WO2018177709A1 - Multilayer selective hydrogenation catalyst, preparation and use of same - Google Patents

Multilayer selective hydrogenation catalyst, preparation and use of same Download PDF

Info

Publication number
WO2018177709A1
WO2018177709A1 PCT/EP2018/055714 EP2018055714W WO2018177709A1 WO 2018177709 A1 WO2018177709 A1 WO 2018177709A1 EP 2018055714 W EP2018055714 W EP 2018055714W WO 2018177709 A1 WO2018177709 A1 WO 2018177709A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
acid
group viii
layer
viii metal
Prior art date
Application number
PCT/EP2018/055714
Other languages
French (fr)
Inventor
Malika Boualleg
Anne-Claire Dubreuil
Anne-Agathe Quoineaud
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2018177709A1 publication Critical patent/WO2018177709A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J35/19
    • B01J35/396
    • B01J35/40
    • B01J35/50
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • B01J35/394
    • B01J35/615
    • B01J35/635
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Definitions

  • the selective hydrogenation process makes it possible to convert the polyunsaturated compounds of the petroleum fractions by conversion of the most unsaturated compounds to the corresponding alkenes, avoiding total saturation and thus the formation of the corresponding alkanes.
  • the object of the invention is to provide an improved performance catalyst and a process for the selective hydrogenation of polyunsaturated hydrocarbon compounds present in hydrocarbon cuts, C2-C5 steam cracking cups and steam cracking gasolines.
  • the catalysts for selective hydrogenation of polyunsaturated compounds are generally based on Group VIII metals of the periodic table of elements such as nickel or palladium.
  • the metal is in the form of nanometric metal particles deposited on a support which may be a refractory oxide.
  • the metal content of the group VIII, the possible presence of a second metal element, the size of the metal particles and the distribution of the active phase as well as the nature and the porous distribution of the support are parameters which may have an influence on the performance of the catalysts.
  • the macroscopic distribution of the metal particles in the support is an important criterion, mainly in the context of rapid and consecutive reactions such as selective hydrogenations. It is generally necessary for these elements to be in a crust at the periphery of the support in order to avoid problems of intragranular material transfer that can lead to defects in activity and loss of selectivity.
  • the document US2006 / 025302 describes a catalyst for the selective hydrogenation of acetylene and diolefins, comprising palladium distributed in such a way that 90% of the palladium is introduced into the catalyst in a lower crust located at the periphery of the support. and thickness at 250 ⁇ .
  • US Pat. No. 3,925,253 discloses a process for preparing a catalyst that is more resistant to the attrition phenomenon, said catalyst comprising at the periphery a layer of silicon oxide (silica) or of lanthanum oxide or of copper.
  • the catalysts prepared by this method exhibit improved attrition resistance, but with reduced accessibility to the active phase.
  • the selective hydrogenation reactions are extremely rapid and the polyunsaturated compounds to be hydrogenated will not have access to the active phase (at most 500 ⁇ ).
  • An object of the present invention is to meet the above drawbacks by providing a catalyst which is resistant to attrition and which retains good activity in selective hydrogenation of polyunsaturated compounds to monounsaturated compounds.
  • the Applicant has surprisingly discovered that a multilayer catalyst comprising a porous support containing a refractory oxide, a first layer containing the active phase, covering at least partly the porous support, and a second layer containing at least one refractory oxide covering at least less in part said first layer, retains good activity in selective hydrogenation even after use or a loading / unloading operation of the catalyst with respect to catalysts not comprising a refractory oxide layer covering at least partly the active phase.
  • Such a catalyst can be obtained by a preparation process comprising at least one step of contacting the porous support with at least one organic compound comprising a carboxylic acid function, said step being able to be carried out either before, after or simultaneously with step of contacting the active phase with the porous support.
  • a first subject of the invention relates to a multilayer catalyst comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina, and an active phase comprising between 0.01 and 2% by weight of a group VIII metal with respect to the weight of the catalyst, which catalyst comprises:
  • a porous support comprising said refractory oxide
  • a first layer at least partially covering said porous support, comprising at least said group VIII metal
  • a second layer at least partially covering said first layer, comprising at least said refractory oxide
  • At least 80% by weight of said Group VIII metal relative to the total weight of group VIII metal is distributed in said first layer, the thickness of said first layer being between 10 and 600 ⁇ ;
  • At least 1% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 ⁇ .
  • said second layer completely covers said first layer.
  • the Group VIII metal is palladium or nickel.
  • the Group VIII metal is palladium.
  • the porous support is alumina.
  • the porous support is in the form of extrudates or balls.
  • Another object according to the invention relates to a process for preparing a catalyst according to the invention, comprising the following steps:
  • porous support is brought into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function;
  • steps a) and b) being performed separately, in any order, or simultaneously
  • the impregnated support is dried at a temperature between 15 ° C and less than or equal to 250 ° C;
  • step c) the dried support resulting from step c) is calcined at a temperature greater than 250 ° C. but less than 900 ° C.
  • the molar ratio between said organic compound is said group VIII metal is between 0.1 and 4.0.
  • steps a) and b) are performed simultaneously.
  • said organic compound comprises between 2 and 7 carbon atoms.
  • the organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid) and 2-hydroxybutanedioic acid (malic acid). , 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2,2'-oxydiacetic acid (diglycolic acid), acid 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid). Even more preferentially, the organic compound is citric acid.
  • step a) and / or b) of the process according to the invention is (are) carried out by dry impregnation.
  • step a) bringing said porous support into contact with said solution containing at least one organic compound comprising at least one carboxylic acid function and / or step b) bringing said porous support into contact with said solution comprising at least one at least one group VIII metal precursor is produced by adding said solution containing at least one organic compound comprising at least one carboxylic acid function and / or said solution comprising at least one group VIII metal precursor on said support at a flow rate inclusive between 1 and 20 liter (s) per hour, said porous support being contained in a rotary impregnating device operating at a rotation speed of between 10 and 20 rpm.
  • Another subject of the invention relates to a process for the selective hydrogenation of a feedstock comprising polyunsaturated compounds containing at least 2 carbon atoms per molecule contained in a hydrocarbon feed having a final boiling point of less than or equal to 300 ° C by contacting said feedstock with hydrogen and at least one catalyst according to the invention or prepared according to the invention, which process is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.1 and 10 and at an hourly space velocity of between 0.1 and 200 h -1 when the process is carried out in the liquid phase or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.5 and 1000 and at an hourly volume rate of between 100 and 40,000 h -1 when the process is carried out in the gas phase.
  • FIG. 1 is an image obtained by MRI technique, spin echo sequence, T1 contrast of a catalyst according to the prior art comprising an alumina support and comprising a palladium active phase located at the periphery of the porous support.
  • FIG. 2 is an image obtained by MRI technique, spin-echo sequence, T1 contrast for palladium and T2 for citric acid, of a catalyst according to the invention in the form of an extruded form in which the support porous material is coated with a first layer comprising an active phase based on palladium, said first layer being completely coated with a second layer comprising alumina.
  • FIG. 3 is an image obtained by MRI technique, spin-echo sequence, T1 contrast for palladium and T2 for citric acid, of a catalyst according to the invention in the form of a ball in which the support porous material is coated with a first layer comprising an active phase based on palladium, said first layer being completely coated with a second layer comprising alumina.
  • group IB according to the CAS classification corresponds to the metals of column 1 1 according to the new IUPAC classification.
  • Particle dispersion is a unitless number, often expressed in%. The dispersion is all the greater as the particles are small. It is defined in the publication of R. Van Hardeveld and F. Hartog, "777th Statistics of Surface Area and Surface Sites on Metal Crystals", Surface Science 15, 1969, 189-230. Definition of layer thickness (also called crust thickness)
  • microprobe of Castaing In order to analyze the distribution of the metal phase on the support, a crustal thickness is measured by microprobe of Castaing (or microanalysis by electron microprobe).
  • the device used is a CAMECA XS100, equipped with four monochromator crystals allowing the simultaneous analysis of four elements.
  • the technique of analysis by microprobe of Castaing consists in the detection of X-radiation emitted by a solid after excitation of its elements by a beam of electrons of high energies.
  • the catalyst grains are embedded in epoxy resin pads. These pads are polished until the cup to the diameter of the balls or extruded and metallized by carbon deposition metal evaporator.
  • the electronic probe is scanned along the diameter of five balls or extruded to obtain the average distribution profile of the constituent elements of the solids.
  • crust thickness is defined as the distance to the edge of the grain containing 80% by weight of active element.
  • crust thickness can alternatively be used to measure crustal thickness. be defined as the distance to the edge of the grain containing 80% by weight of active element From the distribution profile obtained by the Castaing microprobe (c (x)), the cumulative quantity Q (y) of active element in the grain as a function of the distance y at the edge of the grain of radius r.
  • x integration variable (position on the profile).
  • the nuclear magnetic resonance imaging (MRI) technique is used to characterize the spatial location of the metal phase and the organic compound.
  • the apparatus used is a Bruker® 9.1 T NMR spectrometer equipped with a high-power amplifier for generating radio frequency pulses at the Larmor frequency proton, x, y, z gradient system (750 x750x750 G / cm) and a 5 mm measuring probe (micro5).
  • a catalyst ball or extrusion is introduced into a capillary and then into a 5 mm diameter MRI tube and finally introduced into the measuring probe.
  • Characterization by MRI consists of the detection of the proton signal in the x, y, z directions by contrast in relaxation time.
  • the relaxation phenomenon consists in the return to equilibrium of the magnetic magnetization created during the radiofrequency pulse by the "spin-lattice” relaxation, called T1 transverse relaxation, and the "spin-spin” relaxation, named longitudinal T2 relaxation.
  • MRI characterizations consist of a judicious choice of parameters of the pulse sequence so as to obtain a T1 or T2 contrast.
  • the sequence "Spin Echo", denoted SE is the pulse sequence used.
  • the person skilled in the art knows how to adapt the key parameters of the spin echo sequence, namely the voxel and pixel sizes as well as the inter-echo and repetition times which are chosen as a function of the spatial resolution of the relaxation times. characteristics of each of the components present: metallic phase, organic compound and support. This technique makes it possible to measure the thickness of the crust (layer thickness) of the refractory oxide layer located at the extreme periphery of the catalyst.
  • the attrition test is conducted according to the standard, ASTM D4058-96 (2015), Standard Test Method for Attrition and Abrasion of Catalysts and Catalyst Carriers.
  • the multilayer catalyst comprises at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina, and an active phase comprising between 0.01 and 2% by weight of a metal group VIII with respect to the weight of the catalyst, which catalyst comprises:
  • a porous support comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina;
  • a first layer at least partially covering said porous support, comprising at least one Group VIII metal
  • a second layer at least partially covering said first layer, comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina;
  • At least 80% by weight of Group VIII metal relative to the total weight of Group VIII metal is distributed in said first layer, the thickness of said first layer being between 10 and 600 ⁇ , preferably between 10 and 100; ⁇ , and more preferably between 20 and 90 ⁇ ;
  • At least 1% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 ⁇ , preferably between 1 and 200 ⁇ .
  • Preferably between 1 and 30% by weight, and more preferably between 1 and 10% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 ⁇ , preferably between 1 and 200 ⁇ .
  • the average size of the metal particles is between 4 to 10 nm, preferably between 3 and 6 nm.
  • the average size of the crystallites is deduced from the measurements of metal dispersion of the particles (D), by applying the dispersion-particle size relationships known to those skilled in the art and described in "Physico-chemical analysis of industrial catalysts, Chapter I, Editions Technip, Paris 2001 ".
  • the average size of the metal particles is less than 18 nm, preferably less than 15 nm.
  • the average size of the crystallites is deduced from the X-ray diffraction characterization.
  • the porous support is selected from the group consisting of silica, alumina and silica-alumina. Even more preferably, the support is alumina.
  • the alumina can be present in all possible crystallographic forms: alpha, delta, theta, chi, rho, eta, kappa, gamma, etc., taken alone or as a mixture.
  • the support is selected from alpha alumina, delta, teta, gamma.
  • the specific surface of the porous support is preferably between 50 and 250 m 2 / g, preferably between 70 and 230 m 2 / g, and even more preferably between 70 and 220 m 2 / g.
  • the BET surface area is measured by physisorption with nitrogen.
  • the BET surface area is measured by nitrogen physisorption according to ASTM D3663-03 as described in Rouquerol F .; Rouquerol J .; Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academy Press, 1999.
  • the total pore volume of the support is between 0.1 and 1.5 cm 3 / g, preferably between 0.5 and 1.1 cm 3 / g, and even more preferably between 0.25 and 1, 3 cm 3 / g.
  • the total pore volume is measured by mercury porosimetry according to ASTM standard D4284-92 with a wetting angle of 140 °, for example by means of an Autopore® III model apparatus of the Microméritics® brand.
  • the support of the catalyst is purely mesoporous, ie it has a pore diameter of between 2 and 50 nm, preferably between 5 and 30 nm and even more preferably between 8 and 20 ⁇ m. nm.
  • the support of the catalyst is bimodal, the first mode being mesoporous, ie it has a pore diameter of between 2 and 50 nm, preferably between 5 and 30 nm, and still preferred from 8 to 20 nm, and the second macroporous, ie it has pores with a diameter greater than 50 nm.
  • the support used for the preparation of the catalyst according to the invention advantageously has a pore volume of pores having a pore diameter of between 50 and 700 nm less than 20% of the total pore volume of the support, preferably less than 18% of the pore volume. total support and particularly preferably less than 15% of the total pore volume of the support.
  • the support may optionally include sulfur.
  • the sulfur content in the support may be between 0.0050 and 0.25% by weight relative to the total weight of the catalyst, preferably between 0.0075 and 0.20% by weight.
  • the group VIII metal content is between 0.01 and 2% by weight of a Group VIII metal relative to the weight of the catalyst, preferably between 0.05 and 1% by weight, and even more preferentially between 0 and 1% by weight. , 1 and 0.9% by weight.
  • the Group VIII metal is palladium or nickel.
  • the porous support is in the form of cylindrical or multilobed beads or extrusions (trilobed, quadrilobes).
  • the porous support is in the form of extrudates.
  • the catalyst consists of extrudates of diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 3.2 mm. and 2.5 mm.
  • This may advantageously be in the form of cylindrical, multilobed, trilobed or quadrilobed extrudates.
  • Preferably its shape will be trilobed or quadrilobed.
  • the shape of the lobes can be adjusted according to all known methods of the prior art.
  • the catalyst is in the form of beads having a diameter of between 1 and 8 mm, preferably between 2 and 7 mm.
  • the invention also relates to a process for preparing the catalyst. More particularly, the process for preparing the catalyst according to the invention comprises the following steps:
  • porous support is brought into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function;
  • steps a) and b) being performed separately, in any order, or simultaneously;
  • the impregnated support is dried at a temperature of less than or equal to 250 ° C;
  • step d) the dried support from step c) is calcined at a temperature above 250 ° C.
  • the process according to the invention because of its step a), makes it possible to create a refractory oxide layer that protects the layer comprising the group VIII metal.
  • an adsorption competition in the support between the organic compound and the metal of group VIII grows Group VIII metal complexes to migrate into a deeper layer.
  • This generates after the step of calcination of the catalyst precursor which leads to the decomposition of the organic compound, to the formation of a second layer comprising at least partly a refractory oxide, at least partially covering the layer comprising the metal of the group VIII, thus making it possible to protect said group VIII metal, and more particularly during the use of the catalyst and the catalyst loading and / or unloading operations.
  • step a) is carried out before step b) (pre-impregnation). In another embodiment of the invention, step b) is carried out before step a) (post-impregnation).
  • steps a) and b) are performed simultaneously (co-impregnation).
  • step a) is carried out before step b) or step b) before step a)
  • no intermediate drying step between said steps are not performed.
  • the bringing into contact of the group VIII metal precursor and the organic compound can be carried out according to all the techniques known to those skilled in the art.
  • the Group VIII metal precursor solution and the solution containing the organic compound are deposited by dry or excess impregnation method.
  • the bringing into contact of said support with at least one solution containing at least one organic compound comprising at least one carboxylic acid function can be carried out by any method well known to the man of the job.
  • said step a) can be carried out by impregnation, dry or in excess, according to methods that are well known to those skilled in the art.
  • said step a) is carried out by dry impregnation, which consists in bringing the support of the catalyst into contact with a volume of said solution of between 0.3 and 1.5 times the pore volume of the support to be impregnated.
  • Said solution containing at least one organic compound comprising at least one carboxylic acid function may be aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or consists of a mixture of water and at least one organic solvent.
  • Said organic compound is previously at least partially dissolved in said solution at the desired concentration.
  • said solution is aqueous or contains ethanol. Even more preferably, said solution is aqueous.
  • the pH of said solution may be modified by the possible addition of an acid or a base.
  • the solvent may be absent from the impregnating solution when the organic compound is in the liquid state at the temperature and pressure of contacting the support with the organic compound.
  • bringing said support into contact with said solution containing at least one organic compound comprising at least one carboxylic acid function is carried out by means of a rotary impregnation device, such as a impregnating barrel (also called rotating drum).
  • a rotary impregnation device such as a impregnating barrel (also called rotating drum).
  • the rotary impregnating device used is preferably a conventional impregnating barrel whose enclosure can be placed under reduced pressure (approximately 20 mmHg) or under gas (nitrogen) sweep.
  • the rotary impregnation device is equipped with a double jacket, in which circulates a heat transfer fluid via a thermoregulator. It is thus possible to regulate a wall temperature within the impregnator and a drying time.
  • the impregnation temperature is between 40 and 90 ° C, preferably between 50 and 70 ° C.
  • the rotary impregnating device in which the support has been loaded operates at a rotational speed of between 4 and 20 rpm.
  • a process may be mentioned in which the solution containing at least one organic compound comprising at least one carboxylic acid function is poured into a tank which discharges continuously into a rotating drum comprising the support to be impregnated.
  • said organic compound comprising at least one carboxylic acid functional group comprises between 2 and 7 carbon atoms, preferably between 2 and 6 carbon atoms.
  • Said organic compound may comprise at least one second functional group chosen from ethers, hydroxyls, ketones and esters.
  • the organic compound comprising at least one carboxylic acid function is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2,2 'acid -oxydiacetic acid (diglycolic acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid). More preferably, said organic compound is citric acid.
  • the molar ratio of said organic compound comprising at least one carboxylic acid function introduced during step a) relative to the metal of group VIII introduced in step b) is between 0.1 and 4.0 mol / mol, more preferably between 0.3 and 3.5 mol / mol.
  • Step b) Contacting the group VIII metal precursor with the support
  • the deposition of the group VIII metal precursor on said support in accordance with the implementation of said step b), can be carried out by any method well known to those skilled in the art.
  • said step b) can be carried out by impregnation, dry or in excess, or by deposition - precipitation, according to methods well known to those skilled in the art.
  • Said step b) is preferably carried out by impregnation of the support consisting, for example, in bringing said support into contact with at least one aqueous or organic solution (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or consists of a mixture of water and at least one organic solvent, containing at least one group VIII metal precursor at least partially in the dissolved state, or else in the setting of contacting said support with at least one colloidal solution of at least one group VIII metal precursor, in oxidized form (nanoparticles of oxide, oxy (hydroxide) or of group VIII metal hydroxide) or in reduced form (Metallic metal nanoparticles of Group VIII metal in the reduced state).
  • aqueous or organic solution for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)
  • consists of a mixture of water and at least one organic solvent containing at least one group VIII
  • the solution is aqueous.
  • the pH of this solution can be modified by the possible addition of an acid or a base.
  • the aqueous solution may contain ammonia or ammonium ions NH 4 + .
