WO2018174475A1 - Electrolyte composition containing metals and silicon in plasma electrolytic oxidation process and method for manufacturing dental implants coated with hydroxyapatite and containing metal ions and silicon ions by using same composition - Google Patents

Electrolyte composition containing metals and silicon in plasma electrolytic oxidation process and method for manufacturing dental implants coated with hydroxyapatite and containing metal ions and silicon ions by using same composition Download PDF

Info

Publication number
WO2018174475A1
WO2018174475A1 PCT/KR2018/003089 KR2018003089W WO2018174475A1 WO 2018174475 A1 WO2018174475 A1 WO 2018174475A1 KR 2018003089 W KR2018003089 W KR 2018003089W WO 2018174475 A1 WO2018174475 A1 WO 2018174475A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
ions
acetate
electrolytic oxidation
mol
Prior art date
Application number
PCT/KR2018/003089
Other languages
French (fr)
Korean (ko)
Inventor
최한철
박선영
황인조
유지민
강정인
Original Assignee
조선대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170035313A external-priority patent/KR101835623B1/en
Priority claimed from KR1020170035326A external-priority patent/KR101835684B1/en
Priority claimed from KR1020170035332A external-priority patent/KR101835694B1/en
Application filed by 조선대학교산학협력단 filed Critical 조선대학교산학협력단
Priority to CN201880020403.9A priority Critical patent/CN110494098B/en
Publication of WO2018174475A1 publication Critical patent/WO2018174475A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/838Phosphorus compounds, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite

Definitions

  • the present invention is to form a porous oxide film by using plasma electrolytic oxidation (Plasma Electrolytic Oxidation) on the surface of titanium-based alloy, which is a metal material that is generally inserted into the bone in the human body, more specifically, Porous inclusions of metal ions, silicon ions, calcium and phosphorus on the surface of dental implants using electrolyte solutions containing metals (magnesium, zinc, strontium, manganese) and silicon, which play an important role in cell adhesion and bone formation among ions
  • An implant manufacturing method for improving the bioactivity by forming the surface of the oxide film by plasma electrolytic oxidation method, the process is a titanium alloy preparation step of sequentially polishing, fine polishing and ultrasonic cleaning the dental titanium alloy, the titanium prepared in the preparation step The alloy is installed at the anode of the electrolytic bath, and the cathode is bag After the gold is installed, an electrolyte solution is added to the electrolyte solution, a plasma is generated by applying a constant voltage and current
  • the present invention relates to an electrolyte composition containing metals and silicon and a method for producing dental implants coated with apatite hydroxide containing metal ions and silicon ions using the composition in a plasma electrolytic oxidation process including drying after washing with distilled water. .
  • the anodizing is a method of forming an oxide layer and a metal salt on a metal surface by using an external power source so that an oxide layer is formed on the anode, and the other insoluble metal is brought into contact with the cathode to generate a current in the electrolyte.
  • an electric current is applied to anodize the metal hydroxide, a metal hydroxide forms a fine film at a very low voltage, and when a voltage of about 10V is applied, a metal oxide layer is formed.
  • the resistance is increased to concentrate internal stress in the metal oxide layer, the oxide layer is destroyed at 70V, and when the voltage is increased again, a second porous oxide layer is formed, and sparks occur during this process. Since the oxidation layer is formed by applying electricity, the electrical efficiency is poor, and the sparked localized parts are not only adversely affecting titanium properties due to thermal stress, but also have a problem in that the adhesion is reduced and the final properties are degraded.
  • the sol-gel method is to prepare a solution which becomes a gel by hydrolysis and polymerization reaction by alcohol, water, acid, etc. in order to prepare a coating film.
  • a wet coating method such as dip-coating, which is applied to a substrate, gelled on a substrate, and applied to a sol-gel method is a low temperature process, and can be coated regardless of area, and can control the thickness and microstructure of the film.
  • the post-heat treatment process for crystallization is added, the plate-like coating is limited, and the adhesive has to be inserted into the intermediate layer to strengthen the adhesive force in order to have a sufficient bonding force with the base material.
  • Plasma spraying is a field of thermal spraying, in which a high melting point material such as a ceramic, which is a metal and a nonmetallic material, is deposited on a substrate in a molten or semi-melted state.
  • a high melting point material such as a ceramic, which is a metal and a nonmetallic material
  • the material and size of the base material there are no limitations on the material and size of the base material, and it can be installed on site without causing deformation to the base material, thick film coating, easy to control coating thickness, and various kinds of coating materials. It shows up to 0.6 ⁇ 15%, and it is weak to impact when ceramic coating of titanium due to mechanical bonding rather than metallic bonding, and it is difficult to apply implant because of weak bonding with the base metal.
  • Chemical Vapor Deposition is a method of treating a surface by exposing a gas mixture to a sample at a high temperature, where a variety of reactions occur to decompose one or more components of the gas mixture, resulting in deposition on the substrate. Way. It is generally used to deposit pyrolytic carbon coatings on substrates such as tantalum, molybdenum, rhenium or graphite in the application of biomaterials.
  • Plasma Electrolytic Oxidation is in principle the same as anodizing, but anodic oxidation is a metal having high electrochemical stability relative to a cathode (Skinny's steel or platinum alloy, etc.), On the anode is placed a metal to be oxidized, such as magnesium.
  • a voltage equal to or higher than a dielectric breakdown voltage is applied to the previously formed anodization layer (or dielectric layer), a strong current field locally formed in the gas (hydrogen or oxygen gas) reacted inside the oxide layer is applied.
  • Arc or spark or plasma
  • Prior art for surface treatment of implants by plasma electrolytic oxidation process is a method for preparing a titanium implant coated with an oxide film containing beta tricalcium phosphate, and a titanium implant prepared accordingly.
  • Preparing an electrolyte solution containing phosphate ions as a method of preparing a titanium implant for bone implants coated with an oxide film containing beta tricalcium phosphate as a biocompatible material; Dispersing hydroxyapatite particles in the electrolyte solution; And performing a plasma electrolytic oxidation coating using titanium implant as an anode in the electrolyte in which the hydroxyapatite particles are dispersed.
  • the phosphate ions of the electrolyte and the hydroxyapatite react. It provides a manufacturing method and titanium implant formed beta calcium phosphate formed in the oxide film, the Korean Patent Registration No. 10-1419276 (2014.07.15.) Coating formation method by plasma electrolytic oxidation 50mA / at a voltage range of 350V to 600V A current having a current density in the range of from 100 mA / range is applied, but a voltage greater than the voltage applied during the subsequent process is applied at the beginning of the plasma electrolytic oxidation process.
  • the ratio of the number of times between and the negative voltage pulse Zma electrolytic oxidation is initially applied in a ratio of 1: 1 to 2: 1, and after the middle of the process to provide a coating forming method by plasma electrolytic oxidation is applied in a ratio of 30: 1 to 50: 1, Korea Patent Registration No.
  • the biomaterial manufacturing method relates to the material for implants and artificial bone material, (a) potassium dihydrogen phosphate (KH 2 PO 4 ) and calcium chloride (CaCl 2 ) in the electrolytic bath Forming an electrolyte with the mixed aqueous solution; (b) immersing an anode titanium or titanium alloy and a cathode metal having a higher reduction potential than the titanium metal in the electrolytic cell; (c) generating plasma by applying arc current to the titanium metal by applying a constant current and voltage to the titanium metal and the cathode metal; (d) forming hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) on the surface of the titanium metal with ionic materials in the electrolytic cell using the plasma; (e) placing zirconium chloride (ZrCl 4 ) and titanium metal coated with hydroxyapatite on the surface through step (d) in the reaction vessel; And (f) heating the inside of the reaction vessel to vapor
  • the beta tricalcium phosphate (KH 2 PO 4 ) and calcium chloride (CaCl 2 ) and the like in the electrolyte solution used in the plasma electrolytic oxidation process is composed of a structure that changes the current density, etc. It forms a porous surface where an oxide film is formed on the implant surface made of conventional titanium-based alloys, thereby improving bioactivity, thereby inducing bone cell adhesion and bone growth. Metabolic processes and elements included in the electrolyte solution as bone constituent elements are a reality that lacks biocompatibility.
  • the technical problem to be achieved by the present invention is to increase the initial fixation in the clinical, to reduce the failure rate by providing an oxide film using ions that are beneficial to bone formation in commercially available titanium-based bioalloy, and to achieve the object
  • Plasma electrolytic oxidation is used as a means, but calcium and phosphorus include magnesium and silicon ions which induce bone and binding by the addition of calcium and phosphorus ions in the electrolyte, and induce bone cell adhesion and bone growth among bioactive substance ions.
  • the electrolyte composition containing magnesium and silicon and the apatite containing magnesium and silicon ions were coated in the plasma electrolytic oxidation process in addition to the prepared electrolyte solution to provide complex titanium alloy surface treatment by the plasma oxidation process. Providing a method for manufacturing dental implants The.
  • the electrolyte composition containing metal and silicon in the plasma electrolytic oxidation process is calcium acetate monohydrate, calcium glycerophosphate (Calcium glycerophosphate)
  • Electrolyte solution including sodium metasilicate nonahydrate and distilled water and one selected from magnesium acetate tetrahydrate, zinc acetate, strontium acetate, and manganese acetate. Is done.
  • the electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion.
  • an electrolyte composition containing metal and silicon in a plasma electrolytic oxidation process comprising 0.001 mol L -1 of sodium and 0.03 mol L -1 of a metal ion selected from magnesium acetate, zinc aspartate, strontium acetate and manganese acetate.
  • a method for preparing a dental implant coated with a hydroxide of apatite containing metal ions and silicon ions comprises the steps of: a) preparing a titanium alloy for sequentially polishing, micropolishing and ultrasonic cleaning the dental titanium alloy; b) a titanium alloy prepared in the preparation step is installed in the electrolytic bath positive electrode, the negative electrode is platinum, and then the step of inputting an electrolyte solution containing metal and silicon; c) forming a plasma by applying a constant voltage and current density to form an oxide film on the titanium alloy; And d) forming an oxide film on the titanium alloy in the plasma forming step, followed by drying after washing with ethanol and distilled water.
  • the polishing is carried out with a silicon carbide abrasive paper, containing metal ions and silicon ions, characterized in that the polishing step by step with a polishing paper consisting of 100, 600, 800, 1200, 2000 grit.
  • the micropolishing is performed using 0.3 ⁇ m alumina powder, and is removed so that the alumina powder does not remain during ultrasonic cleaning.
  • the electrolyte solution is selected from magnesium acetate tetrahydrate, zinc acetate, zinc acetate, strontium acetate and manganese acetate, and calcium acetate monohydrate and calcium glycerate.
  • Calcium glycerophosphate) and sodium metasilicate nonahydrate are prepared by mixing in distilled water.
  • the electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion.
  • the voltage and current density and the available time is 250 ⁇ 280V, 50 ⁇ 100 mA / cm -2 and provides a method for producing a dental implant coated with hydroxide containing a metal ions and silicon ions carried out for 3 minutes.
  • an electrolyte composition containing metal and silicon and a method for preparing dental implants coated with apatite hydroxide containing metal ions and silicon ions using the composition are as follows. It works.
  • the present invention has a dental implant surface treatment to the titanium-based bioalloy using a plasma electrolytic oxidation process to simplify the manufacturing process process, it is effective in reducing the implant manufacturing time and treatment period.
  • the present invention produces a porous oxide film having biocompatibility through complex substitution of metal ions and silicon ions by plasma electrolytic oxidation, and a thicker and denser oxide film than a conventional metal oxide film is produced.
  • the present invention includes a bioactive material of metal ions and silicon ions to quickly increase the biocompatibility, thereby increasing the initial fixation force of the dental implant to reduce the treatment period.
  • FIG. 1 is a flowchart of a method for manufacturing a dental implant coated with apatite hydroxide containing metal ions and silicon ions by a plasma electrolytic oxidation process according to an embodiment of the present invention
  • FIG. 2 is a basic reaction diagram of the plasma electrolytic oxidation surface treatment according to an embodiment of the present invention
  • FIG. 3 is a realistic view of the surface of the titanium alloy treated with plasma electrolytic oxidation in a solution containing metal ions and silicon ions according to an embodiment of the present invention
  • FIG. 4 is a realistic view of the dental implant surface treated with plasma electrolytic oxidation in a solution containing magnesium and silicon ions according to an embodiment of the present invention
  • FIG. 5 is a graph showing results of Energy Dispersive X-ray Spectroscopy (EDS) of a plasma electrolytic oxidation-treated titanium alloy using an electrolyte solution containing magnesium, zinc, and strontium according to an embodiment of the present invention
  • FIG. 6 is an EDS mapping photogram of a titanium alloy treated with plasma electrolytic oxidation using an electrolyte solution containing magnesium, strontium, and manganese according to an embodiment of the present invention
  • FIG. 7 is a graph showing an XRD (X-ray Diffractometer) result of a titanium electrolytically treated titanium alloy using an electrolyte solution containing magnesium, zinc, and strontium according to an embodiment of the present invention
  • FIG. 9 is a photogram showing the degree of cell adhesion on the surface of the plasma implanted dental implant alloy using an electrolyte solution containing magnesium, zinc and strontium according to an embodiment of the present invention
  • FIG. 10 is a graph showing an XRD (X-ray Diffractometer) result of a plasma electrolytic oxidation-treated titanium alloy surface apatite using zinc-containing electrolyte solution according to an exemplary embodiment of the present invention.
  • XRD X-ray Diffractometer
  • FIG. 11 is a table showing the ion distribution in the surface and the surface of the specimen of the plasma electrolytic oxidation-treated titanium alloy using the strontium-containing electrolyte solution according to an embodiment of the present invention
  • the electrolyte composition is a mixture of the electrolyte composition.
  • the electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion.
  • a titanium alloy prepared in the preparation step is installed in the electrolytic bath positive electrode, the negative electrode is platinum, and then the step of inputting an electrolyte solution containing metal and silicon;
  • Ti-6Al-4V Ti-6Al-4V extra low interstitial (ELI) .
  • Tiitanium is an element that forms the earth's crust. Oxygen, silicon, aluminum, iron, calcium , The ninth most abundant element after sodium, potassium, and magnesium, with a relatively low specific gravity and a density of 4.5 g / cm 3, 40% lighter than stainless steel (7.95 g / cm 3), and pure titanium is currently an implant material for dental applications. It is widely used as, and the microstructure is composed only of HCP ( ⁇ phase), the diameter of the crystal grain becomes 10 ⁇ 150 ⁇ m according to the cold working effect, to form an interstitial solid solution to strengthen the material.
  • the Ti-6Al-4V alloy is a mixture of HCP ( ⁇ phase) and BCC ( ⁇ phase), the microstructure is largely dependent on the thermal effect and is affected by the processing process, 1000 °C that ⁇ phase is formed into a homogeneous phase
  • ⁇ phase is formed into a homogeneous phase
  • the needle and plate-like ⁇ phases are precipitated in a specific direction in the crystal of ⁇ , and this is called a “Widmanstten” structure.
  • martensite is formed.
  • Normal Ti-6Al-4V is processed by heating near 882 °C, which is ⁇ phase transformation temperature, and annealed to precipitate ⁇ phase particles in fine ⁇ phase matrix and grain boundary, and titanium has high melting point.
  • phase transformation of ⁇ -Ti to ⁇ -Ti occurs at a temperature of 882 ° C.
  • high temperature ⁇ -Ti does not bring ⁇ phase to room temperature by quenching, but becomes a needle-like ⁇ -Ti structure.
  • titanium is the most widely used implant material at present because of its excellent mechanical properties and biocompatibility. Titanium is highly reactive and oxidizes in contact with air or body fluids. It is preferable as a material, and it is preferable to use Ti-6Al-4V as a material of the titanium alloy of this invention.
  • a dense oxide film is initially formed on the surface of the metal, and as time passes, a barrier layer is formed and the porous surface layer is continuously generated in proportion to the applied voltage.
  • the oxide film is repeatedly formed and destroyed by plasma discharge after formation, heat is generated locally at high temperature to dissolve the surface.
  • Such a repetition of the reaction is stopped when the applied voltage is stopped, thereby increasing the surface roughness. It has a porous surface, and the main reaction occurring at the anode during the plasma electrolytic oxidation process is as follows.
  • Oxygen ions react with Ti to form an oxide, and an oxygen gas reaction formed on the electrode surface appears.
  • Magnesium is the fourth most abundant cation in the extracellular matrix of bone because it is contained in enamel, dentin, and bone as one of calcium and major substitution factors. Magnesium deficiency affects bone metabolism and bone cell growth, affecting bone density and bone ductility, and more specifically, the ionic strontium (Sr-strontium) and magnesium (Mg-magnesium) , Zinc (Zn-zinc), sodium (Na-sodium), silicon (Si-silicon), silver (Ag-silver) and yttrium (Y-yttrium) play an important role in bone formation because it affects bone density. Known.
  • magnesium is known as a calcium substitute because HA has a structure in which the cationic lattice structure can be easily substituted with various elements.
  • Ca 10 - x Mg x (PO 4 ) 6 (OH) 2 It can be represented by the chemical formula. In this case, influence the particle shape, cell size, degree of crystallization, the thermodynamic properties of the powder and, by such a factor is substituted cations (Mg 2+, Zn 2+, Sr 2+) and negative ions (SiO 4 4-, F -, CO 3 2- ) are mainly used.
  • magnesium is a product of solubility, crystallinity, particle shape, and nanoparticle synthesis by controlling physicochemical properties, controlling biocompatibility and biological activity, and showing good effect as a bioactive material.
  • Silicone is also involved in new metabolism and bone formation. It is closely related to, and has the same effect as a bioactive substance as magnesium.
  • Zinc ions have an effect on nucleic acid metabolism, protein synthesis, and bone formation in vitro and in vivo, and accordingly, research is being conducted to add zinc to hydroxyapatite (HA) thin films to obtain improved active substances.
  • HA hydroxyapatite
  • zinc is an essential trace element of almost all living organisms, and the human body contains the most amount of transition metal after iron, and in adults, about 2g of zinc is contained in the brain, liver, muscle, bone, kidney, liver, prostate, etc.
  • Zn2 + is present in almost all types of enzymes.
  • the most noticed enzyme is carbonic anhydrase, an enzyme that rapidly converts carbon dioxide into water and converts it to carbonic acid.
  • catboxypeptidase an enzyme involved in the hydrolysis of C-terminal peptide bonds during protein digestion.
  • zinc is a component of enzymes involved in the synthesis and degradation of carbohydrates, fats, and nucleic acids, and contributes to the stabilization of antioxidant enzymes (SOD).
  • Zinc is also bound to proteins that recognize DNA sequences and regulate the transfer of genetic information during DNA replication, are involved in the metabolism and signaling of RNA and DNA, and regulate apoptosis, It is also involved in immune function.
  • zinc affects insulin action, and is reported to be associated with activities such as growth hormone, sex hormone, thyroid hormone, and prolactin hormone.Silicone is also involved in renal metabolism and is closely related to bone formation. This has the same effect as a bioactive material as zinc.
  • zinc deficiency can lead to a variety of symptoms, including malnutrition, chronic liver disease, chronic kidney disease, decreased immune function, delayed growth, diarrhea, hypogonadism, delayed maturation, and skin changes, especially in children.
  • the fetus can be born with mental and physical problems.
  • Strontium is present in the 15th lot in the crust, and the human body contains a significant amount of calcium in the bones and teeth, strontium promotes bone growth and increases bone density, so strontium compounds are used as food supplements and osteoporosis drugs Strontium compounds have been used to purify sugar from sugar beets. Recently, it is added to the front glass of color TVs or computer monitors to prevent X-ray emission, and is a component of magnets, and is also used to emit dark red fireworks from fireworks, flares, and flares.
  • strontium it is similar in size and size to the calcium and electron placement directly above the same family in the periodic table, so that organisms are less able to distinguish strontium from calcium and absorb strontium.
  • Animals replace some of the calcium that makes up bones and teeth.
  • the body contains about 320 mg of strontium (70 kg body weight), and bones contain 36 to 140 ppm.
  • Most strontium compounds are harmless to organisms, but SrCl 2 and Srl 2 are considered to be slightly toxic, and since the 1950s, strontium has been studied for human health, and lanthanum strontium promotes bone formation. It is used as a therapeutic agent for osteoporosis because it increases bone density and reduces fractures.
  • the trade name is Protelos or Protos.
  • the radiopharmaceutical metastron is a 89 Sr chloride ( 89 SrCl 2 ) is used in the treatment of pain and metastatic cancer caused by bone metastasis of cancer, Silicon is also involved in kidney metabolism and is closely related to bone formation, and thus has the same effect as a bioactive material as the strontium.
  • Manganese (Mn) is an indispensable element in plants and animals as an essential trace element of humans, and the lack of manganese in green plants reduces the production of chlorophyll, coexists with iron in animal tissues, but is widely distributed in humans. There is a lot of liver, pancreas and hair. It is observed that when manganese is deficient, the amount of acidic mucopolysaccharides of cartilage decreases significantly, the egg hatching rate of chickens, etc. decreases, and skeletal development of chicks significantly decreases. In addition, it is necessary for normal skeletal growth and development and is involved in radical elimination as an element important for enzymes such as superoxide dismutase in the body.
  • manganese ions are less toxic than aluminum and vanadium and, when doped with alloys, increase the corrosion resistance and mechanical properties of biomaterials.
  • Manganese is added to tricalcium phosphate bioceramic to show sufficient cellular compatibility, and the addition of manganese to titanium alloy improves cell adhesion characteristics.
  • the polishing is performed with silicon carbide abrasive paper, and is stepwise polished with abrasive paper composed of 100, 600, 800, 1200, 2000 grit.
  • the micropolishing is performed using 0.3 ⁇ m alumina powder, and ultrasonic cleaning is performed for 10 minutes in ethyl alcohol to remove the alumina powder.
  • the electrolyte solution is added to the positive electrode before installation of the magnetic bar. It is preferable to use agitated at 200 rpm, and the distance between the two electrodes of the positive electrode and the negative electrode is spaced apart from 20 to 40 mm.
  • the electrolyte solution is selected from magnesium acetate tetrahydrate, zinc acetate, zinc acetate, strontium acetate and manganese acetate, and calcium acetate monohydrate and calcium glycerate.
  • Calcium glycerophosphate) and sodium metasilicate nonahydrate are prepared by mixing in distilled water.
  • the electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion.
  • the voltage and current density and the available time is 250 ⁇ 280V, 50 ⁇ 100 mA / cm -2 and 3 minutes, but by installing a separate cooling system to maintain the temperature of the electrolysis tank at 25 °C to carry out the plasma electrolytic oxidation process After the formation of the oxide film and washing, it is preferable to dry using warm air.
  • Ti-6Al-4V disc (grade 5, Timet Co.Ltd, japan diameter; 10mm, thickness; 3mm) test specimens with silicon carbide abrasive paper, step by step with abrasive paper composed of 100, 600, 800, 1200, 2000 grit Polishing, fine polishing with 0.3 ⁇ m particle size aluminum oxide (Al 2 O 3 ), ultrasonic cleaning, magnesium ions, zinc ions, strontium ions, and manganese ions in the electrolyte solution (1L of distilled water) To 5, 10, 20 mol% compared to, and the silicon ions to 5 mol% compared to the phosphorus ion Table 1 (Magnesium), Table 2 (Zinc), Table 3 (Strontium) and Table 4 (Manganese) Calcium acetate monohydrate, Calcium glycerophosphate, Magnesium acetate tetrahydrate and Sodium metasilicate nonahydrate, as described in the design described in 3rd After loading the reagent is designed to ry
  • the prepared electrolytic solution was filled in an electrolysis tank, and the ultrasonically cleaned specimen was installed on the positive electrode, and the negative electrode was coated with platinum and then subjected to plasma electrolytic oxidation by applying 280V, 70 mA / cm -2 and 3 minutes. It was.
  • the dental implant made of titanium alloy of the same material was produced under the same conditions as the specimen subjected to the plasma electrolytic oxidation process in the above embodiment.
  • Test Example 1 Surface Porosity of Specimen According to Ca (Mg, Zn, Sr, Mn) / P (Si) Mol% Ratio
  • the surface of the electrolytically oxidized specimens and dental implants were measured by electron microscopy, but magnesium, zinc, strontium and manganese ions were 5, 10, 20 mol% compared to calcium ions, and silicon ions were compared to phosphorus ions. Each porosity of the treated surface was examined by giving a difference of 5 mol%.
  • FIG. 3 is a perspective view of a surface of a titanium alloy subjected to plasma electrolytic oxidation in a solution containing metal ions and silicon ions according to an exemplary embodiment of the present invention
  • FIG. 4 is magnesium and silicon according to an exemplary embodiment of the present invention.
  • a dental implant surface realistic treatment treated with plasma electrolytic oxidation in a solution containing ions will be described in detail with reference to FIGS. 3 to 4.
  • FIG. 3 shows pores having micrometer size pores on the surface of the oxide film of metal ions and silicon ions on a surface of a specimen subjected to plasma electrolytic oxidation in a solution containing magnesium, zinc, strontium and manganese ions and silicon ions. It was found that the formation was uniform, showing a smaller pore morphology with increasing concentration of metal ions. Therefore, as the concentration of metal ions (20Mg / 5Si) was increased, a lot of small pores were generated, and accordingly, it was found that it made a favorable state for bone bonding.
  • Figure 4 shows a uniform pore shape as shown in Figure 3 above in a realistic view showing that the magnesium ion (20Mg / 5Si) the highest dental implant surface in the embodiment by an electron microscope x 50 times, x 1000 times I could confirm that it formed.
  • Test Example 2 EDS and EDS mapping of plasma alloyed titanium alloy specimen
  • EDS Energy Dispersive X-ray Spectrscopy
  • a scanning electron microscope device which collects specific X-rays of a sample generated by an electron beam of a scanning electron microscope. More specifically, scanning an electron beam onto a sample (in the embodiment, a plasma electrolytic oxidation-titanium alloy specimen) causes electrons in atoms to absorb energy and become excited and release the excited X-rays while stabilizing the excited electrons again.
  • a sample in the embodiment, a plasma electrolytic oxidation-titanium alloy specimen
  • X-rays since the emitted X-rays have a unique energy value for each material, X-rays were collected by using a detector, and the collected X-rays were classified by intensity to conduct a qualitative analysis on the sample.
  • FIG. 5 is a graph showing results of Energy Dispersive X-ray Spectroscopy (EDS) of a plasma electrolytic oxidation-treated titanium alloy using an electrolyte solution containing magnesium, zinc and strontium according to an exemplary embodiment of the present invention
  • EDS Energy Dispersive X-ray Spectroscopy
  • FIG. 5 shows that the components used in the electrolytic solution are evenly distributed as a result of EDS analysis of the calcium, phosphorus and silicon ions and the components of magnesium, zinc and strontium ions on the surface where the titanium alloy oxide film is formed.
  • FIG. 6 shows EDS mapping for observing the distribution of calcium, phosphorus and silicon ions, magnesium ions, strontium ions, and manganese ions on the surface of a titanium alloy specimen. It was confirmed that they were evenly distributed.
  • Figure 11 is a table showing the ion distribution in the surface and pores of the specimen of the plasma electrolytic oxidation-treated titanium alloy using the strontium-containing electrolyte solution in accordance with a preferred embodiment of the present invention with reference to FIG. It was shown that the components of calcium, strontium, phosphorus and silicon ions were evenly distributed on the surface and the pores of the specimen, and the ions were better observed on the metal surface. The distribution of ions from the pores to the surface was further confirmed.
  • Test Example 3 XRD of Titanium Alloy Specimen Treated by Plasma Electrolytic Oxidation
  • X-ray diffractometer is an X-ray diffractometer that measures the intensity of diffraction lines with a counter tube while changing the diffraction angle of monochromatic X-rays by a single crystal or powder sample, and records the intensity and angle automatically. It is also called a deflectometer and uses X-ray tube, which is a sealed tube with a stable power source, and combines solar slits to make a beam having a proper opening angle.
  • the goniometer angle measuring device
  • the goniometer which interlocks the sample and the counter tube rotates the plate shaped part in the form of a plate at an angular velocity ⁇ and rotates the counter tube at 2 ⁇ using a line focus parallel to the axis of rotation.
  • the cutting lines are collected directly in front of the counter, usually using Geiger-Müller counters, and when precision is required, a proportional counter or scintillation counter is used in combination with the crest analyzer.
  • there are also four-axis diffractometers which are controlled by a computer, process the measurement result to make a decision, and then transfer to the next measurement.
  • FIG. 7 is a graph showing an X-ray diffractometer (XRD) result of a titanium electrolytically treated titanium alloy using an electrolyte solution containing magnesium, zinc, and strontium according to an exemplary embodiment of the present invention.
  • XRD X-ray diffractometer
  • the electrolyte solution containing magnesium was able to obtain an apatite phase and an anatase phase.
  • concentration of magnesium ions was increased, the apatite phase was shifted to the left, which is considered to be the effect of magnesium ions on the apatite phase. .
  • the electrolyte solution containing zinc showed a strong peak in the anatase phase, a weak peak in the rutile phase, and the intensity of the ⁇ peak decreased as shown in FIG. 7.
  • the electrolyte solution containing strontium was able to identify the anatase phase and the hydroxyapatite phase, and the HA peak was shifted from 38.65 to 38.51, thereby inferring Sr substitution into the HA grid.
  • Test Example 4 Apatite formed on the surface after immersion of plasma electrolytic oxidation titanium alloy in a bio-like solution
  • FIG. 8 is a SBF (simulated body) of the titanium alloy specimen prepared in Example 1 with an apatite due diligence produced on a surface after 12 hours of immersion in a plasma electrolytic oxidation-treated titanium alloy in accordance with a preferred embodiment of the present invention. Bone formation was evaluated through apatite formed after immersion in a fluid) solution.
  • Bio-like solutions were Na + (142.0 mM), K + (5.0 mM), Ca 2+ (2.5 mM), Cl ⁇ (103.0 mM), HCO 3 ⁇ (10.0 mM), HPO 4 ⁇ as shown in Table 6 below. (1.0 mM) and SO 4 2- (0.5 mM) were prepared in 200 ml beakers and kept in a incubator at 36.5 ° C ⁇ 1 ° C, pH 7.4, similar to the oral environment, for 12 hours. It was observed after immersion.
  • Test Example 5 Adhesion of Cells on the Surface of Dental Implant Alloy Treated by Plasma Electrolytic Oxidation
  • FIG. 9 is a realistic view showing the degree of cell adhesion on the surface of the plasma implanted dental implant alloy according to an embodiment of the present invention.
  • the cells use human embryonic kidney cells 293, and plasma Calcium, phosphorus, metal ions and silicon ions were incubated for 24 hours on the surface of the titanium alloy (Example) where the oxide film was formed by the electrolytic oxidation process, and it was observed by scanning electron microscopy that the magnesium ions were evaluated for bone (apatite) formation evaluation.
  • the cell growth and adhesion were good.
  • Zinc ions increased the cell culture volume when zinc and silicon ions were added than Ca / P, but the cell culture capacity increased as the zinc content increased.
  • Strontium ion was 1.5 million times magnified to observe cell adhesion.
  • 5Sr / Si (a) is 18, 10Sr / 5Si (b) is 20, and 20Sr / Si (c) is 21, and as the Sr / Si content increases, the cell adhesion rate increases.
  • FIG. 10 is a graph showing an XRD (X-ray Diffractometer) result of a plasma electrolytic oxidation-treated titanium apatite using zinc ion-containing electrolyte solution according to an exemplary embodiment of the present invention. It appeared strong, and the peak on rutile was weak. In addition, the HA phase strength was higher on the surface of the apatite, and the overall deposition showed that the HA phase doped with zinc and silicon was transferred from pure HA.
  • XRD X-ray Diffractometer
  • Biostabilization tests are available by evaluating the degree of metal ions eluting and by corrosive testing. Corrosion behavior of each specimen is similar to the oral environment using potentiostat (Mdel PARSTAT 2273, EG & G, USA). The electrochemical corrosion behavior was investigated by the prepared potentiodynamic method, and the applied potential was applied at a scanning speed of 1.67 mV / min from -1500 mV to 2000 mV, and the body-like solution was 36.5. The test was performed in 0.9% NaCl solution at ⁇ 1 ° C. From the polarization curves, the dissolution behavior of metals was investigated by the corrosion potential, corrosion current density and current density in the passivation region.
  • the corresponding values for the surface coating at 0, 5, 10 and 20 mol% were (-470 ⁇ 3.0) mV (-650 ⁇ 5.0) mV, (-820 ⁇ 4.0) mV and (-690 ⁇ 2.0) mV, respectively.
  • the concentration of manganese added to the oxide film was lowered at 10 mol%, which indicates that the corrosion potential decreased as manganese ions increased after plasma electrolytic oxidation.
  • the active site of the pores contained chlorine ions from the solution, thus exhibiting a low corrosion potential on the surface where the pores were formed.
  • Silver nanoparticles may be added to the electrolyte solution to add silver ions to impart antimicrobial activity to the oxide film.
  • Bacterial infections can occur during implant placement, resulting in periarthritis in the implanted tissue, which is characterized by the loss of bone adhesion at the site where the bone adhesion has been created and the cause of excessive occlusal force or infection. have.
  • the subsidiary diseases of the peri-implant tissues can be divided into peri-implant mucositis and peri-implantitis. Peri-implntitis is characterized by edema, redness and bleeding during detection. Peri-implntitis causes a wider range of inflammatory symptoms, with purulent bone loss along with purulent.
  • the antimicrobial mechanism of silver ions due to the addition of silver nanoparticles shows that the cell membrane is composed of a phospholipid bilayer, and because the oxygen bound to the phospholipid contains negative ions, the cell membrane is characterized by negatively charged and eluted as a whole.
  • the silver ions reach the cell membrane by diffusion, and at the same time, they adsorb on proteins such as cell membrane and destroy the structure of the cell.
  • Silver ions adsorbed to proteins such as cell membranes and enzymes bind to the sulfide group (-SH) of cystein, a protein-constituting amino acid, and convert it into sulfides, causing energy metabolic disorders by modification of protein enzymes.
  • -SH sulfide group
  • silver ions are directly ingested by microorganisms and combined with DNA, RNA, celluara protein, and resporatory enzymes to disrupt migration, growth and division, or to inactivate metabolic disorders in the cytoplasm of bacteria. Deactivation of microorganisms by destroying cell walls or by delocalization of silver ions on cell membranes leads to delocalization of cytosolic anions.
  • plasma-based electrolytic oxidation treatment of the titanium-based alloy has antimicrobial properties on the surface, and the effect of bone adhesion by magnesium and silicon ions is enhanced.
  • the present invention is carried out a plasma electrolytic oxidation process using the above-described anode or three electrodes using a DC voltage, but may also use an AC voltage, wherein the AC voltage may use an asymmetric pulsed voltage, Applying an asymmetrical pulsed voltage allows the positive portion of the pulse to establish the inverted surface, the oxide is formed and the surface converted at the early stages of the layer growth process has a dense structure and the thickness of the anodized coating Increasing the porosity in the coating can increase the bone bonding speed, and the thickness of the oxide film can be increased by performing a plasma oxidation process a plurality of times by changing the ratio of the current density given to the anode and cathode.
  • the attachment of osteoblasts to the implant depends on the surface characteristics of the implant.
  • the chemical composition, surface energy and surface morphology have an important effect on the maturation as well as on the osteoblast adhesion form.
  • the increase promotes early cell adhesion and expansion, thereby inducing a wider range of bone formation.
  • the difference in surface chemical composition and surface energy may appear as a difference in hydrophilicity, and this hydrophilicity is an important factor for adhesion and differentiation of early osteoblasts.
  • the surface of the titanium alloy of the present invention which is plasma electrolytically oxidized, may be treated with ultraviolet or ultraviolet-ozone, or may be irradiated with a laser to add a process that may have hydrophilicity on the implant surface. have.
  • the surface of the titanium alloy after the plasma electrolytic oxidation process is formed in the present invention and then the ultraviolet ray or ultraviolet-ozone is treated on the surface of the titanium alloy after the drying step.
  • the biocompatibility is increased by using a CO 2 laser or an Er-Cr.YSGG laser, but a recently used Er-Cr.YSGG laser is used. It is desirable to set the energy at 100-120 mJ and 20 Hz frequency for 2 minutes at distance.
  • an oxide film containing magnesium and silicon ions is formed on the surface of the titanium alloy dental implant by plasma electrolytic oxidation, but nanoporosity is provided to provide a large surface area of the nanostructure, which is more advantageously applied to bone adhesion.
  • the porous space formed inside is used as a channel for delivering various chemicals, drugs, and biomolecules that reach the protein level, so it acts only on a specific site. May reduce side effects.
  • the surface treatment of dental implants using a plasma electrolytic oxidation process on titanium-based bioalloys simplifies the manufacturing process and reduces the implant manufacturing time and treatment period.
  • a biocompatible porous oxide film was produced, and a thicker and dense oxide film was prepared than the conventional metal coral film, and the initial fixation force of the dental implant was increased by rapidly increasing the biocompatibility including bioactive materials of magnesium and silicon ions. Increase treatment to shorten the duration.
  • an electrolyte composition containing metal and silicon and a method for manufacturing a dental implant coated with a hydroxide of metal ions and silicon ions using the composition are prepared by using a plasma electrolytic oxidation process. It can be used in place of the existing implant manufacturing process by simplifying the implant surface treatment process for the implant, reducing the implant manufacturing time, and providing an oxide film thicker and denser than the conventional metal oxide film.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

