WO2018176518A1 - 相参光子模数转换装置 - Google Patents

相参光子模数转换装置 Download PDF

Info

Publication number
WO2018176518A1
WO2018176518A1 PCT/CN2017/080975 CN2017080975W WO2018176518A1 WO 2018176518 A1 WO2018176518 A1 WO 2018176518A1 CN 2017080975 W CN2017080975 W CN 2017080975W WO 2018176518 A1 WO2018176518 A1 WO 2018176518A1
Authority
WO
WIPO (PCT)
Prior art keywords
photon
sampling
source
module
digital conversion
Prior art date
Application number
PCT/CN2017/080975
Other languages
English (en)
French (fr)
Inventor
邹卫文
杨光
于磊
钱娜
陈建平
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2018176518A1 publication Critical patent/WO2018176518A1/zh
Priority to US16/513,346 priority Critical patent/US10649308B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F7/00Optical analogue/digital converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0331Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop with a digital phase-locked loop [PLL] processing binary samples, e.g. add/subtract logic for correction of receiver clock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3526Non-linear optics using two-photon emission or absorption processes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1071Measuring or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the invention relates to an optical information processing technology, in particular to a coherent photon analog-to-digital conversion device, which realizes high-precision acquisition of a radio frequency signal or an optical signal.
  • Photon sampling technology has important applications in high-speed signal processing and conversion, high-resolution measurement equipment, and optical signal quality detection.
  • high-performance photon sampling technology is in the stage of rapid development.
  • the two main development directions are ultra-high sampling rate and ultra-high precision.
  • the wavelength division multiplexing/time division multiplexing scheme of the optical clock of the mode-locked laser can achieve double sampling rate and high sampling rate, and has strong stability, low clock jitter, and low quantization rate of electrical processing.
  • Features are therefore considered the best solution for optical analog to digital conversion.
  • a passive mode-locked laser is generally selected as the seed source.
  • the passive mode-locked laser has a lower re-frequency, and the high-rate optical sampling clock requires more multiplexing channels, which tends to result in a larger structure and more stringent requirements for channel matching accuracy.
  • the noise characteristics of active mode-locked lasers have been able to reach a low level.
  • Low-jitter active mode-locked lasers are used as the light source, which can be improved by a small number of complex high-frequency characteristics.
  • a high-quality ultra-high-speed optical sampling clock is obtained by using a channel, which is of great significance for improving the performance index of the optical analog-to-digital conversion system and optimizing the system scheme.
  • phase-locking technology is an effective means to achieve coherent. By locking the frequency and phase of the controlled signal and the reference signal, their frequency and phase remain fixed, which reduces the clock jitter and improves the stability of the system.
  • the phase-locking technology mainly includes the following:
  • a photon phase detector composed of a crystal having a frequency doubling effect can measure the phase shift between the signals at the transmitting and receiving ends and perform feedback, and the photon phase detector and the photoelectric locking system based on the harmonic crystal ( J.Kim, JACox, Chen J, FX Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nature Photonics, 2008, 2: 733-736.)
  • the all-fiber structure is adopted, the stability of the system is high, and the phase detector adopts a balanced structure, which effectively eliminates Noise introduced by channel imbalance.
  • the phase-locking technology based on nonlinear crystal has obvious shortcomings.
  • the system structure is complex and difficult to integrate. At the same time, the performance and stability of the nonlinear crystal are greatly affected by the environment, which limits the applicable environment of the system.
  • Another photoelectric phase-locked phase-based technology based on microwave photonic devices the most direct method of this technology is to convert the optical signal into an electrical signal, and then use the phase-locked loop for phase-locking, that is, only in the RF mixing
  • the front stage of the device plus PD is an optical phase detector based on a radio frequency mixer.
  • the technology is suitable for locking optical signals and electrical signals and locking between optical signals, and has the advantages of simple principle and low implementation cost.
  • due to the bandwidth limitation of the RF mixer it cannot be applied to high-frequency, high-bandwidth systems, and the system noise is large.
  • the object of the present invention is to provide a phase-coupled photon analog-to-digital conversion device in view of the deficiencies of the prior art.
  • the device adjusts the optical clock oscillation source or the sampled signal source to make it highly correlated, thereby reducing clock jitter and greatly improving sampling accuracy.
  • a phase-coupled photon analog-to-digital conversion device comprising: an optical clock oscillation source, a photon sampling gate, a sampled signal source, a photoelectric detection module, an electrical sampling module, a phase detection module, a loop filter, and a first signal feedback Link and second signal feedback link:
  • the first output end of the optical clock oscillation source is connected to the first input end of the photon sampling gate, An output end of the sampled signal source is connected to a second input end of the photon sampling gate, and an output end of the photon sampling gate is connected to an input end of the photodetecting module, and the photodetection
