WO2018176976A1 - 一种过钻头偶极子声波测井发射器及测井装置 - Google Patents

一种过钻头偶极子声波测井发射器及测井装置 Download PDF

Info

Publication number
WO2018176976A1
WO2018176976A1 PCT/CN2018/071365 CN2018071365W WO2018176976A1 WO 2018176976 A1 WO2018176976 A1 WO 2018176976A1 CN 2018071365 W CN2018071365 W CN 2018071365W WO 2018176976 A1 WO2018176976 A1 WO 2018176976A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
substrate
emitter
ceramic plate
along
Prior art date
Application number
PCT/CN2018/071365
Other languages
English (en)
French (fr)
Inventor
丛健生
魏倩
车承轩
王秀明
刘彬
Original Assignee
中国科学院声学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院声学研究所 filed Critical 中国科学院声学研究所
Priority to US16/078,146 priority Critical patent/US20190360329A1/en
Publication of WO2018176976A1 publication Critical patent/WO2018176976A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0603Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a piezoelectric bender, e.g. bimorph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy
    • G01V1/159Generating seismic energy using piezoelectric or magnetostrictive driving means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/46Data acquisition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/73Drilling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • G01V2001/526Mounting of transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Definitions

  • the invention relates to the field of mineral resource exploration and development technology, in particular in the fields of mine geophysical (logging) technology, drilling measurement technology and measurement while drilling technology, in particular to an over-drill dipole sonic logging transmitter and Logging device.
  • logging mine geophysical
  • drilling measurement technology drilling measurement technology
  • measurement while drilling technology in particular to an over-drill dipole sonic logging transmitter and Logging device.
  • Drill bit logging is a new technology developed in recent years.
  • Over-bit logging refers to a way in which logging tools pass through a specially designed drill bit and enter the measurement well for logging data acquisition.
  • the over-bit logging technology has its unique advantages, including the following: 1 reducing the engineering risks caused by drilling construction operations, because during most construction operations, the logging instrument is placed inside the drill pipe to be protected; Significant savings in operating time. Through the drill bit logging, the logging operation can be performed without taking the drilling tool out of the ground, which greatly saves the completion operation time compared with the cable logging after the drilling tool is lifted. 3 Obtain continuous and reliable logging data.
  • the outer diameter of the logging tool requires a small outer diameter.
  • the current outer diameter of the instrument is about 54mm, which mainly includes natural gamma, well temperature, induced resistivity, natural potential, formation density, caliper, neutron porosity and monopole. Sound wave time difference, etc.
  • the over-bit logging technology is suitable for poor wellbore conditions such as horizontal wells, high-angle wells, wellbore collapse and shale expansion. It has been measured in the Beihai exploration and evaluation wells, overcoming the difficulties of conventional cable logging. High quality logging data was obtained.
  • the bit-to-bit monopole acoustic time difference instrument mainly performs longitudinal wave and shear wave velocity measurement of the formation.
  • the longitudinal wave velocity and the shear wave velocity are recorded by a multi-receiver monopole sonic tool, and the rock property can be calculated by combining the density log data.
  • Rock properties include Poisson's ratio, static Young's modulus, and minimum horizontal stress gradient.
  • the calculated above-mentioned formation stress data and the quality parameters (such as clay content and porosity) that can reflect the reservoir are very useful for selecting the optimal hydraulic fracturing measures.
  • monopole sonic logging tools cannot measure the shear wave velocity of the formation in soft and ultra-soft formations, and therefore the properties of the rock cannot be obtained, mainly due to the monopole symmetry sound source.
  • the main solution to this problem is to use the dipole and quadrature dipole transducers as the transmit transducers to measure the shear wave velocity of the formation.
  • public reports on the commercial use of bit orthogonal dipole sonic logging tools have rarely been seen so far.
  • the conventional cable-type dipole sonic logging tool has an outer diameter of about 90 mm.
  • transducers also called emitters
  • one is an electromagnetic dipole acoustic transducer
  • the other is Laminated bending vibration piezoelectric transducer.
  • a laminated piezoelectric vibration transducer is formed by bonding a piezoelectric ceramic sheet polarized in a thickness direction and a metal aluminum substrate.
  • the outer diameter of the over-drill instrument is small (approximately 54 mm)
  • the crystals of the curved vibrator of the laminated structure and the geometry of the substrate are correspondingly reduced, which allows the orthogonal dipole transducer to be assembled and orthogonal to the conventional