  • said step b) is carried out by dry impregnation, which consists in bringing the catalyst support into contact with a solution containing at least one precursor of the group VIII metal, the volume of the solution of which is between 0.degree. , 3 and 1, 5 times the pore volume of the support to be impregnated.
  • a group VIII metal precursor is advantageously used in the form of nitrate, carbonate, chloride, sulphate, hydroxide, hydroxycarbonate, formate, acetate, oxalate, complexes formed with acetylacetonates, or complex tetrammine or hexammine, or any other soluble inorganic derivative in aqueous solution, which is brought into contact with said support.
  • the palladium precursor is preferably selected from sodium chloropalladate and palladium nitrate.
  • the group VIII metal precursor is introduced in the form of a colloidal suspension, a colloidal suspension of Group VIII metal oxide or Group VIII metal hydroxide is prepared in the aqueous phase by mixing an aqueous solution.
  • (I) comprising at least one hydroxide selected from the group consisting of alkali hydroxides and alkaline earth hydroxides and an aqueous solution (II) comprising at least one group VIII metal precursor.
  • aqueous alkali hydroxide or alkaline earth hydroxide solution is generally selected from the group consisting of aqueous solutions of sodium hydroxide, aqueous solutions of magnesium hydroxide.
  • the aqueous solution is preferably an aqueous solution of sodium hydroxide.
  • the precursor salt of palladium is generally selected from the group consisting of palladium chloride, palladium nitrate and palladium sulfate. Very preferably, the precursor salt of palladium is palladium nitrate.
  • the aqueous solution comprising at least one group VIII metal precursor salt (also called solution) is supplied in a suitable apparatus.
  • the aqueous solution comprising at least one alkali or alkaline earth hydroxide [also referred to herein as solution (I)].
  • the solutions (I) and (II) can be poured simultaneously into the apparatus.
  • the aqueous solution (II) and then the aqueous solution (I) is poured into the apparatus.
  • the colloidal suspension generally remains in the apparatus for a residence time of between 0 and 20 hours.
  • concentrations of the solution (I) and (II) are generally chosen in order to obtain a pH of the colloidal suspension of between 1.0 and 3.5. So the pH of the colloidal suspension can be modified during this residence time by adding amounts of acid or base compatible with the stability of the colloidal suspension.
  • the preparation temperature is between 5 ° C and 40 ° C and preferably between 15 ° C and 35 ° C.
  • the palladium concentration is preferably between 5 and 150 millimoles per liter (mmol / L), more preferably between 8 and 80 millimoles per liter.
  • the quantities of the group VIII metal precursor introduced into the solution are chosen so that the total element content of the group VIII metal is between 0.01 and 2% by weight of the catalyst mass, preferably between 0 and , 05 and 1% by weight, more preferably between 0.1 and 0.9% by weight
  • bringing said support into contact with said solution comprising at least one group VIII metal precursor is carried out by means of a rotary impregnation device, such as an impregnating barrel (also called rotating drum).
  • a rotary impregnation device such as an impregnating barrel (also called rotating drum).
  • the rotary impregnating device used is preferably a conventional impregnating barrel whose enclosure can be placed under reduced pressure (approximately 20 mmHg) or under gas (nitrogen) sweep.
  • the rotary impregnation device is equipped with a double jacket, in which circulates a heat transfer fluid via a thermoregulator. It is thus possible to regulate a wall temperature within the impregnator and a drying time.
  • the impregnation temperature is between 40 and 90 ° C, preferably between 50 and 70 ° C.
  • the rotary impregnating device in which the support has been loaded operates at a rotational speed of between 4 and 20 rpm. Above 20 rpm, the layer comprising the group VIII metal obtained on the support is too weak, ie below 20 ⁇ , and part of the solution containing the group VIII metal precursor is not impregnated on the support.
  • the layer comprising the metal of group VIII obtained on the support can exceed 600 ⁇ thick, and the dispersion of the metal of group VIII on the support can not not be satisfactory, ie less than 15%.
  • the rate of addition of said solution to the stage containing the group VIII metal precursor on the porous support is between 1 and 20 liter (s) per hour. Above 20 liters per hour, the Group VIII metal layer obtained is too thick, ie above 600 ⁇ and the dispersion of the Group VIII metal is unsatisfactory, ie less than 15%.
  • the group VIII metal precursor solution is poured into a tank which discharges continuously into a rotating drum comprising the support to be impregnated.
  • the support is generally wet-matured for 0.5 to 40 hours, preferably for 1 to 30 hours. Longer durations are not excluded, but do not necessarily improve. c) drying the catalyst precursor
  • the precursor of the catalyst is generally dried, preferably at a temperature of between 15 ° C. and less than or equal to 250 ° C., more preferably between 30 ° C. and 220 ° C., more preferably between 70 ° C. and 180 ° C. vs.
  • the drying time is between 0.5 h and 20 h. Longer durations are not excluded, but do not necessarily improve.
  • the drying is generally carried out under combustion air of a hydrocarbon, preferably methane, or in heated air comprising between 0 and 80 grams of water per kilogram of combustion air, an oxygen content of between 5% and 25% volume and a carbon dioxide content between 0% and 10% volume. d) calcination of the dried catalyst obtained in step c)
  • the catalyst is calcined in air, preferably in combustion, and more preferably in a combustion air of methane, comprising between 40 and 80 grams of water per kg of air, an oxygen content of between 5% and 15% volume and a C0 2 content between 4% and 10% volume.
  • the calcining temperature is generally above 250 ° C but is below 900 ° C, preferably between about 300 ° C and about 500 ° C.
  • the calcination time is generally between 0.25 h and 10 h.
  • the catalyst is generally reduced.
  • This step is preferably carried out in the presence of a reducing gas, either in situ, that is to say in the reactor where the catalytic conversion is carried out, or ex-situ.
  • this step is carried out at a temperature of between 80 ° C. and 450 ° C., even more preferably between 100 ° C. and 400 ° C.
  • the reduction is carried out in the presence of a reducing gas comprising between 25 vol% and 100 vol% hydrogen, preferably 100% hydrogen volume.
  • a reducing gas comprising between 25 vol% and 100 vol% hydrogen, preferably 100% hydrogen volume.
  • the hydrogen is optionally supplemented with an inert gas for reduction, preferably argon, nitrogen or methane.
  • the reduction generally comprises a temperature rise phase and then a landing.
  • the duration of the reduction stage is generally between 1 and 40 hours, preferably between 2 and 20 hours.
  • V.V.H The Volumetric Hourly Speed (V.V.H) is generally between 150 and 3000, preferably between 300 and 1500 liters of reducing gas per hour and per liter of catalyst. f) passivation (optional step)
  • the catalyst according to the invention may optionally undergo a passivation step (step f) with a sulfur or oxygen compound or with CO 2 before or after the reducing treatment step e) .
  • This passivation step may be performed ex situ or in situ.
  • the passivation step is carried out by the implementation of methods known to those skilled in the art.
  • the sulfur passivation step makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways when starting new catalysts ("run away" according to the English terminology).
  • Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites, for example nickel, which exist on the new catalyst and thus in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by the implementation of methods known to those skilled in the art and in particular, for example by the implementation of one of the methods described in patent documents EP0466567, US5153163, FR2676184, WO2004 / 098774, EP0707890.
  • the sulfur compound is for example chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulphide and propylmethylsulphide or an organic disulfide of formula HO-RrS-SR 2 -OH such as di-thio-di- ethanol of the formula HO- C 2 H 4 SSC 2 H4 OH (often called DEODS).
  • the sulfur content is generally between 0.1 and 2% by weight of said element relative to the mass of the catalyst.
  • the passivation step with an oxygenated compound or with CO 2 is generally carried out after a reducing treatment beforehand at elevated temperature, generally between 350 and 500 ° C., and makes it possible to preserve the metallic phase of the catalyst in the presence of air. .
  • the oxygenated compound is generally air or any other stream containing oxygen. 4.
  • Monounsaturated organic compounds such as, for example, ethylene and propylene, are at the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove undesired polyunsaturated compounds from these hydrocarbon feeds. It allows the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics, avoiding their total saturation and thus the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as a filler, the selective hydrogenation also makes it possible to selectively hydrogenate alkenyl aromatics to aromatics by avoiding the hydrogenation of the aromatic rings.
  • the hydrocarbon feedstock treated in the selective hydrogenation process has a final boiling point less than or equal to 300 ° C and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
  • the filler is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a steam cracking C3 cut, a steam cracking C4 cut, a steam cracking C5 cut and a still called steam cracking gasoline.
  • a C2 steam cracking cut a C2-C3 steam cracking cut
  • a steam cracking C3 cut a steam cracking C4 cut
  • a steam cracking C5 cut and a still called steam cracking gasoline.
  • pyrolysis gasoline or C5 + cut pyrolysis gasoline or C5 + cut.
  • the steam cracking section C2 advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain steam cracking sections, between 0.1 and 1% by weight of C 3 compounds may also be present.
  • the C3 steam-cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane.
  • C3 cuts between 0.1 and 2% by weight of C 2 compounds and C 4 compounds may also be present.
  • a C2 - C3 cut can also be advantageously used for the implementation of the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
  • This filler may also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 steam-cracking cut advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% by weight butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
  • the C5 steam-cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following composition: 21% by weight of pentanes, 45% by weight of pentenes and 34% by weight of pentadienes.
  • the steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon fraction whose boiling point is generally between 0 and 300 ° C., preferably between 10 and 250 ° C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are, in particular, diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene). ).
  • Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed of pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulfur, preferably from 0 to 500 ppm by weight of sulfur.
  • the polyunsaturated hydrocarbon feedstock treated according to the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a C3 cut, or a steam cracking gasoline.
  • the selective hydrogenation process according to the invention aims at eliminating said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to corresponding aromatic compounds by avoiding the hydrogenation of aromatic rings.
  • the technological implementation of the selective hydrogenation process is carried out, for example, by injection, in ascending or descending current, of the polyunsaturated hydrocarbon feedstock and hydrogen in at least one fixed bed reactor.
  • Said reactor may be of the isothermal or adiabatic type. An adiabatic reactor is preferred.
  • the polyunsaturated hydrocarbon feedstock may advantageously be diluted by one or more re-injection (s) of the effluent, from said reactor where the selective hydrogenation reaction occurs, at various points of the reactor, located between the inlet and the outlet. the reactor outlet to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention may also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a slurry-type reactor. .
  • the flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
  • the selective hydrogenation of the steam-cracking cuts C2, C2-C3, C3, C4, C5 and C5 + can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the phase gaseous for C2 and C2-C3 cuts.
  • a reaction in the liquid phase makes it possible to lower the energy cost and to increase the catalyst cycle time.
  • the feedstock is a steam cracking gasoline containing polyunsaturated compounds
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally understood.
  • the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C
  • the hourly volume velocity (VVH) is generally between 0.5 and 100 h "1 , preferably between 1 and 50 h " 1
  • the pressure is generally between 0.3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0, the temperature is between 20 and 200 ° C., the hourly volume velocity (VVH) is generally between 1 and 50 h -1 and the pressure is between 1.0 and 7.0 MPa.
  • the feedstock is a steam cracking gasoline comprising polyunsaturated compounds
  • the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0
  • the temperature is between 20 and 200 ° C.
  • the hourly volume velocity (VVH) is generally between 1 and 50 h -1
  • the pressure is between 1.0 and 7.0 MPa.
  • the feedstock is a steam cracking gasoline containing polyunsaturated compounds
  • the molar ratio hydrogen / (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0
  • the temperature is between 30 and 180 ° C.
  • the Hourly volume velocity (VVH) is generally between 1 and 50 h -1
  • the pressure is between 1.5 and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the outlet of the reactor.
  • the molar ratio ( hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C, the speed hourly volume (VVH) is included generally between 100 and 40000 h -1 , preferably between 500 and 30000 h -1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa.
  • This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 L / h on about 10 kg of an alumina heated to 20 ° C.
  • a stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment.
  • the solid obtained is dried for 16 hours at 90 ° C under nitrogen flow.
  • the catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
  • the catalyst C1 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
  • the characterization of the catalyst C1 by microprobe of Castaing shows that 80% of the Pd is distributed over a crust thick about 75 ⁇ .
  • a colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium Pd with approximately 5.6 liters. demineralised water, then add about 150mL of a sodium hydroxide solution to obtain a pH of 2.4. Citric acid is added to the colloidal solution with a citric acid to palladium acid ratio of 1.
  • This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a rate of addition of the solution of 5.4 L h on about 10 kg of an alumina heated to 20 ° C.
  • a stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment.
  • the solid obtained is dried for 16 hours at 90 ° C under nitrogen flow.
  • the catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
  • the catalyst C2 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
  • the characterization of the catalyst C2 by a Castaing microprobe shows that 80% of the Pd is distributed over a crust of thickness approximately 75 ⁇ .
  • the characterization of the catalyst C2 by MRI shows the presence of a layer of alumina distributed over a crust with a thickness of about 35 ⁇ at the extreme periphery of the catalyst.
  • the apparent dispersion of the palladium of catalyst C2 is 26%.
  • Catalyst C2 is shown in FIG.
  • This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 l / h on about 10 kg of an alumina heated to 60 ° C.
  • a stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment.
  • the solid obtained is dried for 16 hours at 90 ° C under nitrogen flow.
  • the catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
  • Catalyst C3 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
  • the characterization of the C3 catalyst by a Castaing microprobe shows that 80% of the Pd is distributed over a crust with a thickness of approximately 35 ⁇ .
  • the apparent dispersion of the palladium of catalyst C3 is 25%.
  • Catalyst C3 is shown in FIG.
  • a colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium. Pd with about 5.6 liters of demineralized water, then add about 150 ml of a sodium hydroxide solution to obtain a pH of 2.4. Citric acid is added to the colloidal solution with a citric acid to palladium acid ratio of 1.
  • This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and an addition rate of the solution of 5.4 l / h on about 10 kg of an alumina heated to 20 ° C.
  • a stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment.
  • the solid obtained is dried for 16 hours at 90 ° C under nitrogen flow.
  • the catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
  • Catalyst C4 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
  • the characterization of the catalyst C4 by a Castaing microprobe shows that 80% of the Pd is distributed over a crust with a thickness of approximately 45 ⁇ .
  • the characterization of the C4 catalyst by MRI shows the presence of a layer of alumina distributed on a crust with a thickness of about 30 ⁇ at the extreme periphery of the catalyst.
  • Citric acid is added this solution with a molar ratio of citric acid to palladium of 1.
  • the suspension is then diluted with demineralized water to a volume which corresponds to 100% of the pore volume of the alumina support whose specific surface is 210 m 2 / g shaped in the form of trilobal extrusions with a diameter of 2 mm.
  • This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 L / h on about 10 kg of an alumina heated to 20 ° C.
  • a stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment.
  • the solid obtained is dried for 16 hours at 90 ° C under nitrogen flow.
  • the catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
  • the catalyst C5 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
  • the characterization of the C5 catalyst by a Castaing microprobe shows that 80% of the Pd is distributed over a crust of thickness approximately 300 ⁇ .
  • the characterization of the catalyst C5 by MRI shows the presence of a layer of alumina distributed on a crust with a thickness of about 45 ⁇ at the extreme periphery of the catalyst.
  • the apparent dispersion of the palladium of catalyst C5 is 19%.
  • a colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium Pd with approximately 5.6 liters. demineralised water, then add about 150 ml of sodium hydroxide solution to obtain a pH of 2.4.
  • the citric acid is added by pre-impregnation on the support before impregnation of the colloidal palladium solution with a citric acid to palladium acid ratio of 1.
  • This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 L / h on about 10 kg of an alumina heated to 20 ° C.
  • a stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment.
  • the solid obtained is dried for 16 hours at 90 ° C under nitrogen flow.
  • the catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
  • the catalyst C6 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
  • the characterization of the C6 catalyst by a Castaing microprobe shows that 80% of the Pd is distributed over a crust with a thickness of approximately 47 ⁇ .
  • the characterization of the catalyst C6 by MRI shows the presence of a layer of alumina distributed on a crust with a thickness of about 34 ⁇ at the extreme periphery of the catalyst.
  • the apparent dispersion of the palladium of catalyst C6 is 25%.
  • Example 6 Use of Catalysts C1, C2, C3, C4, C5 and C6 for the Selective Hydrogenation of a Petroleum Gasoline.
  • the catalysts A, B, C and D are treated under a stream of 1 liter of hydrogen per hour and per gram of catalyst with a temperature rise of 300 ° C./h and a plateau at 150 ° C. during 2 hours.
  • the catalysts are then subjected to a hydrogenation test in a perfectly stirred batch reactor of the "Grignard" type. To do this, 4 ml of reduced catalyst beads are secured to the air in an annular basket located around the stirrer.
  • the baskets used in the reactors are Robinson Mahonnay type.
  • the hydrogenation is carried out in the liquid phase.
  • composition of the filler is as follows: 8% styrene weight, 8% isoprene weight, 10 ppm S introduced as pentanethiol, 100 ppm S introduced as thiophene, the solvent being n-heptane.
  • the test is carried out under a constant pressure of 3.5 MPa of hydrogen and at a temperature of 45 ° C.
  • the products of the reaction are analyzed by gas chromatography.
  • the catalytic activities are expressed in moles of H 2 consumed per minute and per gram of palladium and are reported in Table 2 below.
  • the results in terms of activities measured in hydrogenation of a styrene-isoprene mixture in the presence of sulfur are shown in Table 2 below.
  • ** % / ref corresponds to the gain converted in%, obtained relative to the reference catalyst C2 whose activity is defined at 100%.
  • Fresh C4, C5 and C6 catalysts prepared on extruded substrates, i.e. prior to any loading / unloading, are all more active than their counterparts prepared on bales, i.e. C1 and C2 catalysts.
  • the catalyst C1 After two loading / unloading steps, the catalyst C1 loses 1.5% of fines and thus its catalytic activity decreases slightly and increases to 91% respectively due to a loss of palladium located at the periphery of the catalyst.
  • Catalyst C2 in turn loses virtually no activity due to the protection of the alumina layer generated by the co-impregnation in the presence of citric acid.
  • the catalyst C3 (non-compliant), after unloading loading steps, loses 3.5% of fines and thus its catalytic activity decreases and goes from 130% to 93% compared to our reference which represents a loss in activity of nearly 28%, due to a loss of palladium located at the periphery of the catalyst. While the catalyst C4 according to the invention loses a quantity of fines equivalent to the catalyst C3 (3.6%), its catalytic activity is not affected because the lost fines do not contain palladium.
  • the attrition-impacted catalyst portion is palladium-free and essentially contains alumina and / or carbon residues essentially derived from the decomposition of citric acid.
  • Catalysts C5 and C6 prepared on extruded with a co-impregnation or prepreg of a colloidal solution of palladium and citric acid are more active and have a higher resistance to attrition than their counterparts prepared on beads and on extruded but without the addition of citric acid.
  • Catalyst C5 prepared by conventional dry impregnation i.e. not colloidally, has thicker layer thicknesses. It is therefore a little less active than their colloidal counterparts (i.e. the C6 catalyst).
  • the addition of citric acid in the impregnating solution also makes it possible not to lose activity after loading / unloading steps, this being due to the presence of the alumina layer at the extreme periphery of the catalyst.

Abstract

A multilayer catalyst comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina, and an active phase comprising between 0.01 and 2% by weight of a Group VIII metal relative to the weight of the catalyst, said catalyst comprising: a porous support comprising at least said refractory oxide; a first layer, at least partially covering said porous support, comprising at least said Group VIII metal; a second layer, at least partially covering said first layer, comprising at least said refractory oxide; characterised in that: at least 80% by weight of the Group VIII metal relative to the total weight of the Group VIII metal is distributed in said first layer, the thickness of said first layer being between 10 and 600 µm; at least 1% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 µm. The methods for preparing said catalyst and the use of same in the selective hydrogenation of a polyunsaturated hydrocarbon feedstock are also disclosed.

