WO2018174276A1 - Method for operating fuel-gas-producing apparatus - Google Patents

Method for operating fuel-gas-producing apparatus Download PDF

Info

Publication number
WO2018174276A1
WO2018174276A1 PCT/JP2018/011888 JP2018011888W WO2018174276A1 WO 2018174276 A1 WO2018174276 A1 WO 2018174276A1 JP 2018011888 W JP2018011888 W JP 2018011888W WO 2018174276 A1 WO2018174276 A1 WO 2018174276A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
gas
temperature
unit
desulfurization
Prior art date
Application number
PCT/JP2018/011888
Other languages
French (fr)
Japanese (ja)
Inventor
阿曽沼飛昂
清水翼
諫田貴哉
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Publication of WO2018174276A1 publication Critical patent/WO2018174276A1/en

Links

Images

Definitions

  • the present invention relates to a desulfurization unit that desulfurizes a raw material gas that is a heavy hydrocarbon gas, and a fuel gas containing methane as a main component by reforming the desulfurization source gas supplied from the desulfurization unit with steam.
  • the present invention relates to a method for operating a fuel gas production apparatus provided with a reforming section to be used and a fuel gas return path for returning a part of the fuel gas from the reforming section to the desulfurization section.
  • the fuel gas production apparatus reforms a heavy hydrocarbon gas such as propane and butane to produce a fuel gas containing methane as a main component.
  • the produced fuel gas is a gas engine, It will be used as fuel for internal combustion engines such as gas turbines (see, for example, Patent Document 1).
  • the reforming part is modified by desulfurization treatment using the hydrogen component contained in the fuel gas returned through the fuel gas return path.
  • the quality catalyst can be prevented from being poisoned by the sulfur component.
  • Patent Document 1 omits the description of the operation method when stopping the operation by stopping the supply of the raw material gas to the desulfurization section, but purges nitrogen gas as an inert gas when starting up. It is described that oxygen in the system is removed, and then the purged nitrogen gas is circulated through the desulfurization section and the reforming section, while the nitrogen gas and the reforming section circulated by the electric heater are heated. Therefore, when the supply of the source gas to the desulfurization section is stopped and the operation is stopped, it can be considered that the desulfurization section and the reforming section are cooled to a normal temperature state and the system is opened to the atmosphere.
  • the purged nitrogen is circulated through the desulfurization section and the reforming section. It is conceivable to maintain the desulfurization section and the reforming section at a high temperature while suppressing consumption of the raw material gas and water vapor by heating the nitrogen gas or the like with an electric heater. However, in this case, every time the operation is stopped, purging nitrogen is required, and since a small amount of oxygen is contained in nitrogen, it is necessary to suppress oxidation of the reforming catalyst and the like. Moreover, hydrogen gas for removing oxygen must be supplied, and there is an inconvenience that the equipment becomes complicated due to the need to provide equipment for storing nitrogen and hydrogen gas.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to operate the fuel gas production apparatus that stops the operation in a form that can quickly resume the operation while suppressing the complexity of the equipment. Is to provide
  • the present invention relates to a desulfurization unit that desulfurizes a raw material gas that is a heavy hydrocarbon gas, and a fuel gas containing methane as a main component by reforming the desulfurization source gas supplied from the desulfurization unit with steam. And a method for operating the fuel gas production apparatus provided with a fuel gas return path for returning a part of the fuel gas from the reforming unit to the desulfurization unit.
  • the fuel gas is circulated in a state in which the fuel gas is maintained at a set standby temperature that prevents dew condensation of water vapor, and the entire amount of the fuel gas from the reforming section is returned to the desulfurization section through the circulation gas passage.
  • the pivot portion lies in performing standby operation process of circulating flow.
  • the heavy hydrocarbon gas in the present invention is a gaseous hydrocarbon having a molecular weight larger than that of methane, and includes propane, butane, ethane, and isobutane.
  • the main component is a component having a large content among the main active ingredients, and it is not necessary to contain more than 50%, and it is not necessary to be the component having the largest content. . However, if the content exceeds 50% as the main component, it is more preferable. If the content does not exceed 50%, the most preferable component is preferable.
  • the supply of water vapor is stopped and the fuel gas to be circulated is heated in the heating section.
  • the fuel gas is circulated in a state where it is maintained at a set standby temperature that is lower than the precipitation prevention temperature and prevents water vapor condensation, and the entire amount of the fuel gas from the reforming section is returned to the desulfurization section through the circulation gas passage.
  • a standby operation process for circulating and flowing by the drive unit is performed.
  • the temperature of the fuel gas is maintained at a set standby temperature that prevents the dew condensation of water vapor, so that the water vapor in the circulating and flowing fuel gas is dewed and deteriorates the reforming catalyst and the like. While avoiding this, the desulfurization part and the reforming part can be maintained at a high temperature close to the temperature of the operating state in which the fuel gas is produced.
  • the desulfurization section and the reforming section in the high temperature state close to the temperature of the operation state for producing the fuel gas are replaced with those in the operation state for producing the fuel gas. Since it is sufficient to raise the temperature, the operation can be resumed quickly.
  • the operation can be stopped in a form in which the operation can be restarted quickly while suppressing the complexity of the equipment.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that when the supply of the raw material gas to the desulfurization unit is stopped, the discharge of the fuel gas from the reforming unit is stopped simultaneously. And it is in the point which performs the said temperature fall process in the form which makes the internal pressure of the said gas path for a circulation high-pressure state.
  • the discharge of the fuel gas from the reforming section is stopped at the same time, and the internal pressure of the circulation gas passage is brought to a high pressure state.
  • the temperature lowering process is performed, so that the internal pressure of the processing path from the desulfurization unit to the reforming unit is maintained at a pressure close to a pressure suitable for operation.
  • the operation can be restarted more satisfactorily.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the supply of the raw material gas to the desulfurization unit is stopped, and then the internal pressure of the circulation gas path is lowered to a set low pressure state.
  • the temperature lowering process is performed in such a manner that the discharge of the fuel gas to the outside is stopped and the internal pressure of the circulation gas path is set to a low pressure state.
  • the internal pressure of the circulation gas path is lowered to the set low pressure state.
  • the temperature lowering process is performed in such a manner that the discharge of the fuel gas to the outside is stopped and the internal pressure of the circulation gas path is set to a low pressure state.
  • the precipitation prevention temperature that can prevent carbon deposition caused by the thermal decomposition of the fuel gas than when the internal pressure of the circulation gas passage is in a high pressure state.
  • the desulfurization section and reforming section are maintained at a high temperature as close as possible to the temperature of the operating state for producing the fuel gas while heating the fuel gas in the heating section. it can.
  • the operation can be restarted more quickly.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the heating unit includes a first heating unit that heats the fuel gas returned from the reforming unit to the desulfurization unit, and the desulfurization unit. And a second heating unit that heats the fuel gas supplied to the reforming unit.
  • the fuel gas returned from the reforming unit to the desulfurization unit can be heated by the first heating unit, and the fuel gas supplied from the desulfurization unit to the reforming unit can be heated by the second heating unit.
  • the desulfurization part and the reforming part can be appropriately maintained in a high temperature state while suppressing condensation.
  • the fuel gas that flows through the reforming unit and flows into the desulfurization unit, and the fuel gas that passes through the desulfurization unit and flows into the reforming unit can be heated by the first heating unit and the second heating unit. Therefore, since the entire fuel gas that circulates and flows can be appropriately heated to a high temperature state, the desulfurization part and the reforming part can be appropriately maintained at a high temperature state while suppressing the dew condensation of water vapor.
  • the desulfurization section and the reforming section can be appropriately maintained at a high temperature while suppressing the condensation of water vapor.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is to maintain the set standby temperature based on a detected temperature of a first temperature sensor that detects the temperature of the fuel gas discharged from the desulfurization unit.
  • the set standby temperature is maintained based on the detected temperature of the second temperature sensor that controls the heating operation of the first heating unit and detects the temperature of the fuel gas discharged from the reforming unit.
  • the heating operation of the second heating unit is controlled.
  • the temperature of the desulfurization unit is set on standby by controlling the heating operation of the first heating unit so that the temperature of the fuel gas that has passed through the desulfurization unit is detected by the first temperature sensor and maintained at the set standby temperature.
  • the temperature of the fuel gas that has passed through the reforming section can be detected by the second temperature sensor, and the heating operation of the second heating section is controlled so as to maintain the set standby temperature. As a result, the temperature of the reforming section can be appropriately maintained at the set standby temperature.
  • the temperature of the desulfurization section and the reforming section can be appropriately maintained at the set standby temperature.
  • the temperature of the part and the reforming part can be appropriately maintained in a state close to the temperature of the operation state in which the fuel gas is produced.
  • the set standby temperature for the fuel gas that has passed through the desulfurization section may be set to a different temperature.
  • the temperature of the desulfurization section and the reforming section can be appropriately maintained in a state close to the temperature of the operation state in which the fuel gas is produced.
  • a further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the fuel gas from the reforming unit is supplied to a gas consuming unit mounted on a ship.
  • the fuel gas production apparatus is mounted on a ship, and the fuel gas from the reforming section is supplied to the gas consumption section mounted on the ship.
  • a transport ship that transports the source gas is suitable. And since it can change to the operation state which starts manufacture of fuel gas from the state which stopped manufacture of fuel gas quickly, supply of fuel gas to a gas consumption part can be restarted rapidly.
  • the gas consumption unit is an internal combustion engine such as an engine that drives an auxiliary device such as an air conditioner or a generator, the supply of fuel gas can be restarted quickly, so that the driving of the auxiliary device can be restarted quickly. it can.
  • the supply of the fuel gas to the gas consumption unit can be resumed quickly.
  • the fuel gas production apparatus includes a raw material gas supply unit 1 that supplies heavy hydrocarbon gas as a raw material gas F, and a raw material gas F that is supplied from the raw material gas supply unit 1 through a raw material gas supply line 2.
  • the desulfurization part 3 for desulfurizing the gas, and the desulfurization raw material gas supplied from the desulfurization part 3 through the desulfurization gas supply line 4 is reformed with steam J to obtain a fuel gas G containing methane as a main component.
  • a mass part 5 and a product gas supply line 6 for supplying the fuel gas G reformed in the reforming part 5 to the gas consumption part N are provided.
  • the source gas supply unit 1 supplies a gas obtained by raising the temperature of the LPG as the source gas F, and the source gas supply line 2 includes A raw material gas compressor 7 for increasing the pressure of the raw material gas F to an appropriate pressure (for example, about 0.90 MPaG) is provided.
  • the gas consumption unit N corresponds to, for example, an internal combustion engine such as a gas engine that drives an auxiliary device such as an air conditioner or a generator.
  • An internal combustion engine for propulsion such as a gas engine may be used as the gas consuming part N to supply the fuel gas G.
  • a steam supply unit 8 that supplies steam J for reforming treatment is connected to the desulfurization gas supply line 4.
  • a steam valve 8 ⁇ / b> A for interrupting the supply of the steam J from the steam supply unit 8 is provided.
  • the steam supply unit 8 employs a configuration that supplies steam J generated by an exhaust heat recovery boiler that recovers exhaust heat of various devices, for example. be able to.
  • a fuel gas return path 9 for returning a part of the fuel gas G from the reforming unit 5 to the desulfurization unit 3 is located upstream of the source gas compressor 7 in the product gas supply line 6 and the source gas supply line 2. And the hydrogen component contained in the fuel gas G is supplied as hydrogen gas for the desulfurization process.
  • the fuel gas return path 9 is provided with an adjustment valve 10 that adjusts the flow rate (return amount) of the fuel gas G.
  • a circulation main gas passage 11 that constitutes a circulation gas passage R that returns the entire amount of the fuel gas G from the reforming section 5 to the desulfurization section 3 is supplied to the product gas.
  • Line 6 is connected to the upstream side of source gas compressor 7 in source gas supply line 2, and the flow rate (circulation amount) of fuel gas G is adjusted in circulation main gas passage 11.
  • a circulation control valve 12 for opening and closing the circulation main gas passage 11 is provided.
  • the fuel gas return path 9 is formed in a state in which a part of the circulation main gas path 11 is also used.
  • the circulation gas path R for returning the entire amount of the fuel gas G from the reforming section 5 to the desulfurization section 3 is composed of the circulation main gas path 11 and the fuel gas return path 9. become.
  • the main gas passage 11 for circulation is provided in addition to the fuel gas return passage 9 because the amount of gas that can flow through the adjustment valve 10 can flow part of the fuel gas G from the reforming unit 5. This is because the entire amount of the fuel gas G from the reforming unit 5 cannot flow through the fuel gas return path 9.
  • a source gas valve 13 for intermittently supplying the source gas is provided at a location upstream of the connection location of the circulation main gas passage 11 in the source gas supply line 2, and a standby operation transition state and a standby operation state described later are provided.
  • the supply of the raw material gas can be stopped.
  • a product gas valve 14 that opens and closes the product gas supply line 6 is provided on the downstream side of the connection point of the fuel gas return path 9 and the circulation main gas path 11 in the product gas supply line 6. In the state and the standby operation state, the product gas supply line 6 is closed to stop the supply of the fuel gas G.
  • the fuel gas G returned from the reforming unit 5 to the desulfurization unit 3 is heated as a heating unit K that heats the fuel gas G circulated through the circulation gas path R.
  • a heating unit K that heats the fuel gas G circulated through the circulation gas path R.
  • a first heating unit K1 that performs heating
  • a second heating unit K2 that heats the fuel gas G supplied from the desulfurization unit 3 to the reforming unit 5.
  • the first heating unit K1 and the second heating unit K2 are configured using an electric heater.
  • the raw material gas valve 13 and the product gas valve 14 are opened, the water vapor valve 8A is opened to supply water vapor, the adjustment valve 10 is opened, and the circulation control valve 12 is closed.
  • the raw material gas from the raw material gas supply unit 1 is desulfurized, the desulfurized raw material gas is reformed with steam J to produce the fuel gas G, and the produced fuel gas G is The gas is supplied to the gas consumption unit N through the product gas supply line 6.
  • the temperature on the inlet side of the desulfurization unit 3 is about 300 ° C.
  • the temperature on the inlet side of the reforming unit 5 is about 350 ° C.
  • the reforming reaction in the reforming unit 5 is an exothermic reaction.
  • the temperature on the outlet side of the reforming unit 5 is configured to be about 450 ° C.
  • a nickel-based or noble metal-based low-temperature steam reforming catalyst can be used, specifically, on the surface of a non-conductive porous body having fine pores.
  • One having a metal film selected from the group consisting of palladium, silver, nickel, cobalt and copper is preferably used.
  • the desulfurization catalyst equipped in the desulfurization section 3 is configured as a combination of, for example, a nickel-molybdenum-based or cobalt-molybdenum-based catalyst and zinc oxide as an adsorbent. That is, the sulfur content in the raw material gas is removed by reducing the inactive sulfur compound in the raw material gas to hydrogen sulfide by a hydrogenation reaction using a catalyst and adsorbing the reduced hydrogen sulfide to zinc oxide. .
  • the supply amount of the water vapor J from the water vapor supply unit 8 is adjusted so that the S / C (water vapor / carbon ratio) value is, for example, 0.4 to 0.8.
  • the supply amount of the raw material gas F is detected by the flow rate sensor, and an amount of water vapor J corresponding to the supply amount of the raw material gas F is supplied from the water vapor supply unit 8. Will do.
  • the temperature lowering process as the standby operation transition state is a state in which the supply of water vapor J from the water vapor supply unit 8 is continued, and the adjustment valve 10 and the circulation control valve 12 are opened to circulate the gas path.
  • the entire amount of the fuel gas G from the reforming unit 5 is returned to the desulfurization unit 3 through R, a process of circulating and flowing the fuel gas G by the raw material gas compressor 7 functioning as a circulation drive unit is performed.
  • the raw material gas valve 13 and the product gas valve 14 are simultaneously closed to supply the raw material gas to the desulfurization unit 3. Since the discharge of the fuel gas from the reforming unit 5 to the outside is simultaneously stopped, the temperature lowering process is performed in a form in which the internal pressure of the circulation gas path R is set to a high pressure state.
  • the fuel gas return path 9 when the temperature lowering process or the standby operation process is performed, the fuel gas return path 9 is maintained in an open state, and the entire amount of the fuel gas G from the reforming unit 5 is supplied to the circulation main gas path. 11 and the fuel gas return path 9 are exemplarily illustrated. However, when the temperature lowering process or the standby operation process is performed, the fuel gas return path 9 is closed and the reforming section is passed through the circulation main gas path 11. The total amount of the fuel gas G from 5 may be made to flow. That is, as the circulation gas path R, only the circulation main gas path 11 may function.
  • FIG. After the start of the temperature lowering process as the standby operation transition state, when the temperature of the reforming section 5 falls below a precipitation prevention temperature (for example, 350 ° C. or less) at which carbon deposition due to thermal decomposition of the fuel gas G can be prevented, FIG. As shown, the standby operation processing as the standby operation state is performed.
  • the water vapor valve 8A In the standby operation process, the water vapor valve 8A is closed to stop the supply of water vapor, and the fuel gas G to be circulated and heated is heated by the heating unit K to set the temperature to be equal to or lower than the precipitation prevention temperature and prevent water vapor condensation.
  • the raw material gas compressor 7 functions as a circulation drive unit in a state where the temperature is maintained and the entire amount of the fuel gas from the reforming unit 5 is returned to the desulfurization unit 3 through the circulation gas path R. A process of circulating flow is performed.
  • the heating unit K is supplied to the reforming unit 5 from the first heating unit K1 that heats the fuel gas G returned from the reforming unit 5 to the desulfurization unit 3 as described above.
  • the second heating unit K2 for heating the fuel gas G to be heated, the fuel gas G discharged from the desulfurization unit 3 is set to, for example, 300 ° C. as the first set standby temperature that is the set standby temperature.
  • the fuel gas G that is heated and discharged from the reforming unit 5 is configured to be heated to, for example, 350 ° C. as a second set standby temperature that is a set standby temperature.
  • a first temperature sensor S1 for detecting the temperature of the fuel gas G discharged from the desulfurization unit 3 is provided, and the fuel gas G discharged from the desulfurization unit 3 is based on the detected temperature of the first temperature sensor S1.
  • the heating operation of the first heating unit K1 is controlled so as to maintain the temperature at a first set standby temperature (for example, 300 ° C.).
  • a second temperature sensor S2 for detecting the temperature of the fuel gas G discharged from the reforming unit 5 is provided, and the fuel gas discharged from the reforming unit 5 based on the temperature detected by the second temperature sensor S2.
  • the heating operation of the second heating unit K2 is controlled so that the temperature of G is maintained at a second set standby temperature (for example, 350 ° C.).
  • the temperature detected by the second temperature sensor S2 corresponds to the temperature of the reforming unit 5
  • the temperature detected by the second temperature sensor S2 is used as the temperature of the reforming unit 5 as described above.
  • a temperature sensor that detects the temperature of the reforming unit 5 may be provided in the reforming unit 5 to determine that the temperature is the deposition preventing temperature.
  • control part which controls the heating action of the 1st heating part K1 or the 2nd heating part K2 is provided, and based on the detection information of the 1st temperature sensor S1 or the 2nd temperature sensor S2, the 1st heating part K1 or Although the heating operation of the second heating unit K2 is automatically controlled, detailed description is omitted in this embodiment.
  • the temperature of each of the desulfurization unit 3 and the reforming unit 5 is set.
  • the temperature will be set close to the normal operating temperature.
  • each of the desulfurization unit 3 and the reforming unit 5 is maintained at a temperature close to the temperature in the normal operation state, when the operation for producing the fuel gas G is resumed, the desulfurization unit 3 and the reforming unit 5 The labor for heating the part 5 is reduced, and the operation for producing the fuel gas G can be restarted quickly. That is, when restarting the operation for producing the fuel gas G, the desulfurization unit 3 and the reforming unit 5 are heated to an appropriate temperature while supplying water vapor. The time for raising the temperature of the fuel cell 5 is reduced, and the operation for producing the fuel gas G can be resumed quickly.
  • a pressure sensor U is provided on the downstream side of the raw material gas compressor 7 that functions as a circulation drive unit for the fuel gas G. Then, as shown in FIG. 5, when stopping the operation by stopping the supply of the raw material gas to the desulfurization section 3, first, the raw material gas valve 13 is opened and the raw material gas valve 13 is closed, and then the pressure When the detected value of the sensor U is lowered to the set low pressure state, a pressure adjustment process for closing the product gas valve 14 is performed. Thereafter, as shown in FIG. 6, a temperature lowering process as a standby operation transition state is performed and illustration is omitted, but a standby process as a standby operation state is performed as in the above-described embodiment. The above-described temperature lowering process is executed in a state where the pressure adjustment process is completed and the detection value of the pressure sensor U is in the set low pressure state.
  • the set low pressure state can be set, for example, to a state where the pressure is higher than atmospheric pressure and 0.75 MPa or less.
  • the precipitation prevention which can prevent precipitation of carbon which arises by thermal decomposition of fuel gas rather than the case where the internal pressure of circulation gas path R is a high pressure state by the internal pressure of circulation gas path R becoming a low pressure state It is possible to set the temperature as high as possible.
  • the temperature of the fuel gas G discharged from the desulfurization unit 3 is maintained at a first set standby temperature (for example, 330 ° C.) by the first heating unit K1.
  • the heating operation is configured to be controlled.
  • the second heating unit K2 maintains the temperature of the fuel gas G discharged from the reforming unit 5 at a second set standby temperature (for example, 400 ° C.).
  • the heating operation is controlled.
  • the desulfurization unit 3 and the reforming unit 5 can be maintained in a high temperature state as close as possible to the temperature of the operation state in which the fuel gas is produced.
  • each of the desulfurization unit 3 and the reforming unit 5 is maintained at a temperature substantially close to the temperature in the normal operation state. Therefore, when the operation for producing the fuel gas G is resumed, the desulfurization unit 3 and the reforming unit 5 are restarted.
  • the time for heating the mass part 5 can be sufficiently shortened, and the operation for producing the fuel gas G can be restarted quickly. That is, when restarting the operation for producing the fuel gas G, the desulfurization unit 3 and the reforming unit 5 are heated to an appropriate temperature while supplying water vapor.
  • the time to raise the temperature of 5 becomes sufficiently short, and the operation for producing the fuel gas G can be resumed quickly.
  • the set standby temperature (the first standby temperature) for the fuel gas that has passed through the desulfurization unit 3 is set as the set standby temperature. 1 set standby temperature) and a case where the set standby temperature (second set standby temperature) for the fuel gas that has passed through the reforming unit 5 is set to different temperatures.
  • the set standby temperature passes through the reforming unit 5
  • the set standby temperature for the fuel gas that has passed through the desulfurization unit 3 is set to the set standby temperature for the fuel gas that has passed through the desulfurization unit 3, and the fuel gas that has passed through the reforming unit 5
  • the set standby temperature for may be set to the same temperature.
  • the case where the source gas compressor 7 is provided in the source gas supply line 2 is exemplified.
  • a raw material gas supply blower can be provided in place of the gas compressor 7, and in this case, the circulation drive unit can be configured by the raw material gas supply blower.
  • the gas storage unit when a gas storage unit that stores the fuel gas G is provided and the pressure of the circulated fuel gas G is lower than an appropriate pressure in the standby operation state, the gas storage unit The fuel gas may be supplied to the circulation gas path R.