  • the dipole acoustic wave instrument has a narrower radiation surface than the curved array, which causes the excitation energy of the transducer to be weakened and the signal-to-noise ratio to decrease.
  • the object of the present invention is to provide a transmitter for an over-drill dipole acoustic logging device and a logging device thereof, mainly for the structural design of the acoustic wave transmitter and the well logging device thereof. Under the condition of mechanical requirements of the bit logging instrument, the acoustic performance requirements of the small-diameter orthogonal dipole sonic logging transmitter can also be met.
  • the present invention provides an emitter for a bit-drilled dipole acoustic logging device, the emitter comprising a substrate and at least two piezoelectric ceramic plates respectively located on two sides of the substrate;
  • the piezoelectric ceramic plate is composed of at least one piezoelectric ceramic unit; wherein the length direction of the piezoelectric ceramic unit is along the width direction of the piezoelectric ceramic plate, and the width direction of the piezoelectric ceramic unit is along the thickness direction of the piezoelectric ceramic plate
  • the thickness direction of the piezoelectric ceramic unit is along the length direction of the piezoelectric ceramic plate; the polarization direction is along the thickness direction of the piezoelectric ceramic unit; when electrical excitation is applied along the length direction of the piezoelectric ceramic plate, the pressure on one side of the substrate
  • the electric ceramic plate is elongated, and the piezoelectric ceramic plate on the other side is shortened, and the substrate is pushed to form a bending vibration, and the thrust is radiated
  • each of the piezoelectric ceramic plates is composed of 2n piezoelectric ceramic units; adjacent two piezoelectric ceramic units have opposite polarization directions, and 2n piezoelectric ceramic units have electrode connections in parallel; wherein n It is a natural number.
  • the substrate is provided with through holes at both ends in the longitudinal direction, and the substrate is fixed on the over-bit dipole acoustic logging device through the through holes by a fixing member.
  • the piezoelectric ceramic plate is formed by bonding a 2n-piece piezoelectric ceramic unit with an adhesive.
  • the adhesive is an epoxy resin.
  • the piezoelectric ceramic plate and the substrate are bonded by an adhesive.
  • the adhesive is an epoxy resin.
  • the substrate is titanium, copper, aluminum or a low expansion alloy.
  • the piezoelectric ceramic plate is made of PZT4, PZT5 or PZT8.
  • the electrodes at the same position on both sides of the substrate are connected in exactly the same manner, but the piezoelectric ceramic units at the same position on both sides are polarized in the opposite manner.
  • the electrodes at the same position on both sides of the substrate are connected in opposite manner, but the piezoelectric ceramic units at the same position on both sides have the same polarization.
  • the present invention also provides an over-drill dipole acoustic logging device comprising the transmitter of the first aspect.
  • the segmented dipole emitter design of the present invention can increase the bending deformation of the emitter and increase the thrust of the emitter surface to the outside, thereby improving the emission of the emitter.
  • Energy; the invention can realize the emission of lower frequency acoustic waves in a limited space, and is more suitable for transverse wave measurement of soft formations and even super soft formations.
  • Figure 1 is a schematic diagram of acoustic wave measurement
  • FIG. 2 is a schematic top view of a dipole emitter provided in the embodiment
  • FIG. 3 is a schematic diagram of a longitudinal section of a dipole emitter according to an embodiment of the present invention.
  • FIG. 4 is a second schematic diagram of a longitudinal section of a dipole emitter according to an embodiment of the present invention.
  • FIG. 5 is a third schematic diagram of a longitudinal section of a dipole emitter according to an embodiment of the present invention.
  • Figure 6 is a comparison of conductance-frequency curves of two transmitters in the frequency range of 40-5000 Hz;
  • Figure 7 shows the conductance-frequency curve of the two transmitters in the frequency range of 500 to 1000 Hz
  • Figure 8 shows the conductance-frequency curve comparison of the two transmitters in the frequency range of 2000 to 3000 Hz.
  • FIG. 9 is a perspective view of a dipole emitter provided by the embodiment.
  • Embodiments of the present invention provide a transmitter for an over-drill dipole acoustic logging device and an associated over-drill dipole acoustic logging device.
  • At least two piezoelectric ceramic plates are symmetrically disposed on both sides of the substrate of the emitter.
  • Each piezoelectric ceramic plate is composed of at least one piezoelectric ceramic unit.
  • the length direction of the piezoelectric ceramic unit is along the width direction of the piezoelectric ceramic plate, the width direction of the piezoelectric ceramic unit is along the thickness direction of the piezoelectric ceramic plate, and the thickness direction of the piezoelectric ceramic unit is along the length direction of the piezoelectric ceramic plate;
