 114015 Also known from WO2013 / 114015 is a process for producing 2,3,3,3-tetrafluoropropene in the gas phase from 1,1,1,2,3-pentachloropropane and / or 1,1,2,2, 3-pentachloropropane, the gas stream recovered after the reaction is partially condensed to form a gaseous fraction and a liquid fraction, both being compressed before being distilled.
  • WO 2007/138210 also discloses a process for producing hydrofluorocarbons from hydrofluorochlorocarbon and hydrofluoric acid in the gas phase in the presence of a catalyst. The process is carried out at a pressure of 1 to 3 bar. The gas stream leaving the reactor is compressed using a compressor before being sent to the distillation column.
  • the present invention provides a process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
  • step b) cooling the product stream from the reactor of step a) at a temperature below 100 ° C, preferably at a temperature of 0 ° C to 70 ° C, preferably at a temperature of 20 ° C to 50 ° VS,
  • step b) distilling the stream cooled in step b) to form a first stream comprising 2,3,3,3-tetrafluoropropene and HCl, and a second stream comprising HF,
  • step d) compressing the first stream obtained in step c) to form a first compressed stream
  • step d) distilling said first compressed stream obtained in step d) to obtain a third stream comprising HCl and a fourth stream comprising 2,3,3,3-tetrafluoropropene,
  • step a) is carried out at a pressure of less than or equal to 10 bara, preferably at a pressure of 2 to 8 bara, in particular at a pressure of 3 to 7 bara, more particularly at a pressure of from 5 to 7 bara.
  • said first current obtained in step c) is heated prior to the implementation of step d).
  • said first stream obtained in step c) is heated to a temperature between 0 ° C and 40 ° C.
  • step d) said first stream is compressed at a pressure of between 10 and 25 bara, preferably between 15 and 20 bara.
  • the first compressed stream obtained in step d) is cooled before being distilled.
  • the first compressed stream obtained in step d) is cooled to a temperature below 50 ° C.
  • the temperature at the top of the distillation column is between 0 ° C. and -35 ° C.
  • the third stream comprising HCl is recovered in step e) at the top of the distillation column and is brought to a temperature of between -40 ° C. and 20 ° C. before being purified according to the steps following:
  • the compound of formula (I) is selected from the group consisting of 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene, 2,3,3,3 tetrachloropropene, 2-chloro-3,3,3-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane, 1,2-dichloro-3,3,3-trifluoropropane and 1,1,1,2 2-pentachloropropane, or a mixture thereof; and step a) is carried out in the presence or absence of a catalyst to produce a product stream comprising 2,3,3,3-tetrafluoropropene, HCl, HF and also at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3
  • the fourth stream comprising 2,3,3,3-tetrafluoropropene is purified by decantation at a temperature between -50 ° C and 0 ° C to form a lower phase comprising 2,3,3,3 tetrafluoropropene and an upper phase comprising HF, optionally recycled in step a).
  • the fourth stream comprising 2,3,3,3-tetrafluoropropene is purified in step f) by the following steps:
  • said lower phase or said phase G1 and / or said stream G2 also comprise, in addition to 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3, 3,3-tetrafluoropropene; and; the lower phase, said G1 gas phase or said G2 stream is distilled by extractive distillation to form a stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane and a stream comprising 1.3 3,3-tetrafluoropropene; preferably the extractive distillation is carried out in the presence of an organic extractant selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate , 1,4
  • Fig. 1 schematically shows a method according to a particular embodiment of the present invention.
  • Fig. 2 schematically shows a method according to a particular embodiment of the present invention.
  • Fig. 3 schematically shows a device for removing hydrofluoric acid according to a particular embodiment of the present invention.
  • the present invention relates to a process for producing 2,3,3,3-tetrafluoropropene.
  • Step a) of the present process can be carried out at a temperature of 200 to 450 ° C, preferably 250 to 400 ° C, preferably 280 to 380 ° C.
  • Step a) of the present process may be carried out at a contact time of 3 to 100 seconds, preferably 4 to 75 seconds, preferably 5 to 50 seconds.
  • Step a) of the present process can be carried out with a HF / compound of formula (I) molar ratio of from 3: 1 to 150: 1, advantageously from 4: 1 to 125: 1, preferably 5: 1 at 100: 1.
  • the process may be carried out in the presence of a polymerization inhibitor, preferably selected from the group consisting of p-methoxyphenol, t-amylphenol, limonene, d, l-limonene, quinones , hydroquinones, epoxides, amines and mixtures thereof.
  • Step a) of the present process can be carried out in the presence of oxygen or chlorine, advantageously from 0.005 to 15 mole%, preferably from 0.5 to 10 mole% of oxygen or chlorine per mole of compound of formula (I).
  • the compound of formula (I) is selected from the group consisting of 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene, 2,3,3,3-tetrachloropropene, 2 chloro-3,3,3-trifluoropropene, 2-chloro-1,1,2,2-tetrafluoropropane, 1,2-dichloro-3,3,3-trifluoropropene and 1,1,1,2,2-pentachloropropane , or a mixture of these.
  • the compound of formula (I) is 1,1,1,2,3-pentachloropropane, 2-chloro-3,3,3-trifluoropropene or 1,1,2,3-tetrachloropropene.
  • Step a) is carried out at a pressure of less than or equal to 10 bara, preferably less than or equal to 7 bara.
  • Step a) is carried out at a pressure of 1 to 8 bara, preferably 2 to 8 bara, preferably 3 to 7 bara, in particular 5 to 7 bara.
  • Step a) is carried out in the gas phase or in the liquid phase.
  • Step a) of the present process can be carried out in the liquid phase in the presence of a catalyst.
  • the catalyst may be a Lewis acid, a metal halide-containing catalyst, in particular an antimony halide, tin, tantalum, titanium, a transition metal such as molybdenum, niobium, iron, cesium, transition metal oxides, Group IVb metal halides, Group Vb metal halides, chromium fluoride, fluorinated chromium oxides, or a mixture thereof.
  • the catalyst can be SbCl 5 , SbCU, TiCl 4 , SnCl 4 , TaCl 5 , NbCl 5 , TiCl 4 , FeCl 3, MoC, CsCl, and the corresponding fluorinated compounds.
  • the catalyst may contain an ionic liquid as described for example in applications WO2008 / 149011 (in particular from page 4, line 1 to page 6 line 15, included by reference) and WO01 / 81353, as well as the reference "liquid In the liquid phase, step a) can be carried out at a temperature of between 30 and 200.degree. C., advantageously between 40.degree. and 40.degree. C. and 170 ° C., preferably between 50 and 150 ° C.
  • the HF / compound of formula (I) molar ratio may be from 0.5: 1 to 50: 1, advantageously from 3: 1 to 20 : 1 and preferably from 5: 1 to 15: 1.
  • step a) of the present process is carried out in the gas phase.
  • Step a) of the present process may be carried out in the presence or absence of a catalyst.
  • step a) can be carried out with a HF / compound of formula (I) molar ratio of from 3: 1 to 150: 1, and preferably at a temperature of 200 to 450 ° C, and preferably 300 to 430 ° C.
  • step a) can be carried out in the presence of a catalyst based on a metal comprising a transition metal oxide or a derivative or a halide or an oxyhalide of such a metal.
  • a catalyst based on a metal comprising a transition metal oxide or a derivative or a halide or an oxyhalide of such a metal.
  • a metal comprising a transition metal oxide or a derivative or a halide or an oxyhalide of such a metal.
  • FeCU chromium oxyfluoride
  • chromium oxides possibly subjected to fluorination treatments
  • chromium fluorides and mixtures thereof may be mentioned.
  • Other possible catalysts are carbon-supported catalysts, antimony catalysts, aluminum catalysts (eg AlF 3 and Al 2 O 3, alumina oxyfluoride and alumina fluoride).
  • a chromium oxyfluoride a fluoride or an aluminum oxyfluoride, or a supported or non-supported catalyst containing a metal such as Cr, Ni, Fe, Zn, Ti, V, Zr, Mo, Ge or Sn. Pb, Mg, Sb.
  • a metal such as Cr, Ni, Fe, Zn, Ti, V, Zr, Mo, Ge or Sn. Pb, Mg, Sb.
  • the catalyst is more preferably based on chromium and it is more particularly a mixed catalyst comprising chromium.
  • a mixed catalyst comprising chrome and nickel.
  • the molar ratio Cr / Ni (based on the metal element) is generally 0.5 to 5, for example 0.7 to 2, for example about 1.
  • the catalyst may contain from 0.5 to 20% by weight of nickel.
  • the metal may be present in metallic form or in the form of a derivative, for example an oxide, halide or oxyhalogenide. These derivatives are preferably obtained by activation of the catalytic metal.
  • the support is preferably made of aluminum, for example alumina, activated alumina or aluminum derivatives, such as aluminum halides and aluminum oxyhalides, for example described in US Pat.
  • the catalyst may comprise chromium and nickel in an activated or non-activated form, on a support which has been subjected to activation or not.
  • WO 2009/118628 especially at p.4, l.30-p.7 1.16
  • Another preferred embodiment is based on a mixed catalyst containing chromium and at least one co-catalyst chosen from the salts of Co, Mn, Mg and Zn, preferably Zn.
  • Said cocatalyst is preferably present in a content of 1 to 10% by weight based on the weight of the catalyst.
  • the catalyst Prior to use, the catalyst is preferably activated with air, oxygen or chlorine and / or with HF.
  • the catalyst is preferably subjected to activation with air or oxygen and HF at a temperature of 100 to 500 ° C, preferably 250 to 500 ° C and more preferably 300 to 500 ° C. at 400 ° C.
  • the activation time is preferably from 1 to 200 hours and more particularly from 1 to 50 hours.
  • This activation may be followed by a final fluorination activation step in the presence of an oxidizing agent, HF and organic compounds.
  • the molar ratio of HF / organic compounds is preferably from 2 to 40 and the molar ratio of oxidation agent / organic compounds is preferably from 0.04 to 25.
  • the temperature of the final activation is preferably from 300 to 400 ° C. C and its duration preferably from 6 to 100 h.
  • step a) can be carried out with a HF x compound molar ratio of formula (I) of from 3: 1 to 150: 1, preferably from 4: 1 to 125: 1, preferably from 5: 1 to : 1 to 100: 1.
  • step a) can be carried out at a pressure of less than or equal to 10 bara, advantageously from 2 to 8 bara, preferably from 3 to 7 bara, more particularly from 5 to 7 bara.
  • Step a) may be carried out at a temperature of 200 to 450 ° C, preferably 300 to 430 ° C, preferably 320 to 420 ° C.
  • the contact time (catalyst volume divided by total reagent flow, adjusted to operating pressure and temperature) may be from 3 to 100 seconds, preferably from 4 to 75 seconds, preferably from 5 to 50 seconds.
  • step a) of the present process is carried out in the gas phase in the presence of a catalyst and a compound of formula (I) chosen from the group consisting of 2,3,3,3-tetrachloropropene, 1,2-dichloro-3,3,3-trifluoropropane, 1,1,1,2,3-pentachloropropane, 2-chloro-3,3,3-trifluoropropene or 1,1,2,3-tetrachloropropene or a mixture of these to produce a product stream comprising 2,3,3,3-tetrafluoropropene and also at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene.
  • step a) of the present process is carried out in the gas phase in the presence of a catalyst and a compound of formula (I) selected from the group consisting of 2,3,3,3-tetrachloropropene , 1,2-dichloro-3,3,3-trifluoropropane, 1,1,1,2,3-pentachloropropane, 2-chloro-3,3,3-trifluoropropene or 1,1,2,3-tetrachloropropene or mixing them to produce a product stream comprising 2,3,3,3-tetrafluoropropene and also at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1, 1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloride,
  • Step a) of the present process can be carried out in two steps according to the following sequence: a1) contacting 2,3,3,3-tetrachloropropene, 1,2-dichloro-3,3,3-trifluoropropane 1,1,1,2,3-pentachloropropane or 1,1,2,3-tetrachloropropene or a mixture thereof with HF to form 2-chloro-3,3,3-trifluoropropene; and a2) contacting the resulting 2-chloro-3,3,3-trifluoropropene with HF to form 2,3,3,3-tetrafluoropropene.
  • Step a1) and step a2) may be carried out in the gas phase or in the liquid phase, preferably in the gas phase.
  • Step a1) and step a2) can be carried out in continuous mode or in batch mode with optionally a step of storage or purification of 2-chloro-3,3,3-trifluoropropene.
  • Step a1) can preferably be carried out in the gaseous phase in the presence or absence of a catalyst.
  • the catalyst when present, may be as described above in connection with step a).
  • Step a1) can be carried out with a HF ⁇ compound molar ratio of formula (I) of from 3: 1 to 150: 1, advantageously from 4: 1 to 125: 1, preferably from 5: 1 to 100: 1.
  • Step a1) can be carried out at a pressure of less than or equal to 10 bara, advantageously from 2 to 8 bara, preferably from 3 to 7 bara, more particularly from 5 to 7 bara.
  • Step a1) can be carried out at a temperature of 200 to 450 ° C, preferably 300 to 430 ° C, preferably 320 to 420 ° C.
  • the contact time (catalyst volume divided by total reagent flow, adjusted to operating pressure and temperature) may be from 3 to 100 seconds, preferably from 4 to 75 seconds, preferably from 5 to 50 seconds.
  • Step a2) can be carried out preferably in the gas phase in the presence of a catalyst.
  • the catalyst when present, may be as described above in connection with step a).
  • Step a2) can be carried out with a HF: compound of formula (I) molar ratio of from 3: 1 to 150: 1, advantageously from 4: 1 to 125: 1, preferably from 5: 1 to 100: 1.
  • Step a2) may be carried out at a pressure of less than or equal to 10 bara, advantageously from 2 to 8 bara, preferably from 3 to 7 bara, more particularly from 5 to 7 bara.
  • Step a2) can be carried out at a temperature of 200 to 450 ° C, preferably 300 to 430 ° C, preferably 320 to 420 ° C.
  • the contact time (catalyst volume divided by total reagent flow, adjusted to operating pressure and temperature) may be from 3 to 100 seconds, preferably from 4 to 75 seconds, preferably from 5 to 50 seconds.
  • Step a1) and step a2) may be carried out in two reactors arranged in series.
  • Step b) of the present process consists in cooling the product stream obtained in step a) at a temperature of -20 ° C to 100 ° C, advantageously the product stream obtained in step a) is cooled at a temperature of from -10 ° C to 90 ° C, preferably from 0 ° C to 80 ° C, more preferably from 0 ° C to 70 ° C, in particular from 10 ° C to 60 ° C, more preferably ° C to 50 ° C.
  • Cooling of product streams can be accomplished by one or a plurality of heat exchangers. Cooling of product streams can be accomplished by passing the product stream obtained in step a) through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
  • step c) the stream cooled in step b) can then be distilled to form a first stream comprising 2,3,3,3-tetrafluoropropene and HCl and a second stream comprising HF.
  • the first stream can be recovered at the top of the distillation column.
  • the second stream can be recovered at the bottom of the distillation column.
  • the first stream formed in step c) may comprise, in addition to 2,3,3,3-tetrafluoropropene and HCl, at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1 , 1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane 1,1,1,2-Tetrafluoroethane, trans-1,2,3,3,3-pentafluoropropene and 1-chloro-3,3,3-trifluoropropene.
  • the first stream may comprise, besides 2,3,3,3-tetrafluoropropene and HCl, 2-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and 1,1,1, 2,2-pentafluoropropane.
  • the first stream may optionally also include hydrofluoric acid, preferably in small amounts.
  • the second stream may comprise, in addition to HF, at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1,1,2,2-pentafluoropropane, 1,1,1, 3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene.
  • the second stream may comprise, besides HF, 2-chloro-3,3,3-trifluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane.
  • Said first stream formed in step c) can be heated prior to the implementation of step d).
  • said first stream obtained in stage c) can be heated to a temperature between -20 ° C. and 50 ° C., more preferably between -10 ° C. and 50 ° C., in particular between 0 ° C. and 50 ° C. ° C, more particularly between 0 ° C and 40 ° C.
  • said first stream obtained in step c) can be heated to a temperature between any of the following values: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 , 22, 24, 26, 28, 30, 32, 34, 36, 38 and 40 ° C.
  • said first stream obtained in step c) can be heated to a temperature between 0 ° C and 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 , 28, 30, 32, 34, 36 or 38 ° C.
  • Said first stream may be compressed in step d) to form a first compressed stream.
  • Said first compressed stream has the same composition as said first stream as described above.
  • said first stream is compressed at a pressure of between 10 and 25 bara, more preferably of 11 to 24 bara, in particular of 12 to 23 bara, more particularly of 13 to 22 bara, and preferably of 14 to 21 bara. , even more privileged from 15 to 20 bara.
  • said first compressed stream obtained in step d) can be cooled before being distilled in step e).
  • the first compressed stream obtained in step d) can be cooled to a temperature of less than 100 ° C., advantageously less than 95 ° C., preferably less than 80 ° C., more preferably less than 65 ° C., especially less than 50 ° C, more preferably less than 25 ° C.
  • Said first compressed stream obtained in step d) is distilled in step e) to form a third stream comprising HCl and a fourth stream comprising 2,3,3,3-tetrafluoropropene.
  • the third stream can be recovered at the top of the distillation column.
  • the fourth stream can be recovered at the bottom of the distillation column.
  • the temperature at the top of the distillation column is between 0 ° C. and -35 ° C., more preferably between -5 ° C. and -30 ° C., in particular between -5 ° C. and -25 ° C. ° C, more particularly between -10 ° C and -20 ° C.
  • the third stream comprising HCl can be recovered in step e) at the top of the distillation column and can be brought to a temperature between -40 ° C and 20 ° C before being purified according to the following steps:
  • the catalytic hydrolysis step i) is carried out on a bed of activated carbon.
  • the temperature of the catalytic hydrolysis step i) is preferably from 100 to 200 ° C., in particular from 120 to 170 ° C., and more particularly from 130 to 150 ° C.
  • the pressure is preferably 0.5 to 3 barg, especially 1 to 2 barg.
  • Step i) is performed in a dedicated unit for this purpose.
  • the residence time of the first stream in the unit is preferably from 1 s to 1 min, in particular from 2 s to 30 s, more particularly from 4 s to 15 s, and most particularly from 5 s to 10 s.
  • the acid solution used during the washing step ii) is a solution of hydrochloric acid and preferably comes from the hydrochloric acid solution collected at the end of the adiabatic or isothermal absorption step.
  • an acidic solution it is possible to use a solution of HCl, for example, at a mass concentration ranging from 5 to 60%, especially from 10 to 50%, more preferably from 20 to 45% and in particular from 30 to 35%.
  • the washing with the acidic solution is preferably carried out at a temperature of 5 to 50 ° C, and more particularly of 7 to 40 ° C; and / or at a pressure of 0.1 to 4 barg, preferably from 0.3 to 2 barg, more preferably from 0.5 to 1.5 barg.
  • boric acid is added to the acidic solution used for the washing step.
  • An addition of boric acid at the stage of washing with the acid solution makes it possible to complex fluoride ions.
  • the acid solution may contain from 2000 to 8000 ppm of H3BO3.
  • the absorption reaction of the HCl, in step iv), in the water being exothermic it is preferable to limit the pressure at which this operation is conducted. In general, the pressure is less than 2 barg and preferably less than 1.5 barg. In this way the absorption temperature does not exceed 130 ° C, and preferably 120 ° C.
  • the hydrochloric acid solution obtained in step iv) can be contacted with a silica gel.
  • the fourth stream formed in step e) may comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1 1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane, trans-1,2,3,3,3-pentafluoropropene and 1-chloro-3,3,3-trifluoropropene.
  • the fourth stream may comprise, besides 2,3,3,3-tetrafluoropropene, 2-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and / or 1,1,1, 2,2-pentafluoropropane.
  • the fourth stream may also include hydrofluoric acid.
  • step f) said fourth stream obtained in step e) and preferably recovered at the bottom of the distillation column can be purified.
  • the purification of said fourth stream may comprise a) a distillation step, a) a decantation step and a) one or more extractive distillation steps.
  • Step f1) may be a distillation intended to reduce the content of 2-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and / or 1,1,1,2,2-pentafluoropropane in said fourth stream if these compounds are present therein.
  • Step f1) can be carried out under operating conditions which make it possible to recover at the top of the distillation column a stream comprising 2,3,3,3-tetrafluoropropene and at the bottom of the distillation column a stream comprising a part of 2- chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and / or 1,1,1,2,2-pentafluoropropane.
  • the fourth stream obtained in step e) or the stream obtained in step f1) comprises 2,3,3,3-tetrafluoropropene and also comprises hydrofluoric acid, preferably in weak quantities.
  • the fourth stream obtained in step e) or the stream obtained in step f1) comprises 2,3,3,3-tetrafluoropropene can be purified by a decantation step f2).
  • the settling may be carried out at a temperature between 0 ° C and -50 ° C, preferably between -5 ° C and -40 ° C. Decantation makes it possible to form an upper phase comprising HF and a lower phase comprising 2,3,3,3-tetrafluoropropene.
  • the lower phase can be brought into contact with water, then treated with a basic solution (for example 20% NaOH or KOH) and then dried.
  • a basic solution for example 20% NaOH or KOH
  • the drying can be carried out in the presence of calcium sulfate, sodium sulfate, magnesium sulfate, calcium chloride, calcium carbonate, silica gel or molecular sieve such as siliporite (for example 3A).
  • the upper phase comprising HF can be recycled in step a).
  • the stream comprising 2,3,3,3-tetrafluoropropene formed in step f1) and / or the lower phase formed in step f2) may comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene.
  • the stream comprising 2,3,3,3-tetrafluoropropene formed in step f1) and / or the lower phase formed in step f2) may comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 1,1,1,2 2-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3 3,3-pentafluoropropene.
  • the fourth stream obtained in step e) can be purified in step f).
  • Purification of said fourth stream may include a distillation step, a HF removal step, and one or more extractive distillation steps.
  • Step fl ') is identical to step f1) described above.
  • Step f2 ') comprises the following steps:
  • the aqueous solution of hydrofluoric acid used in step i ') is of concentration greater than 40% by weight.
  • the hydrofluoric acid aqueous solution is of concentration greater than 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52% 53% 54% 55% 56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69 % 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83% 84% 85% 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% by weight.
  • the aqueous solution of hydrofluoric acid is of concentration greater than or equal to 50% by weight, or greater than or equal to 60% by weight or greater than or equal to 70% by weight. More particularly, the aqueous solution of hydrofluoric acid may be between any of the values mentioned above. Thus, the hydrofluoric acid aqueous solution may be between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight, between 60% by weight and 80% by weight or between 65% by weight and 75% by weight.
  • Step i ') of the present process allows formation of said second diphasic stream comprising 2,3,3,3-tetrafluoropropene and hydrofluoric acid.
  • Said two-phase current consists of a gas phase G1 and a liquid phase L1.
  • the gas phase can include 2,3,3,3-tetrafluoropropene.
  • the gas phase G1 may comprise hydrofluoric acid.
  • the content thereof is generally low, preferably less than 5% by weight based on the total weight of said gaseous phase, in particular less than 2% by weight based on the total weight of said gaseous phase, more particularly less than 1% by weight based on the total weight of said gaseous phase.
  • said G1 phase comprises in addition to 2,3,3,3-tetrafluoropropene, at least one of the organic compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3,3-tetrafluoropropene. tetrafluoropropene.
  • Said G1 phase may also comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the organic compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,3,3,3,3- tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3-pentafluoropropene.
  • the organic compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,3,3,3,3- tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3-pentafluor
  • the liquid phase L1 of said two-phase stream may comprise hydrofluoric acid.
  • Said liquid phase L1 may optionally comprise a small amount of 2,3,3,3-tetrafluoropropene, preferably said liquid phase L1 may comprise a 2,3,3,3-tetrafluoropropene content of less than 5% by weight based on total weight of said liquid phase L1, in particular less than 1% by weight ppm based on the total weight of said liquid phase L1, more particularly less than 5000 ppm by weight based on the total weight of said liquid phase L1, in a privileged manner less than 1000 ppm by weight based on the total weight of said liquid phase L1, more preferably less than 500 ppm by weight, particularly preferably less than 100 ppm based on the total weight of said liquid phase L1.
  • said L1 phase further comprises 2,3,3,3-tetrafluoropropene, at least one of the organic compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3,3-tetrafluoropropene. tetrafluoropropene.
  • Said L1 phase may also comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3-pentafluoropropene.
  • said liquid phase L1 may comprise an organic compound content of less than 5% by weight based on the total weight of said liquid phase L1, in particular less than 1% by weight, based on the total weight of said liquid phase L1. , more particularly less than 5000 ppm by weight based on the total weight of said liquid phase L1, advantageously less than 1000 ppm by weight based on the total weight of said liquid phase L1, more preferably less than 500 ppm by weight, particularly preferably less than 100 ppm based on the total weight of said liquid phase ll.
  • the hydrofluoric acid concentration in said liquid phase L1 of said second diphasic stream is greater than the concentration of said hydrofluoric acid aqueous solution used in step i ').
  • Said liquid phase L1 of said second diphasic current may have a hydrofluoric acid concentration of greater than 41% by weight based on the total weight of said liquid phase L1 of said second two-phase current.
  • said liquid phase L1 of said second two-phase current may have a hydrofluoric acid concentration greater than 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%.
  • said liquid phase L1 of said second two-phase stream may have a hydrofluoric acid concentration of between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight, and between 60% by weight. weight and 80% by weight or between 65% by weight and 75% by weight while being greater than the concentration of said aqueous hydrofluoric acid solution used in stage i ').
  • the hydrofluoric acid aqueous solution used in step i ') is at a temperature of between -20 ° C. and 80 ° C. before being brought into contact with the said first stream, advantageously between -15 ° C. and 70 ° C. C., preferably between -10 ° C. and 60 ° C., more preferably between -5 ° C. and 50 ° C., in particular between -5 ° C. and 40 ° C., more particularly between 0 ° C. and 30 ° C.
  • the temperature of the aqueous hydrofluoric acid solution used in step i '), before it is brought into contact with said first stream can be 0 ° C, 1 ° C, 2 ° C, 3 ° C, 4 ° C, 5 ° C, 6 ° C, 7 ° C, 8 ° C, 9 ° C, 10 ° C, 11 ° C, 12 ° C, 13 ° C, 14 ° C 15 ° C 16 C 17 C 18 C 19 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 ° C, 28 ° C, 29 ° C or 30 ° C.
  • the implementation of said aqueous solution of hydrofluoric acid at the temperatures mentioned above is intended to control the exothermicity occurring during the contacting thereof with said first stream.
  • step ii ') of the method according to the present invention implements the storage of said second two-phase current in a buffer tank, said second two-phase current consisting of said liquid phase L1 and said gas phase G1 as described above.
  • step iii ') of the method according to the present invention implements, the passage of said gas phase G1 of said second two-phase current in an absorption column fed countercurrently with an aqueous stream to form a gaseous stream G2 comprising 2,3,3,3-tetrafluoropropene and an aqueous stream L2 comprising HF.
  • the flow rate of the aqueous stream used in step iii ') is determined as a function of the amount of hydrofluoric acid contained in said fourth stream.
  • the ratio between the flow rate of the aqueous flow expressed in kg / h feeding the absorption column in step (iii) and the amount of hydrofluoric acid in said fourth flow expressed in kg / h is between 0.05 and 1.22.
  • the ratio between the flow rate of the aqueous flow expressed in kg / h feeding the absorption column in step iii ') and the quantity of hydrofluoric acid in the said fourth flow expressed in kg / h can be between 0, 11 and 1.00, preferably between 0.18 and 0.82, more preferably between 0.25 and 0.67, in particular between 0.33 and 0.54.
  • the ratio between the flow rate of the aqueous flow expressed in kg / h feeding the absorption column in step iii ') and the amount of hydrofluoric acid in said fourth flow expressed in kg / h may be 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0, 38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0, 63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69 or 0.70.
  • An additional aqueous stream corresponding to the vaporized water fraction at the top of said absorption column may also supply said column.
  • the aqueous stream as described above is different from said additional aqueous stream linked to the vaporized water fraction at the top of the column and does not include it.
  • said absorption column implemented in step iii ') comprises at least one absorption stage.
  • said absorption column implemented in step iii ') comprises at least two absorption stages.
  • said absorption column implemented in step iii ') comprises at least three absorption stages.
  • Said absorption column implemented in step iii ') may thus comprise two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen or fifteen absorption stages.
  • said stream G2 comprises less than 1000 ppm of hydrofluoric acid by weight based on the total weight of said stream G2, preferably less than 900 ppm of hydrofluoric acid, more preferably less than 800 ppm of hydrofluoric acid, in particular less 700 ppm of hydrofluoric acid, more particularly less than 600 ppm of hydrofluoric acid, preferably less than 500 ppm of hydrofluoric acid, even more preferred less than 400 ppm of hydrofluoric acid, preferably less favored 300 ppm of hydrofluoric acid, particularly preferably less than 200 ppm of hydrofluoric acid, more particularly preferred less than 100 ppm of hydrofluoric acid.
  • said stream G2 may have a hydrofluoric acid content of between 1 and 200 ppm, between 5 and 190 ppm, between 10 and 180 ppm, between 15 and 170 ppm, between 20 and 160 ppm, between 25 and 150 ppm or between 30 and 140 ppm by weight based on the total weight of said G2 stream.
  • At least 80% by weight of the hydrofluoric acid optionally present in said gas phase G1 of said second two-phase current is absorbed by the first absorption stage of said absorption column, in particular at least 85% by weight of the hydrofluoric acid optionally present in said gas phase G1 of said second diphasic current is absorbed by the first absorption stage of said absorption column, more particularly at least 90% by weight of the hydrofluoric acid that may be present in said gaseous phase Gl of said second diphasic current is absorbed by the first absorption stage of said absorption column.
  • said aqueous stream can be introduced at least at the head of the absorption column.
  • said G1 phase and said G2 phase comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds chosen from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene. , 3-tetrafluoropropene.
  • Said G1 phase and said G2 phase may also comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,3,3 , 3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3-pentafluoropropene.
  • said stream L2 is in the form of an aqueous solution of hydrofluoric acid.
  • said stream L2 is a solution of hydrofluoric acid with a concentration of less than 30% by weight based on the total weight of said stream L2.
  • said stream L2 is a hydrofluoric acid concentration solution less than 25% by weight based on the total weight of said L2 stream.
  • said stream L2 is a solution of hydrofluoric acid with a concentration of between 5 and 25% by weight based on the total weight of said stream L2, more particularly between 10 and 20% by weight based on the total weight of said stream L2.
  • said stream L2 is recycled in stage ii '). Said stream L2 is thus mixed with liquid phase L1.
  • said method also comprises the steps of:
  • step iv' drying said neutralized G3 stream obtained in step iv'), preferably on molecular sieve to form a neutralized and dried G4 stream.
  • said aqueous alkaline solution may be an aqueous solution of hydroxide of an alkali metal or alkaline earth metal.
  • the aqueous alkaline solution may be an aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide or magnesium hydroxide or a mixture thereof.
  • said aqueous alkaline solution has a concentration of between 5 and 50% by weight based on the total weight of said alkaline aqueous solution.
  • said alkaline aqueous solution has a concentration of at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, at least 10%.
  • Said neutralized stream G3 formed in step iv ') preferably comprises 2,3,3,3-tetrafluoropropene and optionally any of the organic compounds described above.
  • the hydrofluoric acid content in said neutralized stream G3 is lower than the hydrofluoric acid content of said stream G2, before its neutralization.
  • Said neutralized stream G3 formed in step iv ') may also contain water.
  • Said neutralized stream G3 formed in step iv ') can thus be dried in step v') of the present process.
  • said neutralized stream G3 formed in step iv ') is dried on molecular sieve.
  • said neutralized G3 stream formed in step iv ') is dried on 3A molecular sieve, such as siliporite.
  • Step ⁇ ') of the present process allows the formation of a neutralized and dried G4 stream comprising 2,3,3,3-tetrafluoropropene and optionally any of the organic compounds described above.
  • Said G4 stream can then be compressed and liquefied at a pressure of at most 8 bara to form a compressed G5 stream in which 2,3,3,3-tetrafluoropropene and optionally any of the organic compounds described above are liquid form.
  • the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 is recycled to step i ').
  • the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 may have a hydrofluoric acid concentration greater than 41% by weight based on the total weight of the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2.
  • the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 may have a hydrofluoric acid concentration greater than 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49% 50% 51% 52% 53% 54% 55% 56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66 % 67% 68% 69% 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% by weight based on the total weight of the resulting liquid phase mixing said liquid phase L1 with said liquid phase L2.
  • the liquid phase resulting from mixing said liquid phase L1 with said liquid phase L2 may have a hydrofluoric acid concentration of between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight. % by weight, between 60% by weight and 80% by weight or between 65% by weight and 75% by weight based on the total weight of the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2.
  • the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 is distilled to form a stream L3, preferably at the top of the distillation column.
  • said stream L3 comprises hydrofluoric acid containing less than 3000 ppm of water, preferably less than 2000 ppm of water, more preferably less than 1000 ppm of water, in particular less than 500 ppm of water, more particularly less than 200 ppm water, preferably less than 100 ppm water, more preferably less than 50 ppm water based on the total weight of L3 current.
  • Said stream L3 may also comprise less than 50 ppm of hydrochloric acid, advantageously less than 45 ppm of hydrochloric acid, preferably less than 40 ppm of hydrochloric acid, more preferably less than 35 ppm of hydrochloric acid, in particular less 30 ppm hydrochloric acid, more particularly less than 20 ppm of hydrochloric acid based on the total weight of the L3 current.
  • Said stream L3 may also comprise less than 50 ppm of organic compounds, advantageously less than 45 ppm of organic compounds, preferably less than 40 ppm of organic compounds, more preferably less than 35 ppm of organic compounds, in particular less than 30 ppm of organic compounds.
  • organic compounds more particularly less than 20 ppm of organic compounds based on the total weight of L3 current.
  • An organic compound is a compound comprising at least one carbon atom.
  • the distillation of said liquid phase L1 of said second two-phase current forms a stream L4, preferably at the bottom of the distillation column, comprising hydrofluoric acid in the form of an aqueous solution with a concentration of less than 50% by weight.
  • said stream L4 comprising hydrofluoric acid in the form of an aqueous solution of concentration less than 50% by weight, 49% by weight, 48% by weight, 47% by weight, 46% by weight, 45% by weight. weight, 44% by weight, 43% by weight, 42% by weight based on the total weight of said L4 stream.
  • said stream L4 comprising hydrofluoric acid in the form of an aqueous solution of concentration greater than 20% by weight based on the total weight of said stream L4.
  • said stream L4 comprising hydrofluoric acid in the form of an aqueous solution of higher concentration 21% by weight, 22% by weight, 23% by weight, 24% by weight, 25% by weight, 26% by weight. weight, 27% by weight, 28% by weight, 29% by weight, 30% by weight, 31% by weight, 32% by weight, 33% by weight, 34% by weight, 35% by weight based on weight total of said current L4.
  • Said L4 stream may be marketed or destroyed by neutralization.
  • said lower phase or said G2, G3, G4 or G5 phase comprises 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene
  • the latter can be distilled by extractive distillation to form a stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane; and a stream comprising 1,3,3,3-tetrafluoropropene.
  • the extractive distillation of said lower phase or said G2, G3, G4 or G5 phase can be carried out in the presence of an organic extraction agent.
  • Said organic extractant may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, propanone, methylacetate, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1, 4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-1-propanol, hexanal.
  • said organic extraction agent may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-1-propanol, hexanal.
  • said lower phase or said G2, G3, G4 or G5 phase comprises 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene and minus one of the compounds selected from the group consisting of 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3- pentafluoropropene; this can be purified by extractive distillation.
  • the extractive distillation of said lower phase or said G2, G3, G4 or G5 phase can be carried out in the presence of an organic extraction agent.
  • Said organic extractant may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, propanone, methylacetate, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1, 4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-1-propanol, hexanal.
  • said organic extractant may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane , 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy 1-propanol, hexanal.
  • the extractive distillation makes it possible to obtain a stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropene and a stream comprising 1,3,3,3-tetrafluoropropene.
  • FIG. 1 schematically shows a method according to a particular embodiment of the present invention.
  • Compound (I) is, for example, 1,1,1,2,3-pentachloropropane.
  • a stream of compound (I) is introduced via line 1 into the reaction device 3.
  • a flow of hydrofluoric acid is introduced via line 2 into the reaction device 3.
  • the reaction device 3 may comprise one or more reactors.
  • the stream of products resulting from the reaction between the compound (I) and THF comprises in particular HCl, HF and 2,3,3,3-tetrafluoropropene.
  • the flow of products resulting from the reaction between the compound (I) and THF is transferred from the reaction device 3 to a cooling device 5 via a pipe 4.
  • the flow of products resulting from the reaction between the compound (I) and THF is and cooled to a temperature of 0 ° C to 70 ° C before being introduced into a distillation column 6 via a pipe 12.
  • the distillation column 6 is configured, as explained above, so as to allow the separation between on the one hand hydrochloric acid and 2,3,3,3-tetrafluoropropene and on the other hand hydrofluoric acid.
  • the HF stream is recovered at the bottom of distillation column 6 and recycled to the reaction device 3 via line 17.
  • the stream comprising 2,3,3,3-tetrafluoropropene and hydrochloric acid is recovered at the top of the column.
  • distillation device to be routed via a pipe 13 to a compressor 7.
  • the compressor compresses the stream comprising 2,3,3,3-tetrafluoropropene and hydrochloric acid at a pressure of between 10 and 25 bara.
  • the stream thus compressed is fed through line 15 to distillation column 8. This is configured to separate 2,3,3,3-tetrafluoropropene and hydrochloric acid.
  • the hydrochloric acid is recovered at the top of the distillation column 8 to be conveyed to a purification device 10 via line 14.
  • the hydrochloric acid purification device 10 is as described above in the present application.
  • the 2,3,3,3-tetrafluoropropene is recovered at the bottom of the distillation column to be conveyed via line 16 to a distillation column 9.
  • the distillation column 9 is intended to separate 2,3,3,3-tetrafluoropropene. 1,1,1,2,2-pentafluoropropene possibly present in the stream of products from the reaction device.
  • the 2,3,3,3-tetrafluoropropene is recovered at the top of the distillation column to be conveyed to a purification device 11 via line 18 'described below.
  • the 1,1,1,2,2-pentafluoropropene recovered at the bottom of the distillation column is recycled to the reaction device 3 via line 18.
  • the purification device 11 comprises in particular a device for removing the HF and one or more columns.
  • distillation system capable of purifying the stream comprising 2,3,3,3-tetrafluoropropene of impurities which it may contain, such as, for example, 1,1,1,2,2-pentafluoropropane and / or 1,3 , 3,3-tetrafluoropropene.
  • this is 2 purification device 11 comprises a device for removing HF 19 to separate on one side 2,3,3,3-tetrafluoropene, 1,1,1,2,2- pentafluoropropane and 1,3,3,3-tetrafluoropropene, if present, and on the other hand residual HF.
  • the residual HF can be recycled to the reaction device 3 (not shown).
  • the device for removing HF 19 may be suitable for allowing the decantation of HF or the absorption of HF as described below.
  • the stream comprising 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene is passed to a distillation column 20 via line 23.
  • the distillation column 20 is an extractive distillation column.
  • An extractant is added to the stream comprising 2,3,3,3-tetrafluoropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene.
  • a stream comprising 2,3,3,3-tetrafluoropene and 1,1,1,2,2-pentafluoropropane is recovered at the top of distillation column 20 and is conveyed via line 22 to a distillation column 21 allowing separation between 2,3,3,3-tetrafluoropene and 1,1,1,2,2-pentafluoropropane.
  • a stream 27 comprising 2,3,3,3-tetrafluoropene is recovered at the top of the distillation column.
  • a stream 28 comprising 1,1,1,2,2-pentafluoropropane is recovered at the bottom of the distillation column; the latter can be recycled to the reaction device 3.
  • the stream 24 recovered at the bottom of the distillation column 20 comprises the organic extraction agent and 1,3,3,3-tetrafluoropropene. These are separated, for example by distillation, to form a stream 26 comprising 1,3,3,3-tetrafluoropropene.
  • the organic extraction agent is recycled at 25.
  • Figure 3 shows schematically a device for removing hydrofluoric acid 19 according to a particular embodiment, that is to say by absorption of HF.
  • Stream 31 comprises 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene and HF, and is equivalent to the stream from the top of the column.
  • the device 32 may for example be a hydrolaver.
  • a two-phase current which is routed to a storage device 34 via the pipe 43.
  • storage device 34 makes it possible to separate the two-phase current into a gaseous phase and a liquid phase.
  • the gaseous phase of said two-phase current is conveyed via line 44 to the absorption column 33 comprising three absorption stages 51a, 51b and 51c.
  • the column absorption 33 is also supplied by an aqueous stream 37.
  • the aqueous stream 37 feeds the absorption column 33 at the head of the absorption column 33, that is to say above the three absorption stages 51a-51c.
  • the gas stream 37 can feed the absorption column 33 above each of the absorption stages 51a-51c.
  • a gaseous stream comprising 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene is extracted at the top of absorption column 33 via line 46 to
  • an aqueous solution of hydrofluoric acid is recycled to the storage device 34 via the line 45.
  • the alkaline solution 38 for example an alkaline solution of 20% NaOH feeds the neutralizer 35 through line 49.
  • the neutralized stream is discharged through line 47 and recovered at 40 to be dried on 3A molecular sieve.
  • the latter can therefore be compressed and liquefied at a pressure of at most 8 bara.
  • the stream recovered at 40 can supply the distillation column 20 described in FIG. 2 via line 23.
  • a spent alkaline solution 39 can be extracted from the neutralization device 35 to be recycled via lines 48 and 49 or evacuated via the pipe. 48 for further processing.
  • the liquid phase of the two-phase stream or the mixture resulting from the liquid phase of said two-phase stream and the aqueous hydrofluoric acid solution from the base of the absorption column 33 stored in the storage device 34 is conveyed to a distillation column 36 via the pump 52 and the pipe 53 to form the stream L3 recovered at the top of the distillation column 41 and the stream L4 recovered at the bottom of the distillation column 42.
  • the pump 52 can also be configured to convey the liquid phase of the two-phase stream. stored in the storage device 34 to the device 32 via the pipe 50.
  • the pump 52 is thus configured to allow the supply of the distillation column 36 and the device 32 alternately or simultaneously, preferably simultaneously .
  • the present invention thus makes it possible to implement a process for producing 2,3,3,3-tetrafluoropropene that is simpler and more economical.