Description

CATALYSEUR EN MULTICOUCHES POUR L'HYROGENATION SÉLECTIVE, SA PRÉPARATION ET SON  MULTILAYER CATALYST FOR SELECTIVE HYROGENATION, PREPARATION AND SAME
UTILISATION  USE
Domaine technique Technical area
Le procédé d'hydrogénation sélective permet de transformer les composés polyinsaturés des coupes pétrolières par conversion des composés les plus insaturés vers les alcènes correspondants en évitant la saturation totale et donc la formation des alcanes correspondants.  The selective hydrogenation process makes it possible to convert the polyunsaturated compounds of the petroleum fractions by conversion of the most unsaturated compounds to the corresponding alkenes, avoiding total saturation and thus the formation of the corresponding alkanes.
L'objet de l'invention est de proposer un catalyseur à performances améliorées et un procédé d'hydrogénation sélective des composés hydrocarbonés polyinsaturés présents dans les coupes d'hydrocarbures, dans les coupes C2-C5 de vapocraquage et les essences de vapocraquage.  The object of the invention is to provide an improved performance catalyst and a process for the selective hydrogenation of polyunsaturated hydrocarbon compounds present in hydrocarbon cuts, C2-C5 steam cracking cups and steam cracking gasolines.
Etat de la technique State of the art
Les catalyseurs d'hydrogénation sélective de composés polyinsaturés sont généralement à base de métaux du groupe VIII de la classification périodique des éléments tel que le nickel ou le palladium. Typiquement, le métal se présente sous la forme de particules métalliques nanométriques déposées sur un support qui peut être un oxyde réfractaire. La teneur en métal du groupe VIII, la présence éventuelle d'un deuxième élément métallique, la taille des particules de métal et la répartition de la phase active ainsi que la nature et la distribution poreuse du support sont des paramètres qui peuvent avoir une importance sur les performances des catalyseurs.  The catalysts for selective hydrogenation of polyunsaturated compounds are generally based on Group VIII metals of the periodic table of elements such as nickel or palladium. Typically, the metal is in the form of nanometric metal particles deposited on a support which may be a refractory oxide. The metal content of the group VIII, the possible presence of a second metal element, the size of the metal particles and the distribution of the active phase as well as the nature and the porous distribution of the support are parameters which may have an influence on the performance of the catalysts.
En effet, la répartition macroscopique des particules métalliques dans le support constitue un critère important, principalement dans le cadre de réactions rapides et consécutives telles que les hydrogénations sélectives. Il faut généralement que ces éléments se situent dans une croûte à la périphérie du support afin d'éviter les problèmes de transfert de matière intragranulaire pouvant conduire à des défauts d'activité et une perte de sélectivité. Par exemple, le document US2006/025302 décrit un catalyseur pour l'hydrogénation sélective de l'acétylène et de dioléfines, comprenant du palladium réparti de telle façon que 90% du palladium est introduit dans le catalyseur dans une croûte inférieure localisée en périphérie du support et d'épaisseur à 250 μηι.  Indeed, the macroscopic distribution of the metal particles in the support is an important criterion, mainly in the context of rapid and consecutive reactions such as selective hydrogenations. It is generally necessary for these elements to be in a crust at the periphery of the support in order to avoid problems of intragranular material transfer that can lead to defects in activity and loss of selectivity. For example, the document US2006 / 025302 describes a catalyst for the selective hydrogenation of acetylene and diolefins, comprising palladium distributed in such a way that 90% of the palladium is introduced into the catalyst in a lower crust located at the periphery of the support. and thickness at 250 μηι.
Cependant, de tels catalyseurs conduisent à la formation de fines, générée par attrition, lors des divers phases de chargements et/ou de déchargements des catalyseurs et/ou lors des diverses opérations de transport du catalyseur et/ou lors de son utilisation. Or, la majeure partie de la phase active du catalyseur étant localisée en périphérie du support, sous la forme d'une croûte très fine, une quantité non négligeable de phase active peut être perdue. Par conséquent, le catalyseur perd en activité. La durée de vie du catalyseur est dès lors considérablement réduite. However, such catalysts lead to the formation of fines, generated by attrition, during the various phases of loading and / or unloading of the catalysts and / or during the various catalyst transport operations and / or during its use. However, most of the active phase of the catalyst being located at the periphery of the support, in the form of a very thin crust, a significant amount of active phase can be lost. As a result, the catalyst loses activity. The service life of the catalyst is therefore considerably reduced.
Pour pallier ce problème, le document US 3,925,253 divulgue un procédé de préparation d'un catalyseur qui soit plus résistant au phénomène d'attrition, ledit catalyseur comprenant en périphérie une couche d'oxyde de silicium (silice) ou d'oxyde de lanthane ou de cuivre. Les catalyseurs préparés par cette méthode, présentent une résistance à l'attrition améliorée, avec cependant une accessibilité à la phase active réduite. Or les réactions d'hydrogénation sélectives sont extrêmement rapides et les composés polyinsaturés à hydrogéner n'auront pas accès à la phase active (au maximum 500 μηι).  To overcome this problem, US Pat. No. 3,925,253 discloses a process for preparing a catalyst that is more resistant to the attrition phenomenon, said catalyst comprising at the periphery a layer of silicon oxide (silica) or of lanthanum oxide or of copper. The catalysts prepared by this method exhibit improved attrition resistance, but with reduced accessibility to the active phase. However, the selective hydrogenation reactions are extremely rapid and the polyunsaturated compounds to be hydrogenated will not have access to the active phase (at most 500 μηι).
Un but de la présente invention est de répondre aux inconvénients ci-avant en proposant un catalyseur qui soit résistant à l'attrition et qui conserve une bonne activité en hydrogénation sélective des composés polyinsaturés en composés mono-insaturés. La Demanderesse a découvert de manière surprenante qu'un catalyseur multicouches comprenant un support poreux contenant un oxyde réfractaire, une première couche contenant la phase active, recouvrant au moins en partie le support poreux, et une seconde couche contenant au moins un oxyde réfractaire recouvrant au moins en partie ladite première couche, conserve une bonne activité en hydrogénation sélective même après son utilisation ou une opération de chargement/déchargement du catalyseur par rapport à des catalyseurs ne comprenant pas de couche d'oxyde réfractaire recouvrant au moins en partie la phase active. Un tel catalyseur peut être obtenu par un procédé de préparation comprenant au moins une étape de mise en contact du support poreux avec au moins un composé organique comprenant une fonction acide carboxylique, ladite étape pouvant être réalisée soit avant, soit après, soit simultanément à l'étape de mise en contact de la phase active avec le support poreux. An object of the present invention is to meet the above drawbacks by providing a catalyst which is resistant to attrition and which retains good activity in selective hydrogenation of polyunsaturated compounds to monounsaturated compounds. The Applicant has surprisingly discovered that a multilayer catalyst comprising a porous support containing a refractory oxide, a first layer containing the active phase, covering at least partly the porous support, and a second layer containing at least one refractory oxide covering at least less in part said first layer, retains good activity in selective hydrogenation even after use or a loading / unloading operation of the catalyst with respect to catalysts not comprising a refractory oxide layer covering at least partly the active phase. Such a catalyst can be obtained by a preparation process comprising at least one step of contacting the porous support with at least one organic compound comprising a carboxylic acid function, said step being able to be carried out either before, after or simultaneously with step of contacting the active phase with the porous support.
Objets de l'invention Objects of the invention
Un premier objet de l'invention concerne un catalyseur multicouches comprenant au moins un oxyde réfractaire sélectionné dans le groupe constitué par la silice, l'alumine et la silice- alumine, et une phase active comprenant entre 0,01 et 2% en poids d'un métal du groupe VIII par rapport au poids du catalyseur, lequel catalyseur comprenant :  A first subject of the invention relates to a multilayer catalyst comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina, and an active phase comprising between 0.01 and 2% by weight of a group VIII metal with respect to the weight of the catalyst, which catalyst comprises:
- un support poreux comprenant ledit oxyde réfractaire;  a porous support comprising said refractory oxide;
- une première couche, recouvrant au moins en partie ledit support poreux, comprenant au moins ledit métal du groupe VIII ; - une seconde couche, recouvrant au moins en partie ladite première couche, comprenant au moins ledit oxyde réfractaire ; a first layer, at least partially covering said porous support, comprising at least said group VIII metal; a second layer, at least partially covering said first layer, comprising at least said refractory oxide;
caractérisé en ce que :  characterized in that
- au moins 80% en poids dudit métal du groupe VIII par rapport au poids total en métal du groupe VIII est réparti dans ladite première couche, l'épaisseur de ladite première couche étant comprise entre 10 et 600 μηι ;  at least 80% by weight of said Group VIII metal relative to the total weight of group VIII metal is distributed in said first layer, the thickness of said first layer being between 10 and 600 μηι;
- au moins 1 % en poids dudit oxyde réfractaire par rapport au poids total du catalyseur est réparti dans ladite seconde couche, l'épaisseur de ladite seconde couche étant comprise entre 1 et 300 μηι.  - At least 1% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 μηι.
De préférence, ladite seconde couche recouvre totalement ladite première couche. Preferably, said second layer completely covers said first layer.
Avantageusement, le métal du groupe VIII est le palladium ou le nickel. Advantageously, the Group VIII metal is palladium or nickel.
Plus préférentiellement, le métal du groupe VIII est le palladium. More preferably, the Group VIII metal is palladium.
Avantageusement, le support poreux est de l'alumine. Advantageously, the porous support is alumina.
De préférence, le support poreux se présente sous la forme d'extrudés ou de billes.  Preferably, the porous support is in the form of extrudates or balls.
Un autre objet selon l'invention concerne un procédé de préparation d'un catalyseur selon l'invention, comprenant les étapes suivantes : Another object according to the invention relates to a process for preparing a catalyst according to the invention, comprising the following steps:
a) on met en contact ledit support poreux avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique ;  a) said porous support is brought into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function;
b) on met en contact ledit support poreux avec au moins une solution contenant au moins un précurseur de métal du groupe VIII ; les étapes a) et b) étant réalisées séparément, dans un ordre indifférent, ou simultanément  b) said porous support is brought into contact with at least one solution containing at least one group VIII metal precursor; steps a) and b) being performed separately, in any order, or simultaneously
c) on sèche le support imprégné à une température comprise entre 15°C et inférieure ou égale à 250°C ; c) the impregnated support is dried at a temperature between 15 ° C and less than or equal to 250 ° C;
d) on calcine le support séché issu de l'étape c) à une température supérieure à 250°C mais inférieure à 900°C. d) the dried support resulting from step c) is calcined at a temperature greater than 250 ° C. but less than 900 ° C.
De préférence, le ratio molaire entre ledit composé organique est ledit métal du groupe VIII est compris entre 0,1 et 4,0.  Preferably, the molar ratio between said organic compound is said group VIII metal is between 0.1 and 4.0.
Dans un mode de réalisation selon l'invention, les étapes a) et b) sont réalisés simultanément.  In one embodiment of the invention, steps a) and b) are performed simultaneously.
De préférence, ledit composé organique comprend entre 2 et 7 atomes de carbone. Preferably, said organic compound comprises between 2 and 7 carbon atoms.
Plus préférentiellement, le composé organique est choisi parmi l'acide hydroxyacétique (acide glycolique), l'acide 2-hydroxypropanoïque (acide lactique), l'acide 2- hydroxypropanedioïque (acide tartronique), l'acide 2-hydroxybutanedioïque (acide malique), l'acide 2-hydroxypropane-1 ,2,3-tricarboxylique (acide citrique), l'acide 2,3- dihydroxybutanedioïque (acide tartrique), l'acide 2,2'-oxydiacétique (acide diglycolique), l'acide 2-oxopropanoïque (acide pyruvique), l'acide 4-oxopentanoïque (acide lévulinique). Encore plus préférentiellement, le composé organique est l'acide citrique. More preferably, the organic compound is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid) and 2-hydroxybutanedioic acid (malic acid). , 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2,2'-oxydiacetic acid (diglycolic acid), acid 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid). Even more preferentially, the organic compound is citric acid.
Avantageusement, l'étape a) et/ou b) du procédé selon l'invention est (sont) réalisée(s) par imprégnation à sec. Avantageusement, l'étape a) de mise en contact dudit support poreux avec ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique et/ou l'étape b) de mise en contact dudit support poreux avec ladite solution comprenant au moins un précurseur de métal du groupe VIII est réalisé par ajout de ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique et/ou ladite solution comprenant au moins un précurseur de métal du groupe VIII sur ledit support à un débit compris entre 1 et 20 litre(s) par heure, ledit support poreux étant contenu dans un dispositif d'imprégnation rotatif fonctionnant à une vitesse de rotation comprise entre 10 et 20 tours/minutes. Advantageously, step a) and / or b) of the process according to the invention is (are) carried out by dry impregnation. Advantageously, step a) bringing said porous support into contact with said solution containing at least one organic compound comprising at least one carboxylic acid function and / or step b) bringing said porous support into contact with said solution comprising at least one at least one group VIII metal precursor is produced by adding said solution containing at least one organic compound comprising at least one carboxylic acid function and / or said solution comprising at least one group VIII metal precursor on said support at a flow rate inclusive between 1 and 20 liter (s) per hour, said porous support being contained in a rotary impregnating device operating at a rotation speed of between 10 and 20 rpm.
Un autre objet selon l'invention concerne un procédé d'hydrogénation sélective d'une charge comprenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C par mise en contact de ladite charge avec de l'hydrogène et au moins un catalyseur selon l'invention ou préparé selon l'invention, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h"1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h"1 lorsque le procédé est réalisé en phase gazeuse. Another subject of the invention relates to a process for the selective hydrogenation of a feedstock comprising polyunsaturated compounds containing at least 2 carbon atoms per molecule contained in a hydrocarbon feed having a final boiling point of less than or equal to 300 ° C by contacting said feedstock with hydrogen and at least one catalyst according to the invention or prepared according to the invention, which process is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.1 and 10 and at an hourly space velocity of between 0.1 and 200 h -1 when the process is carried out in the liquid phase or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.5 and 1000 and at an hourly volume rate of between 100 and 40,000 h -1 when the process is carried out in the gas phase.
Description des figures Description of figures
La figure 1 est une image obtenue par technique IRM, séquence spin echo, contraste en T1 d'un catalyseur selon l'art antérieur comprenant un support en alumine et comprenant une phase active à base de palladium située en périphérie du support poreux .  FIG. 1 is an image obtained by MRI technique, spin echo sequence, T1 contrast of a catalyst according to the prior art comprising an alumina support and comprising a palladium active phase located at the periphery of the porous support.
La figure 2 est une image obtenue par technique IRM, séquence spin-echo, contraste T1 pour le palladium et T2 pour l'acide citrique, d'un catalyseur selon l'invention se présentant sous la forme d'un extrudé dans lequel le support poreux est recouvert d'une première couche comprenant une phase active à base de palladium, ladite première couche étant revêtue totalement d'une seconde couche comprenant de l'alumine. La figure 3 est une image obtenue par technique IRM, séquence spin-echo, contraste T1 pour le palladium et T2 pour l'acide citrique, d'un catalyseur selon l'invention se présentant sous la forme d'une bille dans lequel le support poreux est recouvert d'une première couche comprenant une phase active à base de palladium, ladite première couche étant revêtue totalement d'une seconde couche comprenant de l'alumine. FIG. 2 is an image obtained by MRI technique, spin-echo sequence, T1 contrast for palladium and T2 for citric acid, of a catalyst according to the invention in the form of an extruded form in which the support porous material is coated with a first layer comprising an active phase based on palladium, said first layer being completely coated with a second layer comprising alumina. FIG. 3 is an image obtained by MRI technique, spin-echo sequence, T1 contrast for palladium and T2 for citric acid, of a catalyst according to the invention in the form of a ball in which the support porous material is coated with a first layer comprising an active phase based on palladium, said first layer being completely coated with a second layer comprising alumina.
Description détaillée de l'invention Detailed description of the invention
1 . Définitions  1. Definitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe IB selon la classification CAS correspond aux métaux de la colonne 1 1 selon la nouvelle classification IUPAC.  In the following, the groups of chemical elements are given according to the classification CAS (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief D.R. Lide, 81 st edition, 2000-2001). For example, group IB according to the CAS classification corresponds to the metals of column 1 1 according to the new IUPAC classification.
Définition de la dispersion métallique des particules (D) Definition of the metallic dispersion of the particles (D)
La dispersion de particules est un nombre sans unité, souvent exprimé en %. La dispersion est d'autant plus grande que les particules sont petites. Elle est définie dans la publication de R. Van Hardeveld et F. Hartog, « 777e statistics of surface atoms and surface sites on métal crystals», Surface Science 15, 1969, 189-230. Définition d'épaisseur de couche (appelée aussi épaisseur de croûte) Particle dispersion is a unitless number, often expressed in%. The dispersion is all the greater as the particles are small. It is defined in the publication of R. Van Hardeveld and F. Hartog, "777th Statistics of Surface Area and Surface Sites on Metal Crystals", Surface Science 15, 1969, 189-230. Definition of layer thickness (also called crust thickness)
Afin d'analyser la répartition de la phase métallique sur le support, on mesure une épaisseur de croûte par microsonde de Castaing (ou microanalyse par microsonde électronique). L'appareil utilisé est un CAMECA XS100, équipé de quatre cristaux monochromateurs permettant l'analyse simultanée de quatre éléments. La technique d'analyse par microsonde de Castaing consiste en la détection de rayonnement X émis par un solide après excitation de ses éléments par un faisceau d'électrons de hautes énergies. Pour les besoins de cette caractérisation, les grains de catalyseur sont enrobés dans des plots de résine époxy. Ces plots sont polis jusqu'à atteindre la coupe au diamètre des billes ou extrudés puis métallisés par dépôt de carbone en évaporateur métallique. La sonde électronique est balayée le long du diamètre de cinq billes ou extrudés pour obtenir le profil de répartition moyen des éléments constitutifs des solides.  In order to analyze the distribution of the metal phase on the support, a crustal thickness is measured by microprobe of Castaing (or microanalysis by electron microprobe). The device used is a CAMECA XS100, equipped with four monochromator crystals allowing the simultaneous analysis of four elements. The technique of analysis by microprobe of Castaing consists in the detection of X-radiation emitted by a solid after excitation of its elements by a beam of electrons of high energies. For the purposes of this characterization, the catalyst grains are embedded in epoxy resin pads. These pads are polished until the cup to the diameter of the balls or extruded and metallized by carbon deposition metal evaporator. The electronic probe is scanned along the diameter of five balls or extruded to obtain the average distribution profile of the constituent elements of the solids.