Abstract

Provided is a method for operating a fuel-gas-producing apparatus, said method comprising stopping operation in a mode in which operation can be rapidly resumed while suppressing complications in the equipment. When operation is stopped by stopping the supply of a raw material gas, which is a heavy hydrocarbon gas, to a desulfurization unit 3, a temperature-lowering process that circulates a fuel gas G using a circulation drive unit 7 is performed in a state in which the supply of water vapor is continued after the supply of the raw material gas to the desulfurization unit 3 is stopped, and in a mode in which the total amount of the fuel gas G is returned from a modification unit 5 to the desulfurization unit 3 through a circulation gas route R; subsequently, if the temperature of the modification unit 5 falls to less than or equal to a precipitation preventing temperature at which it is possible to prevent the precipitation of carbon arising from the pyrolysis of the fuel gas G, a standby operation process is performed that stops the supply of water vapor, heats the circulated fuel gas G using a heating unit K, and circulates the fuel gas G using the circulation drive unit 7 in a state in which a set standby temperature that is less than or equal to the precipitation prevention temperature and prevents the condensation of water vapor is retained.

Description

燃料ガス製造装置の運転方法Operation method of fuel gas production apparatus
 本発明は、重質炭化水素ガスである原料ガスを脱硫処理する脱硫部と、当該脱硫部から供給される脱硫原料ガスを水蒸気にて改質処理して、メタンを主成分として含有する燃料ガスにする改質部と、当該改質部からの前記燃料ガスの一部を前記脱硫部に戻す燃料ガス戻し路とが設けられた燃料ガス製造装置の運転方法に関する。 The present invention relates to a desulfurization unit that desulfurizes a raw material gas that is a heavy hydrocarbon gas, and a fuel gas containing methane as a main component by reforming the desulfurization source gas supplied from the desulfurization unit with steam. The present invention relates to a method for operating a fuel gas production apparatus provided with a reforming section to be used and a fuel gas return path for returning a part of the fuel gas from the reforming section to the desulfurization section.
 上記燃料ガス製造装置は、プロパン、ブタン等の重質炭化水素ガスを改質処理して、メタンを主成分として含有する燃料ガスを製造するものであり、製造された燃料ガスは、ガスエンジンやガスタービン等の内燃機関の燃料として用いられることになる(例えば、特許文献1参照。)。
 ちなみに、上記燃料ガス製造装置においては、原料ガスに硫黄成分が含まれていても、燃料ガス戻し路を通して戻される燃料ガスに含まれる水素成分を用いて脱硫処理することにより、改質部の改質触媒が硫黄成分により被毒されること等を回避できるようになっている。
The fuel gas production apparatus reforms a heavy hydrocarbon gas such as propane and butane to produce a fuel gas containing methane as a main component. The produced fuel gas is a gas engine, It will be used as fuel for internal combustion engines such as gas turbines (see, for example, Patent Document 1).
Incidentally, in the above fuel gas production apparatus, even if the source gas contains a sulfur component, the reforming part is modified by desulfurization treatment using the hydrogen component contained in the fuel gas returned through the fuel gas return path. The quality catalyst can be prevented from being poisoned by the sulfur component.
 特許文献1には、原料ガスの脱硫部への供給を停止して運転を停止するときの運転方法についての記載は省略されているが、起動するときに、不活性ガスとしての窒素ガスをパージして系内の酸素を除去し、その後、パージした窒素ガスを脱硫部と改質部とを通して循環させながら、電気ヒータにて循環される窒素ガスや改質部を加熱することが記載されているので、原料ガスの脱硫部への供給を停止して運転を停止するときには、脱硫部や改質部を常温状態に冷却しかつ系内を大気開放するものであると考えることができる。 Patent Document 1 omits the description of the operation method when stopping the operation by stopping the supply of the raw material gas to the desulfurization section, but purges nitrogen gas as an inert gas when starting up. It is described that oxygen in the system is removed, and then the purged nitrogen gas is circulated through the desulfurization section and the reforming section, while the nitrogen gas and the reforming section circulated by the electric heater are heated. Therefore, when the supply of the source gas to the desulfurization section is stopped and the operation is stopped, it can be considered that the desulfurization section and the reforming section are cooled to a normal temperature state and the system is opened to the atmosphere.
米国特許第7866161号明細書US Pat. No. 7,866,161
 原料ガスの脱硫部への供給を停止して運転を停止するときに、脱硫部や改質部を常温状態に冷却すると、燃料ガスを製造する運転を再開する際に、脱硫部や改質部を昇温する時間が長くなり、運転の再開を迅速に行えない不都合がある。
 例えば、LPG(液化石油ガス)の輸送船において、空調装置や発電機等の補機を駆動する内燃機関に燃料を供給するシステムとして燃料製造装置を装備する場合には、補機の起動に合わせて迅速に燃料を供給できるようにすることが望まれるが、脱硫部や改質部が常温状態に冷却されていると、迅速に燃料ガスを供給できないものとなる。
When the supply of raw material gas to the desulfurization section is stopped and the operation is stopped, when the desulfurization section and the reforming section are cooled to room temperature, the desulfurization section and the reforming section are restarted when the operation for producing fuel gas is resumed. There is an inconvenience that it takes a long time to raise the temperature and the operation cannot be resumed quickly.
For example, when an LPG (Liquefied Petroleum Gas) transport ship is equipped with a fuel production system as a system for supplying fuel to an internal combustion engine that drives auxiliary equipment such as air conditioners and generators, it is timed to start up the auxiliary equipment. It is desired that the fuel can be supplied quickly, but if the desulfurization section and the reforming section are cooled to room temperature, the fuel gas cannot be supplied quickly.
 燃料ガスを製造する運転の再開を迅速に行えるようにするために、原料ガスの供給量を最小量に絞って運転を継続し続けることが考えられるが、この場合には、原料ガスや水蒸気を無駄に消費し続ける不都合があり、実用し難いものである。 It is conceivable to continue the operation by reducing the supply amount of the raw material gas to the minimum amount so that the operation for producing the fuel gas can be restarted quickly. There is an inconvenience of continuing to use wastefully, making it difficult to use.
 燃料ガスを製造する運転の再開を迅速に行えるようにするための別の運転方法として、系内を窒素でパージしたのち、パージした窒素を脱硫部と改質部とを通して循環させながら、循環される窒素ガス等を電気ヒータにて加熱することにより、原料ガスや水蒸気の消費を抑制しながら、脱硫部や改質部を高温状態に維持することが考えられる。
 しかしながら、この場合、運転を停止するごとに、パージ用の窒素を必要とするものであり、しかも、窒素中には微量の酸素が含まれているから、改質触媒等の酸化を抑制する必要上、酸素除去用の水素ガスを供給しなければならないことになり、窒素や水素ガスを保管する設備を設けなければならないことに起因して、設備が複雑になる不都合がある。
As another operation method for quickly restarting the operation for producing fuel gas, after purging the system with nitrogen, the purged nitrogen is circulated through the desulfurization section and the reforming section. It is conceivable to maintain the desulfurization section and the reforming section at a high temperature while suppressing consumption of the raw material gas and water vapor by heating the nitrogen gas or the like with an electric heater.
However, in this case, every time the operation is stopped, purging nitrogen is required, and since a small amount of oxygen is contained in nitrogen, it is necessary to suppress oxidation of the reforming catalyst and the like. Moreover, hydrogen gas for removing oxygen must be supplied, and there is an inconvenience that the equipment becomes complicated due to the need to provide equipment for storing nitrogen and hydrogen gas.
 ちなみに、例えば、LPGの輸送船等の船舶において、パージ用の窒素や酸素除去用の水素ガスを保管するタンクを装備するようにすると、船舶の設備が煩雑となるものであるから、LPGの輸送船等の船舶においては、この点からも実用し難いものである。 Incidentally, for example, in a ship such as an LPG transport ship, if a tank for storing nitrogen for purging and hydrogen gas for removing oxygen is equipped, the equipment of the ship becomes complicated. From this point of view, it is difficult to practically use a ship such as a ship.
 本発明は、上記実状に鑑みて為されたものであって、その目的は、設備の複雑化を抑制しながら、運転の再開を迅速に行える形態で運転を停止する燃料ガス製造装置の運転方法を提供する点にある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to operate the fuel gas production apparatus that stops the operation in a form that can quickly resume the operation while suppressing the complexity of the equipment. Is to provide
 本発明は、重質炭化水素ガスである原料ガスを脱硫処理する脱硫部と、当該脱硫部から供給される脱硫原料ガスを水蒸気にて改質処理して、メタンを主成分として含有する燃料ガスにする改質部と、当該改質部からの前記燃料ガスの一部を前記脱硫部に戻す燃料ガス戻し路とが設けられた燃料ガス製造装置の運転方法であって、その特徴構成は、
 前記原料ガスの前記脱硫部への供給を停止して運転を停止するときに、前記脱硫部への前記原料ガスの供給を停止した後に、前記水蒸気の供給を継続した状態で、且つ、循環用ガス路を通して前記改質部からの前記燃料ガスの全量を前記脱硫部に戻す形態で、前記燃料ガスを循環駆動部により循環流動させる降温処理を行い、その後、前記改質部の温度が前記燃料ガスの熱分解による炭素の析出を防止できる析出防止温度以下に低下すると、前記水蒸気の供給を停止し、かつ、循環流動させる前記燃料ガスを加熱部にて加熱して、前記析出防止温度以下でかつ水蒸気の結露を防止する設定待機温度に維持する状態で、且つ、前記循環用ガス路を通して前記改質部からの前記燃料ガスの全量を前記脱硫部に戻す形態で、前記燃料ガスを前記循環駆動部により循環流動させる待機運転処理を行う点にある。
The present invention relates to a desulfurization unit that desulfurizes a raw material gas that is a heavy hydrocarbon gas, and a fuel gas containing methane as a main component by reforming the desulfurization source gas supplied from the desulfurization unit with steam. And a method for operating the fuel gas production apparatus provided with a fuel gas return path for returning a part of the fuel gas from the reforming unit to the desulfurization unit.
When stopping the operation by stopping the supply of the raw material gas to the desulfurization part, after the supply of the raw material gas to the desulfurization part is stopped, the supply of the water vapor is continued and for circulation A temperature lowering process is performed in which the fuel gas is circulated and flowed by a circulation drive unit in a form in which the entire amount of the fuel gas from the reforming unit is returned to the desulfurization unit through a gas path, and then the temperature of the reforming unit is changed to the fuel. When the temperature falls below the precipitation prevention temperature at which carbon deposition due to gas pyrolysis can be prevented, the supply of the water vapor is stopped and the fuel gas to be circulated is heated in a heating section, and the temperature is below the precipitation prevention temperature. The fuel gas is circulated in a state in which the fuel gas is maintained at a set standby temperature that prevents dew condensation of water vapor, and the entire amount of the fuel gas from the reforming section is returned to the desulfurization section through the circulation gas passage. The pivot portion lies in performing standby operation process of circulating flow.
 尚、本発明における重質炭化水素ガスは、メタンに比べて分子量の大きなガス状の炭化水素であり、プロパン、ブタン、エタン、イソブタンを含むものである。また、主成分とは、主な有効成分の中で含有量の多い成分であり、特に50%を超えて含まれている必要があるものでもないし、含有量として最も多い成分である必要もない。但し、主成分として含有量が50%を超えて含まれていれば、より好ましく、含有量として50%を超えていない場合には、最も多い成分であることが好ましい。 The heavy hydrocarbon gas in the present invention is a gaseous hydrocarbon having a molecular weight larger than that of methane, and includes propane, butane, ethane, and isobutane. In addition, the main component is a component having a large content among the main active ingredients, and it is not necessary to contain more than 50%, and it is not necessary to be the component having the largest content. . However, if the content exceeds 50% as the main component, it is more preferable. If the content does not exceed 50%, the most preferable component is preferable.