Abstract

The present invention relates to a method for the production of 2,3,3,3- tetrafluoropropene, comprising the steps of: a) bringing a compound of formula (I) CH(n+2)(X)m-CHp(X) (n+1)-CX(3+p-m) into contact, in the gaseous phase, with hydrofluoric acid, in which formula X represents independently F or Cl; n, m, p are, independently of one another, 0 or 1 with (n+m) = 0 or 1, (n+p) = 0 or 1 and (m-p) = 0 or 1, at least one X being Cl, in order to produce a flow of products comprising 2,3,3,3-tetrafluoropropene, HCl and HF; b) cooling the flow of products from the reactor in step (a) to a temperature below 100°C, advantageously to a temperature of between 0°C and 70°C, preferably to a temperature of between 20°C and 50°C; c) distilling the flow cooled in step (b) in order to form a first stream comprising 2,3,3,3-tetrafluoropropene and HCl, and a second stream comprising HF; d) compressing the first stream obtained in step (c) in order to form a first compressed stream; e) distilling the first compressed stream obtained in step (d) in order to produce a third stream comprising HCl and a fourth stream comprising 2,3,3,3- tetrafluoropropene; f) purifying the fourth stream obtained in step (e). The method is characterised in that step (a) is carried out at a pressure of less than 10 bar, preferably at a pressure of between 2 and 8 bar, in particular between 3 and 7 bar, and more specifically between 5 and 7 bar.