  • the direction is along the thickness direction of the piezoelectric ceramic unit; when working, the piezoelectric ceramic plate on one side of the substrate is elongated, and the piezoelectric ceramic plate on the other side is shortened, pushing the substrate to form bending vibration, and radiating thrust to the medium, generating Sound waves.
  • Piezoelectric ceramic units can be the same, or units of different sizes and shapes can be used.
  • Each piezoelectric ceramic plate may be composed of 2n pieces of piezoelectric ceramic cells; where n is a natural number.
  • n is a natural number.
  • 2n adjacent piezoelectric ceramic units in the same side piezoelectric ceramic plate have opposite polarization directions, and the electrode connection modes are parallel.
  • the piezoelectric ceramic plate has a capacitance and a charge amount equivalent to 2n times the capacitance of each piezoelectric ceramic unit, so that the overall performance of the segmented transducer can be improved.
  • other methods can also be adopted.
  • 2n adjacent piezoelectric ceramic units in the same side piezoelectric ceramic plate have the same polarization direction, and the electrode connection manner is series connection.
  • FIG. 1 is a schematic diagram of acoustic wave measurement according to an embodiment of the present invention.
  • the logging device 1 is located in a well 9 filled with a slurry 7 medium, which is a formation 8 outside.
  • the logging device 1 includes a transmitting circuit 2, a transmitter 3, a sound insulator 4, a receiver array 5, and a receiving circuit 6.
  • the logging device 1 is coupled to the cable 10, and an electrical signal is generated by the transmitting circuit 2 to cause the transmitter 3 to generate sound waves.
  • the sound waves pass through the mud 7 medium, reach the formation 8, and then propagate in the formation 8.
  • the acoustic wave signal with the formation 8 information is then converted by the receiver array 5 into an electrical signal, and then the formation evaluation is performed based on the received electrical signal.
  • the sound wave transmission process is shown by the arrow in FIG.
  • FIGS. 2 and 9 are top plan views of a dipole emitter according to an embodiment of the present invention.
  • Figure 9 is a perspective view of a dipole emitter. The structure and function of the dipole emitter of the embodiment of the present invention will be specifically described below with reference to FIGS. 2 and 9.
  • the emitter includes: a substrate 32 and a plurality of piezoelectric ceramic plates 31 respectively located on both sides of the substrate 32 (FIG. 2 only shows a piezoelectric ceramic plate 31 on the front side, which can be seen from FIG. A piezoelectric ceramic plate 31) of the same size.
  • Each of the piezoelectric ceramic plates 31 is composed of a 2n-block piezoelectric ceramic unit 311; where n is a natural number.
  • a through hole 321 may be disposed at both ends of the substrate, and the substrate 32 is fixed to the over-bit dipole acoustic logging device 1 through the through hole 321 by a fixing member.
  • each piezoelectric ceramic plate it is made of 2n piezoelectric ceramic rectangular columns, and each piezoelectric ceramic rectangular column is called a piezoelectric ceramic unit.
  • the longitudinal direction of the piezoelectric ceramic unit is along the width direction of the piezoelectric ceramic plate, the width direction of the piezoelectric ceramic unit is along the thickness direction of the piezoelectric ceramic plate, and the thickness direction of the piezoelectric ceramic unit is along the longitudinal direction of the piezoelectric ceramic plate.
  • each piezoelectric ceramic plate is equivalent to a piezoelectric ceramic stack composed of a plurality of piezoelectric ceramic units, and the polarization direction is along the thickness direction of the piezoelectric ceramic unit (ie, the length direction of the piezoelectric ceramic plate), adjacent to two The polarization directions of the piezoelectric ceramic units are opposite, and the electrode connection manner of the 2n piezoelectric ceramic units is parallel.
  • the adjacent piezoelectric ceramic unit may simultaneously elongate (or shorten) in the thickness direction; if pre-stressed along the length direction of the piezoelectric ceramic plate, the piezoelectric ceramic plate may be in the longitudinal direction Elongation (or shortening).
  • the piezoelectric ceramic plates 31 on both sides of the substrate are simultaneously electrically excited along the length direction of the piezoelectric ceramic plates.
  • the substrate 32 can be pushed to form a bending vibration, and the thrust is radiated to the medium to generate sound waves.
  • the sound waves vibrate in the radial direction of the wellbore and propagate along the axial direction of the wellbore, generating bending vibrations near the wellbore, which can excite the dipole transverse waves in the formation.
  • Fig. 3 is a view showing the polarization direction of the piezoelectric ceramic unit and the electrode connection mode, wherein the direction of the arrow is the polarization direction of the piezoelectric ceramic unit 311.
  • the electrodes on both sides of the substrate are connected in exactly the same way, but the piezoelectric ceramic units on both sides are polarized in the opposite way.