 すなわち、原料ガスの脱硫部への供給を停止して運転を停止するときには、脱硫部への原料ガスの供給を停止した後に、先ず、水蒸気の供給を継続した状態で、且つ、循環用ガス路を通して改質部からの燃料ガスの全量を脱硫部に戻す形態で、燃料ガスを循環駆動部により循環流動させる降温処理が行われることになり、水蒸気が供給され続けられるため、燃料ガスの熱分解による炭素の析出が防止されることになる。 That is, when the operation is stopped by stopping the supply of the raw material gas to the desulfurization section, after the supply of the raw material gas to the desulfurization section is stopped, first, the supply of water vapor is continued, and the circulation gas path In this mode, the temperature of the fuel gas from the reforming unit is returned to the desulfurization unit, and the temperature lowering process is performed to circulate and flow the fuel gas through the circulation drive unit. This prevents the precipitation of carbon.
 その後、改質部の温度が燃料ガスの熱分解による炭素の析出を防止できる析出防止温度以下に低下すると、水蒸気の供給を停止し、かつ、循環流動させる燃料ガスを加熱部にて加熱して、析出防止温度以下でかつ水蒸気の結露を防止する設定待機温度に維持する状態で、且つ、循環用ガス路を通して改質部からの燃料ガスの全量を脱硫部に戻す形態で、燃料ガスを循環駆動部により循環流動させる待機運転処理が行われることになる。 After that, when the temperature of the reforming section drops below the precipitation prevention temperature at which carbon deposition due to thermal decomposition of the fuel gas can be prevented, the supply of water vapor is stopped and the fuel gas to be circulated is heated in the heating section. The fuel gas is circulated in a state where it is maintained at a set standby temperature that is lower than the precipitation prevention temperature and prevents water vapor condensation, and the entire amount of the fuel gas from the reforming section is returned to the desulfurization section through the circulation gas passage. A standby operation process for circulating and flowing by the drive unit is performed.
 この待機運転処理においては、燃料ガスの温度が水蒸気の結露を防止する設定待機温度に維持されることになるため、循環流動される燃料ガス中の水蒸気が結露して、改質触媒等を劣化させることを回避しながらも、脱硫部や改質部を、燃料ガスを製造する運転状態の温度に近い高温状態に維持できる。 In this standby operation process, the temperature of the fuel gas is maintained at a set standby temperature that prevents the dew condensation of water vapor, so that the water vapor in the circulating and flowing fuel gas is dewed and deteriorates the reforming catalyst and the like. While avoiding this, the desulfurization part and the reforming part can be maintained at a high temperature close to the temperature of the operating state in which the fuel gas is produced.
 したがって、待機運転処理を行う状態から燃料ガスを製造する運転を再開するときには、燃料ガスを製造する運転状態の温度に近い高温状態の脱硫部や改質部を、燃料ガスを製造する運転状態の温度に昇温させればよいので、迅速に運転を再開することができるものとなる。 Therefore, when resuming the operation for producing the fuel gas from the state where the standby operation processing is performed, the desulfurization section and the reforming section in the high temperature state close to the temperature of the operation state for producing the fuel gas are replaced with those in the operation state for producing the fuel gas. Since it is sufficient to raise the temperature, the operation can be resumed quickly.
 しかも、降温処理や待機運転処理においては、燃料ガスを循環流動させるものであるから、燃料ガス以外の特別なガスを必要としないため、設備の簡素化を図ることができる。 In addition, since the fuel gas is circulated and flown in the temperature lowering process and the standby operation process, no special gas other than the fuel gas is required, so that the equipment can be simplified.
 要するに、本発明の燃料ガス製造装置の運転方法の特徴構成によれば、設備の複雑化を抑制しながら、運転の再開を迅速に行える形態で運転を停止することができる。 In short, according to the characteristic configuration of the operation method of the fuel gas production apparatus of the present invention, the operation can be stopped in a form in which the operation can be restarted quickly while suppressing the complexity of the equipment.
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記原料ガスの前記脱硫部への供給を停止する際に、前記改質部からの前記燃料ガスの外部への排出を同時に停止して、前記循環用ガス路の内部圧を高圧状態にする形態で、前記降温処理を行う点にある。 A further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that when the supply of the raw material gas to the desulfurization unit is stopped, the discharge of the fuel gas from the reforming unit is stopped simultaneously. And it is in the point which performs the said temperature fall process in the form which makes the internal pressure of the said gas path for a circulation high-pressure state.
 すなわち、原料ガスの脱硫部への供給を停止して運転を停止する際に、改質部からの燃料ガスの外部への排出を同時に停止して、循環用ガス路の内部圧を高圧状態にする形態で、降温処理を行うものであるから、脱硫部から改質部を経由する処理経路の内部圧が、運転を行うに適する圧力に近い圧力に維持されることになる。 That is, when stopping the operation by stopping the supply of raw material gas to the desulfurization section, the discharge of the fuel gas from the reforming section is stopped at the same time, and the internal pressure of the circulation gas passage is brought to a high pressure state. In this mode, the temperature lowering process is performed, so that the internal pressure of the processing path from the desulfurization unit to the reforming unit is maintained at a pressure close to a pressure suitable for operation.
 従って、待機運転処理を行う状態から燃料ガスを製造する運転を再開するときに、脱硫部から改質部を経由する処理経路の内部圧を、運転を行うに適する圧力に迅速に昇圧しながら、運転の再開を一層良好に行うことができる。 Therefore, when restarting the operation for producing fuel gas from the state of performing the standby operation processing, while quickly increasing the internal pressure of the processing path from the desulfurization unit through the reforming unit to a pressure suitable for operation, The operation can be resumed more satisfactorily.
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、運転の再開を一層良好に行うことができる。 In short, according to the further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention, the operation can be restarted more satisfactorily.
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記原料ガスの前記脱硫部への供給を停止した後、前記循環用ガス路の内部圧が設定低圧状態に降圧してから前記燃料ガスの外部への排出を停止して、前記循環用ガス路の内部圧を低圧状態にする形態で、前記降温処理を行う点にある。 A further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the supply of the raw material gas to the desulfurization unit is stopped, and then the internal pressure of the circulation gas path is lowered to a set low pressure state. The temperature lowering process is performed in such a manner that the discharge of the fuel gas to the outside is stopped and the internal pressure of the circulation gas path is set to a low pressure state.
 すなわち、原料ガスの脱硫部への供給を停止して運転を停止する際に、原料ガスの脱硫部への供給を停止した後、循環用ガス路の内部圧が設定低圧状態に降圧してから燃料ガスの外部への排出を停止して、循環用ガス路の内部圧を低圧状態にする形態で、降温処理が行われる。 That is, when stopping the operation by stopping the supply of the source gas to the desulfurization section, after the supply of the source gas to the desulfurization section is stopped, the internal pressure of the circulation gas path is lowered to the set low pressure state. The temperature lowering process is performed in such a manner that the discharge of the fuel gas to the outside is stopped and the internal pressure of the circulation gas path is set to a low pressure state.
 このため、循環用ガス路の内部圧が低圧状態になることにより、循環用ガス路の内部圧が高圧状態である場合よりも、燃料ガスの熱分解により生じる炭素の析出を防止できる析出防止温度を極力高い温度に設定することが可能となり、その結果、燃料ガスを加熱部にて加熱しながら、脱硫部や改質部を、燃料ガスを製造する運転状態の温度に極力近い高温状態に維持できる。 For this reason, when the internal pressure of the circulation gas passage is in a low pressure state, the precipitation prevention temperature that can prevent carbon deposition caused by the thermal decomposition of the fuel gas than when the internal pressure of the circulation gas passage is in a high pressure state. As a result, the desulfurization section and reforming section are maintained at a high temperature as close as possible to the temperature of the operating state for producing the fuel gas while heating the fuel gas in the heating section. it can.
 従って、待機運転処理を行う状態から燃料ガスを製造する運転を再開するときに、燃料ガスを製造する運転状態の温度に極力近い高温状態になっている脱硫部や改質部の昇温分が小さくなるので、一層迅速に運転を再開することができるものとなる。 Therefore, when the operation for producing fuel gas is resumed from the state in which the standby operation process is performed, the temperature rise in the desulfurization section and reforming section that is in a high temperature state as close as possible to the temperature in the operation state for producing fuel gas is Therefore, the operation can be resumed more rapidly.
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、運転の再開を一層迅速に行うことができる。 In short, according to the further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention, the operation can be restarted more quickly.
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記加熱部として、前記改質部から前記脱硫部に戻される前記燃料ガスを加熱する第1加熱部と、前記脱硫部から前記改質部に供給される前記燃料ガスを加熱する第2加熱部とが設けられている点にある。 A further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the heating unit includes a first heating unit that heats the fuel gas returned from the reforming unit to the desulfurization unit, and the desulfurization unit. And a second heating unit that heats the fuel gas supplied to the reforming unit.
 すなわち、改質部から脱硫部に戻される燃料ガスを、第1加熱部にて加熱し、脱硫部から改質部に供給される燃料ガスを、第2加熱部にて加熱できるため、水蒸気の結露を抑制しながら、脱硫部や改質部を高温状態に適切に維持できるものとなる。 That is, the fuel gas returned from the reforming unit to the desulfurization unit can be heated by the first heating unit, and the fuel gas supplied from the desulfurization unit to the reforming unit can be heated by the second heating unit. The desulfurization part and the reforming part can be appropriately maintained in a high temperature state while suppressing condensation.
 つまり、改質部を通過して脱硫部に流入する燃料ガスや、脱硫部を通過して改質部に流入する燃料ガスを、第1加熱部や第2加熱部にて加熱することができるから、循環流動する燃料ガスの全体を高温状態に適切に加熱できるため、水蒸気の結露を抑制しながら、脱硫部や改質部を高温状態に適切に維持できるものとなる。 That is, the fuel gas that flows through the reforming unit and flows into the desulfurization unit, and the fuel gas that passes through the desulfurization unit and flows into the reforming unit can be heated by the first heating unit and the second heating unit. Therefore, since the entire fuel gas that circulates and flows can be appropriately heated to a high temperature state, the desulfurization part and the reforming part can be appropriately maintained at a high temperature state while suppressing the dew condensation of water vapor.
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、水蒸気の結露を抑制しながら、脱硫部や改質部を高温状態に適切に維持できる。 In short, according to the further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention, the desulfurization section and the reforming section can be appropriately maintained at a high temperature while suppressing the condensation of water vapor.
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記脱硫部から排出される前記燃料ガスの温度を検出する第1温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第1加熱部の加熱作動を制御し、且つ、前記改質部から排出される前記燃料ガスの温度を検出する第2温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第2加熱部の加熱作動を制御する点にある。 A further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is to maintain the set standby temperature based on a detected temperature of a first temperature sensor that detects the temperature of the fuel gas discharged from the desulfurization unit. As described above, the set standby temperature is maintained based on the detected temperature of the second temperature sensor that controls the heating operation of the first heating unit and detects the temperature of the fuel gas discharged from the reforming unit. Thus, the heating operation of the second heating unit is controlled.