Lorsque l'élément actif est réparti en croûte, sa concentration locale diminue généralement progressivement lorsqu'elle est mesurée en partant du bord du grain catalytique vers l'intérieur. Une distance du bord du grain, à laquelle la teneur locale en l'élément actif devient nulle, ne peut souvent pas être déterminée avec précision et reproductibilité. Afin de mesurer une épaisseur de croûte qui est significative pour la majorité des particules d'élément actif, l'épaisseur de croûte est définie comme la distance au bord du grain contenant 80 % en poids d'élément actif. When the active element is crusted, its local concentration generally decreases progressively when measured from the edge of the catalytic grain inwards. A distance from the edge of the grain, at which the local content of the active element becomes zero, can often not be determined accurately and reproducibly. In order to measure a crustal thickness that is significant for the majority of the active element particles, crust thickness is defined as the distance to the edge of the grain containing 80% by weight of active element.
Elle est définie dans la publication de L. Sorbier et al. "Measurement of palladium crust thickness on catalyst by EP/W/ Materials Science and Engineering 32 (2012). Pour mesurer une épaisseur de croûte qui est significative pour la majorité des particules d'élément actif, l'épaisseur de croûte peut de façon alternative être définie comme la distance au bord du grain contenant 80% en poids d'élément actif. A partir du profil de répartition obtenu par la microsonde de Castaing (c(x)), on peut calculer la quantité cumulée Q(y) d'élément actif dans le grain en fonction de la distance y au bord du grain de rayon r.  It is defined in the publication by L. Sorbier et al. To measure a crustal thickness that is significant for the majority of active element particles, crust thickness can alternatively be used to measure crustal thickness. be defined as the distance to the edge of the grain containing 80% by weight of active element From the distribution profile obtained by the Castaing microprobe (c (x)), the cumulative quantity Q (y) of active element in the grain as a function of the distance y at the edge of the grain of radius r.
Pour une bille :
Figure imgf000008_0001
For a marble:
Figure imgf000008_0001
Pour un extrudé :
Figure imgf000008_0002
For an extruded:
Figure imgf000008_0002
avec with
r : rayon du grain ; r: grain radius;
y : distance au bord du grain ; y: distance to the edge of the grain;
x : variable d'intégration (position sur le profil). x: integration variable (position on the profile).
On suppose que le profil de concentration suit le diamètre pris de x = - r à x = + r (x = 0 étant le centre).  It is assumed that the concentration profile follows the diameter taken from x = - r to x = + r (x = 0 being the center).
Q{r) correspond ainsi à la quantité totale de l'élément dans le grain. On résout ensuite numériquement l'équation suivante en y :
Figure imgf000008_0003
Q {r) is the total amount of the element in the grain. Then we solve numerically the following equation in y:
Figure imgf000008_0003
c étant une fonction strictement positive, Q est donc une fonction strictement croissante et cette équation possède une seule solution qui est l'épaisseur de croûte. Since c is a strictly positive function, Q is therefore a strictly increasing function and this equation has only one solution which is the crust thickness.
Caractérisation par IRM Characterization by MRI
La technique d'imagerie par résonance magnétique nucléaire (IRM) est utilisée pour caractériser la localisation spatiale de la phase métallique et du composé organique.  The nuclear magnetic resonance imaging (MRI) technique is used to characterize the spatial location of the metal phase and the organic compound.
L'appareil utilisé est un spectromètre RMN Bruker® 9.1 T équipé d'un amplificateur haute puissance permettant de générer des impulsions radiofréquence à la fréquence de Larmor du proton, d'un système de gradients x, y, z (750 x750x750 G/cm) et d'une sonde de mesure 5 mm (micro5). The apparatus used is a Bruker® 9.1 T NMR spectrometer equipped with a high-power amplifier for generating radio frequency pulses at the Larmor frequency proton, x, y, z gradient system (750 x750x750 G / cm) and a 5 mm measuring probe (micro5).
Pour la caractérisation, une bille ou un extrudé de catalyseur est introduit dans un capillaire puis dans un tube IRM de diamètre 5 mm et finalement introduit dans la sonde de mesure. La caractérisation par IRM consiste en la détection du signal du proton dans les directions x, y, z par contraste en temps de relaxation. Le phénomène de relaxation consiste au retour à l'équilibre de l'aimantation magnétique crée lors de l'impulsion radiofréquence par la relaxation "spin-réseau", nommée relaxation transverse T1 , et la relaxation "spin-spin", nommée relaxation longitudinale T2. Les caractérisations par IRM consistent en un choix judicieux des paramètres de la séquence d'impulsion de façon à obtenir un contraste en T1 ou en T2. La séquence "Spin Echo", notée SE, est la séquence d'impulsion utilisée.  For the characterization, a catalyst ball or extrusion is introduced into a capillary and then into a 5 mm diameter MRI tube and finally introduced into the measuring probe. Characterization by MRI consists of the detection of the proton signal in the x, y, z directions by contrast in relaxation time. The relaxation phenomenon consists in the return to equilibrium of the magnetic magnetization created during the radiofrequency pulse by the "spin-lattice" relaxation, called T1 transverse relaxation, and the "spin-spin" relaxation, named longitudinal T2 relaxation. . MRI characterizations consist of a judicious choice of parameters of the pulse sequence so as to obtain a T1 or T2 contrast. The sequence "Spin Echo", denoted SE, is the pulse sequence used.
L'homme du métier sait adapter les paramètres clés de la séquence d'écho de spin à savoir les tailles de voxel et de pixel ainsi que les temps inter-écho et de répétition qui sont choisis en fonction de la résolution spatiale des temps de relaxation caractéristiques de chacun des composants présents : phase métallique, composé organique et support. Cette technique permet de mesurer l'épaisseur de la croûte (épaisseur de couche) de la couche d'oxyde réfractaire située en extrême périphérie du catalyseur. The person skilled in the art knows how to adapt the key parameters of the spin echo sequence, namely the voxel and pixel sizes as well as the inter-echo and repetition times which are chosen as a function of the spatial resolution of the relaxation times. characteristics of each of the components present: metallic phase, organic compound and support. This technique makes it possible to measure the thickness of the crust (layer thickness) of the refractory oxide layer located at the extreme periphery of the catalyst.
Test d'attrition Attrition test
Le test d'attrition est conduit selon la norme, ASTM D4058 - 96(2015), Standard Test Method for Attrition and Abrasion of Catalysts and Catalyst Carriers. The attrition test is conducted according to the standard, ASTM D4058-96 (2015), Standard Test Method for Attrition and Abrasion of Catalysts and Catalyst Carriers.
100 grammes de catalyseur préalablement tamisés sont soumis à 30 minutes de stress mécanique (60tr/mn) avant d'être tamisés et repesés pour obtenir le taux d'attrition. A l'issu de ce test, les fines produites par l'attrition du catalyseurs sont collectées et pesées. Un pourcentage de fines générées par ce test est alors obtenu. Cette technique de caractérisation a pour but de déterminer l'usure d'un catalyseur ou d'un support de catalyseur provoquée par des frottements inter particulaires ou par des effets de parois. Cet essai s'applique aux matériaux mis en forme, principalement les billes, les extrudés (quadrilobes, trilobés). Cette méthode doit permettre de simuler la production de fines durant le transport, les opérations de chargement et déchargement du catalyseur, ainsi que son utilisation.  100 grams of previously sieved catalyst are subjected to 30 minutes of mechanical stress (60 rpm) before being sieved and re-weighed to obtain the attrition rate. At the end of this test, the fines produced by the attrition of the catalysts are collected and weighed. A percentage of fines generated by this test is then obtained. The purpose of this characterization technique is to determine the wear of a catalyst or catalyst support caused by interparticle friction or wall effects. This test applies to shaped materials, mainly logs, extrusions (quadrilobes, trilobed). This method should simulate the production of fines during transport, the loading and unloading of the catalyst, as well as its use.
2. Catalyseur Selon l'invention, le catalyseur multicouches comprend au moins un oxyde réfractaire sélectionné dans le groupe constitué par la silice, l'alumine et la silice-alumine, et une phase active comprenant entre 0,01 et 2% en poids d'un métal du groupe VIII par rapport au poids du catalyseur, lequel catalyseur comprenant : 2. Catalyst According to the invention, the multilayer catalyst comprises at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina, and an active phase comprising between 0.01 and 2% by weight of a metal group VIII with respect to the weight of the catalyst, which catalyst comprises:
- un support poreux comprenant au moins un oxyde réfractaire sélectionné dans le groupe constitué par la silice, l'alumine et la silice-alumine ;  a porous support comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina;
- une première couche, recouvrant au moins en partie ledit support poreux, comprenant au moins un métal du groupe VIII ;  a first layer, at least partially covering said porous support, comprising at least one Group VIII metal;
- une seconde couche, recouvrant au moins en partie ladite première couche, comprenant au moins un oxyde réfractaire sélectionné dans le groupe constitué par la silice, l'alumine et la silice-alumine ;  a second layer, at least partially covering said first layer, comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina;
- au moins 80% en poids de métal du groupe VIII par rapport au poids total de métal du groupe VIII est réparti dans ladite première couche, l'épaisseur de ladite première couche étant comprise entre 10 et 600 μηι, de préférence entre 10 et 100 μηι, et plus préférentiellement entre 20 et 90 μηι ;  at least 80% by weight of Group VIII metal relative to the total weight of Group VIII metal is distributed in said first layer, the thickness of said first layer being between 10 and 600 μηι, preferably between 10 and 100; μηι, and more preferably between 20 and 90 μηι;
- au moins 1 % en poids dudit oxyde réfractaire par rapport au poids total du catalyseur est réparti dans ladite seconde couche, l'épaisseur de ladite seconde couche étant comprise entre 1 et 300 μηι, de préférence entre 1 et 200 μηι. De préférence entre 1 et 30 % en poids, et plus préférentiellement entre 1 et 10% en poids dudit oxyde réfractaire par rapport au poids total du catalyseur est réparti dans ladite seconde couche, l'épaisseur de ladite seconde couche étant comprise entre 1 et 300 μηι, de préférence entre 1 et 200 μηι. Lorsque le métal du groupe VIII est le palladium, la taille moyenne des particules de métal est comprise entre 4 à 10 nm, de préférence entre 3 et 6 nm. La taille moyenne des cristallites est déduite des mesures de dispersion métallique des particules (D), en appliquant les relations dispersion-taille de particules connues de l'homme du métier et décrites dans "Analyse physico-chimique des catalyseurs industriels, Chapitre I, Éditions Technip, Paris 2001 ".  - At least 1% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 μηι, preferably between 1 and 200 μηι. Preferably between 1 and 30% by weight, and more preferably between 1 and 10% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 μηι, preferably between 1 and 200 μηι. When the group VIII metal is palladium, the average size of the metal particles is between 4 to 10 nm, preferably between 3 and 6 nm. The average size of the crystallites is deduced from the measurements of metal dispersion of the particles (D), by applying the dispersion-particle size relationships known to those skilled in the art and described in "Physico-chemical analysis of industrial catalysts, Chapter I, Editions Technip, Paris 2001 ".
Lorsque le métal du groupe VIII est le nickel, la taille moyenne des particules de métal est inférieure à 18 nm, de préférence inférieure à 15 nm. La taille moyenne des cristallites est déduite de la caractérisation par diffraction des rayons X. Le support poreux est choisi parmi le groupe constitué par la silice, l'alumine et la silice- alumine. De façon encore plus préférée, le support est de l'alumine. L'alumine peut être présente sous toutes les formes cristallographiques possibles : alpha, delta, thêta, chi, rho, eta , kappa, gamma, etc., prises seules ou en mélange. De manière préférée le support est choisi parmi l'alumine alpha, delta, téta, gamma. When the Group VIII metal is nickel, the average size of the metal particles is less than 18 nm, preferably less than 15 nm. The average size of the crystallites is deduced from the X-ray diffraction characterization. The porous support is selected from the group consisting of silica, alumina and silica-alumina. Even more preferably, the support is alumina. The alumina can be present in all possible crystallographic forms: alpha, delta, theta, chi, rho, eta, kappa, gamma, etc., taken alone or as a mixture. Preferably the support is selected from alpha alumina, delta, teta, gamma.
La surface spécifique du support poreux est comprise de préférence entre 50 et 250 m2/g, de manière préférée entre 70 et 230 m2/g, et encore plus préférentiellement entre 70 et 220 m2/g. La surface spécifique BET est mesurée par physisorption à l'azote. La surface spécifique BET est mesurée par physisorption à l'azote selon la norme ASTM D3663-03 tel que décrit dans Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Académie Press, 1999. The specific surface of the porous support is preferably between 50 and 250 m 2 / g, preferably between 70 and 230 m 2 / g, and even more preferably between 70 and 220 m 2 / g. The BET surface area is measured by physisorption with nitrogen. The BET surface area is measured by nitrogen physisorption according to ASTM D3663-03 as described in Rouquerol F .; Rouquerol J .; Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academy Press, 1999.
Le volume total poreux du support est compris entre 0,1 et 1 ,5 cm3/g, de préférence compris entre 0,5 et 1 ,1 cm3/g, et encore plus préférentiellement compris entre 0,25 et 1 ,3 cm3/g. Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284- 92 avec un angle de mouillage de 140°, par exemple au moyen d'un appareil modèle Autopore® III de la marque Microméritics®. Dans un mode de réalisation selon l'invention, le support du catalyseur est purement mésoporeux, i.e. qu'il présente un diamètre de pores compris entre 2 et 50 nm, de préférence entre 5 et 30 nm et de manière encore préférée de 8 à 20 nm. The total pore volume of the support is between 0.1 and 1.5 cm 3 / g, preferably between 0.5 and 1.1 cm 3 / g, and even more preferably between 0.25 and 1, 3 cm 3 / g. The total pore volume is measured by mercury porosimetry according to ASTM standard D4284-92 with a wetting angle of 140 °, for example by means of an Autopore® III model apparatus of the Microméritics® brand. In one embodiment according to the invention, the support of the catalyst is purely mesoporous, ie it has a pore diameter of between 2 and 50 nm, preferably between 5 and 30 nm and even more preferably between 8 and 20 μm. nm.
Dans un autre mode de réalisation selon l'invention, le support du catalyseur est bimodal, le premier mode étant mésoporeux, i.e. qu'il présente un diamètre de pores compris entre 2 et 50 nm, de préférence entre 5 et 30 nm et de manière encore préférée de 8 à 20 nm, et le second macroporeux, i.e. qu'il présente des pores de diamètre supérieur à 50 nm. Le support utilisé pour la préparation du catalyseur selon l'invention présente avantageusement un volume poreux des pores ayant un diamètre de pores compris entre 50 et 700 nm inférieur à 20 % du volume poreux total du support, de préférence inférieur à 18 % du volume poreux total du support et de manière particulièrement préférée inférieur à 15 % du volume poreux total du support. In another embodiment according to the invention, the support of the catalyst is bimodal, the first mode being mesoporous, ie it has a pore diameter of between 2 and 50 nm, preferably between 5 and 30 nm, and still preferred from 8 to 20 nm, and the second macroporous, ie it has pores with a diameter greater than 50 nm. The support used for the preparation of the catalyst according to the invention advantageously has a pore volume of pores having a pore diameter of between 50 and 700 nm less than 20% of the total pore volume of the support, preferably less than 18% of the pore volume. total support and particularly preferably less than 15% of the total pore volume of the support.
Le support peut comprendre éventuellement du soufre. La teneur en soufre comprise dans le support peut être comprise entre 0,0050 et 0,25% en poids par rapport au poids total du catalyseur, de préférence entre 0,0075 et 0,20% en poids. La teneur en métal du groupe VIII est comprise entre 0,01 et 2% en poids d'un métal du groupe VIII par rapport au poids du catalyseur, de préférence entre 0,05 et 1 % en poids, et encore plus préférentiellement entre 0,1 et 0,9 % en poids. De préférence, le métal du groupe VIII est le palladium ou le nickel. The support may optionally include sulfur. The sulfur content in the support may be between 0.0050 and 0.25% by weight relative to the total weight of the catalyst, preferably between 0.0075 and 0.20% by weight. The group VIII metal content is between 0.01 and 2% by weight of a Group VIII metal relative to the weight of the catalyst, preferably between 0.05 and 1% by weight, and even more preferentially between 0 and 1% by weight. , 1 and 0.9% by weight. Preferably, the Group VIII metal is palladium or nickel.
Selon l'invention, le support poreux se présente sous forme de billes ou d'extrudés cylindriques ou multilobés (trilobés, quadrilobes). De préférence le support poreux se présente sous la forme d'extrudés. According to the invention, the porous support is in the form of cylindrical or multilobed beads or extrusions (trilobed, quadrilobes). Preferably the porous support is in the form of extrudates.
Dans un mode de réalisation particulier selon l'invention, le catalyseur est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1 ,0 et 2,5 mm. Celui-ci peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur. In a particular embodiment according to the invention, the catalyst consists of extrudates of diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 3.2 mm. and 2.5 mm. This may advantageously be in the form of cylindrical, multilobed, trilobed or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
Dans un autre mode de réalisation particulier selon l'invention, le catalyseur se présente sous la forme de billes de diamètre compris entre 1 et 8 mm, de préférence entre 2 et 7 mm.  In another particular embodiment according to the invention, the catalyst is in the form of beads having a diameter of between 1 and 8 mm, preferably between 2 and 7 mm.
3. Procédé de préparation L'invention concerne également un procédé de préparation du catalyseur. Plus particulièrement, le procédé de préparation du catalyseur selon l'invention comprend les étapes suivantes : 3. Preparation Process The invention also relates to a process for preparing the catalyst. More particularly, the process for preparing the catalyst according to the invention comprises the following steps:
a) on met en contact ledit support poreux avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique ; a) said porous support is brought into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function;
b) on met en contact ledit support poreux avec au moins une solution contenant au moins un précurseur de métal du groupe VIII ; les étapes a) et b) étant réalisées séparément, dans un ordre indifférent, ou simultanément ; b) said porous support is brought into contact with at least one solution containing at least one group VIII metal precursor; steps a) and b) being performed separately, in any order, or simultaneously;
c) on sèche le support imprégné à une température inférieure ou égale à 250°C ; c) the impregnated support is dried at a temperature of less than or equal to 250 ° C;
d) on calcine le support séché issu de l'étape c) à une température supérieure à 250°C. d) the dried support from step c) is calcined at a temperature above 250 ° C.
Sans être lié par une quelconque théorie, le procédé selon l'invention, du fait de son étape a), permet de créer une couche d'oxyde réfractaire qui protège la couche comprenant le métal du groupe VIII. En effet, lors de l'étape de mise en contact a), une compétition d'adsorption dans le support entre le composé organique et le métal du groupe VIII pousse les complexes de métal du groupe VIII à migrer dans une couche plus profonde. Cela engendre après l'étape de calcination du précurseur de catalyseur qui conduit à la décomposition du composé organique, à la formation d'une seconde couche comprenant au moins en partie un oxyde réfractaire, recouvrant au moins en partie la couche comprenant le métal du groupe VIII, permettant ainsi de protéger ledit métal du groupe VIII, et cela plus particulièrement lors de l'utilisation du catalyseur et les opérations de chargement et/ou déchargement du catalyseur. Without being bound by any theory, the process according to the invention, because of its step a), makes it possible to create a refractory oxide layer that protects the layer comprising the group VIII metal. Indeed, during the contacting step a), an adsorption competition in the support between the organic compound and the metal of group VIII grows Group VIII metal complexes to migrate into a deeper layer. This generates after the step of calcination of the catalyst precursor which leads to the decomposition of the organic compound, to the formation of a second layer comprising at least partly a refractory oxide, at least partially covering the layer comprising the metal of the group VIII, thus making it possible to protect said group VIII metal, and more particularly during the use of the catalyst and the catalyst loading and / or unloading operations.
Dans un mode de réalisation selon l'invention, on réalise l'étape a) avant l'étape b) (préimprégnation). Dans un autre mode de réalisation selon l'invention, on réalise l'étape b) avant l'étape a) (post-imprégnation). In one embodiment of the invention, step a) is carried out before step b) (pre-impregnation). In another embodiment of the invention, step b) is carried out before step a) (post-impregnation).
Dans encore un autre mode de réalisation selon l'invention, les étapes a) et b) sont réalisées simultanément (co-imprégnation). In yet another embodiment of the invention, steps a) and b) are performed simultaneously (co-impregnation).