  • the other piezoelectric ceramic plate is just shortened.
  • Figure 4 and Figure 5 show the polarization direction and electrode connection of another piezoelectric ceramic unit.
  • the electrodes on both sides of the substrate are connected in opposite ways, but the piezoelectric ceramic elements on both sides are polarized. The same, so that when one side of the piezoelectric ceramic plate is elongated, the other side of the piezoelectric ceramic plate is just shortened.
  • the two piezoelectric ceramic plates on both sides of the substrate are each composed of, for example, eight piezoelectric ceramic units.
  • the piezoelectric ceramic plate is generally fixed to the logging device 1 by screws through the through holes 321 .
  • the through holes are preferably at both ends in the longitudinal direction of the substrate, and the shape and the number are set according to specific conditions, preferably a circle.
  • the shape is generally four, but not limited to four.
  • substrate 32 is typically a metallic or composite material such as titanium, copper, aluminum, low expansion alloys, and the like.
  • the piezoelectric ceramic plate 31 is formed by bonding the piezoelectric ceramic unit 311 with an adhesive.
  • the adhesive is preferably a polymer material such as an epoxy resin, but is not limited to such an adhesive.
  • the piezoelectric ceramic plate 31 and the substrate 32 are also bonded by an adhesive.
  • the adhesive is a polymer material such as an epoxy resin, but is not limited to such an adhesive.
  • the piezoelectric ceramic plate material is PZT4, PZT5 or PZT8, but is not limited to these two types of piezoelectric ceramic materials.
  • the dipole emitter in the embodiment of the present invention may be referred to as a segmented dipole emitter.
  • the segmented dipole emitter, the outward thrust generated during bending vibration is not only related to the size parameters of the emitter, but also related to the piezoelectric ceramic material parameters, especially the d33 piezoelectric constant.
  • a conventional laminated dipole emitter is also composed of a substrate and piezoelectric ceramic plates on both sides.
  • an electric excitation is applied to the piezoelectric ceramic plate, one side of the piezoelectric ceramic plate is elongated in the longitudinal direction and the other side is piezoelectric.
  • the length direction of the ceramic plate is shortened, so that the entire actuator is subjected to bending vibration.
  • the conventional laminated dipole emitter differs from the segmented dipole emitter of the embodiment of the present invention in that in a conventional laminated dipole emitter, the piezoelectric ceramic plate is an integral piezoelectric.
  • the material has a polarization direction along the thickness direction of the piezoelectric ceramic plate.
  • Conventional laminated dipole emitters the outward thrust generated during bending vibration is not only related to the size parameters of the emitter, but also related to the piezoelectric ceramic material parameters, especially the d31 piezoelectric constant.
  • the type of piezoelectric ceramic material used in the emitter is the emission type PZT4, and the value of the piezoelectric constant of d33 is generally twice that of the piezoelectric constant of d31. Therefore, for transmitters of the same geometry, segmented transmitters should theoretically be superior to conventional ones in performance. In over-drilled sonic logging, small-diameter instruments require a narrower radiating surface of the emitter, a narrower radiant energy when the conventional emitter is narrowed, and a segmented emitter that meets logging requirements.
  • the resonant frequency of the segmented dipole emitter is reduced by 80 Hz compared with the conventional dipole emitter, and the conductance is The peak value is about 13 times that of a conventional dipole emitter.
  • Figure 8 is a comparison of the conductance-frequency curves of the two transmitters in the frequency range of 2000 to 3000 Hz. It can be seen from the figure that the resonant frequency of the segmented dipole emitter is reduced by 380 Hz compared with the conventional dipole emitter, and the conductance is The peak is about 4 times that of a conventional dipole emitter.
  • the segmented dipole emitter of the present invention has the characteristics of low frequency and high power emission, and is suitable for transducers in over-bit, small-diameter sonic logging, and more. Suitable for transverse wave measurements in soft formations and even ultra-soft formations.
  • the orthogonal dipole acoustic data can be used to determine the anisotropy characteristics of the transverse wave anisotropy, and further obtain the anisotropy information of the formation around the borehole wall, especially in the study of the fracture characteristics of the formation and the measurement of the ground stress. application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种过钻头偶极子声波测井装置的发射器(3),所述发射器(3)包括基板(32)和分别位于基板(32)两侧的2个压电陶瓷板(31);其中,每个所述压电陶瓷板(31)由至少一块的压电陶瓷单元(311)组成;其中,压电陶瓷单元(311)的长度方向沿压电陶瓷板(31)的宽度方向,压电陶瓷单元(311)的宽度方向沿压电陶瓷板(31)的厚度方向,压电陶瓷单元(311)的厚度方向沿压电陶瓷板(31)的长度方向;极化方向沿压电陶瓷单元(311)的厚度方向;当沿压电陶瓷板(31)的长度方向施加电激励时,所述基板(32)一侧的压电陶瓷板(31)伸长,另一侧的压电陶瓷板(31)缩短,推动所述基板(32)形成弯曲振动,向介质辐射推力,产生声波。还提供了一种具有该发射器(3)的测井装置(1)。通过上述发射器(3)的设计,能够增加发射器(3)的弯曲变形量,增大发射器(3)表面向外侧的推力,从而提高发射器(3)的发射能量。