  • the output end of the module is divided into two: one is connected to the electric sampling module, the other is connected to the first input end of the phase detecting module, and the second output end of the optical clock oscillation source is a second input end of the phase detecting module is connected, an output end of the phase detecting module is connected to an input end of the loop filter, and an output end of the loop filter is subjected to a first signal feedback link
  • locking the optical clock oscillation source is realized, and the output end of the loop filter is input through the second signal feedback link and the sampled signal source When the terminals are connected, the locking of the sampled signal source is realized.
  • the optical clock oscillation source is a passive mode-locked laser, an active mode-locked laser or a modulation frequency comb.
  • the sampled signal source is a voltage controlled oscillator, a frequency multiplex source, a passive mode-locked laser, an active mode-locked laser or a modulated frequency comb.
  • the photon sampling gate is a lithium niobate electro-optic modulator, a polymer electro-optic modulator, a silicon-based integrated electro-optic modulator, a spatial light modulator, a photonic crystal fiber or a highly nonlinear fiber.
  • the photodetection module is a PIN tube or an APD tube.
  • the electrical sampling module is an oscilloscope or an information processing board.
  • the phase detection module is a radio frequency mixer for generating a desired mixing signal.
  • the loop filter is an RF low pass filter.
  • the first signal feedback link and the second signal feedback link are power amplifiers or PID servers.
  • the present invention has the following advantages:
  • electro-optic photon sampling gate or all-optical photon sampling gate to realize coherent photon analog-to-digital conversion and complete signal sampling and coherent locking, which can complete the coherent locking of electro-optic oscillation source and optical oscillation source, thus realizing electric signal and Acquisition of optical signals.
  • FIG. 1 is a block diagram of an embodiment of a coherent photon analog-to-digital conversion device of the present invention
  • Figure 3 is a comparison of conventional sampling and coherent sampling spectrum of the present invention.
  • Figure 4 shows the relationship between the effective bit number and the analog input bandwidth of the present invention.
  • the phase-coupled photon analog-to-digital conversion device of the present invention comprises an optical clock oscillation source 1, a photon sampling gate 3, and a sampled signal source 4
  • the first output end of the optical clock oscillation source 1 is connected to the first input end of the photon sampling gate 3, and the output end of the sampled signal source 4 and the second end of the photon sampling gate 3
  • the output end of the photon sampling module 3 is connected to the input end of the photodetecting module 5, and the output end of the photodetecting module 5 is divided into two: one way and the electric sampling module 7 is connected, the other is connected to the first input end of the phase detecting module 9, and the second output end of the optical clock oscillation source 1 is connected to the second input end of the phase detecting module 9
  • the output end of the phase detecting module 9 is connected to the input end of the loop filter 10, and the output end of the loop filter 10 passes through the first signal feedback link 11 and the optical clock oscillation source 1 When the input ends are connected, locking of the optical clock oscillation source is realized, and the output end of the loop filter 10 is connected to the input end of the sampled signal source 4 via the second signal feedback link 12 Lock on the sampled source.
  • the optical clock oscillation source 1 is used to generate the optical sampling clock signal 2, and the photon sampling gate 3 loads the electrical signal or optical signal to be sampled by the sampling signal source 4 to the optical clock signal 2, and the obtained result is converted by the photoelectric detecting module 5.
  • the converted electrical signal is divided into two paths, one through the electrical sampling module 7 to achieve the acquisition of the sampled signal; on the other hand, the optical clock oscillation source 1 can generate a synchronous reference output signal 8 through photoelectric conversion,
  • the reference output signal 8 and the other signal of the electrical signal 6 are phase-detected by the phase detecting module 9, and the obtained mixed signal is filtered by the loop filter 10 to filter out high-frequency components, and the optical signal is realized by the first signal feedback link 11.
  • the phase-locking of the oscillating source 1 or the phase-locking of the sampled signal source 4 is effected by the second signal feedback link 12, thereby achieving phase-parametric sampling.
  • the photon sampling gate 3 can be used to realize the sampling of the optical signal by the optical clock.
  • the current optical clock samples the electrical signal.
  • FIG. 2 is a result of clock jitter test before and after phase locking of the system of the present invention
  • FIG. 3 is a comparison between conventional sampling and the coherent sampling spectrum of the present invention
  • FIG. 4 shows the effective bit number of the present invention.
  • the phased locking device locks the sampled optical clock signal source and the signal source to achieve phase-parametric sampling, thereby reducing clock jitter and improving sampling accuracy. This plays a key role in improving the performance of microwave photonic systems that require high time accuracy and high sampling accuracy, such as microwave photonic radar and optical communication systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