 すなわち、脱硫部を通過した燃料ガスの温度を第1温度センサに検出して、設定待機温度に維持するように、第1加熱部の加熱作動を制御することによって、脱硫部の温度を設定待機温度に適切に維持できることになり、また、改質部を通過した燃料ガスの温度を第2温度センサに検出して、設定待機温度に維持するように、第2加熱部の加熱作動を制御することによって、改質部の温度を設定待機温度に適切に維持できることになる。 That is, the temperature of the desulfurization unit is set on standby by controlling the heating operation of the first heating unit so that the temperature of the fuel gas that has passed through the desulfurization unit is detected by the first temperature sensor and maintained at the set standby temperature. The temperature of the fuel gas that has passed through the reforming section can be detected by the second temperature sensor, and the heating operation of the second heating section is controlled so as to maintain the set standby temperature. As a result, the temperature of the reforming section can be appropriately maintained at the set standby temperature.
 つまり、脱硫部を通過した燃料ガスや改質部を通過した燃料ガスの温度を設定待機温度にすることにより、脱硫部や改質部の温度を、適切に設定待機温度に維持できるから、脱硫部や改質部の温度を、燃料ガスを製造する運転状態の温度に近い状態に適切に維持できることになる。 That is, by setting the temperature of the fuel gas that has passed through the desulfurization section and the fuel gas that has passed through the reforming section to the set standby temperature, the temperature of the desulfurization section and the reforming section can be appropriately maintained at the set standby temperature. Thus, the temperature of the part and the reforming part can be appropriately maintained in a state close to the temperature of the operation state in which the fuel gas is produced.
 ちなみに、運転状態の脱硫部の温度と運転状態の改質部の温度とは、一般には異なるものであるから、設定待機温度として、脱硫部を通過した燃料ガスについての設定待機温度と、改質部を通過した燃料ガスについての設定待機温度とを、異なる温度に設定してもよい。 Incidentally, since the temperature of the desulfurization section in the operating state is generally different from the temperature of the reforming section in the operating state, the set standby temperature for the fuel gas that has passed through the desulfurization section The set standby temperature for the fuel gas that has passed through the section may be set to a different temperature.
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、脱硫部や改質部の温度を、燃料ガスを製造する運転状態の温度に近い状態に適切に維持できる。 In short, according to the further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention, the temperature of the desulfurization section and the reforming section can be appropriately maintained in a state close to the temperature of the operation state in which the fuel gas is produced.
 本発明の燃料ガス製造装置の運転方法の更なる特徴構成は、前記改質部からの前記燃料ガスが船舶に搭載したガス消費部に供給される点にある。 A further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention is that the fuel gas from the reforming unit is supplied to a gas consuming unit mounted on a ship.
 すなわち、燃料ガス製造装置を船舶に搭載して、改質部からの燃料ガスを船舶に搭載したガス消費部に供給する。船舶としては、原料ガスを運搬する運搬船が好適である。
 そして、燃料ガスの製造を停止した状態から燃料ガスの製造を開始する運転状態への移行を迅速に行えるものであるから、ガス消費部への燃料ガスの供給を迅速に再開できる。
That is, the fuel gas production apparatus is mounted on a ship, and the fuel gas from the reforming section is supplied to the gas consumption section mounted on the ship. As the ship, a transport ship that transports the source gas is suitable.
And since it can change to the operation state which starts manufacture of fuel gas from the state which stopped manufacture of fuel gas quickly, supply of fuel gas to a gas consumption part can be restarted rapidly.
 したがって、ガス消費部が空調装置や発電機等の補機を駆動するエンジン等の内燃機関であっても、燃料ガスの供給を迅速に再開できるから、補機の駆動を迅速に再開することができる。 Therefore, even if the gas consumption unit is an internal combustion engine such as an engine that drives an auxiliary device such as an air conditioner or a generator, the supply of fuel gas can be restarted quickly, so that the driving of the auxiliary device can be restarted quickly. it can.
 要するに、本発明の燃料ガス製造装置の運転方法の更なる特徴構成によれば、ガス消費部への燃料ガスの供給を迅速に再開できる。 In short, according to the further characteristic configuration of the operation method of the fuel gas production apparatus of the present invention, the supply of the fuel gas to the gas consumption unit can be resumed quickly.
は、燃料ガス製造装置のフロー図である。These are the flowcharts of a fuel gas manufacturing apparatus. は、通常運転状態のフロー図である。These are the flowcharts of a normal driving | running state. は、待機移行状態(待機運転移行状態)のフロー図である。These are the flowcharts of a standby transfer state (standby operation transfer state). は、待機運転状態のフロー図である。These are the flowcharts of a standby driving state. は、別実施形態の圧力調整状態のフロー図である。These are the flowcharts of the pressure adjustment state of another embodiment. は、別実施形態の待機移行状態のフロー図である。These are the flowcharts of the standby transfer state of another embodiment.
(実施形態)
 以下、本発明の実施形態を図面に基づいて説明する。
 〔燃料ガス製造装置の全体構成〕
 図1に示すように、燃料ガス製造装置には、重質炭化水素ガスを原料ガスFとして供給する原料ガス供給部1、原料ガス供給部1から原料ガス供給ライン2を通して供給される原料ガスFを脱硫処理する脱硫部3と、当該脱硫部3から脱硫ガス供給ライン4を通して供給される脱硫原料ガスを水蒸気Jにて改質処理して、メタンを主成分として含有する燃料ガスGにする改質部5と、当該改質部5にて改質された燃料ガスGをガス消費部Nに供給する製品ガス供給ライン6が備えられている。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Overall configuration of fuel gas production system]
As shown in FIG. 1, the fuel gas production apparatus includes a raw material gas supply unit 1 that supplies heavy hydrocarbon gas as a raw material gas F, and a raw material gas F that is supplied from the raw material gas supply unit 1 through a raw material gas supply line 2. The desulfurization part 3 for desulfurizing the gas, and the desulfurization raw material gas supplied from the desulfurization part 3 through the desulfurization gas supply line 4 is reformed with steam J to obtain a fuel gas G containing methane as a main component. A mass part 5 and a product gas supply line 6 for supplying the fuel gas G reformed in the reforming part 5 to the gas consumption part N are provided.
 原料ガス供給部1は、例えば、LPG(液化石油ガス)の運搬船の場合には、LPGを昇温して気化させたガスを原料ガスFとして供給することになり、原料ガス供給ライン2には、原料ガスFを適正圧力(例えば、0.90MPaG程度)に昇圧する原料ガス圧縮機7が設けられている。
 ガス消費部Nとしては、LPG(液化石油ガス)の運搬船の場合には、例えば、空調装置や発電機等の補機を駆動するガスエンジン等の内燃機関が相当することになるが、推進用のガスエンジン等の推進用の内燃機関をガス消費部Nとして燃料ガスGを供給するようにしてもよい。
For example, in the case of an LPG (liquefied petroleum gas) carrier, the source gas supply unit 1 supplies a gas obtained by raising the temperature of the LPG as the source gas F, and the source gas supply line 2 includes A raw material gas compressor 7 for increasing the pressure of the raw material gas F to an appropriate pressure (for example, about 0.90 MPaG) is provided.
In the case of an LPG (liquefied petroleum gas) carrier, the gas consumption unit N corresponds to, for example, an internal combustion engine such as a gas engine that drives an auxiliary device such as an air conditioner or a generator. An internal combustion engine for propulsion such as a gas engine may be used as the gas consuming part N to supply the fuel gas G.
 脱硫ガス供給ライン4に、改質処理用の水蒸気Jを供給する水蒸気供給部8が接続されている。また、水蒸気供給部8からの水蒸気Jの供給を断続する水蒸気弁8Aが設けられている。
 この水蒸気供給部8は、LPG(液化石油ガス)の運搬船の場合には、例えば、種々の機器類の排熱を回収する排熱回収ボイラにて生成された水蒸気Jを供給する構成を採用することができる。
A steam supply unit 8 that supplies steam J for reforming treatment is connected to the desulfurization gas supply line 4. In addition, a steam valve 8 </ b> A for interrupting the supply of the steam J from the steam supply unit 8 is provided.
In the case of an LPG (Liquefied Petroleum Gas) carrier, the steam supply unit 8 employs a configuration that supplies steam J generated by an exhaust heat recovery boiler that recovers exhaust heat of various devices, for example. be able to.
 また、改質部5からの燃料ガスGの一部を脱硫部3に戻す燃料ガス戻し路9が、製品ガス供給ライン6と原料ガス供給ライン2における原料ガス圧縮機7よりも上流側箇所とを接続する状態で設けられ、燃料ガスGに含まれる水素成分が、脱硫処理用の水素ガスとして供給されるように構成されている。
 尚、燃料ガス戻し路9には、燃料ガスGの通流量(戻し量)を調整する調整バルブ10が設けられている。
Further, a fuel gas return path 9 for returning a part of the fuel gas G from the reforming unit 5 to the desulfurization unit 3 is located upstream of the source gas compressor 7 in the product gas supply line 6 and the source gas supply line 2. And the hydrogen component contained in the fuel gas G is supplied as hydrogen gas for the desulfurization process.
The fuel gas return path 9 is provided with an adjustment valve 10 that adjusts the flow rate (return amount) of the fuel gas G.
 また、後述する待機運転移行状態や待機運転状態において、改質部5からの燃料ガスGの全量を脱硫部3に戻す循環用ガス路Rを構成する循環用主ガス路11が、製品ガス供給ライン6と原料ガス供給ライン2における原料ガス圧縮機7よりも上流側箇所とを接続する状態で設けられ、循環用主ガス路11には、燃料ガスGの通流量(循環量)を調整しかつ循環用主ガス路11を開閉する循環制御バルブ12が設けられている。 Further, in a standby operation transition state and a standby operation state, which will be described later, a circulation main gas passage 11 that constitutes a circulation gas passage R that returns the entire amount of the fuel gas G from the reforming section 5 to the desulfurization section 3 is supplied to the product gas. Line 6 is connected to the upstream side of source gas compressor 7 in source gas supply line 2, and the flow rate (circulation amount) of fuel gas G is adjusted in circulation main gas passage 11. A circulation control valve 12 for opening and closing the circulation main gas passage 11 is provided.
 ちなみに、本実施形態においては、燃料ガス戻し路9が、循環用主ガス路11の一部の流路部分を兼用する状態で形成されている。
 そして、本実施形態においては、改質部5からの燃料ガスGの全量を脱硫部3に戻す循環用ガス路Rが、循環用主ガス路11と燃料ガス戻し路9とから構成されることになる。
Incidentally, in the present embodiment, the fuel gas return path 9 is formed in a state in which a part of the circulation main gas path 11 is also used.
In the present embodiment, the circulation gas path R for returning the entire amount of the fuel gas G from the reforming section 5 to the desulfurization section 3 is composed of the circulation main gas path 11 and the fuel gas return path 9. become.
 尚、燃料ガス戻し路9に加えて循環用主ガス路11を設けるのは、調整バルブ10を通して流動できるガス量が、改質部5からの燃料ガスGの一部を流動させることができる量であり、改質部5からの燃料ガスGの全量を、燃料ガス戻し路9を通して流動させることができないからである。 The main gas passage 11 for circulation is provided in addition to the fuel gas return passage 9 because the amount of gas that can flow through the adjustment valve 10 can flow part of the fuel gas G from the reforming unit 5. This is because the entire amount of the fuel gas G from the reforming unit 5 cannot flow through the fuel gas return path 9.
 また、原料ガス供給ライン2における循環用主ガス路11の接続箇所よりも上流側箇所には、原料ガスの供給を断続する原料ガス弁13が設けられ、後述する待機運転移行状態や待機運転状態において、原料ガスの供給を停止できるように構成されている。
 製品ガス供給ライン6における燃料ガス戻し路9や循環用主ガス路11の接続箇所よりも下流側には、当該製品ガス供給ライン6を開閉する製品ガス弁14が設けられ、後述する待機運転移行状態や待機運転状態において、製品ガス供給ライン6を閉じて、燃料ガスGの供給を停止できるように構成されている。
Further, a source gas valve 13 for intermittently supplying the source gas is provided at a location upstream of the connection location of the circulation main gas passage 11 in the source gas supply line 2, and a standby operation transition state and a standby operation state described later are provided. In FIG. 3, the supply of the raw material gas can be stopped.
A product gas valve 14 that opens and closes the product gas supply line 6 is provided on the downstream side of the connection point of the fuel gas return path 9 and the circulation main gas path 11 in the product gas supply line 6. In the state and the standby operation state, the product gas supply line 6 is closed to stop the supply of the fuel gas G.
 また、後述する待機運転移行状態や待機運転状態において、循環用ガス路Rを通して循環流動させる燃料ガスGを加熱する加熱部Kとして、改質部5から脱硫部3に戻される燃料ガスGを加熱する第1加熱部K1と、脱硫部3から改質部5に供給される燃料ガスGを加熱する第2加熱部K2とが設けられている。
 第1加熱部K1及び第2加熱部K2が、本実施形態においては、電気ヒータを用いて構成されている。