Description

Procédé de production du 2,3,3,3-tetrafluoropropène  Process for producing 2,3,3,3-tetrafluoropropene
Domaine technique de l'invention Technical field of the invention
La présente invention concerne un procédé de production du 2,3,3,3- tetrafluoropropène, également nommé HFO-1234yf. En particulier, la présente invention concerne un procédé de production du 2,3,3,3-tetrafluoropropène mis en œuvre à haute pression, de préférence à une pression inférieure à 10 bara.  The present invention relates to a process for producing 2,3,3,3-tetrafluoropropene, also known as HFO-1234yf. In particular, the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene carried out at high pressure, preferably at a pressure of less than 10 bara.
Arrière-plan technologique de l'invention Technological background of the invention
Les hydrofluorocarbures (HFC) et en particulier les hydrofluorooléfines (HFOs), telles que le 2,3,3,3-tétrafluoropropène (HFO-1234yf) sont des composés connus pour leurs propriétés de réfrigérants et fluides caloporteurs, extinctrices, propulseurs, agents moussants, agents gonflants, diélectriques gazeux, milieu de polymérisation ou monomère, fluides supports, agents pour abrasifs, agents de séchage et fluides pour unité de production d'énergie. Les HFO ont été identifiés comme des alternatives souhaitables au HCFC du fait de leurs faibles valeurs d'ODP (Ozone Depletion Potential ou potentiel d'appauvrissement de la couche d'ozone) et de GWP (Global Warming Potential ou potentiel de réchauffement climatique).  Hydrofluorocarbons (HFCs) and in particular hydrofluoroolefins (HFOs), such as 2,3,3,3-tetrafluoropropene (HFO-1234yf), are compounds known for their properties as coolants and coolants, fire extinguishers, propellants, foaming agents , blowing agents, gaseous dielectrics, polymerization medium or monomer, carrier fluids, abrasive agents, drying agents and power generating unit fluids. HFOs have been identified as desirable alternatives to HCFCs because of their low ODP (Ozone Depletion Potential or GWP) and GWP (Global Warming Potential) values.
La plupart des procédés de fabrication des hydrofluorooléfines font appel à une réaction de fluoration et/ou déhydrohalogénation. Ce type de réaction est effectué en phase gazeuse ou en phase liquide et génère des impuretés qu'il faut par conséquent éliminer pour obtenir le composé désiré dans un degré de pureté suffisant pour les applications visées.  Most of the hydrofluoroolefin manufacturing processes involve a fluorination and / or dehydrohalogenation reaction. This type of reaction is carried out in the gas phase or in the liquid phase and generates impurities which must therefore be eliminated in order to obtain the desired compound in a degree of purity sufficient for the intended applications.
De nombreux procédés pour la production d'hydrofluorooléfines ont été développés. On connaît par exemple par WO2012/098420 la production de 2,3,3,3-tetrafluoropropène par un procédé de fluoration catalytique en phase gazeuse à partir du 1,1,1,2,3-pentachloropropane et/ou du 1,1,2,2,3-pentachloropropane. Le procédé est réalisé à une pression comprise entre 3 et 20 bars. Le flux de produits issus du réacteur de fluoration catalytique est purifié par distillation.  Many processes for the production of hydrofluoroolefins have been developed. For example, WO2012 / 098420 discloses the production of 2,3,3,3-tetrafluoropropene by a catalytic gas-phase fluorination process using 1,1,1,2,3-pentachloropropane and / or 1,1,1,2,3-pentachloropropane. , 2,2,3-pentachloropropane. The process is carried out at a pressure of between 3 and 20 bar. The flow of products from the catalytic fluorination reactor is purified by distillation.
On connaît également par WO2013/114015 un procédé de production de 2,3,3,3- tetrafluoropropène en phase gazeuse à partir du 1,1,1,2,3-pentachloropropane et/ou du 1,1,2,2,3-pentachloropropane, le flux gazeux récupéré après la réaction est condensé partiellement pour former une fraction gazeuse et une fraction liquide, toutes deux étant comprimée avant d'être distillé. On connaît également par WO 2007/138210 un procédé de production d'hydrofluorocarbures à partir d'hydrofluorochlorocarbure et d'acide fluorhydrique en phase gazeuse en présence d'un catalyseur. Le procédé est effectué à une pression de 1 à 3 bar. Le flux gazeux sortant du réacteur est comprimé à l'aide d'un compresseur avant d'être envoyé à la colonne de distillation. Also known from WO2013 / 114015 is a process for producing 2,3,3,3-tetrafluoropropene in the gas phase from 1,1,1,2,3-pentachloropropane and / or 1,1,2,2, 3-pentachloropropane, the gas stream recovered after the reaction is partially condensed to form a gaseous fraction and a liquid fraction, both being compressed before being distilled. WO 2007/138210 also discloses a process for producing hydrofluorocarbons from hydrofluorochlorocarbon and hydrofluoric acid in the gas phase in the presence of a catalyst. The process is carried out at a pressure of 1 to 3 bar. The gas stream leaving the reactor is compressed using a compressor before being sent to the distillation column.
Les procédés de l'art antérieur peuvent être simplifiés afin d'améliorer et d'augmenter la viabilité industrielle et économiques de ceux-ci.  The processes of the prior art can be simplified in order to improve and increase the industrial and economic viability thereof.
Résumé de l'invention Summary of the invention
Selon un premier aspect, la présente invention fournit un procédé de production du 2,3,3,3- tetrafluoropropène comprenant les étapes de :  According to a first aspect, the present invention provides a process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
a) mise en contact, en phase gazeuse, d'un composé de formule (I) CH )(X)m-CHp(X)(n+i)- CX +P-m) où X représente indépendamment F ou Cl ; n, m, p sont indépendamment les uns des autres 0 ou 1 avec (n+m) = 0 ou 1, (n+p) = 0 ou 1 et (m-p) = 0 ou 1, au moins un X étant Cl, avec de l'acide fluorhydrique pour obtenir un flux de produits comprenant 2,3,3,3- tetrafluoropropène, HCI et HF, a) contacting, in the gas phase, a compound of formula (I) CH) (X) m-CHp (X) ( n + 1) -CX + P -m) wherein X independently represents F or Cl; n, m, p are independently of one another 0 or 1 with (n + m) = 0 or 1, (n + p) = 0 or 1 and (mp) = 0 or 1, at least one X being Cl, with hydrofluoric acid to obtain a product stream comprising 2,3,3,3-tetrafluoropropene, HCl and HF,
b) refroidissement du flux de produits issus du réacteur de l'étape a) à une température inférieure à 100°C, avantageusement à une température de 0°C à 70°C, de préférence à une température de 20°C à 50°C,  b) cooling the product stream from the reactor of step a) at a temperature below 100 ° C, preferably at a temperature of 0 ° C to 70 ° C, preferably at a temperature of 20 ° C to 50 ° VS,
c) distillation du flux refroidi à l'étape b) pour former un premier courant comprenant 2,3,3,3-tetrafluoropropène et HCI, et un second courant comprenant HF,  c) distilling the stream cooled in step b) to form a first stream comprising 2,3,3,3-tetrafluoropropene and HCl, and a second stream comprising HF,
d) compression du premier courant obtenu à l'étape c) pour former un premier courant comprimé,  d) compressing the first stream obtained in step c) to form a first compressed stream,
e) distillation dudit premier courant comprimé obtenu à l'étape d) pour obtenir un troisième courant comprenant HCI et un quatrième courant comprenant 2,3,3,3- tetrafluoropropène,  e) distilling said first compressed stream obtained in step d) to obtain a third stream comprising HCl and a fourth stream comprising 2,3,3,3-tetrafluoropropene,
f) purification dudit quatrième courant obtenu à l'étape e),  f) purifying said fourth stream obtained in step e),
caractérisé en ce que l'étape a) est mise en œuvre à une pression inférieure ou égale à 10 bara, de préférence à une pression de 2 à 8 bara, en particulier à une pression de 3 à 7 bara, plus particulièrement à une pression de 5 à 7 bara. characterized in that step a) is carried out at a pressure of less than or equal to 10 bara, preferably at a pressure of 2 to 8 bara, in particular at a pressure of 3 to 7 bara, more particularly at a pressure of from 5 to 7 bara.
Selon un mode de réalisation préféré, ledit premier courant obtenu à l'étape c) est chauffé préalablement à la mise en œuvre de l'étape d). Selon un mode de réalisation préféré, ledit premier courant obtenu à l'étape c) est chauffé à une température comprise entre 0°C et 40°C. According to a preferred embodiment, said first current obtained in step c) is heated prior to the implementation of step d). According to a preferred embodiment, said first stream obtained in step c) is heated to a temperature between 0 ° C and 40 ° C.
Selon un mode de réalisation préféré, à l'étape d), ledit premier courant est comprimé à une pression comprise entre 10 et 25 bara, de préférence entre 15 et 20 bara.  According to a preferred embodiment, in step d), said first stream is compressed at a pressure of between 10 and 25 bara, preferably between 15 and 20 bara.
Selon un mode de réalisation préféré, le premier courant comprimé obtenu à l'étape d) est refroidi avant d'être distillé.  According to a preferred embodiment, the first compressed stream obtained in step d) is cooled before being distilled.
Selon un mode de réalisation préféré, le premier courant comprimé obtenu à l'étape d) est refroidi à une température inférieure à 50°C.  According to a preferred embodiment, the first compressed stream obtained in step d) is cooled to a temperature below 50 ° C.
Selon un mode de réalisation préféré, à l'étape e), la température en tête de colonne de distillation est comprise entre 0°C et -35°C.  According to a preferred embodiment, in step e), the temperature at the top of the distillation column is between 0 ° C. and -35 ° C.
Selon un mode de réalisation préféré, le troisième courant comprenant HCI est récupéré à l'étape e) en tête de colonne de distillation et est porté à une température comprise entre - 40°C et 20°C avant d'être purifié selon les étapes suivantes :  According to a preferred embodiment, the third stream comprising HCl is recovered in step e) at the top of the distillation column and is brought to a temperature of between -40 ° C. and 20 ° C. before being purified according to the steps following:
i) hydrolyse catalytique ;  i) catalytic hydrolysis;
ii) lavage par une solution acide ;  ii) washing with an acid solution;
iii) adsorption d'impuretés par du charbon actif ;  iii) adsorption of impurities with activated carbon;
iv) absorption adiabatique ou isotherme de l'acide chlorhydrique dans une solution aqueuse, permettant de collecter une solution d'acide chlorhydrique.  iv) adiabatic or isothermal absorption of hydrochloric acid in an aqueous solution, for collecting a solution of hydrochloric acid.
Selon un mode de réalisation préféré, le composé de formule (I) est sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropène, 2,3,3,3- tetrachloropropène, 2-chloro-3,3,3-trifluoropropène, 2-chloro-l,l,l,2-tetrafluoropropane, 1,2- dichloro-3,3,3-trifluoropropane et 1,1,1,2,2-pentachloropropane, ou un mélange de ceux-ci ; et l'étape a) est mise en œuvre en présence ou en absence d'un catalyseur pour produire un flux de produits comprenant 2,3,3,3-tetrafluoropropène, HCI, HF et également au moins un des composés choisi parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène, 1,1,1,2,2- pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3- trifluoropropène, chlorométhane, 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2- tetrafluoroéthane, trans-l,2,3,3,3-pentafluoropropène et l-chloro-3,3,3-trifluoropropène.  According to a preferred embodiment, the compound of formula (I) is selected from the group consisting of 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene, 2,3,3,3 tetrachloropropene, 2-chloro-3,3,3-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane, 1,2-dichloro-3,3,3-trifluoropropane and 1,1,1,2 2-pentachloropropane, or a mixture thereof; and step a) is carried out in the presence or absence of a catalyst to produce a product stream comprising 2,3,3,3-tetrafluoropropene, HCl, HF and also at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3, 3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane, trans-1,2,3,3,3-pentafluoropropene and 1-chloro-3,3,3- trifluoropropene.
Selon un mode de réalisation préféré, le quatrième courant comprenant 2,3,3,3- tetrafluoropropène est purifié par décantation à une température comprise entre -50°C et 0°C pour former une phase inférieure comprenant 2,3,3,3-tetrafluoropropène et une phase supérieure comprenant HF, optionnellement recyclée à l'étape a). Selon un autre mode de réalisation préféré, le quatrième courant comprenant 2,3,3,3- tetrafluoropropène est purifié à l'étape f) par les étapes suivantes : According to a preferred embodiment, the fourth stream comprising 2,3,3,3-tetrafluoropropene is purified by decantation at a temperature between -50 ° C and 0 ° C to form a lower phase comprising 2,3,3,3 tetrafluoropropene and an upper phase comprising HF, optionally recycled in step a). According to another preferred embodiment, the fourth stream comprising 2,3,3,3-tetrafluoropropene is purified in step f) by the following steps:
i') mise en contact dudit quatrième courant avec une solution aqueuse d'acide fluorhydrique de concentration supérieure à 40% pour former un courant diphasique comprenant 2,3,3,3- tetrafluoropropène et HF, i ') contacting said fourth stream with an aqueous solution of hydrofluoric acid of concentration greater than 40% to form a two-phase stream comprising 2,3,3,3-tetrafluoropropene and HF,
ii') stockage dudit courant diphasique dans un réservoir tampon, ledit courant diphasique étant constitué d'une phase gazeuse Gl et d'une phase liquide Ll, ii ') storing said two-phase current in a buffer tank, said two-phase current consisting of a gas phase G1 and a liquid phase L1,
iii') passage de ladite phase gazeuse Gl dudit courant diphasique dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant gazeux G2 comprenant 2,3,3,3-tetrafluoropropène et un courant aqueux L2 comprenant HF. iii ') passing said gaseous phase G1 of said two-phase stream in an absorption column fed countercurrently with an aqueous stream to form a gaseous stream G2 comprising 2,3,3,3-tetrafluoropropene and an aqueous stream L2 comprising HF .
Selon un mode de réalisation préféré, ladite phase inférieure ou ladite phase Gl et/ou ledit courant G2 comprennent également, outre 2,3,3,3-tetrafluoropropène, 1,1,1,2,2- pentafluoropropane et 1,3,3,3-tetrafluoropropène ; et ; la phase inférieure, ladite phase gazeuse Gl ou ledit courant G2 est distillée par distillation extractive pour former un courant comprenant 2,3,3,3-tetrafluoropropène et 1,1,1,2,2-pentafluoropropane et un courant comprenant 1,3,3,3-tetrafluoropropène ; de préférence la distillation extractive est effectuée en présence d'un agent d'extraction organique sélectionné parmi le groupe consistant en éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxyméthane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane, 1,1- diethoxyéthane, trimethoxyméthane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2- diaminoéthane, l-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-l- propanol, hexanal.  According to a preferred embodiment, said lower phase or said phase G1 and / or said stream G2 also comprise, in addition to 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3, 3,3-tetrafluoropropene; and; the lower phase, said G1 gas phase or said G2 stream is distilled by extractive distillation to form a stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane and a stream comprising 1.3 3,3-tetrafluoropropene; preferably the extractive distillation is carried out in the presence of an organic extractant selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate , 1,4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n butylacetate, 2-methoxy-1-propanol, hexanal.
Brève description des figures Brief description of the figures
La Fig. 1 représente schématiquement un procédé selon un mode de réalisation particulier de la présente invention.  Fig. 1 schematically shows a method according to a particular embodiment of the present invention.
La Fig. 2 représente schématiquement un procédé selon un mode de réalisation particulier de la présente invention.  Fig. 2 schematically shows a method according to a particular embodiment of the present invention.
La Fig. 3 représente schématiquement un dispositif d'élimination de l'acide fluorhydrique selon un mode de réalisation particulier de la présente invention.  Fig. 3 schematically shows a device for removing hydrofluoric acid according to a particular embodiment of the present invention.
Description détaillée de l'invention La présente invention concerne un procédé de production du 2,3,3,3- tetrafluoropropène. Le présent procédé comprend à l'étape a) la mise en contact d'un composé de formule (I) CH(n+2)(X)m-CHp(X)(n+i)-CX(3+p-m) où X représente indépendamment F ou Cl ; n, m, p sont indépendamment les uns des autres 0 ou 1 avec (n+m) = 0 ou 1, (n+p) = 0 ou 1 et (m-p) = 0 ou 1, au moins un X étant Cl, avec de l'acide fluorhydrique pour obtenir un flux de produits comprenant 2,3,3,3-tetrafluoropropène, HCI et HF. L'étape a) du présent procédé peut être mise en œuvre à une température de 200 à 450°C, avantageusement de 250 à 400°C, de préférence de 280 à 380°C. L'étape a) du présent procédé peut être mise en œuvre à un temps de contact de 3 à 100 s, avantageusement de 4 à 75 s, de préférence de 5 à 50 s. L'étape a) du présent procédé peut être mise en œuvre avec un rapport molaire HF/composé de formule (I) de 3 :1 à 150 :1, avantageusement de 4 :1 à 125 :1, de préférence de 5 :1 à 100 :1. Le procédé, de préférence l'étape a), peut être mis en œuvre en présence d'un inhibiteur de polymérisation, de préférence sélectionné parmi le groupe consistant en p-methoxyphénol, t-amylphénol, limonène, d,l-limonene, quinones, hydroquinones, époxydes, aminés et les mélanges de ceux- ci. L'étape a) du présent procédé peut être mise en œuvre en présence d'oxygène ou de chlore, avantageusement de 0,005 à 15 mole %, de préférence de 0,5 à 10 mole % d'oxygène ou de chlore par mole de composé de formule (I). Detailed description of the invention The present invention relates to a process for producing 2,3,3,3-tetrafluoropropene. The present process comprises in step a) bringing into contact a compound of formula (I) CH (n + 2) (X) m-CH p (X) (n + 1) -CX (3 + pm where X is independently F or Cl; n, m, p are independently of one another 0 or 1 with (n + m) = 0 or 1, (n + p) = 0 or 1 and (mp) = 0 or 1, at least one X being Cl, with hydrofluoric acid to obtain a product stream comprising 2,3,3,3-tetrafluoropropene, HCl and HF. Step a) of the present process can be carried out at a temperature of 200 to 450 ° C, preferably 250 to 400 ° C, preferably 280 to 380 ° C. Step a) of the present process may be carried out at a contact time of 3 to 100 seconds, preferably 4 to 75 seconds, preferably 5 to 50 seconds. Step a) of the present process can be carried out with a HF / compound of formula (I) molar ratio of from 3: 1 to 150: 1, advantageously from 4: 1 to 125: 1, preferably 5: 1 at 100: 1. The process, preferably step a), may be carried out in the presence of a polymerization inhibitor, preferably selected from the group consisting of p-methoxyphenol, t-amylphenol, limonene, d, l-limonene, quinones , hydroquinones, epoxides, amines and mixtures thereof. Step a) of the present process can be carried out in the presence of oxygen or chlorine, advantageously from 0.005 to 15 mole%, preferably from 0.5 to 10 mole% of oxygen or chlorine per mole of compound of formula (I).
De préférence, le composé de formule (I) est sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropène, 2,3,3,3-tetrachloropropène, 2- chloro-3,3,3-trifluoropropène, 2-chloro-l,l,l,2-tetrafluoropropane, l,2-dichloro-3,3,3- trifluoropropène et l,l,l,2,2-pentachloropropane,ou un mélange de ceux-ci. En particulier, le composé de formule (I) est 1,1,1,2,3-pentachloropropane, 2-chloro-3,3,3-trifluoropropène ou 1,1,2,3-tetrachloropropène.  Preferably, the compound of formula (I) is selected from the group consisting of 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene, 2,3,3,3-tetrachloropropene, 2 chloro-3,3,3-trifluoropropene, 2-chloro-1,1,2,2-tetrafluoropropane, 1,2-dichloro-3,3,3-trifluoropropene and 1,1,1,2,2-pentachloropropane , or a mixture of these. In particular, the compound of formula (I) is 1,1,1,2,3-pentachloropropane, 2-chloro-3,3,3-trifluoropropene or 1,1,2,3-tetrachloropropene.
L'étape a) est mise en œuvre à une pression inférieure ou égale à 10 bara, de préférence inférieure ou égale à 7 bara. L'étape a) est mise en œuvre à une pression de 1 à 8 bara, avantageusement de 2 à 8 bara, de préférence de 3 à 7 bara, en particulier de 5 à 7 bara.  Step a) is carried out at a pressure of less than or equal to 10 bara, preferably less than or equal to 7 bara. Step a) is carried out at a pressure of 1 to 8 bara, preferably 2 to 8 bara, preferably 3 to 7 bara, in particular 5 to 7 bara.
L'étape a) est mise en œuvre en phase gazeuse ou en phase liquide.  Step a) is carried out in the gas phase or in the liquid phase.
L'étape a) du présent procédé peut être mise en œuvre en phase liquide en présence d'un catalyseur. Le catalyseur peut être un acide de Lewis, un catalyseur contenant un halogénure d'un métal, en particulier un halogénure d'antimoine, étain, tantale, titane, d'un métal de transition tel que le molybdène, niobium, fer, césium, oxydes de métaux de transition, les halogénures de métaux du groupe IVb, les halogénures de métaux du groupe Vb, fluorure de chrome, oxydes de chrome fluorés ou un mélange de ceux-ci. Par exemple, le catalyseur peut être SbCI5, SbCU, TiCI4, SnCI4, TaCI5, NbCI5, TiCI4, FeCU, MoC , CsCI, et les composés fluorés correspondants. Le catalyseur peut contenir un liquide ionique tel que décrit par exemple dans les demandes WO2008/149011 (en particulier de la page 4, ligne 1 à la page 6 ligne 15, inclus par référence) et WO01/81353, ainsi que la référence « liquid-phase HF Fluorination", Multiphase Homogeneous Catalysis, Ed. Wiley-VCH, (2002), 535. En phase liquide, l'étape a) peut être mise en œuvre à une température comprise entre 30 et 200°C, avantageusement entre 40°C et 170°C, de préférence entre 50 et 150°C. De préférence, le ratio molaire HF/composé de formule (I) peut être de 0,5 :1 à 50 :1, avantageusement de 3 :1 à 20 :1 et de préférence de 5 :1 à 15 :1. Step a) of the present process can be carried out in the liquid phase in the presence of a catalyst. The catalyst may be a Lewis acid, a metal halide-containing catalyst, in particular an antimony halide, tin, tantalum, titanium, a transition metal such as molybdenum, niobium, iron, cesium, transition metal oxides, Group IVb metal halides, Group Vb metal halides, chromium fluoride, fluorinated chromium oxides, or a mixture thereof. For example, the catalyst can be SbCl 5 , SbCU, TiCl 4 , SnCl 4 , TaCl 5 , NbCl 5 , TiCl 4 , FeCl 3, MoC, CsCl, and the corresponding fluorinated compounds. The catalyst may contain an ionic liquid as described for example in applications WO2008 / 149011 (in particular from page 4, line 1 to page 6 line 15, included by reference) and WO01 / 81353, as well as the reference "liquid In the liquid phase, step a) can be carried out at a temperature of between 30 and 200.degree. C., advantageously between 40.degree. and 40.degree. C. and 170 ° C., preferably between 50 and 150 ° C. Preferably, the HF / compound of formula (I) molar ratio may be from 0.5: 1 to 50: 1, advantageously from 3: 1 to 20 : 1 and preferably from 5: 1 to 15: 1.
De préférence, l'étape a) du présent procédé est effectuée en phase gazeuse. L'étape a) du présent procédé peut être mise en œuvre en présence ou non d'un catalyseur.  Preferably, step a) of the present process is carried out in the gas phase. Step a) of the present process may be carried out in the presence or absence of a catalyst.