Lorsque les étapes a) et b) sont réalisées successivement et non simultanément, i.e. qu'on réalise l'étape a) avant l'étape b) ou l'étape b) avant l'étape a), aucune étape de séchage intermédiaire entre lesdites étapes n'est réalisée. When steps a) and b) are carried out successively and not simultaneously, ie step a) is carried out before step b) or step b) before step a), no intermediate drying step between said steps are not performed.
La mise en contact du précurseur de métal du groupe VIII et du composé organique peuvent être réalisées selon toutes les techniques connues de l'homme du métier. De préférence, la solution de précurseur de métal du groupe VIII et la solution contenant le composé organique sont déposées par méthode d'imprégnation à sec ou en excès. The bringing into contact of the group VIII metal precursor and the organic compound can be carried out according to all the techniques known to those skilled in the art. Preferably, the Group VIII metal precursor solution and the solution containing the organic compound are deposited by dry or excess impregnation method.
Les différentes étapes sont explicitées en détail ci-après. The different steps are explained in detail below.
Etape a) Mise en contact du composé organique avec le support Step a) bringing the organic compound into contact with the support
La mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, conformément à la mise en œuvre de ladite étape a), peut être réalisée par toute méthode bien connue de l'Homme du métier. En particulier, ladite étape a) peut être réalisée par imprégnation, à sec ou en excès selon des méthodes bien connues de l'Homme du métier. De manière préférée, ladite étape a) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec un volume de ladite solution compris entre 0,3 et 1 ,5 fois le volume poreux du support à imprégner. The bringing into contact of said support with at least one solution containing at least one organic compound comprising at least one carboxylic acid function, according to the implementation of said step a), can be carried out by any method well known to the man of the job. In particular, said step a) can be carried out by impregnation, dry or in excess, according to methods that are well known to those skilled in the art. Preferably, said step a) is carried out by dry impregnation, which consists in bringing the support of the catalyst into contact with a volume of said solution of between 0.3 and 1.5 times the pore volume of the support to be impregnated.
Ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique peut être aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l'acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique. Ledit composé organique est préalablement au moins partiellement dissous dans ladite solution à la concentration voulue. De préférence, ladite solution est aqueuse ou contient de l'éthanol. De façon encore plus préférée, ladite solution est aqueuse. Le pH de ladite solution pourra être modifié par l'ajout éventuel d'un acide ou d'une base. Dans un autre mode de réalisation possible, le solvant peut être absent de la solution d'imprégnation lorsque le composé organique est à l'état liquide à la température et pression de mise contact du support avec le composé organique. Said solution containing at least one organic compound comprising at least one carboxylic acid function may be aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or consists of a mixture of water and at least one organic solvent. Said organic compound is previously at least partially dissolved in said solution at the desired concentration. Preferably, said solution is aqueous or contains ethanol. Even more preferably, said solution is aqueous. The pH of said solution may be modified by the possible addition of an acid or a base. In another possible embodiment, the solvent may be absent from the impregnating solution when the organic compound is in the liquid state at the temperature and pressure of contacting the support with the organic compound.
Dans un mode de réalisation préféré selon l'invention, la mise en contact dudit support avec ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique est réalisée au moyen d'un dispositif d'imprégnation rotatif, tel qu'un tonneau imprégnateur (appelé aussi tambour tournant). Le dispositif d'imprégnation rotatif utilisé est de préférence un tonneau imprégnateur classique dont l'enceinte peut être mise sous pression réduite (environ 20 mm Hg) ou sous balayage de gaz (azote). In a preferred embodiment according to the invention, bringing said support into contact with said solution containing at least one organic compound comprising at least one carboxylic acid function is carried out by means of a rotary impregnation device, such as a impregnating barrel (also called rotating drum). The rotary impregnating device used is preferably a conventional impregnating barrel whose enclosure can be placed under reduced pressure (approximately 20 mmHg) or under gas (nitrogen) sweep.
Le dispositif d'imprégnation rotatif est équipé d'une double-enveloppe, dans laquelle circule un fluide caloporteur via un thermorégulateur. Il est ainsi possible de réguler une température de paroi au sein de l'imprégnateur et un temps de séchage. Dans un mode de réalisation préféré, la température d'imprégnation est comprise entre 40 et 90°C, de préférence entre 50 et 70°C. The rotary impregnation device is equipped with a double jacket, in which circulates a heat transfer fluid via a thermoregulator. It is thus possible to regulate a wall temperature within the impregnator and a drying time. In a preferred embodiment, the impregnation temperature is between 40 and 90 ° C, preferably between 50 and 70 ° C.
Selon l'invention, le dispositif d'imprégnation rotatif dans lequel le support a été chargé fonctionne à une vitesse de rotation comprise entre 4 et 20 tours/minute.  According to the invention, the rotary impregnating device in which the support has been loaded operates at a rotational speed of between 4 and 20 rpm.
On peut par exemple citer comme processus continu, un processus où la solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique est versée dans un bac qui se déverse en continu dans un tambour tournant comprenant le support à imprégner. As a continuous process, for example, a process may be mentioned in which the solution containing at least one organic compound comprising at least one carboxylic acid function is poured into a tank which discharges continuously into a rotating drum comprising the support to be impregnated.
De préférence, ledit composé organique comprenant au moins une fonction acide carboxylique comprend entre 2 et 7 atomes de carbone, de préférence entre 2 et 6 atomes de carbone. Preferably, said organic compound comprising at least one carboxylic acid functional group comprises between 2 and 7 carbon atoms, preferably between 2 and 6 carbon atoms.
Ledit composé organique peut comprendre au moins un deuxième groupe fonctionnel choisi parmi les éthers, les hydroxyles, les cétones, les esters.  Said organic compound may comprise at least one second functional group chosen from ethers, hydroxyls, ketones and esters.
Encore plus préférentiellement, le composé organique comprenant au moins une fonction acide carboxylique est choisi parmi l'acide hydroxyacétique (acide glycolique), l'acide 2- hydroxypropanoïque (acide lactique), l'acide 2-hydroxypropanedioïque (acide tartronique), l'acide 2-hydroxybutanedioïque (acide malique), l'acide 2-hydroxypropane-1 ,2,3- tricarboxylique (acide citrique), l'acide 2,3-dihydroxybutanedioïque (acide tartrique), l'acide 2,2'-oxydiacétique (acide diglycolique), l'acide 2-oxopropanoïque (acide pyruvique), l'acide 4- oxopentanoïque (acide lévulinique). De manière encoure plus préférée, ledit composé organique est l'acide citrique. Even more preferentially, the organic compound comprising at least one carboxylic acid function is chosen from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxybutanedioic acid (malic acid), 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2,2 'acid -oxydiacetic acid (diglycolic acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid). More preferably, said organic compound is citric acid.
Le rapport molaire dudit composé organique comprenant au moins une fonction acide carboxylique introduit lors de l'étape a) par rapport au métal du groupe VIII introduit à l'étape b) est compris entre 0,1 et 4,0 mol/mol, plus préférentiellement entre 0,3 et 3,5 mol/mol. The molar ratio of said organic compound comprising at least one carboxylic acid function introduced during step a) relative to the metal of group VIII introduced in step b) is between 0.1 and 4.0 mol / mol, more preferably between 0.3 and 3.5 mol / mol.
Etape b) Mise en contact du précurseur métal du groupe VIII avec le support Step b) Contacting the group VIII metal precursor with the support
Le dépôt du précurseur du métal du groupe VIII sur ledit support, conformément à la mise en œuvre de ladite étape b), peut être réalisé par toute méthode bien connue de l'Homme du métier. En particulier, ladite étape b) peut être réalisée par imprégnation, à sec ou en excès, ou encore par dépôt - précipitation, selon des méthodes bien connues de l'Homme du métier. The deposition of the group VIII metal precursor on said support, in accordance with the implementation of said step b), can be carried out by any method well known to those skilled in the art. In particular, said step b) can be carried out by impregnation, dry or in excess, or by deposition - precipitation, according to methods well known to those skilled in the art.
Ladite étape b) est préférentiellement réalisée par imprégnation du support consistant par exemple en la mise en contact dudit support avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l'acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, contenant au moins un précurseur de métal du groupe VIII au moins partiellement à l'état dissous, ou encore en la mise en contact dudit support avec au moins une solution colloïdale d'au moins un précurseur du métal du groupe VIII, sous forme oxydée (nanoparticules d'oxyde, d'oxy(hydroxyde) ou d'hydroxyde de métal du groupe VIII) ou sous forme réduite (nanoparticules métalliques de métal du groupe VIII à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide ou d'une base. Selon une autre variante préférée, la solution aqueuse peut contenir de l'ammoniaque ou des ions ammonium NH4 +. De manière préférée, ladite étape b) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec une solution, contenant au moins un précurseur du métal du groupe VIII, dont le volume de la solution est compris entre 0,3 et 1 ,5 fois le volume poreux du support à imprégner. Lorsque le précurseur de métal du groupe VIII est introduit en solution aqueuse, on utilise avantageusement un précurseur de métal du groupe VIII sous forme de nitrate, de carbonate, de chlorure, de sulfate, d'hydroxyde, d'hydroxycarbonate, de formiate, d'acétate, d'oxalate, de complexes formés avec les acétylacétonates, ou encore de complexes tétrammine ou hexammine, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support. Said step b) is preferably carried out by impregnation of the support consisting, for example, in bringing said support into contact with at least one aqueous or organic solution (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or consists of a mixture of water and at least one organic solvent, containing at least one group VIII metal precursor at least partially in the dissolved state, or else in the setting of contacting said support with at least one colloidal solution of at least one group VIII metal precursor, in oxidized form (nanoparticles of oxide, oxy (hydroxide) or of group VIII metal hydroxide) or in reduced form (Metallic metal nanoparticles of Group VIII metal in the reduced state). Preferably, the solution is aqueous. The pH of this solution can be modified by the possible addition of an acid or a base. According to another preferred variant, the aqueous solution may contain ammonia or ammonium ions NH 4 + . Preferably, said step b) is carried out by dry impregnation, which consists in bringing the catalyst support into contact with a solution containing at least one precursor of the group VIII metal, the volume of the solution of which is between 0.degree. , 3 and 1, 5 times the pore volume of the support to be impregnated. When the group VIII metal precursor is introduced in aqueous solution, a group VIII metal precursor is advantageously used in the form of nitrate, carbonate, chloride, sulphate, hydroxide, hydroxycarbonate, formate, acetate, oxalate, complexes formed with acetylacetonates, or complex tetrammine or hexammine, or any other soluble inorganic derivative in aqueous solution, which is brought into contact with said support.
Lorsque le métal du groupe VIII est le palladium, le précurseur du palladium est de préférence sélectionné parmi le chloropalladate de sodium et le nitrate de palladium. Lorsque le précurseur de métal du groupe VIII est introduit sous forme d'une suspension colloïdale, on prépare une suspension colloïdale d'oxyde de métal du groupe VIII ou d'hydroxyde de métal du groupe VIII en phase aqueuse par mélange d'une solution aqueuse When the group VIII metal is palladium, the palladium precursor is preferably selected from sodium chloropalladate and palladium nitrate. When the group VIII metal precursor is introduced in the form of a colloidal suspension, a colloidal suspension of Group VIII metal oxide or Group VIII metal hydroxide is prepared in the aqueous phase by mixing an aqueous solution.
(I) comprenant au moins un hydroxyde sélectionné dans le groupe constitué par les hydroxydes d'alcalins et les hydroxydes d'alcalino-terreux et d'une solution aqueuse (II) comprenant au moins un précurseur de métal du groupe VIII. (I) comprising at least one hydroxide selected from the group consisting of alkali hydroxides and alkaline earth hydroxides and an aqueous solution (II) comprising at least one group VIII metal precursor.
Lorsque le métal du groupe VIII est le palladium, ladite suspension colloïdale est généralement obtenue par hydrolyse du cation palladium en milieu aqueux, ce qui conduit à la formation de particules d'oxyde ou d'hydroxyde de palladium en suspension. La solution aqueuse d'hydroxyde d'alcalins ou d'hydroxyde alcalino-terreux est généralement sélectionnée dans le groupe constitué par les solutions aqueuses d'hydroxyde de sodium, les solutions aqueuses d'hydroxyde de magnésium. De manière préférée, de préférence la solution aqueuse est une solution aqueuse d'hydroxyde de sodium.  When the Group VIII metal is palladium, said colloidal suspension is generally obtained by hydrolysis of the palladium cation in an aqueous medium, which leads to the formation of particles of oxide or palladium hydroxide in suspension. The aqueous alkali hydroxide or alkaline earth hydroxide solution is generally selected from the group consisting of aqueous solutions of sodium hydroxide, aqueous solutions of magnesium hydroxide. Preferably, the aqueous solution is preferably an aqueous solution of sodium hydroxide.
Le sel précurseur du palladium est généralement sélectionné dans le groupe constitué par le chlorure de palladium, le nitrate de palladium et le sulfate de palladium. De manière très préférée, le sel précurseur du palladium est le nitrate de palladium.  The precursor salt of palladium is generally selected from the group consisting of palladium chloride, palladium nitrate and palladium sulfate. Very preferably, the precursor salt of palladium is palladium nitrate.
Typiquement, on approvisionne dans un appareillage adapté la solution aqueuse comprenant au moins un sel précurseur de métal du groupe VIII [appelée aussi ici solution Typically, the aqueous solution comprising at least one group VIII metal precursor salt (also called solution) is supplied in a suitable apparatus.
(II) ] puis la solution aqueuse comprenant au moins un hydroxyde d'alcalins ou d'alcalino- terreux [appelée aussi ici solution (I)]. Alternativement, les solutions (I) et (II) peuvent être versées simultanément dans l'appareillage. De préférence, la solution aqueuse (II) puis la solution aqueuse (I) est versée dans l'appareillage. (II)] then the aqueous solution comprising at least one alkali or alkaline earth hydroxide [also referred to herein as solution (I)]. Alternatively, the solutions (I) and (II) can be poured simultaneously into the apparatus. Preferably, the aqueous solution (II) and then the aqueous solution (I) is poured into the apparatus.
La suspension colloïdale reste généralement dans l'appareillage pendant un temps de séjour compris entre 0 et 20 heures.  The colloidal suspension generally remains in the apparatus for a residence time of between 0 and 20 hours.
Les concentrations de la solution (I) et (II) sont généralement choisies afin d'obtenir un pH de la suspension colloïdale compris entre 1 ,0 et 3,5. Ainsi, le pH de la suspension colloïdale peut être modifié pendant ce temps de séjour par ajout de quantités d'acide ou de base compatibles avec la stabilité de la suspension colloïdale. The concentrations of the solution (I) and (II) are generally chosen in order to obtain a pH of the colloidal suspension of between 1.0 and 3.5. So the pH of the colloidal suspension can be modified during this residence time by adding amounts of acid or base compatible with the stability of the colloidal suspension.
En général, la température de préparation est comprise entre 5°C et 40°C et de manière préférée entre 15°C et 35°C.  In general, the preparation temperature is between 5 ° C and 40 ° C and preferably between 15 ° C and 35 ° C.
La concentration en palladium est de préférence comprise entre 5 et 150 millimoles par litre (mmol/L), de manière plus préférée entre 8 et 80 millimoles par litre. The palladium concentration is preferably between 5 and 150 millimoles per liter (mmol / L), more preferably between 8 and 80 millimoles per liter.
Les quantités du précurseur de métal du groupe VIII introduites dans la solution sont choisies de telle manière que la teneur totale en élément du métal du groupe VIII est comprise entre 0,01 et 2% en poids de la masse de catalyseur, de préférence entre 0,05 et 1 % en poids, plus préférentiellement entre 0,1 et 0,9% en poids The quantities of the group VIII metal precursor introduced into the solution are chosen so that the total element content of the group VIII metal is between 0.01 and 2% by weight of the catalyst mass, preferably between 0 and , 05 and 1% by weight, more preferably between 0.1 and 0.9% by weight
Dans un mode de réalisation préféré selon l'invention, la mise en contact dudit support avec ladite solution comprenant au moins un précurseur de métal du groupe VIII est réalisée au moyen d'un dispositif d'imprégnation rotatif, tel qu'un tonneau imprégnateur (appelé aussi tambour tournant). Le dispositif d'imprégnation rotatif utilisé est de préférence un tonneau imprégnateur classique dont l'enceinte peut être mise sous pression réduite (environ 20 mm Hg) ou sous balayage de gaz (azote). In a preferred embodiment according to the invention, bringing said support into contact with said solution comprising at least one group VIII metal precursor is carried out by means of a rotary impregnation device, such as an impregnating barrel ( also called rotating drum). The rotary impregnating device used is preferably a conventional impregnating barrel whose enclosure can be placed under reduced pressure (approximately 20 mmHg) or under gas (nitrogen) sweep.
Le dispositif d'imprégnation rotatif est équipé d'une double-enveloppe, dans laquelle circule un fluide caloporteur via un thermorégulateur. Il est ainsi possible de réguler une température de paroi au sein de l'imprégnateur et un temps de séchage. Dans un mode de réalisation préféré, la température d'imprégnation est comprise entre 40 et 90°C, de préférence entre 50 et 70°C. Selon l'invention, le dispositif d'imprégnation rotatif dans lequel le support a été chargé fonctionne à une vitesse de rotation comprise entre 4 et 20 tours/minute. Au-dessus de 20 tours/minute la couche comprenant le métal du groupe VIII obtenue sur le support est trop faible, i.e. en dessous de 20 μηι, et une partie de la solution contenant le précurseur du métal du groupe VIII n'est pas imprégnée sur le support. Si la rotation du tambour est trop faible, i.e. inférieure à 4 tours/minute, la couche comprenant le métal du groupe VIII obtenue sur le support peut excéder 600 μηι d'épaisseur, et la dispersion du métal du groupe VIII sur le support peut ne pas être satisfaisante, c'est à dire inférieure à 15%. The rotary impregnation device is equipped with a double jacket, in which circulates a heat transfer fluid via a thermoregulator. It is thus possible to regulate a wall temperature within the impregnator and a drying time. In a preferred embodiment, the impregnation temperature is between 40 and 90 ° C, preferably between 50 and 70 ° C. According to the invention, the rotary impregnating device in which the support has been loaded operates at a rotational speed of between 4 and 20 rpm. Above 20 rpm, the layer comprising the group VIII metal obtained on the support is too weak, ie below 20 μηι, and part of the solution containing the group VIII metal precursor is not impregnated on the support. If the rotation of the drum is too small, ie less than 4 revolutions / minute, the layer comprising the metal of group VIII obtained on the support can exceed 600 μηι thick, and the dispersion of the metal of group VIII on the support can not not be satisfactory, ie less than 15%.
Selon l'invention, le débit d'ajout de ladite solution à l'étape contenant le précurseur de métal du groupe VIII sur le support poreux est compris entre 1 et 20 litre(s) par heure. Au-dessus de 20 litres par heure, la couche de métal du groupe VIII obtenue est trop épaisse, i.e. au- dessus de 600 μηι et la dispersion du métal du groupe VIII n'est pas satisfaisante, c'est à dire inférieure à 15%. According to the invention, the rate of addition of said solution to the stage containing the group VIII metal precursor on the porous support is between 1 and 20 liter (s) per hour. Above 20 liters per hour, the Group VIII metal layer obtained is too thick, ie above 600 μηι and the dispersion of the Group VIII metal is unsatisfactory, ie less than 15%.
On peut par exemple citer comme processus continu, un processus où la solution de précurseur de métal du groupe VIII est versée dans un bac qui se déverse en continu dans un tambour tournant comprenant le support à imprégner.  As a continuous process, for example, there may be mentioned a process in which the group VIII metal precursor solution is poured into a tank which discharges continuously into a rotating drum comprising the support to be impregnated.