Further, in a standby operation transition state and a standby operation state, which will be described later, the fuel gas G returned from the reforming unit 5 to the desulfurization unit 3 is heated as a heating unit K that heats the fuel gas G circulated through the circulation gas path R. There are provided a first heating unit K1 that performs heating and a second heating unit K2 that heats the fuel gas G supplied from the desulfurization unit 3 to the reforming unit 5.
In the present embodiment, the first heating unit K1 and the second heating unit K2 are configured using an electric heater.
 〔通常運転状態について〕
 通常運転状態においては、図2に示すように、原料ガス弁13及び製品ガス弁14を開き、水蒸気弁8Aを開いて水蒸気を供給し、かつ、調整バルブ10を開き、循環制御バルブ12を閉じるようにして、原料ガス供給部1からの原料ガスを脱硫処理し、脱硫処理された脱硫原料ガスを水蒸気Jにて改質処理して燃料ガスGを製造し、製造された燃料ガスGを、製品ガス供給ライン6を通してガス消費部Nに供給することになる。
[Regarding normal operating conditions]
In the normal operation state, as shown in FIG. 2, the raw material gas valve 13 and the product gas valve 14 are opened, the water vapor valve 8A is opened to supply water vapor, the adjustment valve 10 is opened, and the circulation control valve 12 is closed. Thus, the raw material gas from the raw material gas supply unit 1 is desulfurized, the desulfurized raw material gas is reformed with steam J to produce the fuel gas G, and the produced fuel gas G is The gas is supplied to the gas consumption unit N through the product gas supply line 6.
 この通常運転状態においては、脱硫部3の入り口側の温度が300℃程度となり、改質部5の入口側の温度が350℃程度となり、改質部5における改質反応が発熱反応であるため、改質部5の出口側の温度が450℃程度となるように構成されている。 In this normal operation state, the temperature on the inlet side of the desulfurization unit 3 is about 300 ° C., the temperature on the inlet side of the reforming unit 5 is about 350 ° C., and the reforming reaction in the reforming unit 5 is an exothermic reaction. The temperature on the outlet side of the reforming unit 5 is configured to be about 450 ° C.
 ちなみに、改質部5に装備する改質触媒としては、例えば、ニッケル系あるいは貴金属系の低温水蒸気改質触媒が利用でき、具体的には、微細孔を有する非導電性多孔質体の表面に、パラジウム、銀、ニッケル、コバルトおよび銅の群から選ばれた1種の金属の膜を被着したものが好適に用いられる。 Incidentally, as the reforming catalyst equipped in the reforming section 5, for example, a nickel-based or noble metal-based low-temperature steam reforming catalyst can be used, specifically, on the surface of a non-conductive porous body having fine pores. One having a metal film selected from the group consisting of palladium, silver, nickel, cobalt and copper is preferably used.
 また、脱硫部3に装備する脱硫触媒としては、例えば、ニッケル-モリブデン系、コバルトモリブデン系触媒と、吸着剤としての酸化亜鉛との組み合わせとして構成されることになる。つまり、原料ガス中の非活性硫黄化合物を触媒による水添反応により、硫化水素に還元し、還元された硫化水素を酸化亜鉛に吸着させることにより、原料ガス中の硫黄分を除去することになる。 Also, the desulfurization catalyst equipped in the desulfurization section 3 is configured as a combination of, for example, a nickel-molybdenum-based or cobalt-molybdenum-based catalyst and zinc oxide as an adsorbent. That is, the sulfur content in the raw material gas is removed by reducing the inactive sulfur compound in the raw material gas to hydrogen sulfide by a hydrogenation reaction using a catalyst and adsorbing the reduced hydrogen sulfide to zinc oxide. .
 また、水蒸気供給部8からの水蒸気Jの供給量は、S/C(水蒸気/炭素比)値が、例えば、0.4~0.8となるように調整されることになる。ちなみに、本実施形態においては詳細な説明は省略するが、原料ガスFの供給量を流量センサにて検出して、原料ガスFの供給量に応じた量の水蒸気Jを水蒸気供給部8から供給することになる。 Further, the supply amount of the water vapor J from the water vapor supply unit 8 is adjusted so that the S / C (water vapor / carbon ratio) value is, for example, 0.4 to 0.8. Incidentally, although detailed explanation is omitted in the present embodiment, the supply amount of the raw material gas F is detected by the flow rate sensor, and an amount of water vapor J corresponding to the supply amount of the raw material gas F is supplied from the water vapor supply unit 8. Will do.
 (運転停止の運転方法について)
 原料ガスの脱硫部3への供給を停止して運転を停止するとき、つまり、上述の通常運転状態から原料ガス弁13及び製品ガス弁14を閉じて、運転を停止するときには、原料ガスFの脱硫部3への供給を停止した後に、待機運転移行状態としての降温処理を行った後、待機運転状態としての待機運転処理を行うことになる。
(About the operation method of shutdown)
When stopping the operation by stopping the supply of the raw material gas to the desulfurization section 3, that is, when closing the raw material gas valve 13 and the product gas valve 14 from the normal operation state and stopping the operation, the raw material gas F After the supply to the desulfurization unit 3 is stopped, the temperature lowering process as the standby operation transition state is performed, and then the standby operation process as the standby operation state is performed.
 待機運転移行状態としての降温処理は、図3に示すように、水蒸気供給部8からの水蒸気Jの供給を継続した状態で、且つ、調整バルブ10及び循環制御バルブ12を開いて循環用ガス路Rを通して改質部5からの燃料ガスGの全量を脱硫部3に戻す形態で、燃料ガスGを循環駆動部として機能する原料ガス圧縮機7により循環流動させる処理を行うことになる。 As shown in FIG. 3, the temperature lowering process as the standby operation transition state is a state in which the supply of water vapor J from the water vapor supply unit 8 is continued, and the adjustment valve 10 and the circulation control valve 12 are opened to circulate the gas path. In the form in which the entire amount of the fuel gas G from the reforming unit 5 is returned to the desulfurization unit 3 through R, a process of circulating and flowing the fuel gas G by the raw material gas compressor 7 functioning as a circulation drive unit is performed.
 本実施形態においては、原料ガスの脱硫部3への供給を停止して運転を停止する際に、原料ガス弁13及び製品ガス弁14を同時に閉じて、原料ガスの脱硫部3への供給と改質部5からの燃料ガスの外部への排出を同時に停止することになるから、循環用ガス路Rの内部圧を高圧状態にする形態で、降温処理が行われることになる。 In the present embodiment, when the supply of the raw material gas to the desulfurization unit 3 is stopped and the operation is stopped, the raw material gas valve 13 and the product gas valve 14 are simultaneously closed to supply the raw material gas to the desulfurization unit 3. Since the discharge of the fuel gas from the reforming unit 5 to the outside is simultaneously stopped, the temperature lowering process is performed in a form in which the internal pressure of the circulation gas path R is set to a high pressure state.
 ちなみに、本実施形態においては、降温処理や待機運転処理を行う際に、燃料ガス戻し路9を開き状態に維持して、改質部5からの燃料ガスGの全量を、循環用主ガス路11と燃料ガス戻し路9とを通して循環流動させる場合を例示するが、降温処理や待機運転処理を行う際には、燃料ガス戻し路9を閉じて、循環用主ガス路11を通して、改質部5からの燃料ガスGの全量を流動させるようにしてもよい。
 つまり、循環用ガス路Rとして、循環用主ガス路11のみを機能させる形態で実施してもよい。
Incidentally, in the present embodiment, when the temperature lowering process or the standby operation process is performed, the fuel gas return path 9 is maintained in an open state, and the entire amount of the fuel gas G from the reforming unit 5 is supplied to the circulation main gas path. 11 and the fuel gas return path 9 are exemplarily illustrated. However, when the temperature lowering process or the standby operation process is performed, the fuel gas return path 9 is closed and the reforming section is passed through the circulation main gas path 11. The total amount of the fuel gas G from 5 may be made to flow.
That is, as the circulation gas path R, only the circulation main gas path 11 may function.
 待機運転移行状態としての降温処理を開始した後、改質部5の温度が燃料ガスGの熱分解による炭素の析出を防止できる析出防止温度以下(例えば、350℃以下)に低下すると、図4に示すように、待機運転状態としての待機運転処理を行うことになる。
 待機運転処理は、水蒸気弁8Aを閉じて水蒸気の供給を停止し、かつ、循環流動させる燃料ガスGを加熱部Kにて加熱して、析出防止温度以下でかつ水蒸気の結露を防止する設定待機温度に維持する状態で、且つ、循環用ガス路Rを通して改質部5からの燃料ガスの全量を脱硫部3に戻す形態で、燃料ガスGを循環駆動部として機能する原料ガス圧縮機7により循環流動させる処理を行うことになる。
After the start of the temperature lowering process as the standby operation transition state, when the temperature of the reforming section 5 falls below a precipitation prevention temperature (for example, 350 ° C. or less) at which carbon deposition due to thermal decomposition of the fuel gas G can be prevented, FIG. As shown, the standby operation processing as the standby operation state is performed.
In the standby operation process, the water vapor valve 8A is closed to stop the supply of water vapor, and the fuel gas G to be circulated and heated is heated by the heating unit K to set the temperature to be equal to or lower than the precipitation prevention temperature and prevent water vapor condensation. The raw material gas compressor 7 functions as a circulation drive unit in a state where the temperature is maintained and the entire amount of the fuel gas from the reforming unit 5 is returned to the desulfurization unit 3 through the circulation gas path R. A process of circulating flow is performed.
 本実施形態においては、加熱部Kとして、上述の如く、改質部5から脱硫部3に戻される燃料ガスGを加熱する第1加熱部K1と、脱硫部3から改質部5に供給される燃料ガスGを加熱する第2加熱部K2とが設けられているから、脱硫部3から排出される燃料ガスGを、設定待機温度である第1設定待機温度としての、例えば、300℃に加熱し、改質部5から排出される燃料ガスGを、設定待機温度である第2設定待機温度としての、例えば、350℃に加熱するように構成されている。 In the present embodiment, the heating unit K is supplied to the reforming unit 5 from the first heating unit K1 that heats the fuel gas G returned from the reforming unit 5 to the desulfurization unit 3 as described above. And the second heating unit K2 for heating the fuel gas G to be heated, the fuel gas G discharged from the desulfurization unit 3 is set to, for example, 300 ° C. as the first set standby temperature that is the set standby temperature. The fuel gas G that is heated and discharged from the reforming unit 5 is configured to be heated to, for example, 350 ° C. as a second set standby temperature that is a set standby temperature.
 すなわち、脱硫部3から排出される燃料ガスGの温度を検出する第1温度センサS1が設けられ、その第1温度センサS1の検出温度に基づいて、脱硫部3から排出される燃料ガスGの温度を第1設定待機温度(例えば、300℃)に維持するように、第1加熱部K1の加熱作動を制御するように構成されている。
 また、改質部5から排出される燃料ガスGの温度を検出する第2温度センサS2が設けられ、その第2温度センサS2の検出温度に基づいて、改質部5から排出される燃料ガスGの温度を第2設定待機温度(例えば、350℃)に維持するように、第2加熱部K2の加熱作動を制御するように構成されている。
That is, a first temperature sensor S1 for detecting the temperature of the fuel gas G discharged from the desulfurization unit 3 is provided, and the fuel gas G discharged from the desulfurization unit 3 is based on the detected temperature of the first temperature sensor S1. The heating operation of the first heating unit K1 is controlled so as to maintain the temperature at a first set standby temperature (for example, 300 ° C.).
Further, a second temperature sensor S2 for detecting the temperature of the fuel gas G discharged from the reforming unit 5 is provided, and the fuel gas discharged from the reforming unit 5 based on the temperature detected by the second temperature sensor S2. The heating operation of the second heating unit K2 is controlled so that the temperature of G is maintained at a second set standby temperature (for example, 350 ° C.).
 ちなみに、第2温度センサS2の検出温度は、改質部5の温度に相当するものであるから、本実施形態においては、第2温度センサS2の検出温度を改質部5の温度として、上述の析出防止温度であることを判定するが、改質部5の温度を検出する温度センサを改質部5に装備して、析出防止温度であることを判定するようにしてもよい。 Incidentally, since the temperature detected by the second temperature sensor S2 corresponds to the temperature of the reforming unit 5, in the present embodiment, the temperature detected by the second temperature sensor S2 is used as the temperature of the reforming unit 5 as described above. However, a temperature sensor that detects the temperature of the reforming unit 5 may be provided in the reforming unit 5 to determine that the temperature is the deposition preventing temperature.