Description

一种过钻头偶极子声波测井发射器及测井装置 技术领域
本发明涉及矿产资源勘探及开发技术领域,特别是在矿场地球物理(测井)技术、钻井测量技术和随钻测量技术等领域,尤其涉及一种过钻头偶极子声波测井发射器及测井装置。
背景技术
大水平井段(如1000米以上)水力压裂前后的地层评价是我国页岩气开发的热点、难点与技术关键。过钻头正交偶极子声波测井技术是目前解决该问题的首选测量方式。
过钻头测井是近几年发展起来的一种新技术。过钻头测井是指测井仪器穿过特殊机械设计的钻头而进入测量井段进行测井数据采集的一种方式。过钻头测井技术有其独特的优点,主要包括以下几点:①减少钻井施工作业带来的工程风险,因为在大部分施工作业时间里,测井仪器放置在钻杆内受到保护;②可以大幅节约作业时间。过钻头测井无须将钻具取出地面就能够进行测井作业,较将钻具上提之后的电缆测井而言,大大节约了完井作业时间。③获得连续可靠的测井数据。过钻头测井是在钻头及钻杆停止振动时,测井仪器组合穿过钻头对目的层进行测量。因此,获得的数据质量稳定可靠。④进行勘察测井。过钻头测井能够在不取出钻头的情况下进入裸眼井段进行测量,获取储层的各种重要地球物理场信息,用于指导继续钻井,为科学钻井提供物理依据。
过钻头测井要求测井仪外径小,目前仪器外径约为54mm,主要包括自然伽马、井温、感应电阻率、自然电位、地层密度、井径、中子孔隙度和 单极子声波时差等。过钻头测井技术适用于水平井、大斜度井和井眼坍塌和页岩膨胀等恶劣井眼条件,已经在北海探井和评价井中进行了测量,克服了常规电缆测井遇阻的难题,取得了高质量的测井数据。
过钻头单极子声波时差仪器主要是进行地层的纵波和横波速度测量,通过多接收器的单极子声波测井仪记录纵波速度和横波速度,并且结合密度测井资料,可以计算岩石属性,岩石属性包括泊松比、静态杨氏模量和最小水平应力梯度。计算得到的上述地层应力数据以及能够反映储层的质量参数(如粘土含量和孔隙度),对选择最佳水力压裂措施层段十分有用。但是,单极子声波测井仪器在软地层和超软地层不能测量得到地层的横波速度,因此也就无法得到岩石的属性,其主要原因是由于单极子对称声源所致。解决这一问题的主要办法是采用偶极子和正交偶极子换能器作为发射换能器,进行地层的横波声速测量。但是,目前还很少见到过钻头正交偶极子声波测井仪器商业使用的公开报道。
目前常规电缆式偶极子声波测井仪器外径约为90mm,换能器(又称之为发射器)主要有两种,一种是电磁式偶极子声波换能器,另一种是叠片型弯曲振动压电换能器。一般叠片型弯曲振动压电换能器由厚度方向极化的压电陶瓷片和金属铝基片黏接而成。由于过钻头仪器外径很小(约为54mm),叠片结构的弯曲振子的晶体和基片的几何尺寸都相应的减少,这使得正交偶极子换能器装配后,与常规正交偶极子声波仪器相比弯曲阵子辐射面变窄,造成换能器激发能量减弱、信噪比降低。
发明内容
本发明的目的在于针对现有技术的不足,提供一种过钻头偶极子声波测井装置的发射器及其测井装置,主要是声波发射器的结构设计及其测井装置,在满足过钻头测井仪器机械要求的条件下,也能满足小直径正交偶极子声波测井发射器的声学性能要求。
为解决上述问题,第一方面,本发明提供了一种过钻头偶极子声波测井装置的发射器,所述发射器包括基板和分别位于基板两侧的至少2个压电陶瓷板;每个所述压电陶瓷板至少由一块的压电陶瓷单元组成;其中,压电陶瓷单元的长度方向沿压电陶瓷板的宽度方向,压电陶瓷单元的宽度方向沿压电陶瓷板的厚度方向,压电陶瓷单元的厚度方向沿压电陶瓷板的长度方向;极化方向沿压电陶瓷单元的厚度方向;当沿压电陶瓷板的长度方向施加电激励时,所述基板一侧的压电陶瓷板伸长,另一侧的压电陶瓷板缩短,推动所述基板形成弯曲振动,向介质辐射推力,产生声波。
优选地,每个所述压电陶瓷板由2n块的压电陶瓷单元组成;相邻两个压电陶瓷单元的极化方向相反,2n个压电陶瓷单元的电极连接方式为并联;其中n是自然数。
优选地,所述基板沿长度方向两端设置有通孔,利用固定件通过所述通孔将所述基板固定在所述过钻头偶极声波测井装置上。
进一步优选地,所述压电陶瓷板由2n块的压电陶瓷单元采用胶黏剂黏合而成。
进一步优选地,所述胶黏剂为环氧树脂。
优选地,所述压电陶瓷板和所述基板之间采用胶黏剂粘合而成。
进一步优选地,所述胶黏剂为环氧树脂。
优选地,所述基板是钛、铜、铝或低膨胀合金。
优选地,所述压电陶瓷板的材质为PZT4、PZT5或PZT8。
优选的,基板两侧相同位置的电极连接方式完全一致,但两侧相同位置的压电陶瓷单元极化方式正好相反。
优选的,基板两侧相同位置的电极连接方式相反,但两侧相同位置的压电陶瓷单元极化相同。
第二方面,本发明还提供了一种包含第一方面所述发射器的过钻头偶极声波测井装置。
与常规叠片型偶极子发射器相比,本发明的分段式偶极子发射器设计可以增加发射器的弯曲变形量,增大发射器表面向外侧的推力,从而提高发射器的发射能量;本发明在有限的空间内可以实现较低频声波的发射,更加适合软地层甚至超软地层的横波测量等。
附图说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1为声波测量示意图;
图2为本实施例提供的偶极子发射器俯视示意图;
图3为本发明实施例提供的偶极子发射器纵截面的示意图之一;
图4为本发明实施例提供的偶极子发射器纵截面的示意图之二;
图5为本发明实施例提供的偶极子发射器纵截面的示意图之三;
图6为两种发射器在40~5000Hz频率范围内的电导-频率曲线对比;