Après l'étape b), le support est généralement maturé à l'état humide pendant 0,5 à 40 h, de manière préférée pendant 1 à 30 h. Des durées plus longues ne sont pas exclues, mais n'apportent pas nécessairement d'amélioration. c) séchage du précurseur de catalyseur After step b), the support is generally wet-matured for 0.5 to 40 hours, preferably for 1 to 30 hours. Longer durations are not excluded, but do not necessarily improve. c) drying the catalyst precursor
Le précurseur du catalyseur est généralement séché, de préférence à une température comprise entre 15°C et inférieure ou égale 250°C, de manière plus préférée entre 30°C et 220°C, de manière plus préférée entre 70°C et 180°C. La durée du séchage est comprise entre 0,5 h et 20 h. Des durées plus longues ne sont pas exclues, mais n'apportent pas nécessairement d'amélioration.  The precursor of the catalyst is generally dried, preferably at a temperature of between 15 ° C. and less than or equal to 250 ° C., more preferably between 30 ° C. and 220 ° C., more preferably between 70 ° C. and 180 ° C. vs. The drying time is between 0.5 h and 20 h. Longer durations are not excluded, but do not necessarily improve.
Le séchage est généralement effectué sous air de combustion d'un hydrocarbure, de préférence du méthane, ou sous air chauffé comprenant entre 0 et 80 grammes d'eau par kilogramme d'air de combustion, un taux d'oxygène compris entre 5% et 25% volume et un taux de dioxyde de carbone compris entre 0% et 10% volume. d) calcination du catalyseur séché obtenu à l'étape c)  The drying is generally carried out under combustion air of a hydrocarbon, preferably methane, or in heated air comprising between 0 and 80 grams of water per kilogram of combustion air, an oxygen content of between 5% and 25% volume and a carbon dioxide content between 0% and 10% volume. d) calcination of the dried catalyst obtained in step c)
Après séchage, le catalyseur est calciné sous air, de préférence de combustion, et plus préférentiellement un air de combustion du méthane, comprenant entre 40 et 80 gramme d'eau par kg d'air, un taux d'oxygène compris entre 5% et 15% volume et un taux de C02 compris entre 4% et 10% volume. La température de calcination est généralement supérieure à 250°C mais est inférieure à 900°C, de préférence comprise entre environ 300°C et environ 500°C. La durée de calcination est généralement comprise entre 0,25 h et 10 h. e) réduction de l'oxyde ainsi supporté obtenu à l'étape d), de préférence au moyen d'hydrogène gazeux (étape optionnelle) After drying, the catalyst is calcined in air, preferably in combustion, and more preferably in a combustion air of methane, comprising between 40 and 80 grams of water per kg of air, an oxygen content of between 5% and 15% volume and a C0 2 content between 4% and 10% volume. The calcining temperature is generally above 250 ° C but is below 900 ° C, preferably between about 300 ° C and about 500 ° C. The calcination time is generally between 0.25 h and 10 h. e) reduction of the oxide thus supported obtained in step d), preferably using hydrogen gas (optional step)
Le catalyseur est généralement réduit. Cette étape est de préférence réalisée en présence d'un gaz réducteur, soit in-situ, c'est-à-dire dans le réacteur où est réalisée la transformation catalytique, soit ex-situ. De manière préférée, cette étape est effectuée à une température comprise entre 80°C et 450°C, de manière encore plus préférée entre 100°C et 400°C.  The catalyst is generally reduced. This step is preferably carried out in the presence of a reducing gas, either in situ, that is to say in the reactor where the catalytic conversion is carried out, or ex-situ. Preferably, this step is carried out at a temperature of between 80 ° C. and 450 ° C., even more preferably between 100 ° C. and 400 ° C.
La réduction est réalisée en présence d'un gaz réducteur comprenant entre 25 vol% et 100 vol% d'hydrogène, de préférence 100% volume d'hydrogène. L'hydrogène est éventuellement complété par un gaz inerte pour la réduction, de préférence de l'argon, de l'azote ou du méthane. The reduction is carried out in the presence of a reducing gas comprising between 25 vol% and 100 vol% hydrogen, preferably 100% hydrogen volume. The hydrogen is optionally supplemented with an inert gas for reduction, preferably argon, nitrogen or methane.
La réduction comprend généralement une phase de montée en température puis un palier. La durée du palier de réduction est généralement comprise entre 1 et 40 heures, de préférence entre 2 et 20 heures.  The reduction generally comprises a temperature rise phase and then a landing. The duration of the reduction stage is generally between 1 and 40 hours, preferably between 2 and 20 hours.
La Vitesse Volumétrique Horaire (V.V.H) est généralement comprise entre 150 et 3000, de préférence entre 300 et 1500 litres de gaz réducteur par heure et par litre de catalyseur. f) passivation (étape optionnelle)  The Volumetric Hourly Speed (V.V.H) is generally between 150 and 3000, preferably between 300 and 1500 liters of reducing gas per hour and per liter of catalyst. f) passivation (optional step)
Préalablement à sa mise en œuvre dans le réacteur catalytique, le catalyseur selon l'invention peut éventuellement subir une étape de passivation (étape f) par un composé soufré ou oxygéné ou par le C02 avant ou après l'étape de traitement réducteur e). Cette étape de passivation peut être effectuée ex-situ ou in-situ. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier. Prior to its implementation in the catalytic reactor, the catalyst according to the invention may optionally undergo a passivation step (step f) with a sulfur or oxygen compound or with CO 2 before or after the reducing treatment step e) . This passivation step may be performed ex situ or in situ. The passivation step is carried out by the implementation of methods known to those skilled in the art.
L'étape de passivation par le soufre permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents par exemple du nickel qui existent sur le catalyseur neuf et donc à atténuer l'activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier et notamment, à titre d'exemple par la mise en œuvre de l'une des méthodes décrites dans les documents de brevets EP0466567, US5153163, FR2676184, WO2004/098774, EP0707890. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-RrS-S-R2-OH tel que le di-thio-di-éthanol de formule HO- C2H4-S-S-C2H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0,1 et 2 % poids dudit élément par rapport à la masse du catalyseur. The sulfur passivation step makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways when starting new catalysts ("run away" according to the English terminology). Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites, for example nickel, which exist on the new catalyst and thus in attenuating the activity of the catalyst in favor of its selectivity. The passivation step is carried out by the implementation of methods known to those skilled in the art and in particular, for example by the implementation of one of the methods described in patent documents EP0466567, US5153163, FR2676184, WO2004 / 098774, EP0707890. The sulfur compound is for example chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulphide and propylmethylsulphide or an organic disulfide of formula HO-RrS-SR 2 -OH such as di-thio-di- ethanol of the formula HO- C 2 H 4 SSC 2 H4 OH (often called DEODS). The sulfur content is generally between 0.1 and 2% by weight of said element relative to the mass of the catalyst.
L'étape de passivation par un composé oxygéné ou par le C02 est généralement effectuée après un traitement réducteur au préalable à température élevée, généralement comprise entre 350 et 500°C, et permet de préserver la phase métallique du catalyseur en présence d'air. Un deuxième traitement réducteur à température plus basse généralement entre 120 et 350°C, est ensuite généralement effectué. Le composé oxygéné est généralement l'air ou tout autre flux contenant de l'oxygène. 4. Utilisation du catalyseur The passivation step with an oxygenated compound or with CO 2 is generally carried out after a reducing treatment beforehand at elevated temperature, generally between 350 and 500 ° C., and makes it possible to preserve the metallic phase of the catalyst in the presence of air. . A second reducing treatment at a lower temperature, generally between 120 and 350 ° C., is then generally carried out. The oxygenated compound is generally air or any other stream containing oxygen. 4. Use of the catalyst
Les composés organiques mono-insaturés tels que par exemple l'éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1 -2-butadiène et le 1 -3- butadiène, le vinylacétylène et l'éthylacétylène, et d'autres composés polyinsaturés dont le point d'ebullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes.  Monounsaturated organic compounds such as, for example, ethylene and propylene, are at the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes. These processes are operated at high temperature and produce, in addition to the desired monounsaturated compounds, polyunsaturated organic compounds such as acetylene, propadiene and methylacetylene (or propyne), 1 -2-butadiene and 1 -3 butadiene, vinylacetylene and ethylacetylene, and other polyunsaturated compounds whose boiling point corresponds to the C5 + cut (hydrocarbon compounds having at least 5 carbon atoms), in particular diolefinic or styrenic or indenic compounds. These polyunsaturated compounds are very reactive and lead to spurious reactions in the polymerization units. It is therefore necessary to eliminate them before valuing these cuts.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l'hydrogénation des noyaux aromatiques. Selective hydrogenation is the main treatment developed to specifically remove undesired polyunsaturated compounds from these hydrocarbon feeds. It allows the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics, avoiding their total saturation and thus the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as a filler, the selective hydrogenation also makes it possible to selectively hydrogenate alkenyl aromatics to aromatics by avoiding the hydrogenation of the aromatic rings.
La charge d'hydrocarbures traitée dans le procédé d'hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique. The hydrocarbon feedstock treated in the selective hydrogenation process has a final boiling point less than or equal to 300 ° C and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound. The term "polyunsaturated compounds" means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+. More particularly, the filler is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a steam cracking C3 cut, a steam cracking C4 cut, a steam cracking C5 cut and a still called steam cracking gasoline. pyrolysis gasoline or C5 + cut.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent. La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l'ordre de 90 % poids de propylène, de l'ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent. Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l'ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l'ordre de 30 % poids d'éthylène, de l'ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l'éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4. The steam cracking section C2, advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane. In certain steam cracking sections, between 0.1 and 1% by weight of C 3 compounds may also be present. The C3 steam-cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C 2 compounds and C 4 compounds may also be present. A C2 - C3 cut can also be advantageously used for the implementation of the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane. This filler may also contain between 0.1 and 2% by weight of C4 compounds.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent. The C4 steam-cracking cut, advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% by weight butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes. The C5 steam-cracking cut, advantageously used for carrying out the selective hydrogenation process according to the invention, has, for example, the following composition: 21% by weight of pentanes, 45% by weight of pentenes and 34% by weight of pentadienes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre. The steam cracking gasoline or pyrolysis gasoline, advantageously used for carrying out the selective hydrogenation process according to the invention, corresponds to a hydrocarbon fraction whose boiling point is generally between 0 and 300 ° C., preferably between 10 and 250 ° C. The polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are, in particular, diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene). ). Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts). For example, a charge formed of pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulfur, preferably from 0 to 500 ppm by weight of sulfur.
De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une coupe C3, ou une essence de vapocraquage. Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l'hydrogénation des noyaux aromatiques. La mise en œuvre technologique du procédé d'hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l'hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré- injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d'hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d'au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. Preferably, the polyunsaturated hydrocarbon feedstock treated according to the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a C3 cut, or a steam cracking gasoline. The selective hydrogenation process according to the invention aims at eliminating said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons. For example, when said feed is a C2 cut, the selective hydrogenation process aims to selectively hydrogenate acetylene. When said feedstock is a C3 cut, the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene. In the case of a C4 cut, it is intended to remove butadiene, vinylacetylene (VAC) and butyne, in the case of a C5 cut, it is intended to eliminate pentadienes. When said feed is a steam cracking gasoline, the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to corresponding aromatic compounds by avoiding the hydrogenation of aromatic rings. The technological implementation of the selective hydrogenation process is carried out, for example, by injection, in ascending or descending current, of the polyunsaturated hydrocarbon feedstock and hydrogen in at least one fixed bed reactor. Said reactor may be of the isothermal or adiabatic type. An adiabatic reactor is preferred. The polyunsaturated hydrocarbon feedstock may advantageously be diluted by one or more re-injection (s) of the effluent, from said reactor where the selective hydrogenation reaction occurs, at various points of the reactor, located between the inlet and the outlet. the reactor outlet to limit the temperature gradient in the reactor. The technological implementation of the selective hydrogenation process according to the invention may also be advantageously carried out by implanting at least one of said supported catalyst in a reactive distillation column or in reactor-exchangers or in a slurry-type reactor. . The flow of hydrogen can be introduced at the same time as the feedstock to be hydrogenated and / or at one or more different points of the reactor.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d'abaisser le coût énergétique et d'augmenter la durée de cycle du catalyseur. D'une manière générale, l'hydrogénation sélective d'une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h"1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h"1 pour un procédé réalisé en phase gazeuse. The selective hydrogenation of the steam-cracking cuts C2, C2-C3, C3, C4, C5 and C5 + can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the phase gaseous for C2 and C2-C3 cuts. A reaction in the liquid phase makes it possible to lower the energy cost and to increase the catalyst cycle time. In general, the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point of less than or equal to 300 ° C. is carried out at a temperature of between 0 and 300 ° C., at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) ) between 0.1 and 10 and at an hourly volume velocity VVH (defined as the ratio of the volume flow rate of charge to the catalyst volume) of between 0.1 and 200 h -1 for a process carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at a VVH hourly volume rate of between 100 and 40,000 h -1 for a process carried out in the gas phase.
Dans un mode de réalisation selon l'invention, lorsqu'on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1 ,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 °C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h"1 , de préférence entre 1 et 50 h"1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa. Plus préférentiellement, on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h"1 et la pression est comprise entre 1 ,0 et 7,0 MPa. Encore plus préférentiellement, on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1 ,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h"1 et la pression est comprise entre 1 ,5 et 4,0 MPa. Le débit d'hydrogène est ajusté afin d'en disposer en quantité suffisante pour hydrogéner théoriquement l'ensemble des composés polyinsaturés et de maintenir un excès d'hydrogène en sortie de réacteur. In one embodiment according to the invention, when a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline containing polyunsaturated compounds, the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally understood. between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0, the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C, the hourly volume velocity (VVH) is generally between 0.5 and 100 h "1 , preferably between 1 and 50 h " 1 and the pressure is generally between 0.3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa. More preferably, a selective hydrogenation process is carried out in which the feedstock is a steam cracking gasoline comprising polyunsaturated compounds, the molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) is between 0.7 and 5.0, the temperature is between 20 and 200 ° C., the hourly volume velocity (VVH) is generally between 1 and 50 h -1 and the pressure is between 1.0 and 7.0 MPa. selective hydrogenation in which the feedstock is a steam cracking gasoline containing polyunsaturated compounds, the molar ratio hydrogen / (polyunsaturated compounds to be hydrogenated) is between 1.0 and 2.0, the temperature is between 30 and 180 ° C., the Hourly volume velocity (VVH) is generally between 1 and 50 h -1 and the pressure is between 1.5 and 4.0 MPa. The hydrogen flow rate is adjusted in order to dispose of it in sufficient quantity to theoretically hydrogenate all of the polyunsaturated compounds and to maintain an excess of hydrogen at the outlet of the reactor.
Dans un autre mode de réalisation selon l'invention, lorsqu'on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h"1 , de préférence entre 500 et 30000 h"1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa. In another embodiment according to the invention, when a selective hydrogenation process is carried out in which the feedstock is a steam-cracking cross-section C2 and / or a C2-C3 steam-cracking cross-section comprising polyunsaturated compounds, the molar ratio ( hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C, the speed hourly volume (VVH) is included generally between 100 and 40000 h -1 , preferably between 500 and 30000 h -1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa.
Exemples Examples
Exemple 1 : préparation d'un catalyseur C1 (non conforme) Example 1: Preparation of a catalyst C1 (non-compliant)
Une suspension colloïdale d'oxyde de Pd est préparée sous agitation à 25°C par dilution de 230 g d'une solution de nitrate de palladium Pd(N03)2 contenant 8,5 % poids de palladium Pd avec environ 3,4 litres d'eau déminéralisée, puis ajout d'environ 150ml_ d'une solution de soude pour obtenir à un pH de 2,4. La suspension est ensuite diluée avec de l'eau déminéralisée à un volume qui correspond à 100% du volume poreux du support alumine (Vp = 0,7 ml/g) dont la surface spécifique est de 140 m2/g mis en forme sous forme de billes de diamètre 2-4 mm. Cette solution est ensuite imprégnée en tonneau d'imprégnation à une vitesse de rotation de 14 tr/min et un débit d'ajout de la solution de 5,4 L/h sur environ 10kg d'une alumine chauffée à 20°C. Une étape de maturation du support imprégné avant séchage d'une durée de 20 h est effectuée sous air en milieu confiné et humide. Le solide obtenu est séché pendant 16h à 90°C sous débit d'azote. Le catalyseur est ensuite calciné sous un flux d'air 2 h à 450°C. A colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium Pd with approximately 3.4 liters. demineralized water, then adding about 150ml of a sodium hydroxide solution to obtain a pH of 2.4. The suspension is then diluted with demineralized water to a volume corresponding to 100% of the pore volume of the alumina support (Vp = 0.7 ml / g), the specific surface area of which is 140 m 2 / g shape of balls of diameter 2-4 mm. This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 L / h on about 10 kg of an alumina heated to 20 ° C. A stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment. The solid obtained is dried for 16 hours at 90 ° C under nitrogen flow. The catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
Le catalyseur C1 ainsi préparé contient 0,19% poids de palladium par rapport au poids total de catalyseur.  The catalyst C1 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
La caractérisation du catalyseur C1 par microsonde de Castaing montre que 80% du Pd est réparti sur une croûte d'épaisseur environ 75 μηι.  The characterization of the catalyst C1 by microprobe of Castaing shows that 80% of the Pd is distributed over a crust thick about 75 μηι.
La dispersion apparente du palladium du catalyseur C1 est de 23%. Exemple 2 : préparation d'un catalyseur C2 (conforme)  The apparent dispersion of the palladium of the catalyst C1 is 23%. Example 2 Preparation of a Catalyst C2 (Conforming)
Une suspension colloïdale d'oxyde de Pd est préparée sous agitation à 25°C par dilution de 230 g d'une solution de nitrate de palladium Pd(N03)2 contenant 8,5 % poids de palladium Pd avec environ 5,6 litres d'eau déminéralisée, puis ajout d'environ 150mL d'une solution de soude pour obtenir à un pH de 2,4. L'acide citrique est ajouté à la solution colloïdale avec un rapport molaire acide citrique sur palladium de 1 . A colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium Pd with approximately 5.6 liters. demineralised water, then add about 150mL of a sodium hydroxide solution to obtain a pH of 2.4. Citric acid is added to the colloidal solution with a citric acid to palladium acid ratio of 1.