 尚、第1加熱部K1や第2加熱部K2の加熱作動を制御する制御部が設けられて、第1温度センサS1や第2温度センサS2の検出情報に基づいて、第1加熱部K1や第2加熱部K2の加熱作動が自動的に制御されることになるが、本実施形態では詳細な説明を省略する。 In addition, the control part which controls the heating action of the 1st heating part K1 or the 2nd heating part K2 is provided, and based on the detection information of the 1st temperature sensor S1 or the 2nd temperature sensor S2, the 1st heating part K1 or Although the heating operation of the second heating unit K2 is automatically controlled, detailed description is omitted in this embodiment.
 このように、改質部5から排出される燃料ガスGや脱硫部3から排出される燃料ガスGを設定待機温度に維持することにより、脱硫部3及び改質部5の夫々についての温度を通常運転状態の温度に近い温度に設定することになる。 In this way, by maintaining the fuel gas G discharged from the reforming unit 5 and the fuel gas G discharged from the desulfurization unit 3 at the set standby temperature, the temperature of each of the desulfurization unit 3 and the reforming unit 5 is set. The temperature will be set close to the normal operating temperature.
 従って、脱硫部3及び改質部5の夫々が通常運転状態の温度に近い温度に維持されることになるから、燃料ガスGを製造する運転を再開する際には、脱硫部3及び改質部5を昇温する手間が少なくなり、燃料ガスGを製造する運転を迅速に再開することができる。
 つまり、燃料ガスGを製造する運転を再開する際には、水蒸気を供給しながら、脱硫部3及び改質部5を適正な温度に昇温することになるが、脱硫部3及び改質部5を昇温する時間が少なくなり、燃料ガスGを製造する運転を迅速に再開することができる。
Accordingly, since each of the desulfurization unit 3 and the reforming unit 5 is maintained at a temperature close to the temperature in the normal operation state, when the operation for producing the fuel gas G is resumed, the desulfurization unit 3 and the reforming unit 5 The labor for heating the part 5 is reduced, and the operation for producing the fuel gas G can be restarted quickly.
That is, when restarting the operation for producing the fuel gas G, the desulfurization unit 3 and the reforming unit 5 are heated to an appropriate temperature while supplying water vapor. The time for raising the temperature of the fuel cell 5 is reduced, and the operation for producing the fuel gas G can be resumed quickly.
 (別実施形態)
 次に、別実施形態を説明するが、この別実施形態は、運転を停止する際の別形態を示すものであって、その他の構成は上記実施形態と同様であるので、以下の説明では、上記実施形態と異なる部分についてのみ説明して、上記実施形態と同様な構成については、詳細な説明を省略する。
(Another embodiment)
Next, although another embodiment is described, this another embodiment shows another form when stopping the operation, and other configurations are the same as the above embodiment, so in the following description, Only a different part from the said embodiment is demonstrated, and detailed description is abbreviate | omitted about the structure similar to the said embodiment.
 すなわち、原料ガスの脱硫部3への供給を停止して運転を停止する際に、原料ガスの脱硫部3への供給を停止した後、循環用ガス路Rの内部圧が設定低圧状態に降圧してから燃料ガスの外部への排出を停止して、循環用ガス路Rの内部圧を低圧態にする形態で、降温処理を行うように構成されている。 That is, when the supply of the raw material gas to the desulfurization unit 3 is stopped and the operation is stopped, after the supply of the raw material gas to the desulfurization unit 3 is stopped, the internal pressure of the circulation gas path R is lowered to the set low pressure state. Then, the discharge of the fuel gas to the outside is stopped, and the temperature lowering process is performed in a form in which the internal pressure of the circulation gas path R is lowered.
 具体的には、図5に示すように、燃料ガスGの循環駆動部として機能する原料ガス圧縮機7の下流側に、圧力センサUが設けられている。
 そして、図5に示すように、原料ガスの脱硫部3への供給を停止して運転を停止する際に、先ず、製品ガス弁14を開けた状態で原料ガス弁13を閉じ、その後、圧力センサU検出値が設定低圧状態に降圧すると、製品ガス弁14を閉じる圧力調整処理を行うことになる。
 その後、図6に示すように、待機運転移行状態としての降温処理を行い、図示は省略するが、上記実施形態と同様に、待機運転状態としての待機処理が行われることになる。なお、上述の降温処理は、圧力調整処理が終了して、圧力センサUの検出値が設定低圧状態になっている状態で実行される。
Specifically, as shown in FIG. 5, a pressure sensor U is provided on the downstream side of the raw material gas compressor 7 that functions as a circulation drive unit for the fuel gas G.
Then, as shown in FIG. 5, when stopping the operation by stopping the supply of the raw material gas to the desulfurization section 3, first, the raw material gas valve 13 is opened and the raw material gas valve 13 is closed, and then the pressure When the detected value of the sensor U is lowered to the set low pressure state, a pressure adjustment process for closing the product gas valve 14 is performed.
Thereafter, as shown in FIG. 6, a temperature lowering process as a standby operation transition state is performed and illustration is omitted, but a standby process as a standby operation state is performed as in the above-described embodiment. The above-described temperature lowering process is executed in a state where the pressure adjustment process is completed and the detection value of the pressure sensor U is in the set low pressure state.
 上記の設定低圧状態は、例えば、大気圧よりも高圧で、且つ、0.75MPa以下とする状態に設定することができる。
 そして、循環用ガス路Rの内部圧が低圧状態になることにより、循環用ガス路Rの内部圧が高圧状態である場合よりも、燃料ガスの熱分解により生じる炭素の析出を防止できる析出防止温度を極力高い温度に設定することが可能となる。
The set low pressure state can be set, for example, to a state where the pressure is higher than atmospheric pressure and 0.75 MPa or less.
And the precipitation prevention which can prevent precipitation of carbon which arises by thermal decomposition of fuel gas rather than the case where the internal pressure of circulation gas path R is a high pressure state by the internal pressure of circulation gas path R becoming a low pressure state It is possible to set the temperature as high as possible.
 例えば、第1温度センサS1の検出温度に基づいて、脱硫部3から排出される燃料ガスGの温度を第1設定待機温度(例えば、330℃)に維持するように、第1加熱部K1の加熱作動を制御するように構成されている。
 また、第2温度センサS2の検出温度に基づいて、改質部5から排出される燃料ガスGの温度を第2設定待機温度(例えば、400℃)に維持するように、第2加熱部K2の加熱作動を制御するように構成されている。
その結果、脱硫部3や改質部5を、燃料ガスを製造する運転状態の温度に極力近い高温状態に維持できることになる。
For example, based on the temperature detected by the first temperature sensor S1, the temperature of the fuel gas G discharged from the desulfurization unit 3 is maintained at a first set standby temperature (for example, 330 ° C.) by the first heating unit K1. The heating operation is configured to be controlled.
In addition, based on the temperature detected by the second temperature sensor S2, the second heating unit K2 maintains the temperature of the fuel gas G discharged from the reforming unit 5 at a second set standby temperature (for example, 400 ° C.). The heating operation is controlled.
As a result, the desulfurization unit 3 and the reforming unit 5 can be maintained in a high temperature state as close as possible to the temperature of the operation state in which the fuel gas is produced.
 従って、脱硫部3及び改質部5の夫々が通常運転状態の温度とかなり近い温度に維持されることになるから、燃料ガスGを製造する運転を再開する際には、脱硫部3及び改質部5を昇温する時間を十分に短くすることができ、燃料ガスGを製造する運転を迅速に再開することができる。
 つまり、燃料ガスGを製造する運転を再開する際には、水蒸気を供給しながら、脱硫部3及び改質部5を適正な温度に昇温することになるが、脱硫部3及び改質部5を昇温する時間が十分に短くなり、燃料ガスGを製造する運転を迅速に再開することができる。
Therefore, each of the desulfurization unit 3 and the reforming unit 5 is maintained at a temperature substantially close to the temperature in the normal operation state. Therefore, when the operation for producing the fuel gas G is resumed, the desulfurization unit 3 and the reforming unit 5 are restarted. The time for heating the mass part 5 can be sufficiently shortened, and the operation for producing the fuel gas G can be restarted quickly.
That is, when restarting the operation for producing the fuel gas G, the desulfurization unit 3 and the reforming unit 5 are heated to an appropriate temperature while supplying water vapor. The time to raise the temperature of 5 becomes sufficiently short, and the operation for producing the fuel gas G can be resumed quickly.
 〔その他の別実施形態〕
 次に、その他の別実施形態を列記する。
(1)上記実施形態では、運転を停止するときに、脱硫部3及び改質部5の夫々を通常運転状態の温度に近い温度に維持する場合を例示したが、脱硫部3及び改質部5の夫々を通常運転状態の温度よりも少し低い温度に維持する形態で実施してもよい。
[Other alternative embodiments]
Next, other embodiments are listed.
(1) In the above embodiment, when the operation is stopped, the case where each of the desulfurization unit 3 and the reforming unit 5 is maintained at a temperature close to the temperature of the normal operation state is exemplified. You may implement in the form which maintains each of 5 at the temperature a little lower than the temperature of a normal driving | running state.
(2)上記実施形態では、加熱部Kとして、第1加熱部K1と第2加熱部K2とを設ける場合において、設定待機温度として、脱硫部3を通過した燃料ガスについての設定待機温度(第1設定待機温度)と、改質部5を通過した燃料ガスについての設定待機温度(第2設定待機温度)とを、異なる温度に設定する場合を例示したが、例えば、改質部5を通過した燃料ガスについての設定待機温度を、脱硫部3を通過した燃料ガスについての設定待機温度にする等、脱硫部3を通過した燃料ガスについての設定待機温度と改質部5を通過した燃料ガスについての設定待機温度とを同じ温度に設定してもよい。 (2) In the above embodiment, when the first heating unit K1 and the second heating unit K2 are provided as the heating unit K, the set standby temperature (the first standby temperature) for the fuel gas that has passed through the desulfurization unit 3 is set as the set standby temperature. 1 set standby temperature) and a case where the set standby temperature (second set standby temperature) for the fuel gas that has passed through the reforming unit 5 is set to different temperatures. For example, the set standby temperature passes through the reforming unit 5 The set standby temperature for the fuel gas that has passed through the desulfurization unit 3 is set to the set standby temperature for the fuel gas that has passed through the desulfurization unit 3, and the fuel gas that has passed through the reforming unit 5 The set standby temperature for may be set to the same temperature.
(3)上記実施形態では、加熱部Kとして、第1加熱部K1と第2加熱部K2とを設ける場合を例示したが、例えば、第2加熱部K2を設けて、第1加熱部K1を省略する等、加熱部Kの具体構成は変更できる。 (3) In the above embodiment, the case where the first heating unit K1 and the second heating unit K2 are provided as the heating unit K is illustrated. However, for example, the second heating unit K2 is provided and the first heating unit K1 is provided. For example, the specific configuration of the heating unit K can be changed.
(4)上記実施形態では、原料ガス供給ライン2に原料ガス圧縮機7を設ける場合を例示したが、原料ガス供給部1からの原料ガスが適正な圧力に昇圧されている場合には、原料ガス圧縮機7に代えて原料ガス供給ブロアを設けることができ、この場合には、原料ガス供給ブロアにて、循環駆動部を構成することができる。 (4) In the above embodiment, the case where the source gas compressor 7 is provided in the source gas supply line 2 is exemplified. However, when the source gas from the source gas supply unit 1 is boosted to an appropriate pressure, A raw material gas supply blower can be provided in place of the gas compressor 7, and in this case, the circulation drive unit can be configured by the raw material gas supply blower.
(5)上記実施形態において、燃料ガスGを貯蔵するガス貯蔵部を設けて、待機運転状態において、循環される燃料ガスGの圧力が適正な圧力よりも低下した場合には、ガス貯蔵部の燃料ガスを循環用ガス路Rに補給するようにしてもよい。 (5) In the above embodiment, when a gas storage unit that stores the fuel gas G is provided and the pressure of the circulated fuel gas G is lower than an appropriate pressure in the standby operation state, the gas storage unit The fuel gas may be supplied to the circulation gas path R.
(6)上記実施形態では、改質部5からの燃料ガスGをLPGの運搬船に搭載したガス消費部Nに供給する場合を例示したが、本発明は、原料ガスFを運搬する船舶等、種々の船舶に適用できるものである。 (6) In the above embodiment, the case where the fuel gas G from the reforming unit 5 is supplied to the gas consuming unit N mounted on the LPG carrier ship is exemplified. It can be applied to various ships.
 尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.
3   脱硫部
5   改質部
7   循環駆動部
9   燃料ガス戻し路
11  循環用主ガス路
G   燃料ガス
K   加熱部
K1  第1加熱部
K2  第2加熱部
R   循環用ガス路
S1  第1温度センサ
S2  第2温度センサ
3 Desulfurization section 5 Reforming section 7 Circulation drive section 9 Fuel gas return path 11 Circulation main gas path G Fuel gas K Heating section K1 First heating section K2 Second heating section R Circulation gas path S1 First temperature sensor S2 First 2 temperature sensor