图7两种发射器在500~1000Hz频率范围内的电导-频率曲线对比;
图8两种发射器在2000~3000Hz频率范围内的电导-频率曲线对比。
图9为本实施例提供的偶极子发射器立体图。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明实施例提供了一种过钻头偶极子声波测井装置的发射器及相关过钻头偶极子声波测井装置。在发射器的基板两侧对称地设置至少2个压电陶瓷板。每个压电陶瓷板至少由一块压电陶瓷单元组成。压电陶瓷单元的长度方向沿压电陶瓷板的宽度方向,压电陶瓷单元的宽度方向沿压电陶瓷板的厚度方向,压电陶瓷单元的厚度方向沿压电陶瓷板的长度方向;极 化方向沿压电陶瓷单元的厚度方向;工作时,所述基板一侧的压电陶瓷板伸长,另一侧的压电陶瓷板缩短,推动所述基板形成弯曲振动,向介质辐射推力,产生声波。压电陶瓷单元可以相同,也可以采用不同大小和形状的的单元。
每个压电陶瓷板可以由2n块的压电陶瓷单元组成;其中n是自然数。一种方式下,同一侧压电陶瓷板中2n个相邻压电陶瓷单元极化方向相反,电极连接方式为并联。在此方式下,压电陶瓷板的电容量与电荷量都相当于每个压电陶瓷单元电容量的2n倍,从而分段式换能器整体的性能可以得到提高。当然,还可以采取其它的方式,比如,同一侧压电陶瓷板中2n个相邻压电陶瓷单元极化方向相同,电极连接方式为串联。
图1为本发明实施例提供的声波测量示意图。如图1所示,测井装置1位于充满泥浆7介质的井孔9中,所述井孔9外是地层8。其中,测井装置1包括发射电路2、发射器3、隔声体4、接收器阵列5和接收电路6。在工作时,测井装置1与电缆10连接,由发射电路2产生电信号,使发射器3产生声波。声波经过泥浆7介质,到达地层8,然后在地层8中传播。再由接收器阵列5将带有地层8信息的声波信号转化为电信号,然后根据所接收的电信号进行地层评价。声波传输过程如图1中箭头所示。
图2为本发明实施例提供的偶极子发射器俯视示意图。图9为偶极子发射器的立体示意图。下面结合图2和图9对本发明实施例的偶极子发射器的结构和功能做具体说明。
如图2所示,发射器包括:基板32和分别位于基板32两侧的各一块压电陶瓷板31(图2仅示意了正面的一块压电陶瓷板31,从图8可见位于背面的另一个大小相同的压电陶瓷板31)。每个压电陶瓷板31由2n块的压电陶瓷单元311组成;其中n为自然数。
所述基板两端可设置有通孔321,利用固定件通过所述通孔321将所述基板32固定在所述过钻头偶极声波测井装置1上。
就每一片压电陶瓷板而言,它是由2n根压电陶瓷矩形柱拼镶黏结而成,每一根压电陶瓷矩形柱称为一个压电陶瓷单元。压电陶瓷单元的长度方向沿压电陶瓷板的宽度方向,压电陶瓷单元的宽度方向沿压电陶瓷板的厚度方向,压电陶瓷单元的厚度方向沿压电陶瓷板的长度方向。
因此,每一片压电陶瓷板相当于多片压电陶瓷单元组成的压电陶瓷堆,极化方向沿压电陶瓷单元的厚度方向(即,压电陶瓷板的长度方向),相邻两个压电陶瓷单元的极化方向相反,2n个压电陶瓷单元的电极连接方式为并联。当施加外界电信号时,相邻压电陶瓷单元可同时发生沿厚度方向的伸长(或缩短);如果沿压电陶瓷板的长度方向预加应力,则压电陶瓷板则发生长度方向上的伸长(或缩短)。
工作时,对基板两侧的压电陶瓷板31同时沿压电陶瓷板的长度方向施加电激励。在某一时刻,如果所述基板32一侧的压电陶瓷板31伸长,另一侧的压电陶瓷板31缩短,那么可推动所述基板32形成弯曲振动,向介质辐射推力,产生声波。一种解释认为,声波沿井孔径向产生振动,沿井孔轴向方向传播,在井壁附近产生弯曲振动,从而可以激发地层中的偶极横波。
要使不同侧的压电陶瓷板31实现不同方向的伸长或缩短,需要合理分配压电陶瓷单元的极化方向和电极的连接方式。图3示意了一种压电陶瓷单元极化方向与电极连接方式,其中箭头方向为压电陶瓷单元311的极化方向。如图所示,基板两侧的电极连接方式完全一致,但两侧的压电陶瓷单元极化方式正好相反。这样,当一侧压电陶瓷板伸长时,另一侧压电陶瓷板正好缩短。
图4和图5则给出了另一种压电陶瓷单元极化方向与电极连接方式,在第二种方案中,基板两侧的电极连接方式相反,但两侧的压电陶瓷单元极化相同,这样当一侧压电陶瓷板伸长时,另一侧压电陶瓷板正好缩短。
当然,本领域的技术人员意识到,也可以选择图3、图4和图5之外 的连接方式。
需要说明的是,2n个压电陶瓷板31均匀分布在基板32的两侧。如图3、图4和图5中所示,基板两侧的2个压电陶瓷板各由例如8块压电陶瓷单元组成。其中,在实际操作过程中,压电陶瓷板一般用螺钉通过穿孔321固定在测井装置1上,一般穿孔优选在基板长度方向的两端,而形状和数量根据具体情况设定,优选为圆形,数量一般为4个,但不局限于4个。
在一个示例中,基板32一般是钛、铜、铝、低膨胀合金等金属材料或者复合材料。
在另一个示例中,压电陶瓷板31是由压电陶瓷单元311采用胶黏剂粘合而成。所述胶黏剂优选为环氧树脂等高分子材料,但也不仅局限于此类胶黏剂。优选地,所述压电陶瓷板31和所述基板32之间也采用胶黏剂粘合而成。进一步优选地,所述胶黏剂为环氧树脂等高分子材料,但也不仅局限于此类胶黏剂。
在又一个示例中,压电陶瓷板材料为PZT4、PZT5或PZT8,但不局限于这两种类型的压电陶瓷材料。
由于压电陶瓷板31采用了多段的压电陶瓷单元,因此,本发明实施例中的偶极子发射器可称为分段式偶极子发射器。分段式偶极子发射器,在弯曲振动时产生的向外推力不仅与发射器的尺寸参数相关,还与压电陶瓷材料参数相关,尤其是d33压电常数。