一种相参光子模数转换装置,包括光时钟振荡源(1)、被采样信号源(4)、光子采样门(3)、光电探测模块(5)、电采样模块(7)、相位检测模块(9)、环路滤波器(10)和信号反馈链路(11,12)。通过调整光时钟振荡源(1)或者被采样信号源(4),使之高度相参,进而降低时钟抖动,大大提高了采样精度。这对于提升微波光子雷达和光通信系统等需要高时间精度、高采样精度的微波光子系统的性能,具有十分关键的作用。

Description

相参光子模数转换装置 技术领域
本发明涉及光信息处理技术,特别是一种相参光子模数转换装置,实现对射频信号或光学信号的高精度采集。
背景技术
光子采样技术在高速的信号的处理与转换、高分辨率测量设备以及光信号质量检测等领域有着重要的应用。当前,高性能光子采样技术正处在飞速发展的阶段,两个主要发展方向分别是超高采样率与超高精度。从高采样率方面考虑,通过锁模激光器光时钟的波分复用/时分复用方案可以实现采样率倍增,提高采样率,同时具有稳定性强,时钟抖动低,电处理量化速率较低的特点,因此被视为光模数转换的最佳方案。在当前报道研究中,出于低噪特性的考虑,一般选取被动锁模激光器作为种子光源。然而,被动锁模激光器重频较低,得到高速率光采样时钟需要较多复用通道数,往往会导致结构比较庞大,同时对通道匹配的精度提出了更严苛的要求。随着主动锁模激光器技术的发展,目前主动锁模激光器的噪声特性已经能够达到较低水平,采用低抖动主动锁模激光器作为光源,可以在其高重频特点的优势上,仅通过少量复用通道就获得高质量超高速光采样时钟,这对提高光模数转换系统性能指标,优化系统方案具有重大意义。
然而,时钟抖动是制约光子采样精度的重大因素,因此如何降低光采样时钟与被采样信号源之间的时钟抖动是提升光子采样系统性能面临的问题。为了消除光采样时钟的和待采样信号之间的相对时钟抖动,需要提高两者之间的相参性。其中一类技术是基于同一高稳定光源来同时产生相参的信号和采样时钟,此时的PADC分辨率极限将取决于该光源本身的时钟抖动。然而,在实际应用中,更广泛的情况是待采样信号与采样时钟均从不同信号源中产生。因此,我们需要实现不同电子、光子信号源之间的高性能相参。锁相技术是实现相参的有效手段,通过将受控信号与参考信号的频率与相位锁定,使得它们的频率与相位保持固定的关系,进而降低时钟抖动提高系统的稳定性。
相参锁相技术主要包括以下几种:
一种是基于光学非线性效应的光电鉴相锁相技术(J.Kim,J.A.Cox,Chen J,F.X.
Figure PCTCN2017080975-appb-000001
Drift-free femtosecond timing synchronization of remote optical and microwave sources.Nature Photonics,2008,2:733-736.),目前已经研制出多种非线性光学晶体,其中具有倍频效应(SHG)与和频效应的晶体在光学相位检测中有很大的应用前景。在长距离光纤传输系统中,使用具有倍频效应的晶体构成的光子鉴相器,能够测量收发端信号间的相位偏移并进行反馈,基于和频晶体的光子鉴相器与光电锁定系统(J.Kim,J.A.Cox,Chen J,F.X.
Figure PCTCN2017080975-appb-000002
Drift-free femtosecond timing synchronization of remote optical and microwave sources.Nature Photonics,2008,2:733-736.)采用了全光纤结构,系统的稳定性高,并且该鉴相器采用了平衡结构,有效消除了通道失衡引入的噪声。但是基于非线性晶体的锁相技术有明显的缺点,系统结构复杂,难以集成化,同时,非线性晶体的性能和稳定性受环境影响大,使系统的适用环境受到限制。
另一种基于微波光子器件的光电鉴相锁相技术,这种技术最直接的方法就是将光信号转换为电信号,然后使用电锁相环进行鉴相锁相,即只需在射频混频器的前级加上PD,就是一种基于射频混频器的光电鉴相器。该技术适用于光信号与电信号的锁定以及光信号之间的锁定,其原理简单,实现成本低。但是受射频混频器的带宽限制,无法应用在高频、高带宽的系统中,且系统噪声较大。
然而,现存的光子采样技术和相参锁定技术虽然被广泛研究,而结合两者的采样方法还没有被研究,因此我们提出了一种相参光子模数转换方法。
发明内容
本发明的目的在于针对现有技术的不足,提出一种相参光子模数转换装置。该装置通过调整光时钟振荡源或者被采样信号源,使之高度相参,进而降低时钟抖动,大大提高了采样精度。
本发明的技术解决方案如下:
一种相参光子模数转换装置,其特点在于,包括光时钟振荡源、光子采样门、被采样信号源、光电探测模块、电采样模块、相位检测模块、环路滤波器、第一信号反馈链路和第二信号反馈链路:
所述的光时钟振荡源的第一输出端与所述的光子采样门的第一输入端相连, 所述的被采样信号源的输出端与所述的光子采样门的第二输入端相连,所述的光子采样门的输出端与所述的光电探测模块的输入端相连,所述的光电探测模块的输出端一分为二:一路与所述的电采样模块相连,另一路与所述的相位检测模块的第一输入端相连,所述的光时钟振荡源的第二输出端与所述的相位检测模块的第二输入端相连,所述的相位检测模块的输出端与所述的环路滤波器的输入端相连,所述的环路滤波器的输出端经第一信号反馈链路与所述的光时钟振荡源的输入端相连时,实现对光时钟振荡源的锁定,所述的环路滤波器的输出端经第二信号反馈链路与所述的被采样信号源的输入端相连时,实现对被采样信号源的锁定。
所述的光时钟振荡源为被动锁模激光器、主动锁模激光器或调制频率梳。
所述的被采样信号源为压控振荡器、频综源、被动锁模激光器、主动锁模激光器或调制频率梳。
所述的光子采样门为铌酸锂电光调制器、聚合物电光调制器、硅基集成电光调制器、空间光调制器、光子晶体光纤或高非线性光纤。
所述的光电探测模块为PIN管或APD管。
所述的电采样模块为示波器或信息处理板卡。
所述的相位检测模块为射频混频器,用于产生所需的混频信号。
所述的环路滤波器为射频低通滤波器。
所述的第一信号反馈链路、第二信号反馈链路为功率放大器或PID伺服器。
基于以上技术特点,本发明具有以下优点:
1、采用电光光子采样门或者全光光子采样门,实现相参光子模数转换同时完成信号采样与相参锁定,能完成电光振荡源和光光振荡源的相参锁定,从而实现对电信号和光学信号的采集。
2、将采样后信号与采样时钟源参考输出的相位误差信息反馈至光时钟振荡源或被采样信号源,提升光采样时钟与被采样信号源之间的相参性,可以突破时钟抖动理论极限,提高系统采样精度。
附图说明
图1为本发明相参光子模数转换装置的一个实施例的框图
图2为本发明系统相参锁定前后的时钟抖动测试结果
图3为传统采样与本发明相参采样频谱对比
图4给出了本发明有效比特位数与模拟输入带宽关系曲线
具体实施方式
下面结合附图和实施例对本发明作详细说明,但本发明的保护范围不限于下述的实施例。
图1是本发明相参光子模数转换装置的一个实施例的框图,由图可见,本发明相参光子模数转换装置,包括光时钟振荡源1、光子采样门3、被采样信号源4、光电探测模块5、电采样模块7、相位检测模块9、环路滤波器10、第一信号反馈链路11和第二信号反馈链路12:
所述的光时钟振荡源1的第一输出端与所述的光子采样门3的第一输入端相连,所述的被采样信号源4的输出端与所述的光子采样门3的第二输入端相连,所述的光子采样门3的输出端与所述的光电探测模块5的输入端相连,所述的光电探测模块5的输出端一分为二:一路与所述的电采样模块7相连,另一路与所述的相位检测模块9的第一输入端相连,所述的光时钟振荡源1的第二输出端与所述的相位检测模块9的第二输入端相连,所述的相位检测模块9的输出端与所述的环路滤波器10的输入端相连,所述的环路滤波器10的输出端经第一信号反馈链路11与所述的光时钟振荡源1的输入端相连时,实现对光时钟振荡源的锁定,所述的环路滤波器10的输出端经第二信号反馈链路12与所述的被采样信号源4的输入端相连时,实现对被采样信号源的锁定。
光时钟振荡源1用于产生光采样时钟信号2,光子采样门3将被采样信号源4产生的待采样的电信号或者光信号加载至光时钟信号2,得到的结果经过光电探测模块5转换为电信号6,转换的电信号分为两路,一路经过电采样模块7实现对被采样信号的采集;另一方面,光时钟振荡源1可以通过光电转换产生同步的参考输出信号8,该参考输出信号8与电信号6的另一路信号通过相位检测模块9进行相位检测,得到的混频信号通过环路滤波器10滤除高频分量,通过第一信号反馈链路11实现与光时钟振荡源1的相参锁定,或者通过第二信号反馈链路12实现与被采样信号源4的相参锁定,从而实现相参采样。
上述过程中利用光子采样门3既可以实现光时钟对光信号的采样也可以实 现光时钟对电信号的采样。请参见图2、3、4,图2为本发明系统相参锁定前后的时钟抖动测试结果,图3为传统采样与本发明相参采样频谱对比,图4给出了本发明有效比特位数与模拟输入带宽关系曲线,此外,上述过程中通过相位锁定装置将采样光时钟信号源与被采信号源锁定,实现相参采样进而减小了时钟抖动,提高了采样精度。这对于提升微波光子雷达和光通信系统等需要高时间精度、高采样精度的微波光子系统的性能,具有十分关键的作用。