Lorsqu'elle est réalisée en phase gazeuse et en l'absence de catalyseur, l'étape a) peut être mise en œuvre avec un ratio molaire HF/composé de formule (I) de 3 :1 à 150 :1, et de préférence à une température de 200 à 450°C, et de préférence de 300 à 430°C.  When it is carried out in the gaseous phase and in the absence of catalyst, step a) can be carried out with a HF / compound of formula (I) molar ratio of from 3: 1 to 150: 1, and preferably at a temperature of 200 to 450 ° C, and preferably 300 to 430 ° C.
Lorsqu'elle est réalisée en phase gazeuse et en présence de catalyseur, l'étape a) peut être mise en œuvre en présence d'un catalyseur à base d'un métal comprenant un oxyde de métal de transition ou un dérivé ou un halogénure ou un oxyhalogénure d'un tel métal. On peut citer par exemple FeCU, l'oxyfluorure de chrome, les oxydes de chrome (éventuellement soumis à des traitements de fluoration), les fluorures de chrome et leurs mélanges. D'autres catalyseurs possibles sont les catalyseurs supportés sur du carbone, les catalyseurs à base d'antimoine, les catalyseurs à base d'aluminium (par exemple AIF3 et AI2O3, l'oxyfluorure d'alumine et le fluorure d'alumine). On peut utiliser en général un oxyfluorure de chrome, un fluorure ou un oxyfluorure d'aluminium, ou un catalyseur supporté ou non contenant un métal tel que Cr, Ni, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Mg, Sb. On peut faire référence à cet égard au document WO 2007/079431 (en p.7, 1.1-5 et 28-32), au document EP 939071 (paragraphe [0022]), au document WO 2008/054781 (en p.9 l.22-p.l0 1.34), et au document WO 2008/040969 (revendication 1), auxquels il est fait expressément référence. Le catalyseur est de manière plus particulièrement préférée à base de chrome et il s'agit plus particulièrement d'un catalyseur mixte comprenant du chrome .Selon un mode de réalisation, on utilise pour l'une quelconque des étapes de réaction un catalyseur mixte comprenant du chrome et du nickel. Le rapport molaire Cr / Ni (sur la base de l'élément métallique) est généralement de 0,5 à 5, par exemple de 0,7 à 2, par exemple d'environ 1. Le catalyseur peut contenir de 0,5 à 20 % en poids de nickel. Le métal peut être présent sous forme métallique ou sous forme de dérivé, par exemple un oxyde, halogénure ou oxyhalogénure. Ces dérivés sont de préférence obtenus par activation du métal catalytique. Le support est de préférence constitué avec de l'aluminium, par exemple de l'alumine, de l'alumine activée ou des dérivés d'aluminium, tels que les halogénures d'aluminium et les oxyhalogénures d'aluminium, par exemple décrits dans le document US 4,902,838, ou obtenus par le procédé d'activation décrit ci-dessus. Le catalyseur peut comprendre du chrome et du nickel sous une forme activée ou non, sur un support qui a été soumis à une activation ou non. On peut se reporter au document WO 2009/118628 (notamment en p.4, l.30-p.7 1.16), auquel il est fait expressément référence ici. Un autre mode de réalisation préféré repose sur un catalyseur mixte contenant du chrome et au moins un co-catalyseur choisi parmi les sels de Co, Mn, Mg et Zn, de préférence Zn. Ledit co-catalyseur est de préférence présent dans une teneur de 1 à 10% en poids sur base du poids du catalyseur. Avant son utilisation, le catalyseur est de préférence soumis à une activation avec de l'air, de l'oxygène ou du chlore et/ou avec de l'HF. Par exemple, le catalyseur est de préférence soumis à une activation avec de l'air ou de l'oxygène et de l'HF à une température de 100 à 500°C, de préférence de 250 à 500°C et plus particulièrement de 300 à 400°C. La durée d'activation est de préférence de 1 à 200 h et plus particulièrement de 1 à 50 h. Cette activation peut être suivie d'une étape d'activation de fluoration finale en présence d'un agent d'oxydation, d'HF et de composés organiques. Le rapport molaire HF / composés organiques est de préférence de 2 à 40 et le rapport molaire agent d'oxydation / composés organiques est de préférence de 0,04 à 25. La température de l'activation finale est de préférence de 300 à 400°C et sa durée de préférence de 6 à 100 h. When carried out in the gaseous phase and in the presence of a catalyst, step a) can be carried out in the presence of a catalyst based on a metal comprising a transition metal oxide or a derivative or a halide or an oxyhalide of such a metal. For example, FeCU, chromium oxyfluoride, chromium oxides (possibly subjected to fluorination treatments), chromium fluorides and mixtures thereof may be mentioned. Other possible catalysts are carbon-supported catalysts, antimony catalysts, aluminum catalysts (eg AlF 3 and Al 2 O 3, alumina oxyfluoride and alumina fluoride). It is generally possible to use a chromium oxyfluoride, a fluoride or an aluminum oxyfluoride, or a supported or non-supported catalyst containing a metal such as Cr, Ni, Fe, Zn, Ti, V, Zr, Mo, Ge or Sn. Pb, Mg, Sb. Reference can be made in this regard to document WO 2007/079431 (at p.7, 1.1-5 and 28-32), EP 939071 (paragraph [0022]), WO 2008/054781 (at p.9). l.22-p.l0 1.34), and WO 2008/040969 (claim 1), to which reference is expressly made. The catalyst is more preferably based on chromium and it is more particularly a mixed catalyst comprising chromium. According to one embodiment, for any one of the reaction steps a mixed catalyst comprising chrome and nickel. The molar ratio Cr / Ni (based on the metal element) is generally 0.5 to 5, for example 0.7 to 2, for example about 1. The catalyst may contain from 0.5 to 20% by weight of nickel. The metal may be present in metallic form or in the form of a derivative, for example an oxide, halide or oxyhalogenide. These derivatives are preferably obtained by activation of the catalytic metal. The support is preferably made of aluminum, for example alumina, activated alumina or aluminum derivatives, such as aluminum halides and aluminum oxyhalides, for example described in US Pat. US 4,902,838, or obtained by the activation method described above. The catalyst may comprise chromium and nickel in an activated or non-activated form, on a support which has been subjected to activation or not. Reference can be made to WO 2009/118628 (especially at p.4, l.30-p.7 1.16), which is expressly referred to herein. Another preferred embodiment is based on a mixed catalyst containing chromium and at least one co-catalyst chosen from the salts of Co, Mn, Mg and Zn, preferably Zn. Said cocatalyst is preferably present in a content of 1 to 10% by weight based on the weight of the catalyst. Prior to use, the catalyst is preferably activated with air, oxygen or chlorine and / or with HF. For example, the catalyst is preferably subjected to activation with air or oxygen and HF at a temperature of 100 to 500 ° C, preferably 250 to 500 ° C and more preferably 300 to 500 ° C. at 400 ° C. The activation time is preferably from 1 to 200 hours and more particularly from 1 to 50 hours. This activation may be followed by a final fluorination activation step in the presence of an oxidizing agent, HF and organic compounds. The molar ratio of HF / organic compounds is preferably from 2 to 40 and the molar ratio of oxidation agent / organic compounds is preferably from 0.04 to 25. The temperature of the final activation is preferably from 300 to 400 ° C. C and its duration preferably from 6 to 100 h.
En présence d'un catalyseur, l'étape a) peut être mise en œuvre avec un rapport molaire HFxomposé de formule (I) de 3:1 à 150:1, avantageusement de 4:1 à 125:1, de préférence de 5:1 à 100:1. En présence d'un catalyseur, l'étape a) peut être mise en œuvre à une pression inférieure ou égale à 10 bara, avantageusement de 2 à 8 bara, de préférence de 3 à 7 bara, plus particulièrement de 5 à 7 bara. L'étape a) peut être mise en œuvre à une température de 200 à 450°C, avantageusement de 300 à 430°C, de préférence de 320 à 420°C. Le temps de contact (volume de catalyseur divisé par le débit total des réactifs, ajusté à la pression opérationnelle et la température) peut être de 3 à 100 s, avantageusement de 4 à 75 s, de préférence de 5 à 50 s.  In the presence of a catalyst, step a) can be carried out with a HF x compound molar ratio of formula (I) of from 3: 1 to 150: 1, preferably from 4: 1 to 125: 1, preferably from 5: 1 to : 1 to 100: 1. In the presence of a catalyst, step a) can be carried out at a pressure of less than or equal to 10 bara, advantageously from 2 to 8 bara, preferably from 3 to 7 bara, more particularly from 5 to 7 bara. Step a) may be carried out at a temperature of 200 to 450 ° C, preferably 300 to 430 ° C, preferably 320 to 420 ° C. The contact time (catalyst volume divided by total reagent flow, adjusted to operating pressure and temperature) may be from 3 to 100 seconds, preferably from 4 to 75 seconds, preferably from 5 to 50 seconds.
De préférence, l'étape a) du présent procédé est mise en œuvre en phase gazeuse en présence d'un catalyseur et d'un compose de formule (I) choisi parmi le groupe consistant en 2,3,3,3-tetrachloropropène, l,2-dichloro-3,3,3-trifluoropropane, 1,1,1,2,3- pentachloropropane, 2-chloro-3,3,3-trifluoropropène ou 1,1,2,3-tetrachloropropène ou un mélange de ceux-ci pour produire un flux de produits comprenant 2,3,3,3-tetrafluoropropène et également au moins un des composés choisi parmi le groupe consistant en 2-chloro-3,3,3- trifluoropropène, 1,1,1,2,2-pentafluoropropane et 1,3,3,3-tetrafluoropropène. Preferably, step a) of the present process is carried out in the gas phase in the presence of a catalyst and a compound of formula (I) chosen from the group consisting of 2,3,3,3-tetrachloropropene, 1,2-dichloro-3,3,3-trifluoropropane, 1,1,1,2,3-pentachloropropane, 2-chloro-3,3,3-trifluoropropene or 1,1,2,3-tetrachloropropene or a mixture of these to produce a product stream comprising 2,3,3,3-tetrafluoropropene and also at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene.
En particulier, l'étape a) du présent procédé est mise en œuvre à en phase gazeuse en présence d'un catalyseur et d'un compose de formule (I) choisi parmi le groupe consistant en 2,3,3,3-tetrachloropropène, l,2-dichloro-3,3,3-trifluoropropane, 1,1,1,2,3- pentachloropropane, 2-chloro-3,3,3-trifluoropropène ou 1,1,2,3-tetrachloropropène ou un mélange de ceux-ci pour produire un flux de produits comprenant 2,3,3,3-tetrafluoropropène et également au moins un des composés choisi parmi le groupe consistant en 2-chloro-3,3,3- trifluoropropène, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3- tetrafluoropropène, 3,3,3-trifluoropropène, chlorométhane, 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2-tetrafluoroéthane, trans-l,2,3,3,3-pentafluoropropène et 1- chloro-3,3,3-trifluoropropène.  In particular, step a) of the present process is carried out in the gas phase in the presence of a catalyst and a compound of formula (I) selected from the group consisting of 2,3,3,3-tetrachloropropene , 1,2-dichloro-3,3,3-trifluoropropane, 1,1,1,2,3-pentachloropropane, 2-chloro-3,3,3-trifluoropropene or 1,1,2,3-tetrachloropropene or mixing them to produce a product stream comprising 2,3,3,3-tetrafluoropropene and also at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1, 1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane, 1, 1,1,2-Tetrafluoroethane, trans-1,2,3,3,3-pentafluoropropene and 1-chloro-3,3,3-trifluoropropene.
L'étape a) du présent procédé peut être mise en œuvre en deux étapes selon la séquence suivante : al) mise en contact du 2,3,3,3-tetrachloropropène, l,2-dichloro-3,3,3- trifluoropropane, 1,1,1,2,3-pentachloropropane ou 1,1,2,3-tetrachloropropène ou un mélange de ceux-ci avec HF pour former du 2-chloro-3,3,3-trifluoropropène ; et a2) mise en contact du 2-chloro-3,3,3-trifluoropropène obtenu avec HF pour former 2,3,3,3-tetrafluoropropène. L'étape al) et l'étape a2) peuvent être mise en œuvre en phase gazeuse ou en phase liquide, de préférence en phase gazeuse. L'étape al) et l'étape a2) peuvent être mise en œuvre en mode continu ou en mode discontinu avec optionnellement une étape de stockage ou purification du 2-chloro-3,3,3-trifluoropropène.  Step a) of the present process can be carried out in two steps according to the following sequence: a1) contacting 2,3,3,3-tetrachloropropene, 1,2-dichloro-3,3,3-trifluoropropane 1,1,1,2,3-pentachloropropane or 1,1,2,3-tetrachloropropene or a mixture thereof with HF to form 2-chloro-3,3,3-trifluoropropene; and a2) contacting the resulting 2-chloro-3,3,3-trifluoropropene with HF to form 2,3,3,3-tetrafluoropropene. Step a1) and step a2) may be carried out in the gas phase or in the liquid phase, preferably in the gas phase. Step a1) and step a2) can be carried out in continuous mode or in batch mode with optionally a step of storage or purification of 2-chloro-3,3,3-trifluoropropene.
L'étape al) peut être mise en œuvre de préférence en phase gazeuse en présence ou non d'un catalyseur. Le catalyseur, lorsqu'il est présent peut être tel que décrit ci-dessus en relation avec l'étape a). L'étape al) peut être mise en œuvre avec un rapport molaire HFxomposé de formule (I) de 3:1 à 150:1, avantageusement de 4:1 à 125:1, de préférence de 5:1 à 100:1. L'étape al) peut être mise en œuvre à une pression inférieure ou égale à 10 bara, avantageusement de 2 à 8 bara, de préférence de 3 à 7 bara, plus particulièrement de 5 à 7 bara. L'étape al) peut être mise en œuvre à une température de 200 à 450°C, avantageusement de 300 à 430°C, de préférence de 320 à 420°C. Le temps de contact (volume de catalyseur divisé par le débit total des réactifs, ajusté à la pression opérationnelle et la température) peut être de 3 à 100 s, avantageusement de 4 à 75 s, de préférence de 5 à 50 s.  Step a1) can preferably be carried out in the gaseous phase in the presence or absence of a catalyst. The catalyst, when present, may be as described above in connection with step a). Step a1) can be carried out with a HF × compound molar ratio of formula (I) of from 3: 1 to 150: 1, advantageously from 4: 1 to 125: 1, preferably from 5: 1 to 100: 1. Step a1) can be carried out at a pressure of less than or equal to 10 bara, advantageously from 2 to 8 bara, preferably from 3 to 7 bara, more particularly from 5 to 7 bara. Step a1) can be carried out at a temperature of 200 to 450 ° C, preferably 300 to 430 ° C, preferably 320 to 420 ° C. The contact time (catalyst volume divided by total reagent flow, adjusted to operating pressure and temperature) may be from 3 to 100 seconds, preferably from 4 to 75 seconds, preferably from 5 to 50 seconds.
L'étape a2) peut être mise en œuvre de préférence en phase gazeuse en présence d'un catalyseur. Le catalyseur, lorsqu'il est présent peut être tel que décrit ci-dessus en relation avec l'étape a). L'étape a2) peut être mise en œuvre avec un rapport molaire HF: composé de formule (I) de 3:1 à 150:1, avantageusement de 4:1 à 125:1, de préférence de 5:1 à 100:1. L'étape a2) peut être mise en œuvre à une pression inférieure ou égale à 10 bara, avantageusement de 2 à 8 bara, de préférence de 3 à 7 bara, plus particulièrement de 5 à 7 bara. L'étape a2) peut être mise en œuvre à une température de 200 à 450°C, avantageusement de 300 à 430°C, de préférence de 320 à 420°C. Le temps de contact (volume de catalyseur divisé par le débit total des réactifs, ajusté à la pression opérationnelle et la température) peut être de 3 à 100 s, avantageusement de 4 à 75 s, de préférence de 5 à 50 s. Step a2) can be carried out preferably in the gas phase in the presence of a catalyst. The catalyst, when present, may be as described above in connection with step a). Step a2) can be carried out with a HF: compound of formula (I) molar ratio of from 3: 1 to 150: 1, advantageously from 4: 1 to 125: 1, preferably from 5: 1 to 100: 1. Step a2) may be carried out at a pressure of less than or equal to 10 bara, advantageously from 2 to 8 bara, preferably from 3 to 7 bara, more particularly from 5 to 7 bara. Step a2) can be carried out at a temperature of 200 to 450 ° C, preferably 300 to 430 ° C, preferably 320 to 420 ° C. The contact time (catalyst volume divided by total reagent flow, adjusted to operating pressure and temperature) may be from 3 to 100 seconds, preferably from 4 to 75 seconds, preferably from 5 to 50 seconds.
L'étape al) et l'étape a2) peuvent être mises en œuvre dans deux réacteurs disposés en série.  Step a1) and step a2) may be carried out in two reactors arranged in series.
L'étape b) du présent procédé consiste en un refroidissement du flux de produits obtenu à l'étape a) à une température de -20°C à 100°C, avantageusement le flux de produits obtenu à l'étape a) est refroidi à une température de -10°C à 90°C, de préférence de 0°C à 80°C, plus préférentiellement de 0°C à 70°C, en particulier de 10°C à 60°C, plus particulièrement de 20°C à 50°C.  Step b) of the present process consists in cooling the product stream obtained in step a) at a temperature of -20 ° C to 100 ° C, advantageously the product stream obtained in step a) is cooled at a temperature of from -10 ° C to 90 ° C, preferably from 0 ° C to 80 ° C, more preferably from 0 ° C to 70 ° C, in particular from 10 ° C to 60 ° C, more preferably ° C to 50 ° C.
Le refroidissement de flux de produits peut être effectué grâce à un ou une pluralité d'échangeurs de chaleur. Le refroidissement de flux de produits peut être effectué en faisant passer le flux de produits obtenu à l'étape a) au travers de un, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix échangeurs de chaleur, de préférence le nombre d'échangeurs de chaleur est compris entre 2 et 8, en particulier entre 3 et 7.  Cooling of product streams can be accomplished by one or a plurality of heat exchangers. Cooling of product streams can be accomplished by passing the product stream obtained in step a) through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
A l'étape c), le flux refroidi à l'étape b) peut être ensuite distillé pour former un premier courant comprenant 2,3,3,3-tetrafluoropropène et HCI et un second courant comprenant HF. Le premier courant peut être récupéré en tête de colonne de distillation. Le second courant peut être récupéré en bas de colonne de distillation.  In step c), the stream cooled in step b) can then be distilled to form a first stream comprising 2,3,3,3-tetrafluoropropene and HCl and a second stream comprising HF. The first stream can be recovered at the top of the distillation column. The second stream can be recovered at the bottom of the distillation column.
Le premier courant formé à l'étape c) peut comprendre, outre 2,3,3,3- tetrafluoropropène et HCI, au moins un des composés sélectionnés parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3- pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3-trifluoropropène, chlorométhane, 1,1- difluoroéthane, chloropentafluoroéthane, 1,1,1,2-tetrafluoroéthane, trans-1,2,3,3,3- pentafluoropropène et l-chloro-3,3,3-trifluoropropène. En particulier, le premier courant peut comprendre, outre 2,3,3,3-tetrafluoropropène et HCI, 2-chloro-3,3,3-trifluoropropène, 1,3,3,3- tetrafluoropropène et 1,1,1,2,2-pentafluoropropane. Le premier courant peut éventuellement comprendre également de l'acide fluorhydrique, de préférence en faible quantité. Le second courant peut comprendre, outre HF, au moins un des composés sélectionnés parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane et l-chloro-3,3,3-trifluoropropène. En particulier, le second courant peut comprendre, outre HF, 2-chloro-3,3,3-trifluoropropène, l-chloro-3,3,3- trifluoropropène et 1,1,1,3,3-pentafluoropropane. The first stream formed in step c) may comprise, in addition to 2,3,3,3-tetrafluoropropene and HCl, at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1 , 1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane 1,1,1,2-Tetrafluoroethane, trans-1,2,3,3,3-pentafluoropropene and 1-chloro-3,3,3-trifluoropropene. In particular, the first stream may comprise, besides 2,3,3,3-tetrafluoropropene and HCl, 2-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and 1,1,1, 2,2-pentafluoropropane. The first stream may optionally also include hydrofluoric acid, preferably in small amounts. The second stream may comprise, in addition to HF, at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1,1,2,2-pentafluoropropane, 1,1,1, 3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene. In particular, the second stream may comprise, besides HF, 2-chloro-3,3,3-trifluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane.
Ledit premier courant formé à l'étape c), peut être chauffé préalablement à la mise en œuvre de l'étape d). De préférence, ledit premier courant obtenu à l'étape c) peut être chauffé à une température comprise entre -20°C et 50°C, plus préférentiellement entre -10°C et 50°C, en particulier entre 0°C et 50°C, plus particulièrement entre 0°C et 40°C. En particulier, ledit premier courant obtenu à l'étape c) peut être chauffé à une température comprise entre l'une quelconque des valeurs suivantes : 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 et 40°C. Par exemple, ledit premier courant obtenu à l'étape c) peut être chauffé à une température comprise entre 0°C et 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 ou 38°C.  Said first stream formed in step c) can be heated prior to the implementation of step d). Preferably, said first stream obtained in stage c) can be heated to a temperature between -20 ° C. and 50 ° C., more preferably between -10 ° C. and 50 ° C., in particular between 0 ° C. and 50 ° C. ° C, more particularly between 0 ° C and 40 ° C. In particular, said first stream obtained in step c) can be heated to a temperature between any of the following values: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 , 22, 24, 26, 28, 30, 32, 34, 36, 38 and 40 ° C. For example, said first stream obtained in step c) can be heated to a temperature between 0 ° C and 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 , 28, 30, 32, 34, 36 or 38 ° C.
Ledit premier courant peut être comprimé à l'étape d) pour former un premier courant comprimé. Ledit premier courant comprimé à la même composition que ledit premier courant tel que décrit ci-dessus. De préférence, ledit premier courant est comprimé à une pression comprise entre 10 et 25 bara, plus préférentiellement de 11 à 24 bara, en particulier de 12 à 23 bara, plus particulièrement de 13 à 22 bara, de manière privilégiée de 14 à 21 bara, de manière encore plus privilégiée de 15 à 20 bara.  Said first stream may be compressed in step d) to form a first compressed stream. Said first compressed stream has the same composition as said first stream as described above. Preferably, said first stream is compressed at a pressure of between 10 and 25 bara, more preferably of 11 to 24 bara, in particular of 12 to 23 bara, more particularly of 13 to 22 bara, and preferably of 14 to 21 bara. , even more privileged from 15 to 20 bara.
Selon un mode de réalisation particulier, ledit premier courant comprimé obtenu à l'étape d) peut être refroidi avant d'être distillé à l'étape e). De préférence, le premier courant comprimé obtenu à l'étape d) peut être refroidi à une température inférieure à 100°C, avantageusement inférieure à 95°C, de préférence inférieure à 80°C, plus préférentiellement inférieure à 65°C, en particulier inférieure à 50°C, plus particulièrement inférieure à 25°C.  According to a particular embodiment, said first compressed stream obtained in step d) can be cooled before being distilled in step e). Preferably, the first compressed stream obtained in step d) can be cooled to a temperature of less than 100 ° C., advantageously less than 95 ° C., preferably less than 80 ° C., more preferably less than 65 ° C., especially less than 50 ° C, more preferably less than 25 ° C.