常规叠片型偶极子发射器也是由基板和两侧的压电陶瓷板组成,当对压电陶瓷板施加电激励时,一侧的压电陶瓷板长度方向伸长,另一侧压电陶瓷板长度方向缩短,因此发射器整体发生弯曲振动。
常规叠片型偶极子发射器与本发明实施例的分段式偶极子发射器不同之处在于,在常规叠片型偶极子发射器中,压电陶瓷板是一块整体的压电材料,其极化方向沿压电陶瓷板的厚度方向。常规叠片型偶极子发射器,弯曲振动时产生的向外推力不仅与发射器的尺寸参数相关,还与压电陶瓷 材料参数相关,尤其是d31压电常数。
发射器中使用的压电陶瓷材料类型为发射型PZT4,一般d33压电常数的数值大于d31压电常数的2倍。所以对于相同几何尺寸的发射器,分段式发射器在性能上理论上应该优于常规型。在过钻头声波测井中,小直径的仪器要求发射器辐射面变窄,常规型发射器变窄后辐射能量降低,而分段式发射器则可以达到测井要求。
为了突出显示本发明实施例中分段式偶极子发射器在测井中的应用优势,我们测量了常规和分段式偶极子发射器在空气中自由状态下的导纳性能,图中粗线表示常规偶极子发射器,细线表示分段式偶极子发射器。图6为两种发射器在40~5000Hz频率范围内的电导-频率曲线对比图,从图上可以看出,分段式偶极子发射器具有较低的谐振频率和较高的电导峰值。图7为两种发射器在500~1000Hz频率范围内的电导-频率曲线对比图,由图可知,分段式偶极子发射器的谐振频率比常规偶极子发射器降低了80Hz,而电导峰值约为常规偶极子发射器的13倍。图8为两种发射器在2000~3000Hz频率范围内的电导-频率曲线对比图,由图可知,分段式偶极子发射器的谐振频率比常规偶极子发射器降低了380Hz,而电导峰值约为常规偶极子发射器的4倍。
由图6至图8的测量结果对比可知,本发明中的分段式偶极子发射器具有低频、大功率发射的特点,适用于过钻头、小直径声波测井中的换能器,更适合软地层甚至超软地层的横波测量。
采用正交偶极子声波数据可以用来确定横波环向各向异性特征,并进一步获得井壁周围地层的各向异性信息,特别是在地层裂隙特征的研究及地应力的测量中有着广泛的应用。
尽管本发明已进行了一定程度的描述,明显地,在不脱离本发明的精神和范围的条件下,可进行各个条件的适当变化。可以理解,本发明不限于所述实施方案,而归于权利要求的范围,其包括所述每个因素的等同替 换。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种过钻头偶极子声波测井装置的发射器,其特征在于,所述发射器包括基板和分别位于基板两侧的2个压电陶瓷板;其中,
    每个所述压电陶瓷板由至少一块的压电陶瓷单元组成;其中,压电陶瓷单元的长度方向沿压电陶瓷板的宽度方向,压电陶瓷单元的宽度方向沿压电陶瓷板的厚度方向,压电陶瓷单元的厚度方向沿压电陶瓷板的长度方向;极化方向沿压电陶瓷单元的厚度方向;
    当沿压电陶瓷板的长度方向施加电激励时,所述基板一侧的压电陶瓷板伸长,另一侧的压电陶瓷板缩短,推动所述基板形成弯曲振动,向介质辐射推力,产生声波。
  2. 根据权利要求1所述的发射器,其特征在于,每个所述压电陶瓷板由2n块的压电陶瓷单元组成;相邻两个压电陶瓷单元的极化方向相反,2n个压电陶瓷单元的电极连接方式为并联;其中n是自然数。
  3. 根据权利要求1所述的发射器,其特征在于,所述基板沿长度方向两端设置有通孔,利用固定件通过所述通孔将所述基板固定在所述过钻头偶极声波测井装置上。
  4. 根据权利要求1所述的发射器,其特征在于,所述压电陶瓷板由压电陶瓷单元采用胶黏剂黏合而成。
  5. 根据权利要求4所述的发射器,其特征在于,所述胶黏剂为环氧树脂。
  6. 根据权利要求1所述的发射器,其特征在于,所述压电陶瓷板和所述基板之间采用胶黏剂粘合而成。
  7. 根据权利要求6所述的发射器,其特征在于,所述胶黏剂为环氧树脂。
  8. 根据权利要求1所述的发射器,其特征在于,所述基板是钛、铜、铝、低膨胀合金或复合材料。
  9. 根据权利要求1所述的发射器,其特征在于,所述压电陶瓷板的材 质为PZT4、PZT5或PZT8。
  10. 根据权利要求1所述的发射器,其特征在于,基板两侧相同位置的电极连接方式完全一致,但两侧相同位置的压电陶瓷单元极化方式正好相反。
  11. 根据权利要求1所述的发射器,其特征在于,基板两侧相同位置的电极连接方式相反,但两侧相同位置的压电陶瓷单元极化相同。
  12. 一种包含权利要求1-11任意一项权利要求所述发射器的过钻头偶极子声波测井装置。
PCT/CN2018/071365 2017-04-01 2018-01-04 一种过钻头偶极子声波测井发射器及测井装置 WO2018176976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/078,146 US20190360329A1 (en) 2017-04-01 2018-01-04 A through bit dipole acoustic logging transmitter and a logging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710214045.2A CN106948813A (zh) 2017-04-01 2017-04-01 一种过钻头偶极子声波测井发射器及测井装置
CN201710214045.2 2017-04-01