Claims (9)

  1. 一种相参光子模数转换装置,其特征在于,包括光时钟振荡源(1)、光子采样门(3)、被采样信号源(4)、光电探测模块(5)、电采样模块(7)、相位检测模块(9)、环路滤波器(10)、第一信号反馈链路(11)和第二信号反馈链路(12):
    所述的光时钟振荡源(1)的第一输出端与所述的光子采样门(3)的第一输入端相连,所述的被采样信号源(4)的输出端与所述的光子采样门(3)的第二输入端相连,所述的光子采样门(3)的输出端与所述的光电探测模块(5)的输入端相连,所述的光电探测模块(5)的输出端一分为二:一路与所述的电采样模块(7)相连,另一路与所述的相位检测模块(9)的第一输入端相连,所述的光时钟振荡源(1)的第二输出端与所述的相位检测模块(9)的第二输入端相连,所述的相位检测模块(9)的输出端与所述的环路滤波器(10)的输入端相连,所述的环路滤波器(10)的输出端经第一信号反馈链路(11)与所述的光时钟振荡源(1)的输入端相连时,实现对光时钟振荡源的锁定,所述的环路滤波器(10)的输出端经第二信号反馈链路(12)与所述的被采样信号源(4)的输入端相连时,实现对被采样信号源的锁定。
  2. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的光时钟振荡源(1)为被动锁模激光器、主动锁模激光器或调制频率梳。
  3. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的被采样信号源(4)为压控振荡器、频综源、被动锁模激光器、主动锁模激光器或调制频率梳。
  4. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的光子采样门(3)为铌酸锂电光调制器、聚合物电光调制器、硅基集成电光调制器、空间光调制器、光子晶体光纤或高非线性光纤。
  5. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的光电探测模块为PIN管或APD管。
  6. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的电采样模块(7)为示波器或信息处理板卡。
  7. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的相位检测模块(10)为射频混频器,用于产生所需的混频信号。
  8. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的环路滤波器(10)为射频低通滤波器。
  9. 根据权利要求1所述的相参光子模数转换装置,其特征在于,所述的第一信号反馈链路、第二信号反馈链路为功率放大器或PID伺服器。
PCT/CN2017/080975 2017-03-29 2017-04-18 相参光子模数转换装置 WO2018176518A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/513,346 US10649308B2 (en) 2017-03-29 2019-07-16 Coherent photon analog-to-digital conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710198217.1A CN106842766B (zh) 2017-03-29 2017-03-29 相参光子模数转换装置
CN201710198217.1 2017-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/513,346 Continuation US10649308B2 (en) 2017-03-29 2019-07-16 Coherent photon analog-to-digital conversion device

Publications (1)

Publication Number Publication Date
WO2018176518A1 true WO2018176518A1 (zh) 2018-10-04

Family

ID=59142576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080975 WO2018176518A1 (zh) 2017-03-29 2017-04-18 相参光子模数转换装置

Country Status (3)

Country Link
US (1) US10649308B2 (zh)
CN (1) CN106842766B (zh)