The present invention relates to formation of a porous oxide film, by means of plasma electrolytic oxidation, on the surface of a titanium-based alloy which is a metallic material that is generally used by being inserted into bones in a human body. More specifically, the present invention relates to a method for manufacturing implants for improving bioactivity by forming, by means of plasma electrolytic oxidation, a surface of a porous oxide film containing metal ions, silicon ions, calcium and phosphorus on the surface of dental implants, by using an electrolyte solution containing, from among plenty of ions constituting a human body, metals (magnesium, zinc, strontium, manganese) and silicon that play an important role in the cell adhesion and bone formation. In addition, the present invention relates to an electrolyte composition containing metals and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated with hydroxyapatite and containing metal ions and silicon ions by using the composition, wherein the plasma electrolytic oxidation process comprises: a titanium alloy preparation step of sequentially subjecting a dental titanium alloy to grinding, micro-grinding, and ultrasonic cleaning; an insertion step of installing the titanium alloy prepared in the preparation step on an anode of an electrolysis tank, installing platinum on a cathode thereof, and inserting an electrolyte solution; a plasma forming step of forming an oxide film on the titanium alloy by generating plasma by applying constant voltage and current density; and a drying step of, after the oxide film is formed on the titanium alloy in the plasma forming step, cleaning the same with ethanol and distilled water, and then drying the same. The electrolyte composition containing metals and silicon in the plasma electrolytic oxidation process and the method for manufacturing dental implants coated with hydroxyapatite and containing metal ions and silicon ions by using the composition have the effect of simplifying steps of a manufacturing process and reducing time for manufacturing implants and a therapeutic period by treating the surface of the dental implants by employing the plasma electrolytic oxidation process in a titanium-based bio-alloy. Also, a porous oxide film having biocompatibility has been generated through complex substitution of metal ions and silicon ions using plasma electrolytic oxidation, an oxide film that is thicker and denser than conventional metal oxide films is manufactured, and the biocompatibility is rapidly increased by containing bioactive materials of metal ions and silicon ions, thereby enhancing the initial fixing force of the dental implants and reducing the therapeutic period.