Ledit premier courant comprimé obtenu à l'étape d) est distillé à l'étape e) pour former un troisième courant comprenant HCI et un quatrième courant comprenant 2,3,3,3- tetrafluoropropène. Le troisième courant peut être récupéré en tête de colonne de distillation. Le quatrième courant peut être récupéré en bas de colonne de distillation. Selon un mode de réalisation particulier, la température en tête de colonne de distillation est comprise entre 0°C et -35°C, plus préférentiellement entre -5°C et -30°C, en particulier entre -5°C et -25°C, plus particulièrement entre -10°C et -20°C. Le troisième courant comprenant HCI peut être récupéré à l'étape e) en tête de colonne de distillation et peut être porté à une température comprise entre -40°C et 20°C avant d'être purifié selon les étapes suivantes : Said first compressed stream obtained in step d) is distilled in step e) to form a third stream comprising HCl and a fourth stream comprising 2,3,3,3-tetrafluoropropene. The third stream can be recovered at the top of the distillation column. The fourth stream can be recovered at the bottom of the distillation column. According to a particular embodiment, the temperature at the top of the distillation column is between 0 ° C. and -35 ° C., more preferably between -5 ° C. and -30 ° C., in particular between -5 ° C. and -25 ° C. ° C, more particularly between -10 ° C and -20 ° C. The third stream comprising HCl can be recovered in step e) at the top of the distillation column and can be brought to a temperature between -40 ° C and 20 ° C before being purified according to the following steps:
i) hydrolyse catalytique ;  i) catalytic hydrolysis;
ii) lavage par une solution acide ;  ii) washing with an acid solution;
iii) adsorption d'impuretés par du charbon actif ;  iii) adsorption of impurities with activated carbon;
iv) absorption adiabatique ou isotherme de l'acide chlorhydrique dans une solution aqueuse, permettant de collecter une solution d'acide chlorhydrique.  iv) adiabatic or isothermal absorption of hydrochloric acid in an aqueous solution, for collecting a solution of hydrochloric acid.
De préférence, l'étape d'hydrolyse catalytique i) est effectuée sur un lit de charbon actif. La température de l'étape i) d'hydrolyse catalytique est de préférence de 100 à 200°C, notamment de 120 à 170°C, et plus particulièrement de 130 à 150°C. La pression est de préférence de 0,5 à 3 barg, notamment de 1 à 2 barg. L'étape i) est réalisée dans une unité dédiée à cet effet. Le temps de séjour du premier courant dans l'unité est de préférence de 1 s à 1 min, notamment de 2 s à 30 s, plus particulièrement de 4 s à 15 s, et tout particulièrement de 5 s à 10 s. De préférence, la solution acide utilisée lors de l'étape de lavage ii) est une solution d'acide chlorhydrique et de préférence provient de la solution d'acide chlorhydrique collectée à l'issue de l'étape d'absorption adiabatique ou isotherme. A titre de solution acide, on peut notamment utiliser une solution d'HCI, à une concentration massique pouvant aller par exemple de 5 à 60 %, notamment de 10 à 50 %, plus préférentiellement de 20 à 45 % et en particulier de 30 à 35 %. Le lavage par la solution acide est de préférence mis en œuvre à une température de 5 à 50°C, et plus particulièrement de 7 à 40°C ; et/ou à une pression de 0,1 à 4 barg, de préférence de 0,3 à 2 barg, plus préférentiellement de 0,5 à 1,5 barg. De préférence, de l'acide borique est ajouté à la solution acide utilisée pour l'étape de lavage. Un ajout d'acide borique au stade du lavage par la solution acide permet de complexer des ions fluorures. Par exemple, la solution acide peut contenir de 2000 à 8000 ppm de H3BO3. La réaction d'absorption de l'HCI, à l'étape iv), dans l'eau étant exothermique, il est préférable de limiter la pression à laquelle cette opération est conduite. En général, la pression est inférieure à 2 barg et de préférence inférieure à 1,5 barg. De cette façon la température d'absorption n'excède pas 130°C, et de préférence 120°C. Optionnellement, la solution d'acide chlorhydrique obtenue à l'étape iv) peut être mise en contact avec un gel de silice.  Preferably, the catalytic hydrolysis step i) is carried out on a bed of activated carbon. The temperature of the catalytic hydrolysis step i) is preferably from 100 to 200 ° C., in particular from 120 to 170 ° C., and more particularly from 130 to 150 ° C. The pressure is preferably 0.5 to 3 barg, especially 1 to 2 barg. Step i) is performed in a dedicated unit for this purpose. The residence time of the first stream in the unit is preferably from 1 s to 1 min, in particular from 2 s to 30 s, more particularly from 4 s to 15 s, and most particularly from 5 s to 10 s. Preferably, the acid solution used during the washing step ii) is a solution of hydrochloric acid and preferably comes from the hydrochloric acid solution collected at the end of the adiabatic or isothermal absorption step. As an acidic solution, it is possible to use a solution of HCl, for example, at a mass concentration ranging from 5 to 60%, especially from 10 to 50%, more preferably from 20 to 45% and in particular from 30 to 35%. The washing with the acidic solution is preferably carried out at a temperature of 5 to 50 ° C, and more particularly of 7 to 40 ° C; and / or at a pressure of 0.1 to 4 barg, preferably from 0.3 to 2 barg, more preferably from 0.5 to 1.5 barg. Preferably, boric acid is added to the acidic solution used for the washing step. An addition of boric acid at the stage of washing with the acid solution makes it possible to complex fluoride ions. For example, the acid solution may contain from 2000 to 8000 ppm of H3BO3. The absorption reaction of the HCl, in step iv), in the water being exothermic, it is preferable to limit the pressure at which this operation is conducted. In general, the pressure is less than 2 barg and preferably less than 1.5 barg. In this way the absorption temperature does not exceed 130 ° C, and preferably 120 ° C. Optionally, the hydrochloric acid solution obtained in step iv) can be contacted with a silica gel.
Le quatrième courant formé à l'étape e) peut comprendre, outre 2,3,3,3- tetrafluoropropène, au moins un des composés sélectionnés parmi le groupe consistant en 2- chloro-3,3,3-trifluoropropène, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3-trifluoropropène, chlorométhane 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2-tetrafluoroéthane, trans-l,2,3,3,3-pentafluoropropène et 1- chloro-3,3,3-trifluoropropène. En particulier, le quatrième courant peut comprendre, outre 2,3,3,3-tetrafluoropropène, 2-chloro-3,3,3-trifluoropropène, 1,3,3,3-tetrafluoropropène et/ou 1,1,1,2,2-pentafluoropropane. Le quatrième courant peut également comprendre de l'acide fluorhydrique. The fourth stream formed in step e) may comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1 1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane, trans-1,2,3,3,3-pentafluoropropene and 1-chloro-3,3,3-trifluoropropene. In particular, the fourth stream may comprise, besides 2,3,3,3-tetrafluoropropene, 2-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and / or 1,1,1, 2,2-pentafluoropropane. The fourth stream may also include hydrofluoric acid.
Selon l'étape f), ledit quatrième courant obtenu à l'étape e) et de préférence récupéré en bas de colonne de distillation peut être purifié. La purification dudit quatrième courant peut comprendre fl) une étape de distillation, f2) une étape de décantation et f3) une ou plusieurs étapes de distillation extractive. L'étape fl) peut être une distillation visant à diminuer la teneur en 2-chloro-3,3,3-trifluoropropène, 1,3,3,3-tetrafluoropropène et/ou 1,1,1,2,2- pentafluoropropane dans ledit quatrième courant si ces composés sont présents dans celui-ci. L'étape fl) peut être mise en œuvre dans des conditions opératoires permettant de récupérer en tête de colonne de distillation un courant comprenant 2,3,3,3-tetrafluoropropène et en bas de colonne de distillation un courant comprenant une partie de 2-chloro-3,3,3-trifluoropropène, 1,3,3,3-tetrafluoropropène et/ou 1,1,1,2,2-pentafluoropropane.  According to step f), said fourth stream obtained in step e) and preferably recovered at the bottom of the distillation column can be purified. The purification of said fourth stream may comprise a) a distillation step, a) a decantation step and a) one or more extractive distillation steps. Step f1) may be a distillation intended to reduce the content of 2-chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and / or 1,1,1,2,2-pentafluoropropane in said fourth stream if these compounds are present therein. Step f1) can be carried out under operating conditions which make it possible to recover at the top of the distillation column a stream comprising 2,3,3,3-tetrafluoropropene and at the bottom of the distillation column a stream comprising a part of 2- chloro-3,3,3-trifluoropropene, 1,3,3,3-tetrafluoropropene and / or 1,1,1,2,2-pentafluoropropane.
Comme mentionné ci-dessus, le quatrième courant obtenu à l'étape e) ou le courant obtenu à l'étape fl) comprend 2,3,3,3-tetrafluoropropène et également comprendre de l'acide fluorhydrique, de préférence en de faibles quantités. Ainsi, le quatrième courant obtenu à l'étape e) ou le courant obtenu à l'étape fl) comprend 2,3,3,3-tetrafluoropropène peut être purifié par une étape de décantation f2). En particulier, la décantation peut être mise en œuvre à une température comprise entre 0°C et -50°C, de préférence entre -5°C et -40°C. La décantation permet de former une phase supérieure comprenant HF et une phase inférieure comprenant 2,3,3,3-tetrafluoropropène. Optionnellement, la phase inférieure peut être mise en contact avec de l'eau, puis traitée par une solution basique (par exemple 20% NaOH ou KOH) puis séchée. Le séchage peut être effectué en présence de sulfate de calcium, sulfate de sodium, sulfate de magnésium, chlorure de calcium, carbonate de calcium, gel de silice ou tamis moléculaire tel que la siliporite (par exemple 3A). La phase supérieure comprenant HF peut être recyclée à l'étape a).  As mentioned above, the fourth stream obtained in step e) or the stream obtained in step f1) comprises 2,3,3,3-tetrafluoropropene and also comprises hydrofluoric acid, preferably in weak quantities. Thus, the fourth stream obtained in step e) or the stream obtained in step f1) comprises 2,3,3,3-tetrafluoropropene can be purified by a decantation step f2). In particular, the settling may be carried out at a temperature between 0 ° C and -50 ° C, preferably between -5 ° C and -40 ° C. Decantation makes it possible to form an upper phase comprising HF and a lower phase comprising 2,3,3,3-tetrafluoropropene. Optionally, the lower phase can be brought into contact with water, then treated with a basic solution (for example 20% NaOH or KOH) and then dried. The drying can be carried out in the presence of calcium sulfate, sodium sulfate, magnesium sulfate, calcium chloride, calcium carbonate, silica gel or molecular sieve such as siliporite (for example 3A). The upper phase comprising HF can be recycled in step a).
Le courant comprenant 2,3,3,3-tetrafluoropropène formé à l'étape fl) et/ou la phase inférieure formé à l'étape f2) peuvent comprendre, outre 2,3,3,3-tetrafluoropropène, au moins un des composés choisis parmi le groupe consistant en 1,1,1,2,2-pentafluoropropane et 1,3,3,3- tetrafluoropropène. En particulier, le courant comprenant 2,3,3,3-tetrafluoropropène formé à l'étape fl) et/ou la phase inférieure formé à l'étape f2) peuvent comprendre, outre 2,3,3,3- tetrafluoropropène, au moins un des composés choisis parmi le groupe consistant en 1,1,1,2,2- pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3-trifluoropropène, chlorométhane, 1,1- difluoroéthane, chloropentafluoroéthane, 1,1,1,2-tetrafluoroéthane et trans-1,2,3,3,3- pentafluoropropène. The stream comprising 2,3,3,3-tetrafluoropropene formed in step f1) and / or the lower phase formed in step f2) may comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene. In particular, the stream comprising 2,3,3,3-tetrafluoropropene formed in step f1) and / or the lower phase formed in step f2) may comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 1,1,1,2 2-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3 3,3-pentafluoropropene.
Alternativement, le quatrième courant obtenu à l'étape e) peut être purifié à l'étape f). La purification dudit quatrième courant peut comprendre fl') une étape de distillation, f2') une étape d'élimination du HF et f3') une ou plusieurs étapes de distillation extractive. L'étape fl') est identique à l'étape fl) décrite ci-dessus. L'étape f2') comprend les étapes suivantes :  Alternatively, the fourth stream obtained in step e) can be purified in step f). Purification of said fourth stream may include a distillation step, a HF removal step, and one or more extractive distillation steps. Step fl ') is identical to step f1) described above. Step f2 ') comprises the following steps:
i') mise en contact dudit quatrième courant avec une solution aqueuse d'acide fluorhydrique de concentration supérieure à 40% pour former un courant diphasique comprenant 2,3,3,3-tetrafluoropropène et HF,  i ') contacting said fourth stream with an aqueous solution of hydrofluoric acid of concentration greater than 40% to form a two-phase stream comprising 2,3,3,3-tetrafluoropropene and HF,
ii') stockage dudit courant diphasique dans un réservoir tampon, ledit courant diphasique étant constitué d'une phase gazeuse Gl et d'une phase liquide Ll,  ii ') storing said two-phase current in a buffer tank, said two-phase current consisting of a gas phase G1 and a liquid phase L1,
iii') passage de ladite phase gazeuse Gl dudit courant diphasique dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant gazeux G2 comprenant 2,3,3,3-tetrafluoropropène et un courant aqueux L2 comprenant HF.  iii ') passing said gaseous phase G1 of said two-phase stream in an absorption column fed countercurrently with an aqueous stream to form a gaseous stream G2 comprising 2,3,3,3-tetrafluoropropene and an aqueous stream L2 comprising HF .
De préférence, la solution aqueuse d'acide fluorhydrique utilisée à l'étape i') est de concentration supérieure à 40% en poids. En particulier, la solution aqueuse d'acide fluorhydrique est de concentration supérieure à 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% ou 95% en poids. Plus particulièrement, la solution aqueuse d'acide fluorhydrique est de concentration supérieure ou égale à 50% en poids, ou supérieure ou égale 60% en poids ou supérieure ou égale à 70% en poids. Plus particulièrement, la solution aqueuse d'acide fluorhydrique peut être comprise entre l'une quelconque des valeurs mentionnées ci-dessus. Ainsi, la solution aqueuse d'acide fluorhydrique peut être comprise entre 45% et 95% en poids, entre 50% et 90% en poids, entre 55% et 85% en poids, entre 60% en poids et 80% en poids ou entre 65% en poids et 75% en poids.  Preferably, the aqueous solution of hydrofluoric acid used in step i ') is of concentration greater than 40% by weight. In particular, the hydrofluoric acid aqueous solution is of concentration greater than 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52% 53% 54% 55% 56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66% 67% 68% 69 % 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83% 84% 85% 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% by weight. More particularly, the aqueous solution of hydrofluoric acid is of concentration greater than or equal to 50% by weight, or greater than or equal to 60% by weight or greater than or equal to 70% by weight. More particularly, the aqueous solution of hydrofluoric acid may be between any of the values mentioned above. Thus, the hydrofluoric acid aqueous solution may be between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight, between 60% by weight and 80% by weight or between 65% by weight and 75% by weight.
L'étape i') du présent procédé permet la formation dudit second courant diphasique comprenant 2,3,3,3-tetrafluoropropène et de l'acide fluorhydrique. Ledit courant diphasique consiste en une phase gazeuse Gl et une phase liquide Ll. La phase gazeuse peut comprendre 2,3,3,3-tetrafluoropropène. Optionnellement, la phase gazeuse Gl peut comprendre de l'acide fluorhydrique. Lorsque la phase gazeuse Gl comprend de l'acide fluorhydrique, la teneur de celui-ci est généralement faible, de préférence inférieure à 5% en poids sur base du poids total de ladite phase gazeuse, en particulier inférieure à 2% en poids sur base du poids total de ladite phase gazeuse, plus particulièrement inférieure à 1% en poids sur base du poids total de ladite phase gazeuse. De préférence, ladite phase Gl comprend outre 2,3,3,3-tetrafluoropropène, au moins un des composés organiques choisis parmi le groupe consistant en 1,1,1,2,2- pentafluoropropane et 1,3,3,3-tetrafluoropropène. Ladite phase Gl peut également comprendre, outre 2,3,3,3-tetrafluoropropène, au moins un des composés organiques choisis parmi le groupe consistant en 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3- trifluoropropène, chlorométhane 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2- tetrafluoroéthane et trans-l,2,3,3,3-pentafluoropropène. Step i ') of the present process allows formation of said second diphasic stream comprising 2,3,3,3-tetrafluoropropene and hydrofluoric acid. Said two-phase current consists of a gas phase G1 and a liquid phase L1. The gas phase can include 2,3,3,3-tetrafluoropropene. Optionally, the gas phase G1 may comprise hydrofluoric acid. When the gas phase G 1 comprises hydrofluoric acid, the content thereof is generally low, preferably less than 5% by weight based on the total weight of said gaseous phase, in particular less than 2% by weight based on the total weight of said gaseous phase, more particularly less than 1% by weight based on the total weight of said gaseous phase. Preferably, said G1 phase comprises in addition to 2,3,3,3-tetrafluoropropene, at least one of the organic compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3,3-tetrafluoropropene. tetrafluoropropene. Said G1 phase may also comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the organic compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,3,3,3,3- tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3-pentafluoropropene.
La phase liquide Ll dudit courant diphasique peut comprendre de l'acide fluorhydrique. Ladite phase liquide Ll peut comprendre optionnellement une faible quantité de 2,3,3,3- tetrafluoropropène, de préférence ladite phase liquide Ll peut comprendre une teneur en 2,3,3,3-tetrafluoropropène inférieure à 5% en poids sur base du poids total de ladite phase liquide Ll, en particulier inférieure à 1% ppm en poids sur base du poids total de ladite phase liquide Ll, plus particulièrement inférieure à 5000 ppm en poids sur base du poids total de ladite phase liquide Ll, de manière privilégiée inférieure à 1000 ppm en poids sur base du poids total de ladite phase liquide Ll, de manière plus privilégiée inférieure à 500 ppm en poids, de manière particulièrement privilégiée inférieure à 100 ppm sur base du poids total de ladite phase liquide Ll.  The liquid phase L1 of said two-phase stream may comprise hydrofluoric acid. Said liquid phase L1 may optionally comprise a small amount of 2,3,3,3-tetrafluoropropene, preferably said liquid phase L1 may comprise a 2,3,3,3-tetrafluoropropene content of less than 5% by weight based on total weight of said liquid phase L1, in particular less than 1% by weight ppm based on the total weight of said liquid phase L1, more particularly less than 5000 ppm by weight based on the total weight of said liquid phase L1, in a privileged manner less than 1000 ppm by weight based on the total weight of said liquid phase L1, more preferably less than 500 ppm by weight, particularly preferably less than 100 ppm based on the total weight of said liquid phase L1.
De préférence, ladite phase Ll comprend outre 2,3,3,3-tetrafluoropropène, au moins un des composés organiques choisis parmi le groupe consistant en 1,1,1,2,2- pentafluoropropane et 1,3,3,3-tetrafluoropropène. Ladite phase Ll peut également comprendre, outre 2,3,3,3-tetrafluoropropène, au moins un des composés choisis parmi le groupe consistant en 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3- trifluoropropène, chlorométhane 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2- tetrafluoroéthane et trans-l,2,3,3,3-pentafluoropropène.  Preferably, said L1 phase further comprises 2,3,3,3-tetrafluoropropene, at least one of the organic compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3,3-tetrafluoropropene. tetrafluoropropene. Said L1 phase may also comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3-pentafluoropropene.
Dans ce cas, ladite phase liquide Ll peut comprendre une teneur en composés organiques inférieure à 5% en poids sur base du poids total de ladite phase liquide Ll, en particulier inférieure à 1% en poids sur base du poids total de ladite phase liquide Ll, plus particulièrement inférieure à 5000 ppm en poids sur base du poids total de ladite phase liquide Ll, de manière privilégiée inférieure à 1000 ppm en poids sur base du poids total de ladite phase liquide Ll, de manière plus privilégiée inférieure à 500 ppm en poids, de manière particulièrement privilégiée inférieure à 100 ppm sur base du poids total de ladite phase liquide Ll. In this case, said liquid phase L1 may comprise an organic compound content of less than 5% by weight based on the total weight of said liquid phase L1, in particular less than 1% by weight, based on the total weight of said liquid phase L1. , more particularly less than 5000 ppm by weight based on the total weight of said liquid phase L1, advantageously less than 1000 ppm by weight based on the total weight of said liquid phase L1, more preferably less than 500 ppm by weight, particularly preferably less than 100 ppm based on the total weight of said liquid phase ll.
De préférence, la concentration en acide fluorhydrique dans ladite phase liquide Ll dudit second courant diphasique est supérieure à la concentration de ladite solution aqueuse d'acide fluorhydrique utilisée à l'étape i'). Ladite phase liquide Ll dudit second courant diphasique peut être avoir une concentration en acide fluorhydrique supérieure à 41% en poids sur base du poids total de ladite phase liquide Ll dudit second courant diphasique. Avantageusement, ladite phase liquide Ll dudit second courant diphasique peut avoir une concentration en acide fluorhydrique supérieure à 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% ou 95% en poids sur base du poids total de ladite phase liquide Ll dudit second courant diphasique. De préférence, ladite phase liquide Ll dudit second courant diphasique peut avoir une concentration en acide fluorhydrique comprise entre 45% et 95% en poids, entre 50% et 90% en poids, entre 55% et 85% en poids, entre 60% en poids et 80% en poids ou entre 65% en poids et 75% en poids tout en étant supérieure à la concentration de ladite solution aqueuse d'acide fluorhydrique utilisée à l'étape i').  Preferably, the hydrofluoric acid concentration in said liquid phase L1 of said second diphasic stream is greater than the concentration of said hydrofluoric acid aqueous solution used in step i '). Said liquid phase L1 of said second diphasic current may have a hydrofluoric acid concentration of greater than 41% by weight based on the total weight of said liquid phase L1 of said second two-phase current. Advantageously, said liquid phase L1 of said second two-phase current may have a hydrofluoric acid concentration greater than 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%. %, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85% , 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% by weight based on the total weight of said liquid phase L1 of said second two-phase current. Preferably, said liquid phase L1 of said second two-phase stream may have a hydrofluoric acid concentration of between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight, and between 60% by weight. weight and 80% by weight or between 65% by weight and 75% by weight while being greater than the concentration of said aqueous hydrofluoric acid solution used in stage i ').