WO (1) WO2018176518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769805A (zh) * 2020-06-22 2020-10-13 北京北广科技股份有限公司 一种射频功率源自动频率追踪装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599867B (zh) * 2018-03-29 2021-02-02 上海交通大学 基于波形匹配的光学数字信号接收装置
CN109116660A (zh) * 2018-09-06 2019-01-01 南京航空航天大学 基于耦合光电振荡器的高速光采样模数转换方法及装置
US10379420B1 (en) * 2019-03-22 2019-08-13 Psiquantum, Corp. Clock generation for a photonic quantum computer to convert electrical pulses into a plurality of clock signals
CN111176053B (zh) * 2020-02-19 2021-07-27 上海交通大学 基于铌酸锂-硅晶圆的单片集成光模数转换系统及制备方法
CN115021828B (zh) * 2022-05-27 2024-02-09 清华大学 微波光子接收装置和信号调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163454A1 (en) * 2001-05-03 2002-11-07 Hrl Laboratories, Llc Photonic parallel analog-to-digital converter
CN106230516A (zh) * 2016-08-31 2016-12-14 上海交通大学 基于微波光子的雷达通信对抗一体化系统
CN106452432A (zh) * 2016-08-30 2017-02-22 上海交通大学 基于马赫‑曾德调制器的光电鉴相锁相装置
CN106444215A (zh) * 2016-08-30 2017-02-22 上海交通大学 频率响应可配置的光模数转换装置
CN106444216A (zh) * 2016-08-31 2017-02-22 上海交通大学 多通道光模数转换系统中宽带信号采集通道失配校正方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8543180B2 (en) * 2006-05-03 2013-09-24 Covidien Lp Method and apparatus for total hemoglobin measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163454A1 (en) * 2001-05-03 2002-11-07 Hrl Laboratories, Llc Photonic parallel analog-to-digital converter
CN106452432A (zh) * 2016-08-30 2017-02-22 上海交通大学 基于马赫‑曾德调制器的光电鉴相锁相装置
CN106444215A (zh) * 2016-08-30 2017-02-22 上海交通大学 频率响应可配置的光模数转换装置
CN106230516A (zh) * 2016-08-31 2016-12-14 上海交通大学 基于微波光子的雷达通信对抗一体化系统
CN106444216A (zh) * 2016-08-31 2017-02-22 上海交通大学 多通道光模数转换系统中宽带信号采集通道失配校正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, GUANG: "Compensation of multi-channel mismatches in high-speed hi- gh-resolution photonic analog-to-digital converter", OPTICS EXPRESS, vol. 24, no. 21, 7 October 2016 (2016-10-07), pages 24061 - 24074, XP055539922, DOI: 10.1364/OE.24.024061 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769805A (zh) * 2020-06-22 2020-10-13 北京北广科技股份有限公司 一种射频功率源自动频率追踪装置
CN111769805B (zh) * 2020-06-22 2023-08-08 北京北广科技股份有限公司 一种射频功率源自动频率追踪装置