Description

플라즈마 전해 산화 공정에서 금속과 실리콘이 함유된 전해질 조성물 및 그 조성물을 이용하여 금속이온과 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법In the plasma electrolytic oxidation process, an electrolyte composition containing metal and silicon and a method for manufacturing a dental implant coated with apatite hydroxide containing metal ions and silicon ions using the composition
본 발명은 일반적으로 인체내 골에 삽입되어 사용되고 있는 금속재료인 티타늄계 합금 표면에 플라즈마 전해 산화법(Plasma Electrolytic Oxidation)을 이용하여 다공성의 산화 피막을 형성하는 것으로, 더욱 상세하게는 인체를 이루고 있는 많은 이온중에 세포부착과 골 형성으로부터 중요한 역할을 하는 금속(마그네슘, 아연, 스트론튬, 망가니즈)과 실리콘이 함유된 전해질 용액을 사용하여 치과 임플란트 표면에 금속이온 및 실리콘 이온과 칼슘 및 인이 포함된 다공성 산화 피막의 표면을 플라즈마 전해 산화법으로 형성하여 생체활성을 향상시키는 임플란트 제조방법이며, 그 과정은 치과용 티타늄합금을 순차적으로 연마, 미세연마 및 초음파 세척하는 티타늄합금 준비단계, 상기 준비단계에서 준비된 티타늄합금을 전기분해조 양극에 설치하고, 음극은 백금을 설치한 후 전해질 용액을 투입하는 투입단계, 일정한 전압과 전류밀도를 가하여 플라즈마를 생성시켜 티타늄합금에 산화 피막을 형성하는 플라즈마 형성단계 및 상기 플라즈마 형성단계에서 티타늄합금에 산화피막이 형성된 후 에탄올 및 증류수 세척 후 건조시키는 건조단계를 포함하는 플라즈마 전해 산화 공정에서 금속 및 실리콘이 함유된 전해질 조성물 및 그 조성물을 이용하여 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법에 관한 것이다.The present invention is to form a porous oxide film by using plasma electrolytic oxidation (Plasma Electrolytic Oxidation) on the surface of titanium-based alloy, which is a metal material that is generally inserted into the bone in the human body, more specifically, Porous inclusions of metal ions, silicon ions, calcium and phosphorus on the surface of dental implants using electrolyte solutions containing metals (magnesium, zinc, strontium, manganese) and silicon, which play an important role in cell adhesion and bone formation among ions An implant manufacturing method for improving the bioactivity by forming the surface of the oxide film by plasma electrolytic oxidation method, the process is a titanium alloy preparation step of sequentially polishing, fine polishing and ultrasonic cleaning the dental titanium alloy, the titanium prepared in the preparation step The alloy is installed at the anode of the electrolytic bath, and the cathode is bag After the gold is installed, an electrolyte solution is added to the electrolyte solution, a plasma is generated by applying a constant voltage and current density to form an oxide film on the titanium alloy, and an oxide film is formed on the titanium alloy in the plasma forming step. The present invention relates to an electrolyte composition containing metals and silicon and a method for producing dental implants coated with apatite hydroxide containing metal ions and silicon ions using the composition in a plasma electrolytic oxidation process including drying after washing with distilled water. .
최근 임플란트 분야에서 가장 큰 관심은 치료기간의 단축에 있고, 치료기간을 단축하는데 가장 중요한 요소는 골 유착을 조기에 발생시켜 유지하는 것이다. 최근 상용화된 대다수의 임플란트는 생체적합도가 높고, 골의 치유, 생성 및 유지에 적합한 표면을 가지고 있다고 여겨지고 있으나, 여전히 불리한 골 상태를 완전히 극복할 수 없다. 한편, 주 재료로 사용되는 티타늄계 합금은 낮은 탄성률과 생체 적합성이 뛰어난 내식성 등 기존에 사용되던 생체용 금속에 비해 우수한 것으로 보고되고 있다. 그러나 생체불활성하기 때문에 골형성을 직접적으로 유도하지 않으며, 골결합을 이루기 위해 상당한 치료시간이 오래 걸리고, 자연적으로 형성된 산화피막은 두께가 얇아 소실이 빨리 진행되어 인접한 골 조직의 재생을 이끌어내지 못하는 등의 문제점들을 가지고 있다.In recent years, the biggest concern in the implant field is the shortening of the treatment period, and the most important factor in shortening the treatment period is the early development and maintenance of bone adhesion. Most of the recently commercialized implants are believed to have high biocompatibility and have a surface suitable for healing, producing and maintaining bone, but still cannot fully overcome adverse bone conditions. Meanwhile, titanium-based alloys used as main materials have been reported to be superior to conventional biometals, such as low elastic modulus and corrosion resistance with excellent biocompatibility. However, because it is bioinert, it does not directly induce bone formation, and it takes a long time for treatment to achieve bone bonding, and the naturally formed oxide film is thin so that its disappearance proceeds quickly and does not lead to regeneration of adjacent bone tissue. Have problems.
따라서, 상기의 문제점인 임플란트가 골과 직접적인 결합을 하지 못하는 것을 해결하고, 골 결합 기간을 단축시키기 위해서 이완되는 단점을 해결하기 위해 임플란트 표면처리를 통하여 생체활성도를 부여하고 있다. 임플란트의 주재료로 사용되는 티타늄의 표면에 물리, 화학적으로 표면처리를 실시하여 생체활성을 더욱 향상시킴으로써 임플란트를 인체에 식립 후 치유기간을 단축시키고 있으며, 더 효과적인 표면처리를 위한 연구는 지속적으로 진행되고 있는 실정이다. 상기 티타늄 표면처리 중 화학적 표면처리는 양극산화(Anodizing), 졸-겔법(Sol-gel), 플라즈마분사(Plasma spraying), 화학기상증착법(CVD) 및 플라즈마 전해 산화(PEO-Plasma Electrolytic Oxidation)가 있다.Therefore, in order to solve the above problem that the implant does not directly bond with the bone, and to solve the disadvantage of relaxing to shorten the bone bonding period is given bioactivity through the surface treatment of the implant. By treating the surface of titanium used as the main material of implants physically and chemically to improve the bioactivity, the healing period is shortened after the implant is placed in the human body, and research for more effective surface treatment is continuously conducted. There is a situation. Chemical surface treatment of the titanium surface treatment is anodizing, sol-gel, plasma spraying, chemical vapor deposition (CVD) and plasma electrolytic oxidation (PEO-Plasma Electrolytic Oxidation). .
상기 양극산화(Anodizing)는 외부전원을 이용하여 금속 표면에 산화물 및 금속염을 비교적 두껍게 형성시키는 방법으로 산화층을 형성시키고자 하는 금속을 양극에 설치하고, 다른 불용성 금속을 음극에 접촉시켜 전해액 내에 전류를 흐르게 하는 것으로 양극산화를 하기 위해 전류를 걸게 되면 아주 낮은 전압에서 금속의 수산화물이 미세한 막을 형성하며, 약 10V 의 전압이 걸리게 되면 금속 산화층이 형성된다. 그러나 일단 산화층이 형성되면 저항이 증가되어 금속 산화층에 내부 응력이 집중되고, 70V에서 산화층이 파괴되며, 다시 전압을 올려주면 제 2의 다공성 산화층이 형성되는데 이러한 공정중에 스파크가 발생하게 되며, 강제적으로 전기를 걸어 산화층을 형성하므로 전기효율이 나쁘고, 스파크가 난 국소부위는 열응력을 받아 티타늄 물성에 나쁜 영향을 줄뿐만 아니라 접착력이 떨어져 최종 물성을 떨어뜨리는 문제점이 있다.The anodizing is a method of forming an oxide layer and a metal salt on a metal surface by using an external power source so that an oxide layer is formed on the anode, and the other insoluble metal is brought into contact with the cathode to generate a current in the electrolyte. When an electric current is applied to anodize the metal hydroxide, a metal hydroxide forms a fine film at a very low voltage, and when a voltage of about 10V is applied, a metal oxide layer is formed. However, once the oxide layer is formed, the resistance is increased to concentrate internal stress in the metal oxide layer, the oxide layer is destroyed at 70V, and when the voltage is increased again, a second porous oxide layer is formed, and sparks occur during this process. Since the oxidation layer is formed by applying electricity, the electrical efficiency is poor, and the sparked localized parts are not only adversely affecting titanium properties due to thermal stress, but also have a problem in that the adhesion is reduced and the final properties are degraded.
상기 졸-겔법(Sol-gel)은 코팅막을 제조하기 위해서 알코올, 물 및 산 등에 의해 가수분해, 중합반응에 의하여 겔(gel)로 되는 용액을 제조하는 것으로 균질한 용액을 비교적 낮은 점도의 상태로 기판에 코팅하여, 기판 위에서 겔화시켜 막으로 하는 것으로 졸-겔법을 응용하는 dip-coating 등과 같은 습식 코팅법은 저온 공정이며, 면적에 관계없이 코팅 할 수 있고, 막의 두께 및 미세구조를 제어할 수 있는 장점이 있으나 결정화를 위한 후열처리 공정이 부가되고, 평판 형상의 코팅형성이 제한되며, 코팅이 모재와의 충분한 결합력을 가지기 위해서 접착력을 강하게 하기 위한 접착제가 중간층에 삽입되어야 하는 단점이 있다.The sol-gel method is to prepare a solution which becomes a gel by hydrolysis and polymerization reaction by alcohol, water, acid, etc. in order to prepare a coating film. A wet coating method such as dip-coating, which is applied to a substrate, gelled on a substrate, and applied to a sol-gel method is a low temperature process, and can be coated regardless of area, and can control the thickness and microstructure of the film. There is an advantage, but the post-heat treatment process for crystallization is added, the plate-like coating is limited, and the adhesive has to be inserted into the intermediate layer to strengthen the adhesive force in order to have a sufficient bonding force with the base material.
상기 플라즈마분사(Plasma spraying)는 열 분무 중의 한 분야로 모재(substrate) 위에 금속과 비금속 재료인 세라믹과 같은 녹는점이 높은 물질을 용융된 상태 혹은 반 용융된 상태로 용착하는 공정을 말한다. 모재의 재질 및 크기에 제한이 없으며 모재에 변형을 초래하지 않고, 현장 시공이 가능하며, 후막코팅이 가능하고, 코팅두께 조절이 용이하다는 점과 코팅재료의 종류가 다양하다는 점이 장점이나 조직에 기공률이 0.6~15%까지 나타나며 금속적 결합이 아니 기계적인 결합으로 티타늄의 세라믹 코팅 시 충격에 약하다는 단점이 있고, 모재와의 접합성이 약하기 때문에 임플란트 적용이 어려운 실정이다.Plasma spraying is a field of thermal spraying, in which a high melting point material such as a ceramic, which is a metal and a nonmetallic material, is deposited on a substrate in a molten or semi-melted state. There are no limitations on the material and size of the base material, and it can be installed on site without causing deformation to the base material, thick film coating, easy to control coating thickness, and various kinds of coating materials. It shows up to 0.6 ~ 15%, and it is weak to impact when ceramic coating of titanium due to mechanical bonding rather than metallic bonding, and it is difficult to apply implant because of weak bonding with the base metal.
상기 화학기상증착법(CVD)은 기체혼합물을 고온에서 시료에 노출시킴으로써 표면을 처리하는 방법으로 다양한 반응이 발생하여 기체혼합물의 한개 또는 그 이상의 성분들이 분해되고, 결과적으로 모재에 증착되도록 모재에 증착되는 방법이다. 일반적으로 생체재료들의 응용분야에 있어서 탄탈(tantalum), 몰리브덴(molybdenum), 레늄(rhenium) 또는 흑연(graphite)과 같은 기질에 대한 열분해 탄소코팅을 증착시키는데 이용되는 방법이다.Chemical Vapor Deposition (CVD) is a method of treating a surface by exposing a gas mixture to a sample at a high temperature, where a variety of reactions occur to decompose one or more components of the gas mixture, resulting in deposition on the substrate. Way. It is generally used to deposit pyrolytic carbon coatings on substrates such as tantalum, molybdenum, rhenium or graphite in the application of biomaterials.
상기 플라즈마 전해산화(Plasma Electrolytic Oxidation)는 원리상으로는 양극 산화(anodizing) 처리와 동일하되, 양극 산화는 음극(cathode)에 상대적으로 전기 화학적 안정성이 높은 금속(스케이니리스 스틸 또는 백금 합금 등)을, 양극(anode)에는 마그네슘 등의 산화 반응을 시키고자 하는 금속을 위치시킨다. 플라즈마 전해산화 공정의 경우, 기 형성된 양극 산화층 (또는 유전막)에 통전할 수 있는 전압(dielectric breakdown voltage) 이상의 전압을 가하면, 산화층 내부에서 반응된 가스 (수소 또는 산소 가스)에서는 국부적으로 형성된 강한 전류장에 의해 arc(또는 spark 또는 plasma)가 발생하게 된다. 이들 플라즈마 에너지가 순간 형성된 산화물을 융착시키는 역할을 수행하여, 양극에 위치한 금속의 표면은 양극산화 피막으로 형성된 산화물과는 전혀 다른 매우 치밀하고 단단한 산화물이 형성되는 기술로 전자, 자동차, 의료, 섬유, 해양, 석유화학산업에 이르기까지 광범위한 분야에 적용되고 있는 표면처리 기술이며, 전해질 내에 Ca 및 PO4 이온의 첨가로 인체내 골에 삽입되는 금속 표면에 골과의 결합을 유도하는 산화피막을 형성하여 생체활성을 향상시킴으로써 경제적이면서도 생체 적합도를 높이고 있다. 하지만, 종래 기술에서 가지고 있는 인접한 골조직의 재생을 이끌어 내지 못하는 것과 산화피막의 빠른 소실등의 문제점으로 인한 치료시간 단축등의 문제점들이 일부 개선 되었을뿐 여전히 종래의 문제점들을 내포하고 있다.Plasma Electrolytic Oxidation is in principle the same as anodizing, but anodic oxidation is a metal having high electrochemical stability relative to a cathode (Skinny's steel or platinum alloy, etc.), On the anode is placed a metal to be oxidized, such as magnesium. In the case of the plasma electrooxidation process, when a voltage equal to or higher than a dielectric breakdown voltage is applied to the previously formed anodization layer (or dielectric layer), a strong current field locally formed in the gas (hydrogen or oxygen gas) reacted inside the oxide layer is applied. Arc (or spark or plasma) is generated by. These plasma energies serve to fuse the oxides formed at the moment, so that the surface of the metal located at the anode is formed with a very dense and hard oxide which is completely different from the oxide formed by the anodization film. It is a surface treatment technology applied to a wide range of fields from marine and petrochemical industries. By adding Ca and PO 4 ions in the electrolyte, it forms an oxide film that induces bonding with bone on the metal surface inserted into bone in the human body. Increasing bioactivity improves economical and biocompatibility. However, some problems such as shortening of treatment time due to problems such as failure of regenerating adjacent bone tissues and rapid loss of oxide film, which have been improved in some prior arts, still have conventional problems.
플라즈마 전해 산화공정으로 임플란트의 표면처리를 하는 선행기술은 한국등록특허 제10-1314073호(2013.10.07.) 베타 삼인산칼슘을 포함하는 산화막으로 코팅된 티타늄 임플란트의 제조방법 및 이에 따라 제조된 티타늄 임플란트로 생체친화물질인 베타 삼인산칼슘을 포함하는 산화막으로 코팅된 골내 임플란트용 티타늄 임플란트의 제조방법으로 인산이온을 포함하는 전해액을 제조하는 단계; 상기 전해액에 하이드록시아파타이트 입자를 분산시키는 단계; 및 상기 하이드록시아파타이트 입자가 분산된 전해액에 티타늄 임플란트를 양극으로 하여 플라즈마 전해산화 코팅을 수행하는 단계를 포함하며 상기 플라즈마 전해산화 코팅을 수행하는 과정에서 상기 전해액의 인산이온과 하이드록시 아파타이트가 반응하여 형성된 베타 삼인산칼슘이 산화막에 포함되는 제조방법 및 티타늄 임플란트를 제공하고 있고, 한국등록특허 제10-1419276호(2014.07.15.) 플라즈마 전해 산화에 의한 코팅 형성방법은 350V 내지600V 범위 전압으로 50mA/ 내지 100 mA/ 범위 전류밀도의 전류를 인가하되 플라즈마 전해 산화 과정 초기에는 이후의 과정 동안 인가되는 전압보다 큰 전압이 인가되며, 플라즈마 전해 산화조 내의 플러스 전극과 마이너스 전극에 대한 전압 인가 시 플러스 전압 펄스와 마이너스 전압 펄스 사이의 횟수 비율이, 플라즈마 전해산화 과정으로 초기에는 1:1 내지 2:1의 비율로 인가되며, 과정의 중반 이후 에는 30:1 내지 50:1의 비율로 인가되는 플라즈마 전해 산화에 의한 코팅 형성 방법을 제공하고 있으며, 한국등록특허 제10-1081687호(2011.11.09.) 바이오재료 제조방법은 임플란트용 재료 및 인공뼈용 재료에 관한 것으로, (a)전해조에 인산이수화포타슘(KH2PO4) 및 염화칼슘(CaCl2) 혼합수용액으로 전해질을 형성하는 단계; (b)상기 전해조에 애노드용 티타늄 또는 티타늄 함급 및 상기 티타늄 금속보다 환원전위가 높은 캐소드용 금속을 침지하는 단계; (c)상기 티타늄 금속 및 캐소드용 금속에 일정한 전류와 전압을 인가하여 상기 티타늄 금속에 아크방전을 일으켜서 플라즈마를 생성하는 단계; (d)상기 플라즈마를 이용하여 상기 전해조 내부의 이온물질들로 상기 티타늄 금속의 표면에 수산화인회석(Ca10(PO4)6(OH)2)을 형성하는 단계; (e)염화지르코늄(ZrCl4) 및 상기 (d)단계를 통하여 표면에 수산화인회석이 코팅된 티타늄 금속을 반응용기 내부에 배치하는 단계; 및 (f)상기 반응용기 내부를 가열하여 일정한 가스 분위기에서 상기 염화지르코늄을 기화시켜, 티타늄 금속의 표면에 수산화인회석/산화지르코늄 복합물을 형성하는 단계를 구비하는 바이오재료 제조방법을 제공하고 있다.Prior art for surface treatment of implants by plasma electrolytic oxidation process is a method for preparing a titanium implant coated with an oxide film containing beta tricalcium phosphate, and a titanium implant prepared accordingly. Preparing an electrolyte solution containing phosphate ions as a method of preparing a titanium implant for bone implants coated with an oxide film containing beta tricalcium phosphate as a biocompatible material; Dispersing hydroxyapatite particles in the electrolyte solution; And performing a plasma electrolytic oxidation coating using titanium implant as an anode in the electrolyte in which the hydroxyapatite particles are dispersed. In the process of performing the plasma electrolytic oxidation coating, the phosphate ions of the electrolyte and the hydroxyapatite react. It provides a manufacturing method and titanium implant formed beta calcium phosphate formed in the oxide film, the Korean Patent Registration No. 10-1419276 (2014.07.15.) Coating formation method by plasma electrolytic oxidation 50mA / at a voltage range of 350V to 600V A current having a current density in the range of from 100 mA / range is applied, but a voltage greater than the voltage applied during the subsequent process is applied at the beginning of the plasma electrolytic oxidation process. The ratio of the number of times between and the negative voltage pulse Zma electrolytic oxidation is initially applied in a ratio of 1: 1 to 2: 1, and after the middle of the process to provide a coating forming method by plasma electrolytic oxidation is applied in a ratio of 30: 1 to 50: 1, Korea Patent Registration No. 10-1081687 (2011.11.09.) The biomaterial manufacturing method relates to the material for implants and artificial bone material, (a) potassium dihydrogen phosphate (KH 2 PO 4 ) and calcium chloride (CaCl 2 ) in the electrolytic bath Forming an electrolyte with the mixed aqueous solution; (b) immersing an anode titanium or titanium alloy and a cathode metal having a higher reduction potential than the titanium metal in the electrolytic cell; (c) generating plasma by applying arc current to the titanium metal by applying a constant current and voltage to the titanium metal and the cathode metal; (d) forming hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) on the surface of the titanium metal with ionic materials in the electrolytic cell using the plasma; (e) placing zirconium chloride (ZrCl 4 ) and titanium metal coated with hydroxyapatite on the surface through step (d) in the reaction vessel; And (f) heating the inside of the reaction vessel to vaporize the zirconium chloride in a constant gas atmosphere to form a hydroxyapatite / zirconium oxide complex on the surface of the titanium metal.
상기 선행기술들을 살펴보면 티타늄 합금 표면에 산화 피막을 형성하되 플라즈마 전해 산화 공정에서 사용되는 전해질 용액에 베타 삼인산칼슘과 인산이수화포타슘(KH2PO4)와 염화칼슘(CaCl2)등을 포함시키고, 전압 및 전류밀도등을 변화 시키는 구성으로 이루어져 종래 티타늄계 합금으로만 이루어진 임플란트 표면에 산화피막이 형성되는 다공성 표면을 형성하여 생체활성을 향상시켜 골세포 부착과 골 결합 성장을 유도를 더욱 빠르게 진행되도록 하고 있으나 신지대사 과정 및 뼈를 이루는 원소들로써 상기 전해질 용액에 포함되는 요소들은 생체 적합성이 부족한 현실이다.Looking at the prior art to form an oxide film on the surface of the titanium alloy, but the beta tricalcium phosphate (KH 2 PO 4 ) and calcium chloride (CaCl 2 ) and the like in the electrolyte solution used in the plasma electrolytic oxidation process, voltage and It is composed of a structure that changes the current density, etc. It forms a porous surface where an oxide film is formed on the implant surface made of conventional titanium-based alloys, thereby improving bioactivity, thereby inducing bone cell adhesion and bone growth. Metabolic processes and elements included in the electrolyte solution as bone constituent elements are a reality that lacks biocompatibility.
본 발명이 이루고자 하는 기술적 과제는 현재 시판중인 티타늄계 생체합금에 골 형성에 이로운 이온을 이용하여 산화막을 제공을 통해 임상에서 초기 고정을 높이고, 실패율을 줄이는 목적을 가지고 있으며, 그 목적을 달성하기 위한 수단으로 플라즈마 전해 산화법을 이용하되 전해질 내에 칼슘과 인 이온의 첨가로 골과 결합을 유도하고, 생체활성물질 이온 중 골세포 부착과 골 결합 성장을 유도하는 마그네슘과 실리콘이온을 상기 칼슘과 인이 포함된 전해질 용액에 첨가하여 플라즈마 산화 공정에 의해 복합적인 티타늄합금 표면처리를 제공하는 플라즈마 전해 산화 공정에서 마그네슘 및 실리콘이 함유된 전해질 조성물 및 그 조성물을 이용하여 마그네슘 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법을 제공한다.The technical problem to be achieved by the present invention is to increase the initial fixation in the clinical, to reduce the failure rate by providing an oxide film using ions that are beneficial to bone formation in commercially available titanium-based bioalloy, and to achieve the object Plasma electrolytic oxidation is used as a means, but calcium and phosphorus include magnesium and silicon ions which induce bone and binding by the addition of calcium and phosphorus ions in the electrolyte, and induce bone cell adhesion and bone growth among bioactive substance ions. The electrolyte composition containing magnesium and silicon and the apatite containing magnesium and silicon ions were coated in the plasma electrolytic oxidation process in addition to the prepared electrolyte solution to provide complex titanium alloy surface treatment by the plasma oxidation process. Providing a method for manufacturing dental implants The.
상기와 같은 문제점을 해결하고, 목적을 달성하기 위하여 본 발명의 일실시예에 따른 플라즈마 전해 산화 공정에서 금속 및 실리콘이 함유된 전해질 조성물은 아세트산칼슘(Calcium acetate monohydrate), 글리세로인산 칼슘(Calcium glycerophosphate), 메타규산나트륨(Sodium metasilicate nonahydrate) 및 증류수와 아세트산 마그네슘(Magnesium acetate tetrahydrate), 아세트산 아연(Zinc acetate), 아세트산 스트론튬(Strontium acetate) 및 아세트산 망가니즈(Manganese acetate)중 선택된 하나를 포함하여 전해질 용액을 이루어진다.In order to solve the above problems and achieve the object, the electrolyte composition containing metal and silicon in the plasma electrolytic oxidation process according to an embodiment of the present invention is calcium acetate monohydrate, calcium glycerophosphate (Calcium glycerophosphate) Electrolyte solution, including sodium metasilicate nonahydrate and distilled water and one selected from magnesium acetate tetrahydrate, zinc acetate, strontium acetate, and manganese acetate. Is done.
상기 전해질 용액은 금속이온이 칼슘 이온에 대비 20 mol%, 실리콘 이온이 인 이온에 대비하여 5 mol%가 되도록 아세트산칼슘을 0.12mol L-1, 글리세로인산칼슘은 0.02mol L-1 및 메타규산나트륨 0.001mol L-1와 상기 아세트산 마그네슘, 아스트산 아연, 아세트산 스트론튬 및 아세트산 망가니즈중 선택된 하나 금속이온 0.03mol L-1로 이루어지는 플라즈마 전해 산화 공정에서 금속 및 실리콘이 함유된 전해질 조성물을 제공한다.The electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion. Provided is an electrolyte composition containing metal and silicon in a plasma electrolytic oxidation process comprising 0.001 mol L -1 of sodium and 0.03 mol L -1 of a metal ion selected from magnesium acetate, zinc aspartate, strontium acetate and manganese acetate.