De préférence, la solution aqueuse d'acide fluorhydrique utilisé à l'étape i') est à une température comprise entre -20°C à 80°C avant sa mise en contact avec ledit premier courant, avantageusement entre -15°C et 70°C, de préférence entre -10°C et 60°C, plus préférentiellement entre -5°C et 50°C, en particulier entre -5°C et 40°C, plus particulièrement entre 0°C et 30°C. Ainsi, dans un mode de réalisation particulièrement préféré, la température de la solution aqueuse d'acide fluorhydrique utilisé à l'étape i'), avant sa mise en contact avec ledit premier courant, peut être de 0°C, 1°C, 2°C, 3°C, 4°C, 5°C, 6°C, 7°C, 8°C, 9°C, 10°C, 11°C, 12°C, 13°C, 14°C, 15°C, 16°C, 17°C, 18°C, 19°C, 20°C, 21°C, 22°C, 23°C, 24°C, 25°C, 26°C, 27°C, 28°C, 29°C ou 30°C. La mise en œuvre de ladite solution aqueuse d'acide fluorhydrique aux températures mentionnées ci-dessus a pour but de contrôler l'exothermicité survenant lors de la mise en contact de celle-ci avec ledit premier courant.  Preferably, the hydrofluoric acid aqueous solution used in step i ') is at a temperature of between -20 ° C. and 80 ° C. before being brought into contact with the said first stream, advantageously between -15 ° C. and 70 ° C. C., preferably between -10 ° C. and 60 ° C., more preferably between -5 ° C. and 50 ° C., in particular between -5 ° C. and 40 ° C., more particularly between 0 ° C. and 30 ° C. Thus, in a particularly preferred embodiment, the temperature of the aqueous hydrofluoric acid solution used in step i '), before it is brought into contact with said first stream, can be 0 ° C, 1 ° C, 2 ° C, 3 ° C, 4 ° C, 5 ° C, 6 ° C, 7 ° C, 8 ° C, 9 ° C, 10 ° C, 11 ° C, 12 ° C, 13 ° C, 14 ° C 15 ° C 16 C 17 C 18 C 19 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 ° C, 28 ° C, 29 ° C or 30 ° C. The implementation of said aqueous solution of hydrofluoric acid at the temperatures mentioned above is intended to control the exothermicity occurring during the contacting thereof with said first stream.
Comme mentionné ci-dessus, l'étape ii') du procédé selon la présente invention met en œuvre le stockage dudit second courant diphasique dans un réservoir tampon, ledit second courant diphasique étant constitué de ladite phase liquide Ll et de ladite phase gazeuse Gl telle que décrit ci-dessus. As mentioned above, step ii ') of the method according to the present invention implements the storage of said second two-phase current in a buffer tank, said second two-phase current consisting of said liquid phase L1 and said gas phase G1 as described above.
Comme mentionné ci-dessus, l'étape iii') du procédé selon la présente invention met en œuvre, le passage de ladite phase gazeuse Gl dudit second courant diphasique dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant gazeux G2 comprenant 2,3,3,3-tetrafluoropropène et un courant aqueux L2 comprenant HF.  As mentioned above, step iii ') of the method according to the present invention implements, the passage of said gas phase G1 of said second two-phase current in an absorption column fed countercurrently with an aqueous stream to form a gaseous stream G2 comprising 2,3,3,3-tetrafluoropropene and an aqueous stream L2 comprising HF.
De préférence, le débit du flux aqueux utilisé à l'étape iii') est déterminé en fonction de la quantité d'acide fluorhydrique contenue dans ledit quatrième courant. Ainsi, le rapport entre le débit du flux aqueux exprimé en kg/h alimentant la colonne d'absorption à l'étape (iii) et la quantité d'acide fluorhydrique dans ledit quatrième courant exprimée en kg/h est compris entre 0,05 et 1,22. Avantageusement, le rapport entre le débit du flux aqueux exprimé en kg/h alimentant la colonne d'absorption à l'étape iii') et la quantité d'acide fluorhydrique dans ledit quatrième courant exprimée en kg/h peut être compris entre 0,11 et 1,00, de préférence entre 0,18 et 0,82, plus préférentiellement entre 0,25 et 0,67, en particulier entre 0,33 et 0,54. Ainsi le rapport entre le débit du flux aqueux exprimé en kg/h alimentant la colonne d'absorption à l'étape iii') et la quantité d'acide fluorhydrique dans ledit quatrième courant exprimée en kg/h peut être de 0,25, 0,26, 0,27, 0,28, 0,29, 0,30, 0,31, 0,32, 0,33, 0,34, 0,35, 0,36, 0,37, 0,38, 0,39, 0,40, 0,41, 0,42, 0,43, 0,44, 0,45, 0,46, 0,47, 0,48, 0,49, 0,50, 0,51, 0,52, 0,53, 0,54, 0,55, 0,56, 0,57, 0,58, 0,59, 0,60, 0,61, 0,62, 0,63, 0,64, 0,65, 0,66, 0,67, 0,68, 0,69 ou 0,70.  Preferably, the flow rate of the aqueous stream used in step iii ') is determined as a function of the amount of hydrofluoric acid contained in said fourth stream. Thus, the ratio between the flow rate of the aqueous flow expressed in kg / h feeding the absorption column in step (iii) and the amount of hydrofluoric acid in said fourth flow expressed in kg / h is between 0.05 and 1.22. Advantageously, the ratio between the flow rate of the aqueous flow expressed in kg / h feeding the absorption column in step iii ') and the quantity of hydrofluoric acid in the said fourth flow expressed in kg / h can be between 0, 11 and 1.00, preferably between 0.18 and 0.82, more preferably between 0.25 and 0.67, in particular between 0.33 and 0.54. Thus the ratio between the flow rate of the aqueous flow expressed in kg / h feeding the absorption column in step iii ') and the amount of hydrofluoric acid in said fourth flow expressed in kg / h may be 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0, 38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0, 63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69 or 0.70.
Un courant aqueux supplémentaire correspondant à la fraction d'eau vaporisée en tête de ladite colonne d'absorption peut également alimenter ladite colonne. Le flux aqueux tel que décrit ci-dessus est différent dudit courant aqueux supplémentaire lié à la fraction d'eau vaporisée en tête de la colonne et ne l'englobe pas.  An additional aqueous stream corresponding to the vaporized water fraction at the top of said absorption column may also supply said column. The aqueous stream as described above is different from said additional aqueous stream linked to the vaporized water fraction at the top of the column and does not include it.
Selon un mode de réalisation préféré, ladite colonne d'absorption mise en œuvre à l'étape iii') comprend au moins un étage d'absorption. Avantageusement, ladite colonne d'absorption mise en œuvre à l'étape iii') comprend au moins deux étages d'absorption. De préférence, ladite colonne d'absorption mise en œuvre à l'étape iii') comprend au moins trois étages d'absorption. Ladite colonne d'absorption mise en œuvre à l'étape iii') peut ainsi comprendre deux, trois, quatre, cinq, six, sept, huit, neuf, dix, onze, douze, treize, quatorze ou quinze étages d'absorption.  According to a preferred embodiment, said absorption column implemented in step iii ') comprises at least one absorption stage. Advantageously, said absorption column implemented in step iii ') comprises at least two absorption stages. Preferably, said absorption column implemented in step iii ') comprises at least three absorption stages. Said absorption column implemented in step iii ') may thus comprise two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen or fifteen absorption stages.
La mise en œuvre d'une colonne d'absorption ayant au moins un étage d'absorption, avantageusement au moins deux étages d'absorption, de préférence au moins trois étages d'absorption, permet d'obtenir un courant G2 ayant une faible teneur en acide fluorhydrique. Avantageusement, ledit courant G2 comprend moins de 1000 ppm d'acide fluorhydrique en poids sur base du poids total dudit courant G2, de préférence moins de 900 ppm d'acide fluorhydrique, plus préférentiellement moins de 800 ppm d'acide fluorhydrique, en particulier moins de 700 ppm d'acide fluorhydrique, plus particulièrement moins de 600 ppm d'acide fluorhydrique, de manière privilégiée moins de 500 ppm d'acide fluorhydrique, de manière encore plus privilégiée moins de 400 ppm d'acide fluorhydrique, de manière préférentiellement privilégiée moins de 300 ppm d'acide fluorhydrique, de manière particulièrement privilégiée moins de 200 ppm d'acide fluorhydrique, de manière plus particulièrement privilégiée moins de 100 ppm d'acide fluorhydrique. Ainsi, ledit courant G2 peut avoir une teneur en acide fluorhydrique comprise entre 1 et 200 ppm, entre 5 et 190 ppm, entre 10 et 180 ppm, entre 15 et 170 ppm, entre 20 et 160 ppm, entre 25 et 150 ppm ou entre 30 et 140 ppm en poids sur base du poids total dudit courant G2. The implementation of an absorption column having at least one absorption stage, advantageously at least two absorption stages, preferably at least three absorption stages, makes it possible to obtain a G 2 stream having a low content. in hydrofluoric acid. Advantageously, said stream G2 comprises less than 1000 ppm of hydrofluoric acid by weight based on the total weight of said stream G2, preferably less than 900 ppm of hydrofluoric acid, more preferably less than 800 ppm of hydrofluoric acid, in particular less 700 ppm of hydrofluoric acid, more particularly less than 600 ppm of hydrofluoric acid, preferably less than 500 ppm of hydrofluoric acid, even more preferred less than 400 ppm of hydrofluoric acid, preferably less favored 300 ppm of hydrofluoric acid, particularly preferably less than 200 ppm of hydrofluoric acid, more particularly preferred less than 100 ppm of hydrofluoric acid. Thus, said stream G2 may have a hydrofluoric acid content of between 1 and 200 ppm, between 5 and 190 ppm, between 10 and 180 ppm, between 15 and 170 ppm, between 20 and 160 ppm, between 25 and 150 ppm or between 30 and 140 ppm by weight based on the total weight of said G2 stream.
De préférence, au moins 80% en poids de l'acide fluorhydrique éventuellement présent dans ladite phase gazeuse Gl dudit second courant diphasique est absorbé par le premier étage d'absorption de ladite colonne d'absorption, en particulier au moins 85% en poids de l'acide fluorhydrique éventuellement présent dans ladite phase gazeuse Gl dudit second courant diphasique est absorbé par le premier étage d'absorption de ladite colonne d'absorption, plus particulièrement au moins 90% en poids de l'acide fluorhydrique éventuellement présent dans ladite phase gazeuse Gl dudit second courant diphasique est absorbé par le premier étage d'absorption de ladite colonne d'absorption.  Preferably, at least 80% by weight of the hydrofluoric acid optionally present in said gas phase G1 of said second two-phase current is absorbed by the first absorption stage of said absorption column, in particular at least 85% by weight of the hydrofluoric acid optionally present in said gas phase G1 of said second diphasic current is absorbed by the first absorption stage of said absorption column, more particularly at least 90% by weight of the hydrofluoric acid that may be present in said gaseous phase Gl of said second diphasic current is absorbed by the first absorption stage of said absorption column.
De préférence, ledit flux aqueux peut être introduit au moins au niveau de la tête de la colonne d'absorption.  Preferably, said aqueous stream can be introduced at least at the head of the absorption column.
De préférence, ladite phase Gl et ladite phase G2 comprennent outre 2,3,3,3- tetrafluoropropène, au moins un des composés choisis parmi le groupe consistant en 1,1,1,2,2- pentafluoropropane et 1,3,3,3-tetrafluoropropène. Ladite phase Gl et ladite phase G2 peuvent également comprendre, outre 2,3,3,3-tetrafluoropropène, au moins un des composés choisis parmi le groupe consistant en 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3- trifluoropropène, chlorométhane 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2- tetrafluoroéthane et trans-l,2,3,3,3-pentafluoropropène.  Preferably, said G1 phase and said G2 phase comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds chosen from the group consisting of 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene. , 3-tetrafluoropropene. Said G1 phase and said G2 phase may also comprise, in addition to 2,3,3,3-tetrafluoropropene, at least one of the compounds selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,3,3 , 3-tetrafluoropropene, 3,3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3-pentafluoropropene.
Selon un mode de réalisation préféré, ledit courant L2 est sous la forme d'une solution aqueuse d'acide fluorhydrique. Avantageusement, ledit courant L2 est une solution d'acide fluorhydrique de concentration inférieure à 30% en poids sur base du poids total dudit courant L2. De préférence, ledit courant L2 est une solution d'acide fluorhydrique de concentration inférieure à 25% en poids sur base du poids total dudit courant L2. En particulier, ledit courant L2 est une solution d'acide fluorhydrique de concentration comprise entre 5 et 25% en poids sur base du poids total dudit courant L2, plus particulièrement, entre 10 et 20% en poids sur base du poids total dudit courant L2. Selon un mode de réalisation préféré, ledit courant L2 est recyclé à l'étape ii'). Ledit courant L2 est ainsi mélangé avec phase liquide Ll. According to a preferred embodiment, said stream L2 is in the form of an aqueous solution of hydrofluoric acid. Advantageously, said stream L2 is a solution of hydrofluoric acid with a concentration of less than 30% by weight based on the total weight of said stream L2. Preferably, said stream L2 is a hydrofluoric acid concentration solution less than 25% by weight based on the total weight of said L2 stream. In particular, said stream L2 is a solution of hydrofluoric acid with a concentration of between 5 and 25% by weight based on the total weight of said stream L2, more particularly between 10 and 20% by weight based on the total weight of said stream L2. . According to a preferred embodiment, said stream L2 is recycled in stage ii '). Said stream L2 is thus mixed with liquid phase L1.
Selon un mode de réalisation préféré, ledit procédé comprend également les étapes de : According to a preferred embodiment, said method also comprises the steps of:
Iv') neutralisation dudit courant G2 obtenu à l'étape iii') par une solution aqueuse alcaline pour former un courant neutralisé G3, et Iv ') neutralizing said G2 stream obtained in step iii') with an aqueous alkaline solution to form a neutralized stream G3, and
v') séchage dudit courant neutralisé G3 obtenu à l'étape iv'), de préférence sur tamis moléculaire pour former un courant neutralisé et séché G4.  v ') drying said neutralized G3 stream obtained in step iv'), preferably on molecular sieve to form a neutralized and dried G4 stream.
Selon un mode de réalisation préféré, ladite solution aqueuse alcaline peut être une solution aqueuse d'hydroxyde d'un métal alcalin ou alcalino-terreux. La solution aqueuse alcaline peut être une solution aqueuse d'hydroxyde de sodium, d'hydroxyde de potassium, d'hydroxyde de calcium ou d'hydroxyde de magnésium ou un mélange de ceux-ci. De préférence, ladite solution aqueuse alcaline présente une concentration comprise entre 5 et 50% en poids sur base du poids total de ladite solution aqueuse alcaline. Avantageusement, ladite solution aqueuse alcaline présente une concentration d'au moins 5%, d'au moins 6%, d'au moins 7%, d'au moins 8%, d'au moins 9%, d'au moins 10%, d'au moins 11%, d'au moins 12%, d'au moins 13%, d'au moins 14%, d'au moins 15%, d'au moins 16% ou d'au moins 17% en poids sur base du poids total de ladite solution aqueuse alcaline ; et d'au plus 50%, d'au plus 48%, d'au plus 46%, d'au plus 44%, d'au plus 42%, d'au plus 40%, d'au plus 38%, d'au plus 36%, d'au plus 34%, d'au plus 32%, d'au plus 30%, d'au plus 28%, d'au plus 26%, d'au plus 24%, d'au plus 22% en poids sur base du poids total de ladite solution aqueuse alcaline.  According to a preferred embodiment, said aqueous alkaline solution may be an aqueous solution of hydroxide of an alkali metal or alkaline earth metal. The aqueous alkaline solution may be an aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide or magnesium hydroxide or a mixture thereof. Preferably, said aqueous alkaline solution has a concentration of between 5 and 50% by weight based on the total weight of said alkaline aqueous solution. Advantageously, said alkaline aqueous solution has a concentration of at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, at least 10%. at least 11%, at least 12%, at least 13%, at least 14%, at least 15%, at least 16% or at least weight based on the total weight of said alkaline aqueous solution; and not more than 50%, not more than 48%, not more than 46%, not more than 44%, not more than 42%, not more than 40%, not more than 38%, not more than 36%, not more than 34%, not more than 32%, not more than 30%, not more than 28%, not more than 26%, not more than 24%, at most 22% by weight based on the total weight of said alkaline aqueous solution.
Ledit courant neutralisé G3 formé à l'étape iv') comprend de préférence 2,3,3,3- tetrafluoropropène et optionnellement l'un quelconque des composés organiques décrits ci- dessus. La teneur en acide fluorhydrique dans ledit courant neutralisé G3 est inférieure à la teneur en acide fluorhydrique dudit courant G2, avant sa neutralisation. Ledit courant neutralisé G3 formé à l'étape iv') peut également contenir de l'eau.  Said neutralized stream G3 formed in step iv ') preferably comprises 2,3,3,3-tetrafluoropropene and optionally any of the organic compounds described above. The hydrofluoric acid content in said neutralized stream G3 is lower than the hydrofluoric acid content of said stream G2, before its neutralization. Said neutralized stream G3 formed in step iv ') may also contain water.
Ledit courant neutralisé G3 formé à l'étape iv') peut ainsi être séché à l'étape v') du présent procédé. De préférence, ledit courant neutralisé G3 formé à l'étape iv') est séché sur tamis moléculaire. Par exemple, ledit courant neutralisé G3 formé à l'étape iv') est séché sur tamis moléculaire de 3A, tel que la siliporite. L'étape ν') du présent procédé permet la formation d'un courant neutralisé et séché G4 comprenant 2,3,3,3-tetrafluoropropène et optionnellement l'un quelconque des composés organiques décrits ci-dessus. Ledit courant G4 peut ensuite être comprimé et liquéfié à une pression d'au plus 8 bara pour former un courant G5 comprimé dans lequel 2,3,3,3- tetrafluoropropène et optionnellement l'un quelconque des composés organiques décrits ci- dessus sont sous forme liquide. Said neutralized stream G3 formed in step iv ') can thus be dried in step v') of the present process. Preferably, said neutralized stream G3 formed in step iv ') is dried on molecular sieve. For example, said neutralized G3 stream formed in step iv ') is dried on 3A molecular sieve, such as siliporite. Step ν ') of the present process allows the formation of a neutralized and dried G4 stream comprising 2,3,3,3-tetrafluoropropene and optionally any of the organic compounds described above. Said G4 stream can then be compressed and liquefied at a pressure of at most 8 bara to form a compressed G5 stream in which 2,3,3,3-tetrafluoropropene and optionally any of the organic compounds described above are liquid form.
Selon un mode de réalisation préféré, la phase liquide résultant du mélange de ladite phase liquide Ll avec ladite phase liquide L2 est recyclée à l'étape i'). La phase liquide résultant du mélange de ladite phase liquide Ll avec ladite phase liquide L2 peut avoir une concentration en acide fluorhydrique supérieure à 41% en poids sur base du poids total de la phase liquide résultant du mélange de ladite phase liquide Ll avec ladite phase liquide L2. Avantageusement, la phase liquide résultant du mélange de ladite phase liquide Ll avec ladite phase liquide L2 peut avoir une concentration en acide fluorhydrique supérieure à 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% ou 95% en poids sur base du poids total de la phase liquide résultant du mélange de ladite phase liquide Ll avec ladite phase liquide L2. De préférence, la phase liquide résultant du mélange de ladite phase liquide Ll avec ladite phase liquide L2 peut avoir une concentration en acide fluorhydrique comprise entre 45% et 95% en poids, entre 50% et 90% en poids, entre 55% et 85% en poids, entre 60% en poids et 80% en poids ou entre 65% en poids et 75% en poids sur base du poids total de la phase liquide résultant du mélange de ladite phase liquide Ll avec ladite phase liquide L2.  According to a preferred embodiment, the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 is recycled to step i '). The liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 may have a hydrofluoric acid concentration greater than 41% by weight based on the total weight of the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2. Advantageously, the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 may have a hydrofluoric acid concentration greater than 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49% 50% 51% 52% 53% 54% 55% 56% 57% 58% 59% 60% 61% 62% 63% 64% 65% 66 % 67% 68% 69% 70% 71% 72% 73% 74% 75% 76% 77% 78% 79% 80% 81% 82% 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% or 95% by weight based on the total weight of the resulting liquid phase mixing said liquid phase L1 with said liquid phase L2. Preferably, the liquid phase resulting from mixing said liquid phase L1 with said liquid phase L2 may have a hydrofluoric acid concentration of between 45% and 95% by weight, between 50% and 90% by weight, between 55% and 85% by weight. % by weight, between 60% by weight and 80% by weight or between 65% by weight and 75% by weight based on the total weight of the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2.
Selon un autre mode de réalisation préféré, la phase liquide résultant le mélange de ladite phase liquide Ll avec ladite phase liquide L2 est distillée pour former un courant L3, de préférence en tête de colonne de distillation. Avantageusement, ledit courant L3 comprend de l'acide fluorhydrique contenant moins de 3000 ppm d'eau, de préférence moins de 2000 ppm d'eau, plus préférentiellement moins de 1000 ppm d'eau, en particulier moins de 500 ppm d'eau, plus particulièrement moins de 200 ppm d'eau, de manière privilégiée moins de 100 ppm d'eau, de manière plus privilégiée moins de 50 ppm d'eau sur base du poids total du courant L3. Ledit courant L3 peut comprendre également moins de 50 ppm d'acide chlorhydrique, avantageusement moins de 45 ppm d'acide chlorhydrique, de préférence moins de 40 ppm d'acide chlorhydrique, plus préférentiellement moins de 35 ppm d'acide chlorhydrique, en particulier moins de 30 ppm d'acide chlorhydrique, plus particulièrement moins de 20 ppm d'acide chlorhydrique sur base du poids total du courant L3. Ledit courant L3 peut comprendre également moins de 50 ppm de composés organiques, avantageusement moins de 45 ppm de composés organiques, de préférence moins de 40 ppm de composés organiques, plus préférentiellement moins de 35 ppm de composés organiques, en particulier moins de 30 ppm de composés organiques, plus particulièrement moins de 20 ppm de composés organiques sur base du poids total du courant L3. Un composé organique est un composé comprenant au moins un atome de carbone. According to another preferred embodiment, the liquid phase resulting from the mixing of said liquid phase L1 with said liquid phase L2 is distilled to form a stream L3, preferably at the top of the distillation column. Advantageously, said stream L3 comprises hydrofluoric acid containing less than 3000 ppm of water, preferably less than 2000 ppm of water, more preferably less than 1000 ppm of water, in particular less than 500 ppm of water, more particularly less than 200 ppm water, preferably less than 100 ppm water, more preferably less than 50 ppm water based on the total weight of L3 current. Said stream L3 may also comprise less than 50 ppm of hydrochloric acid, advantageously less than 45 ppm of hydrochloric acid, preferably less than 40 ppm of hydrochloric acid, more preferably less than 35 ppm of hydrochloric acid, in particular less 30 ppm hydrochloric acid, more particularly less than 20 ppm of hydrochloric acid based on the total weight of the L3 current. Said stream L3 may also comprise less than 50 ppm of organic compounds, advantageously less than 45 ppm of organic compounds, preferably less than 40 ppm of organic compounds, more preferably less than 35 ppm of organic compounds, in particular less than 30 ppm of organic compounds. organic compounds, more particularly less than 20 ppm of organic compounds based on the total weight of L3 current. An organic compound is a compound comprising at least one carbon atom.