Also Published As

Publication number Publication date
CN106842766A (zh) 2017-06-13
CN106842766B (zh) 2018-05-25
US10649308B2 (en) 2020-05-12
US20190339588A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018176518A1 (zh) 相参光子模数转换装置
Schneider et al. Radiofrequency signal-generation system with over seven octaves of continuous tuning
US10797790B2 (en) Microwave photonic vector network analyzer and method for measuring scattering parameters of microwave device
CN110034758B (zh) 一种基于自振荡光学频率梳的注入锁定毫米波分频器及其分频方法
Brodnik et al. Optically synchronized fibre links using spectrally pure chip-scale lasers
CN108712213B (zh) 基于光电振荡环路的微波三分之二分频方法及装置
Zhu et al. High-performance photonic microwave downconverter based on a frequency-doubling optoelectronic oscillator
CN103297145A (zh) 全光产生十六倍频毫米波的装置
CN102882472B (zh) 一种光子型频率下转换装置及方法
CN111786674B (zh) 一种模数转换系统模拟带宽扩展的方法及系统
Li et al. High-efficiency photonic microwave downconversion with full-frequency-range coverage
CN105372902A (zh) 高速率可重构光学模数转换装置
Chen et al. Multi-format signal generation using a frequency-tunable optoelectronic oscillator
Zhu et al. Frequency-quadrupling optoelectronic oscillator for multichannel upconversion
CN101951294A (zh) 宽带连续可调谐微波/毫米波信号产生装置
CN204886978U (zh) 一种无滤波频率载波抑制比均可调节36倍频信号发生装置
CN106452432A (zh) 基于马赫‑曾德调制器的光电鉴相锁相装置
Chen Photonic generation and transmission of triangular and square waveforms with a large repetition rate tunable range
Mandalawi et al. Analysis of bandwidth reduction and resolution improvement for photonics-assisted adc
CN101834670A (zh) 高线性响应的微波光子信号调制与解调装置
CN111404547B (zh) 一种宽带毫米波信号模数转换方法及系统
Li et al. Receiver for a coherent fiber-optic link with high dynamic range and low noise figure
Peng et al. Low phase noise 20 ghz microwave frequency divider based on a super-harmonic injection locked optoelectronic oscillator
WO2021249263A1 (zh) 一种信号生成方法、装置及系统
CN111313983B (zh) 微波瞬时频率提取和放大方法及瞬时频率测量方法与系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17903384

Country of ref document: EP

Kind code of ref document: A1