금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법은 a) 치과용 티타늄합금을 순차적으로 연마, 미세연마 및 초음파 세척하는 티타늄합금 준비단계; b) 상기 준비단계에서 준비된 티타늄합금을 전기분해조 양극에 설치하고, 음극은 백금을 설치한 후 금속 및 실리콘이 함유된 전해질 용액을 투입하는 투입단계; c) 일정한 전압과 전류밀도를 가하여 플라즈마를 생성시켜 티타늄합금에 산화 피막을 형성하는 플라즈마 형성단계; 및 d) 상기 플라즈마 형성단계에서 티타늄합금에 산화피막이 형성된 후 에탄올 및 증류수 세척 후 건조시키는 건조단계;를 포함한다.A method for preparing a dental implant coated with a hydroxide of apatite containing metal ions and silicon ions comprises the steps of: a) preparing a titanium alloy for sequentially polishing, micropolishing and ultrasonic cleaning the dental titanium alloy; b) a titanium alloy prepared in the preparation step is installed in the electrolytic bath positive electrode, the negative electrode is platinum, and then the step of inputting an electrolyte solution containing metal and silicon; c) forming a plasma by applying a constant voltage and current density to form an oxide film on the titanium alloy; And d) forming an oxide film on the titanium alloy in the plasma forming step, followed by drying after washing with ethanol and distilled water.
상기 연마는 실리콘 카바이드 연마지로 실시하되 100, 600, 800, 1200, 2000 grit로 이루어진 연마지로 단계적으로 연마하는 것을 특징으로 하는 금속이온 및 실리콘 이온을 함유한다.The polishing is carried out with a silicon carbide abrasive paper, containing metal ions and silicon ions, characterized in that the polishing step by step with a polishing paper consisting of 100, 600, 800, 1200, 2000 grit.
상기 미세연마는 0.3㎛ 알루미나 분말을 이용하여 실시하며, 초음파 세척시 상기 알루미나 분말이 남지 않도록 제거한다.The micropolishing is performed using 0.3 μm alumina powder, and is removed so that the alumina powder does not remain during ultrasonic cleaning.
상기 전해질 용액은 아세트산 마그네슘(Magnesium acetate tetrahydrate), 아세트산 아연(Zinc acetate), 아세트산 스트론튬(Strontium acetate) 및 아세트산 망가니즈(Manganese acetate)중 선택된 하나와 아세트산칼슘(Calcium acetate monohydrate), 글리세로인산 칼슘(Calcium glycerophosphate) 및 메타규산나트륨(Sodium metasilicate nonahydrate)을 증류수에 혼합하여 제조된다.The electrolyte solution is selected from magnesium acetate tetrahydrate, zinc acetate, zinc acetate, strontium acetate and manganese acetate, and calcium acetate monohydrate and calcium glycerate. Calcium glycerophosphate) and sodium metasilicate nonahydrate are prepared by mixing in distilled water.
상기 전해질 용액은 금속이온이 칼슘 이온에 대비 20 mol%, 실리콘 이온이 인 이온에 대비하여 5 mol%가 되도록 아세트산칼슘을 0.12mol L-1, 글리세로인산칼슘은 0.02mol L-1 및 메타규산나트륨 0.001mol L-1와 상기 아세트산 마그네슘, 아세트산 아연, 아세트산 스트론튬 및 아세트산 망가니즈중 선택된 하나 금속이온 0.03mol L-1로 이루어진다.The electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion. Sodium 0.001 mol L -1 and the metal ion 0.03 mol L -1 selected from magnesium acetate, zinc acetate, strontium acetate and manganese acetate.
상기 전압과 전류밀도 및 가용시간은 250~280V, 50~100 mA/㎝-2 및 3분간 실시되는 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법을 제공한다.The voltage and current density and the available time is 250 ~ 280V, 50 ~ 100 mA / cm -2 and provides a method for producing a dental implant coated with hydroxide containing a metal ions and silicon ions carried out for 3 minutes.
이상에서 설명한 바와 같이 본 발명에 의한 플라즈마 전해 산화 공정에서 금속 및 실리콘이 함유된 전해질 조성물 및 그 조성물을 이용하여 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법은 다음과 같은 효과가 있다.As described above, in the plasma electrolytic oxidation process according to the present invention, an electrolyte composition containing metal and silicon and a method for preparing dental implants coated with apatite hydroxide containing metal ions and silicon ions using the composition are as follows. It works.
(1) 본 발명은 티타늄계 생체합금에 플라즈마 전해 산화공정을 이용하여 치과용 임플란트 표면 처리함으로써 제조공정 과정이 간편하고, 임플란트 제조 시간 및 치료 기간을 저감시키는 효과가 있다.(1) The present invention has a dental implant surface treatment to the titanium-based bioalloy using a plasma electrolytic oxidation process to simplify the manufacturing process process, it is effective in reducing the implant manufacturing time and treatment period.
(2) 본 발명은 플라즈마 전해 산화법으로 금속이온과 실리콘 이온을 복합적인 치환을 통해 생체적합성을 지닌 다공성 산화막을 생성하였으며, 종래 금속 산화막보다 두껍고 치밀한 산화막이 제조된다.(2) The present invention produces a porous oxide film having biocompatibility through complex substitution of metal ions and silicon ions by plasma electrolytic oxidation, and a thicker and denser oxide film than a conventional metal oxide film is produced.
(3) 본 발명은 금속이온 및 실리콘 이온의 생체활성물질을 포함하여 생체적합성을 빠르게 증가시킴으로써 치과용 임플란트의 초기 고정력을 높여 치료기간을 줄인다.(3) The present invention includes a bioactive material of metal ions and silicon ions to quickly increase the biocompatibility, thereby increasing the initial fixation force of the dental implant to reduce the treatment period.
도 1은 본 발명의 바람직한 일 실시예에 따른 플라즈마 전해 산화 공정에 의해 금속이온 및 실리콘 이온이 함유된 수산화아파타이트가 코팅된 치과용 임플란트 제조방법의 흐름도,1 is a flowchart of a method for manufacturing a dental implant coated with apatite hydroxide containing metal ions and silicon ions by a plasma electrolytic oxidation process according to an embodiment of the present invention;
도 2는 본 발명의 바람직한 일 실시예에 따른 플라즈마 전해 산화 표면처리의 기본 반응도,2 is a basic reaction diagram of the plasma electrolytic oxidation surface treatment according to an embodiment of the present invention,
도 3은 본 발명의 바람직한 일 실시예에 따른 금속이온 및 실리콘 이온이 함유된 용액에서 플라즈마 전해 산화 처리된 티타늄합금 표면의 실사도,3 is a realistic view of the surface of the titanium alloy treated with plasma electrolytic oxidation in a solution containing metal ions and silicon ions according to an embodiment of the present invention,
도 4는 본 발명의 바람직한 일 실시예에 따른 마그네슘 및 실리콘 이온이 함유된 용액에서 플라즈마 전해 산화 처리된 치과용 임플란트 표면 실사도,4 is a realistic view of the dental implant surface treated with plasma electrolytic oxidation in a solution containing magnesium and silicon ions according to an embodiment of the present invention,
도 5는 본 발명의 바람직한 일 실시예에 따른 마그네슘, 아연 및 스트론튬이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금의 EDS(Energy Dispersive X-ray Spectroscopy) 결과 그래프,FIG. 5 is a graph showing results of Energy Dispersive X-ray Spectroscopy (EDS) of a plasma electrolytic oxidation-treated titanium alloy using an electrolyte solution containing magnesium, zinc, and strontium according to an embodiment of the present invention;
도 6은 본 발명의 바람직한 일 실시예에 따른 마그네슘, 스트론튬 및 망가니즈가 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금의 EDS mapping 실사도,6 is an EDS mapping photogram of a titanium alloy treated with plasma electrolytic oxidation using an electrolyte solution containing magnesium, strontium, and manganese according to an embodiment of the present invention;
도 7은 본 발명의 바람직한 일 실시예에 따른 마그네슘, 아연 및 스트론튬이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금의 XRD(X-ray Diffractometer) 결과 그래프,7 is a graph showing an XRD (X-ray Diffractometer) result of a titanium electrolytically treated titanium alloy using an electrolyte solution containing magnesium, zinc, and strontium according to an embodiment of the present invention;
도 8은 본 발명의 바람직한 일 실시예에 따른 플라즈마 전해 산화 처리된 티타늄합금을 생체 유사 용액에 12시간 침지한 후 표면에 생성된 아파타이트 실사도,8 is an apatite photogram produced on a surface after immersing a plasma electrolytic oxidation-treated titanium alloy in a bio-like solution for 12 hours according to a preferred embodiment of the present invention,
도 9는 본 발명의 바람직한 일 실시예에 따른 마그네슘, 아연 및 스트론튬이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 치과 임플란트 합금 표면에서 세포 부착정도를 나타내는 실사도,9 is a photogram showing the degree of cell adhesion on the surface of the plasma implanted dental implant alloy using an electrolyte solution containing magnesium, zinc and strontium according to an embodiment of the present invention,
도 10은 본 발명의 바람직한 일 실시예에 따른 아연이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금 표면 아파타이트의XRD(X-ray Diffractometer) 결과 그래프,10 is a graph showing an XRD (X-ray Diffractometer) result of a plasma electrolytic oxidation-treated titanium alloy surface apatite using zinc-containing electrolyte solution according to an exemplary embodiment of the present invention.
도 11은 본 발명의 바람직한 일 실시예에 따른 스트론튬이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄 합금의 시편의 표면과 기공속의 이온분포를 나타내는 표,11 is a table showing the ion distribution in the surface and the surface of the specimen of the plasma electrolytic oxidation-treated titanium alloy using the strontium-containing electrolyte solution according to an embodiment of the present invention,
도 12는 본 발명의 바람직한 일 실시예에 따른 망가니즈가 함유된 전해질 용액을 이용한 플라즈마 전해 산화에 의한 금속 이온이 용출되는 정도를 평가하는 생체안정화 시험 결과이다.12 is a biostabilization test result for evaluating the degree of metal ions eluted by plasma electrolytic oxidation using an electrolyte solution containing manganese according to an exemplary embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명의 일 실시예에 따른 플라즈마 전해 산화 공정에서 금속과 실리콘이 함유된 전해질 조성물 및 그 조성물을 이용하여 금속이온과 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법에 대해 상세히 설명된다.Hereinafter, with reference to the drawings in the plasma electrolytic oxidation process according to an embodiment of the present invention using a metal and silicon-containing electrolyte composition and the composition to prepare a dental implant coated with a hydroxide containing metal ions and silicon ions The method is described in detail.
플라즈마 전해 산화 공정의 전해질 조성물에 있어서,In the electrolyte composition of the plasma electrolytic oxidation step,
상기 전해질 조성물은The electrolyte composition is
아세트산칼슘(Calcium acetate monohydrate), 글리세로인산 칼슘(Calcium glycerophosphate), 메타규산나트륨(Sodium metasilicate nonahydrate) 및 증류수와 아세트산 마그네슘(Magnesium acetate tetrahydrate), 아세트산 아연(Zinc acetate), 아세트산 스트론튬(Strontium acetate) 및 아세트산 망가니즈(Manganese acetate)중 선택된 하나를 포함하여 전해질 용액을 이룬다.Calcium acetate monohydrate, Calcium glycerophosphate, Sodium metasilicate nonahydrate and distilled water, Magnesium acetate tetrahydrate, Zinc acetate, Strontium acetate and One selected from Manganese acetate forms an electrolyte solution.
상기 전해질 용액은 금속이온이 칼슘 이온에 대비 20 mol%, 실리콘 이온이 인 이온에 대비하여 5 mol%가 되도록 아세트산칼슘을 0.12mol L-1, 글리세로인산칼슘은 0.02mol L-1 및 메타규산나트륨 0.001mol L-1와 상기 아세트산 마그네슘, 아스트산 아연, 아세트산 스트론튬 및 아세트산 망가니즈중 선택된 하나 금속이온 0.03mol L-1로 이루어진다.The electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion. Sodium 0.001 mol L −1 and the metal ion 0.03 mol L −1 selected from magnesium acetate, zinc asthite, strontium acetate and manganese acetate.
티타늄합금으로 이루어진 치과용 임플란트 제조방법에 있어서,In the dental implant manufacturing method consisting of a titanium alloy,
상기 치과용 임플란트 제조방법은,The dental implant manufacturing method,
a) 치과용 티타늄합금을 순차적으로 연마, 미세연마 및 초음파 세척하는 티타늄합금 준비단계;a) titanium alloy preparation step of sequentially polishing, fine polishing and ultrasonic cleaning the dental titanium alloy;
b) 상기 준비단계에서 준비된 티타늄합금을 전기분해조 양극에 설치하고, 음극은 백금을 설치한 후 금속 및 실리콘이 함유된 전해질 용액을 투입하는 투입단계;b) a titanium alloy prepared in the preparation step is installed in the electrolytic bath positive electrode, the negative electrode is platinum, and then the step of inputting an electrolyte solution containing metal and silicon;
c) 일정한 전압과 전류밀도를 가하여 플라즈마를 생성시켜 티타늄합금에 산화 피막을 형성하는 플라즈마 형성단계; 및c) forming a plasma by applying a constant voltage and current density to form an oxide film on the titanium alloy; And
d) 상기 플라즈마 형성단계에서 티타늄합금에 산화피막이 형성된 후 에탄올 및 증류수 세척 후 건조시키는 건조단계;를 포함한다.and d) forming an oxide film on the titanium alloy in the plasma forming step, followed by drying after washing with ethanol and distilled water.
일반적으로 상용되고 있는 티타늄(Pure-titanium)은 Ti-6Al-4V와 Ti-6Al-4V extra low interstitial(ELI)로 구분되며, 티타늄은 지각을 구성하는 원소로 산소, 규소, 알루미늄, 철, 칼슘, 나트륨, 칼륨 및 마그네슘 원소에 이어서 9번째로 풍부한 원소이며, 비교적 비중이 작아 밀도가 4.5 g/㎤ 으로 스테인레스강(7.95 g/㎤)보다 40% 더 가벼우며 순수 티타늄은 현재 치과영역에서 임플란트 재료로 많이 사용되고 이고, 미세조직은 HCP(α상)으로만 이루어져 있으며, 냉간 가공 영향에 따라 결정립의 직경이 10~150㎛가 되고, 침투형(interstitial solid solution)를 이루어 재료를 강화시킨다.Commonly used titanium (Pure-titanium) is divided into Ti-6Al-4V and Ti-6Al-4V extra low interstitial (ELI) .Titanium is an element that forms the earth's crust. Oxygen, silicon, aluminum, iron, calcium , The ninth most abundant element after sodium, potassium, and magnesium, with a relatively low specific gravity and a density of 4.5 g / cm 3, 40% lighter than stainless steel (7.95 g / cm 3), and pure titanium is currently an implant material for dental applications. It is widely used as, and the microstructure is composed only of HCP (α phase), the diameter of the crystal grain becomes 10 ~ 150㎛ according to the cold working effect, to form an interstitial solid solution to strengthen the material.
상기 Ti-6Al-4V 합금은 HCP(α상)와 BCC(β상)가 혼재되어 있으며, 미세조직은 열영향에 따라 크게 좌우되며 가공공정에도 영향을 받으며 이것을 β상이 균질상으로 형성되는 1000℃ 이상에서 유지 후 서냉하면, β의 결정 내에 특정 방향으로 침상과 판상의 α상이 석출되며 이를 "Widmanstten" 조직이라하며 β상에서 급냉하면 마르텐사이트(martensite)의 형성도 이루어진다. 보통의 Ti-6Al-4V은 β상 변태온도(Transformation temperature)인 882℃ 가까이 가열하여 가공하며, 미세한 α상의 기지조직과 결정립계에 β상 입자를 석출하기 위해 소둔(annealing)하고, 티타늄은 높은 융점과 열전도율 및 도전율이 낮은 특징이 있어서 882℃의 온도에서 α-Ti이 β-Ti으로 상변태가 일어난다. 그러나 고온의 β-Ti는 급냉을 한다고 해서 β상을 상온에 가져올 수 없으며 침상의 α-Ti 조직이 된다.The Ti-6Al-4V alloy is a mixture of HCP (α phase) and BCC (β phase), the microstructure is largely dependent on the thermal effect and is affected by the processing process, 1000 ℃ that β phase is formed into a homogeneous phase In the above-described case, when cooling slowly, the needle and plate-like α phases are precipitated in a specific direction in the crystal of β, and this is called a “Widmanstten” structure. When rapidly cooled on β, martensite is formed. Normal Ti-6Al-4V is processed by heating near 882 ℃, which is β phase transformation temperature, and annealed to precipitate β phase particles in fine α phase matrix and grain boundary, and titanium has high melting point. Due to its low thermal conductivity and low electrical conductivity, phase transformation of α-Ti to β-Ti occurs at a temperature of 882 ° C. However, high temperature β-Ti does not bring β phase to room temperature by quenching, but becomes a needle-like α-Ti structure.
따라서 티타늄은 우수한 기계적 성질과 생체적합성 때문에 임플란트 재료로 현재 가장 널리 사용되어 지고 있고, 티타늄은 반응성이 매우 높고 공기 또는 체액에 접촉하면 산화되며, 이러한 산화반응이 인체 내에서 부식반응의 저항성을 높여 생체재료로써 바람직하며, 본 발명의 티타늄 합금의 재료로써 Ti-6Al-4V을 이용하는 것이 바람직하다.Therefore, titanium is the most widely used implant material at present because of its excellent mechanical properties and biocompatibility. Titanium is highly reactive and oxidizes in contact with air or body fluids. It is preferable as a material, and it is preferable to use Ti-6Al-4V as a material of the titanium alloy of this invention.
본 발명에 따른 플라즈마 전해 양극산화 공정 과정을 살펴보면 초기에 치밀한 산화막이 금속의 표면에 생겨 시간이 경과함에 따라 장벽층이 형성되고 인가전압에 비례하여 다공성 표면층이 생성되면서 계속 성장해 나가고, 이러한 산화막층이 형성된 후 플라즈마 방전에 의해 산화막의 생성과 파괴가 반복적으로 이루어질 때 국부적으로 고온의 열이 발생되어 표면에 용해작용이 일어나며 이와 같은 반응의 반복은 인가전압 정지 시 중지되면서 표면의 거칠기가 증가되며, 불균일한 다공성 표면을 가지게 되며, 플라즈마 전해 산화 공정 중 양극에서 일어나는 주용 반응은 하기와 같다.In the plasma electrolytic anodization process according to the present invention, a dense oxide film is initially formed on the surface of the metal, and as time passes, a barrier layer is formed and the porous surface layer is continuously generated in proportion to the applied voltage. When the oxide film is repeatedly formed and destroyed by plasma discharge after formation, heat is generated locally at high temperature to dissolve the surface. Such a repetition of the reaction is stopped when the applied voltage is stopped, thereby increasing the surface roughness. It has a porous surface, and the main reaction occurring at the anode during the plasma electrolytic oxidation process is as follows.
첫째, Ti/Ti 산화물 계면에서의 반응First, the reaction at the Ti / Ti oxide interface
Ti → Ti2+ + 4e- Ti → Ti 2+ + 4e -
둘째, Ti Oxide/electrolyte 계면에서 두 가지 반응으로 나눌 수 있다. 산화물을 형성하기 위하여 산소 이온이 Ti와 반응을 나타내며, 전극표면에 형성된 산소 가스 반응이 나타난다.Second, it can be divided into two reactions at the Ti Oxide / electrolyte interface. Oxygen ions react with Ti to form an oxide, and an oxygen gas reaction formed on the electrode surface appears.
2H2O → 2O2- + 4H+ 2H 2 O → 2O 2- + 4H +
2H2O → O2(gas) + 4H+ +4e- 2H 2 O → O 2 (gas ) + 4H + + 4e -
세번째, 최종 반응Third, final reaction
Ti2+ + 2O2- → TiO2 + 2e- Ti 2+ + 2O 2- → TiO 2 + 2e -
전기분해조내 전해질을 포함하는 수용액에 전압을 인가할 경우, 양극의 표면에서는 산소 기체가 발생하거나 금속의 산화반응이 일어나고, 음극에서는 수소기체가 발생하거나 환원 반응이 일어 난다.When voltage is applied to the aqueous solution containing the electrolyte in the electrolysis tank, oxygen gas is generated on the surface of the positive electrode or an oxidation reaction of the metal occurs, and hydrogen gas is generated or a reduction reaction occurs at the negative electrode.
최근 마그네슘, 아연, 스트론튬, 망가니즈와 같은 금속 이온이 뼈 재생에 미치는 영향을 주는 원소로써 관련 분야에서 연구가 활발하게 진행되고 있으며, 하기에 마그네슘, 아연, 스트론튬 및 망가니즈에 관하여 더욱 상세하게 개진한다.Recently, as an element that affects bone regeneration by metal ions such as magnesium, zinc, strontium, and manganese, research is being actively conducted in the related fields, and more detailed descriptions regarding magnesium, zinc, strontium, and manganese are given below. do.
상기 마그네슘은 칼슘과 주요 치환 인자 중 하나로 법랑질(enamel), 상아질(dentine), 골(bone)에 함유하고 있어 골의 세포 외 기질에 있는 네 번째로 가장 풍부한 양이온다. 이에 마그네슘의 결핍은 골의 신진대사와 골세포의 성장을 감소시켜 골밀도와 골의 연성율에 영향을 미치며, 더욱 상세하게는 인체를 이루고 있는 이온 스트론튬(Sr-strontium), 마그네슘(Mg-magnesium), 아연(Zn-zinc), 나트륨(Na-sodium), 실리콘(Si-silicon), 은(Ag-silver) 및 이트륨(Y-yttrium)은 골밀도에 영향을 미치기 때문에 골형성에 중요한 역할을 하는 것으로 알려져 있다. 특히 최근에는 마그네슘이 치환된 아파타이트상의 제조와 HA 내에서의 결정 형성과 성장이 연구되고 있으며, 마그네슘은 HA의 양이온 격자구조가 다양한 원소와 쉽게 치환 될 수 있는 구조를 가지고 있어서 칼슘 대체품으로 알려져 있고, Ca10-xMgx(PO4)6(OH)2 화학식으로 나타낼 수 있다. 이경우 분말의 입자형태, 격자크기, 결정화도, 열역학적 특성에 영향을 미치게 되고, 이러한 치환 인자로는 양이온(Mg2+, Zn2+, Sr2+)과 음이온(SiO4 4-, F-, CO3 2-)이 주로 이용된다. 또한, 마그네슘은 칼슘과 주요 치환 인자 중의 하나로 법랑질(enamel), 상아질(dentine), 골(bone)에 함유된 양은 각각 0.2 wt.%, 1.1 wt.%, 0.6 wt.%이고 골의 세포 외 기질에 있는 네 번째로 가장 풍부한 양이온이다. 마그네슘 결핍은 골의 신지대사와 골아 세포의 골 성장과 활동성을 감소시켜 골밀도와 골의 연성율에 영향을 미치게 되어 골절의 가능성이 증가되며 이에 칼슘 결핍 HA[d-HA, Ca10-x(HPO4)x(PO4)6-x(OH)2-x; 0=x=1] 격자 내에 마그네슘을 치환시키면 Mg-HA의 생체적합성이 우수하고 경조직과 비교 할 수 있는 특성을 가진다. 따라서 마그네슘은 물리 화학적 성질을 조정하여 용해도, 결정화도, 입자형태, 나노입자 합성의 결과물로 생체적합성과 생물 활성을 제어하여 생체활성물질로써 좋은 효과를 나타내고 있고, 실리콘 또한 신지대사에 관여하며, 골 형성에 밀접한 관련이 있어 상기 마그네슘과 동일하게 생체활성물질로써 효과를 나타내고 있다.Magnesium is the fourth most abundant cation in the extracellular matrix of bone because it is contained in enamel, dentin, and bone as one of calcium and major substitution factors. Magnesium deficiency affects bone metabolism and bone cell growth, affecting bone density and bone ductility, and more specifically, the ionic strontium (Sr-strontium) and magnesium (Mg-magnesium) , Zinc (Zn-zinc), sodium (Na-sodium), silicon (Si-silicon), silver (Ag-silver) and yttrium (Y-yttrium) play an important role in bone formation because it affects bone density. Known. In particular, the preparation of magnesium-substituted apatite phase and crystal formation and growth in HA have been studied, and magnesium is known as a calcium substitute because HA has a structure in which the cationic lattice structure can be easily substituted with various elements. Ca 10 - x Mg x (PO 4 ) 6 (OH) 2 It can be represented by the chemical formula. In this case, influence the particle shape, cell size, degree of crystallization, the thermodynamic properties of the powder and, by such a factor is substituted cations (Mg 2+, Zn 2+, Sr 2+) and negative ions (SiO 4 4-, F -, CO 3 2- ) are mainly used. In addition, magnesium is one of the major substitution factors of calcium and enamel, dentin and bone are 0.2 wt.%, 1.1 wt.% And 0.6 wt.%, Respectively. It is the fourth most abundant cation in. Magnesium deficiency reduces bone renal metabolism and bone growth and activity of osteoblasts, affecting bone mineral density and bone ductility, increasing the likelihood of fracture. Therefore, calcium deficiency HA [d-HA, Ca 10-x (HPO) 4 ) x (PO 4 ) 6-x (OH) 2-x ; 0 = x = 1] Substitution of magnesium in the lattice provides excellent biocompatibility of Mg-HA and comparable to hard tissue. Therefore, magnesium is a product of solubility, crystallinity, particle shape, and nanoparticle synthesis by controlling physicochemical properties, controlling biocompatibility and biological activity, and showing good effect as a bioactive material.Silicone is also involved in new metabolism and bone formation. It is closely related to, and has the same effect as a bioactive substance as magnesium.