En outre, la distillation de ladite phase liquide Ll dudit second courant diphasique forme un courant L4, de préférence en pied de colonne de distillation, comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration inférieure à 50% en poids. Avantageusement, ledit courant L4 comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration inférieure à 50% en poids, 49% en poids, 48% en poids, 47% en poids, 46% en poids, 45% en poids, 44% en poids, 43% en poids, 42% en poids sur base du poids total dudit courant L4. De préférence, ledit courant L4 comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration supérieure à 20% en poids sur base du poids total dudit courant L4. En particulier, ledit courant L4 comprenant de l'acide fluorhydrique sous forme d'une solution aqueuse de concentration supérieure 21% en poids, 22% en poids, 23% en poids, 24% en poids, 25% en poids, 26% en poids, 27% en poids, 28% en poids, 29% en poids, 30% en poids, 31% en poids, 32% en poids, 33% en poids, 34% en poids, 35% en poids sur base du poids total dudit courant L4. Ledit courant L4 peut être commercialisé ou détruit par neutralisation.  In addition, the distillation of said liquid phase L1 of said second two-phase current forms a stream L4, preferably at the bottom of the distillation column, comprising hydrofluoric acid in the form of an aqueous solution with a concentration of less than 50% by weight. Advantageously, said stream L4 comprising hydrofluoric acid in the form of an aqueous solution of concentration less than 50% by weight, 49% by weight, 48% by weight, 47% by weight, 46% by weight, 45% by weight. weight, 44% by weight, 43% by weight, 42% by weight based on the total weight of said L4 stream. Preferably, said stream L4 comprising hydrofluoric acid in the form of an aqueous solution of concentration greater than 20% by weight based on the total weight of said stream L4. In particular, said stream L4 comprising hydrofluoric acid in the form of an aqueous solution of higher concentration 21% by weight, 22% by weight, 23% by weight, 24% by weight, 25% by weight, 26% by weight. weight, 27% by weight, 28% by weight, 29% by weight, 30% by weight, 31% by weight, 32% by weight, 33% by weight, 34% by weight, 35% by weight based on weight total of said current L4. Said L4 stream may be marketed or destroyed by neutralization.
Lorsque ladite phase inférieure ou ladite phase G2, G3, G4 ou G5 comprend 2,3,3,3- tetrafluoropropène, 1,1,1,2,2-pentafluoropropane et 1,3,3,3-tetrafluoropropène, celle-ci peut être distillée par distillation extractive pour former un courant comprenant 2,3,3,3- tetrafluoropropène et 1,1,1,2,2-pentafluoropropane ; et un courant comprenant 1,3,3,3- tetrafluoropropène. La distillation extractive de ladite phase inférieure ou ladite phase G2, G3, G4 ou G5 peut être effectuée en présence d'un agent d'extraction organique. Ledit agent d'extraction organique peut être sélectionné parmi le groupe consistant en éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, propanone, methylacetate, butanone, diethoxyméthane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert- butylacetate, 1,4-dioxane, 1,1-diethoxyéthane, trimethoxyméthane, n-pentylamine, 1,3- dioxane, sec-butylacetate, 1,2-diaminoéthane, l-methoxy-2-propanol, 1,2-propanediamine, n- butylacetate, 2-methoxy-l-propanol, hexanal. De préférence, ledit agent d'extraction organique peut être sélectionné parmi le groupe consistant en éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxyméthane, isopropylacetate, 3-pentylamine, 2- methoxyethanamine, tert-butylacetate, 1,4-dioxane, 1,1-diethoxyéthane, trimethoxyméthane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoéthane, l-methoxy-2-propanol, 1,2- propanediamine, n-butylacetate, 2-methoxy-l-propanol, hexanal. When said lower phase or said G2, G3, G4 or G5 phase comprises 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene, the latter can be distilled by extractive distillation to form a stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane; and a stream comprising 1,3,3,3-tetrafluoropropene. The extractive distillation of said lower phase or said G2, G3, G4 or G5 phase can be carried out in the presence of an organic extraction agent. Said organic extractant may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, propanone, methylacetate, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1, 4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-1-propanol, hexanal. Preferably, said organic extraction agent may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-1-propanol, hexanal.
Alternativement, lorsque ladite phase inférieure ou ladite phase G2, G3, G4 ou G5 comprend 2,3,3,3-tetrafluoropropène, 1,1,1,2,2-pentafluoropropane, 1,3,3,3- tetrafluoropropène et au moins un des composés sélectionné parmi le groupe consistant en 3,3,3-trifluoropropène, chlorométhane, 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2- tetrafluoroéthane et trans-l,2,3,3,3-pentafluoropropène ; celle-ci peut être purifiée par distillation extractive. La distillation extractive de ladite phase inférieure ou ladite phase G2, G3, G4 ou G5 peut être effectuée en présence d'un agent d'extraction organique. Ledit agent d'extraction organique peut être sélectionné parmi le groupe consistant en éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, propanone, methylacetate, butanone, diethoxyméthane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert- butylacetate, 1,4-dioxane, 1,1-diethoxyéthane, trimethoxyméthane, n-pentylamine, 1,3- dioxane, sec-butylacetate, 1,2-diaminoéthane, l-methoxy-2-propanol, 1,2-propanediamine, n- butylacetate, 2-methoxy-l-propanol, hexanal. De préférence, ledit agent d'extraction organique peut être sélectionné parmi le groupe consistant en éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxyméthane, isopropylacetate, 3-pentylamine, 2- methoxyethanamine, tert-butylacetate, 1,4-dioxane, 1,1-diethoxyéthane, trimethoxyméthane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoéthane, l-methoxy-2-propanol, 1,2- propanediamine, n-butylacetate, 2-methoxy-l-propanol, hexanal. Ainsi, la distillation extractive permet l'obtention d'un courant comprenant 2,3,3,3-tetrafluoropropène et 1,1,1,2,2- pentafluoropropène et d'un courant comprenant 1,3,3,3-tetrafluoropropène, l'agent d'extraction organique et ledit au moins un des composés sélectionné parmi le groupe consistant en 3,3,3-trifluoropropène, chlorométhane, 1,1-difluoroéthane, chloropentafluoroéthane, 1,1,1,2-tetrafluoroéthane et trans-l,2,3,3,3-pentafluoropropène.  Alternatively, when said lower phase or said G2, G3, G4 or G5 phase comprises 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene and minus one of the compounds selected from the group consisting of 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans-1,2,3,3,3- pentafluoropropene; this can be purified by extractive distillation. The extractive distillation of said lower phase or said G2, G3, G4 or G5 phase can be carried out in the presence of an organic extraction agent. Said organic extractant may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, propanone, methylacetate, butanone, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1, 4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy-1-propanol, hexanal. Preferably, said organic extractant may be selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate, 1,4-dioxane , 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n-butylacetate, 2-methoxy 1-propanol, hexanal. Thus, the extractive distillation makes it possible to obtain a stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropene and a stream comprising 1,3,3,3-tetrafluoropropene. the organic extractant and said at least one of the compounds selected from the group consisting of 3,3,3-trifluoropropene, chloromethane, 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane and trans -l, 2,3,3,3-pentafluoropropene.
Ledit courant comprenant 2,3,3,3-tetrafluoropropène et 1,1,1,2,2- pentafluoropropane est ensuite purifié, par exemple par distillation, pour former un courant comprenant 2,3,3,3-tetrafluoropropène et un courant comprenant 1,1,1,2,2- pentafluoropropane, ce dernier étant optionnellement recyclé à l'étape a). La figure 1 représente schématiquement un procédé selon un mode de réalisation particulier de la présente invention. Le composé (I) est par exemple le 1,1,1,2,3- pentachloropropane. Un flux de composé (I) est introduit par la conduite 1 dans le dispositif réactionnel 3. Un flux d'acide fluorhydrique est introduit par la conduite 2 dans le dispositif réactionnel 3. Le dispositif réactionnel 3 peut comprendre un ou plusieurs réacteurs. Le flux de produits issus de la réaction entre le composé (I) et THF comprend notamment HCI, HF et 2,3,3,3- tetrafluoropropène. Le flux de produits issus de la réaction entre le composé (I) et THF est transféré du dispositif réactionnel 3 vers un dispositif de refroidissement 5 via une conduite 4. Le flux de produits issus de la réaction entre le composé (I) et THF est ainsi refroidi à une température de 0°C à 70°C avant d'être introduit dans une colonne de distillation 6 via une conduite 12. La colonne de distillation 6 est configurée, comme expliqué ci-dessus, de sorte à permettre la séparation entre d'un côté l'acide chlorhydrique et le 2,3,3,3-tetrafluoropropène et d'un autre côté l'acide fluorhydrique. Le courant d'HF est récupéré en bas de colonne de distillation 6 et recyclé vers le dispositif réactionnel 3 par la conduite 17. Le courant comprenant le 2,3,3,3-tetrafluoropropène et l'acide chlorhydrique est récupéré en tête de colonne de distillation pour être acheminé par une conduite 13 vers un compresseur 7. Le compresseur permet de comprimer le courant comprenant le 2,3,3,3-tetrafluoropropène et l'acide chlorhydrique à une pression comprise entre 10 et 25 bara. Le courant ainsi comprimé est acheminé par la conduite 15 à la colonne de distillation 8. Celle-ci est configurée de sorte à séparer le 2,3,3,3-tetrafluoropropène et l'acide chlorhydrique. L'acide chlorhydrique est récupéré est tête de colonne de distillation 8 pour être acheminé vers un dispositif de purification 10 par la conduite 14. Le dispositif de purification 10 de l'acide chlorhydrique est tel que décrit ci-dessus dans la présente demande. Le 2,3,3,3-tetrafluoropropène est récupéré en bas de colonne de distillation pour être acheminé par la conduite 16 vers une colonne de distillation 9. La colonne de distillation 9 vise à séparer le 2,3,3,3-tetrafluoropropène du 1,1,1,2,2-pentafluoropropène éventuellement présent dans le flux de produits issus du dispositif réactionnel. Le 2,3,3,3-tetrafluoropropène est récupéré en tête de colonne de distillation pour être acheminé vers un dispositif de purification 11 par la conduite 18' décrit ci-dessous. Le 1,1,1,2,2-pentafluoropropène récupéré en bas de colonne de distillation est recyclé vers le dispositif réactionnel 3 par la conduite 18. Le dispositif de purification 11 comprend notamment un dispositif d'élimination du HF et une ou plusieurs colonnes de distillation apte à purifier le courant comprenant le 2,3,3,3-tetrafluoropropène d'impuretés qu'il pourrait contenir, telles que par exemple le 1,1,1,2,2-pentafluoropropane et/ou le 1,3,3,3-tetrafluoropropène. Ceci est notamment illustré à la figure 2. Le dispositif de purification 11 comprend un dispositif de d'élimination du HF 19 pour séparer d'un côté le 2,3,3,3-tetrafluoropène, le 1,1,1,2,2- pentafluoropropane et le 1,3,3,3-tetrafluoropropène, si ces derniers sont présents, et d'un autre côté le HF résiduel. Le HF résiduel peut être recyclé vers le dispositif réactionnel 3 (non représenté). Le dispositif d'élimination d'HF 19 peut être apte à permettre la décantation du HF ou l'absorption du HF tel que décrit ci-dessous. Le courant comprenant le 2,3,3,3- tetrafluoropropène, le 1,1,1,2,2-pentafluoropropane et le 1,3,3,3-tetrafluoropropène est acheminé vers une colonne de distillation 20 par une conduite 23. La colonne de distillation 20 est une colonne de distillation extractive. Un agent d'extraction 25 est ajouté au courant comprenant le 2,3,3,3-tetrafluoropène, le 1,1,1,2,2-pentafluoropropane et le 1,3,3,3- tetrafluoropropène. Un courant comprenant le 2,3,3,3-tetrafluoropène et le 1,1,1,2,2- pentafluoropropane est récupéré en tête de colonne de distillation 20 et est acheminé par une conduite 22 vers une colonne de distillation 21 permettant la séparation entre le 2,3,3,3- tetrafluoropène et le 1,1,1,2,2-pentafluoropropane. Un courant 27 comprenant le 2,3,3,3- tetrafluoropène est récupéré en tête de colonne de distillation. Un courant 28 comprenant le 1,1,1,2,2-pentafluoropropane est récupéré en bas de colonne de distillation ; ce dernier pouvant être recyclé vers le dispositif réactionnel 3. Le courant 24 récupéré en bas de colonne de distillation 20 comprend l'agent d'extraction organique et le 1,3,3,3-tetrafluoropropène. Ceux- ci sont séparés, par exemple par distillation, pour former un courant 26 comprenant le 1,3,3,3- tetrafluoropropène. L'agent d'extraction organique est quant à lui recyclé en 25. Said stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane is then purified, for example by distillation, to form a stream comprising 2,3,3,3-tetrafluoropropene and a current comprising 1,1,1,2,2-pentafluoropropane, the latter being optionally recycled in step a). Figure 1 schematically shows a method according to a particular embodiment of the present invention. Compound (I) is, for example, 1,1,1,2,3-pentachloropropane. A stream of compound (I) is introduced via line 1 into the reaction device 3. A flow of hydrofluoric acid is introduced via line 2 into the reaction device 3. The reaction device 3 may comprise one or more reactors. The stream of products resulting from the reaction between the compound (I) and THF comprises in particular HCl, HF and 2,3,3,3-tetrafluoropropene. The flow of products resulting from the reaction between the compound (I) and THF is transferred from the reaction device 3 to a cooling device 5 via a pipe 4. The flow of products resulting from the reaction between the compound (I) and THF is and cooled to a temperature of 0 ° C to 70 ° C before being introduced into a distillation column 6 via a pipe 12. The distillation column 6 is configured, as explained above, so as to allow the separation between on the one hand hydrochloric acid and 2,3,3,3-tetrafluoropropene and on the other hand hydrofluoric acid. The HF stream is recovered at the bottom of distillation column 6 and recycled to the reaction device 3 via line 17. The stream comprising 2,3,3,3-tetrafluoropropene and hydrochloric acid is recovered at the top of the column. distillation device to be routed via a pipe 13 to a compressor 7. The compressor compresses the stream comprising 2,3,3,3-tetrafluoropropene and hydrochloric acid at a pressure of between 10 and 25 bara. The stream thus compressed is fed through line 15 to distillation column 8. This is configured to separate 2,3,3,3-tetrafluoropropene and hydrochloric acid. The hydrochloric acid is recovered at the top of the distillation column 8 to be conveyed to a purification device 10 via line 14. The hydrochloric acid purification device 10 is as described above in the present application. The 2,3,3,3-tetrafluoropropene is recovered at the bottom of the distillation column to be conveyed via line 16 to a distillation column 9. The distillation column 9 is intended to separate 2,3,3,3-tetrafluoropropene. 1,1,1,2,2-pentafluoropropene possibly present in the stream of products from the reaction device. The 2,3,3,3-tetrafluoropropene is recovered at the top of the distillation column to be conveyed to a purification device 11 via line 18 'described below. The 1,1,1,2,2-pentafluoropropene recovered at the bottom of the distillation column is recycled to the reaction device 3 via line 18. The purification device 11 comprises in particular a device for removing the HF and one or more columns. distillation system capable of purifying the stream comprising 2,3,3,3-tetrafluoropropene of impurities which it may contain, such as, for example, 1,1,1,2,2-pentafluoropropane and / or 1,3 , 3,3-tetrafluoropropene. this is 2 purification device 11 comprises a device for removing HF 19 to separate on one side 2,3,3,3-tetrafluoropene, 1,1,1,2,2- pentafluoropropane and 1,3,3,3-tetrafluoropropene, if present, and on the other hand residual HF. The residual HF can be recycled to the reaction device 3 (not shown). The device for removing HF 19 may be suitable for allowing the decantation of HF or the absorption of HF as described below. The stream comprising 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene is passed to a distillation column 20 via line 23. The distillation column 20 is an extractive distillation column. An extractant is added to the stream comprising 2,3,3,3-tetrafluoropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene. A stream comprising 2,3,3,3-tetrafluoropene and 1,1,1,2,2-pentafluoropropane is recovered at the top of distillation column 20 and is conveyed via line 22 to a distillation column 21 allowing separation between 2,3,3,3-tetrafluoropene and 1,1,1,2,2-pentafluoropropane. A stream 27 comprising 2,3,3,3-tetrafluoropene is recovered at the top of the distillation column. A stream 28 comprising 1,1,1,2,2-pentafluoropropane is recovered at the bottom of the distillation column; the latter can be recycled to the reaction device 3. The stream 24 recovered at the bottom of the distillation column 20 comprises the organic extraction agent and 1,3,3,3-tetrafluoropropene. These are separated, for example by distillation, to form a stream 26 comprising 1,3,3,3-tetrafluoropropene. The organic extraction agent is recycled at 25.
La figure 3 représente schématiquement un dispositif d'élimination de l'acide fluorhydrique 19 selon un mode de réalisation particulier, c'est-à-dire par absorption du HF. Le courant 31 comprend 2,3,3,3-tetrafluoropropène, 1,1,1,2,2-pentafluoropropane, 1,3,3,3- tetrafluoropropène et HF, et est équivalent au courant issu de la tête de colonne de distillation 9 illustrée à la figure 1 et à la figure 2. Celui-ci alimente un dispositif 32 dans lequel il est mis en contact avec une solution d'acide fluorhydrique 3 ou une solution issue du dispositif 34 via la conduite 50 ayant une concentration variant entre 65 et 75% en poids. Le dispositif 32 peut être par exemple un hydrolaveur. La mise en contact entre la solution d'acide fluorhydrique 3 ou une solution issue du dispositif 34 via la conduite 50 et le courant 31 génère la formation d'un courant diphasique qui est acheminé vers un dispositif de stockage 34 par la conduite 43. Le dispositif de stockage 34 permet de séparer le courant diphasique en une phase gazeuse et une phase liquide. La phase gazeuse dudit courant diphasique est acheminée par la conduite 44 vers la colonne d'absorption 33 comprenant 3 étages d'absorption 51a, 51b et 51c. La colonne d'absorption 33 est également alimentée par un flux aqueux 37. Dans ce mode de réalisation, le flux aqueux 37 alimente la colonne d'absorption 33 en tête de colonne d'absorption 33, c'est-à- dire au-dessus des trois étages d'absorption 51a-51c. Alternativement, le flux gazeux 37 peut alimenter la colonne d'absorption 33 au-dessus de chacun des étages d'absorption 51a-51c. Un courant gazeux comprenant 2,3,3,3-tetrafluoropropène, 1,1,1,2,2-pentafluoropropane, 1,3,3,3- tetrafluoropropène est extrait en tête de colonne d'absorption 33 par la conduite 46 pour alimenter un dispositif de neutralisation 35. En outre, en pied de colonne d'absorption 33, une solution aqueuse d'acide fluorhydrique est recyclée vers le dispositif de stockage 34 par la conduite 45. La solution alcaline 38, par exemple une solution alcaline de NaOH à 20%, alimente le dispositif de neutralisation 35 par l'intermédiaire de la conduite 49. Le courant neutralisé est évacué par la conduite 47 et récupéré en 40 pour être séché sur tamis moléculaire de 3A. Ce dernier peut donc être comprimé et liquéfié à une pression d'au plus 8 bara. Le courant récupéré en 40 peut alimenter la colonne de distillation 20 décrite à la figure 2 via la conduite 23. Une solution alcaline usée 39 peut être extraite du dispositif de neutralisation 35 pour être soit recyclée via les conduites 48 et 49 ou évacuée via la conduite 48 pour traitement ultérieur. La phase liquide du courant diphasique ou le mélange résultant de la phase liquide dudit courant diphasique et de la solution aqueuse d'acide fluorhydrique provenant du pied de la colonne d'absorption 33 stocké dans le dispositif de stockage 34 est acheminé vers une colonne de distillation 36 via la pompe 52 et la conduite 53 pour former le courant L3 récupéré en tête de colonne de distillation 41 et le courant L4 récupéré en pied de colonne de distillation 42. La pompe 52 peut également être configurée pour acheminer la phase liquide du courant diphasique stocké dans le dispositif de stockage 34 vers le dispositif 32 via la conduite 50. La pompe 52 est ainsi configurée pour permettre l'alimentation de la colonne de distillation 36 et le dispositif 32 de manière alternée ou de manière simultanée, de préférence de manière simultanée. Figure 3 shows schematically a device for removing hydrofluoric acid 19 according to a particular embodiment, that is to say by absorption of HF. Stream 31 comprises 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene and HF, and is equivalent to the stream from the top of the column. distillation 9 illustrated in Figure 1 and Figure 2. This feeds a device 32 in which it is brought into contact with a solution of hydrofluoric acid 3 or a solution from the device 34 via the pipe 50 having a varying concentration between 65 and 75% by weight. The device 32 may for example be a hydrolaver. Contacting the hydrofluoric acid solution 3 or a solution from the device 34 via the pipe 50 and the stream 31 generates the formation of a two-phase current which is routed to a storage device 34 via the pipe 43. storage device 34 makes it possible to separate the two-phase current into a gaseous phase and a liquid phase. The gaseous phase of said two-phase current is conveyed via line 44 to the absorption column 33 comprising three absorption stages 51a, 51b and 51c. The column absorption 33 is also supplied by an aqueous stream 37. In this embodiment, the aqueous stream 37 feeds the absorption column 33 at the head of the absorption column 33, that is to say above the three absorption stages 51a-51c. Alternatively, the gas stream 37 can feed the absorption column 33 above each of the absorption stages 51a-51c. A gaseous stream comprising 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane, 1,3,3,3-tetrafluoropropene is extracted at the top of absorption column 33 via line 46 to In addition, at the bottom of the absorption column 33, an aqueous solution of hydrofluoric acid is recycled to the storage device 34 via the line 45. The alkaline solution 38, for example an alkaline solution of 20% NaOH feeds the neutralizer 35 through line 49. The neutralized stream is discharged through line 47 and recovered at 40 to be dried on 3A molecular sieve. The latter can therefore be compressed and liquefied at a pressure of at most 8 bara. The stream recovered at 40 can supply the distillation column 20 described in FIG. 2 via line 23. A spent alkaline solution 39 can be extracted from the neutralization device 35 to be recycled via lines 48 and 49 or evacuated via the pipe. 48 for further processing. The liquid phase of the two-phase stream or the mixture resulting from the liquid phase of said two-phase stream and the aqueous hydrofluoric acid solution from the base of the absorption column 33 stored in the storage device 34 is conveyed to a distillation column 36 via the pump 52 and the pipe 53 to form the stream L3 recovered at the top of the distillation column 41 and the stream L4 recovered at the bottom of the distillation column 42. The pump 52 can also be configured to convey the liquid phase of the two-phase stream. stored in the storage device 34 to the device 32 via the pipe 50. The pump 52 is thus configured to allow the supply of the distillation column 36 and the device 32 alternately or simultaneously, preferably simultaneously .
La présente invention permet ainsi de mettre en œuvre un procédé de production de 2,3,3,3-tetrafluoropropène plus simple et plus économique.  The present invention thus makes it possible to implement a process for producing 2,3,3,3-tetrafluoropropene that is simpler and more economical.