Claims (6)

  1.  重質炭化水素ガスである原料ガスを脱硫処理する脱硫部と、当該脱硫部から供給される脱硫原料ガスを水蒸気にて改質処理して、メタンを主成分として含有する燃料ガスにする改質部と、当該改質部からの前記燃料ガスの一部を前記脱硫部に戻す燃料ガス戻し路とが設けられた燃料ガス製造装置の運転方法であって、
     前記原料ガスの前記脱硫部への供給を停止して運転を停止するときに、前記原料ガスの前記脱硫部への供給を停止した後に、前記水蒸気の供給を継続した状態で、且つ、循環用ガス路を通して前記改質部からの前記燃料ガスの全量を前記脱硫部に戻す形態で、前記燃料ガスを循環駆動部により循環流動させる降温処理を行い、その後、前記改質部の温度が前記燃料ガスの熱分解による炭素の析出を防止できる析出防止温度以下に低下すると、前記水蒸気の供給を停止し、かつ、循環流動させる前記燃料ガスを加熱部にて加熱して、前記析出防止温度以下でかつ水蒸気の結露を防止する設定待機温度に維持する状態で、且つ、前記循環用ガス路を通して前記改質部からの前記燃料ガスの全量を前記脱硫部に戻す形態で、前記燃料ガスを前記循環駆動部により循環流動させる待機運転処理を行う燃料ガス製造装置の運転方法。
    A desulfurization unit that desulfurizes the raw material gas, which is a heavy hydrocarbon gas, and a desulfurization source gas that is supplied from the desulfurization unit is reformed with steam to form a fuel gas containing methane as a main component. And a method for operating a fuel gas production apparatus provided with a fuel gas return path for returning a part of the fuel gas from the reforming unit to the desulfurization unit,
    When the supply of the raw material gas to the desulfurization section is stopped and the operation is stopped, after the supply of the raw material gas to the desulfurization section is stopped, the supply of the water vapor is continued, and for circulation A temperature lowering process is performed in which the fuel gas is circulated and flowed by a circulation drive unit in a form in which the entire amount of the fuel gas from the reforming unit is returned to the desulfurization unit through a gas path, and then the temperature of the reforming unit is changed to the fuel. When the temperature falls below the precipitation prevention temperature at which carbon deposition due to gas pyrolysis can be prevented, the supply of the water vapor is stopped and the fuel gas to be circulated is heated in a heating section, and the temperature is below the precipitation prevention temperature. The fuel gas is circulated in a state in which the fuel gas is maintained at a set standby temperature that prevents dew condensation of water vapor, and the entire amount of the fuel gas from the reforming section is returned to the desulfurization section through the circulation gas passage. How the operation of the fuel gas production apparatus for performing a standby operation process of circulating fluidized by moving parts.
  2.  前記原料ガスの前記脱硫部への供給を停止する際に、前記改質部からの前記燃料ガスの外部への排出を同時に停止して、前記循環用ガス路の内部圧を高圧状態にする形態で、前記降温処理を行う請求項1記載の燃料ガス製造装置の運転方法。 When stopping the supply of the source gas to the desulfurization unit, the discharge of the fuel gas from the reforming unit to the outside is stopped at the same time, and the internal pressure of the circulation gas path is set to a high pressure state. The method for operating the fuel gas production apparatus according to claim 1, wherein the temperature lowering process is performed.
  3.  前記原料ガスの前記脱硫部への供給を停止した後、前記循環用ガス路の内部圧が設定低圧状態に降圧してから前記燃料ガスの外部への排出を停止して、前記循環用ガス路の内部圧を低圧状態にする形態で、前記降温処理を行う請求項1記載の燃料ガス製造装置の運転方法。 After stopping the supply of the raw material gas to the desulfurization section, the internal pressure of the circulation gas passage is lowered to a set low pressure state, and then the discharge of the fuel gas is stopped, and the circulation gas passage The operation method of the fuel gas manufacturing apparatus according to claim 1, wherein the temperature lowering process is performed in a form in which the internal pressure of the gas is set to a low pressure state.
  4.  前記加熱部として、前記改質部から前記脱硫部に戻される前記燃料ガスを加熱する第1加熱部と、前記脱硫部から前記改質部に供給される前記燃料ガスを加熱する第2加熱部とが設けられている請求項1~3のいずれか1項に記載の燃料ガス製造装置の運転方法。 As the heating unit, a first heating unit that heats the fuel gas returned from the reforming unit to the desulfurization unit, and a second heating unit that heats the fuel gas supplied from the desulfurization unit to the reforming unit The method of operating a fuel gas production apparatus according to any one of claims 1 to 3, wherein:
  5.  前記脱硫部から排出される前記燃料ガスの温度を検出する第1温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第1加熱部の加熱作動を制御し、且つ、前記改質部から排出される前記燃料ガスの温度を検出する第2温度センサの検出温度に基づいて、前記設定待機温度に維持するように、前記第2加熱部の加熱作動を制御する請求項4に記載の燃料ガス製造装置の運転方法。 Based on the temperature detected by a first temperature sensor that detects the temperature of the fuel gas discharged from the desulfurization unit, the heating operation of the first heating unit is controlled to maintain the set standby temperature, and The heating operation of the second heating unit is controlled to maintain the set standby temperature based on a temperature detected by a second temperature sensor that detects the temperature of the fuel gas discharged from the reforming unit. 5. A method for operating the fuel gas production apparatus according to 4.
  6.  前記改質部からの前記燃料ガスが船舶に搭載したガス消費部に供給される請求項1~5のいずれか1項に記載の燃料ガス製造装置の運転方法。 The operation method of the fuel gas production apparatus according to any one of claims 1 to 5, wherein the fuel gas from the reforming unit is supplied to a gas consuming unit mounted on a ship.
PCT/JP2018/011888 2017-03-23 2018-03-23 Method for operating fuel-gas-producing apparatus WO2018174276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057454A JP2018159006A (en) 2017-03-23 2017-03-23 Operation method of fuel gas production apparatus
JP2017-057454 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018174276A1 true WO2018174276A1 (en) 2018-09-27