아연 이온은 시험관 내 및 생체 내에서 핵산 대사, 단백질 합성 및 골 형성에 효과를 나타내고, 그에 따라서 개선된 활성 물질을 얻기 위해 수산화 인회석(hydroxyapatite 이하 HA) 박막에 아연을 첨가하는 연구가 진행되고 있다.Zinc ions have an effect on nucleic acid metabolism, protein synthesis, and bone formation in vitro and in vivo, and accordingly, research is being conducted to add zinc to hydroxyapatite (HA) thin films to obtain improved active substances.
또한, 아연은 거의 모든 생물체의 필수적인 미량 원소로, 인체에는 전이 금속 중에서는 철 다음으로 많이 들어 있고, 성인에게는 약 2g의 아연이 뇌, 간, 근육, 뼈, 신장, 간, 전립선 등에 들어 있는데, 특히, 전립선에 높은 농도로 있으며, Zn2+는 거의 모든 유형의 효소에 들어 있고, 근래에 많은 주목을 받은 효소로는 이산화탄소를 물과 반응시켜 탄산으로 빠르게 전화시키는 효소인 탄산무수화효소(carbonic anhydrase), 단백질의 소화 과정에서 C-말단 펩티드 결합의 가수분해 과정에 관여하는 효소인 카르복시펩티데이스(catboxypeptidase) 등이 있다. 아연은 이들 효소외에도 탄수화물, 지방, 핵산의 합성과 분해에 관여하는 효소의 구성 성분이며, 항산화 효소(SOD)의 안정화에도 기여한다. 아연은 또한 DNA의 염기서열을 인식하고 DNA의 복제 과정에서 유전 정보를 전달하는 것을 조절하는 단백질에도 결합되어 있으며, RNA와 DNA의 대사와 신호 전달에 관여하고, 세포자살(apoptosis)을 조절하며, 면역 기능에도 관여한다. 이외에도 아연은 인슐린 작용에 영향을 미치며, 성장 호르몬, 성 호르몬, 갑상선 호르몬, 프로락틴(prolactin) 호르몬 등의 활성과도 연관이 있는 것으로 보고되고 있으며, 실리콘 또한 신지대사에 관여하며, 골 형성에 밀접한 관련이 있어 상기 아연과 동일하게 생체활성물질로써 효과를 나타내고 있다.In addition, zinc is an essential trace element of almost all living organisms, and the human body contains the most amount of transition metal after iron, and in adults, about 2g of zinc is contained in the brain, liver, muscle, bone, kidney, liver, prostate, etc. In particular, in high concentrations in the prostate, Zn2 + is present in almost all types of enzymes. Recently, the most noticed enzyme is carbonic anhydrase, an enzyme that rapidly converts carbon dioxide into water and converts it to carbonic acid. And catboxypeptidase, an enzyme involved in the hydrolysis of C-terminal peptide bonds during protein digestion. In addition to these enzymes, zinc is a component of enzymes involved in the synthesis and degradation of carbohydrates, fats, and nucleic acids, and contributes to the stabilization of antioxidant enzymes (SOD). Zinc is also bound to proteins that recognize DNA sequences and regulate the transfer of genetic information during DNA replication, are involved in the metabolism and signaling of RNA and DNA, and regulate apoptosis, It is also involved in immune function. In addition, zinc affects insulin action, and is reported to be associated with activities such as growth hormone, sex hormone, thyroid hormone, and prolactin hormone.Silicone is also involved in renal metabolism and is closely related to bone formation. This has the same effect as a bioactive material as zinc.
추가로 아연 결핍은 영양 흡수 불량, 만성 간질환, 만성 신장질환, 면역 기능 저하, 성장 지연, 설사, 성선 기능 저하, 성숙 지연, 피부 변화 등 다양한 증상을 초래할 수 있고, 특히 어린이에게는 왜소증을 유발할 수 있으며, 태아는 정신적, 육체적 문제를 갖고 태어날 수 있다.In addition, zinc deficiency can lead to a variety of symptoms, including malnutrition, chronic liver disease, chronic kidney disease, decreased immune function, delayed growth, diarrhea, hypogonadism, delayed maturation, and skin changes, especially in children. The fetus can be born with mental and physical problems.
상기 스트론튬(Strontium)은 지각에서 15번째로 많이 존재하고, 인체에도 뼈와 치아의 칼슘을 대체하여 상당량 들어 있고, 스트론튬은 뼈 성장을 촉진하며, 골밀도를 증가시키므로, 스트론튬 화합물들이 식품 보조제와 골다공증 치료제로 사용되기도 하고, 스트론튬 화합물은 사탕무에서 설탕을 정제하는데 사용되기도 하였다. 근래에는 컬러 TV나 컴퓨터 모니터의 앞 유리에 첨가되어 X-선 방출을 막는데 사용되며, 자석의 구성 성분이기하고, 불꽃 놀이, 신호탄, 조명탄 등에서 진한 붉은 색 불꽃을 내는데도 사용되고 있다.Strontium (Strontium) is present in the 15th lot in the crust, and the human body contains a significant amount of calcium in the bones and teeth, strontium promotes bone growth and increases bone density, so strontium compounds are used as food supplements and osteoporosis drugs Strontium compounds have been used to purify sugar from sugar beets. Recently, it is added to the front glass of color TVs or computer monitors to prevent X-ray emission, and is a component of magnets, and is also used to emit dark red fireworks from fireworks, flares, and flares.
스트론튬의 생물학적 작용과 이용을 살펴보면 주기율표에서 같은 족의 바로 위에 있는 칼슘과 전자배치와 크기가 비슷하고, 이에 따라서 생물들이 스트론튬을 칼슘과 잘 구분하지 못하며, 스트론튬을 흡수한다. 동물에서는 뼈와 치아를 구성하는 칼슘의 일부를 대체하는데, 인체에는 약 320㎎(체중 70㎏기준)의 스트론튬이 들어있으며, 뼈에는 36~140ppm 농도로 들어 있다. 대부분의 스트론튬 화합물은 생물에 해가 없으나, SrCl2와 Srl2는 약간의 독성을 나타내는 것으로 여겨지고, 1950년대부터 인체 건강에 대한 스트론튬의 유익성이 많이 연구되고 있으며, 라넬산 스트론튬은 골 형성을 촉진하고, 골 밀도를 높이며, 골절을 줄이는 효과가 있어 골다공증 치료제로 사용되는데, 상품명은 프로텔로스(Protelos) 또는 프로토스(Protos)이다. 추가로 방사성 의약품 메타스트론(Metastron)은 89Sr의 염화물(89SrCl2)로 암의 뼈 전이로 인한 통증 억제 및 전이암의 치료에 쓰여지고 있고, 실리콘 또한 신지대사에 관여하며, 골 형성에 밀접한 관련이 있어 상기 스트론튬과 동일하게 생체활성물질로써 효과를 나타내고 있다.Looking at the biological action and use of strontium, it is similar in size and size to the calcium and electron placement directly above the same family in the periodic table, so that organisms are less able to distinguish strontium from calcium and absorb strontium. Animals replace some of the calcium that makes up bones and teeth. The body contains about 320 mg of strontium (70 kg body weight), and bones contain 36 to 140 ppm. Most strontium compounds are harmless to organisms, but SrCl 2 and Srl 2 are considered to be slightly toxic, and since the 1950s, strontium has been studied for human health, and lanthanum strontium promotes bone formation. It is used as a therapeutic agent for osteoporosis because it increases bone density and reduces fractures. The trade name is Protelos or Protos. In addition, the radiopharmaceutical metastron (Metastron) is a 89 Sr chloride ( 89 SrCl 2 ) is used in the treatment of pain and metastatic cancer caused by bone metastasis of cancer, Silicon is also involved in kidney metabolism and is closely related to bone formation, and thus has the same effect as a bioactive material as the strontium.
상기 망가니즈(Mn)는 인간의 필수 미량원소로서 동식물에서는 불가결한 원소이며, 녹색식물에서는 망간이 결핍하면 엽록소의 생성이 저하되고, 동물조직내에서는 철과 공존하여 미량이지만 널리 분포하고, 사람에서는 간, 췌장, 털에 많이 존하고 있다. 망간이 결핍하면, 모르모트는 연골의 산성 점액다당류량이 현저히 저하되고, 또한 닭등은 난의 부화율이 저하되며, 병아리의 경우 골격발육이 현저히 저하되는것이 관찰된다. 또한, 정상적인 골격성장 및 발육에 필요하고 신체 내에서 superoxide dismutase와 같은 효소에 중용한 원소로 라디칼 제거에 참여한다. 따라서 망가니즈 이온은 알루미늄과 바나듐보다 독성이 적고 합금에 도핑되었을때에는 생체재료의 부식저항성과 기계적 성질을 증가시킨다. 망가니즈가 제3인산 칼슘(tricalcium phosphate) 생체세라믹에 첨가되어 충분한 세포적합성을 보이고, 티타늄 합금에 망가니즈를 첨가함으로써 세포부착특성을 향상시킨다.Manganese (Mn) is an indispensable element in plants and animals as an essential trace element of humans, and the lack of manganese in green plants reduces the production of chlorophyll, coexists with iron in animal tissues, but is widely distributed in humans. There is a lot of liver, pancreas and hair. It is observed that when manganese is deficient, the amount of acidic mucopolysaccharides of cartilage decreases significantly, the egg hatching rate of chickens, etc. decreases, and skeletal development of chicks significantly decreases. In addition, it is necessary for normal skeletal growth and development and is involved in radical elimination as an element important for enzymes such as superoxide dismutase in the body. Thus, manganese ions are less toxic than aluminum and vanadium and, when doped with alloys, increase the corrosion resistance and mechanical properties of biomaterials. Manganese is added to tricalcium phosphate bioceramic to show sufficient cellular compatibility, and the addition of manganese to titanium alloy improves cell adhesion characteristics.
상기 연마는 실리콘 카바이드 연마지로 실시하되 100, 600, 800, 1200, 2000 grit로 이루어진 연마지로 단계적으로 연마한다.The polishing is performed with silicon carbide abrasive paper, and is stepwise polished with abrasive paper composed of 100, 600, 800, 1200, 2000 grit.
상기 미세연마는 0.3㎛ 알루미나 분말을 이용하여 실시하며, 초음파 세척은 에틸알콜내에서 10분동안 실시하여 상기 알루미나 분말이 남지 않도록 제거하며, 상기 투입단계에서 전해질 용액은 양전극을 설치전에 투입하여 마그네틱 바를 이용하여 200 rpm으로 교반시키고, 양극과 음극의 두 전극간 거리는 20 ~ 40㎜로 이격시켜 설치하는 것이 바람직하다.The micropolishing is performed using 0.3 μm alumina powder, and ultrasonic cleaning is performed for 10 minutes in ethyl alcohol to remove the alumina powder. The electrolyte solution is added to the positive electrode before installation of the magnetic bar. It is preferable to use agitated at 200 rpm, and the distance between the two electrodes of the positive electrode and the negative electrode is spaced apart from 20 to 40 mm.
상기 전해질 용액은 아세트산 마그네슘(Magnesium acetate tetrahydrate), 아세트산 아연(Zinc acetate), 아세트산 스트론튬(Strontium acetate) 및 아세트산 망가니즈(Manganese acetate)중 선택된 하나와 아세트산칼슘(Calcium acetate monohydrate), 글리세로인산 칼슘(Calcium glycerophosphate) 및 메타규산나트륨(Sodium metasilicate nonahydrate)을 증류수에 혼합하여 제조된다.The electrolyte solution is selected from magnesium acetate tetrahydrate, zinc acetate, zinc acetate, strontium acetate and manganese acetate, and calcium acetate monohydrate and calcium glycerate. Calcium glycerophosphate) and sodium metasilicate nonahydrate are prepared by mixing in distilled water.
상기 전해질 용액은 금속이온이 칼슘 이온에 대비 20 mol%, 실리콘 이온이 인 이온에 대비하여 5 mol%가 되도록 아세트산칼슘을 0.12mol L-1, 글리세로인산칼슘은 0.02mol L-1 및 메타규산나트륨 0.001mol L-1와 상기 아세트산 마그네슘, 아세트산 아연, 아세트산 스트론튬 및 아세트산 망가니즈중 선택된 하나 금속이온 0.03mol L-1로 이루어진다.The electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion. Sodium 0.001 mol L -1 and the metal ion 0.03 mol L -1 selected from magnesium acetate, zinc acetate, strontium acetate and manganese acetate.
상기 전압과 전류밀도 및 가용시간은 250~280V, 50~100 mA/㎝-2 및 3분간 실시하되 별도의 냉각시스템을 설치하여 전기분해조 내부 온도를 25℃로 유지하여 플라즈마 전해 산화공정을 실시하고, 산화막 생성 후 세척한 뒤 따뜻한 공기를 이용하여 건조하는 것이 바람직하다.The voltage and current density and the available time is 250 ~ 280V, 50 ~ 100 mA / cm -2 and 3 minutes, but by installing a separate cooling system to maintain the temperature of the electrolysis tank at 25 ℃ to carry out the plasma electrolytic oxidation process After the formation of the oxide film and washing, it is preferable to dry using warm air.
실시예 : 플라즈마 전해 산화 공정에 의해 금속이온 및 실리콘 이온이 함유된 수산화아파타이트가 코팅된 치과용 임플란트 제조Example: Preparation of dental implant coated with apatite hydroxide containing metal ions and silicon ions by plasma electrolytic oxidation
Ti-6Al-4V disc(grade 5, Timet Co.Ltd, japan diameter; 10㎜, thickness; 3㎜) 시편을 실리콘 카바이드 연마지로 실시하되 100, 600, 800, 1200, 2000 grit로 이루어진 연마지로 단계적으로 연마하고, 0.3㎛입자크기의 산화 알루미늄(Al2O3)으로 미세 연마한 뒤 초음파 세척을 실시한 후 전해질 용액(증류수 각1L)내 각각 마그네슘이온, 아연이온, 스트론튬이온 및 망가니즈 이온이 칼슘 이온에 대비 5, 10, 20 mol%으로 하고, 실리콘 이온이 인 이온에 대비하여 5 mol%가 되도록 하기 표 1(마그네슘), 표 2(아연), 표 3(스트론튬) 및 표 4(망가니즈)에 기재된 설계와 같이 아세트산칼슘(Calcium acetate monohydrate), 글리세로인산 칼슘(Calcium glycerophosphate), 아세트산 마그네슘(Magnesium acetate tetrahydrate) 및 메타규산나트륨(Sodium metasilicate nonahydrate)을 칭량하여 살균 소독된 비이커에 초순수 제조장치의 3차 증류수에 상기 설계된 시약을 넣은 후 교반기에서 마그네틱 바를 이용하여 200 rpm으로 30분이상 교반하여 균질한 용액이 되도록 제조하였다. 제조된 전해용액을 전기분해조 내 충진시키고, 상기 초음파 세척을 마친 상기 시편을 양극에 설치하며, 음극은 백금을 설치한 후 280V, 70mA/㎝-2 및 3분간 인가하여 플라즈마 전해 산화처리를 실시하였다.Ti-6Al-4V disc (grade 5, Timet Co.Ltd, japan diameter; 10mm, thickness; 3mm) test specimens with silicon carbide abrasive paper, step by step with abrasive paper composed of 100, 600, 800, 1200, 2000 grit Polishing, fine polishing with 0.3 μm particle size aluminum oxide (Al 2 O 3 ), ultrasonic cleaning, magnesium ions, zinc ions, strontium ions, and manganese ions in the electrolyte solution (1L of distilled water) To 5, 10, 20 mol% compared to, and the silicon ions to 5 mol% compared to the phosphorus ion Table 1 (Magnesium), Table 2 (Zinc), Table 3 (Strontium) and Table 4 (Manganese) Calcium acetate monohydrate, Calcium glycerophosphate, Magnesium acetate tetrahydrate and Sodium metasilicate nonahydrate, as described in the design described in 3rd After loading the reagent is designed to ryusu using a magnetic bar stirrer was prepared in such that a homogeneous solution was stirred for at least 30 minutes at 200 rpm. The prepared electrolytic solution was filled in an electrolysis tank, and the ultrasonically cleaned specimen was installed on the positive electrode, and the negative electrode was coated with platinum and then subjected to plasma electrolytic oxidation by applying 280V, 70 mA / cm -2 and 3 minutes. It was.
추가로 동일 소재의 티타늄합금으로 이루어진 치과 임플란트를 상기 실시예에서 플라즈마 전해 산화 공정을 실시한 시편과 동일한 조건하에서 산화처리막의 생성을 실시하였다.Further, the dental implant made of titanium alloy of the same material was produced under the same conditions as the specimen subjected to the plasma electrolytic oxidation process in the above embodiment.
Figure PCTKR2018003089-appb-T000001
Figure PCTKR2018003089-appb-T000001
Figure PCTKR2018003089-appb-T000002
Figure PCTKR2018003089-appb-T000002
Figure PCTKR2018003089-appb-T000003
Figure PCTKR2018003089-appb-T000003
Figure PCTKR2018003089-appb-T000004
Figure PCTKR2018003089-appb-T000004
시험예 1: Ca(Mg, Zn, Sr, Mn)/P(Si) Mol% 비율에 따른 시편 표면 기공상태Test Example 1: Surface Porosity of Specimen According to Ca (Mg, Zn, Sr, Mn) / P (Si) Mol% Ratio
상기 실시예에서 플라즈마 전해 산화시킨 시편 및 치과용 임플란트 표면을 전자 현미경으로 측정하되 마그네슘, 아연, 스트론튬 및 망가니즈 이온이 칼슘 이온에 대비 5, 10, 20 mol%, 실리콘 이온이 인 이온에 대비하여 5 mol%으로 차이를 주어 처리된 표면의 각 기공상태를 살펴보았다.In the above embodiment, the surface of the electrolytically oxidized specimens and dental implants were measured by electron microscopy, but magnesium, zinc, strontium and manganese ions were 5, 10, 20 mol% compared to calcium ions, and silicon ions were compared to phosphorus ions. Each porosity of the treated surface was examined by giving a difference of 5 mol%.
도 3은 본 발명의 바람직한 일 실시예에 따른 금속이온 및 실리콘 이온이 함유된 용액에서 플라즈마 전해 산화 처리된 티타늄합금 표면의 실사도이고, 도 4는 본 발명의 바람직한 일 실시예에 따른 마그네슘 및 실리콘 이온이 함유된 용액에서 플라즈마 전해 산화 처리된 치과용 임플란트 표면 실사도로 하기에 도 3 내지 도 4를 참고하여 상세하게 설명한다.FIG. 3 is a perspective view of a surface of a titanium alloy subjected to plasma electrolytic oxidation in a solution containing metal ions and silicon ions according to an exemplary embodiment of the present invention, and FIG. 4 is magnesium and silicon according to an exemplary embodiment of the present invention. A dental implant surface realistic treatment treated with plasma electrolytic oxidation in a solution containing ions will be described in detail with reference to FIGS. 3 to 4.
도 3은 마그네슘, 아연, 스트론튬 및 망가니즈 이온과 실리콘 이온이 함유된 용액에서 플라즈마 전해 산화를 실시한 시편의 표면을 전자현미경 실사도로 금속이온과 실리콘 이온의 산화막 표면에서는 마이크로미터 단위의 크기를 갖는 기공이 균일하게 형성된 것을 알수 있었으며, 금속이온들의 농도의 증가에 따라 더 작은 기공형태를 보여 주었다. 따라서 금속이온(20Mg/5Si)의 농도가 증가 함에 따라 작은 기공이 많이 생성되는 것을 알수 있었으며 그에 따라서 골접합에 유리한 상태를 만든다는 것을 알 수 있었다.FIG. 3 shows pores having micrometer size pores on the surface of the oxide film of metal ions and silicon ions on a surface of a specimen subjected to plasma electrolytic oxidation in a solution containing magnesium, zinc, strontium and manganese ions and silicon ions. It was found that the formation was uniform, showing a smaller pore morphology with increasing concentration of metal ions. Therefore, as the concentration of metal ions (20Mg / 5Si) was increased, a lot of small pores were generated, and accordingly, it was found that it made a favorable state for bone bonding.
한편, 도 4는 마그네슘 이온(20Mg/5Si)이 실시예에서 가장 높은 치과용 임플란트의 표면을 전자현미경으로 x 50배, x1000배로 도시된 실사도로 상기 도 3에서 나타난것과 동일하게 균일한 기공형태를 형성한것을 확인 할 수 있었다.On the other hand, Figure 4 shows a uniform pore shape as shown in Figure 3 above in a realistic view showing that the magnesium ion (20Mg / 5Si) the highest dental implant surface in the embodiment by an electron microscope x 50 times, x 1000 times I could confirm that it formed.
시험예 2: 플라즈마 전해 산화 처리된 티타늄합금 시편의 EDS 및 EDS mappingTest Example 2: EDS and EDS mapping of plasma alloyed titanium alloy specimen
에너지분산형 분광분석법(EDS:Energy Dispersive X-ray Spectrscopy)은 주사전자현미경 장비에 부가적으로 달린 장비로 사용되는 것으로 주사전자현미경의 전자빔으로 발생되는 샘플의 특정 X선을 수집하여 성분을 분석하는 것이며, 더욱 상세하게는 샘플(실시예에서 플라즈마 전해 산화 처리된 티타늄계 합금 시편)에 전자빔을 주사하면 원자 내 전자가 에너지를 흡수하여 들뜬 상태가 되고 들뜬 전자가 다시 안정화 되면서 특정 X선을 방출하게 되는데, 이때 방출되는 X선은 물질마다 고유한 에너지 값을 가지므로 디텍터를 이용하여 X선을 수집하고, 수집된 X선을 세기 별로 분류하여 샘플에 대한 정성분석을 실시하였다.Energy Dispersive X-ray Spectrscopy (EDS) is used as an additional device attached to a scanning electron microscope device, which collects specific X-rays of a sample generated by an electron beam of a scanning electron microscope. More specifically, scanning an electron beam onto a sample (in the embodiment, a plasma electrolytic oxidation-titanium alloy specimen) causes electrons in atoms to absorb energy and become excited and release the excited X-rays while stabilizing the excited electrons again. In this case, since the emitted X-rays have a unique energy value for each material, X-rays were collected by using a detector, and the collected X-rays were classified by intensity to conduct a qualitative analysis on the sample.
도 5는 본 발명의 바람직한 일 실시예에 따른 마그네슘, 아연 및 스트론튬이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금의 EDS(Energy Dispersive X-ray Spectroscopy) 결과 그래프이고, 도 6은 본 발명의 바람직한 일 실시예에 따른 마그네슘, 스트론튬 및 망가니즈가 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금의 EDS mapping 실사도로써 도 5 내지 도 6을 참고하여 하기에 더욱 상세하게 개진한다.FIG. 5 is a graph showing results of Energy Dispersive X-ray Spectroscopy (EDS) of a plasma electrolytic oxidation-treated titanium alloy using an electrolyte solution containing magnesium, zinc and strontium according to an exemplary embodiment of the present invention, and FIG. EDS mapping of the titanium alloy subjected to plasma electrolytic oxidation using an electrolyte solution containing magnesium, strontium and manganese according to an exemplary embodiment of the present invention will be described in more detail below with reference to FIGS. 5 to 6.
도 5는 티타늄 합금 산화피막이 형성된 표면에 칼슘, 인 및 실리콘 이온과 각 마그네슘 이온, 아연이온 및 스트론튬 이온의 성분을 분석한 EDS 결과로 전해 용액에 사용된 성분이 균등한게 분포되어 있음을 나타냈으며, 도 6은 티타늄계 합금인 시편의 표면에 칼슘, 인 및 실리콘 이온과 마그네슘 이온, 스트론튬 이온 및 망가니즈 이온의 분포를 관찰하기 위한 EDS mapping의 관찰 결과로 역시 플라즈마 전해 공정을 통한 티타늄 합금 표면 전체에 균등하게 분포되었다는 것을 확인하였다.FIG. 5 shows that the components used in the electrolytic solution are evenly distributed as a result of EDS analysis of the calcium, phosphorus and silicon ions and the components of magnesium, zinc and strontium ions on the surface where the titanium alloy oxide film is formed. FIG. 6 shows EDS mapping for observing the distribution of calcium, phosphorus and silicon ions, magnesium ions, strontium ions, and manganese ions on the surface of a titanium alloy specimen. It was confirmed that they were evenly distributed.
추가로, 하기 도 11은 본 발명의 바람직한 일 실시예에 따른 스트론튬이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄 합금의 시편의 표면과 기공속의 이온분포를 나타내는 표로 도 11을 살펴보면 티타늄 합금 산화피막이 형성된 표면에 칼슘, 스트론튬, 인 및 실리콘 이온의 성분이 시편의 표면과 기공에 균등한게 분포되어 있음을 나타냈으며, 각각의 이온들이 금속 표면에서 더 잘 관찰되는 것으로 보아 양극산화 피막형성 실험을 할때 생긴 기공속에서 표면쪽으로 이온들이 분포됨을 추가로 확인 할 수 있었다.In addition, Figure 11 is a table showing the ion distribution in the surface and pores of the specimen of the plasma electrolytic oxidation-treated titanium alloy using the strontium-containing electrolyte solution in accordance with a preferred embodiment of the present invention with reference to FIG. It was shown that the components of calcium, strontium, phosphorus and silicon ions were evenly distributed on the surface and the pores of the specimen, and the ions were better observed on the metal surface. The distribution of ions from the pores to the surface was further confirmed.
시험예 3: 플라즈마 전해 산화 처리된 티타늄합금 시편의 XRDTest Example 3: XRD of Titanium Alloy Specimen Treated by Plasma Electrolytic Oxidation