La suspension est ensuite diluée avec de l'eau déminéralisée à un volume qui correspond à 100% du volume poreux du support alumine (Vp = 0,7 ml/g) dont la surface spécifique est de 140 m2/g mis en forme sous forme de billes de diamètre 2 - 4 mm. Cette solution est ensuite imprégnée en tonneau d'imprégnation à une vitesse de rotation de 14 tr/min et un débit d'ajout de la solution de 5,4 L h sur environ 10 kg d'une alumine chauffée à 20°C. Une étape de maturation du support imprégné avant séchage d'une durée de 20 h est effectuée sous air en milieu confiné et humide. Le solide obtenu est séché pendant 16h à 90°C sous débit d'azote. Le catalyseur est ensuite calciné sous un flux d'air 2 h à 450°C. The suspension is then diluted with demineralized water to a volume corresponding to 100% of the pore volume of the alumina support (Vp = 0.7 ml / g), the specific surface area of which is 140 m 2 / g shape of balls of diameter 2 - 4 mm. This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a rate of addition of the solution of 5.4 L h on about 10 kg of an alumina heated to 20 ° C. A stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment. The solid obtained is dried for 16 hours at 90 ° C under nitrogen flow. The catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
Le catalyseur C2 ainsi préparé contient 0,19% poids de palladium par rapport au poids total de catalyseur. The catalyst C2 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
La caractérisation du catalyseur C2 par microsonde de Castaing montre que 80% du Pd est réparti sur une croûte d'épaisseur environ 75 μηι. The characterization of the catalyst C2 by a Castaing microprobe shows that 80% of the Pd is distributed over a crust of thickness approximately 75 μηι.
La caractérisation du catalyseur C2 par IRM montre la présence d'une couche d'alumine répartie sur une croûte d'épaisseur environ 35 μηι en extrême périphérie du catalyseur.  The characterization of the catalyst C2 by MRI shows the presence of a layer of alumina distributed over a crust with a thickness of about 35 μηι at the extreme periphery of the catalyst.
La dispersion apparente du palladium du catalyseur C2 est de 26%. The apparent dispersion of the palladium of catalyst C2 is 26%.
Le catalyseur C2 est représenté en figure 3. Catalyst C2 is shown in FIG.
Exemple 3 : préparation d'un catalyseur C3 (non conforme) Example 3 Preparation of a C3 Catalyst (Non-Conforming)
Une suspension colloïdale d'oxyde de Pd est préparée sous agitation à 25°C par dilution de 230 g d'une solution de nitrate de palladium Pd(N03)2 contenant 8,5 % poids de palladium Pd avec environ 4,6 litres d'eau déminéralisée, puis ajout d'environ 150 mL d'une solution de soude pour arriver à un pH de 2,4. La suspension est ensuite diluée avec de l'eau déminéralisée à un volume qui correspond à 75% du volume poreux du support alumine (Vp = 0,7 ml/g) dont la surface spécifique est de 180 m2/g mis en forme sous forme d'extrudés trilobés d'un diamètre de 2 mm. Cette solution est ensuite imprégnée en tonneau d'imprégnation à une vitesse de rotation de 14 tr/min et un débit d'ajout de la solution de 5,4 l/h sur environ 10kg d'une alumine chauffée à 60°C. Une étape de maturation du support imprégné avant séchage d'une durée de 20 h est effectuée sous air en milieu confiné et humide. Le solide obtenu est séché pendant 16h à 90°C sous débit d'azote. Le catalyseur est ensuite calciné sous un flux d'air 2 h à 450°C. A colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium Pd with approximately 4.6 liters. demineralized water, then add about 150 mL of sodium hydroxide solution to reach a pH of 2.4. The suspension is then diluted with demineralised water to a volume corresponding to 75% of the pore volume of the alumina support (Vp = 0.7 ml / g), the specific surface area of which is 180 m 2 / g form of trilobal extrusions with a diameter of 2 mm. This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 l / h on about 10 kg of an alumina heated to 60 ° C. A stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment. The solid obtained is dried for 16 hours at 90 ° C under nitrogen flow. The catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
Le catalyseur C3 ainsi préparé contient 0,19% poids de palladium par rapport au poids total de catalyseur.  Catalyst C3 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
La caractérisation du catalyseur C3 par microsonde de Castaing montre que 80% du Pd est réparti sur une croûte d'épaisseur environ 35 μηι.  The characterization of the C3 catalyst by a Castaing microprobe shows that 80% of the Pd is distributed over a crust with a thickness of approximately 35 μηι.
La dispersion apparente du palladium du catalyseur C3 est de 25%. The apparent dispersion of the palladium of catalyst C3 is 25%.
Le catalyseur C3 est représenté en figure 1 . Catalyst C3 is shown in FIG.
Exemple 4 : préparation d'un catalyseur C4 (conforme) Example 4 Preparation of a C4 Catalyst (Compliant)
Une suspension colloïdale d'oxyde de Pd est préparée sous agitation à 25°C par dilution de 230 g d'une solution de nitrate de palladium Pd(N03)2 contenant 8,5 % poids de palladium Pd avec environ 5,6 litres d'eau déminéralisée, puis ajout d'environ 150 ml_ d'une solution de soude pour obtenir à un pH de 2,4. L'acide citrique est ajouté à la solution colloïdale avec un rapport molaire acide citrique sur palladium de 1 . A colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium. Pd with about 5.6 liters of demineralized water, then add about 150 ml of a sodium hydroxide solution to obtain a pH of 2.4. Citric acid is added to the colloidal solution with a citric acid to palladium acid ratio of 1.
La suspension est ensuite diluée avec de l'eau déminéralisée à un volume qui correspond à 100% du volume poreux du support alumine (Vp = 0,7 ml/g) dont la surface spécifique est de 180 m2/g mis en forme sous forme d'extrudés trilobés d'un diamètre de 2 mm. Cette solution est ensuite imprégnée en tonneau d'imprégnation à une vitesse de rotation de 14tr/min et un débit d'ajout de la solution de 5,4l/h sur environ 10kg d'une alumine chauffée à 20°C. Une étape de maturation du support imprégné avant séchage d'une durée de 20 h est effectuée sous air en milieu confiné et humide. Le solide obtenu est séché pendant 16h à 90°C sous débit d'azote. Le catalyseur est ensuite calciné sous un flux d'air 2 h à 450°C. The suspension is then diluted with demineralised water to a volume corresponding to 100% of the pore volume of the alumina support (Vp = 0.7 ml / g), the specific surface area of which is 180 m 2 / g form of trilobal extrusions with a diameter of 2 mm. This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and an addition rate of the solution of 5.4 l / h on about 10 kg of an alumina heated to 20 ° C. A stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment. The solid obtained is dried for 16 hours at 90 ° C under nitrogen flow. The catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
Le catalyseur C4 ainsi préparé contient 0,19 %poids de palladium par rapport au poids total de catalyseur. Catalyst C4 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
La caractérisation du catalyseur C4 par microsonde de Castaing montre que 80% du Pd est réparti sur une croûte d'épaisseur environ 45 μηι.  The characterization of the catalyst C4 by a Castaing microprobe shows that 80% of the Pd is distributed over a crust with a thickness of approximately 45 μηι.
La caractérisation du catalyseur C4 par IRM montre la présence d'une couche d'alumine répartie sur une croûte d'épaisseur environ 30 μηι en extrême périphérie du catalyseur.  The characterization of the C4 catalyst by MRI shows the presence of a layer of alumina distributed on a crust with a thickness of about 30 μηι at the extreme periphery of the catalyst.
La dispersion apparente du palladium du catalyseur C4 est de 26%. Le catalyseur C4 est représenté en figure 2. The apparent dispersion of the palladium of catalyst C4 is 26%. Catalyst C4 is shown in FIG.
Exemple 5 : préparation d'un catalyseur C5 (conforme) Example 5: Preparation of a C5 catalyst (compliant)
Une solution aqueuse de nitrate de palladium est préparée à 25°C par dilution de 3,5 g d'une solution de nitrate de palladium contenant 8,5 % poids de palladium, avec de l'eau déminéralisée à un volume qui correspond au volume poreux du support alumine (Vp = 0,7 ml/g).  An aqueous solution of palladium nitrate is prepared at 25 ° C. by diluting 3.5 g of a solution of palladium nitrate containing 8.5% by weight of palladium, with demineralized water at a volume which corresponds to the volume porous alumina support (Vp = 0.7 ml / g).
L'acide citrique est ajouté cette solution avec un rapport molaire acide citrique sur palladium de 1 .  Citric acid is added this solution with a molar ratio of citric acid to palladium of 1.
La suspension est ensuite diluée avec de l'eau déminéralisée à un volume qui correspond à 100% du volume poreux du support alumine dont la surface spécifique est de 210 m2/g mis en forme sous forme d'extrudés trilobés d'un diamètre de 2 mm. Cette solution est ensuite imprégnée en tonneau d'imprégnation à une vitesse de rotation de 14 tr/min et un débit d'ajout de la solution de 5,4 L/h sur environ 10 kg d'une alumine chauffée à 20°C. Une étape de maturation du support imprégné avant séchage d'une durée de 20 h est effectuée sous air en milieu confiné et humide. Le solide obtenu est séché pendant 16h à 90°C sous débit d'azote. Le catalyseur est ensuite calciné sous un flux d'air 2 h à 450°C. Le catalyseur C5 ainsi préparé contient 0,19 %poids de palladium par rapport au poids total de catalyseur. The suspension is then diluted with demineralized water to a volume which corresponds to 100% of the pore volume of the alumina support whose specific surface is 210 m 2 / g shaped in the form of trilobal extrusions with a diameter of 2 mm. This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 L / h on about 10 kg of an alumina heated to 20 ° C. A stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment. The solid obtained is dried for 16 hours at 90 ° C under nitrogen flow. The catalyst is then calcined under a flow of air for 2 hours at 450 ° C. The catalyst C5 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
La caractérisation du catalyseur C5 par microsonde de Castaing montre que 80% du Pd est réparti sur une croûte d'épaisseur environ 300 μηι.  The characterization of the C5 catalyst by a Castaing microprobe shows that 80% of the Pd is distributed over a crust of thickness approximately 300 μηι.
La caractérisation du catalyseur C5 par IRM montre la présence d'une couche d'alumine répartie sur une croûte d'épaisseur environ 45 μηι en extrême périphérie du catalyseur. The characterization of the catalyst C5 by MRI shows the presence of a layer of alumina distributed on a crust with a thickness of about 45 μηι at the extreme periphery of the catalyst.
La dispersion apparente du palladium du catalyseur C5 est de 19%. The apparent dispersion of the palladium of catalyst C5 is 19%.
Exemple 6 : préparation d'un catalyseur C6 (conforme) Example 6 Preparation of a C6 Catalyst (Conform)
Une suspension colloïdale d'oxyde de Pd est préparée sous agitation à 25°C par dilution de 230 g d'une solution de nitrate de palladium Pd(N03)2 contenant 8,5 % poids de palladium Pd avec environ 5,6 litres d'eau déminéralisée, puis ajout d'environ 150 ml d'une solution de soude pour obtenir à un pH de 2,4. L'acide citrique est ajouté en pré-imprégnation sur le support avant imprégnation de la solution colloïdale de palladium avec un rapport molaire acide citrique sur palladium de 1 . A colloidal suspension of Pd oxide is prepared with stirring at 25 ° C. by diluting 230 g of a solution of palladium nitrate Pd (NO 3 ) 2 containing 8.5% by weight of palladium Pd with approximately 5.6 liters. demineralised water, then add about 150 ml of sodium hydroxide solution to obtain a pH of 2.4. The citric acid is added by pre-impregnation on the support before impregnation of the colloidal palladium solution with a citric acid to palladium acid ratio of 1.
La suspension est ensuite diluée avec de l'eau déminéralisée à un volume qui correspond à 100% du volume poreux du support alumine (Vp = 0,7 ml/g) dont la surface spécifique est de 180 m2/g mis en forme sous forme d'extrudés. Cette solution est ensuite imprégnée en tonneau d'imprégnation à une vitesse de rotation de 14 tr/min et un débit d'ajout de la solution de 5,4 L/h sur environ 10 kg d'une alumine chauffée à 20°C. Une étape de maturation du support imprégné avant séchage d'une durée de 20 h est effectuée sous air en milieu confiné et humide. Le solide obtenu est séché pendant 16h à 90°C sous débit d'azote. Le catalyseur est ensuite calciné sous un flux d'air 2 h à 450°C. The suspension is then diluted with demineralised water to a volume corresponding to 100% of the pore volume of the alumina support (Vp = 0.7 ml / g), the specific surface area of which is 180 m 2 / g form of extrusions. This solution is then impregnated in an impregnation barrel at a rotation speed of 14 rpm and a solution addition rate of 5.4 L / h on about 10 kg of an alumina heated to 20 ° C. A stage of maturation of the impregnated support before drying of a duration of 20 h is carried out under air in a confined and humid environment. The solid obtained is dried for 16 hours at 90 ° C under nitrogen flow. The catalyst is then calcined under a flow of air for 2 hours at 450 ° C.
Le catalyseur C6 ainsi préparé contient 0,19 %poids de palladium par rapport au poids total de catalyseur. The catalyst C6 thus prepared contains 0.19% by weight of palladium relative to the total weight of catalyst.
La caractérisation du catalyseur C6 par microsonde de Castaing montre que 80% du Pd est réparti sur une croûte d'épaisseur environ 47 μηι.  The characterization of the C6 catalyst by a Castaing microprobe shows that 80% of the Pd is distributed over a crust with a thickness of approximately 47 μηι.
La caractérisation du catalyseur C6 par IRM montre la présence d'une couche d'alumine répartie sur une croûte d'épaisseur environ 34 μηι en extrême périphérie du catalyseur.  The characterization of the catalyst C6 by MRI shows the presence of a layer of alumina distributed on a crust with a thickness of about 34 μηι at the extreme periphery of the catalyst.
La dispersion apparente du palladium du catalyseur C6 est de 25%. The apparent dispersion of the palladium of catalyst C6 is 25%.
L'ensemble des caractéristiques techniques et morphologiques des catalyseurs C1 à C6 sont représentés dans le tableau 1 ci-après. Tableau 1 : Caractéristiques techniques et morphologiques des catalyseurs C1 à C6 The set of technical and morphological characteristics of the catalysts C1 to C6 are shown in Table 1 below. Table 1: Technical and morphological characteristics of catalysts C1 to C6
Figure imgf000028_0001
Figure imgf000028_0001
Exemple 6 : utilisation des catalyseurs C1 , C2, C3, C4, C5 et C6 pour l'hydrogénation sélective d'une essence de vapocraquaqe. Example 6 Use of Catalysts C1, C2, C3, C4, C5 and C6 for the Selective Hydrogenation of a Petroleum Gasoline.
Test catalytique en hydrogénation d'un mélange styrène isoprène en présence de S. Catalytic test in hydrogenation of a styrene isoprene mixture in the presence of S.
Avant le test catalytique, les catalyseurs A, B, C et D sont traités sous un flux de 1 litre d'hydrogène par heure et par gramme de catalyseur avec une montée en température de 300°C/h et un palier à 150°C pendant 2 heures.  Before the catalytic test, the catalysts A, B, C and D are treated under a stream of 1 liter of hydrogen per hour and per gram of catalyst with a temperature rise of 300 ° C./h and a plateau at 150 ° C. during 2 hours.
Les catalyseurs sont ensuite soumis à un test d'hydrogénation dans un réacteur discontinu parfaitement agité de type « Grignard ». Pour ce faire, 4 ml de billes de catalyseur réduit sont fixées à l'abri de l'air dans un panier annulaire situé autour du mobile d'agitation. Les paniers utilisés dans les réacteurs sont de type Robinson Mahonnay.  The catalysts are then subjected to a hydrogenation test in a perfectly stirred batch reactor of the "Grignard" type. To do this, 4 ml of reduced catalyst beads are secured to the air in an annular basket located around the stirrer. The baskets used in the reactors are Robinson Mahonnay type.
L'hydrogénation est réalisée en phase liquide. The hydrogenation is carried out in the liquid phase.
La composition de la charge est la suivante : 8% poids styrène, 8% poids isoprène, 10 ppm de S introduits sous forme de pentanethiol, 100 ppm de S introduits sous forme de thiophène, le solvant étant du n-heptane.  The composition of the filler is as follows: 8% styrene weight, 8% isoprene weight, 10 ppm S introduced as pentanethiol, 100 ppm S introduced as thiophene, the solvent being n-heptane.
Le test est réalisé sous une pression constante de 3,5 MPa d'hydrogène et à une température de 45°C. Les produits de la réaction sont analysés par chromatographie en phase gazeuse.  The test is carried out under a constant pressure of 3.5 MPa of hydrogen and at a temperature of 45 ° C. The products of the reaction are analyzed by gas chromatography.
Les activités catalytiques sont exprimées en moles de H2 consommées par minute et par gramme de palladium et sont reportées dans le tableau 2 ci-après. Les résultats en terme d'activités mesurées en hydrogénation d'un mélange styrène- isoprène en présence de soufre sont représentés dans le tableau 2 ci-après. The catalytic activities are expressed in moles of H 2 consumed per minute and per gram of palladium and are reported in Table 2 below. The results in terms of activities measured in hydrogenation of a styrene-isoprene mixture in the presence of sulfur are shown in Table 2 below.
Tableau 2 : Activités mesurées en hydrogénation d'un mélange styrène-isoprène en présence de soufre Table 2: Measured activities in hydrogenation of a styrene-isoprene mixture in the presence of sulfur
Figure imgf000029_0001
Figure imgf000029_0001
* en (moles H2)/[minx(gramme de palladium)] * in (moles H 2 ) / [minx (gram of palladium)]
** %/ref correspond au gain converti en %, obtenu par rapport au catalyseur de référence C2 dont l'activité est défini à 100%. Les catalyseurs C4, C5 et C6 frais préparés sur supports extrudés c'est-à-dire avant tout chargement/déchargement sont tous plus actifs que leur homologue prépares sur billes, c'est-à-dire les catalyseurs C1 et C2. ** % / ref corresponds to the gain converted in%, obtained relative to the reference catalyst C2 whose activity is defined at 100%. Fresh C4, C5 and C6 catalysts prepared on extruded substrates, i.e. prior to any loading / unloading, are all more active than their counterparts prepared on bales, i.e. C1 and C2 catalysts.
Après deux étapes de chargement/déchargement le catalyseur C1 perd 1 ,5% de fines et donc son activité catalytique diminue légèrement et passent à respectivement 91 % du fait d'une perte en palladium située en périphérie du catalyseur.  After two loading / unloading steps, the catalyst C1 loses 1.5% of fines and thus its catalytic activity decreases slightly and increases to 91% respectively due to a loss of palladium located at the periphery of the catalyst.
Le catalyseur C2 quant à lui ne perd quasiment pas en terme d'activité du fait de la protection de la couche d'alumine générée par la co-imprégnation en présence d'acide citrique.  Catalyst C2 in turn loses virtually no activity due to the protection of the alumina layer generated by the co-impregnation in the presence of citric acid.
Le catalyseur C3 (non-conforme), après des étapes de chargement déchargement, perd 3,5% de fines et donc son activité catalytique diminue et passent de 130% à 93% par rapport à notre référence ce qui représente une perte en activité de près de 28%, du fait d'une perte en palladium située en périphérie du catalyseur. Alors que le catalyseur C4, conforme à l'invention, perd une quantité de fines équivalente au catalyseur C3 (3,6%), son activité catalytique n'est pas affectée car les fines perdues ne contiennent pas de palladium. La partie du catalyseur impactée par l'attrition est dénuée de palladium et contient essentiellement de l'alumine et/ou des résidus carbonés provenant essentiellement de la décomposition de l'acides citrique. The catalyst C3 (non-compliant), after unloading loading steps, loses 3.5% of fines and thus its catalytic activity decreases and goes from 130% to 93% compared to our reference which represents a loss in activity of nearly 28%, due to a loss of palladium located at the periphery of the catalyst. While the catalyst C4 according to the invention loses a quantity of fines equivalent to the catalyst C3 (3.6%), its catalytic activity is not affected because the lost fines do not contain palladium. The attrition-impacted catalyst portion is palladium-free and essentially contains alumina and / or carbon residues essentially derived from the decomposition of citric acid.
Les catalyseurs C5 et C6 préparés sur extrudés avec une co-imprégnation ou une préimprégnation d'une solution colloïdale de palladium et de l'acide citrique sont plus actifs et présentent une résistance à l'attrition plus élevée que leurs homologues préparés sur billes et sur extrudés mais sans ajout d'acide citrique.  Catalysts C5 and C6 prepared on extruded with a co-impregnation or prepreg of a colloidal solution of palladium and citric acid are more active and have a higher resistance to attrition than their counterparts prepared on beads and on extruded but without the addition of citric acid.
Le catalyseur C5 préparé par imprégnation à sec classique, i.e. non pas par voie colloïdale, présente des épaisseurs de couches plus épaisses . Il est donc un peu moins actif que leur homologues par voie colloïdale (i.e. le catalyseur C6). Cependant, l'ajout d'acide citrique dans la solution d'imprégnation permet également de ne pas perdre en activité après des étapes de chargement / déchargement, ceci étant dû à la présence de la couche d'alumine en extrême périphérie du catalyseur. Catalyst C5 prepared by conventional dry impregnation, i.e. not colloidally, has thicker layer thicknesses. It is therefore a little less active than their colloidal counterparts (i.e. the C6 catalyst). However, the addition of citric acid in the impregnating solution also makes it possible not to lose activity after loading / unloading steps, this being due to the presence of the alumina layer at the extreme periphery of the catalyst.