Family

ID=63584589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011888 WO2018174276A1 (en) 2017-03-23 2018-03-23 Method for operating fuel-gas-producing apparatus

Country Status (2)

Country Link
JP (1) JP2018159006A (en)
WO (1) WO2018174276A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159393A (en) * 1990-10-23 1992-06-02 Hitachi Ltd Manufacture of city gas of high calorific value
JPH0726271A (en) * 1993-06-25 1995-01-27 Osaka Gas Co Ltd Production of sng
WO2017150600A1 (en) * 2016-03-01 2017-09-08 大阪瓦斯株式会社 Fuel gas supply apparatus and fuel gas supply method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159393A (en) * 1990-10-23 1992-06-02 Hitachi Ltd Manufacture of city gas of high calorific value
JPH0726271A (en) * 1993-06-25 1995-01-27 Osaka Gas Co Ltd Production of sng
WO2017150600A1 (en) * 2016-03-01 2017-09-08 大阪瓦斯株式会社 Fuel gas supply apparatus and fuel gas supply method

Also Published As

Publication number Publication date
JP2018159006A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US9252443B2 (en) Hydrogen generation apparatus, fuel cell system, and hydrogen generation apparatus operation method
US10597293B2 (en) Operation method for hydrogen production apparatus, and hydrogen production apparatus
US20220169501A1 (en) Method for Hydrogen Production, and Hydrogen Production Device
WO2018174277A1 (en) Method for operating fuel gas manufacturing device
CN101980954B (en) Fuel processing device, fuel cell system provided therewith, and method for operating a fuel processing device
JP6238842B2 (en) Hydrogen production apparatus and operation method thereof
WO2018174276A1 (en) Method for operating fuel-gas-producing apparatus
JP6983088B2 (en) Fuel gas supply device
JP4153958B2 (en) Fuel cell reforming apparatus and starting method thereof
JP2021161906A (en) Fuel gas supply device
JP2015157732A (en) Hydrogen generating apparatus, fuel cell system including the same, hydrogen generating apparatus operation method
US20220162065A1 (en) Method for Hydrogen Production and Hydrogen Production Device
JP2021161905A (en) Fuel gas supply device
JP2003128401A (en) Apparatus for generating hydrogen and it&#39;s operating method
JP7068888B2 (en) Hydrogen production equipment
JP2006083018A (en) Hydrogen production apparatus
JPH0848983A (en) Production of city gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770313

Country of ref document: EP

Kind code of ref document: A1