XRD(X-ray diffractometer)은 X-선회절계로 단결정(單結晶) 또는 분말시료에 의한 단색(單色) X선의 회절각을 바꾸면서 회절선의 세기를 계수관으로 측정하여, 세기와 각도를 자동으로 기록하는 장치로 디프랙토미터라고도 하며, 안정된 전원(電源)을 부착한 봉입관인 X 선관을 써서, 솔러 슬릿(soller slits) 등을 조합하여 적당한 벌림 각을 가지는 빔을 만든다. 시료와 계수관을 연동하는 고니오미터(각도측정기)는 분말시료의 경우는 보통 판 모양으로 성형한 것을 각속도 ω로 회전시킴과 동시에 계수관을 2ω로 회전시켜, 그 회전축과 평행한 선 초점을 써서 회 절선을 계수관 바로 앞에서 모으고, 계수관은 보통 가이거-뮐러계수관을 쓰며, 정밀성이 요구될 때에는 비례 계수관이나 섬광 계수관을 파고분석기와 조합하여 사용한다. 또한, 단결정전용으로 만들어진 것으로는 선형회절계 외에, 컴퓨터로 제어하고, 측정결과를 처리하여 판정을 내리고, 다음의 측정으로 옮기는 4축형 회절계도 있다.X-ray diffractometer (XRD) is an X-ray diffractometer that measures the intensity of diffraction lines with a counter tube while changing the diffraction angle of monochromatic X-rays by a single crystal or powder sample, and records the intensity and angle automatically. It is also called a deflectometer and uses X-ray tube, which is a sealed tube with a stable power source, and combines solar slits to make a beam having a proper opening angle. In the case of powder samples, the goniometer (angle measuring device) which interlocks the sample and the counter tube rotates the plate shaped part in the form of a plate at an angular velocity ω and rotates the counter tube at 2 ω using a line focus parallel to the axis of rotation. The cutting lines are collected directly in front of the counter, usually using Geiger-Müller counters, and when precision is required, a proportional counter or scintillation counter is used in combination with the crest analyzer. In addition to the linear diffraction system, there are also four-axis diffractometers which are controlled by a computer, process the measurement result to make a decision, and then transfer to the next measurement.
도 7은 본 발명의 바람직한 일 실시예에 따른 마그네슘, 아연 및 스트론튬이 함유된 전해질 용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금의 XRD(X-ray Diffractometer) 결과 그래프이다.FIG. 7 is a graph showing an X-ray diffractometer (XRD) result of a titanium electrolytically treated titanium alloy using an electrolyte solution containing magnesium, zinc, and strontium according to an exemplary embodiment of the present invention.
마그네슘이 함유된 전해질 용액은 도 4와 같이 아파타이트 상과 아나타제 상을 얻을 수 있었고 마그네슘 이온의 농도를 높일수록 아파타이트상이 왼쪽으로 치우치는 것을 알 수 있었으며, 이는 마그네슘 이온이 아파타이트상에 영향을 미친것으로 간주된다.As shown in FIG. 4, the electrolyte solution containing magnesium was able to obtain an apatite phase and an anatase phase. As the concentration of magnesium ions was increased, the apatite phase was shifted to the left, which is considered to be the effect of magnesium ions on the apatite phase. .
아연이 함유된 전해질 용액은 도 7과 같이 아나타제 상이 강한 피크를 나타내고, 루타일 상은 약한 피크를 나타내었으며, α피크의 강도는 감소하였다.The electrolyte solution containing zinc showed a strong peak in the anatase phase, a weak peak in the rutile phase, and the intensity of the α peak decreased as shown in FIG. 7.
스트론튬이 함유된 전해질 용액은 아나타제 상과 하이드록시아파타이트상을 확인할 수 있었고 HA피크가 38.65에서 38.51로 Shift되는 것을 확인하여 이를 통해 HA격자 내로 Sr 치환을 추측할 수 있었다.The electrolyte solution containing strontium was able to identify the anatase phase and the hydroxyapatite phase, and the HA peak was shifted from 38.65 to 38.51, thereby inferring Sr substitution into the HA grid.
시험예 4: 플라즈마 전해 산화 처리된 티타늄합금을 생체 유사 용액에 침지한 후 표면에 생성된 아파타이트Test Example 4: Apatite formed on the surface after immersion of plasma electrolytic oxidation titanium alloy in a bio-like solution
도 8은 본 발명의 바람직한 일 실시예에 따른 플라즈마 전해 산화 처리된 티타늄합금을 생체 유사 용액에 12시간 침지한 후 표면에 생성된 아파타이트 실사도로 실시예 1에서 제조된 티타늄합금 시편을 SBF(simulated body fluid)용액에 침지후 형성되는 아파타이트를 통하여 골 형성에 대한 평가를 실시하였다.FIG. 8 is a SBF (simulated body) of the titanium alloy specimen prepared in Example 1 with an apatite due diligence produced on a surface after 12 hours of immersion in a plasma electrolytic oxidation-treated titanium alloy in accordance with a preferred embodiment of the present invention. Bone formation was evaluated through apatite formed after immersion in a fluid) solution.
생체 유사 용액은 하기 표 6에 나타난 것처럼 Na+ (142.0 mM), K+ (5.0 mM), Ca2+ (2.5 mM), Cl- (103.0 mM), HCO3- (10.0 mM), HPO4- (1.0 mM) 및 SO4 2- (0.5 mM)의 농도를 갖는 용액을 제조하여 200㎖ 씩 비이커에 넣고 인큐베이터에서 구강 내 환경과 유사한 36.5℃±1℃, pH 7.4로 유지하여 시편을 12시간동안 침지한 후 관찰하였다.Bio-like solutions were Na + (142.0 mM), K + (5.0 mM), Ca 2+ (2.5 mM), Cl (103.0 mM), HCO 3 − (10.0 mM), HPO 4 as shown in Table 6 below. (1.0 mM) and SO 4 2- (0.5 mM) were prepared in 200 ml beakers and kept in a incubator at 36.5 ° C ± 1 ° C, pH 7.4, similar to the oral environment, for 12 hours. It was observed after immersion.
도 8과 같이 12시간 동안 침지 후 관찰한 결과 짧은 시간내에 티타늄 합금 표면에 생성된 산화피막의 실리콘 이온과 각각 마그네슘이온, 스트론튬 이온 및 망가니즈이온이 함유된 표면에 아파타이트가 형성된 것을 알 수 있었고, 금속이온 농도가 높을수록 생성량이 높은 것을 확인할 수 있었다. 그러나, 상기 금속이온중 아연이온은 20Zn/5Si 에서 형성된 아파타이트의 양은 다른 비교구와 비교 하였을때 다소 형성되지 않았음을 타나내었다.After immersion for 12 hours as shown in FIG. 8, it was found that apatite was formed on the surface containing silicon ions, magnesium ions, strontium ions, and manganese ions in the oxide film formed on the titanium alloy surface within a short time. The higher the metal ion concentration, the higher the amount produced. However, zinc ions among the metal ions showed that the amount of apatite formed at 20Zn / 5Si was not formed slightly compared with other comparisons.
Figure PCTKR2018003089-appb-T000005
Figure PCTKR2018003089-appb-T000005
시험예 5: 플라즈마 전해 산화 처리된 치과 임플란트 함금 표면의 세포 부착정도Test Example 5: Adhesion of Cells on the Surface of Dental Implant Alloy Treated by Plasma Electrolytic Oxidation
도 9는 본 발명의 바람직한 일 실시예에 따른 플라즈마 전해 산화 처리된 치과 임플란트 합금 표면에서 세포 부착정도를 나타내는 실사도로 도 9를 살펴보면 세포는 인간 배아 신장 세포293 (kidney cells 293)을 이용하며, 플라즈마 전해 산화공정으로 산화피막을 형성한 티타늄 합금(실시예) 표면에 칼슘, 인, 금속이온 및 실리콘 이온을 24시간동안 배양하였고, 주사전자현미경을 통해 살펴본 바 마그네슘이온은 골(아파타이트) 형성 평가 시 나타난 결과와 동일하게 좋은 세포 성장 및 부착 정도를 보여주고 있고, 아연이온은 Ca/P 보다 아연과 실리콘 이온을 첨가하였을 때 세포의 배양량이 증가 된 것을 보였으나, 아연의 함량이 증가할수록 세포 배양력이 감소함을 보였으며, 스트론튬이온은 세포부착을 관찰하기 위해 150만배 확대하여 본 결과 개수의 평균값을 구해 보았을때 5Sr/Si (a)는 18, 10Sr/5Si (b)는 20, 20Sr/Si (c)는 21로 나타나 Sr/Si 함량이 증가 될수록 세포의 부착률이 높아짐을 확인할 수 있었다.9 is a realistic view showing the degree of cell adhesion on the surface of the plasma implanted dental implant alloy according to an embodiment of the present invention. Referring to FIG. 9, the cells use human embryonic kidney cells 293, and plasma Calcium, phosphorus, metal ions and silicon ions were incubated for 24 hours on the surface of the titanium alloy (Example) where the oxide film was formed by the electrolytic oxidation process, and it was observed by scanning electron microscopy that the magnesium ions were evaluated for bone (apatite) formation evaluation. As shown in the results, the cell growth and adhesion were good. Zinc ions increased the cell culture volume when zinc and silicon ions were added than Ca / P, but the cell culture capacity increased as the zinc content increased. Strontium ion was 1.5 million times magnified to observe cell adhesion. As a result, 5Sr / Si (a) is 18, 10Sr / 5Si (b) is 20, and 20Sr / Si (c) is 21, and as the Sr / Si content increases, the cell adhesion rate increases.
시험예 6: 플라즈마 전해 산화 처리된 티타늄합금 시편의 아파타이트 형성 후 XRDTest Example 6 XRD after Apatite Formation of Plasma Electrolytic Oxidized Titanium Alloy Specimen
도 10은 본 발명의 바람직한 일 실시예에 따른 아연이온이 함유된 전해질용액을 이용한 플라즈마 전해 산화 처리된 티타늄합금 표면 아파타이트의XRD(X-ray Diffractometer) 결과 그래프로 아파타이트 형성의 결과로 아나타제 상의 피크는 강하게 나타났으며, 루타일 상의 피크는 약하게 나타났다. 또한 아파타이트의 표면에 HA 상의 강도는 더 높게 나타났고, 전반적으로 증착의 경우 아연과 실리콘이 도핑된 HA 상은 순수한 HA로 부터 전가되었음을 보여 주었다.10 is a graph showing an XRD (X-ray Diffractometer) result of a plasma electrolytic oxidation-treated titanium apatite using zinc ion-containing electrolyte solution according to an exemplary embodiment of the present invention. It appeared strong, and the peak on rutile was weak. In addition, the HA phase strength was higher on the surface of the apatite, and the overall deposition showed that the HA phase doped with zinc and silicon was transferred from pure HA.
시험예 7: 플라즈마 전해 산화에의한 금속 이온이 용출 정도에 의한 생체안전화Test Example 7 Biosafety by Metal Elution Level by Plasma Electrolytic Oxidation
도 12는 본 발명의 바람직한 일 실시예에 따른 망가니즈가 함유된 전해질 용액을 이용한 플라즈마 전해 산화에 의한 금속 이온이 용출되는 정도를 평가하는 생체안정화 시험 결과도로 하기에 더욱 상세하게 개진한다.12 is further described in detail as a result of a biostabilization test for evaluating the degree of dissolution of metal ions by plasma electrolytic oxidation using an electrolyte solution containing manganese according to an exemplary embodiment of the present invention.
생체안정화 시험은 금속의 이온이 용출되는 정도를 평가하며 부식시험을 토하여 가능하다, 각 시편의 부식거동은 potentiostat(Mdel PARSTAT 2273, EG&G, USA)을 이용하여 구강 내 환경과 유사한 36.5±1℃의 0.9%NaCl에서 실시하며, 더 상세하게는 전기화학적 부식 거동은 제조한 potentiodynamic 방법으로 조사하고, 인가전위는 -1500mV에서 2000mV까지 1.67mV/min의 주사속도로 인가하며, 신체와 유사한 용액인 36.5±1℃의 0.9%NaCl 용액에서 시험을 수행하였다. 분극곡선으로부터 부식전위와 부식전류밀도 및 부동태영역의 전류밀도로 금속의 용출거동을 조사 하였다.Biostabilization tests are available by evaluating the degree of metal ions eluting and by corrosive testing. Corrosion behavior of each specimen is similar to the oral environment using potentiostat (Mdel PARSTAT 2273, EG & G, USA). The electrochemical corrosion behavior was investigated by the prepared potentiodynamic method, and the applied potential was applied at a scanning speed of 1.67 mV / min from -1500 mV to 2000 mV, and the body-like solution was 36.5. The test was performed in 0.9% NaCl solution at ± 1 ° C. From the polarization curves, the dissolution behavior of metals was investigated by the corrosion potential, corrosion current density and current density in the passivation region.
0, 5, 10 및 20 mol%로 표면 코팅에 대한 해당 값은 각각 (-470 ± 3.0) mV (-650 ± 5.0 ) mV, (-820 ± 4.0) mV 및 (-690 ± 2.0) mV이였고, 망가니즈를 산화막에 첨가하는 농도가 10 mol%에서 관찰 된 Ecorr 값이 낮아졌고, 이는 부식 전위가 망가니즈 함량이 플라즈마 전해 산화 처리 후 망가니즈 이온이 증가함에 따라 감소한 것을 알수 있었다.The corresponding values for the surface coating at 0, 5, 10 and 20 mol% were (-470 ± 3.0) mV (-650 ± 5.0) mV, (-820 ± 4.0) mV and (-690 ± 2.0) mV, respectively. The concentration of manganese added to the oxide film was lowered at 10 mol%, which indicates that the corrosion potential decreased as manganese ions increased after plasma electrolytic oxidation.
또한, 공극의 활성 부위가 용액으로부터 염소 이온을 함유하기 때문에, 공극이 형성된 표면에 낮은 부식 전위를 나타냄을 확인 하였다It was also confirmed that the active site of the pores contained chlorine ions from the solution, thus exhibiting a low corrosion potential on the surface where the pores were formed.
추가의 일면에 있어서,In a further aspect,
상기 전해질 용액에 은 나노 입자를 첨가하여 은이온을 추가하여 산화막에 항균성을 부여 할 수 있다. 임플란트 식립시 세균 감염등이 일어날 수 있으며, 그로 인해 식립된 임플란트 주위조직에 주위염등이 발생하는데 이는 식립된 임플란트에 골유착이 생성된 부위의 골유착 상실이 특징이고 과도한 교합력이나 감염이 원인으로 알려져 있다. 임플란트 주위조직에서 발생되는 증성 질환으로는 임플란트 점막염증(peri-implant mucositis)과 임플란트 주위염(peri-implantitis)로 크게 나눌 수 있으며 peri-implntitis는 부종, 발적과 탐치시 출혈 등의 특징으로 가지고 있고, peri-implntitis는 보다 광범위한 염증증상을 나타내며 화농과 함께 분화구 모양의 골의 소실이 발생한다.Silver nanoparticles may be added to the electrolyte solution to add silver ions to impart antimicrobial activity to the oxide film. Bacterial infections can occur during implant placement, resulting in periarthritis in the implanted tissue, which is characterized by the loss of bone adhesion at the site where the bone adhesion has been created and the cause of excessive occlusal force or infection. have. The subsidiary diseases of the peri-implant tissues can be divided into peri-implant mucositis and peri-implantitis. Peri-implntitis is characterized by edema, redness and bleeding during detection. Peri-implntitis causes a wider range of inflammatory symptoms, with purulent bone loss along with purulent.
한편, 은 나노 입자의 첨가로 인한 은 이온의 항균메커니즘을 살펴보면 세포막은 인지질 이중층으로 구성되어 있고, 인지질에 결합된 산소가 음이온을 수용하고 있기 때문에 세포막은 전체적으로 음의 하전을 나타내는 특징을 지니고 있고 용출된 은이온은 확산에 의해 세포막에 도달하게 되며, 세포막과 같은 단백질에 흡착과 동시에 세포의 구조를 파괴한다. 세포막 및 효소 등의 단백질에 흡착된 은이온은 단백질 구성 아미노산인 시스틴(cystein)의 수황기(sulfhydrylgroup, -SH)에 결합하여 황화물로 전환 시키고, 단백질 효소의 변형에 의해 에너지 대사장애를 일으킨다. 또한, 미생물에 은 이온이 직접 섭취되어 DNA, RNA, celluara protein, resporatory enzyme등과 결합하여 이동, 성장 및 분열 등을 방해하거나 박테리아의 세포질내에서 대사장애를 일으켜 불활성화 시키며, 세포벽에 삼투압이 작용하여 세포벽을 파괴 시키거나, 세포막에 은이온이 흡착되어 세포질의 음이온의 인지질들이 한쪽으로 몰려드는 비 편재화 현상을 발생시켜 DNA의 복제능력을 상실시킴으로써 미생물을 불 활성화 시킨다.On the other hand, the antimicrobial mechanism of silver ions due to the addition of silver nanoparticles shows that the cell membrane is composed of a phospholipid bilayer, and because the oxygen bound to the phospholipid contains negative ions, the cell membrane is characterized by negatively charged and eluted as a whole. The silver ions reach the cell membrane by diffusion, and at the same time, they adsorb on proteins such as cell membrane and destroy the structure of the cell. Silver ions adsorbed to proteins such as cell membranes and enzymes bind to the sulfide group (-SH) of cystein, a protein-constituting amino acid, and convert it into sulfides, causing energy metabolic disorders by modification of protein enzymes. In addition, silver ions are directly ingested by microorganisms and combined with DNA, RNA, celluara protein, and resporatory enzymes to disrupt migration, growth and division, or to inactivate metabolic disorders in the cytoplasm of bacteria. Deactivation of microorganisms by destroying cell walls or by delocalization of silver ions on cell membranes leads to delocalization of cytosolic anions.
전해질 용액에 은나노 입자를 0.03mol L-1 더 첨가하여 티타늄계 합금을 플라즈마 전해 산화처리하여 표면에 항균성을 가지고, 마그네슘 및 실리콘 이온에 의하여 골 유착의 효과를 높인다. By adding 0.03 mol L −1 of silver nanoparticles to the electrolyte solution, plasma-based electrolytic oxidation treatment of the titanium-based alloy has antimicrobial properties on the surface, and the effect of bone adhesion by magnesium and silicon ions is enhanced.
추가로, 본 발명은 DC 전압을 이용하여 상기 기재된 양극 또는 3전극을 사용하여 플라즈마 전해 산화 공정을 실시되나 AC전압을 이용하여도 무방하며, 이때 AC전압은 비대칭 펄스된 전압을 이용할 수 있고, 이러한 비대칭 펄스된 전압을 인가하면 펄스의 포지티브 부분은 전화된 표면을 성정하게 해줄 수 있고, 산화피막이 형성되 층의 성장 공정의 초기 단계에서 전환된 표면은 조밀한 구조를 갖으며, 산화피막층 코팅의 두께가 증가할수록 코팅에는 점점 더 다공성을 띄어 골 접합 속도를 높여줄 수 있고, 양극과 음극에 주어지는 전류 밀도를 비율을 변화시켜 복수번 플라즈마 산화 공정을 실시하여 산화피막의 두께를 증가 시킬 수 있다.In addition, the present invention is carried out a plasma electrolytic oxidation process using the above-described anode or three electrodes using a DC voltage, but may also use an AC voltage, wherein the AC voltage may use an asymmetric pulsed voltage, Applying an asymmetrical pulsed voltage allows the positive portion of the pulse to establish the inverted surface, the oxide is formed and the surface converted at the early stages of the layer growth process has a dense structure and the thickness of the anodized coating Increasing the porosity in the coating can increase the bone bonding speed, and the thickness of the oxide film can be increased by performing a plasma oxidation process a plurality of times by changing the ratio of the current density given to the anode and cathode.
또한, 앞에서 살펴보았듯이 임플란트에 대한 골아세포의 부착은 임플란트의 표면 특성에 좌우되는데 화학적 조성, 표면에너지, 표면형태가 골아세포의 부착 형태뿐만 아니라 성숙에 중요한 영향을 미치고 있고, 아파타이트의 표면에너지의 증가는 초기 세포 부착과 확장을 증진시키며 그로 인하여 보다 넓은 범위의 골생성을 유도한다. 일반적으로 표면의 화학적 조성과 표면에너지에서의 차이는 친수성의 차이로 나타날 수있으며, 이 친수성은 초기 골아세포의 부착과 분화를 위한 중용한 요소로 작용된다. 따라서 임플란트 표면의 생체 친화성을 증가시키기 위해서 플라즈마 전해 산화 처리된 본 발명의 티타늄 합금의 표면에 자외선, 자외선-오존을 처리하거나, 레이져를 조사하여 임플란트 표면에 친수성을 가질 수 있는 공정을 추가할 수 있다.In addition, as described above, the attachment of osteoblasts to the implant depends on the surface characteristics of the implant.The chemical composition, surface energy and surface morphology have an important effect on the maturation as well as on the osteoblast adhesion form. The increase promotes early cell adhesion and expansion, thereby inducing a wider range of bone formation. In general, the difference in surface chemical composition and surface energy may appear as a difference in hydrophilicity, and this hydrophilicity is an important factor for adhesion and differentiation of early osteoblasts. Therefore, in order to increase the biocompatibility of the implant surface, the surface of the titanium alloy of the present invention, which is plasma electrolytically oxidized, may be treated with ultraviolet or ultraviolet-ozone, or may be irradiated with a laser to add a process that may have hydrophilicity on the implant surface. have.
상기 자외선, 자외선-오존을 처리할 때는 본 발명에서 플라즈마 전해 산화공정 후 산화피막이 형성된 뒤 건조단계를 마친 티타늄 합금 표면에 자외선 또는 자외선-오존을 처리하되 5분동안 처리하여 티타늄 합금 표면을 친수화 시키거나, 상기와 동일하게 건조단계를 마친 뒤 CO2 레이저 또는 Er-Cr.YSGG 레이저를 사용하여 생체 친화성을 증가시키되 최근 널리 사용되어지는 Er-Cr.YSGG 레이저를 이용하고 이때, 레이저는 10㎜거리에서 2분동안 100~120 mJ의 에너지와 20Hz 주파수로 설정하는 것이 바람직 하다.When treating the ultraviolet ray and the ultraviolet-ozone, the surface of the titanium alloy after the plasma electrolytic oxidation process is formed in the present invention and then the ultraviolet ray or ultraviolet-ozone is treated on the surface of the titanium alloy after the drying step. Alternatively, after completing the drying step as described above, the biocompatibility is increased by using a CO 2 laser or an Er-Cr.YSGG laser, but a recently used Er-Cr.YSGG laser is used. It is desirable to set the energy at 100-120 mJ and 20 Hz frequency for 2 minutes at distance.
상기와 같이 플라즈마 전해 산화로 티타늄합금계 치과용 임플란트 표면에 마그네슘과 실리콘 이온이 함유된 산화피막을 형성시키되 나노구조의 다공성을 주어 나노구조가 넓은 표면적을 제공하여 골유착에 보다 유리하게 적용되고 표면에 형성된 다공성 공간은 단백질 수준에 달하는 다양한 화학물질, 약물, 생체분자 등을 전달하는 통로로 이용되어 특정 부위에만 한정하여 작용하므로 작은 용량의 약물로 큰 효과를 발휘되며, 약물의 독성에서 기인하는 전신적 부작용을 감소시킬 수 있다.As described above, an oxide film containing magnesium and silicon ions is formed on the surface of the titanium alloy dental implant by plasma electrolytic oxidation, but nanoporosity is provided to provide a large surface area of the nanostructure, which is more advantageously applied to bone adhesion. The porous space formed inside is used as a channel for delivering various chemicals, drugs, and biomolecules that reach the protein level, so it acts only on a specific site. May reduce side effects.
또한, 티타늄계 생체합금에 플라즈마 전해 산화공정을 이용하여 치과용 임플란트 표면 처리함으로써 제조공정 과정이 간편하고, 임플란트 제조 시간 및 치료 기간을 저감시키는 효과가 있고, 플라즈마 전해 산화법으로 금속이온과 실리콘 이온을 복합적인 치환을 통해 생체적합성을 지닌 다공성 산화막을 생성하였으며, 종래 금속 산호막보다 두껍고 치밀한 산화막을 제조하며, 마그네슘 및 실리콘 이온의 생체활성물질을 포함하여 생체적합성을 빠르게 증가시킴으로써 치과용 임플란트의 초기 고정력을 높여 치료기간을 줄인다.In addition, the surface treatment of dental implants using a plasma electrolytic oxidation process on titanium-based bioalloys simplifies the manufacturing process and reduces the implant manufacturing time and treatment period. Through the complex substitution, a biocompatible porous oxide film was produced, and a thicker and dense oxide film was prepared than the conventional metal coral film, and the initial fixation force of the dental implant was increased by rapidly increasing the biocompatibility including bioactive materials of magnesium and silicon ions. Increase treatment to shorten the duration.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었지만, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술은 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited embodiment and drawing, this invention is not limited by this, The technique to which this invention belongs is within the equal range of the technical idea of the invention, and a claim to be described below. Various modifications and variations are possible, of course.
본 발명에 따른 플라즈마 전해 산화 공정에서 금속과 실리콘이 함유된 전해질 조성물 및 그 조성물을 이용하여 금속이온과 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법은 플라즈마 전해 산화공정을 이용하여 치과용 임플란트 표면 처리 공정을 간편화하고 임플란트 제조 시간을 저감시키며 또한 종래의 금속 산화막보다 두껍고 치밀한 산화막을 제공하는 것으로써 기존의 임플란트 제조 공정을 대체하여 사용될 수 있다. In the plasma electrolytic oxidation process according to the present invention, an electrolyte composition containing metal and silicon and a method for manufacturing a dental implant coated with a hydroxide of metal ions and silicon ions using the composition are prepared by using a plasma electrolytic oxidation process. It can be used in place of the existing implant manufacturing process by simplifying the implant surface treatment process for the implant, reducing the implant manufacturing time, and providing an oxide film thicker and denser than the conventional metal oxide film.