Claims

Revendications claims
1. Procédé de production du 2,3,3,3-tetrafluoropropène comprenant les étapes de : A process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
a) mise en contact, en phase gazeuse, d'un composé de formule (I) CH(n+2)(X)m-CHp(X)(n+i)- CX(3+P-m) où X représente indépendamment F ou Cl ; n, m, p sont indépendamment les uns des autres 0 ou 1 avec (n+m) = 0 ou 1, (n+p) = 0 ou 1 et (m-p) = 0 ou 1, au moins un X étant Cl avec de l'acide fluorhydrique pour obtenir un flux de produits comprenant 2,3,3,3- tetrafluoropropène, HCI et HF, a) contacting, in the gas phase, a compound of formula (I) CH ( n + 2) (X) m-CH p (X) (n + 1) -CX (3+ P -m) where X independently represents F or Cl; n, m, p are independently of one another 0 or 1 with (n + m) = 0 or 1, (n + p) = 0 or 1 and (mp) = 0 or 1, at least one X being Cl with hydrofluoric acid to obtain a product stream comprising 2,3,3,3-tetrafluoropropene, HCl and HF,
b) refroidissement du flux de produits issus du réacteur de l'étape a) à une température inférieure à 100°C, avantageusement à une température de 0°C à 70°C, de préférence à une température de 20°C à 50°C,  b) cooling the product stream from the reactor of step a) at a temperature below 100 ° C, preferably at a temperature of 0 ° C to 70 ° C, preferably at a temperature of 20 ° C to 50 ° VS,
c) distillation du flux refroidi à l'étape b) pour former un premier courant comprenant 2,3,3,3-tetrafluoropropène et HCI, et un second courant comprenant HF,  c) distilling the stream cooled in step b) to form a first stream comprising 2,3,3,3-tetrafluoropropene and HCl, and a second stream comprising HF,
d) compression du premier courant obtenu à l'étape c) pour former un premier courant comprimé,  d) compressing the first stream obtained in step c) to form a first compressed stream,
e) distillation dudit premier courant comprimé obtenu à l'étape d) pour obtenir un troisième courant comprenant HCI et un quatrième courant comprenant 2,3,3,3- tetrafluoropropène,  e) distilling said first compressed stream obtained in step d) to obtain a third stream comprising HCl and a fourth stream comprising 2,3,3,3-tetrafluoropropene,
f) purification dudit quatrième courant obtenu à l'étape e),  f) purifying said fourth stream obtained in step e),
caractérisé en ce que l'étape a) est mise en œuvre à une pression inférieure ou égale à 10 bara, de préférence à une pression de 2 à 8 bara, en particulier à une pression de 3 à 7 bara, plus particulièrement à une pression de 5 à 7 bara. characterized in that step a) is carried out at a pressure of less than or equal to 10 bara, preferably at a pressure of 2 to 8 bara, in particular at a pressure of 3 to 7 bara, more particularly at a pressure of from 5 to 7 bara.
2. Procédé selon la revendication précédente caractérisé en ce que ledit premier courant obtenu à l'étape c) est chauffé préalablement à la mise en œuvre de l'étape d). 2. Method according to the preceding claim characterized in that said first current obtained in step c) is heated prior to the implementation of step d).
3. Procédé selon la revendication précédente caractérisé en ce que ledit premier courant obtenu à l'étape c) est chauffé à une température comprise entre 0°C et 40°C. 3. Method according to the preceding claim characterized in that said first stream obtained in step c) is heated to a temperature between 0 ° C and 40 ° C.
4. Procédé selon l'une quelconque des revendications caractérisé en ce qu'à l'étape d), ledit premier courant est comprimé à une pression comprise entre 10 et 25 bara, de préférence entre 15 et 20 bara. 4. Method according to any one of claims characterized in that in step d), said first stream is compressed at a pressure of between 10 and 25 bara, preferably between 15 and 20 bara.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le premier courant comprimé obtenu à l'étape d) est refroidi avant d'être distillé. 5. Method according to any one of the preceding claims characterized in that the first compressed stream obtained in step d) is cooled before being distilled.
6. Procédé selon la revendication précédente caractérisé en ce que le premier courant comprimé obtenu à l'étape d) est refroidi à une température inférieure à 50°C. 6. Method according to the preceding claim characterized in that the first compressed stream obtained in step d) is cooled to a temperature below 50 ° C.
7. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'à l'étape e), la température en tête de colonne de distillation est comprise entre 0°C et -35°C. 7. Method according to any one of the preceding claims, characterized in that in step e), the temperature at the top of the distillation column is between 0 ° C and -35 ° C.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le troisième courant comprenant HCI est récupéré à l'étape e) en tête de colonne de distillation et est porté à une température comprise entre -40°C et 20°C avant d'être purifié selon les étapes suivantes : 8. Process according to any one of the preceding claims, characterized in that the third stream comprising HCl is recovered in stage e) at the top of the distillation column and is brought to a temperature of between -40 ° C and 20 ° C. before being purified according to the following steps:
i) hydrolyse catalytique ;  i) catalytic hydrolysis;
ii) lavage par une solution acide ;  ii) washing with an acid solution;
iii) adsorption d'impuretés par du charbon actif ;  iii) adsorption of impurities with activated carbon;
iv) absorption adiabatique ou isotherme de l'acide chlorhydrique dans une solution aqueuse, permettant de collecter une solution d'acide chlorhydrique.  iv) adiabatic or isothermal absorption of hydrochloric acid in an aqueous solution, for collecting a solution of hydrochloric acid.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le composé de formule (I) est sélectionné parmi le groupe consistant en 1,1,1,2,3- pentachloropropane, 1,1,2,3-tetrachloropropène, 2,3,3,3-tetrachloropropène, 2-chloro-3,3,3- trifluoropropène et 2-chloro-l,l,l,2-tetrafluoropropane, l,2-dichloro-3,3,3-trifluoropropane et 1,1,1,2,2-pentachloropropane, ou un mélange de ceux-ci ; et l'étape a) est mise en œuvre en présence ou en absence d'un catalyseur pour produire un flux de produits comprenant 2,3,3,3- tetrafluoropropène, HCI, HF et également au moins un des composés choisi parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3- pentafluoropropane, 1,3,3,3-tetrafluoropropène, 3,3,3-trifluoropropène, chlorométhane 1,1- difluoroéthane, chloropentafluoroéthane, 1,1,1,2-tetrafluoroéthane, trans-1,2,3,3,3- pentafluoropropène et l-chloro-3,3,3-trifluoropropène. 9. Process according to any one of the preceding claims, characterized in that the compound of formula (I) is selected from the group consisting of 1,1,1,2,3-pentachloropropane, 1,1,2,3-tetrachloropropene , 2,3,3,3-tetrachloropropene, 2-chloro-3,3,3-trifluoropropene and 2-chloro-1,1,1,2-tetrafluoropropane, 1,2-dichloro-3,3,3-trifluoropropane and 1,1,1,2,2-pentachloropropane, or a mixture thereof; and step a) is carried out in the presence or absence of a catalyst to produce a product stream comprising 2,3,3,3-tetrafluoropropene, HCl, HF and also at least one of the compounds selected from the group consisting of 2-chloro-3,3,3-trifluoropropene, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene, 3, 3,3-trifluoropropene, chloromethane 1,1-difluoroethane, chloropentafluoroethane, 1,1,1,2-tetrafluoroethane, trans-1,2,3,3,3-pentafluoropropene and 1-chloro-3,3,3-trifluoropropene .
10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le quatrième courant comprenant 2,3,3,3-tetrafluoropropène est purifié par décantation à une température comprise entre -50°C et 0°C pour former une phase inférieure comprenant 2,3,3,3- tetrafluoropropène et une phase supérieure comprenant HF, optionnellement recyclée à l'étape a). 10. Process according to any one of the preceding claims, characterized in that the fourth stream comprising 2,3,3,3-tetrafluoropropene is purified by decantation at a temperature of temperature between -50 ° C and 0 ° C to form a lower phase comprising 2,3,3,3-tetrafluoropropene and a higher phase comprising HF, optionally recycled in step a).
11. Procédé selon l'une quelconque des revendications 1 à 9 caractérisé en ce que le quatrième courant comprenant 2,3,3,3-tetrafluoropropène est purifié à l'étape f) par les étapes suivantes i') mise en contact dudit quatrième courant avec une solution aqueuse d'acide fluorhydrique de concentration supérieure à 40% pour former un courant diphasique comprenant 2,3,3,3- tetrafluoropropène et HF, 11. Method according to any one of claims 1 to 9 characterized in that the fourth stream comprising 2,3,3,3-tetrafluoropropene is purified in step f) by the following steps i ') contacting said fourth running with an aqueous solution of hydrofluoric acid of concentration greater than 40% to form a biphasic current comprising 2,3,3,3-tetrafluoropropene and HF,
ii') stockage dudit courant diphasique dans un réservoir tampon, ledit second courant étant constitué d'une phase gazeuse Gl et d'une phase liquide Ll, ii ') storing said two-phase current in a buffer tank, said second stream consisting of a gas phase G1 and a liquid phase L1,
iii') passage de ladite phase gazeuse Gl dudit courant diphasique dans une colonne d'absorption alimenté à contre-courant par un flux aqueux pour former un courant gazeux G2 comprenant 2,3,3,3-tetrafluoropropène et un courant aqueux L2 comprenant HF. iii ') passing said gaseous phase G1 of said two-phase stream in an absorption column fed countercurrently with an aqueous stream to form a gaseous stream G2 comprising 2,3,3,3-tetrafluoropropene and an aqueous stream L2 comprising HF .
12. Procédé selon la revendication 10 ou la revendication 11 caractérisé en ce que ladite inférieure ou ladite phase Gl et ledit courant G2 comprennent également, outre 2,3,3,3- tetrafluoropropène, 1,1,1,2,2-pentafluoropropane et 1,3,3,3-tetrafluoropropène ; la phase inférieure, ladite phase gazeuse Gl ou ledit courant G2 est distillée par distillation extractive pour former un courant comprenant 2,3,3,3-tetrafluoropropène et 1,1,1,2,2- pentafluoropropane et un courant comprenant 1,3,3,3-tetrafluoropropène ; de préférence la distillation extractive est effectuée en présence d'un agent d'extraction organique sélectionné parmi le groupe consistant en éthylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxyméthane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert- butylacetate, 1,4-dioxane, 1,1-diethoxyéthane, trimethoxyméthane, n-pentylamine, 1,3- dioxane, sec-butylacetate, 1,2-diaminoéthane, l-methoxy-2-propanol, 1,2-propanediamine, n- butylacetate, 2-methoxy-l-propanol, hexanal. 12. The method of claim 10 or claim 11 characterized in that said lower or said G1 phase and said current G2 also include, in addition to 2,3,3,3-tetrafluoropropene, 1,1,1,2,2-pentafluoropropane and 1,3,3,3-tetrafluoropropene; the lower phase, said gas phase G1 or said G2 stream is distilled by extractive distillation to form a stream comprising 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane and a stream comprising 1.3 3,3-tetrafluoropropene; preferably the extractive distillation is carried out in the presence of an organic extractant selected from the group consisting of ethylamine, isopropylamine, diethylether, n-propylamine, diethylamine, diethoxymethane, isopropylacetate, 3-pentylamine, 2-methoxyethanamine, tert-butylacetate , 1,4-dioxane, 1,1-diethoxyethane, trimethoxymethane, n-pentylamine, 1,3-dioxane, sec-butylacetate, 1,2-diaminoethane, 1-methoxy-2-propanol, 1,2-propanediamine, n butylacetate, 2-methoxy-1-propanol, hexanal.
PCT/FR2018/050732 2017-03-28 2018-03-27 Method for the production of 2,3,3,3-tetrafluoropropene WO2018178552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752579 2017-03-28
FR1752579A FR3064627B1 (en) 2017-03-28 2017-03-28 PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE.

Publications (1)

Publication Number Publication Date
WO2018178552A1 true WO2018178552A1 (en) 2018-10-04

Family

ID=58739231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/050732 WO2018178552A1 (en) 2017-03-28 2018-03-27 Method for the production of 2,3,3,3-tetrafluoropropene

Country Status (2)

Country Link
FR (1) FR3064627B1 (en)
WO (1) WO2018178552A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902838A (en) 1988-12-28 1990-02-20 E. I. Du Pont De Nemours And Company Isomerization of saturated fluorohydrocarbons
EP0939071A1 (en) 1998-02-26 1999-09-01 Central Glass Company, Limited Method for producing fluorinated propane
WO2001081353A1 (en) 2000-04-26 2001-11-01 Atofina Ion liquids derived from lewis acid based on titanium, niobium, tantalum, tin or antimony, and uses thereof
WO2007079431A2 (en) 2006-01-03 2007-07-12 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2007138210A1 (en) 2006-05-30 2007-12-06 Arkema France Method for producing hydrofluorocarbons
WO2008040969A2 (en) 2006-10-03 2008-04-10 Ineos Fluor Holdings Limited Dehydrogenationhalogenation process for the production of c3-c6-(hydro)fluoroalkenes
WO2008054781A1 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf
WO2008149011A2 (en) 2007-05-31 2008-12-11 Arkema France Process for preparing (hydro)(chloro)olefins
WO2009118628A1 (en) 2008-03-28 2009-10-01 Arkema France Method for preparing 1, 2, 3, 3, 3-pentafluoropropene-1
US20110160499A1 (en) * 2009-12-23 2011-06-30 Arkema France Catalytic Gas Phase Fluorination of 243db to 1234yf
WO2012098420A1 (en) 2011-01-21 2012-07-26 Arkema France Process for the manufacture of 2,3,3,3- tetrafluoropropene by gas phase fluorination of pentachloropropane
WO2013007906A1 (en) * 2011-07-08 2013-01-17 Arkema France Method for separating and recovering 2,3,3,3-tetrafluoropropene and hydrofluoric acid
WO2013114015A1 (en) 2012-02-03 2013-08-08 Arkema France Method for producing 2,3,3,3-tetrafluoropropene

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902838A (en) 1988-12-28 1990-02-20 E. I. Du Pont De Nemours And Company Isomerization of saturated fluorohydrocarbons
EP0939071A1 (en) 1998-02-26 1999-09-01 Central Glass Company, Limited Method for producing fluorinated propane
WO2001081353A1 (en) 2000-04-26 2001-11-01 Atofina Ion liquids derived from lewis acid based on titanium, niobium, tantalum, tin or antimony, and uses thereof
WO2007079431A2 (en) 2006-01-03 2007-07-12 Honeywell International Inc. Method for producing fluorinated organic compounds
WO2007138210A1 (en) 2006-05-30 2007-12-06 Arkema France Method for producing hydrofluorocarbons
WO2008040969A2 (en) 2006-10-03 2008-04-10 Ineos Fluor Holdings Limited Dehydrogenationhalogenation process for the production of c3-c6-(hydro)fluoroalkenes
WO2008054781A1 (en) 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf
WO2008149011A2 (en) 2007-05-31 2008-12-11 Arkema France Process for preparing (hydro)(chloro)olefins
WO2009118628A1 (en) 2008-03-28 2009-10-01 Arkema France Method for preparing 1, 2, 3, 3, 3-pentafluoropropene-1
US20110160499A1 (en) * 2009-12-23 2011-06-30 Arkema France Catalytic Gas Phase Fluorination of 243db to 1234yf
WO2012098420A1 (en) 2011-01-21 2012-07-26 Arkema France Process for the manufacture of 2,3,3,3- tetrafluoropropene by gas phase fluorination of pentachloropropane
WO2013007906A1 (en) * 2011-07-08 2013-01-17 Arkema France Method for separating and recovering 2,3,3,3-tetrafluoropropene and hydrofluoric acid
WO2013114015A1 (en) 2012-02-03 2013-08-08 Arkema France Method for producing 2,3,3,3-tetrafluoropropene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Multiphase Homogeneous Catalysis", 2002, article "liquid-phase HF Fluorination"

Also Published As

Publication number Publication date
FR3064627B1 (en) 2020-02-21
FR3064627A1 (en) 2018-10-05

Similar Documents

Publication Publication Date Title
EP2556042B1 (en) Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
JP6378812B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
US8664456B2 (en) Integrated process for the co-production of trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
WO2012009114A2 (en) Method for prolonging a catalyst's life during hydrofluorination
KR20140134651A (en) Improved process for the manufacture of 2,3,3,3-tetrafluoropropene
US8846990B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
WO2013055894A1 (en) Process for producing 2,3,3,3-tetrafluoropropene
JP2019069949A (en) Method for producing 2,3,3,3-tetrafluoropropene
EP3394019B1 (en) Method for producing and purifying 2,3,3,3-tetrafluoropropene
EP2970053A1 (en) Process for producing 2,3,3,3-tetrafluoropropene
WO2018178554A1 (en) Method for the production and purification of 2,3,3,3-tetrafluoropropene
EP2751057B1 (en) Process for preparing 2-chloro-3,3,3-trifluoropropene
US9416074B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
EP3615500B1 (en) Method for the production and purification of 2,3,3,3-tetrafluoropropene
WO2018178551A1 (en) Method for the production of 2,3,3,3-tetrafluoropropene
JP6233535B2 (en) Method for producing tetrafluoropropene
WO2018178552A1 (en) Method for the production of 2,3,3,3-tetrafluoropropene
WO2018178553A1 (en) Method for recovering hydrofluoric acid
WO2017119273A1 (en) Method for producing 2, 3, 3, 3-tetrafluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18724301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18724301

Country of ref document: EP

Kind code of ref document: A1