Publications (1)

Publication Number Publication Date
WO2018176976A1 true WO2018176976A1 (zh) 2018-10-04

Family

ID=59475698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071365 WO2018176976A1 (zh) 2017-04-01 2018-01-04 一种过钻头偶极子声波测井发射器及测井装置

Country Status (3)

Country Link
US (1) US20190360329A1 (zh)
CN (1) CN106948813A (zh)
WO (1) WO2018176976A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106948813A (zh) * 2017-04-01 2017-07-14 中国科学院声学研究所 一种过钻头偶极子声波测井发射器及测井装置
CN109723436A (zh) * 2019-01-11 2019-05-07 中科云声(苏州)电子科技有限公司 一种井下仪器单元
CN111472761B (zh) * 2020-05-07 2023-07-25 神华神东煤炭集团有限责任公司 主裂隙结构面确定方法及监测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001681A (en) * 1989-12-21 1991-03-19 Honeywell Inc. Monolaminar piezoelectric bender bar
WO2015187166A1 (en) * 2014-06-05 2015-12-10 Halliburton Energy Services Inc. Bender bar transducer with at least three resonance modes
CN105257282A (zh) * 2015-09-28 2016-01-20 中国科学院声学研究所 一种随钻声波测井发射单元及其装置
CN106948813A (zh) * 2017-04-01 2017-07-14 中国科学院声学研究所 一种过钻头偶极子声波测井发射器及测井装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140936A (en) * 1977-09-01 1979-02-20 The United States Of America As Represented By The Secretary Of The Navy Square and rectangular electroacoustic bender bar transducer
US5081391A (en) * 1989-09-13 1992-01-14 Southwest Research Institute Piezoelectric cylindrical transducer for producing or detecting asymmetrical vibrations
US5038808A (en) * 1990-03-15 1991-08-13 S&K Products International, Inc. High frequency ultrasonic system
US5406531A (en) * 1993-04-30 1995-04-11 The United States Of America As Represented By The Secretary Of The Navy Low frequency flex-beam underwater acoustic transducer
US7460435B2 (en) * 2004-01-08 2008-12-02 Schlumberger Technology Corporation Acoustic transducers for tubulars
US8680746B2 (en) * 2007-05-23 2014-03-25 Nec Corporation Piezoelectric actuator and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001681A (en) * 1989-12-21 1991-03-19 Honeywell Inc. Monolaminar piezoelectric bender bar
WO2015187166A1 (en) * 2014-06-05 2015-12-10 Halliburton Energy Services Inc. Bender bar transducer with at least three resonance modes
CN105257282A (zh) * 2015-09-28 2016-01-20 中国科学院声学研究所 一种随钻声波测井发射单元及其装置
CN106948813A (zh) * 2017-04-01 2017-07-14 中国科学院声学研究所 一种过钻头偶极子声波测井发射器及测井装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, LIN ET AL.: "The Design of Sandwich Dipole Transducer Based on Finite Element Method", WELL LOGGING TECHNOLOGY, vol. 33, no. 2, 30 April 2009 (2009-04-30), pages 106, 107, ISSN: 1004-1338 *

Also Published As

Publication number Publication date
US20190360329A1 (en) 2019-11-28
CN106948813A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN102162358B (zh) 一种随钻声波测井装置
RU2358292C2 (ru) Многополюсный источник
US7234519B2 (en) Flexible piezoelectric for downhole sensing, actuation and health monitoring
CN202170793U (zh) 一种随钻声波测井装置和发射换能器
US20180100387A1 (en) Downhole electromagnetic acoustic transducer sensors
US10293376B2 (en) Bender bar transducer with at least three resonance modes
CN105257282A (zh) 一种随钻声波测井发射单元及其装置
WO2018176976A1 (zh) 一种过钻头偶极子声波测井发射器及测井装置
US10605944B2 (en) Formation acoustic property measurement with beam-angled transducer array
US10280744B2 (en) Bender bar modal shaping
WO2018223571A1 (zh) 与底部钻具组合配合使用的单极随钻声波测井仪、测量慢地层横波速度的方法
AU2013401927B2 (en) Asymmetric bender bar transducer
CN108386186A (zh) 一种井壁超声成像测井换能器及其测量系统
US10439127B2 (en) Bender bar transducer having stacked encapsulated actuators
CN204691763U (zh) 随钻声波测井装置
US4869349A (en) Flexcompressional acoustic transducer
CN208702403U (zh) 一种井壁超声成像测井换能器及其测量系统
CN207144934U (zh) 一种过钻头偶极子声波测井发射器及测井装置
CN114482987B (zh) 一种低频多模偶极子发射换能器
CN216642082U (zh) 一种低频多模偶极子发射换能器
Li et al. A Resonance-Based Through-Tubing Cement Evaluation Technology
Jiang et al. Understanding logging-while-drilling transducers with COMSOL Multiphysics® software
CN111594140A (zh) 耐高温振动装置和振动装置组
CN116913235B (zh) 一种低频宽带偶极子声源
Zhou et al. Study on the structure parameters of transmitting transducer for drilling acoustic logging technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777108

Country of ref document: EP

Kind code of ref document: A1