Claims (8)

  1. 플라즈마 전해 산화 공정의 전해질 조성물에 있어서,In the electrolyte composition of the plasma electrolytic oxidation step,
    상기 전해질 조성물은The electrolyte composition is
    아세트산칼슘(Calcium acetate monohydrate), 글리세로인산 칼슘(Calcium glycerophosphate), 메타규산나트륨(Sodium metasilicate nonahydrate) 및 증류수와 아세트산 마그네슘(Magnesium acetate tetrahydrate), 아세트산 아연(Zinc acetate), 아세트산 스트론튬(Strontium acetate) 및 아세트산 망가니즈(Manganese acetate)중 선택된 하나를 포함하여 전해질 용액을 이루는 것을 특징으로 하는 플라즈마 전해 산화 공정에서 금속 및 실리콘이 함유된 전해질 조성물.Calcium acetate monohydrate, Calcium glycerophosphate, Sodium metasilicate nonahydrate and distilled water, Magnesium acetate tetrahydrate, Zinc acetate, Strontium acetate and An electrolyte composition containing metal and silicon in a plasma electrolytic oxidation process, comprising an electrolyte solution comprising one selected from manganese acetate.
  2. 제1 항에 있어서,According to claim 1,
    상기 전해질 용액은 금속이온이 칼슘 이온에 대비 20 mol%, 실리콘 이온이 인 이온에 대비하여 5 mol%가 되도록 아세트산칼슘을 0.12mol L-1, 글리세로인산칼슘은 0.02mol L-1 및 메타규산나트륨 0.001mol L-1와 상기 아세트산 마그네슘, 아스트산 아연, 아세트산 스트론튬 및 아세트산 망가니즈중 선택된 하나 금속이온 0.03mol L-1로 이루어지는 것을 특징으로 하는 플라즈마 전해 산화 공정에서 금속 및 실리콘이 함유된 전해질 조성물.The electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion. Electrolyte composition containing metal and silicon in a plasma electrolytic oxidation process comprising 0.001 mol L -1 of sodium and 0.03 mol L -1 of a metal ion selected from magnesium acetate, zinc aspartate, strontium acetate and manganese acetate .
  3. 티타늄합금으로 이루어진 치과용 임플란트 제조방법에 있어서,In the dental implant manufacturing method consisting of a titanium alloy,
    상기 치과용 임플란트 제조방법은,The dental implant manufacturing method,
    a) 치과용 티타늄합금을 순차적으로 연마, 미세연마 및 초음파 세척하는 티타늄합금 준비단계;a) titanium alloy preparation step of sequentially polishing, fine polishing and ultrasonic cleaning the dental titanium alloy;
    b) 상기 준비단계에서 준비된 티타늄합금을 전기분해조 양극에 설치하고, 음극은 백금을 설치한 후 금속 및 실리콘이 함유된 전해질 용액을 투입하는 투입단계;b) a titanium alloy prepared in the preparation step is installed in the electrolytic bath positive electrode, the negative electrode is platinum, and then the step of inputting an electrolyte solution containing metal and silicon;
    c) 일정한 전압과 전류밀도를 가하여 플라즈마를 생성시켜 티타늄합금에 산화 피막을 형성하는 플라즈마 형성단계; 및c) forming a plasma by applying a constant voltage and current density to form an oxide film on the titanium alloy; And
    d) 상기 플라즈마 형성단계에서 티타늄합금에 산화피막이 형성된 후 에탄올 및 증류수 세척 후 건조시키는 건조단계;를 포함하는 것을 특징으로 하는 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법.d) forming an oxide film on the titanium alloy in the plasma forming step, followed by drying after washing with ethanol and distilled water; and drying the apatite hydroxide containing metal ions and silicon ions.
  4. 제3 항에 있어서,The method of claim 3, wherein
    상기 연마는 실리콘 카바이드 연마지로 실시하되 100, 600, 800, 1200, 2000 grit로 이루어진 연마지로 단계적으로 연마하는 것을 특징으로 하는 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법.The polishing is carried out with a silicon carbide abrasive paper, but a step of polishing with a polishing paper consisting of 100, 600, 800, 1200, 2000 grit, characterized in that the apatite hydroxide containing metal ions and silicon ions coated dental implants.
  5. 제3 항에 있어서,The method of claim 3, wherein
    상기 미세연마는 0.3㎛ 알루미나 분말을 이용하여 실시하며, 초음파 세척시 상기 알루미나 분말이 남지 않도록 제거하는 것을 특징으로 하는 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법.The micropolishing is performed using 0.3 μm alumina powder, and the method for producing dental implants coated with apatite hydroxide containing metal ions and silicon ions, characterized in that the alumina powder is removed so as not to remain during ultrasonic cleaning.
  6. 제3 항에 있어서,The method of claim 3, wherein
    상기 전해질 용액은 아세트산 마그네슘(Magnesium acetate tetrahydrate), 아세트산 아연(Zinc acetate), 아세트산 스트론튬(Strontium acetate) 및 아세트산 망가니즈(Manganese acetate)중 선택된 하나와 아세트산칼슘(Calcium acetate monohydrate), 글리세로인산 칼슘(Calcium glycerophosphate) 및 메타규산나트륨(Sodium metasilicate nonahydrate)을 증류수에 혼합하여 제조되는 것을 특징으로 하는 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법.The electrolyte solution is selected from magnesium acetate tetrahydrate, zinc acetate, zinc acetate, strontium acetate and manganese acetate, and calcium acetate monohydrate and calcium glycerate. Calcium glycerophosphate) and sodium metasilicate nonahydrate (a sodium metasilicate nonahydrate) is a method for producing a dental implant coated dental hydroxide containing metal ions and silicon ions, characterized in that prepared by mixing in distilled water.
  7. 제6 항에 있어서,The method of claim 6,
    상기 전해질 용액은 금속이온이 칼슘 이온에 대비 20 mol%, 실리콘 이온이 인 이온에 대비하여 5 mol%가 되도록 아세트산칼슘을 0.12mol L-1, 글리세로인산칼슘은 0.02mol L-1 및 메타규산나트륨 0.001mol L-1와 상기 아세트산 마그네슘, 아세트산 아연, 아세트산 스트론튬 및 아세트산 망가니즈중 선택된 하나 금속이온 0.03mol L-1로 이루어지는 것을 특징으로 하는 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법.The electrolyte solution is 0.12 mol L -1 of calcium acetate, 0.02 mol L -1 of calcium glycerate and metasilicate so that the metal ion is 20 mol% relative to the calcium ion and the silicon ion is 5 mol% relative to the phosphorus ion. Dental coated with apatite hydroxide containing metal ions and silicon ions, characterized by consisting of 0.001 mol L -1 of sodium and 0.03 mol L -1 of one selected from magnesium acetate, zinc acetate, strontium acetate and manganese acetate Implant preparation method.
  8. 제3 항에 있어서,The method of claim 3, wherein
    상기 전압과 전류밀도 및 가용시간은 250~280V, 50~100 mA/㎝-2 및 3분간 실시되는 것을 특징으로 하는 금속이온 및 실리콘 이온을 함유하는 수산화아파타이트가 코팅된 치과용 임플란트 제조방법.The voltage and current density and the available time is 250 ~ 280V, 50 ~ 100 mA / cm -2 and 3 minutes apatite hydroxide coated metal implants containing silicon ions, characterized in that carried out for 3 minutes.
PCT/KR2018/003089 2017-03-21 2018-03-16 Electrolyte composition containing metals and silicon in plasma electrolytic oxidation process and method for manufacturing dental implants coated with hydroxyapatite and containing metal ions and silicon ions by using same composition WO2018174475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880020403.9A CN110494098B (en) 2017-03-21 2018-03-16 Electrolyte composition containing metal and silicon in plasma electrolytic oxidation step and method for producing dental implant