Claims

REVENDICATIONS
1 . Catalyseur multicouches comprenant au moins un oxyde réfractaire sélectionné dans le groupe constitué par la silice, l'alumine et la silice-alumine, et une phase active comprenant entre 0,01 et 2% en poids d'un métal du groupe VIII par rapport au poids du catalyseur, lequel catalyseur comprenant : 1. Multilayer catalyst comprising at least one refractory oxide selected from the group consisting of silica, alumina and silica-alumina, and an active phase comprising between 0.01 and 2% by weight of a Group VIII metal with respect to catalyst weight, which catalyst comprises:
- un support poreux comprenant au moins ledit oxyde réfractaire ;  a porous support comprising at least said refractory oxide;
- une première couche, recouvrant au moins en partie ledit support poreux, comprenant au moins ledit métal du groupe VIII ;  a first layer, at least partially covering said porous support, comprising at least said group VIII metal;
- une seconde couche, recouvrant au moins en partie ladite première couche, comprenant au moins ledit oxyde réfractaire ;  a second layer, at least partially covering said first layer, comprising at least said refractory oxide;
caractérisé en ce que :  characterized in that
- au moins 80% en poids de métal du groupe VIII par rapport au poids total de métal du groupe VIII est réparti dans ladite première couche, l'épaisseur de ladite première couche étant comprise entre 10 et 600 μηι ;  - At least 80% by weight of Group VIII metal relative to the total weight of Group VIII metal is distributed in said first layer, the thickness of said first layer being between 10 and 600 μηι;
- au moins 1 % en poids dudit oxyde réfractaire par rapport au poids total du catalyseur est réparti dans ladite seconde couche, l'épaisseur de ladite seconde couche étant comprise entre 1 et 300 μηι.  - At least 1% by weight of said refractory oxide relative to the total weight of the catalyst is distributed in said second layer, the thickness of said second layer being between 1 and 300 μηι.
2. Catalyseur selon la revendication 1 , dans lequel ladite seconde couche recouvre totalement ladite première couche. The catalyst of claim 1, wherein said second layer completely covers said first layer.
3. Catalyseur selon les revendications 1 ou 2, dans lequel le métal du groupe VIII est le palladium ou le nickel. The catalyst of claims 1 or 2, wherein the Group VIII metal is palladium or nickel.
4. Catalyseur selon la revendication 3, dans le métal du groupe VIII est le palladium. 4. Catalyst according to claim 3, in the group VIII metal is palladium.
5. Catalyseur selon l'une quelconque des revendications précédentes, dans lequel le support poreux est de l'alumine. Catalyst according to any one of the preceding claims, wherein the porous support is alumina.
6. Catalyseur selon l'une quelconque des revendications précédentes, dans lequel le support poreux se présente sous la forme d'extrudés ou de billes. Catalyst according to any one of the preceding claims, wherein the porous support is in the form of extrudates or balls.
7. Procédé de préparation d'un catalyseur selon l'une quelconque des revendications 1 à 6, comprenant les étapes suivantes : a) on met en contact ledit support poreux avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique ; Process for the preparation of a catalyst according to any one of claims 1 to 6, comprising the following steps: a) said porous support is brought into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function;
b) on met en contact ledit support poreux avec au moins une solution contenant au moins un précurseur de métal du groupe VIII ; les étapes a) et b) étant réalisées séparément, dans un ordre indifférent, ou simultanément ;  b) said porous support is brought into contact with at least one solution containing at least one group VIII metal precursor; steps a) and b) being performed separately, in any order, or simultaneously;
c) on sèche le support imprégné à une température comprise entre 15°C et inférieure ou égale à 250°C ;  c) the impregnated support is dried at a temperature between 15 ° C and less than or equal to 250 ° C;
d) on calcine le support séché issu de l'étape c) à une température supérieure à 250°C mais inférieure à 900°C.  d) the dried support resulting from step c) is calcined at a temperature greater than 250 ° C. but less than 900 ° C.
8. Procédé de préparation d'un catalyseur selon la revendication 7, dans lequel le ratio molaire entre ledit composé organique et ledit métal du groupe VIII est compris entre 0,1 et 4,0. 8. Process for preparing a catalyst according to claim 7, wherein the molar ratio between said organic compound and said group VIII metal is between 0.1 and 4.0.
9. Procédé de préparation d'un catalyseur selon les revendications 7 ou 8, dans lequel les étapes a) et b) sont réalisés simultanément. 9. Process for preparing a catalyst according to claim 7 or 8, wherein steps a) and b) are carried out simultaneously.
10. Procédé de préparation d'un catalyseur selon l'une quelconque des revendications 7 à 9, dans lequel ledit composé organique comprend entre 2 et 7 atomes de carbone. A process for preparing a catalyst according to any one of claims 7 to 9, wherein said organic compound comprises between 2 and 7 carbon atoms.
1 1 . Procédé de préparation selon la revendication 10, dans lequel le composé organique est choisi parmi l'acide hydroxyacétique (acide glycolique), l'acide 2- hydroxypropanoïque (acide lactique), l'acide 2-hydroxypropanedioïque (acide tartronique), l'acide 2-hydroxybutanedioïque (acide malique), l'acide 2- hydroxypropane-1 ,2,3-tricarboxylique (acide citrique), l'acide 2,3- dihydroxybutanedioïque (acide tartrique), l'acide 2,2'-oxydiacétique (acide diglycolique), l'acide 2-oxopropanoïque (acide pyruvique), l'acide 4-oxopentanoïque (acide lévulinique). 1 1. A preparation process according to claim 10, wherein the organic compound is selected from hydroxyacetic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), acid 2-hydroxybutanedioic acid (malic acid), 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2,2'-oxydiacetic acid ( diglycolic acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid).
12. Procédé selon la revendication 1 1 , dans lequel le composé organique est l'acide citrique. The process of claim 11, wherein the organic compound is citric acid.
13. Procédé de préparation d'un catalyseur selon l'une quelconque des revendications 7 à 12, dans lequel l'étape a) et/ou b) est (sont) réalisée(s) par imprégnation à sec. 13. Process for preparing a catalyst according to any one of claims 7 to 12, wherein step a) and / or b) is (are) carried out by dry impregnation.
14. Procédé de préparation d'un catalyseur selon l'une quelconque des revendications 7 à 13, dans lequel l'étape a) de mise en contact dudit support poreux avec ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique et/ou l'étape b) de mise en contact dudit support poreux avec ladite solution comprenant au moins un précurseur de métal du groupe VIII est réalisé par ajout de ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique et/ou ladite solution comprenant au moins un précurseur de métal du groupe VIII sur ledit support à un débit compris entre 1 et 20 litre(s) par heure, ledit support poreux étant contenu dans un dispositif d'imprégnation rotatif fonctionnant à une vitesse de rotation comprise entre 10 et 20 tours/minute. 14. Process for preparing a catalyst according to any one of claims 7 to 13, wherein the step a) of bringing said porous support into contact with said solution containing at least one organic compound comprising at least one carboxylic acid function. and / or step b) bringing said porous support into contact with said solution comprising at least one group VIII metal precursor is carried out by adding said solution containing at least one organic compound comprising at least one carboxylic acid function and / or or said solution comprising at least one group VIII metal precursor on said support at a flow rate of between 1 and 20 liters per hour, said porous support being contained in a rotary impregnation device operating at a rotational speed of between 10 and 20 rpm.
15. Procédé d'hydrogénation sélective d'une charge comprenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule contenus dans une charge d'hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C par mise en contact de ladite charge avec de l'hydrogène et au moins un catalyseur selon l'une quelconque des revendications 1 à 6 ou préparé selon l'une quelconque des revendications 7 à 14, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h"1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h"1 lorsque le procédé est réalisé en phase gazeuse. 15. A process for the selective hydrogenation of a feedstock comprising polyunsaturated compounds containing at least 2 carbon atoms per molecule contained in a hydrocarbon feed having a final boiling point of less than or equal to 300 ° C. by contacting the feedstock. said feedstock with hydrogen and at least one catalyst according to any one of claims 1 to 6 or prepared according to any one of claims 7 to 14, which process is carried out at a temperature between 0 and 300 ° C, at a pressure of between 0.1 and 10 MPa, at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.1 and 10 and at an hourly space velocity of between 0.1 and 200 h -1 when the process is carried out in the liquid phase, or at a molar ratio of hydrogen / (polyunsaturated compounds to be hydrogenated) of between 0.5 and 1000 and at an hourly space velocity of between 100 and 40,000 h -1 when the process is carried out in phases gaseous.
PCT/EP2018/055714 2017-03-29 2018-03-08 Multilayer selective hydrogenation catalyst, preparation and use of same WO2018177709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1752617 2017-03-29
FR1752617A FR3064500A1 (en) 2017-03-29 2017-03-29 SELECTIVE HYROGENATION MULTILAYER CATALYST

Publications (1)

Publication Number Publication Date
WO2018177709A1 true WO2018177709A1 (en) 2018-10-04

Family

ID=59070836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/055714 WO2018177709A1 (en) 2017-03-29 2018-03-08 Multilayer selective hydrogenation catalyst, preparation and use of same

Country Status (2)

Country Link
FR (1) FR3064500A1 (en)
WO (1) WO2018177709A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144257A (en) * 2019-07-31 2022-03-04 Ifp 新能源公司 Catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy
CN114206491A (en) * 2019-07-31 2022-03-18 Ifp 新能源公司 Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
CN114206497A (en) * 2019-07-31 2022-03-18 Ifp 新能源公司 Catalyst comprising an active nickel phase distributed in a shell
US11504698B2 (en) * 2017-02-28 2022-11-22 Shanxi University Ni—Al2O3@Al2O3—SiO2 catalyst with coated structure, preparation method therefor and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099388B1 (en) * 2019-07-31 2021-07-16 Ifp Energies Now CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL IN THE FORM OF SMALL PARTICLES DISTRIBUTED IN CRUST AND A NICKEL COPPER ALLOY
FR3099386B1 (en) * 2019-07-31 2021-07-16 Ifp Energies Now CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST AND A NICKEL COPPER ALLOY
FR3099389B1 (en) * 2019-07-31 2021-07-16 Ifp Energies Now CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL SULFUR DISTRIBUTED IN CRUST

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259454A (en) * 1962-04-20 1966-07-05 Universal Oil Prod Co Method of oxidizing gaseous combustible waste products
FR2267830A1 (en) * 1974-04-19 1975-11-14 Universal Oil Prod Co
US3925253A (en) 1973-03-19 1975-12-09 Ethyl Corp Catalysts
FR2338076A1 (en) * 1976-01-14 1977-08-12 Bayer Ag NEW CATALYZER BASED ON NOBLE METALS ON SUPPORT, ITS PREPARATION PROCESS AND ITS USE
GB2000985A (en) * 1977-07-15 1979-01-24 Gen Motors Corp Automotive emission control catalyst and method for making same
GB2023019A (en) * 1978-02-06 1979-12-28 Gen Motors Corp Platinum, rhodium and palladium catalyst for automotive emission control
EP0466567A1 (en) 1990-07-13 1992-01-15 Institut Français du Pétrole Selective hydrogenation of diolefins in steam cracker naphtha on metal supported catalysts on which an organic sulfur compound had been incorporated before loading into the reactor
US5153163A (en) 1990-07-13 1992-10-06 Europeenne De Retraitement De Catalyseurs Eurecat Process for the pretreatment of a catalyst by a mixture of a sulphur agent and an organic reducing agent
FR2676184A1 (en) 1991-05-06 1992-11-13 Eurecat Europ Retrait Catalys PROCESS FOR PRETREATMENT OF A CATALYST BY A MIXTURE OF A SULFUR AGENT AND AN ORGANIC REDUCING AGENT
FR2720957A1 (en) * 1994-06-09 1995-12-15 Inst Francais Du Petrole Process for vapour phase selective hydrogenation of 2-3C acetylenic hydrocarbons
EP0707890A1 (en) 1994-10-07 1996-04-24 Eurecat Europeenne De Retraitement De Catalyseurs Process for pretreating before use a catalyst for the treatment of hydrocarbons
JP2004277597A (en) * 2003-03-17 2004-10-07 Tonengeneral Sekiyu Kk Method for hydrogenating hydrocarbon oil by using silica-alumina-based catalyst for hydrogenation
WO2004098774A1 (en) 2003-04-30 2004-11-18 Eurecat S.A. Off-site treatment for hydrogenation catalysts
US20050113251A1 (en) * 2003-11-24 2005-05-26 Lowe David M. Catalyst and process for selective hydrogenation
US20060025302A1 (en) 2004-07-27 2006-02-02 Sud-Chemie, Inc. Selective hydrogenation catalyst designed for raw gas feed streams
WO2011113881A2 (en) * 2010-03-19 2011-09-22 Shell Internationale Research Maatschappij B.V. Hydrogenation catalyst
FR2984761A1 (en) * 2011-12-21 2013-06-28 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A CATALYST BASED ON A GROUP VIII METAL PREPARED USING AT LEAST ONE ORGANIC ADDITIVE AND METHOD OF SELECTIVE HYDROGENATION USING SAID CATALYST

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259454A (en) * 1962-04-20 1966-07-05 Universal Oil Prod Co Method of oxidizing gaseous combustible waste products
US3925253A (en) 1973-03-19 1975-12-09 Ethyl Corp Catalysts
FR2267830A1 (en) * 1974-04-19 1975-11-14 Universal Oil Prod Co
FR2338076A1 (en) * 1976-01-14 1977-08-12 Bayer Ag NEW CATALYZER BASED ON NOBLE METALS ON SUPPORT, ITS PREPARATION PROCESS AND ITS USE
GB2000985A (en) * 1977-07-15 1979-01-24 Gen Motors Corp Automotive emission control catalyst and method for making same
GB2023019A (en) * 1978-02-06 1979-12-28 Gen Motors Corp Platinum, rhodium and palladium catalyst for automotive emission control
EP0466567A1 (en) 1990-07-13 1992-01-15 Institut Français du Pétrole Selective hydrogenation of diolefins in steam cracker naphtha on metal supported catalysts on which an organic sulfur compound had been incorporated before loading into the reactor
US5153163A (en) 1990-07-13 1992-10-06 Europeenne De Retraitement De Catalyseurs Eurecat Process for the pretreatment of a catalyst by a mixture of a sulphur agent and an organic reducing agent
FR2676184A1 (en) 1991-05-06 1992-11-13 Eurecat Europ Retrait Catalys PROCESS FOR PRETREATMENT OF A CATALYST BY A MIXTURE OF A SULFUR AGENT AND AN ORGANIC REDUCING AGENT
FR2720957A1 (en) * 1994-06-09 1995-12-15 Inst Francais Du Petrole Process for vapour phase selective hydrogenation of 2-3C acetylenic hydrocarbons
EP0707890A1 (en) 1994-10-07 1996-04-24 Eurecat Europeenne De Retraitement De Catalyseurs Process for pretreating before use a catalyst for the treatment of hydrocarbons
JP2004277597A (en) * 2003-03-17 2004-10-07 Tonengeneral Sekiyu Kk Method for hydrogenating hydrocarbon oil by using silica-alumina-based catalyst for hydrogenation
WO2004098774A1 (en) 2003-04-30 2004-11-18 Eurecat S.A. Off-site treatment for hydrogenation catalysts
US20050113251A1 (en) * 2003-11-24 2005-05-26 Lowe David M. Catalyst and process for selective hydrogenation
US20060025302A1 (en) 2004-07-27 2006-02-02 Sud-Chemie, Inc. Selective hydrogenation catalyst designed for raw gas feed streams
WO2011113881A2 (en) * 2010-03-19 2011-09-22 Shell Internationale Research Maatschappij B.V. Hydrogenation catalyst
FR2984761A1 (en) * 2011-12-21 2013-06-28 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A CATALYST BASED ON A GROUP VIII METAL PREPARED USING AT LEAST ONE ORGANIC ADDITIVE AND METHOD OF SELECTIVE HYDROGENATION USING SAID CATALYST

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Analyse physico-chimique des catalyseurs industriels", 2001
L. SORBIER ET AL.: "Measurement of palladium crust thickness on catalyst by EPMA", MATERIALS SCIENCE AND ENGINEERING, vol. 32, 2012
R. VAN HARDEVELD; F. HARTOG: "The statistics of surface atoms and surface sites on métal crystals", SURFACE SCIENCE, vol. 15, 1969, pages 189 - 230, XP025784886, DOI: doi:10.1016/0039-6028(69)90148-4
ROUQUEROL F.; ROUQUEROL J.; SINGH K.: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504698B2 (en) * 2017-02-28 2022-11-22 Shanxi University Ni—Al2O3@Al2O3—SiO2 catalyst with coated structure, preparation method therefor and application thereof
CN114144257A (en) * 2019-07-31 2022-03-04 Ifp 新能源公司 Catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy
CN114206491A (en) * 2019-07-31 2022-03-18 Ifp 新能源公司 Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
CN114206497A (en) * 2019-07-31 2022-03-18 Ifp 新能源公司 Catalyst comprising an active nickel phase distributed in a shell
CN114206491B (en) * 2019-07-31 2023-10-31 Ifp 新能源公司 Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
CN114206497B (en) * 2019-07-31 2023-10-31 Ifp 新能源公司 Catalyst comprising active nickel phase distributed in shell
CN114144257B (en) * 2019-07-31 2023-11-17 Ifp 新能源公司 Catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy

Also Published As

Publication number Publication date
FR3064500A1 (en) 2018-10-05

Similar Documents

Publication Publication Date Title
WO2018177709A1 (en) Multilayer selective hydrogenation catalyst, preparation and use of same
EP2669005B1 (en) Preparation process of a catalyst comprising palladium and silver usable in selective hydrogenation
FR2922784A1 (en) New catalyst comprising palladium, alkaline and alkaline-earth metal, and porous support comprising refractory oxide having silica, alumina and silica-alumina, useful e.g. in selective hydrogenation process using charge e.g. ketone
EP2474354B1 (en) Novel method for preparing palladium-based catalysts and use of said catalysts in selective hydrogenation
WO2021018601A1 (en) Catalyst comprising an active nickel phase distributed in a shell as well as a nickel-copper alloy
EP4003588B1 (en) Preparation process of a catalyst comprising an active nickel phase distributed in a shell
EP3326713B1 (en) Catalyst for selective hydrogenation of a c3 hydrocarbon fraction
EP4003587B1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell and a nickel-copper alloy
FR3080299A1 (en) PROCESS FOR THE PREPARATION OF A SELECTIVE BIMETALLIC HYDROGENATION CATALYST BASED ON NICKEL AND COPPER
WO2020148132A1 (en) Method for preparing a selective hydrogenation catalyst comprising a step of forming a ni-cu alloy in post-impregnation
EP3911439A1 (en) Process for preparing a selective hydrogenation catalyst, comprising a step of forming a ni-cu alloy in pre-impregnation
EP3463656B1 (en) Selective hydrogenation catalyst comprising an extruded support
WO2021018602A1 (en) Catalyst comprising an active nickel phase in the form of small particles distributed in a shell
EP3463657B1 (en) Method for preparing a selective hydrogenation catalyst
EP3332869B1 (en) Catalyst for selective hydrogenation of c3 fractions from steam cracking and/or catalytic cracking
FR3080300A1 (en) PROCESS FOR THE PREPARATION OF A BIMETALLIC CATALYST BASED ON NICKEL AND PLATINUM OR PALLADIUM
WO2023186521A1 (en) Catalyst based on palladium and zinc on an alumina support
FR3134016A1 (en) CATALYST BASED ON PALLADIUM AND FLUORINE ON AN ALUMINA SUPPORT
FR3132646A1 (en) CATALYST COMPRISING AN ACTIVE PHASE OF PALLADIUM AND COPPER
FR3115474A1 (en) PALLADIUM-BASED SELECTIVE HYDROGENATION CATALYST ON A ZINC OXIDE SUPPORT
WO2021018603A1 (en) Catalyst comprising an active nickel sulfur phase distributed in a shell
FR3132647A1 (en) METHOD FOR PREPARING A CATALYST COMPRISING AN ACTIVE PHASE OF PALLADIUM AND COPPER
WO2021239496A1 (en) Method for preparing a catalyst containing an active nickel phase distributed in a shell and a nickel-copper alloy
WO2021239491A1 (en) Method for preparing a catalyst comprising an active nickel phase distributed in a crust obtained from molten salts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18714709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18714709

Country of ref document: EP

Kind code of ref document: A1