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2017-0035313 2017-03-21
KR1020170035313A KR101835623B1 (en) 2017-03-21 2017-03-21 An electrolyte composition containing magnesium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing magnesium and silicon ions using the composition
KR1020170035326A KR101835684B1 (en) 2017-03-21 2017-03-21 An electrolyte composition containing zinc and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing zinc and silicon ions using the composition
KR20170035347 2017-03-21
KR1020170035332A KR101835694B1 (en) 2017-03-21 2017-03-21 An electrolyte composition containing strontium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing strontium and silicon ions using the composition
KR10-2017-0035326 2017-03-21
KR10-2017-0035332 2017-03-21
KR10-2017-0035347 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018174475A1 true WO2018174475A1 (en) 2018-09-27

Family

ID=63585478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003089 WO2018174475A1 (en) 2017-03-21 2018-03-16 Electrolyte composition containing metals and silicon in plasma electrolytic oxidation process and method for manufacturing dental implants coated with hydroxyapatite and containing metal ions and silicon ions by using same composition

Country Status (2)

Country Link
CN (1) CN110494098B (en)
WO (1) WO2018174475A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330071A (en) * 2020-02-25 2020-06-26 北京爱康宜诚医疗器材有限公司 Antibacterial three-dimensional porous bone implant material
CN111945207A (en) * 2019-05-17 2020-11-17 华北理工大学 Sr/Ag-doped micro-arc oxidation coating and preparation method and application thereof
CN113265692A (en) * 2021-05-21 2021-08-17 江西科技师范大学 Micro-arc oxidation electrolyte containing amino acid chelate and method for preparing antibacterial oxidation film
US20220096209A1 (en) * 2020-09-26 2022-03-31 Cheng-Hsien WU Crystallographic orientation structured titanium alloy dental implant and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119679A (en) * 1997-06-20 1999-01-19 Nikon Corp Production of implant
CN103386148A (en) * 2013-06-19 2013-11-13 江苏科技大学 Bone repair material containing multi-element biocover and preparation method thereof
CN103911644A (en) * 2014-04-09 2014-07-09 江西科技师范大学 Micro-arc oxidation electrolyte and micro-arc oxidation method for titanium alloys
CN106086993A (en) * 2016-07-22 2016-11-09 中国科学院深圳先进技术研究院 A kind of magnesium alloy differential arc oxidation electrolyte and magnesium alloy differential arc oxidation method
CN106245094A (en) * 2016-08-19 2016-12-21 山东大学 A kind of calcium phosphorus silicon bio-ceramic coating and preparation method and application
KR101835684B1 (en) * 2017-03-21 2018-03-07 조선대학교산학협력단 An electrolyte composition containing zinc and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing zinc and silicon ions using the composition
KR101835623B1 (en) * 2017-03-21 2018-03-07 조선대학교산학협력단 An electrolyte composition containing magnesium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing magnesium and silicon ions using the composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014319A1 (en) * 2007-07-09 2009-01-14 Astra Tech AB A bone tissue implant comprising strontium ions
KR100775537B1 (en) * 2007-07-19 2007-11-28 (주)오스테오필 Method of fabricating implant with improved surface properties and implant fabiricated by the same method
CN102908661B (en) * 2012-10-31 2014-06-25 武汉科技大学 Medical titanium with a trace element slow-release function or titanium alloy implant material as well as preparation method and application of same
CN104001207B (en) * 2014-06-09 2016-04-13 中国科学院上海硅酸盐研究所 A kind of medical titanium surface composite coating and preparation method thereof
CN105597157B (en) * 2015-12-28 2018-07-27 周建宏 One kind can promote vascularization and anti-infection bio active coating and its preparation method and application
CN106435690B (en) * 2016-09-28 2018-08-28 上海理工大学 A kind of microarc oxidation solution of titanium alloy biological coating containing strontium and its application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119679A (en) * 1997-06-20 1999-01-19 Nikon Corp Production of implant
CN103386148A (en) * 2013-06-19 2013-11-13 江苏科技大学 Bone repair material containing multi-element biocover and preparation method thereof
CN103911644A (en) * 2014-04-09 2014-07-09 江西科技师范大学 Micro-arc oxidation electrolyte and micro-arc oxidation method for titanium alloys
CN106086993A (en) * 2016-07-22 2016-11-09 中国科学院深圳先进技术研究院 A kind of magnesium alloy differential arc oxidation electrolyte and magnesium alloy differential arc oxidation method
CN106245094A (en) * 2016-08-19 2016-12-21 山东大学 A kind of calcium phosphorus silicon bio-ceramic coating and preparation method and application
KR101835684B1 (en) * 2017-03-21 2018-03-07 조선대학교산학협력단 An electrolyte composition containing zinc and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing zinc and silicon ions using the composition
KR101835623B1 (en) * 2017-03-21 2018-03-07 조선대학교산학협력단 An electrolyte composition containing magnesium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing magnesium and silicon ions using the composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945207A (en) * 2019-05-17 2020-11-17 华北理工大学 Sr/Ag-doped micro-arc oxidation coating and preparation method and application thereof
CN111330071A (en) * 2020-02-25 2020-06-26 北京爱康宜诚医疗器材有限公司 Antibacterial three-dimensional porous bone implant material
US20220096209A1 (en) * 2020-09-26 2022-03-31 Cheng-Hsien WU Crystallographic orientation structured titanium alloy dental implant and manufacturing method thereof
CN113265692A (en) * 2021-05-21 2021-08-17 江西科技师范大学 Micro-arc oxidation electrolyte containing amino acid chelate and method for preparing antibacterial oxidation film
CN113265692B (en) * 2021-05-21 2023-04-07 江西科技师范大学 Micro-arc oxidation electrolyte containing amino acid chelate and method for preparing antibacterial oxidation film

Also Published As

Publication number Publication date
CN110494098B (en) 2021-10-22
CN110494098A (en) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2018174475A1 (en) Electrolyte composition containing metals and silicon in plasma electrolytic oxidation process and method for manufacturing dental implants coated with hydroxyapatite and containing metal ions and silicon ions by using same composition
Fattah-alhosseini et al. Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): A review
Chang et al. Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment
Kaluđerović et al. Titanium dental implant surfaces obtained by anodic spark deposition–from the past to the future
KR101835684B1 (en) An electrolyte composition containing zinc and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing zinc and silicon ions using the composition
Sandhyarani et al. Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium
Seltzer et al. A scanning electron microscope examination of silver cones removed from endodontically treated teeth
CN100423794C (en) Active bio piezoelectric ceramic coating layer and method of preparing said coating layer on titanium base body surface
Zhang et al. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium
Huang et al. Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating
Sridhar et al. Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants
CN106606801B (en) A kind of Zn-ZnO system kirsite and the preparation method and application thereof
Lim et al. Corrosion phenomena of PEO-treated films formed in solution containing Mn, Mg, and Si ions
Bai et al. Formation of bioceramic coatings containing hydroxyapatite on the titanium substrate by micro‐arc oxidation coupled with electrophoretic deposition
Jamali et al. Effects of co-incorporated ternary elements on biocorrosion stability, antibacterial efficacy, and cytotoxicity of plasma electrolytic oxidized titanium for implant dentistry
KR101835694B1 (en) An electrolyte composition containing strontium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing strontium and silicon ions using the composition
Eshed et al. MgF 2 nanoparticle-coated teeth inhibit Streptococcus mutans biofilm formation on a tooth model
KR101835623B1 (en) An electrolyte composition containing magnesium and silicon in a plasma electrolytic oxidation process and a method for manufacturing dental implants coated by hydroxyapatite containing magnesium and silicon ions using the composition
Kim et al. Functional elements coatings on the plasma electrolytic oxidation-treated Ti–6Al–4V alloy by electrochemical precipitation method
Leśniak-Ziółkowska et al. Plasma electrolytic oxidation as an effective tool for production of copper incorporated bacteriostatic coatings on Ti-15Mo alloy
Yu et al. Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy
CN109537025B (en) Metal composite material containing corrosion-resistant coating, degradable magnesium alloy bone screw and application
US20090192628A1 (en) Bone Substitute Material, Medical Material Comprising the Bone Substitute Material and Method for Manufacturing the Bone Substitute Material
CN106606806B (en) A kind of Zn-Mg1Ca system kirsite and the preparation method and application thereof
Park et al. Corrosion properties and biocompatibility of strontium doped calcium phosphate coated magnesium prepared by electrodeposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771840

Country of ref document: EP

Kind code of ref document: A1